WO2021132360A1 - 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 - Google Patents
1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 Download PDFInfo
- Publication number
- WO2021132360A1 WO2021132360A1 PCT/JP2020/048220 JP2020048220W WO2021132360A1 WO 2021132360 A1 WO2021132360 A1 WO 2021132360A1 JP 2020048220 W JP2020048220 W JP 2020048220W WO 2021132360 A1 WO2021132360 A1 WO 2021132360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- butylene glycol
- product
- less
- ppm
- weight
- Prior art date
Links
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 title claims abstract description 676
- 229940058015 1,3-butylene glycol Drugs 0.000 title claims abstract description 332
- 235000019437 butane-1,3-diol Nutrition 0.000 title claims abstract description 332
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 85
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims abstract description 167
- 238000009835 boiling Methods 0.000 claims abstract description 111
- 238000004821 distillation Methods 0.000 claims abstract description 96
- 238000006243 chemical reaction Methods 0.000 claims abstract description 82
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 claims abstract description 73
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 claims abstract description 73
- 239000007788 liquid Substances 0.000 claims abstract description 73
- 238000010992 reflux Methods 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 43
- 238000012360 testing method Methods 0.000 claims abstract description 42
- 230000018044 dehydration Effects 0.000 claims abstract description 32
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000004817 gas chromatography Methods 0.000 claims description 39
- 239000003513 alkali Substances 0.000 claims description 32
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims description 31
- 239000002585 base Substances 0.000 claims description 23
- 238000011033 desalting Methods 0.000 claims description 23
- 239000002537 cosmetic Substances 0.000 claims description 22
- 238000004458 analytical method Methods 0.000 claims description 21
- 239000004909 Moisturizer Substances 0.000 claims description 20
- 230000001333 moisturizer Effects 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000012159 carrier gas Substances 0.000 claims description 9
- 239000001307 helium Substances 0.000 claims description 9
- 229910052734 helium Inorganic materials 0.000 claims description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000005526 G1 to G0 transition Effects 0.000 claims description 8
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 8
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 description 274
- 238000005984 hydrogenation reaction Methods 0.000 description 36
- 238000006722 reduction reaction Methods 0.000 description 29
- 238000011084 recovery Methods 0.000 description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 27
- 239000000126 substance Substances 0.000 description 27
- 239000012045 crude solution Substances 0.000 description 21
- 239000002994 raw material Substances 0.000 description 20
- 239000010409 thin film Substances 0.000 description 14
- 150000001299 aldehydes Chemical class 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 10
- 238000004064 recycling Methods 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 235000011121 sodium hydroxide Nutrition 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- -1 1,3-butylene Chemical group 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 230000003020 moisturizing effect Effects 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 150000001339 alkali metal compounds Chemical class 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- XOXZKNZCICKTLL-UHFFFAOYSA-N 2,6-dimethyl-1,3-dioxan-4-ol Chemical compound CC1CC(O)OC(C)O1 XOXZKNZCICKTLL-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- FZIIBDOXPQOKBP-UHFFFAOYSA-N 2-methyloxetane Chemical compound CC1CCO1 FZIIBDOXPQOKBP-UHFFFAOYSA-N 0.000 description 2
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 2
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 238000005882 aldol condensation reaction Methods 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000006103 coloring component Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- WASQWSOJHCZDFK-UHFFFAOYSA-N diketene Chemical compound C=C1CC(=O)O1 WASQWSOJHCZDFK-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000009938 salting Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003676 hair preparation Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- DBCAVMLQRAABFF-UHFFFAOYSA-M potassium;carbonic acid;hydrogen carbonate Chemical compound [K+].OC(O)=O.OC([O-])=O DBCAVMLQRAABFF-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- POECFFCNUXZPJT-UHFFFAOYSA-M sodium;carbonic acid;hydrogen carbonate Chemical compound [Na+].OC(O)=O.OC([O-])=O POECFFCNUXZPJT-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
- A61K8/345—Alcohols containing more than one hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/80—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/007—Preparations for dry skin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/42—Regulation; Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/42—Regulation; Control
- B01D3/4205—Reflux ratio control splitter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/42—Regulation; Control
- B01D3/4211—Regulation; Control of columns
- B01D3/4216—Head stream
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/14—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
- C07C29/141—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/80—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
- C07C29/84—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by extractive distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/18—Polyhydroxylic acyclic alcohols
- C07C31/20—Dihydroxylic alcohols
- C07C31/207—1,4-Butanediol; 1,3-Butanediol; 1,2-Butanediol; 2,3-Butanediol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/10—General cosmetic use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
Definitions
- This disclosure relates to a method for producing 1,3-butylene glycol and a 1,3-butylene glycol product.
- This application applies to Japanese Patent Application No. 2019-239974, Japanese Patent Application No. 2019-239975, Japanese Patent Application No. 2019-239996, Japanese Patent Application No. 2019-239977, Japanese Patent Application No. 2019-239978, Japanese Patent Application No. 2019-239979, which was filed in Japan on December 28, 2019.
- 1,3-butylene glycol is a colorless, transparent, odorless liquid, has properties such as low volatility, low toxicity, and high hygroscopicity, and has excellent chemical stability. For this reason, 1,3-butylene glycol has a wide range of uses, including raw materials for various synthetic resins and surfactants, as well as cosmetics, hygroscopic agents, high boiling point solvents, and antifreeze materials. Particularly in recent years, attention has been paid to the fact that 1,3-butylene glycol has excellent properties as a moisturizer, and the demand in the cosmetics industry is expanding.
- Potassium permanganate test value (abbreviation: PMT) is one of the product standards for 1,3-butylene glycol.
- JT Potassium permanganate test value
- Japanese Unexamined Patent Publication No. 2001-213825 discloses 1,3-butylene glycol having a potassium permanganate fading time of 5 minutes or more after 3 months of production.
- the potassium permanganate test value of the obtained 1,3-butylene glycol product was not always sufficiently satisfactory by the method of the above-mentioned prior literature.
- the causative substance that lowers the potassium permanganate test value of 1,3-butylene glycol products has not been identified.
- the inventors according to the present disclosure supply a preparation liquid having a concentration of 1,3-butylene glycol and an acetaldehyde content in a specific range to a product tower, and supply a specific reflux. Distilling at a ratio can greatly improve the potassium permanganate test value of 1,3-butylene glycol products, and recycling the distillate from the product column to a process prior to the product distillation process further improves 1,3-butylene. It was found that the potassium permanganate test value of the glycol product can be further improved, and that the recovery rate of 1,3-butylene glycol can be maintained and improved even if the above method is carried out. This disclosure has been completed based on these findings.
- the present disclosure is a method for producing 1,3-butylene glycol, which obtains purified 1,3-butylene glycol from a reaction crude solution containing 1,3-butylene glycol. It has a dehydration step of removing water by distillation, a dehigh boiling step of removing high boiling point components by distillation, and a product distillation step for obtaining purified 1,3-butylene glycol.
- a charged liquid having a concentration of 1,3-butylene glycol of 97% or more, an acetaldehyde content of 500 ppm or less, and a crotonaldehyde content of 200 ppm or less is charged with a reflux ratio of more than 0.1.
- 1,3-butylene glycol which is distilled under the conditions of the above, distills a liquid in which acetaldehyde and crotonaldehyde are concentrated from above the charging stage, and extracts 1,3-butylene glycol from below the charging stage. ..
- the crude reaction solution containing 1,3-butylene glycol may be a crude reaction solution obtained by hydrogen reduction of acetaldols.
- the production method may further include an alkali treatment step of treating a process stream containing 1,3-butylene glycol with a base.
- the production method may further include a desalting step of removing salts in the process flow containing 1,3-butylene glycol.
- the production method may further include a dealcoholization step of removing low boiling materials containing alcohol in the process flow containing 1,3-butylene glycol.
- the reflux ratio of the product tower may be 0.2 or more.
- the content of acetaldehyde in the liquid charged in the product tower may be 205 ppm or less.
- the content of crotonaldehyde in the liquid charged in the product tower may be 110 ppm or less.
- the distillate rate in the product tower may be less than 20% by weight.
- the theoretical number of stages of the product tower is, for example, 1 to 100 stages.
- At least a part of the distillate from the product tower may be recycled to a dehydration step, a dealcoholization step, a delow boiling step, or a step prior to those steps, which are steps prior to the product distillation step.
- the reaction crude liquid containing 1,3-butylene glycol is a reaction crude liquid obtained by hydrogen reduction of acetoaldoles, and at least a part of the distillate in the product column is a step of hydrogen reduction of the acetoaldoles. Alternatively, it may be recycled to a process upstream of it.
- the amount of the distillate from the product tower recycled to the process prior to the product distillation step is 0.01% by weight or more with respect to the amount charged into the product tower within the range of the distillate amount or less in the product tower. You may.
- the present disclosure also provides 1,3-butylene glycol products with a potassium permanganate test value of more than 10 minutes.
- the 1,3-butylene glycol product preferably has a peak area ratio of 1,3-butylene glycol higher than 98.5% in the gas chromatography analysis under the following conditions.
- Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
- Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
- Sample introduction temperature 250 ° C
- Carrier gas Gas flow rate of helium column: 1 mL / min
- Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
- the 1,3-butylene glycol product preferably has an acetaldehyde content of 2 ppm or less.
- the 1,3-butylene glycol product preferably has a crotonaldehyde content of 1.2 ppm or less.
- the present disclosure further provides a moisturizer containing the above-mentioned 1,3-butylene glycol product.
- the present disclosure further provides a cosmetic containing the above-mentioned moisturizer.
- 1,3-butylene glycol product means that 1,3-butylene glycol occupies most of the constituents (for example, the 1,3-butylene glycol content is preferably 95% by weight or more). Means a composition (which is 98% by weight or more).
- 1,3-butylene glycol having a high potassium permanganate test value can be produced.
- the 1,3-butylene glycol product of the present disclosure has a high potassium permanganate test value. Therefore, it is suitably used as a moisturizer and as a raw material for cosmetics. Further, the moisturizers and cosmetics of the present disclosure are excellent in moisturizing properties and have an extremely low content of reducing substances, so that high quality can be maintained for a long period of time.
- a method for producing 1,3-butylene glycol to obtain 1,3-butylene glycol which is a dehydration step of removing water by distillation, a dehigh boiling step of removing high boiling point components by distillation, and purification 1,3-butylene. It has a product distillation step to obtain glycol.
- a charged liquid having a concentration of 1,3-butylene glycol of 97% or more, an acetaldehyde content of 500 ppm or less, and a crotonaldehyde content of 200 ppm or less was added to a reflux ratio of 0.
- Distillation is carried out under one or more conditions, a liquid in which acetaldehyde and crotonaldehyde are concentrated is distilled off from above the charging stage, and 1,3-butylene glycol is extracted from below the charging stage. Since this 1,3-butylene glycol has a high potassium permanganate test value, it can be used as a 1,3-butylene glycol product.
- Examples of the crude 1,3-butylene glycol include (1) a reaction crude solution obtained by reducing (hydrogenating) acetoaldoles, and (2) a reaction crude solution obtained by hydrolyzing 1,3-butylene oxide. (3) Reaction crude solution obtained by selective hydrocracking of erythritol, (4) Reaction crude solution obtained by selective water addition to butadiene, (5) Obtained by hydrogenation of n-butanol-3-one.
- the crude 1,3-butylene glycol may be one or a mixture of two or more of the above (1) to (9).
- the crude 1,3-butylene glycol is preferably a reaction crude solution obtained by (1) reduction of acetaldols (particularly, liquid phase reduction).
- the acetaldols used as a raw material in the hydrogenation step are not particularly limited as long as they are compounds that become 1,3-butylene glycol by hydrogen reduction.
- Examples of the raw material acetaldols include acetaldol, paraaldol which is a cyclized dimer thereof, aldoxane which is a cyclic trimer of acetaldehyde, and a mixture thereof.
- the method for producing acetaldols is not particularly limited, but for example, even those obtained by the aldol condensation reaction of acetaldehyde in the presence of a basic catalyst can be obtained by thermal decomposition of aldoxane or the like. It may be an aldol.
- the step of producing acetaldehyde may be referred to as "acetaldehyde production step” or "acetaldehyde polymerization step".
- reaction crude liquid containing acetaldols obtained by the above reaction may be neutralized with an acid and used for the production of 1,3-butylene glycol.
- reaction crude liquid may contain acetaldehyde, crotonaldehyde, other aldehyde components, low boiling point substances, high boiling point substances such as aldehyde dimers and trimmers, water, salts and the like.
- a compound having a boiling point lower than 1,3-butylene glycol is a "low boiling point” or "low boiling point”
- a compound having a boiling point higher than 1,3-butylene glycol is a "high boiling point”.
- they may be referred to as "high boiling point”.
- the crude reaction solution containing the above acetaldehydes is subjected to pretreatment such as dealcohol distillation, dehydration distillation, desalting, alkali treatment and dealkali treatment, decontamination, etc., if necessary, and unreacted acetaldehyde, crotonaldehyde, etc.
