Nothing Special   »   [go: up one dir, main page]

WO2021132059A1 - 照明装置、および表示装置 - Google Patents

照明装置、および表示装置 Download PDF

Info

Publication number
WO2021132059A1
WO2021132059A1 PCT/JP2020/047366 JP2020047366W WO2021132059A1 WO 2021132059 A1 WO2021132059 A1 WO 2021132059A1 JP 2020047366 W JP2020047366 W JP 2020047366W WO 2021132059 A1 WO2021132059 A1 WO 2021132059A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination light
light source
hdr
illumination
Prior art date
Application number
PCT/JP2020/047366
Other languages
English (en)
French (fr)
Inventor
宏美 澤井
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021567385A priority Critical patent/JPWO2021132059A1/ja
Priority to CN202080089955.2A priority patent/CN114868080A/zh
Priority to US17/757,696 priority patent/US20230020225A1/en
Priority to EP20906214.0A priority patent/EP4057062A4/en
Publication of WO2021132059A1 publication Critical patent/WO2021132059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • H04N9/3126Driving therefor for spatial light modulators in series
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • This disclosure relates to a lighting device and a display device capable of realizing HDR (High Dynamic Range).
  • HDR High Dynamic Range
  • Patent Document 1 proposes an HDR projector using a DMD (Digital Mirror Device) as a luminance modulation panel.
  • DMD Digital Mirror Device
  • Patent Document 1 Since the technique described in Patent Document 1 uses DMD as the brightness modulation panel, the polarizations of the SDR illumination light and the HDR illumination light are not aligned, and the technique is applied when a liquid crystal panel is used as the brightness modulation panel. Is difficult.
  • the illuminating device includes a first light source that emits a first illumination light that is phase-modulated so as to have a desired intensity distribution, and a second illumination device that emits a second illumination light.
  • a first light source that emits a first illumination light that is phase-modulated so as to have a desired intensity distribution
  • a second illumination device that emits a second illumination light.
  • the display device includes a first light source that emits a first illumination light that is phase-modulated so as to have a desired intensity distribution, and a second light that emits a second illumination light.
  • a first light source that emits a first illumination light that is phase-modulated so as to have a desired intensity distribution
  • a second light that emits a second illumination light.
  • Light between a light source an integrator optical system that equalizes the intensity distribution of the second illumination light, a polarization conversion element that aligns the polarization directions of incident light in one polarization direction, and an integrator optical system and a polarization conversion element.
  • a reflecting element and a polarization conversion element which are arranged on the road and combine the first illumination light and the second illumination light to make the first illumination light and the second illumination light incident on the polarization conversion element, respectively. It is provided with a brightness modulation panel that generates an image based on the illumination light including the first illumination light and the second illumination light emitted from the light.
  • the first illuminating light and the second illuminating light are reflecting elements arranged on the optical path between the integrator optical system and the polarization conversion element. It is combined with light and incident on the polarization conversion element.
  • FIG. 5 is an overall configuration diagram showing a configuration example of a projector as a display device according to a fifth embodiment.
  • 6 is an overall configuration diagram showing a configuration example of a projector as a display device according to a sixth embodiment.
  • Patent Document 1 proposes an HDR projector using a DMD (Digital Mirror Device) as a luminance modulation panel.
  • HDR illumination light which has an intensity distribution that matches the image
  • the brightness modulation panel it is possible to assign the light that has been blocked up to now to a bright place in the image, pushing up the maximum brightness that can be expressed. Can be done.
  • HDR illumination light having an intensity distribution using the phase modulation panel
  • the remaining illumination light is the same as the conventional one.
  • SDR illumination light uniform illumination light
  • HDR liquid crystal projector that uses a liquid crystal panel as a brightness modulation panel. At this time, it is necessary to combine the SDR illumination light and the HDR illumination light somewhere and then apply the light to the liquid crystal panel for luminance modulation.
  • a general liquid crystal projector is an integrator composed of a fly-eye lens and a polarization conversion element (PS converter (PSC)) in order to make the light reaching the liquid crystal panel for brightness modulation uniform in intensity and polarized light. Requires an optical system. Also in the case of HDR liquid crystal projectors, an integrator optical system is required for SDR illumination light. On the other hand, it is necessary that the HDR illumination light reaches the liquid crystal panel for luminance modulation without breaking the phase modulated by the phase modulation panel. Therefore, it is desirable that the HDR illumination light harmonizes with the SDR illumination light while avoiding the integrator optical system that disrupts the phase.
  • PS converter polarization conversion element
  • the intensity of the HDR illumination light dynamically changes with respect to the SDR illumination light having a certain intensity, but the ratio of the HDR illumination light to the SDR illumination light is It is necessary to prevent the chromaticity points from shifting when they change. For this reason, for example, in the method of harmonizing the wavelengths by using light having different spectra for the SDR illumination light and the HDR illumination light, the ratio of the HDR illumination light to the SDR illumination light changes in the image. As a result, the chromaticity point shift occurs.
  • FIG. 1 shows an example of the overall configuration of the projector 1 as a display device according to the first embodiment of the present disclosure.
  • the projector 1 has a lighting device that generates illumination light including HDR illumination light LH and SDR illumination light LS, and a panel core 40 that generates an image based on the illumination light generated by the illumination device. And have. Further, the projector 1 includes a projection optical system 50 that projects an image generated by the panel core 40 onto a projection surface such as a screen (not shown).
  • the lighting device combines the SDR light source 10 that generates the SDR illumination light LS, the HDR light source 20 that generates the HDR illumination light LH, and the SDR illumination light LS and the HDR illumination light LH to generate the illumination light for the panel core 40. It is provided with an illumination optical system 30 to be used.
  • the SDR light source 10 generates SDR illumination light LS and emits it toward the illumination optical system 30.
  • the SDR light source 10 includes a red LD11R, a green LD11G, and a blue LD11B, a mirror 12, a dichroic mirror 13, a dichroic mirror 14, a lens 15, a diffuser plate 16, and a lens 17.
  • the HDR light source 20 emits HDR illumination light LH phase-modulated so as to have a desired intensity distribution toward the illumination optical system 30.
  • the HDR light source 20 includes a red LD21R, a green LD21G, and a blue LD21B, a red phase modulation panel 22R, a green phase modulation panel 22G, and a blue phase modulation panel 22B, a mirror 23, a dichroic mirror 24, and a dichroic mirror. It has 25 and a diffuser plate 26.
  • the illumination optical system 30 includes an integrator optical system 31, a lens 32, a reflective polarizer 33, a PS converter (PSC) 34, a lens 35, a dichroic mirror 36, a lens 37, and a lens 38. There is.
  • the integrator optical system 31 has a pair of a first fly-eye lens 31A and a second fly-eye lens 31B.
  • the panel core 40 includes a red luminance modulation panel 41R, a green luminance modulation panel 41G, a blue luminance modulation panel 41B, a red retarder 42R, a green retarder 42G, and a blue retarder 42B. Further, the panel core 40 has a PBS (polarization beam splitter) 43, a PBS 44, and a PBS 45, a ⁇ / 2 plate 46, a color select 47, and a color select 48.
  • PBS polarization beam splitter
  • the projection optical system 50 has a projection lens 51.
  • the HDR illumination light LH corresponds to a specific example of the "first illumination light” in the technique of the present disclosure.
  • the HDR light source 20 corresponds to a specific example of the "first light source” in the technique of the present disclosure.
  • the SDR illumination light LS corresponds to a specific example of the "second illumination light” in the technique of the present disclosure.
  • the SDR light source 10 corresponds to a specific example of the "second light source” in the technique of the present disclosure.
  • the red LD21R, the green LD21G, and the blue LD21B correspond to a specific example of the "first plurality of laser light sources" in the technique of the present disclosure.
  • the red LD11R, the green LD11G, and the blue LD11B correspond to a specific example of the "second plurality of laser light sources" in the technique of the present disclosure.
  • the reflective polarizer 33 corresponds to a specific example of the "reflecting element" in the technique of the present disclosure.
  • the red LD11R is a laser diode that emits red light for the SDR illumination light LS.
  • the green LD11G is a laser diode that emits green light for the SDR illumination light LS.
  • the blue LD11B is a laser diode that emits blue light for the SDR illumination light LS.
  • the red LD21R is a laser diode that emits red light for HDR illumination light LH.
  • the green LD21G is a laser diode that emits green light for HDR illumination light LH.
  • the blue LD21B is a laser diode that emits blue light for HDR illumination light LH.
  • the red LD11R, green LD11G, and blue LD11B in the SDR light source 10 may be laser diodes that emit colored light having the same wavelengths as the red LD21R, green LD21G, and blue LD21B in the HDR light source 20, respectively. It is desirable that the red LD11R, the green LD11G, and the blue LD11B in the SDR light source 10 each have a narrow band characteristic in which the polarization directions are aligned. Similarly, it is desirable that the red LD21R, the green LD21G, and the blue LD21B in the HDR light source 20 each have a narrow band characteristic in which the polarization directions are aligned.
  • the mirror 12 is arranged on the optical path of the red light emitted by the red LD11R, and reflects the red light toward the dichroic mirror 13.
  • the dichroic mirror 13 and the dichroic mirror 14 have characteristics that the reflectance and the transmittance differ depending on the wavelength, and are used for synthesizing red light, green light, and blue light in the SDR light source 10.
  • the dichroic mirror 13 is arranged on the optical path of the green light emitted by the green LD11G, transmits the red light toward the dichroic mirror 14, and reflects the green light.
  • the dichroic mirror 14 is arranged on the optical path of blue light emitted by the blue LD11B, transmits red light and green light toward the lens 15, and reflects blue light.
  • the lens 15 is arranged on the optical path of red light, green light, and blue light emitted from the dichroic mirror 14, and collects the red light, green light, and blue light emitted from the dicroic mirror 14 toward the diffuser plate 16. To do.
  • the diffuser plate 16 is arranged on the optical path of red light, green light, and blue light emitted from the lens 15, and reduces the speckles of red light, green light, and blue light emitted from the lens 15 to form the lens 17. It emits toward.
  • the red light, green light, and blue light emitted from the diffuser plate 16 are emitted toward the illumination optical system 30 as SDR illumination light LS via the lens 17.
  • the red phase modulation panel 22R is arranged on the optical path of the red light emitted by the red LD21R.
  • the green phase modulation panel 22G is arranged on the optical path of the green light emitted by the green LD21G.
  • the blue phase modulation panel 22B is arranged on the optical path of the blue light emitted by the blue LD21B.
  • the red phase modulation panel 22R, the green phase modulation panel 22G, and the blue phase modulation panel 22B are devices in which the phase modulation amount can be changed for each pixel, and the red brightness modulation panel 41R and the green brightness of the panel core 40 are used.
  • the red phase modulation panel 22R, the green phase modulation panel 22G, and the blue phase modulation panel 22B are, for example, transmissive liquid crystal panels, respectively.
  • the mirror 23 is arranged on the optical path of the blue light emitted from the blue phase modulation panel 22B, and reflects the blue light toward the dichroic mirror 24.
  • the dichroic mirror 24 and the dichroic mirror 25 have characteristics that the reflectance and the transmittance differ depending on the wavelength, and are used for synthesizing red light, green light, and blue light in the HDR light source 20.
  • the dichroic mirror 24 is arranged on the optical path of the green light emitted from the green phase modulation panel 22G, transmits the blue light toward the dichroic mirror 25, and reflects the green light.
  • the dichroic mirror 25 is arranged on the optical path of red light emitted from the red phase modulation panel 22R, transmits blue light and green light toward the diffuser plate 26, and reflects red light.
  • the diffuser plate 26 is arranged on the optical path of the red light, green light, and blue light emitted from the dichroic mirror 25, and illuminates by reducing the speckles of the red light, green light, and blue light emitted from the dichroic mirror 25. It emits light toward the optical system 30.
  • the integrator optical system 31 equalizes the intensity distribution of the SDR illumination light LS and emits the light toward the reflective polarizer 33 and the PSC 34.
  • the lens 32 collects the HDR illumination light LH emitted from the HDR light source 20 toward the reflective polarizer 33.
  • the reflective polarizer 33 is an element whose transmittance and reflectance differ depending on the polarization direction, and is used to combine the SDR illumination light LS and the HDR illumination light LH.
  • the reflective polarizer 33 is arranged on the optical path between the integrator optical system 31 and the PSC 34, and combines the HDR illumination light LH and the SDR illumination light LS to combine the HDR illumination light LH and the SDR illumination light LS. Each is incident on the PSC34.
  • the PSC 34 is a polarization conversion element that aligns the polarization directions of the incident light in one polarization direction, and aligns the polarization directions of the HDR illumination light LH and the SDR illumination light LS in one polarization direction and emits the light toward the lens 35. ..
  • the lens 35 emits the HDR illumination light LH and the SDR illumination light LS emitted from the PSC 34 toward the dichroic mirror 36.
  • the dichroic mirror 36 separates the HDR illumination light LH and the SDR illumination light LS emitted from the lens 35 into red light, blue light, and green light, respectively, and emits the light.
  • the red light and blue light emitted from the dichroic mirror 36 enter the panel core 40 via the lens 37.
  • the green light emitted from the dichroic mirror 36 enters the panel core 40 via the lens 38.
  • the red light is incident on the red luminance modulation panel 41R via the color select 47, the PBS 44, and the red retarder 42R.
  • the light of the red image generated by the red luminance modulation panel 41R enters the PBS 45 via the red retarder 42R, the PBS 44, and the color select 48.
  • the blue light enters the blue luminance modulation panel 41B via the color select 47, the PBS 44, and the blue retarder 42B.
  • the light of the blue image generated by the blue luminance modulation panel 41B enters the PBS 45 via the blue retarder 42B, the PBS 44, and the color select 48.
  • the green light enters the green luminance modulation panel 41G via the PBS 43 and the green retarder 42G.
  • the light of the green image generated by the green luminance modulation panel 41G enters the PBS 45 via the green retarder 42G, the PBS 43, and the ⁇ / 2 plate 46.
  • the PBS 45 synthesizes the light of the images of each color and emits the light toward the projection optical system 50.
  • the red brightness modulation panel 41R, the green brightness modulation panel 41G, and the blue brightness modulation panel 41B generate an image based on the illumination light of each color of the HDR illumination light LH and the SDR illumination light LS, respectively.
  • the red luminance modulation panel 41R, the green luminance modulation panel 41G, and the blue luminance modulation panel 41B are, for example, reflective liquid crystal panels, respectively.
  • the red retarder 42R, the green retarder 42G, and the blue retarder 42B are, for example, ⁇ / 4 plates, and the liquid crystal in the red brightness modulation panel 41R, the green brightness modulation panel 41G, and the blue brightness modulation panel 41B, respectively. It is used to compensate for minute phase differences due to pretilt. By using the red retarder 42R, the green retarder 42G, and the blue retarder 42B, the contrast is improved.
  • PBS43, PBS44, and PBS45 each have a plane of polarization, and P-polarized light is transmitted and S-polarized light is reflected with respect to the plane of polarization.
  • the ⁇ / 2 plate 46 is an optical element that delays the phase by ⁇ / 2, and is arranged so that the polarization of green light is rotated by 90 degrees.
  • the color select 47 and the color select 48 are wave plates that work only at specific wavelengths, and are arranged so that only red light is polarized by 90 degrees.
  • the projection lens 51 includes a plurality of lenses that project the image generated by the red luminance modulation panel 41R, the green luminance modulation panel 41G, and the blue luminance modulation panel 41B of the panel core 40 onto a projection surface such as a screen (not shown). doing.
  • the SDR illumination light LS emitted from the SDR light source 10 passes through the integrator optical system 31 of the illumination optical system 30, and then is aligned in the same polarization direction as the HDR illumination light LH by the PSC 34.
  • Each color light of the SDR illumination light LS emitted from the illumination optical system 30 enters the panel core 40 and uniformly illuminates the red luminance modulation panel 41R, the green luminance modulation panel 41G, and the blue luminance modulation panel 41B.
  • Each color light emitted from the HDR light source 20 is incident on the red phase modulation panel 22R, the green phase modulation panel 22G, and the blue phase modulation panel 22B to generate a desired intensity distribution on the diffusion surface of the diffuser plate 26.
  • the phase is modulated as follows.
  • Each color light of the HDR illumination light LH having a desired intensity distribution generated on the diffusion surface enters the panel core 40 via the illumination optical system 30, and the red luminance modulation panel 41R, the green luminance modulation panel 41G, and the green luminance modulation panel 41G.
  • An image is formed on each panel surface of the blue luminance modulation panel 41B.
  • the HDR illumination light LH is reflected by the reflective polarizer 33 arranged between the integrator optical system 31 and the PSC 34, and is combined with the SDR illumination light LS. After that, the HDR illumination light LH passes through the PSC 34 as it is, and is emitted from the PSC 34 with the same polarization as the SDR illumination light LS.
  • each panel surface of the red luminance modulation panel 41R, the green luminance modulation panel 41G, and the blue luminance modulation panel 41B has a desired intensity distribution according to each color light of the HDR illumination light LH emitted from the illumination optical system 30. It is illuminated while holding.
  • the light emitted from the panel core 40 is projected by the projection lens 51 onto a projection surface such as a screen (not shown).
  • FIG. 2 shows an example of the optical action of the reflective polarizer 33 in the projector 1 shown in FIG.
  • the polarization direction of the HDR illumination light LH emitted from the HDR light source 20 and the polarization direction of the SDR illumination light LS emitted from the SDR light source 10 are different from each other.
  • the SDR illumination light LS is incident on, for example, the reflective polarizer 33 in a P-polarized state.
  • the HDR illumination light LH is incident on, for example, the reflective polarizer 33 in an S-polarized state.
  • the reflective polarizer 33 reflects the HDR illumination light LH toward the PSC 34 and transmits the SDR illumination light LS toward the PSC 34 based on the difference in the polarization direction.