- pretreatment method include distillation, adsorption, ion exchange, heating to a high boiling point, decomposition and the like.
- various distillation methods such as reduced pressure, normal pressure, pressure, azeotrope, extraction, and reaction can be used.
- the crude reaction solution containing acetaldehyde is subjected to simple evaporation, distillation, or hydrogenation to remove aldehydes such as acetaldehyde and crotonaldehyde, and then subjected to a hydrogenation step.
- the content of acetaldols in the hydrogenated raw material is not particularly limited, but is, for example, 30% by weight or more (for example, 30 to 99% by weight), more preferably 40% by weight or more (for example, 40 to 98% by weight), 50% by weight. More than (for example, 50 to 97% by weight) or 60% by weight or more (for example, 60 to 95% by weight), more preferably 65 to 90% by weight, particularly preferably 70 to 90% by weight, and most preferably 75 to 90% by weight. %.
- impurities contained in the reaction crude liquid containing 1,3-butylene glycol (crude 1,3-butylene glycol) tend to be reduced.
- the hydrogenated raw material may or may not contain water, but it is preferable to contain it from the viewpoint of the purity of the 1,3-butylene glycol product.
- the content of water in the hydrogenated raw material is not particularly limited, but is, for example, 2% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and particularly preferably 15% by weight or more.
- the upper limit may be, for example, 90% by weight, 80% by weight, 70% by weight, 60% by weight, 50% by weight, 40% by weight, 30% by weight or 20% by weight.
- the acetal form of 1,3-butylene glycol and acetaldol contained in the obtained crude 1,3-butylene glycol is reduced, so that the finally obtained 1,
- the purity of 3-butylene glycol products tends to be high. This is because the acetal form is hydrolyzed to 1,3-butylene glycol due to the hydrogenation raw material containing water to some extent, and the symbiotic acetaldol is reduced to 1,3-butylene glycol. Due to becoming.
- the hydrogenated catalyst examples include Raney nickel and the like.
- the hydrogenated catalyst can be used in a suspended state, or can be used by filling it in a reaction vessel.
- the amount of the hydrogenated catalyst used is not particularly limited, but is preferably 1 to 30 parts by weight, more preferably 4 to 25 parts by weight, still more preferably 8 to 20 parts by weight, based on 100 parts by weight of the hydrogenated raw material. , Particularly preferably 12 to 18 parts by weight.
- the amount of hydrogen used in the reduction reaction is not particularly limited, but is preferably 0.5 to 40 parts by weight, more preferably 1 to 30 parts by weight, still more preferably 4 to 20 parts by weight, based on 100 parts by weight of the hydrogenated raw material. It is by weight, particularly preferably 8 to 12 parts by weight.
- the pressure (total pressure; gauge pressure) in the reaction system in the reduction reaction is not particularly limited, but is, for example, 9 to 70 MPa, preferably 10 to 40 MPa.
- the hydrogen pressure (partial pressure of hydrogen) in the reaction system is not particularly limited, but is, for example, 7 to 60 MPa, preferably 10 to 30 MPa.
- the reaction temperature in the reduction reaction is not particularly limited, but is, for example, 40 to 150 ° C, preferably 50 to 140 ° C, and more preferably 60 to 130 ° C.
- the reaction time (retention time) in the reduction reaction is not particularly limited, but is, for example, 10 to 500 minutes, preferably 20 to 400 minutes, more preferably 30 to 300 minutes, still more preferably 50 to 280 minutes, and particularly preferably 80 to 250 minutes. Minutes.
- This reaction can be carried out in a batch system, a semi-batch system, or a continuous system.
- the crude 1,3-butylene glycol thus obtained includes low-boiling substances (low-boiling compounds) having unsaturated bonds such as acetaldehyde (AD), butylaldehyde, crotonaldehyde (CR), acetone, and methyl vinyl ketone, and these.
- a condensate of 1,3-butylene glycol and the above low boiling point for example, an acetal compound of 1,3-butylene glycol and acetaldehyde), alcohol such as ethanol, isopropyl alcohol, butanol, water (for example). It contains solvents, etc.), salts produced by neutralization, catalysts (when used in a suspended state), and the like.
- a 1,3-butylene glycol product purified 1,3-butylene glycol
- the production method according to the present disclosure at least a dehydration step of removing water by distillation, a dehigh boiling step of removing high boiling point components by distillation (dehigh boiling point distillation step), and purified 1,3-butylene glycol are obtained.
- Both the dehydration step and the dehigh boiling step are provided before the product distillation step, but the order of the dehydration step and the dehigh boiling step does not matter.
- the production method according to the present disclosure may include a desalting step, an alkali reaction step (alkali treatment step), and a dealkali step.
- a catalyst separation step, a neutralization step with alkali, and a de-alcoholization step can be provided before the dehydration step.
- Each of the above steps may be carried out in the order described in this manner, but the order of each step may be appropriately changed except that the dealkali step is provided after the alkali reaction step.
- the de-alcoholization step (de-low boiling step), the desalting step, the alkali reaction step and the de-alkali step can be provided at appropriate positions, but are usually provided after the hydrogenation step.
- the catalyst separation step, the neutralization step with alkali, the dealcoholization step (de-low boiling step), the desalination step, the alkali reaction step, and the dealkaliization step may be provided as necessary, and are not necessarily It does not have to be provided.
- FIG. 1 is a flow sheet of an apparatus showing an example of an embodiment of the method for producing 1,3-butylene glycol according to the present disclosure.
- A is a dehydration tower and is related to the dehydration process.
- B is a desalination tower and is related to the desalination process.
- C is a dehigh boiling point distillation column (dehigh boiling column) and is related to a dehigh boiling point distillation step (dehigh boiling step).
- D is an alkaline reactor and is related to the alkaline reaction step.
- E is a dealkali tower and is related to the dealkali step.
- F is a product distillation column (product column) and is related to the product distillation process.
- A-1, B-1, C-1, E-1, and F-1 are capacitors.
- A-2, C-2, and F-2 are reboilers.
- the crude 1,3-butylene glycol (corresponding to "X-1") obtained by hydrogenation of the hydrogenated raw material is supplied to the dehydration column A.
- water is distilled from the top of the column by distillation, and a crude 1,3-butylene glycol stream containing 1,3-butylene glycol is obtained from the bottom of the column.
- the crude 1,3-butylene glycol (corresponding to "X-1") is dehydrated after undergoing a dealcohol step (distillation step by a dealcohol column) for removing alcohol such as ethanol and low boiling point substances. It may be supplied to the tower A.
- the crude 1,3-butylene glycol flow is supplied to the desalting tower B.
- a crude 1,3-butylene glycol flow after desalting is obtained from the top of the column by distillation, and salts, high boiling point substances and the like are discharged as canned out liquid from the bottom of the column.
- the can-out rate (%) of the desalting tower B [(de-salting tower can-out amount (parts) / desalting tower charging amount (parts)) ⁇ 100] is, for example, 0.1 to 40% by weight, preferably 1 to 1 to 40% by weight.
- the canned liquid of the desalting tower may be recycled to the step before the desalting step.
- the crude 1,3-butylene glycol flow after desalting is supplied to the desalting column C.
- a high boiling point component high boiling point substance
- a crude 1,3-butylene glycol flow (1,3-butylene glycol with improved purity) after the dehigh boiling point is obtained from above the charging stage.
- the de-high boiling tower C for example, a perforated plate tower, a bubble bell tower, etc. can be used, but the pressure loss due to filling with slewer packing, Melapack (both are trade names of Sumitomo Heavy Industries, Ltd.), etc.
- a lower filling tower is more preferred. This is because 1,3-butylene glycol and impurities contained in a trace amount are thermally decomposed at a high temperature (for example, 150 ° C. or higher) to produce a low boiling point substance which is a coloring component, so that the distillation temperature is lowered. This is also because the same effect occurs when the heat history (residence time) of 1,3-butylene glycol is long.
- the reboiler to be adopted is preferably one having a short residence time of the process side fluid, for example, a thin film evaporator such as a natural flow type thin film evaporator or a forced stirring type thin film evaporator.
- the number of stages of the de-high boiling tower C is, for example, 1 to 100 stages, preferably 2 to 90 stages, more preferably 3 to 80 stages, still more preferably 4 to 70 stages, 5 to 60 stages, and 8 to 50 stages. It is a step or 10 to 40 steps, and particularly preferably 15 to 30 steps.
- the supply position of the charging liquid is, for example, 10 to 90%, preferably 20 to 80%, more preferably 30 to 70 steps, still more preferably 40, from the top of the de-high boiling tower to the bottom. It is in the position of ⁇ 60%.
- the pressure (absolute pressure) at the top of the column is, for example, 0.01 to 50 kPa, preferably 0.1 to 30 kPa, more preferably 0.3 to 20 kPa, still more preferably 0.5. It is ⁇ 10 kPa.
- the reflux ratio in the dehigh boiling tower C [recirculation amount of the dehigh boiling tower / distillation amount of the dehigh boiling tower (emission amount to the outside of the distillation tower)] is, for example, 0.015 or more, preferably 0.02 or more, 0. 03 or more, 0.05 or more, 0.07 or more, 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0. 8 or more, 0.9 or more, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more or 20 or more, more preferably 30. That is all.
- the upper limit of the reflux ratio is, for example, 100, preferably 50 from the viewpoint of energy cost.
- the crude 1,3-butylene glycol flow taken out from above the charging stage of the de-high boiling tower C is supplied to an alkali reactor (for example, a flow tube type reactor) D and subjected to base treatment (alkali treatment).
- alkali reactor for example, a flow tube type reactor
- base treatment alkali treatment
- By-products contained in crude 1,3-butylene glycol can be decomposed by base treatment.
- the base is added to the alkaline reactor D or the piping upstream of the alkaline reactor D.
- the amount of the base added is, for example, 0.05 to 10% by weight, preferably 0.1 to 1.0% by weight, based on the crude 1,3-butylene glycol stream subjected to the alkali treatment.
- the base may be precipitated in the distillation column, piping, etc., which may cause clogging.
- a decomposition reaction of a high boiling point compound may occur, and by-products may be generated instead.
- the amount of the base added is less than 0.05% by weight, the effect of decomposing the by-products is small.
- the base added to the alkali reactor D or the piping upstream of the alkali reactor D is not particularly limited, but for example, an alkali metal compound is preferable.
- the alkali metal compound include sodium hydroxide, potassium hydroxide, sodium (bicarbonate), and potassium (bicarbonate).
- a basic ion exchange resin can also be used as the base.
- sodium hydroxide and potassium hydroxide are preferable from the viewpoint of reducing by-products contained in the finally obtained 1,3-butylene glycol product.
- a solid base may be added as it is, but it is preferable to add the base as an aqueous solution in order to promote the operation and contact with the liquid to be treated.
- the above-mentioned bases may be used alone or in combination of two or more.
- the reaction temperature in the alkaline reactor D is not particularly limited, but is preferably 90 to 140 ° C, more preferably 110 to 130 ° C, for example. If the reaction temperature is less than 90 ° C., a long reaction residence time is required, which increases the reactor capacity, which is uneconomical. If the reaction temperature exceeds 140 ° C., the coloration of the final 1,3-butylene glycol product may increase.
- the reaction residence time is, for example, preferably 5 to 120 minutes, more preferably 10 to 30 minutes. If the reaction residence time is less than 5 minutes, the reaction may be insufficient and the quality of the finally obtained 1,3-butylene glycol product may be deteriorated. If the reaction residence time exceeds 120 minutes, a large reactor is required and the equipment cost increases, which is disadvantageous from the viewpoint of economy.
- the reaction crude liquid flow is supplied to the de-alkali column (for example, a thin film evaporator) E as needed, and bases and the like are removed from the bottom of the column by evaporation.
- a crude 1,3-butylene glycol flow after debasement can be obtained from the top of the de-alkali tower E.
- the evaporator used in the de-alkali column E a natural flow type thin film evaporator and a forced stirring type thin film evaporator having a short residence time are suitable for the purpose of suppressing the heat history to the process fluid.
- a demister may be installed in a space above the charging position of the de-alkali tower (for example, a thin film evaporator) E to remove droplets such as bases. By doing so, it is possible to prevent a base or a high boiling point substance from being mixed into the 1,3-butylene glycol product.
- the de-alkali tower for example, a thin film evaporator
- the top of the column is evaporated under a reduced pressure of an absolute pressure of 20 kPa or less, preferably an absolute pressure of 0.5 to 10 kPa.
- the temperature of the evaporator is preferably 90 to 120 ° C., for example.
- a crude 1,3-butylene glycol stream containing a low boiling point distilled from the top of the column is supplied to the product distillation column (product column) F.
- the alkali reactor D and the de-alkali column E are between the desalting column B and the de-high boiling column C, and between the dehydration column A and the desalting column B (in this case, the desalting column also serves as the de-alkali tower). It may be installed in front of the dehydration tower A. Further, without providing the alkali reactor D and the de-alkali column E, the base is charged into the de-high boiling column charging line, the dehydration column charging line, or added to the reaction solution after hydrogenation [then de-alkaline removal]. Alkaline treatment can also be performed by charging in a tower (de-low boiling tower).
- a charging liquid having a concentration of 1,3-butylene glycol of 97% or more, an acetaldehyde content of 500 ppm or less, and a crotonaldehyde content of 200 ppm or less Is distilled under the condition of a reflux ratio of more than 0.1, and a liquid in which acetaldehyde and crotonaldehyde are concentrated is distilled off from above the charging stage (corresponding to "X-6" in FIG. 1), and below the charging stage. 1,3-butylene glycol is extracted from the mixture (corresponding to "Y" in FIG. 1). Since this 1,3-butylene glycol has a high potassium permanganate test value, it can be used as it is as a 1,3-butylene glycol product.
- Examples of the product tower F include a perforated plate tower, a bubble bell tower, etc., but a filling tower with low pressure loss filled with slewer packing, Melapack (both are trade names of Sumitomo Heavy Industries, Ltd.), etc. is more suitable. preferable.
- a high temperature for example, 150 ° C. or higher
- Melapack both are trade names of Sumitomo Heavy Industries, Ltd.
- the reboiler to be adopted is preferably one having a short residence time of the process side fluid, for example, a thin film evaporator such as a natural flow type thin film evaporator or a forced stirring type thin film evaporator.
- the number of theoretical plates of the product tower F is, for example, 1 to 100 stages, preferably 2 to 90 stages, 3 to 80 stages, 4 to 70 stages, 5 to 60 stages, 8 to 50 stages, or 10 to 40 stages, and more preferably. Is 15 to 30 steps.
- the supply position of the charging liquid is, for example, 10 to 90%, preferably 20 to 80%, more preferably 30 to 70%, still more preferably 40 to 60% of the height of the tower from the top of the tower to the bottom. Is.
- the pressure (absolute pressure) at the top of the column is, for example, 20 kPa or less, preferably 0.1 to 10 kPa, more preferably 0.3 to 8 kPa, and further preferably 0.5 to 5 kPa. ..
- the reflux ratio in the product distillation column F is, for example, 0.05 to 500, preferably 0.1 to 300, more preferably 0.2 to 200, still more preferably 0.5 to 100, 1 to 50, 2 to 40 or It is 3 to 30, particularly preferably 4 to 25.
- the concentration of 1,3-butylene glycol in the liquid charged in the product tower F is 97% or more, preferably 98% or more, and more preferably 99% or more.
- the distillation conditions of the dehydration column A may be adjusted, or a de-alcohol column (de-low boiling column) may be provided in front of the dehydration column A. It can be improved by adjusting the distillation condition or adjusting the distillation condition of the de-high boiling column C.
- the purity of 3-butylene glycol can be increased.
- the concentration of 1,3-butylene glycol is the ratio (area%) of the peak area of 1,3-butylene glycol to the total peak area in the gas chromatography analysis under the following conditions.
- Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
- Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C.
- Sample introduction temperature 250 ° C.
- Carrier gas Gas flow rate of helium column: 1 mL / min
- Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
- the content of acetaldehyde in the liquid charged into the product tower F is 500 ppm or less, and the content of crotonaldehyde is 200 ppm or less.
- the content of acetaldehyde in the liquid charged in the product tower F is preferably 205 ppm or less (for example, 200 ppm or less), more preferably 100 ppm or less, still more preferably 90 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm.
- the content of crotonaldehyde in the liquid charged in the product tower F is preferably 110 ppm or less, more preferably 100 ppm or less, still more preferably 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less. It is 10 ppm or less, 5 ppm or less, or 3 ppm or less, particularly preferably 2 ppm or less, and may be less than 1 ppm.
- a de-alcohol tower (de-low boiling tower) or a dehydration tower is provided upstream of the product tower F, and the de-alcohol tower (de-low boiling) is provided. It can be reduced by adjusting the distillation conditions of the tower) and the dehydration tower. For example, by increasing the reflux ratio, the number of stages, and the distillation rate of the de-alcohol tower (de-low boiling tower) and the dehydration tower, the acetaldehyde content and the crotonaldehyde content in the liquid charged into the product tower F are reduced. be able to.
- the acetaldehyde content and the crotonaldehyde content in the liquid charged into the product tower F can be adjusted by raising the reaction temperature, lengthening the residence time, or increasing the amount of the base added in the alkaline reaction step.
- the acetaldehyde content and crotonaldehyde content in the liquid charged to F can be reduced.
- the acetaldehyde content and crotonaldehyde content in the liquid charged into the product tower F can be quantified by GC-MS analysis (gas mass spectrometry) as described later.
- the reflux ratio in the product column F [recirculation amount in the product column / distillation amount in the product column (emission amount to the outside of the distillation column)] is a value larger than 0.1 (for example, 0.15 or more). And.
- the reflux ratio is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more, 0 from the viewpoint of increasing the potassium permanganate test value of the 1,3-butylene glycol product.
- .5 or more 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 It is 17 or more, 18 or more, 19 or more, 20 or more, 25 or more, 30 or more, 35 or more, 40 or more or 50 or more, and particularly preferably 400 or more (for example, 500 or more).
- the distillate rate of the product tower F is less than 20% by weight.
- the above-mentioned distillation rate is the amount of liquid extracted from above the charging stage of the product tower F (for example, the top of the column) with respect to the amount charged into the product tower F (recycled to the previous process described later). In the case, it means the ratio (% by weight) of (including the recycled amount).
- the distillate rate of the product tower F is preferably 15% by weight or less, more preferably 12% by weight or less, still more preferably 10% by weight or less, 8% by weight from the viewpoint of improving the recovery rate of 1,3-butylene glycol. % Or less, 5% by weight or less, 3% by weight or less, 2% by weight or less, 1% by weight or less, 0.8% by weight or less or 0.6% by weight or less, particularly preferably 0.4% by weight or less, and 0 It may be 2% by weight or less.
- distillate At least a part of the liquid (hereinafter, sometimes referred to as "distillate") in which the low boiling component extracted from above the preparation stage of the product tower F is concentrated is recycled to a process prior to the product distillation process. It may be (the dashed arrow shown on the right side of the product tower F in FIG. 1). By recycling at least a part of the distillate to a step prior to the product distillation step, the recovery rate of 1,3-butylene glycol can be improved.
- Examples of the steps prior to the product distillation step include a dehydration step, a de-alcoholization step (de-low boiling step), and the like.
- the de-high boiling step in which the distillate of the de-high boiling tower is used as a purified product is not subject to recycling of the distillate of the product tower F, but the side cut of the de-high boiling tower is regarded as a refined product.
- a de-high boiling step in which a distillate containing a low boiling point substance is taken out and discarded or recycled to an upstream process may be subject to recycling of the distillate in the product tower F.
- the de-alcohol step (de-low boiling step) is preferably provided before the dehydration step.
- the crude reaction solution containing 1,3-butylene glycol is a crude reaction solution obtained by hydrogenation of acetoaldoles
- at least a part of the distillate from the product column is used as the acetoaldoles. It may be recycled to a hydrogen reduction step (hydrogenation step) or a step upstream thereof.
- the acetaldehyde contained in the distillate of the product tower can be used. Reducing substances such as crotonaldehyde can be detoxified by hydrogenation in the hydrogenation process.
- the amount of the distillate recycled to the process prior to the product distillation step can be appropriately selected within the range of the amount of the distillate.
- the amount of the distillate recycled to the process prior to the product distillation step is, for example, less than 30% by weight with respect to the amount charged to the product tower F. Further, the amount of the distillate recycled to the process prior to the product distillation step is the amount charged to the product tower F from the viewpoint of improving the 1,3 BG recovery rate in the product tower and the yield throughout the process.
- 0.01% by weight or more preferably 0.05% by weight or more, more preferably 0.1% by weight or more, 0.5% by weight or more, 1% by weight or more, 1.5% by weight or more
- It is 2% by weight or more, 3% by weight or more, 4% by weight or more, 5% by weight or more, 7% by weight or more or 10% by weight or more, and particularly preferably 20% by weight or more.
- the amount charged to the product tower F is preferably 90% by weight or less, more preferably 80% by weight or less, still more preferable. Is 70% by weight or less, 60% by weight or less, 50% by weight or less, or 40% by weight or less, and may be 30% by weight or less.
- high-quality 1,3-butylene glycol having a very low content of acetaldehyde and crotonaldehyde and a high potassium permanganate test value is generally produced with a high recovery rate.
- the recovery rate of 1,3BG in the product tower F is a value (%) calculated by the following formula.
- the 1,3-butylene glycol product according to the present disclosure can be obtained by the above-mentioned production method according to the present disclosure.
- the 1,3-butylene glycol product according to the present disclosure has a potassium permanganate test value (PMT) higher than 10 minutes.
- the potassium permanganate test value is preferably 15 minutes or longer, more preferably 30 minutes or longer, still more preferably 40 minutes or longer, and particularly preferably 50 minutes or longer (particularly 60 minutes or longer).
- the area ratio of the peak of 1,3-butylene glycol is higher than 98.5% in the gas chromatography analysis (GC analysis) under the following conditions. .. (Conditions for gas chromatography analysis)
- Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
- Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C.
- Sample introduction temperature 250 ° C
- Carrier gas Gas flow rate of helium column: 1 mL / min
- Detector and detection temperature Hydrogen flame ionization detector (FID), 280 ° C
- the area ratio of the peak of 1,3-butylene glycol is preferably 98.6% or more, more preferably 98.7% or more, still more preferably 98.8% or more, 98.9% or more, 99% or more, or It is 99.1% or more, particularly preferably 99.3% or more (for example, 99.5% or more), and may be 99.8% or more.
- the "area ratio" of a peak means the ratio (area%) of the area of a specific peak to the sum of the areas of all the peaks appearing in the chart.
- all peaks are, for example, peaks appearing when the relative retention time of the peak of 1,3-butylene glycol is 1.0 and the analysis is continuously stopped until the relative retention time is 7.8. Means everything.
- the content of acetaldehyde is preferably 2 ppm or less. Further, the content of crotonaldehyde is preferably 1.2 ppm or less.
- the acetaldehyde content and crotonaldehyde content in the 1,3-butylene glycol product can be quantified by GC-MS analysis (gas mass spectrometry), for example, GC-MS analysis under the following conditions. In GC-MS analysis, even very small peaks are subjected to mass spectrometry to quantify each component.
- the unit "ppm" of the content of each component by GC-MS analysis means "weight ppm".
- Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
- Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes.
- the acetaldehyde content in the 1,3-butylene glycol product is more preferably 1.7 ppm or less, further preferably 1.5 ppm or less, particularly preferably 1.2 ppm or less, 1.0 ppm or less, 0.7 ppm or less, 0. It is 5 ppm or less and 0.3 ppm or less (for example, 0.2 ppm or less).
- the crotonaldehyde content in the 1,3-butylene glycol product is more preferably 1.0 ppm or less, further preferably 0.7 ppm or less, particularly preferably 0.5 ppm or less, 0.3 ppm or less, or 0.2 ppm or less. (For example, 0.1 ppm or less).
- the moisturizers of the present disclosure include the above 1,3-butylene glycol products. Therefore, it has excellent moisturizing performance.
- the moisturizer of the present disclosure may contain a component other than the above-mentioned 1,3-butylene glycol product, for example, a moisturizer component other than the above-mentioned 1,3-butylene glycol product.
- the content of the above 1,3-butylene glycol product is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 80% by weight or more. Particularly preferably, it is 90% by weight or more, and may be composed only of the above-mentioned 1,3-butylene glycol product.
- the cosmetics disclosed in this disclosure include the above moisturizers.
- the blending amount of the above 1,3-butylene glycol product in the cosmetics of the present disclosure may be an amount capable of exhibiting moisturizing performance according to the type and form of the cosmetics.
- the blending amount of the 1,3-butylene glycol product in the cosmetics of the present disclosure is, for example, 0.01 to 40% by weight, preferably 0.1 to 30% by weight, more preferably 0.2 to 20% by weight, and further. It is preferably 0.5 to 15% by weight, particularly preferably 1 to 10% by weight.
- the cosmetics of the present disclosure include, for example, other moisturizers; oils such as vegetable oils, hydrocarbon oils, higher fatty acids, higher alcohols, silicones; anionic surfactants, cationic surfactants.
- Surfactants such as agents, amphoteric surfactants, nonionic surfactants; preservatives, metal ion blockers, thickeners, powders, UV absorbers, UV blockers, fragrances, pH adjusters; vitamins, It may contain a medicinal ingredient such as a skin activator, a blood circulation promoter, a whitening agent, an antibacterial agent, an anti-inflammatory agent, a physiologically active ingredient, and the like.