  • the reflective polarizer 33 transmits all the P-polarized SDR illumination light LS to the reflective polarizer 33, and reflects all the S-polarized HDR illumination light LH. Therefore, in the projector 1, since there is almost no light that is spatially kicked by the reflective polarizer 33, it can be said that the efficiency is high.
  • the SDR illumination light LS that becomes uniform illumination light via the integrator optical system 31 and the HDR illumination light LH that is phase-modulated so as to have a desired intensity distribution are referred to as the integrator optical system 31.
  • Polarized light is combined by a reflective polarizer 33 installed between the PSCs 34. After the SDR illumination light LS and the HDR illumination light LH are combined by the reflective polarizer 33, the polarizations of both are aligned by the PSC 34.
  • FIG. 3 shows a specific configuration example and an example of optical action of the PSC 34 in the projector 1 shown in FIG.
  • the PSC 34 has a polarizing film 341, a ⁇ / 2 plate 342, a shielding region 343, and an opening region 344.
  • the PSC 34 is provided with a plurality of shielding regions 343 and opening regions 344 alternately on the incident surface.
  • the polarizing film 341 has a property of transmitting P-polarized light and reflecting S-polarized light.
  • a plurality of ⁇ / 2 plates 342 are provided in a region corresponding to the shielding region 343 on the exit surface side of the PSC 34. The ⁇ / 2 plate 342 converts S-polarized light into P-polarized light.
  • the projector 1 After the HDR illumination light LH and the SDR illumination light LS are combined by the reflective polarizer 33, light rays having different polarizations are incident on the PSC 34. Since the HDR illumination light LH is incident on the PSC34 with, for example, P-polarized light, it passes through the PSC34 as it is and is emitted as P-polarized light. On the other hand, since the SDR illumination light LS is incident on the PSC34 with, for example, S-polarized light, it is reflected twice in the PSC34, proceeds to a certain path of the ⁇ / 2 plate 342, and the polarized light is rotated and emitted as P-polarized light. Therefore, the HDR illumination light LH and the SDR illumination light LS having different polarizations are polarized after passing through the PSC34.
  • each of the blue luminance modulation panel 41B can be configured by using the liquid crystal panel.
  • a liquid crystal panel can be used as the luminance modulation panel instead of the DMD, so that cost reduction can be expected.
  • FIG. 4 shows an example of the chromaticity range of the SDR illumination light LS and the chromaticity range of the HDR illumination light LH in the projector 1 shown in FIG.
  • FIG. 4 shows an example of the chromaticity range of the SDR illumination light LS and the chromaticity range of the HDR illumination light LH on the xy chromaticity diagram of the CIE 1931 color space defined by the CIE (International Commission on Illumination). There is.
  • the red LD11R, the green LD11G, and the blue LD11B in the SDR light source 10 may be laser diodes that emit colored light having the same wavelengths as the red LD21R, the green LD21G, and the blue LD21B in the HDR light source 20, respectively.
  • the ratio of the HDR illumination light LH to the uniform illumination SDR illumination light LS changes.
  • the polarized light merged by the reflective polarizer 33 does not depend on the wavelength of the light beam to be merged, it is possible to combine even if the wavelength spectrum is exactly the same. Therefore, in this wave combination method, when the HDR illumination light LH is superimposed on the SDR illumination light LS, the chromaticity points do not shift even if the respective ratios in the image change.
  • FIG. 5 shows an example of an incident region of HDR illumination light LH in the PSC 34 according to the first configuration example in the projector 1 shown in FIG.
  • FIG. 5A is a plan view of the PSC34
  • FIG. 5B is a cross-sectional view of the PSC34
  • FIG. 6 shows an example of the incident region of the HDR illumination light LH in the PSC34A according to the second configuration example in the projector 1 shown in FIG.
  • FIG. 6A is a plan view of PSC34A
  • FIG. 6B is a cross-sectional view of PSC34A.
  • the PSC34 shown in FIG. 5 has a vertically symmetrical type configuration
  • the PSC34A shown in FIG. 6 has a vertically asymmetric type configuration.
  • Each of the PSC34 and PSC34A has a plurality of aperture regions 344 into which light is incident. It is desirable that the reflective polarizer 33 incident the HDR illumination light LH into one of the aperture regions (for example, the aperture region 344C near the center) of the plurality of aperture regions 344 in the PSC 34 or PSC 34A.
  • the HDR illumination light LH reaches the luminance modulation panel of the panel core 40 without breaking the phase modulated by the phase modulation panel. Therefore, it is desirable to avoid the integrator optical system 31 that equalizes the illumination distribution and combine the waves. Further, since the illumination distribution must not be branched by the PSC34 incident after the combined wave, it is desirable to make the illumination into one of the plurality of aperture regions 344 in the PSC34 or PSC34A.
  • the vertically symmetrical type PSC34 shown in FIG. 5 has a wider opening area 344C near the center than the vertically asymmetric type PSC34A shown in FIG. There is.
  • the wide opening region 344C near the center of the vertically symmetrical type PSC34 it is necessary to incident the PSC34 with P-polarized light. This is because when the light is incident with S-polarized light, it is reflected in the PSC34 and the illumination light is branched.
  • FIG. 7 shows an example of a state in which the HDR illumination light LH is incident on the central portion in one opening region of the PSC34 in the projector 1 shown in FIG.
  • FIG. 8 shows an example of the passing state of the SDR illumination light LS and the HDR illumination light LH in the projection lens 51 when the HDR illumination light LH is incident on the central portion in one opening region of the PSC 34.
  • FIG. 9 shows an example of the angular distribution of the SDR illumination light LS and the HDR illumination light LH on the luminance modulation panel in the panel core 40 when the HDR illumination light LH is incident on the central portion in one opening region of the PSC 34. ing.
  • FIG. 10 shows an example of a state in which light rays are kicked by optical components around the reflective polarizer 33 when HDR illumination light LH is incident on the central portion in one aperture region of the PSC 34.
  • one of the advantages is that the projection surface of the projection lens 51 due to vignetting (as shown in FIG. 8). Peripheral dimming on the screen surface) may be less likely to occur. Peripheral dimming due to vignetting of the projection lens 51 means that when the angle distribution at the position of the aperture stop St is large, even if the rays are projected at the center of the screen, the rays going to the edge of the screen are projected depending on the angle. This is a phenomenon in which the area around the screen becomes dark due to being kicked by 51. In FIG. 8, for example, a light ray is kicked at the lens end 511.
  • the HDR illumination light LH is less likely to be kicked by the F number of the projection lens 51 as shown in FIG.
  • the HDR illumination light LH is incident on the central portion of the PSC 34, the light beam is incident on the luminance modulation panel in the panel core 40 substantially perpendicularly, so that there is no concern that the F number of the projection lens 51 will kick it. Become.
  • the reflector 33 for combined waves is not easy to install.
  • measures such as improving the installability can be considered by extending the length of the reflective polarizer 33 in a direction in which the distance d1 (FIG. 10) between the integrator optical system 31 and the PSC 34 does not increase. ..
  • the reflective polarizer 33 is made excessively large by this measure, the SDR illumination light LS is transmitted without any problem, so that there is no influence such as a decrease in efficiency.
  • Another drawback is that, as shown in FIG. 10, light rays may be kicked by optical components such as the second fly-eye lens 31B and PSC34 around the reflective polarizer 33.
  • the distance d1 between the second fly-eye lens 31B and the PSC34 needs to be as close as possible.
  • a certain distance is required for arranging the reflective polarizer 33, and when the reflective polarizer 33 is arranged at the center of the PSC 34, it is necessary to further increase the interval according to the divergence angle of the HDR illumination light LH.
  • the efficiency of the SDR illumination light LS is prioritized, the HDR illumination light LH may be kicked by the second fly-eye lens 31B or PSC34.
  • FIG. 11 shows an example of a state in which HDR illumination light LH is incident on an end portion of the PSC 34 in one opening region of the projector 1 shown in FIG.
  • FIG. 12 shows an example of the passing state of the SDR illumination light LS and the HDR illumination light LH in the projection lens 51 when the HDR illumination light LH is incident on the end portion in one opening region of the PSC 34.
  • FIG. 13 shows an example of the angular distribution of the SDR illumination light LS and the HDR illumination light LH on the luminance modulation panel in the panel core 40 when the HDR illumination light LH is incident on the end portion in one opening region of the PSC 34. ing.
  • FIG. 12 shows an example of the passing state of the SDR illumination light LS and the HDR illumination light LH in the projection lens 51 when the HDR illumination light LH is incident on the end portion in one opening region of the PSC 34.
  • FIG. 14 shows an example of a state in which a light beam is kicked by an optical component around the reflective polarizer 33 when HDR illumination light LH is incident on an end portion of the PSC 34 within one aperture region.
  • the reflective polarizer 33 for combined waves is arranged at the end of the PSC 34, so that it is easy to install.
  • Another advantage is that the reflective polarizer 33 is arranged at the end, so even if the angular distribution of the HDR illumination light LH is widened, as shown in FIG. 14, the second fly-eye lens 31B or PSC34 There is less concern about being kicked by peripheral optical elements such as.
  • limb darkening on the screen surface due to vignetting of the projection lens 51 is likely to occur.
  • the angle distribution of the projection lens 51 at the position of the aperture stop St becomes large, and the light beam going to the edge with respect to the center of the screen is easily kicked by the projection lens 51. , Peripheral dimming may occur.
  • a light ray is kicked at the lens end 511.
  • the HDR illumination light LH is incident on the luminance modulation panel of the panel core 40 at a large angle, so that there is a risk of being kicked by the F number of the projection lens 51 as shown in FIG. is there.
  • the HDR illumination light LH may be darkened as a whole.
  • the HDR illumination light LH and the SDR illumination light LS are arranged on the optical path between the integrator optical system 31 and the PSC 34. Since the light is combined by the reflected reflector 33 and incident on the PSC 34, it is possible to obtain illumination light having a desired intensity distribution.
  • the HDR illumination light LH and the SDR illumination light LS are combined without breaking the phase modulated by the phase modulation panel of the HDR light source 20. be able to.
  • the HDR illumination light LH avoids the integrator optical system 31 and is combined with the SDR illumination light LS.
  • the HDR illumination light LH is incident in one opening region of the PSC 34 so as not to be branched. From these facts, the HDR illumination light LH can reach the luminance modulation panel of the panel core 40 without disturbing the illumination distribution generated by the phase modulation panel. By keeping the phase of the HDR illumination light LH unchanged, the illumination distribution on the luminance modulation panel can be faithfully reproduced, and the maximum luminance can be further pushed up.
  • color shift does not occur even if the ratio of HDR illumination light LH to SDR illumination light LS changes. Can be done.
  • the polarizations of the HDR illumination light LH and the SDR illumination light LS are aligned after passing through the PSC 34.
  • a liquid crystal panel can be used as the brightness modulation panel of the panel core 40.
  • all the P-polarized SDR illumination light LS is transmitted to the reflective polarizer 33, and the S-polarized HDR illumination. Since all the light LH can be reflected, it is highly efficient. Since the efficiency does not decrease, it is not necessary to increase the number of light sources by introducing the combine wave mechanism, which leads to cost reduction, power consumption reduction, and compactness.
  • red, green, and blue lasers for the SDR light source 10 and the HDR light source 20, respectively, have been shown, but lasers of other wavelengths such as infrared light may be used. Further, the configuration may be other than the three colors. Further, in the HDR light source 20, the red phase modulation panel 22R, the green phase modulation panel 22G, and the blue phase modulation panel 22B are not limited to the transmissive liquid crystal panel, but use, for example, a reflective liquid crystal panel. It may be.
  • FIG. 15 shows a configuration example of a main part of the projector 1A as a display device according to the second embodiment.
  • the projector 1A according to the second embodiment includes a mirror 33A in the illumination optical system 30 instead of the reflective polarizer 33 in the projector 1 shown in FIG.
  • Other configurations may be substantially the same as those of the lighting device and the display device according to the first embodiment.
  • the mirror 33A corresponds to a specific example of the "reflecting element" in the technique of the present disclosure.
  • the mirror 33A may be used to combine the SDR illumination light LS and the HDR illumination light LH, as in the projector 1A.
  • the luminance modulation panel used in the technique of the present disclosure may be a transmissive liquid crystal panel or a reflective liquid crystal panel.
  • the panel core 40 shown in FIG. 1 may have a 3LCD system configuration using a transmissive liquid crystal panel, and in the case of a reflective liquid crystal panel, the panel core 40 is not limited to the S core system, but may be a tri-core system or a 3PBS system. It may be a configuration. The outline of each method will be described below.
  • FIG. 16 shows a main part of a first configuration example of a projector as a display device according to a third embodiment.
  • the first configuration example of the projector according to the third embodiment includes a panel core 40A instead of the panel core 40 in the projector 1 shown in FIG.
  • the panel core 40A is a 3LCD system using a transmissive liquid crystal panel as a luminance modulation panel.
  • the panel core 40A has a dichroic mirror 311, a dichroic mirror 312, a mirror 313, a mirror 314, a mirror 315, and a dichroic prism 450. Further, the panel core 40A further includes a red luminance modulation panel 411R, a green luminance modulation panel 411G, and a blue luminance modulation panel 411B.
  • the red luminance modulation panel 411R, the green luminance modulation panel 411G, and the blue luminance modulation panel 411B are transmissive liquid crystal panels.
  • the red luminance modulation panel 411R is illuminated with red light through the dichroic mirror 311 and the dichroic mirror 312 via the mirror 314 and the mirror 315.
  • the green luminance modulation panel 411G is illuminated with green light via the dichroic mirror 311 and the mirror 313.
  • the blue luminance modulation panel 411B is illuminated with blue light via the dichroic mirror 311 and the dichroic mirror 312.
  • the dichroic prism 450 was formed by the red image light generated by the red luminance modulation panel 411R, the green image light generated by the green luminance modulation panel 411G, and the blue luminance modulation panel 411B. The light of the blue image is incident.
  • the dichroic prism 450 synthesizes the light of the images of each color and emits the light toward the projection optical system 50.
  • FIG. 17 shows a main part of a second configuration example of a projector as a display device according to a third embodiment.
  • the second configuration example of the projector according to the third embodiment includes a panel core 40B instead of the panel core 40 in the projector 1 shown in FIG.
  • the panel core 40B is a tri-core system using a reflective liquid crystal panel as a luminance modulation panel.
  • the panel core 40B has a dichroic mirror 321 and a mirror 322, a lens 323, a lens 324, a dichroic mirror 325, a lens 326, a lens 327, a lens 328, and a dichroic prism 451. Further, the panel core 40B further includes a wire grid 331, a wire grid 332, and a wire grid 333.
  • the wire grid 331, the wire grid 332, and the wire grid 333 are optical elements having different transmittances and reflectances depending on the direction of polarization.
  • the panel core 40B further includes a red luminance modulation panel 41R, a green luminance modulation panel 41G, a blue luminance modulation panel 41B, a red retarder 42R, a green retarder 42G, and a blue retarder 42B. ing.
  • the red brightness modulation panel 41R is illuminated with red light via the dichroic mirror 321 and the mirror 322, the lens 323, the dichroic mirror 325, the lens 326, the wire grid 331, and the red retarder 42R.
  • the green luminance modulation panel 41G is illuminated with green light via the dichroic mirror 321 and the mirror 322, the lens 323, the dichroic mirror 325, the lens 324, the wire grid 332, and the green retarder 42G.
  • the blue luminance modulation panel 41B is illuminated with blue light via a dichroic mirror 321, a lens 327, a lens 328, a wire grid 333, and a blue retarder 42B.
  • the dichroic prism 451 has a red image light generated by the red brightness modulation panel 41R, a green image light generated by the green brightness modulation panel 41G, and a blue brightness modulation panel 41B. The light of the blue image is incident.
  • the dichroic prism 451 synthesizes the light of the images of each color and emits the light toward the projection optical system 50.
  • FIG. 18 shows a main part of a third configuration example of a projector as a display device according to a third embodiment.
  • the third configuration example of the projector according to the third embodiment includes a panel core 40C instead of the panel core 40 in the projector 1 shown in FIG.
  • the panel core 40C is a 3PBS system in which three reflective liquid crystal panels are used as brightness modulation panels and PBS is arranged for each of the three reflective liquid crystal panels.
  • the panel core 40C has a dichroic mirror 351, a mirror 352, a mirror 353, and a dichroic mirror 354. Further, the panel core 40C further has a dichroic prism 460, a PBS 461, a PBS 462, and a PBS 463. Further, the panel core 40C further includes a red luminance modulation panel 41R, a green luminance modulation panel 41G, a blue luminance modulation panel 41B, a red retarder 42R, a green retarder 42G, and a blue retarder 42B. ing.
  • the red luminance modulation panel 41R is illuminated with red light via the dichroic mirror 351 and the mirror 352, the PBS 461, and the red retarder 42R.
  • the green luminance modulation panel 41G is illuminated with green light via the dichroic mirror 351 and the mirror 353, the dichroic mirror 354, the PBS 462, and the green retarder 42G.
  • the blue luminance modulation panel 41B is illuminated with blue light via the dichroic mirror 351 and the mirror 353, the dichroic mirror 354, the PBS 463, and the blue retarder 42B.
  • the dichroic prism 460 had a red image light generated by the red brightness modulation panel 41R, a green image light generated by the green brightness modulation panel 41G, and a blue brightness modulation panel 41B. The light of the blue image is incident.
  • the dichroic prism 460 synthesizes the light of the images of each color and emits the light toward the projection optical system 50.
  • the luminance modulation panel may be a single-plate system or a two-panel system in which RGB is driven in a time-division manner to output a color image. Further, the luminance modulation panel may be DMD.
  • phase modulation panel used for the HDR light source in the technique of the present disclosure may be a single plate. Even if it is a veneer, the phase modulation of each of RGB can be performed by time division or spatial division that divides the panel area into RGB.
  • FIG. 19 shows a configuration example of a main part of the projector as a display device according to the fourth embodiment.