- the cosmetics disclosed in the present disclosure can be skin cosmetics such as lotions, milky lotions, creams, gels, packs and masks, and hair cosmetics such as shampoos, conditioners and hair restorers. Further, it may be a sunscreen cosmetic, a make-up cosmetic, or the like. It can also be a drug or a quasi-drug containing a medical ingredient.
- the cosmetics disclosed in the present disclosure can be manufactured by using a method well known in itself.
- the “part” used in the examples means a “part by weight” unless otherwise specified.
- Gas chromatography analysis (GC analysis), GC-MS analysis (gas mass spectrometry), and potassium permanganate test were performed by the methods described below.
- Example 1 A method for producing 1,3-butylene glycol will be described with reference to FIG.
- 100 parts of acetoaldole solution containing 30% by weight of water as a raw material mixed solution of 69 parts of acetoaldole and 29 parts of water, containing a total of 2 parts of low boiling and high boiling impurities, less than 0.1 part of Na salt
- 10 parts of hydrogen was charged into a reactor for liquid phase hydrogen reduction
- 15 parts of lane nickel was added as a catalyst
- the reactor was maintained at 120 ° C. and 10 MPa (gauge pressure) to perform liquid phase hydrogen reduction.
- the liquid after the reaction was separated from the catalyst and then neutralized with caustic soda to obtain crude 1,3-butylene glycol (1) containing low boiling impurities and water.
- the acetaldehyde solution containing 30% by weight of water used as a raw material is obtained by stirring acetaldehyde and water in the presence of 100% by weight of NaOH at 30 ° C. and a residence time of 10 hours to distillate acetaldehyde.
- Manufactured [acetaldehyde polymerization step (acetaldehyde aldol condensation step)].
- crude 1,3-butylene glycol (2) was charged into the desalting tower B.
- salt, a high boiling point substance, and a part of 1,3-butylene glycol were discharged as an evaporation residue from the bottom of the column (corresponding to "X-3" in FIG. 1).
- the amount of the evaporation residue discharged was 5 parts with respect to 100 parts of the charged liquid amount.
- crude 1,3-butylene glycol (3) containing 1,3-butylene glycol, a low boiling point substance, and a part of a high boiling point substance was obtained from the top of the column.
- crude 1,3-butylene glycol (3) was charged into the de-high boiling column C.
- a high boiling point substance and a part of 1,3-butylene glycol were discharged from the bottom of the column (corresponding to "X-4" in FIG. 1).
- the amount discharged from the bottom of the tower was 20 parts with respect to 100 parts of the charged liquid amount.
- 80 parts of crude 1,3-butylene glycol (4) containing a low boiling point was obtained as a distillate from the top of the column.
- the reaction crude liquid discharged from the alkali reactor D was charged into the dealkali tower E.
- the de-alkali column E caustic soda, a high boiling point substance, and a part of 1,3-butylene glycol were discharged from the bottom of the column (corresponding to "X-5" in FIG. 1).
- the amount of discharge from the bottom of the tower was 10 parts with respect to 100 parts of the charged liquid amount.
- 90 parts of crude 1,3-butylene glycol (5) containing 1,3-butylene glycol and a low boiling point substance was obtained from the top of the column.
- the GC area ratio of 1,3-butylene glycol was 97%.
- the acetaldehyde content was 43 ppm and the crotonaldehyde content was 15 ppm.
- the GC area ratio of 1,3-butylene glycol was 98.6%, and the acetaldehyde (AD) content was 2 ppm.
- the content of crotonaldehyde (CR) was 1.2 ppm.
- the potassium permanganate test value was 30 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 92%.
- Example 2 90 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F by the same method as in Example 1 except that the reflux ratio of the product tower F was changed to 1.
- the GC area ratio of 1,3-butylene glycol was 98.7%
- the acetaldehyde content was 1.5 ppm
- crotonaldehyde was 1.5 ppm
- the aldehyde content was 0.9 ppm.
- the potassium permanganate test value was 35 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 92%.
- Example 3 The reflux ratio of the product tower F was set to 1, and the distillate of the product tower F was removed from the system and completely recycled to a hydrogen reduction reactor. 90 parts of 1,3-butylene glycol product was obtained from the bottom (distillation rate: 10% by weight).
- the GC area ratio of 1,3-butylene glycol was 98.7%
- the acetaldehyde content was 1.5 ppm
- crotonaldehyde The aldehyde content was 0.9 ppm.
- the potassium permanganate test value was 35 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 4 90 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F by the same method as in Example 3 except that the reflux ratio of the product tower F was 10.
- the GC area ratio of 1,3-butylene glycol was 98.8%
- the acetaldehyde content was 0.8 ppm
- crotonaldehyde was 0.7 ppm.
- the potassium permanganate test value was 40 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 5 90 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F by the same method as in Example 3 except that the reflux ratio of the product tower F was set to 20.
- the GC area ratio of 1,3-butylene glycol was 98.8%
- the acetaldehyde content was 0.5 ppm
- crotonaldehyde was 0.5 ppm
- the potassium permanganate test value was 45 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 6 90 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F by the same method as in Example 3 except that the reflux ratio of the product tower F was 50.
- the GC area ratio of 1,3-butylene glycol was 98.8%
- the acetaldehyde content was 0.2 ppm
- crotonaldehyde was 0.2 ppm
- the potassium permanganate test value was 55 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 7 As the liquid to be charged into the product tower F, a liquid having an area ratio of 1,3-butylene glycol of 98%, an acetaldehyde content of 53 ppm, and a crotonaldehyde content of 41 ppm was used, and the reflux ratio of the product tower F was set to 1, and the top of the product tower was retained. The same operation as in Example 3 was performed except that 99 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F (distillation rate: 1% by weight). All the liquid is recycled to the reactor for hydrogen reduction).
- the GC area ratio of 1,3-butylene glycol was 98.6%
- the acetaldehyde content was 1 ppm
- the content was 1 ppm.
- the potassium permanganate test value was 40 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 8 The same operation as in Example 7 was performed except that the reflux ratio of the product tower F was set to 5.
- the GC area ratio of 1,3-butylene glycol was 98.7%
- the acetaldehyde content was 0.9 ppm
- crotonaldehyde was 0.8 ppm
- the potassium permanganate test value was 45 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 9 The same operation as in Example 7 was performed except that the reflux ratio of the product tower F was set to 10.
- the GC area ratio of 1,3-butylene glycol was 98.7%
- the acetaldehyde content was 0.5 ppm
- crotonaldehyde was 0.3 ppm
- the potassium permanganate test value was 50 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 10 The same operation as in Example 7 was performed except that the reflux ratio of the product tower F was set to 100.
- the GC area ratio of 1,3-butylene glycol was 98.7%, and the acetaldehyde content was less than 0.2 ppm.
- the content of crotonaldehyde was less than 0.1 ppm.
- the potassium permanganate test value was 60 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 11 The same operation as in Example 7 was performed except that the reflux ratio of the product tower F was set to 500.
- the GC area ratio of 1,3-butylene glycol was 98.7%, and the acetaldehyde content was less than 0.2 ppm.
- the content of crotonaldehyde was less than 0.1 ppm.
- the potassium permanganate test value was 65 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 12 As the liquid to be charged into the product tower F, a liquid having an area ratio of 1,3-butylene glycol of 99%, an acetaldehyde content of 5 ppm, and a crotonaldehyde content of 2 ppm was used, and the reflux ratio of the product tower F was set to 10 to retain the tower top.
- the GC area ratio of 1,3-butylene glycol was 99.2%
- the acetaldehyde content was 0.3 ppm
- crotonaldehyde was 0.2 ppm
- the potassium permanganate test value was 55 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 13 The same operation as in Example 12 was carried out except that the amount of distillation at the top of the column was set to 5 and 95 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F (distillation rate 5% by weight). (All the distillate is recycled to the hydrogen reduction reactor).
- the GC area ratio of 1,3-butylene glycol was 99.5%, and the acetaldehyde content was less than 0.2 ppm.
- the content of crotonaldehyde was less than 0.1 ppm.
- the potassium permanganate test value was 60 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 14 The same operation as in Example 3 was performed except that the recycling destination of the distillate in the product tower F was changed from the hydrogen reduction reactor to the acetaldol manufacturing process. As a result, the quality of the obtained 1,3-butylene glycol product and the recovery rate of 1,3-butylene glycol in the product tower F were exactly the same as in Example 3.
- Example 15 This is an example in which the content of acetaldehyde and the content of crotonaldehyde in the liquid charged in the product tower are relatively high (when the amount of hydrogen charged in the hydrogenation step is small and the reflux ratio in the dealcoholization step is small).
- the reflux ratio of the product tower F was set to 10
- the amount of distillation at the top of the column was set to 10 parts
- 90 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F (distillation rate: 10% by weight).
- the GC area ratio of 1,3-butylene glycol was 99.4%
- the acetaldehyde content was 1.2 ppm
- crotonaldehyde was 1.1 ppm
- the potassium permanganate test value was 35 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 99% or more.
- Example 1 The same operation as in Example 1 was performed except that the reflux ratio of the product tower F was 0.05 and 80 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F (distillation rate 20% by weight). went.
- the GC area ratio of 1,3-butylene glycol was 98.5%
- the acetaldehyde content was 6 ppm
- the content was 5 ppm.
- the potassium permanganate test value was 0 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 82%.
- Example 2 The same operation as in Example 1 was performed except that the reflux ratio of the product tower F was 0.1 and 80 parts of 1,3-butylene glycol product was obtained from the bottom of the product tower F (distillation rate 20% by weight). went.
- the GC area ratio of 1,3-butylene glycol was 98.6%
- the acetaldehyde content was 4 ppm
- the content was 3 ppm.
- the potassium permanganate test value was 5 minutes.
- the recovery rate of 1,3-butylene glycol in the product tower F was 82%.
- Analyzer Shimadzu GC2010 Analytical column: A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm) (“Agient J & W GC column-DB-1”, manufactured by Agilent Technologies, Ltd.) Temperature rise conditions: After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
- potassium permanganate test value is a value measured according to the procedure of the visual colorimetric method of JIS K1351 (1993).
- Example 2 Comparing Example 2 with Examples 3 and 14, when the 1,3 BG recovery rate was improved by recycling the product tower distillate, almost the same product quality was obtained. This is because in Example 3, AD and CR contained in the product tower distillate were hydrogenated by a hydrogen reduction reactor. Further, in Example 14, AD and CR contained in the product tower distillate were dimerized in the acetoaldol manufacturing process.
- Example 15 From Example 15, it can be seen that even if the AD and CR contents in the product tower charging liquid are high to some extent, the product quality is maintained if the product tower recirculation amount and the distillate amount are relatively large.
- a method for producing 1,3-butylene glycol which obtains purified 1,3-butylene glycol from a reaction crude solution containing 1,3-butylene glycol, which is a dehydration step of removing water by distillation and a high boiling point by distillation. It has a dehigh boiling step for removing components and a product distillation step for obtaining purified 1,3-butylene glycol, and the concentration of 1,3-butylene glycol is 97 in the product column used in the product distillation step.
- a method for producing 1,3-butylene glycol in which a liquid in which crotonaldehyde is concentrated is distilled off and 1,3-butylene glycol is extracted from below the charging stage.
- the reaction crude solution containing 1,3-butylene glycol is the reaction crude solution obtained by hydrogenation of acetoaldoles (or the reaction crude solution obtained by hydrogenation of 1,3-butylene oxide, erythritol).
- Reaction crude solution obtained by selective hydrocracking reaction crude solution obtained by selective water addition to butadiene, reaction crude solution obtained by hydrogenation of n-butanol-3-one, 1-butanol-3-one
- Reaction crude solution obtained by hydrogenation of reaction crude solution obtained by hydrogenation of 3-hydroxy-1-butanoic acid, reaction crude solution obtained by hydrogenation of ⁇ -butyrolactone, or reaction obtained by hydrogenation of diketen.
- the acetaldols used as raw materials in the reduction (hydrogenation) of the acetaldols are acetaldol, its cyclized dimer paraaldol, aldoxane which is a cyclic trimer of acetaldehyde, and a mixture thereof.
- the raw material for reducing (hydrogenizing) the acetoaldors contains water, and the content of the water is 2% by weight or more (or 5% by weight or more, 10% by weight or more, or 15% by weight or more).
- the upper limit of the water content is 90% by weight (or 80% by weight, 70% by weight, 60% by weight, 50% by weight, 40% by weight, 30% by weight or 20% by weight.
- the amount of the hydrogenated catalyst for reducing (hydrogenating) the acetardols is 1 to 30 parts by weight (or 4 to 25 parts by weight, 8 to 20 parts by weight) with respect to 100 parts by weight of the hydrogenated raw material. , Or 12 to 18 parts by weight).