  • the projector according to the fourth embodiment includes a panel core 40D instead of the panel core 40 in the projector 1 shown in FIG.
  • the panel core 40D has a lens 350, a brightness modulation panel 410, a retarder 420, and a PBS 470.
  • the luminance modulation panel 410 is, for example, a reflective liquid crystal panel.
  • the red light, the green light, and the blue light are irradiated to the luminance modulation panel 410 in a time-division manner via the lens 350, the PBS 470, and the retarder 420.
  • the luminance modulation panel 410 generates an image of each color in a time division manner.
  • the PBS 470 emits an image of each color generated by the modulation panel 410 toward the projection optical system 50 in a time-division manner.
  • the SDR illumination light LS and the HDR illumination light LH are branched from the same light source.
  • To combine light of the same wavelength means that the HDR illumination light LH and the SDR illumination light LS do not have different light sources having different wavelength spectra, but can be branched and used from the same light source. In this case, the size of the projector and the cost can be reduced.
  • FIG. 20 shows an overall configuration example of the projector 1B as a display device according to the fifth embodiment.
  • the projector 1B according to the fifth embodiment includes an SDR light source 10A instead of the SDR light source 10 in the projector 1 shown in FIG. Further, the projector 1B according to the fifth embodiment includes an HDR light source 20A instead of the HDR light source 20 in the projector 1 shown in FIG.
  • the HDR light source 20A further includes a dichroic mirror 121, a dichroic mirror 122, and a dichroic mirror 123 with respect to the configuration of the HDR light source 20 in the projector 1 shown in FIG.
  • the SDR light source 10A has a red LD21R, a green LD21G, and a blue LD21B, and a dichroic mirror 121, a dichroic mirror 122, and a dichroic mirror 123 as components shared with the HDR light source 20A. Further, the SDR light source 10A further includes a diffuser plate 16, a lens 124, a lens 125, and a mirror 126.
  • the SDR light source 10A has a plurality of different wavelengths by branching the colored lights from the red LD21R, the green LD21G, and the blue LD21B in the HDR light source 20A using the dichroic mirror 121, the dichroic mirror 122, and the dichroic mirror 123. Generates and emits SDR illumination light LS containing the color light of
  • the wavelength spectra of the HDR illumination light LH and the SDR illumination light LS do not depend on the combined wave. Therefore, it is also possible to use a light source having a wide wavelength band, for example, a phosphor light source, for the SDR light source 10.
  • FIG. 21 shows an overall configuration example of the projector 1C as a display device according to the sixth embodiment.
  • the projector 1C according to the sixth embodiment includes an SDR light source 10B instead of the SDR light source 10 in the projector 1 shown in FIG.
  • the SDR light source 10B includes a phosphor wheel 110, a blue LD111B, a lens 113, and a polarization recycling element 114.
  • the phosphor wheel 110 and the blue LD111B correspond to a specific example of the "fluorescent light source” in the technique of the present disclosure.
  • the polarization recycling element 114 corresponds to a specific example of the "reflection type polarization conversion element” in the technique of the present disclosure.
  • the SDR light source 10B has a phosphor light source that emits a wide band of light including a plurality of colored lights.
  • the polarization recycling element 114 is arranged on the optical path between the phosphor light source and the reflective polarizer 33, and aligns the polarization directions of the light emitted from the phosphor light source in a predetermined direction.
  • the phosphor wheel 110 has a phosphor 112 as a wavelength conversion material.
  • the blue LD111B is an excitation light source that excites the phosphor 112, and emits blue light as the excitation light.
  • the phosphor 112 is excited by blue light and emits light including red and green light.
  • FIG. 22 shows an example of the optical action of the polarization recycling element 14 in the projector 1C shown in FIG.
  • the polarized light recycling element 114 has a polarizing film 115.
  • the polarizing film 115 has a characteristic that S-polarized light is reflected by the polarized light recycling element 114 and P-polarized light is transmitted.
  • the polarization recycling element 114 has a structure in which a plurality of polarization beam splitters are combined, and S-polarized light is reflected by the polarization recycling element 114, and P-polarized light is transmitted. The reflected S-polarized light travels back and forth between the wavelength conversion material and the polarized light recycling element 114 until it becomes P-polarized light with respect to the polarized light recycling element 114 and is transmitted.
  • FIG. 23 shows an example of the chromaticity range of the SDR illumination light LS and the chromaticity range of the HDR illumination light LH in the projector 1C shown in FIG.
  • FIG. 23 shows an example of the chromaticity range of the SDR illumination light LS and the chromaticity range of the HDR illumination light LH on the xy chromaticity diagram of the CIE 1931 color space defined by the CIE.
  • FIG. 24 shows an example of the wavelength spectrum of the SDR illumination light LS ((A) in FIG. 24) and the wavelength spectrum of the HDR illumination light LH ((B) in FIG. 24) in the projector 1C shown in FIG. ..
  • FIG. 24C shows an example of a wavelength spectrum in a state where the SDR illumination light LS and the HDR illumination light LH are combined.
  • the ratio of the HDR illumination light LH to the SDR illumination light LS as the illumination light for the luminance modulation panel is small, the color range is narrowed due to being attracted to the color range of the phosphor light source, but the SDR light source 10B and the HDR light source 20 By setting the chromaticity range to a predetermined range, the deviation of the chromaticity point can be suppressed as much as possible.
  • the HDR illumination light LH uses a laser light source having a narrow spectrum width, it is possible to express a wide range of colors in the xy chromaticity diagram, that is, it has a wide color gamut.
  • the SDR illumination light LS uses a phosphor light source having a relatively wide spectrum width, the color gamut is narrower than that of the HDR illumination light LH.
  • the color gamut of red should be 630 nm, green should be 532 nm, and blue should be 467 nm. Therefore, it is desirable to use a laser light source having a wavelength close to this wavelength as the HDR light source 20. Even in the SDR light source 10B, the color gamut is narrowed, but as shown in FIG. 23, the colors are on the straight line connecting the white point of the projector 1C and the RGB chromaticity points of the HDR illumination light LH. It is good to have the top of the gamut. By doing so, although there are differences in the color gamuts of the HDR illumination light LH and the SDR illumination light LS, it is possible to express a natural image as the projector 1C.
  • the lighting device is applied to the projector and the object to be illuminated by the lighting device is a luminance modulation panel that generates an image has been described as an example, but the lighting device is a device other than the projector. May be applied to.
  • the present technology may have the following configuration.
  • the first illumination light and the second illumination light are combined by a reflecting element arranged on the optical path between the integrator optical system and the polarization conversion element to perform polarization conversion. Since the light is incident on the element, it is possible to obtain illumination light having a desired intensity distribution.
  • the present technology may have the following configuration.
  • a first light source that emits a first illumination light that is phase-modulated to have a desired intensity distribution
  • a second light source that emits a second illumination light
  • An integrator optical system that equalizes the intensity distribution of the second illumination light
  • a polarization conversion element that aligns the polarization directions of incident light with one polarization direction, It is arranged on the optical path between the integrator optical system and the polarization conversion element, and the first illumination light and the second illumination light are combined to combine the first illumination light and the second illumination light.
  • An illuminating device including a reflecting element that causes illumination light to enter the polarization conversion element.
  • the polarization directions of the first illumination light emitted from the first light source and the polarization directions of the second illumination light emitted from the second light source are different from each other.
  • the reflective polarizer reflects the first illumination light toward the polarization conversion element and transmits the second illumination light toward the polarization conversion element based on the difference in the polarization direction.
  • the polarization conversion element has a plurality of aperture regions into which light is incident, and has a plurality of aperture regions.
  • the illuminating device according to any one of (1) to (3) above, wherein the reflecting element causes the first illumination light to be incident on one of the plurality of aperture regions of the polarization conversion element. ..
  • the illuminating device causes the first illumination light to be incident on a central portion of the polarization conversion element within the one aperture region.
  • the reflecting element causes the first illumination light to be incident on an end portion of the polarization conversion element in the one aperture region.
  • the first light source has a plurality of first laser light sources that emit colored light having different wavelengths from each other.
  • the second light source has any of the above (1) to (6) having a second plurality of laser light sources that emit colored light having the same wavelength as each of the first plurality of laser light sources in the first light source.
  • the first light source has a plurality of laser light sources that emit colored light having different wavelengths from each other.
  • the second light source emits the second illumination light including a plurality of colored lights having different wavelengths by branching the colored lights from the plurality of laser light sources in the first light source (1).
  • the lighting device according to any one of (6).
  • the first light source has a plurality of laser light sources that emit colored light having different wavelengths from each other.
  • Lighting device (11) The lighting device according to any one of (1) to (10) above, which generates illumination light for a luminance modulation panel that generates an image.
  • a first light source that emits a first illumination light that is phase-modulated to have a desired intensity distribution
  • a second light source that emits a second illumination light
  • An integrator optical system that equalizes the intensity distribution of the second illumination light
  • a polarization conversion element that aligns the polarization directions of incident light with one polarization direction, It is arranged on the optical path between the integrator optical system and the polarization conversion element, and the first illumination light and the second illumination light are combined to combine the first illumination light and the second illumination light.
  • a reflecting element that causes the illumination light to enter the polarization conversion element, respectively
  • a display device including a brightness modulation panel that generates an image based on illumination light including the first illumination light and the second illumination light emitted from the polarization conversion element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

本開示の照明装置は、所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、第2の照明光を出射する第2の光源と、第2の照明光の強度分布を均一化するインテグレータ光学系と、入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、インテグレータ光学系と偏光変換素子との間の光路上に配置され、第1の照明光と第2の照明光とを合波して、第1の照明光と第2の照明光とをそれぞれ偏光変換素子に入射させる反射素子とを備える。

Description

照明装置、および表示装置
 本開示は、HDR(High Dynamic Range)を実現可能な照明装置、および表示装置に関する。
 一般的なプロジェクタでは、液晶型やMEMS(Micro Electro Mechanical Systems)型などの輝度変調パネルに、強度分布が均一なSDR(Standard Dynamic Range)照明光をあてて映像を表示している。これに対し、照明装置側に位相変調パネルを追加し、照明光として、映像に合わせた強度分布を持つHDR照明光を用いるHDRプロジェクタが提案されている。例えば特許文献1には、輝度変調パネルとしてDMD(Digital Mirror Device)を用いたHDRプロジェクタが提案されている。
特表2018-532152号公報
 特許文献1に記載の技術は、輝度変調パネルとしてDMDを用いているため、SDR照明光とHDR照明光との偏光が揃えられておらず、輝度変調パネルとして液晶パネルを用いた場合には適用が困難である。
 所望の強度分布の照明光を得ることが可能となる照明装置、および表示装置を提供することが望ましい。
 本開示の一実施の形態に係る照明装置は、所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、第2の照明光を出射する第2の光源と、第2の照明光の強度分布を均一化するインテグレータ光学系と、入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、インテグレータ光学系と偏光変換素子との間の光路上に配置され、第1の照明光と第2の照明光とを合波して、第1の照明光と第2の照明光とをそれぞれ偏光変換素子に入射させる反射素子とを備えるものである。
 本開示の一実施の形態に係る表示装置は、所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、第2の照明光を出射する第2の光源と、第2の照明光の強度分布を均一化するインテグレータ光学系と、入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、インテグレータ光学系と偏光変換素子との間の光路上に配置され、第1の照明光と第2の照明光とを合波して、第1の照明光と第2の照明光とをそれぞれ偏光変換素子に入射させる反射素子と、偏光変換素子から出射された第1の照明光と第2の照明光とを含む照明光に基づいて映像を生成する輝度変調パネルとを備えるものである。
 本開示の一実施の形態に係る照明装置、または表示装置では、第1の照明光と第2の照明光とが、インテグレータ光学系と偏光変換素子との間の光路上に配置された反射素子によって合波され、偏光変換素子に入射する。
本開示の第1の実施の形態に係る表示装置としてのプロジェクタの一構成例を示す全体構成図である。 図1に示したプロジェクタにおける反射型偏光子の光学作用の一例を示す説明図である。 図1に示したプロジェクタにおけるPSコンバータの具体的な構成例および光学作用の一例を示す説明図である。 図1に示したプロジェクタにおけるSDR照明光の色度範囲とHDR照明光の色度範囲との一例を示す説明図である。 図1に示したプロジェクタにおけるPSコンバータの第1の構成例におけるHDR照明光の入射領域の一例を示す説明図である。 図1に示したプロジェクタにおけるPSコンバータの第2の構成例におけるHDR照明光の入射領域の一例を示す説明図である。 図1に示したプロジェクタにおけるPSコンバータの1つの開口領域内の中心部にHDR照明光を入射した状態の一例を示す説明図である。 PSコンバータの1つの開口領域内の中心部にHDR照明光を入射させた場合の、投射レンズにおけるSDR照明光およびHDR照明光の通過状態の一例を示す説明図である。 PSコンバータの1つの開口領域内の中心部にHDR照明光を入射させた場合の、輝度変調パネル上のSDR照明光およびHDR照明光の角度分布の一例を示す説明図である。 PSコンバータの1つの開口領域内の中心部にHDR照明光を入射させた場合の、反射型偏光子の周辺の光学部品による光線の蹴られの状態の一例を示す説明図である。 図1に示したプロジェクタにおけるPSコンバータの1つの開口領域内の端部にHDR照明光を入射した状態の一例を示す説明図である。 PSコンバータの1つの開口領域内の端部にHDR照明光を入射させた場合の、投射レンズにおけるSDR照明光およびHDR照明光の通過状態の一例を示す説明図である。 PSコンバータの1つの開口領域内の端部にHDR照明光を入射させた場合の、輝度変調パネル上のSDR照明光およびHDR照明光の角度分布の一例を示す説明図である。 PSコンバータの1つの開口領域内の端部にHDR照明光を入射させた場合の、反射型偏光子の周辺の光学部品による光線の蹴られの状態の一例を示す説明図である。 第2の実施の形態に係る表示装置としてのプロジェクタの要部の一構成例を示す構成図である。 第3の実施の形態に係る表示装置としてのプロジェクタの第1の構成例の要部を示す構成図である。 第3の実施の形態に係る表示装置としてのプロジェクタの第2の構成例の要部を示す構成図である。 第3の実施の形態に係る表示装置としてのプロジェクタの第3の構成例の要部を示す構成図である。 第4の実施の形態に係る表示装置としてのプロジェクタの要部の一構成例を示す構成図である。 第5の実施の形態に係る表示装置としてのプロジェクタの一構成例を示す全体構成図である。 第6の実施の形態に係る表示装置としてのプロジェクタの一構成例を示す全体構成図である。 図21に示したプロジェクタにおける偏光リサイクル素子の光学作用の一例を示す説明図である。 図21に示したプロジェクタにおけるSDR照明光の色度範囲とHDR照明光の色度範囲との一例を示す説明図である。 図21に示したプロジェクタにおけるSDR照明光の波長スペクトルとHDR照明光の波長スペクトルとの一例を示す説明図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 0.比較例
 1.第1の実施の形態(反射型偏光子を用いてHDR照明光とSDRとを合波する表示装置)(図1~図14)
  1.1 第1の実施の形態に係る表示装置の全体の構成および動作
  1.2 第1の実施の形態に係る表示装置の要部の構成および作用
  1.3 効果
  1.4 変形例
 2.第2の実施の形態(ミラーを用いてHDR照明光とSDRとを合波する表示装置)(図15)
 3.第3の実施の形態(パネルコアのバリエーション)(図16~図18)
 4.第4の実施の形態(パネルコアのバリエーション)(図19)
 5.第5の実施の形態(同一のレーザ光源を用いてHDR照明光とSDR照明光とを生成する表示装置)(図20)
 6.第6の実施の形態(蛍光体光源を用いてSDR照明光を生成する表示装置)(図21~図24)
 7.その他の実施の形態
<0.比較例>
 一般的なプロジェクタでは、液晶型やMEMS型などの輝度変調パネルに強度分布が均一なSDR照明光をあてて映像を表示している。このため、プロジェクタが表現できる最大輝度は映像によらず一定である上に、映像の暗い部分にあてられた照明光は遮光され無駄になっていた。
 これに対し、照明装置側に位相変調パネルを追加し、照明光として、映像に合わせた強度分布を持つHDR照明光を用いるHDRプロジェクタが提案されている。例えば特許文献1には、輝度変調パネルとしてDMD(Digital Mirror Device)を用いたHDRプロジェクタが提案されている。HDRプロジェクタでは、映像に合わせた強度分布を持つHDR照明光を輝度変調パネルにあてることで、今まで遮光されていた光を映像の明るい場所に割り当てることが可能となり、表現できる最大輝度を突き上げることができる。
 ここで、位相変調パネルの反射率などによる効率低下の観点から、一部の照明光のみを位相変調パネルを用いて強度分布を持たせたHDR照明光とし、残りの照明光は従来と同様に均一照明光(SDR照明光)として輝度変調パネルにあてるようなHDRプロジェクタを考える。また、輝度変調パネルとして液晶パネルを用いるHDR液晶プロジェクタについて考える。このとき、SDR照明光とHDR照明光とをどこかで合波してから、輝度変調用の液晶パネルにあてる必要がある。
 一般的な液晶プロジェクタは、輝度変調用の液晶パネルに到達する光を均一強度かつ偏光が揃った状態にするために、フライアイレンズや偏光変換素子(PSコンバータ(PSC))から構成されるインテグレータ光学系を必要とする。HDR液晶プロジェクタの場合にも、SDR照明光のためにインテグレータ光学系が必要とされる。一方、HDR照明光は位相変調パネルで変調した位相を崩さずに輝度変調用の液晶パネルまで到達させる必要がある。したがって、HDR照明光は位相を崩すインテグレータ光学系を回避して、SDR照明光と合波することが望ましい。