- the amount of hydrogen used in the reduction (hydrogenation) reaction of the acetardols is 0.5 to 40 parts by weight (or 1 to 30 parts by weight, 4 to 20 parts by weight) with respect to 100 parts by weight of the hydrogenated raw material.
- the pressure (total pressure; gauge pressure) in the reaction system in the reduction (hydrogenation) reaction of the acetardols is 9 to 70 MPa (or 10 to 40 MPa).
- Any of the above [2] to [9], wherein the hydrogen pressure (partial pressure of hydrogen) in the reaction system in the reduction (hydrogenation) reaction of the acetaldols is 7 to 60 MPa (or 10 to 30 MPa).
- the reaction temperature in the reduction (hydrogenation) reaction of the acetaldols is 40 to 150 ° C. (or 50 to 140 ° C., or 60 to 130 ° C.) to any of the above [2] to [10].
- the reaction time (residence time) in the reduction (hydrogenation) reaction of the acetaldols is 10 to 500 minutes (or 20 to 400 minutes, 30 to 300 minutes, 50 to 280 minutes, or 80 to 250 minutes).
- the can-out rate (%) [(de-salting tower can-out amount (parts) / desalting tower charging amount (parts)) / 100] in the desalting step is 0.1 to 40% by weight (or).
- the de-high boiling tower used in the de-high boiling step is a filling tower (or a perforated plate tower or a bubble bell tower), and the reboiler used is a natural flow type thin film evaporator or a forced stirring type thin film.
- the number of theoretical plates of the de-high boiling tower is 1 to 100 stages (or 2 to 90 stages, 3 to 80 stages, 4 to 70 stages, 5 to 60 stages, 8 to 50 stages, 10 to 40 stages, or The method for producing 1,3-butylene glycol according to the above [16], which is 15 to 30 steps).
- the supply position of the charged liquid is 10 to 90% (or 20 to 80%, 30 to 70%, or 40 to 40%) of the height of the tower downward from the top of the de-high boiling tower. 60%) The method for producing 1,3-butylene glycol according to the above [16] or [17].
- the pressure (absolute pressure) at the top of the column is 0.01 to 50 kPa (or 0.1 to 30 kPa, 0.3 to 20 kPa, or 0.5 to 10 kPa).
- the reflux ratio of the de-high boiling column is 0.015 or more (or 0.02 or more, 0.03 or more, 0.05 or more, 0.07 or more, 0.1 or more, 0.2 or more, 0). .3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6
- the method for producing 1,3-butylene glycol according to any one of the above [16] to [20], which comprises 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, 20 or more, or 30 or more).
- the top of the column is evaporated at 90 to 120 ° C. under a reduced pressure of an absolute pressure of 20 kPa or less (or an absolute pressure of 0.5 to 10 kPa).
- the product tower is a filling tower (or a perforated plate tower or a bubble bell tower), and the reboiler adopted is a natural flow type thin film evaporator or a forced stirring type thin film evaporator [1].
- the number of theoretical plates of the product tower is 1 to 100 stages (or 2 to 90 stages, 3 to 80 stages, 4 to 70 stages, 5 to 60 stages, 8 to 50 stages, 10 to 40 stages, or 15).
- the method for producing 1,3-butylene glycol according to any one of the above [1] to [29].
- the supply position of the charging liquid in the product tower is 10 to 90% (or 20 to 80%, 30 to 70%, or 40 to 60%) of the height of the tower downward from the top of the tower.
- the pressure (absolute pressure) at the top of the tower is 20 kPa or less (or 0.1 to 10 kPa, 0.3 to 8 kPa, or 0.5 to 5 kPa).
- the reflux ratio in the product tower is 0.2 or more (or 0.3 or more, 0.4 or more, 0.5 or more, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more. , 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, 25 or more, 30 or more, 35
- the content of acetaldehyde in the liquid charged into the product tower is 205 ppm or less (or 200 ppm or less, 100 ppm or less, 90 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm).
- the content of crotonaldehyde in the liquid charged into the product tower is 110 ppm or less (or 100 ppm or less, 80 ppm or less, 70 ppm or less, 60 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, 10 ppm or less, 5 ppm or less, 3 ppm or less, 2 ppm or less, or less than 1 ppm)
- the method for producing 1,3-butylene glycol according to any one of [1] to [33] above.
- the distillate rate in the product tower is less than 20% by weight (or 15% by weight or less, 12% by weight or less, 10% by weight or less, 8% by weight or less, 5% by weight or less, 3% by weight or less, 2% by weight. % Or less, 1% by weight or less, 0.8% by weight or less, 0.6% by weight or less, 0.4% by weight or less, or 0.2% by weight or less).
- the distillate from the product tower is recycled to a dehydration step, a dealcoholization step, a delow boiling step, or a step prior to those steps, which is a step prior to the product distillation step [1].
- the method for producing 1,3-butylene glycol according to any one of [35].
- the crude reaction solution containing 1,3-butylene glycol is a crude reaction solution obtained by hydrogen reduction of acetaldols, and at least a part of the distillate from the product column is hydrogen of the acetaldols.
- the amount of the distillate from the product tower recycled to the process prior to the product distillation step is less than 30% by weight with respect to the amount charged into the product tower within the range of the distillate amount or less in the product tower.
- the area ratio of the peak of 1,3-butylene glycol is higher than 98.5% (or 98.6% or more, 98.7% or more, 98.8% or more). , 98.9% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3%, 99.5% or more, or 99.8% or more)
- 98.5% or 98.6% or more, 98.7% or more, 98.8% or more
- Analytical column A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 ⁇ m ⁇ length 30 m ⁇ inner diameter 0.25 mm)
- Temperature rise conditions After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, raise the temperature to 160 ° C. at 2 ° C./min and hold for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
- Acetaldehyde content is 2 ppm or less (or 1.7 ppm or less, 1.5 ppm or less, 1.2 ppm or less, 1.0 ppm or less, 0.7 ppm or less, 0.5 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
- Acetaldehyde content is 2 ppm or less (or 1.7 ppm or less, 1.5 ppm or less, 1.2 ppm or less, 1.0 ppm or less, 0.7 ppm or less, 0.5 ppm or less, 0.3 ppm or less, or 0.2 ppm or less.
- the content of crotonaldehyde is 1.2 ppm or less (or 1.0 ppm or less, 0.7 ppm or less, 0.5 ppm or less, 0.3 ppm or less, 0.2 ppm or less, or 0.1 ppm or less).
- the 1,3-butylene glycol product according to any one of [40] to [42].
- the content of the 1,3-butylene glycol product is 10% by weight or more (or 30% by weight or more, 50% by weight or more, 80% by weight or more, 90% by weight or more, or 100% by weight).
- the blending amount of the 1,3-butylene glycol product is 0.01 to 40% by weight (or 0.1 to 30% by weight, 0.2 to 20% by weight, 0.5 to 15% by weight, Alternatively, the cosmetic according to the above [46], which is 1 to 10% by weight).
- the 1,3-butylene glycol product according to the present disclosure has a high potassium permanganate test value, and is suitably used as a moisturizer and as a raw material for cosmetics.
- This 1,3-butylene glycol product has excellent moisturizing performance and can be used as a raw material for moisturizers and cosmetics that can maintain high quality for a long period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Emergency Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Cosmetics (AREA)
Abstract
Description
本開示の他の目的は、過マンガン酸カリウム試験値が高い1,3-ブチレングリコール製品を提供することにある。
本開示のさらに他の目的は、優れた保湿性能を有するとともに、高い品質を長期間保持できる保湿剤及び化粧料を提供することにある。
蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有しており、
前記製品蒸留工程で用いる製品塔において、1,3-ブチレングリコールの濃度が97%以上、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下の仕込液を、還流比0.1超の条件で蒸留し、仕込み段より上からアセトアルデヒド及びクロトンアルデヒドが濃縮された液を留出させ、仕込み段より下から1,3-ブチレングリコールを抜き取る1,3-ブチレングリコールの製造方法を提供する。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
また、本開示の1,3-ブチレングリコール製品は、過マンガン酸カリウム試験値が高い。そのため、保湿剤として、また化粧品の原料としての用途に好適に使用される。
さらに、本開示の保湿剤及び化粧料は保湿性に優れるとともに、還元性物質の含有量が極めて少ないので、高い品質を長期間保持できる。
本開示の1,3-ブチレングリコールの製造方法では、1,3-ブチレングリコール(1,3BG)を含む反応粗液(以下、「粗1,3-ブチレングリコール」と称する場合がある)から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有している。そして、前記製品蒸留工程で用いる製品塔において、1,3-ブチレングリコールの濃度が97%以上、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下の仕込液を、還流比0.1超の条件で蒸留し、仕込み段より上からアセトアルデヒド及びクロトンアルデヒドが濃縮された液を留出させ、仕込み段より下から1,3-ブチレングリコールを抜き取る。この1,3-ブチレングリコールは、過マンガン酸カリウム試験値が高いので、1,3-ブチレングリコール製品とすることができる。
粗1,3-ブチレングリコールとしては、例えば、(1)アセトアルドール類の還元(水添)で得られる反応粗液、(2)1,3-ブチレンオキサイドの加水分解で得られる反応粗液、(3)エリスリトールの選択的水素化分解で得られる反応粗液、(4)ブタジエンへの選択的水付加で得られる反応粗液、(5)n-ブタナール-3-オンの水素化で得られる反応粗液、(6)1-ブタノール-3-オンの水素化で得られる反応粗液、(7)3-ヒドロキシ-1-ブタン酸の水素化で得られる反応粗液、(8)β-ブチロラクトンの水素化で得られる反応粗液、及び(9)ジケテンの水素化で得られる反応粗液が挙げられる。本開示において、粗1,3-ブチレングリコールとしては、上記(1)~(9)のうちの一種又は二種以上の混合物であってもよい。粗1,3-ブチレングリコールとしては、前記(1)アセトアルドール類の還元(特に、液相還元)で得られる反応粗液であることが好ましい。
本開示に係る製造方法では、少なくとも、蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程(脱高沸点物蒸留工程)、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有している。前記脱水工程と脱高沸工程はいずれも製品蒸留工程の前に設けるが、脱水工程と脱高沸工程の順序は問わない。本開示に係る製造方法では、これらの工程のほか、脱塩工程、アルカリ反応工程(アルカリ処理工程)、脱アルカリ工程を有していてもよい。また、脱水工程の前に、触媒分離工程、アルカリによる中和工程、脱アルコール工程(脱低沸工程)を設けることもできる。前記各工程は、この記載の順序で行ってもよいが、脱アルカリ工程はアルカリ反応工程の後に設けることを除き、各工程の順序を適宜変更してもよい。例えば、脱アルコール工程(脱低沸工程)、脱塩工程、アルカリ反応工程及び脱アルカリ工程は適宜な箇所に設けることができるが、通常は、水添工程の後に設ける。なお、上記工程のうち、触媒分離工程、アルカリによる中和工程、脱アルコール工程(脱低沸工程)、脱塩工程、アルカリ反応工程、脱アルカリ工程は、必要に応じて設ければよく、必ずしも設けなくてもよい。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
{1-[留出液における1,3BGのGC面積%×(留出量(部)-リサイクル量(部))]/(仕込液における1,3BGのGC面積%×仕込量(部))}×100
なお、低沸点物、高沸点物は水により加水分解されて1,3BGが生成する場合がある一方、1,3BGの重合により高沸点物が生成する場合もあり、さらには微量不純物の生成や消失もあるため、製品塔における物質収支は、必ずしもとれない場合がある。このことは、脱アルコール塔(脱低沸塔)、脱水塔、脱高沸塔など他の蒸留塔にも言える。
本開示に係る1,3-ブチレングリコール製品は、上記本開示に係る製造方法により得ることができる。本開示に係る1,3-ブチレングリコール製品は、過マンガン酸カリウム試験値(PMT)が10分より高い。前記過マンガン酸カリウム試験値は、好ましくは15分以上、より好ましくは30分以上、さらに好ましくは40分以上、特に好ましくは50分以上(とりわけ60分以上)である。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
(GC-MS分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
イオン源温度: EI 230℃、CI 250℃
Qポール温度:150℃
サンプル: そのまま分析に供する
本開示の保湿剤は、上記の1,3-ブチレングリコール製品を含む。そのため、保湿性能に優れる。本開示の保湿剤は、上記の1,3-ブチレングリコール製品以外の成分、例えば、上記の1,3-ブチレングリコール製品以外の保湿剤成分などを含んでいてもよい。本開示の保湿剤において、上記の1,3-ブチレングリコール製品の含有量は、例えば10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上、さらに好ましくは80重量%以上、特に好ましくは90重量%以上であり、上記の1,3-ブチレングリコール製品のみで構成されていてもよい。
図1を用いて1,3-ブチレングリコールの製造方法を説明する。
原料として30重量%の水を含むアセトアルドール溶液100部(アセトアルドール69部と水29部の混合溶液、低沸、高沸不純物を合計2部含む、Na塩は0.1部未満)に対し、水素10部を液相水素還元用反応器に仕込み、触媒としてラネーニッケルを15部加え、該反応器を120℃、10MPa(ゲージ圧)に保持して液相水素還元を行った。反応後の液は触媒を分離した後、苛性ソーダで中和し、低沸不純物、水を含有する粗1,3-ブチレングリコール(1)を得た。
製品塔Fの還流比を1に変更した以外は、実施例1と同様の方法により、製品塔F塔底部から1,3-ブチレングリコール製品90部を得た。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は1.5ppm、クロトンアルデヒドの含有量は0.9ppmであった。また、過マンガン酸カリウム試験値は35分であった。製品塔Fでの1,3-ブチレングリコール回収率は92%であった。
製品塔Fの還流比を1とし、製品塔Fの留出液を系外抜き取りから、水素還元用反応器に全量リサイクルに変更した以外は、実施例1と同様の方法により、製品塔F塔底部から1,3-ブチレングリコール製品90部を得た(留出率10重量%)。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は1.5ppm、クロトンアルデヒドの含有量は0.9ppmであった。また、過マンガン酸カリウム試験値は35分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を10とした以外は、実施例3と同様の方法により、製品塔F塔底部から1,3-ブチレングリコール製品90部を得た。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.8%、アセトアルデヒドの含有量は0.8ppm、クロトンアルデヒドの含有量は0.7ppmであった。また、過マンガン酸カリウム試験値は40分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を20とした以外は、実施例3と同様の方法により、製品塔F塔底部から1,3-ブチレングリコール製品90部を得た。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.8%、アセトアルデヒドの含有量は0.5ppm、クロトンアルデヒドの含有量は0.5ppmであった。また、過マンガン酸カリウム試験値は45分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を50とした以外は、実施例3と同様の方法により、製品塔F塔底部から1,3-ブチレングリコール製品90部を得た。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.8%、アセトアルデヒドの含有量は0.2ppm、クロトンアルデヒドの含有量は0.2ppmであった。また、過マンガン酸カリウム試験値は55分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fへの仕込液として、1,3-ブチレングリコールの面積率98%、アセトアルデヒド含有量53ppm、クロトンアルデヒド含有量41ppmの液を用いるとともに、製品塔Fの還流比を1とし、塔頂留出量を1部とし、製品塔F塔底部から1,3-ブチレングリコール製品99部を得た(留出率1重量%)こと以外は、実施例3と同様の操作を行った(留出液は全量水素還元用反応器にリサイクル)。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.6%、アセトアルデヒドの含有量は1ppm、クロトンアルデヒドの含有量は1ppmであった。また、過マンガン酸カリウム試験値は40分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を5とした以外は、実施例7と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は0.9ppm、クロトンアルデヒドの含有量は0.8ppmであった。また、過マンガン酸カリウム試験値は45分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を10とした以外は、実施例7と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は0.5ppm、クロトンアルデヒドの含有量は0.3ppmであった。また、過マンガン酸カリウム試験値は50分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を100とした以外は、実施例7と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は0.2ppm未満、クロトンアルデヒドの含有量は0.1ppm未満であった。また、過マンガン酸カリウム試験値は60分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を500とした以外は、実施例7と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は0.2ppm未満、クロトンアルデヒドの含有量は0.1ppm未満であった。また、過マンガン酸カリウム試験値は65分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fへの仕込液として、1,3-ブチレングリコールの面積率99%、アセトアルデヒド含有量5ppm、クロトンアルデヒド含有量2ppmの液を用いるとともに、製品塔Fの還流比を10とし、塔頂留出量を0.3部とし、製品塔F塔底部から1,3-ブチレングリコール製品99.7部を得た(留出率0.3重量%)こと以外は、実施例3と同様の操作を行った(留出液は全量水素還元用反応器にリサイクル)。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は99.2%、アセトアルデヒドの含有量は0.3ppm、クロトンアルデヒドの含有量は0.2ppmであった。また、過マンガン酸カリウム試験値は55分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
塔頂留出量を5部とし、製品塔F塔底部から1,3-ブチレングリコール製品95部を得た(留出率5重量%)こと以外は、実施例12と同様の操作を行った(留出液は全量水素還元用反応器にリサイクル)。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は99.5%、アセトアルデヒドの含有量は0.2ppm未満、クロトンアルデヒドの含有量は0.1ppm未満であった。また、過マンガン酸カリウム試験値は60分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの留出液のリサイクル先を、水素還元用反応器から、アセトアルドール類製造工程に変更した以外は、実施例3と同様の操作を行った。その結果、得られた1,3-ブチレングリコール製品の品質及び製品塔Fでの1,3-ブチレングリコール回収率は、実施例3と全く同一であった。
製品塔仕込液中のアセトアルデヒドの含有量及びクロトンアルデヒドの含有量が比較的多い例である(水素添加工程での水素仕込み量が少なく、脱アルコール工程の還流比が小さい場合)。製品塔Fの還流比を10とし、塔頂留出量を10部とし、製品塔F塔底部から1,3-ブチレングリコール製品90部を得た(留出率10重量%)。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は99.4%、アセトアルデヒドの含有量は1.2ppm、クロトンアルデヒドの含有量は1.1ppmであった。また、過マンガン酸カリウム試験値は35分であった。製品塔Fでの1,3-ブチレングリコール回収率は99%以上であった。
製品塔Fの還流比を0.05とし、製品塔F塔底部から1,3-ブチレングリコール製品80部を得た(留出率20重量%)こと以外は、実施例1と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.5%、アセトアルデヒドの含有量は6ppm、クロトンアルデヒドの含有量は5ppmであった。また、過マンガン酸カリウム試験値は0分であった。製品塔Fでの1,3-ブチレングリコール回収率は82%であった。
製品塔Fの還流比を0.1とし、製品塔F塔底部から1,3-ブチレングリコール製品80部を得た(留出率20重量%)こと以外は、実施例1と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.6%、アセトアルデヒドの含有量は4ppm、クロトンアルデヒドの含有量は3ppmであった。また、過マンガン酸カリウム試験値は5分であった。製品塔Fでの1,3-ブチレングリコール回収率は82%であった。
製品塔Fの還流比を0.1とし、製品塔F塔底部から1,3-ブチレングリコール製品70部を得た(留出率30重量%)こと以外は、実施例1と同様の操作を行った。得られた1,3-ブチレングリコール製品について、GC分析及びGC-MS分析を行った結果、1,3-ブチレングリコールのGC面積率は98.7%、アセトアルデヒドの含有量は2ppm、クロトンアルデヒドの含有量は1.2ppmであった。また、過マンガン酸カリウム試験値は30分であった。製品塔Fでの1,3-ブチレングリコール回収率は72%であった。
以下の条件で、対象となる1,3-ブチレングリコール製品のガスクロマトグラフィー分析を行った。実施例13における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートを図2に示す。また、比較例2における1,3-ブチレングリコール製品のガスクロマトグラフィー分析のチャートを図3に示す。
(ガスクロマトグラフィー分析の条件)
分析装置:島津 GC2010
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)(「Agilent J&W GC カラム - DB-1」、アジレント・テクノロジー株式会社製)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入及び温度:スプリット試料導入法、250℃
スプリットのガス流量及びキャリアガス:23mL/分、ヘリウム
カラムのガス流量及びキャリアガス:1mL/分、ヘリウム
検出器及び温度:水素炎イオン化検出器(FID)、280℃
注入試料:0.2μLの80重量%1,3-ブチレングリコール製品水溶液
分析装置: Agilent 6890A-GC/5973A-MSD
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
イオン源温度: EI 230℃、CI 250℃
Qポール温度:150℃
サンプル: そのまま分析に供する
本明細書において、過マンガン酸カリウム試験値(PMT)は、JIS K1351(1993)の目視比色法の手順に準じて測定した値である。
上記比較例と実施例の結果を表1及び表2に示す。
[1]1,3-ブチレングリコールを含む反応粗液から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有しており、前記製品蒸留工程で用いる製品塔において、1,3-ブチレングリコールの濃度が97%以上(又は、98%以上、若しくは99%以上)、アセトアルデヒドの含有量が500ppm以下(又は、200ppm以下、100ppm以下、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、若しくは2ppm未満)、クロトンアルデヒドの含有量が200ppm以下(又は、110ppm以下、100ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、3ppm以下、2ppm以下若しくは1ppm未満)の仕込液を、還流比0.1超(又は、0.15以上)の条件で蒸留し、仕込み段より上からアセトアルデヒド及びクロトンアルデヒドが濃縮された液を留出させ、仕込み段より下から1,3-ブチレングリコールを抜き取る1,3-ブチレングリコールの製造方法。
[2]前記1,3-ブチレングリコールを含む反応粗液が、アセトアルドール類の水素還元により得られる反応粗液(又は、1,3-ブチレンオキサイドの加水分解で得られる反応粗液、エリスリトールの選択的水素化分解で得られる反応粗液、ブタジエンへの選択的水付加で得られる反応粗液、n-ブタナール-3-オンの水素化で得られる反応粗液、1-ブタノール-3-オンの水素化で得られる反応粗液、3-ヒドロキシ-1-ブタン酸の水素化で得られる反応粗液、β-ブチロラクトンの水素化で得られる反応粗液、若しくはジケテンの水素化で得られる反応粗液)である前記[1]に記載の1,3-ブチレングリコールの製造方法。
[3]前記アセトアルドール類の還元(水添)において原料として用いるアセトアルドール類は、アセトアルドール、その環化二量体であるパラアルドール、アセトアルデヒドの環状三量体であるアルドキサン、及びこれらの混合物のいずれかである前記[2]に記載の1,3-ブチレングリコールの製造方法。
[4]前記アセトアルドール類を含む反応粗液は、単蒸発、蒸留、又は水素添加に付して、アルデヒドを除去した後、水添工程に付す前記[2]又は[3]に記載の1,3-ブチレングリコールの製造方法。
[5]前記アセトアルドール類の還元(水添)において原料として用いるアセトアルドール類の含有量は、30重量%以上(例えば30~99重量%)(又は、40重量%以上(例えば40~98重量%)、50重量%以上(例えば50~97重量%)、60重量%以上(例えば60~95重量%)、65~90重量%、70~90重量%、若しくは75~90重量%)である前記[2]~[4]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[6]前記アセトアルドール類の還元(水添)の原料は水を含み、該水の含有量は2重量%以上(又は、5重量%以上、10重量%以上、若しくは15重量%以上)であり、該水の含有量の上限値は、90重量%(又は、80重量%、70重量%、60重量%、50重量%、40重量%、30重量%又は20重量%である前記[2]~[5]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[7]前記アセトアルドール類の還元(水添)の水添触媒の量は、水添原料100重量部に対して、1~30重量部(又は、4~25重量部、8~20重量部、若しくは12~18重量部)である前記[2]~[6]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[8]前記アセトアルドール類の還元(水添)反応に使用する水素量は、水添原料100重量部に対して、0.5~40重量部(又は、1~30重量部、4~20重量部、若しくは8~12重量部)である前記[2]~[7]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[9]前記アセトアルドール類の還元(水添)反応における反応系内の圧力(全圧;ゲージ圧)は、9~70MPa(又は、10~40MPa)である前記[2]~[8]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[10]前記アセトアルドール類の還元(水添)反応における反応系内の水素圧(水素の分圧)は7~60MPa(又は、10~30MPa)である前記[2]~[9]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[11]前記アセトアルドール類の還元(水添)反応における反応温度は40~150℃(又は、50~140℃、若しくは60~130℃)である前記[2]~[10]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[12]前記アセトアルドール類の還元(水添)反応における反応時間(滞留時間)は10~500分間(又は、20~400分間、30~300分間、50~280分間、若しくは80~250分間)である前記[2]~[11]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[13]前記1,3-ブチレングリコールを含むプロセス流中のアルコールを含む低沸物を除去する脱アルコール工程をさらに含む前記[1]~[12]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[14]前記1,3-ブチレングリコールを含むプロセス流中の塩を除去する脱塩工程をさらに含む前記[1]~[13]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[15]前記脱塩工程における缶出率(%)[(脱塩塔缶出量(部)/脱塩塔仕込量(部))・100]は、0.1~40重量%(又は、1~35重量%、2~30重量%、3~25重量%、5~20重量%であり、若しくは7~15重量%)である前記[14]に記載の1,3-ブチレングリコールの製造方法。