 また、SDR照明光にHDR照明光を重畳させたとき、一定の強度を持つSDR照明光に対してHDR照明光は強度がダイナミックに変化するが、SDR照明光に対してHDR照明光の割合が変化したときに色度点がずれないようにする必要がある。このため、例えば、SDR照明光とHDR照明光とで異なるスペクトルを持つ光を用いることで波長合波する方式であると、映像の中でSDR照明光に対してHDR照明光の割合が変化することにより色度点ずれが生じてしまう。
 また、SDR照明光とHDR照明光とを合波するときに、効率を低下させないようにする必要がある。上記の色度点ずれを起こさない合波方法として、SDR照明光の光路にミラーなどを配置してHDR照明光を空間的に合波する方式が考えられるが、この方式の場合、ミラーの領域に入射したSDR照明光が蹴られてしまい効率が低下する。
<1.第1の実施の形態>
[1.1 第1の実施の形態に係る表示装置の全体の構成および動作]
 図1は、本開示の第1の実施の形態に係る表示装置としてのプロジェクタ1の全体構成例を示している。
 第1の実施の形態に係るプロジェクタ1は、HDR照明光LHとSDR照明光LSとを含む照明光を生成する照明装置と、照明装置によって生成された照明光に基づいて映像を生成するパネルコア40とを備えている。また、プロジェクタ1は、パネルコア40によって生成された映像を図示しないスクリーン等の投影面に投影する投射光学系50を備えている。
 照明装置は、SDR照明光LSを生成するSDR光源10と、HDR照明光LHを生成するHDR光源20と、SDR照明光LSとHDR照明光LHとを合波してパネルコア40に対する照明光を生成する照明光学系30とを備えている。
 SDR光源10は、SDR照明光LSを生成して照明光学系30に向けて出射する。SDR光源10は、赤色LD11R、緑色LD11G、および青色LD11Bと、ミラー12と、ダイクロイックミラー13と、ダイクロイックミラー14と、レンズ15と、拡散板16と、レンズ17とを有している。
 HDR光源20は、所望の強度分布を持つように位相変調されたHDR照明光LHを照明光学系30に向けて出射する。HDR光源20は、赤色LD21R、緑色LD21G、および青色LD21Bと、赤色用位相変調パネル22R、緑色用位相変調パネル22G、および青色用位相変調パネル22Bと、ミラー23と、ダイクロイックミラー24と、ダイクロイックミラー25と、拡散板26とを有している。
 照明光学系30は、インテグレータ光学系31、レンズ32と、反射型偏光子33と、PSコンバータ(PSC)34と、レンズ35と、ダイクロイックミラー36と、レンズ37と、レンズ38とを有している。インテグレータ光学系31は、一対の第1のフライアイレンズ31Aおよび第2のフライアイレンズ31Bを有している。
 パネルコア40は、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bと、赤色用リターダ42R、緑色用リターダ42G、および青色用リターダ42Bとを有している。また、パネルコア40は、PBS(偏光ビームスプリッタ)43、PBS44、およびPBS45と、λ/2板46と、カラーセレクト47と、カラーセレクト48とを有している。
 投射光学系50は、投射レンズ51を有している。
 なお、第1の実施の形態において、HDR照明光LHは、本開示の技術における「第1の照明光」の一具体例に相当する。また、HDR光源20は、本開示の技術における「第1の光源」の一具体例に相当する。また、SDR照明光LSは、本開示の技術における「第2の照明光」の一具体例に相当する。また、SDR光源10は、本開示の技術における「第2の光源」の一具体例に相当する。また、赤色LD21R、緑色LD21G、および青色LD21Bは、本開示の技術における「第1の複数のレーザ光源」の一具体例に相当する。また、赤色LD11R、緑色LD11G、および青色LD11Bは、本開示の技術における「第2の複数のレーザ光源」の一具体例に相当する。また、第1の実施の形態において、反射型偏光子33は、本開示の技術における「反射素子」の一具体例に相当する。
 SDR光源10において、赤色LD11Rは、SDR照明光LS用の赤色光を発するレーザダイオードである。緑色LD11Gは、SDR照明光LS用の緑色光を発するレーザダイオードである。青色LD11Bは、SDR照明光LS用の青色光を発するレーザダイオードである。HDR光源20において、赤色LD21Rは、HDR照明光LH用の赤色光を発するレーザダイオードである。緑色LD21Gは、HDR照明光LH用の緑色光を発するレーザダイオードである。青色LD21Bは、HDR照明光LH用の青色光を発するレーザダイオードである。
 SDR光源10における赤色LD11R、緑色LD11G、および青色LD11Bはそれぞれ、HDR光源20における赤色LD21R、緑色LD21G、および青色LD21Bのそれぞれと同一の波長の色光を発するレーザダイオードであってよい。SDR光源10における赤色LD11R、緑色LD11G、および青色LD11Bはそれぞれ、偏光方向の揃った狭帯域化された特性を有することが望ましい。同様に、HDR光源20における赤色LD21R、緑色LD21G、および青色LD21Bはそれぞれ、偏光方向の揃った狭帯域化された特性を有することが望ましい。ただし、後述するように、照明光学系30の反射型偏光子33において、HDR照明光LHとSDR照明光LSとを合波するために、HDR光源20から出射されるHDR照明光LHの偏光方向と、SDR光源10から出射されるSDR照明光LSの偏光方向は、互いに異なることが望ましい。
 SDR光源10において、ミラー12は、赤色LD11Rが発する赤色光の光路上に配置され、ダイクロイックミラー13に向けて赤色光を反射する。
 ダイクロイックミラー13およびダイクロイックミラー14は、波長によって反射率および透過率が異なる特性を有し、SDR光源10において、赤色光、緑色光および青色光を合成するために用いられる。ダイクロイックミラー13は、緑色LD11Gが発する緑色光の光路上に配置され、ダイクロイックミラー14に向けて赤色光を透過すると共に、緑色光を反射する。ダイクロイックミラー14は、青色LD11Bが発する青色光の光路上に配置され、レンズ15に向けて赤色光および緑色光を透過すると共に、青色光を反射する。
 レンズ15は、ダイクロイックミラー14から出射された赤色光、緑色光および青色光の光路上に配置され、ダイクロイックミラー14から出射された赤色光、緑色光および青色光を拡散板16に向けて集光する。
 拡散板16は、レンズ15から出射された赤色光、緑色光および青色光の光路上に配置され、レンズ15から出射された赤色光、緑色光および青色光のスペックルを低減してレンズ17に向けて出射する。
 拡散板16から出射された赤色光、緑色光および青色光は、レンズ17を介して、SDR照明光LSとして照明光学系30に向けて出射される。
 HDR光源20において、赤色用位相変調パネル22Rは、赤色LD21Rが発する赤色光の光路上に配置されている。緑色用位相変調パネル22Gは、緑色LD21Gが発する緑色光の光路上に配置されている。青色用位相変調パネル22Bは、青色LD21Bが発する青色光の光路上に配置されている。赤色用位相変調パネル22R、緑色用位相変調パネル22G、および青色用位相変調パネル22Bはそれぞれ、画素ごとに位相変調量が変えられるデバイスであり、パネルコア40の赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bのそれぞれのパネル面に対する各色のHDR照明光LHに所望の強度分布を持たせるために用いられる。第1の実施の形態に係るプロジェクタ1においては、赤色用位相変調パネル22R、緑色用位相変調パネル22G、および青色用位相変調パネル22Bはそれぞれ、例えば透過型の液晶パネルとなっている。
 ミラー23は、青色用位相変調パネル22Bから出射された青色光の光路上に配置され、ダイクロイックミラー24に向けて青色光を反射する。
 ダイクロイックミラー24およびダイクロイックミラー25は、波長によって反射率および透過率が異なる特性を有し、HDR光源20において、赤色光、緑色光および青色光を合成するために用いられる。ダイクロイックミラー24は、緑色用位相変調パネル22Gから出射された緑色光の光路上に配置され、ダイクロイックミラー25に向けて青色光を透過すると共に、緑色光を反射する。ダイクロイックミラー25は、赤色用位相変調パネル22Rから出射された赤色光の光路上に配置され、拡散板26に向けて青色光および緑色光を透過すると共に、赤色光を反射する。
 拡散板26は、ダイクロイックミラー25から出射された赤色光、緑色光および青色光の光路上に配置され、ダイクロイックミラー25から出射された赤色光、緑色光および青色光のスペックルを低減して照明光学系30に向けて出射する。
 照明光学系30において、インテグレータ光学系31は、SDR照明光LSの強度分布を均一化して、反射型偏光子33およびPSC34に向けて出射する。
 レンズ32は、HDR光源20から出射されたHDR照明光LHを反射型偏光子33に向けて集光する。
 反射型偏光子33は、偏光方向によって透過率と反射率とが異なる素子であり、SDR照明光LSとHDR照明光LHとを合波するために用いられる。反射型偏光子33は、インテグレータ光学系31とPSC34との間の光路上に配置され、HDR照明光LHとSDR照明光LSとを合波して、HDR照明光LHとSDR照明光LSとをそれぞれPSC34に入射させる。
 PSC34は、入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子であり、HDR照明光LHとSDR照明光LSとの偏光方向を1つの偏光方向に揃えてレンズ35に向けて出射する。