[16]前記脱高沸工程において使用する脱高沸塔は充填塔(又は、多孔板塔、若しくは泡鐘塔)であり、採用されるリボイラーは自然流下型薄膜蒸発器、又は強制攪拌型薄膜蒸発器である前記[1]~[15]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[17]前記脱高沸塔の理論段数が1~100段(又は、2~90段、3~80段、4~70段、5~60段、8~50段、10~40段、若しくは15~30段)である前記[16]に記載の1,3-ブチレングリコールの製造方法。
[18]前記仕込液の供給位置は、前記脱高沸塔の塔頂部から下方に向かって、塔の高さの10~90%(又は、20~80%、30~70%、若しくは40~60%)の位置である前記[16]又は[17]に記載の1,3-ブチレングリコールの製造方法。
[19]前記脱高沸塔での蒸留において、塔頂部の圧力(絶対圧)は、0.01~50kPa(又は、0.1~30kPa、0.3~20kPa、若しくは0.5~10kPa)である前記[16]~[18]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[20]前記脱高沸塔の缶出液の少なくとも一部を脱高沸工程より前の工程にリサイクルさせる前記[16]~[19]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[21]前記脱高沸塔の還流比を0.015以上(又は、0.02以上、0.03以上、0.05以上、0.07以上、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、若しくは30以上)とする前記[16]~[20]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[22]前記還流比の上限は、100(又は、50)である前記[21]に記載の1,3-ブチレングリコールの製造方法。
[23]前記1,3-ブチレングリコールを含むプロセス流を塩基で処理するアルカリ処理工程をさらに含む前記[1]~[22]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[24]前記アルカリ処理において添加される塩基の添加量は、前記アルカリ処理に付される粗1,3-ブチレングリコール流に対して、0.05~10重量%(又は、0.1~1.0重量%)である前記[23]に記載の1,3-ブチレングリコールの製造方法。
[25]前記アルカリ処理において添加される塩基は、アルカリ金属化合物である前記[23]又は[24]に記載の1,3-ブチレングリコールの製造方法。
[26]前記アルカリ金属化合物は、水酸化ナトリウム、(又は、水酸化カリウム、(重)炭酸ナトリウム、若しくは(重)炭酸カリウム)である前記[25]に記載の1,3-ブチレングリコールの製造方法。
[27]前記アルカリ処理の反応温度は、90~140℃(又は、110~130℃)であり、反応滞留時間は、5~120分(又は、10~30分)である前記[23]~[26]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[28]前記アルカリ処理に用いられる蒸発器において、塔頂部は絶対圧20kPa以下(又は、絶対圧0.5~10kPa)の減圧下で、90~120℃で蒸発が行われる前記[23]~[27]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[29]前記製品塔は、充填塔(又は、多孔板塔、若しくは泡鐘塔)であり、採用されるリボイラーは自然流下型薄膜蒸発器、又は強制攪拌型薄膜蒸発器である前記[1]~[28]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[30]前記製品塔の理論段数は、1~100段(又は、2~90段、3~80段、4~70段、5~60段、8~50段、10~40段、若しくは15~30段)である前記[1]~[29]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[31]前記製品塔の仕込液の供給位置は、塔頂部から下方に向かって、塔の高さの10~90%(又は、20~80%、30~70%、若しくは40~60%)の位置であり、塔頂部の圧力(絶対圧)は、20kPa以下(又は、0.1~10kPa、0.3~8kPa、若しくは0.5~5kPa)である前記[1]~[30]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[32]前記製品塔における還流比は、0.2以上(又は、0.3以上、0.4以上、0.5以上、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上、11以上、12以上、13以上、14以上、15以上、16以上、17以上、18以上、19以上、20以上、25以上、30以上、35以上、40以上、50以上、400以上、若しくは500以上)である前記[1]~[31]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[33]前記製品塔への仕込液中のアセトアルデヒドの含有量が205ppm以下(又は、200ppm以下、100ppm以下、90ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、若しくは2ppm未満)である前記[1]~[32]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[34]前記製品塔への仕込液中のクロトンアルデヒドの含有量が110ppm以下(又は、100ppm以下、80ppm以下、70ppm以下、60ppm以下、50ppm以下、40ppm以下、30ppm以下、20ppm以下、10ppm以下、5ppm以下、3ppm以下、2ppm以下若しくは1ppm未満)前記[1]~[33]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[35]前記製品塔における留出率を20重量%未満(又は、15重量%以下、12重量%以下、10重量%以下、8重量%以下、5重量%以下、3重量%以下、2重量%以下、1重量%以下、0.8重量%以下、0.6重量%以下、0.4重量%以下、若しくは0.2重量%以下)である前記[1]~[34]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[36]前記製品塔の留出液の少なくとも一部を製品蒸留工程より前の工程である脱水工程、脱アルコール工程、脱低沸工程又はそれらの工程より前の工程にリサイクルさせる前記[1]~[35]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[37]前記1,3-ブチレングリコールを含む反応粗液がアセトアルドール類の水素還元により得られる反応粗液であり、前記製品塔の留出液の少なくとも一部を、前記アセトアルドール類の水素還元の工程又はそれより上流の工程にリサイクルさせる前記[36]に記載の1,3-ブチレングリコールの製造方法。
[38]前記製品塔の留出液の前記製品蒸留工程より前の工程へのリサイクル量が、製品塔における留出量以下の範囲で、製品塔への仕込量に対して30重量%未満(又は、90重量%以下、80重量%以下、70重量%以下、60重量%以下、50重量%以下、40重量%以下、若しくは30重量%以下)である前記[36]又は[37]に記載の1,3-ブチレングリコールの製造方法。
[39]前記製品塔の留出液の前記製品蒸留工程より前の工程へのリサイクル量が、前記製品塔への仕込量に対して0.01重量%以上(又は、0.05重量%以上、0.1重量%以上、0.5重量%以上、1重量%以上、1.5重量%以上、2重量%以上、3重量%以上、4重量%以上、5重量%以上、7重量%以上、10重量%以上、若しくは20重量%以上)である前記[36]~[38]のいずれかに記載の1,3-ブチレングリコールの製造方法。
[40]過マンガン酸カリウム試験値が10分超(又は、5分以上、30分以上、40分以上、50分以上、若しくは60分以上)である1,3-ブチレングリコール製品。
[41]下記条件のガスクロマトグラフィー分析において、1,3-ブチレングリコールのピークの面積率が98.5%より高い(又は、98.6%以上、98.7%以上、98.8%以上、98.9%以上、99%以上、99.1%以上、99.2%以上、99.3%、99.5%以上、若しくは99.8%以上である)前記[40]に記載の1,3-ブチレングリコール製品。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
[42]
アセトアルデヒドの含有量が2ppm以下(又は、1.7ppm以下、1.5ppm以下、1.2ppm以下、1.0ppm以下、0.7ppm以下、0.5ppm以下、0.3ppm以下、若しくは0.2ppm以下)である前記[40]又は[41]に記載の1,3-ブチレングリコール製品。
[43]クロトンアルデヒドの含有量が1.2ppm以下(又は、1.0ppm以下、0.7ppm以下、0.5ppm以下、0.3ppm以下、0.2ppm以下、若しくは0.1ppm以下)である前記[40]~[42]のいずれかに記載の1,3-ブチレングリコール製品。
[44]前記[40]~[43]のいずれかに記載の1,3-ブチレングリコール製品を含む保湿剤。
[45]前記1,3-ブチレングリコール製品の含有量が10重量%以上(又は、30重量%以上、50重量%以上、80重量%以上、90重量%以上、若しくは100重量%)である前記[44]に記載の保湿剤。
[46]前記[44]又は[45]に記載の保湿剤を含む化粧料。
[47]前記1,3-ブチレングリコール製品の配合量が、0.01~40重量%(又は、0.1~30重量%、0.2~20重量%、0.5~15重量%、若しくは1~10重量%)である前記[46]に記載の化粧料。
B:脱塩塔
C:脱高沸点物蒸留塔(脱高沸塔)
D:アルカリ反応器
E:脱アルカリ塔
F:製品蒸留塔(製品塔)
A-1、B-1、C-1、E-1、F-1:コンデンサー
A-2、C-2、F-2:リボイラー
X-1:粗1,3-ブチレングリコール
X-2:水(排水)
X-3:塩、高沸点物、及び1,3-ブチレングリコールの一部
X-4:高沸点物及び1,3-ブチレングリコールの一部
X-5:苛性ソーダ、高沸点物、及び1,3-ブチレングリコールの一部
X-6:低沸点物及び1,3-ブチレングリコールの一部
Y:1,3-ブチレングリコール製品
Claims (20)
- 1,3-ブチレングリコールを含む反応粗液から精製1,3-ブチレングリコールを得る1,3-ブチレングリコールの製造方法であって、
蒸留により水を除去する脱水工程、蒸留により高沸点成分を除去する脱高沸工程、及び精製1,3-ブチレングリコールを得るための製品蒸留工程を有しており、
前記製品蒸留工程で用いる製品塔において、1,3-ブチレングリコールの濃度が97%以上、アセトアルデヒドの含有量が500ppm以下、クロトンアルデヒドの含有量が200ppm以下の仕込液を、還流比0.1超の条件で蒸留し、仕込み段より上からアセトアルデヒド及びクロトンアルデヒドが濃縮された液を留出させ、仕込み段より下から1,3-ブチレングリコールを抜き取る1,3-ブチレングリコールの製造方法。 - 前記1,3-ブチレングリコールを含む反応粗液が、アセトアルドール類の水素還元により得られる反応粗液である請求項1記載の1,3-ブチレングリコールの製造方法。
- 1,3-ブチレングリコールを含むプロセス流を塩基で処理するアルカリ処理工程をさらに含む請求項1又は2記載の1,3-ブチレングリコールの製造方法。
- 1,3-ブチレングリコールを含むプロセス流中の塩を除去する脱塩工程をさらに含む請求項1~3のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 1,3-ブチレングリコールを含むプロセス流中のアルコールを含む低沸物を除去する脱アルコール工程をさらに含む請求項1~4のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔の還流比を0.2以上とする請求項1~5のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔への仕込液中のアセトアルデヒドの含有量が205ppm以下である請求項1~6のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔への仕込液中のクロトンアルデヒドの含有量が110ppm以下である請求項1~7のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔における留出率を20重量%未満とする請求項1~8のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔の理論段数は1~100段である請求項1~9のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔の留出液の少なくとも一部を製品蒸留工程より前の工程である脱水工程、脱アルコール工程、脱低沸工程又はそれらの工程より前の工程にリサイクルさせる請求項1~10のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 前記1,3-ブチレングリコールを含む反応粗液がアセトアルドール類の水素還元により得られる反応粗液であり、前記製品塔の留出液の少なくとも一部を、前記アセトアルドール類の水素還元の工程又はそれより上流の工程にリサイクルさせる請求項11記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔の留出液の前記製品蒸留工程より前の工程へのリサイクル量が、製品塔における留出量以下の範囲で、製品塔への仕込量に対して30重量%未満である請求項11又は12記載の1,3-ブチレングリコールの製造方法。
- 前記製品塔の留出液の前記製品蒸留工程より前の工程へのリサイクル量が、製品塔における留出量以下の範囲で、製品塔への仕込量に対して0.01重量%以上である請求項11~13のいずれか1項に記載の1,3-ブチレングリコールの製造方法。
- 過マンガン酸カリウム試験値が10分超である1,3-ブチレングリコール製品。
- 下記条件のガスクロマトグラフィー分析において、1,3-ブチレングリコールのピークの面積率が98.5%より高い請求項15記載の1,3-ブチレングリコール製品。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃ - アセトアルデヒドの含有量が2ppm以下である請求項15又は16記載の1,3-ブチレングリコール製品。
- クロトンアルデヒドの含有量が1.2ppm以下である請求項15~17のいずれか1項に記載の1,3-ブチレングリコール製品。
- 請求項15~18のいずれか1項に記載の1,3-ブチレングリコール製品を含む保湿剤。
- 請求項19記載の保湿剤を含む化粧料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20906588.7A EP4083004A4 (en) | 2019-12-28 | 2020-12-23 | METHOD FOR PRODUCING 1,3-BUTYLENE GLYCOL, AND 1,3-BUTYLENE GLYCOL PRODUCT |
US17/789,087 US20230055591A1 (en) | 2019-12-28 | 2020-12-23 | Method for manufacturing 1,3-butylene glycol, and 1,3-butylene glycol product |
CN202080090558.7A CN114901243A (zh) | 2019-12-28 | 2020-12-23 | 1,3-丁二醇制造方法及1,3-丁二醇制品 |
KR1020227025888A KR20220119719A (ko) | 2019-12-28 | 2020-12-23 | 1, 3-부틸렌 글리콜의 제조 방법 및 1, 3-부틸렌 글리콜 제품 |
JP2021567553A JPWO2021132360A1 (ja) | 2019-12-28 | 2020-12-23 |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-239976 | 2019-12-28 | ||
JP2019239974 | 2019-12-28 | ||
JP2019239977 | 2019-12-28 | ||
JP2019-239979 | 2019-12-28 | ||
JP2019239979 | 2019-12-28 | ||
JP2019239978 | 2019-12-28 | ||
JP2019-239975 | 2019-12-28 | ||
JP2019-239974 | 2019-12-28 | ||
JP2019239976 | 2019-12-28 | ||
JP2019-239977 | 2019-12-28 | ||
JP2019239975 | 2019-12-28 | ||
JP2019-239978 | 2019-12-28 | ||
JP2020006660 | 2020-01-20 | ||
JP2020-006660 | 2020-01-20 | ||
JP2020018910 | 2020-02-06 | ||
JP2020-018910 | 2020-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021132360A1 true WO2021132360A1 (ja) | 2021-07-01 |
Family
ID=76573032
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048230 WO2021132368A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法 |
PCT/JP2020/048220 WO2021132360A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048185 WO2021132342A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048186 WO2021132343A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048235 WO2021132370A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコール製品 |
PCT/JP2020/048182 WO2021132340A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコール製品、及び1,3-ブチレングリコールの製造方法 |
PCT/JP2020/048221 WO2021132361A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048232 WO2021132369A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコール製品 |
PCT/JP2020/048211 WO2021132354A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048230 WO2021132368A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法 |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048185 WO2021132342A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048186 WO2021132343A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048235 WO2021132370A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコール製品 |
PCT/JP2020/048182 WO2021132340A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコール製品、及び1,3-ブチレングリコールの製造方法 |
PCT/JP2020/048221 WO2021132361A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
PCT/JP2020/048232 WO2021132369A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコール製品 |
PCT/JP2020/048211 WO2021132354A1 (ja) | 2019-12-28 | 2020-12-23 | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 |
Country Status (6)
Country | Link |
---|---|
US (9) | US20220354760A1 (ja) |
EP (9) | EP4083009A4 (ja) |
JP (9) | JPWO2021132343A1 (ja) |
KR (9) | KR20220119717A (ja) |
CN (9) | CN114901621B (ja) |
WO (9) | WO2021132368A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390705A (zh) * | 2019-08-14 | 2021-02-23 | 中国科学院青岛生物能源与过程研究所 | 一种1,3-丁二醇脱味的纯化方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7079874B1 (ja) * | 2021-05-18 | 2022-06-02 | Khネオケム株式会社 | 製品1,3-ブチレングリコール |
EP4414351A1 (en) | 2021-10-06 | 2024-08-14 | KH Neochem Co., Ltd. | Method for producing high-purity 1,3-butylene glycol |
WO2023228448A1 (ja) * | 2022-05-23 | 2023-11-30 | Khネオケム株式会社 | 製品1,3-ブチレングリコール |
CN115400706A (zh) * | 2022-08-29 | 2022-11-29 | 山东海科新源材料科技股份有限公司 | 一种化妆品级1,3-丁二醇提纯除味装置和方法 |
KR20240041226A (ko) | 2022-09-22 | 2024-03-29 | 주식회사 엘지화학 | 분리막 열 수축률 평가 장치 및 평가 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007969A1 (fr) * | 1998-08-07 | 2000-02-17 | Daicel Chemical Industries, Ltd. | 1,3-butylene-glycol tres pur et son procede de production |
JP2001213822A (ja) * | 2000-02-04 | 2001-08-07 | Daicel Chem Ind Ltd | 1,3−ブチレングリコールの製造方法 |
JP2001213825A (ja) | 2000-02-04 | 2001-08-07 | Daicel Chem Ind Ltd | 高純度1,3−ブチレングリコール |
JP2020006660A (ja) | 2018-07-12 | 2020-01-16 | ファナック株式会社 | 射出成形機 |
JP2020018910A (ja) | 2019-11-06 | 2020-02-06 | 株式会社三洋物産 | 遊技機 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580518A (en) | 1982-12-13 | 1986-04-08 | General Motors Corporation | Transmission shift indicator with adjustment mechanism |
JPS6165834A (ja) * | 1984-09-07 | 1986-04-04 | Daicel Chem Ind Ltd | 1,3−ブチレングリコ−ルの精製法 |
JPH07116081B2 (ja) * | 1986-12-22 | 1995-12-13 | ダイセル化学工業株式会社 | 1,3−ブチレングリコ−ルの精製法 |
JP3285439B2 (ja) | 1993-03-24 | 2002-05-27 | ダイセル化学工業株式会社 | 反応粗液の製造法および1,3−ブチレングリコ−ルの製造法 |
JP3369707B2 (ja) | 1994-03-17 | 2003-01-20 | ダイセル化学工業株式会社 | 1,3−ブチレングリコ−ルの精製方法 |
DE10190479T1 (de) * | 2000-02-04 | 2002-05-08 | Daicel Chem | 1,3-Butylenglycol von hoher Reinheit, Verfahren zur Herstellung von 1,3-Butylenglycol und Verfahren zur Herstellung von Butanol als Nebenprodukt sowie von Butylacetat |
JP2001213824A (ja) | 2000-02-04 | 2001-08-07 | Daicel Chem Ind Ltd | 精製1,3−ブチレングリコールの製造方法 |
JP4530461B2 (ja) | 2000-02-04 | 2010-08-25 | ダイセル化学工業株式会社 | 1,3−ブチレングリコールの精製方法 |
JP2001288131A (ja) * | 2000-02-04 | 2001-10-16 | Daicel Chem Ind Ltd | 精製1,3−ブチレングリコールの製造方法 |
JP2001213823A (ja) * | 2000-02-04 | 2001-08-07 | Daicel Chem Ind Ltd | 副生ブタノール及び酢酸ブチルの製造方法 |
JP3998440B2 (ja) * | 2001-07-17 | 2007-10-24 | 三菱化学株式会社 | 1,4−ブタンジオールの製造方法 |
JP2013043883A (ja) * | 2011-08-26 | 2013-03-04 | Mitsubishi Chemicals Corp | 1,4−ブタンジオールの精製方法 |
EP3786144B1 (en) * | 2012-06-05 | 2023-09-06 | Mitsubishi Chemical Corporation | Production method for 1,4-butanediol |
CN105585448B (zh) * | 2016-03-09 | 2019-11-05 | 辽宁科隆精细化工股份有限公司 | 一种合成化妆品级1,3-丁二醇的方法 |
EP3670656A4 (en) | 2017-08-17 | 2021-10-13 | Komi Hakko Corporation | ODOR QUANTIFICATION PROCESS, CELLS USED IN THIS PROCESS AND PROCESS FOR THE PRODUCTION OF SUCH CELLS |
JP6804602B1 (ja) * | 2019-09-05 | 2020-12-23 | 株式会社ダイセル | 1,3−ブチレングリコール製品 |
JP6804601B1 (ja) * | 2019-09-05 | 2020-12-23 | 株式会社ダイセル | 1,3−ブチレングリコール製品 |
CN114341090A (zh) * | 2019-09-05 | 2022-04-12 | 株式会社大赛璐 | 1,3-丁二醇制品 |
-
2020
- 2020-12-23 CN CN202080090560.4A patent/CN114901621B/zh active Active
- 2020-12-23 JP JP2021567540A patent/JPWO2021132343A1/ja active Pending
- 2020-12-23 EP EP20905860.1A patent/EP4083009A4/en active Pending
- 2020-12-23 JP JP2021567553A patent/JPWO2021132360A1/ja active Pending
- 2020-12-23 US US17/788,991 patent/US20220354760A1/en active Pending
- 2020-12-23 WO PCT/JP2020/048230 patent/WO2021132368A1/ja unknown
- 2020-12-23 CN CN202080090574.6A patent/CN114901622A/zh active Pending
- 2020-12-23 EP EP20906862.6A patent/EP4083007A4/en active Pending
- 2020-12-23 EP EP20905460.0A patent/EP4083003A4/en active Pending
- 2020-12-23 CN CN202080090559.1A patent/CN114901244A/zh active Pending
- 2020-12-23 KR KR1020227025877A patent/KR20220119717A/ko unknown
- 2020-12-23 EP EP20905336.2A patent/EP4083002A4/en active Pending
- 2020-12-23 JP JP2021567554A patent/JPWO2021132361A1/ja active Pending
- 2020-12-23 EP EP20906817.0A patent/EP4083006A4/en active Pending
- 2020-12-23 EP EP20906700.8A patent/EP4083005A4/en active Pending
- 2020-12-23 US US17/789,067 patent/US20230098112A1/en active Pending
- 2020-12-23 JP JP2021567563A patent/JPWO2021132370A1/ja active Pending
- 2020-12-23 WO PCT/JP2020/048220 patent/WO2021132360A1/ja unknown
- 2020-12-23 JP JP2021567537A patent/JPWO2021132340A1/ja active Pending
- 2020-12-23 US US17/788,809 patent/US20230338248A1/en active Pending
- 2020-12-23 EP EP20906589.5A patent/EP4083010A4/en active Pending
- 2020-12-23 WO PCT/JP2020/048185 patent/WO2021132342A1/ja unknown
- 2020-12-23 CN CN202080090561.9A patent/CN114901624A/zh active Pending
- 2020-12-23 KR KR1020227025873A patent/KR20220119714A/ko unknown
- 2020-12-23 JP JP2021567539A patent/JPWO2021132342A1/ja active Pending
- 2020-12-23 JP JP2021567562A patent/JPWO2021132369A1/ja active Pending
- 2020-12-23 CN CN202080090583.5A patent/CN114901623A/zh active Pending
- 2020-12-23 KR KR1020227025875A patent/KR20220119716A/ko unknown
- 2020-12-23 US US17/789,093 patent/US20230046811A1/en active Pending
- 2020-12-23 WO PCT/JP2020/048186 patent/WO2021132343A1/ja unknown
- 2020-12-23 JP JP2021567549A patent/JPWO2021132354A1/ja active Pending
- 2020-12-23 EP EP20906588.7A patent/EP4083004A4/en active Pending
- 2020-12-23 CN CN202080090556.8A patent/CN114901620A/zh active Pending
- 2020-12-23 US US17/789,113 patent/US20230048638A1/en active Pending
- 2020-12-23 WO PCT/JP2020/048235 patent/WO2021132370A1/ja unknown
- 2020-12-23 KR KR1020227025888A patent/KR20220119719A/ko unknown
- 2020-12-23 KR KR1020227025870A patent/KR20220119712A/ko unknown
- 2020-12-23 KR KR1020227025874A patent/KR20220119715A/ko unknown
- 2020-12-23 US US17/788,968 patent/US20230033469A1/en active Pending
- 2020-12-23 JP JP2021567561A patent/JPWO2021132368A1/ja active Pending
- 2020-12-23 KR KR1020227025871A patent/KR20220119713A/ko unknown
- 2020-12-23 WO PCT/JP2020/048182 patent/WO2021132340A1/ja unknown
- 2020-12-23 US US17/789,087 patent/US20230055591A1/en active Pending
- 2020-12-23 CN CN202080090582.0A patent/CN114867706A/zh active Pending
- 2020-12-23 US US17/788,823 patent/US20230087989A1/en active Pending
- 2020-12-23 EP EP20905721.5A patent/EP4083008A4/en active Pending
- 2020-12-23 CN CN202080090558.7A patent/CN114901243A/zh active Pending
- 2020-12-23 WO PCT/JP2020/048221 patent/WO2021132361A1/ja unknown
- 2020-12-23 KR KR1020227025879A patent/KR20220119718A/ko unknown
- 2020-12-23 WO PCT/JP2020/048232 patent/WO2021132369A1/ja unknown
- 2020-12-23 WO PCT/JP2020/048211 patent/WO2021132354A1/ja unknown
- 2020-12-23 US US17/788,803 patent/US20230035233A1/en active Pending
- 2020-12-23 CN CN202080090584.XA patent/CN114901625A/zh active Pending
- 2020-12-23 KR KR1020227025869A patent/KR20220119711A/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007969A1 (fr) * | 1998-08-07 | 2000-02-17 | Daicel Chemical Industries, Ltd. | 1,3-butylene-glycol tres pur et son procede de production |
JP2001213822A (ja) * | 2000-02-04 | 2001-08-07 | Daicel Chem Ind Ltd | 1,3−ブチレングリコールの製造方法 |
JP2001213825A (ja) | 2000-02-04 | 2001-08-07 | Daicel Chem Ind Ltd | 高純度1,3−ブチレングリコール |
JP2020006660A (ja) | 2018-07-12 | 2020-01-16 | ファナック株式会社 | 射出成形機 |
JP2020018910A (ja) | 2019-11-06 | 2020-02-06 | 株式会社三洋物産 | 遊技機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4083004A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390705A (zh) * | 2019-08-14 | 2021-02-23 | 中国科学院青岛生物能源与过程研究所 | 一种1,3-丁二醇脱味的纯化方法 |
CN112390705B (zh) * | 2019-08-14 | 2022-11-01 | 中国科学院青岛生物能源与过程研究所 | 一种1,3-丁二醇脱味的纯化方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021132360A1 (ja) | 1,3-ブチレングリコールの製造方法、及び1,3-ブチレングリコール製品 | |
KR102682257B1 (ko) | 1,3-부틸렌 글리콜 제품 | |
JP6979544B2 (ja) | 1,3−ブチレングリコール製品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20906588 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021567553 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227025888 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020906588 Country of ref document: EP Effective date: 20220728 |