 レンズ35は、PSC34から出射されたHDR照明光LHとSDR照明光LSとをダイクロイックミラー36に向けて出射する。
 ダイクロイックミラー36は、レンズ35から出射されたHDR照明光LHとSDR照明光LSとをそれぞれ、赤色光および青色光と緑色光とに分離して出射する。
 ダイクロイックミラー36から出射された赤色光および青色光は、レンズ37を介してパネルコア40に入射する。ダイクロイックミラー36から出射された緑色光は、レンズ38を介してパネルコア40に入射する。
 パネルコア40において、赤色光は、カラーセレクト47、PBS44、および赤色用リターダ42Rを介して赤色用輝度変調パネル41Rに入射する。赤色用輝度変調パネル41Rによって生成された赤色の画像の光は、赤色用リターダ42R、PBS44、およびカラーセレクト48を介してPBS45に入射する。
 青色光は、カラーセレクト47、PBS44、および青色用リターダ42Bを介して青色用輝度変調パネル41Bに入射する。青色用輝度変調パネル41Bによって生成された青色の画像の光は、青色用リターダ42B、PBS44、およびカラーセレクト48を介してPBS45に入射する。
 緑色光は、PBS43、および緑色用リターダ42Gを介して緑色用輝度変調パネル41Gに入射する。緑色用輝度変調パネル41Gによって生成された緑色の画像の光は、緑色用リターダ42G、PBS43、およびλ/2板46を介してPBS45に入射する。
 PBS45は、各色の画像の光を合成して投射光学系50に向けて出射する。
 赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bはそれぞれ、HDR照明光LHおよびSDR照明光LSの各色の照明光に基づいて映像を生成する。第1の実施の形態に係るプロジェクタ1においては、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bはそれぞれ、例えば反射型の液晶パネルとなっている。
 赤色用リターダ42R、緑色用リターダ42G、および青色用リターダ42Bは、例えばλ/4板であり、それぞれ赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bにおける液晶のプレチルトによる微小位相差を補償するために用いられる。赤色用リターダ42R、緑色用リターダ42G、および青色用リターダ42Bを用いることで、コントラストが向上する。
 PBS43、PBS44、およびPBS45はそれぞれ偏光面を有し、偏光面に対してP偏光の光は透過、S偏光の光を反射する。
 λ/2板46は、位相をλ/2遅らせる光学素子であり、緑色光の偏光が90度回転するように配置されている。
 カラーセレクト47およびカラーセレクト48は、特定の波長のみに働く波長板であり、赤色光のみ偏光が90度回転するように配置されている。
 投射レンズ51は、パネルコア40の赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bによって生成された映像を図示しないスクリーン等の投影面に投影する複数のレンズを有している。
 プロジェクタ1において、SDR光源10から出射されたSDR照明光LSは、照明光学系30のインテグレータ光学系31を通り、その後PSC34でHDR照明光LHと同じ偏光方向に揃えられる。照明光学系30から出射されたSDR照明光LSの各色光は、パネルコア40に入射し、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bを均一に照明する。
 HDR光源20から出射された各色光は赤色用位相変調パネル22R、緑色用位相変調パネル22G、および青色用位相変調パネル22Bに入射して、拡散板26の拡散面で所望の強度分布を生成するように位相が変調される。拡散面で生成された所望の強度分布を持つHDR照明光LHの各色光は、照明光学系30を経由してパネルコア40に入射し、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bの各パネル面に結像される。HDR照明光LHはインテグレータ光学系31とPSC34の間に配置された反射型偏光子33によって反射され、SDR照明光LSと合波される。その後、HDR照明光LHはPSC34をそのまま透過し、SDR照明光LSと同じ偏光でPSC34から出射される。パネルコア40において、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bの各パネル面は、照明光学系30を出射したHDR照明光LHの各色光によって所望の強度分布を持った状態で照明される。
 パネルコア40から出射された光は投射レンズ51によって図示しないスクリーン等の投影面に投影される。
[1.2 第1の実施の形態に係る表示装置の要部の構成および作用]
(反射型偏光子33の作用)
 図2は、図1に示したプロジェクタ1における反射型偏光子33の光学作用の一例を示している。
 プロジェクタ1では、HDR光源20から出射されるHDR照明光LHの偏光方向と、SDR光源10から出射されるSDR照明光LSの偏光方向とが互いに異なる。SDR照明光LSは、例えば反射型偏光子33に対してP偏光の状態で入射する。HDR照明光LHは、例えば反射型偏光子33に対してS偏光の状態で入射する。反射型偏光子33は、偏光方向の違いに基づいて、HDR照明光LHをPSC34に向けて反射すると共に、SDR照明光LSをPSC34に向けて透過する。
 反射型偏光子33は、反射型偏光子33に対してP偏光のSDR照明光LSはすべて透過し、S偏光のHDR照明光LHはすべて反射する。このため、プロジェクタ1では、反射型偏光子33により空間的に蹴られる光はほぼないので、高効率といえる。
 プロジェクタ1では、上述したように、インテグレータ光学系31を介して均一照明光となるSDR照明光LSと、所望の強度分布を持つように位相変調されたHDR照明光LHは、インテグレータ光学系31とPSC34の間に設置された反射型偏光子33により偏光合波される。反射型偏光子33によりSDR照明光LSとHDR照明光LHとを合波した後、PSC34により両者の偏光が揃えられる。
(PSC34の具体的な構成例および光学作用)
 図3は、図1に示したプロジェクタ1におけるPSC34の具体的な構成例および光学作用の一例を示している。
 PSC34は、偏光膜341と、λ/2板342と、遮蔽領域343と、開口領域344とを有している。
 PSC34には、入射面において、遮蔽領域343と開口領域344とが交互に複数、設けられている。偏光膜341は、P偏光の光を透過し、S偏光の光を反射する特性を有する。λ/2板342は、PSC34の出射面側において遮蔽領域343に対応する領域に複数、設けられている。λ/2板342は、S偏光の光をP偏光の光に変換する。
 プロジェクタ1では、HDR照明光LHとSDR照明光LSとが反射型偏光子33で合波された後、異なる偏光を持つ光線がPSC34に入射する。HDR照明光LHはPSC34に対して例えばP偏光で入射するため、そのままPSC34を透過しP偏光のまま出射する。一方のSDR照明光LSはPSC34に対して例えばS偏光で入射するため、PSC34内で2度反射し、λ/2板342のある経路へ進み、偏光が回転されP偏光として出射する。よって、異なる偏光を持ったHDR照明光LHとSDR照明光LSはPSC34を透過した後は偏光が揃えられる。
 このように、プロジェクタ1では、PSC34を透過した後はHDR照明光LHとSDR照明光LSとのそれぞれの偏光が揃えられるため、パネルコア40における赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bのそれぞれを液晶パネルを用いて構成することが可能となる。プロジェクタ1では、輝度変調パネルとして、例えばDMDではなく液晶パネルを使用できるため、低コスト化が期待できる。
(HDR照明光LHの色度範囲とSDR照明光LSの色度範囲)
 図4は、図1に示したプロジェクタ1におけるSDR照明光LSの色度範囲とHDR照明光LHの色度範囲との一例を示している。図4には、SDR照明光LSの色度範囲とHDR照明光LHの色度範囲との一例を、CIE(国際照明委員会)で規定されたCIE1931色空間のxy色度図上で表している。
 プロジェクタ1では、SDR光源10における赤色LD11R、緑色LD11G、および青色LD11Bはそれぞれ、HDR光源20における赤色LD21R、緑色LD21G、および青色LD21Bのそれぞれと同一の波長の色光を発するレーザダイオードであってよい。
 HDR照明光LHはプロジェクタ1で表示する映像に合わせて強度分布が変化するため、均一照明であるSDR照明光LSに対するHDR照明光LHの割合は変化することになる。この割合が変化しても色度点がずれないようにするには、SDR照明光LSとHDR照明光LHの波長スペクトルを同じにする必要がある。反射型偏光子33による偏光合波は合波する光線の波長には依存しないため、全く同じ波長スペクトルであっても合波が可能である。よって、この合波方法では、SDR照明光LSにHDR照明光LHを重畳したとき、映像中でのそれぞれの割合が変化しても色度点がずれない。
 プロジェクタ1では、映像の中での色度点のずれを考慮する必要がないため、画作りの負担が軽減される。さらに、SDR照明光LSとHDR照明光LHとで同じ波長の光を使用できるため、Rec.709やRec.2020などの色域の規格を満たしやすくなる。
(PSC34におけるHDR照明光LHの入射領域について)
 図5は、図1に示したプロジェクタ1における第1の構成例に係るPSC34におけるHDR照明光LHの入射領域の一例を示している。図5の(A)はPSC34の平面図、図5の(B)はPSC34の断面図となっている。図6は、図1に示したプロジェクタ1における第2の構成例に係るPSC34AにおけるHDR照明光LHの入射領域の一例を示している。図6の(A)はPSC34Aの平面図、図6の(B)はPSC34Aの断面図となっている。
 図5に示したPSC34は上下対称タイプの構成、図6に示したPSC34Aは上下非対称タイプの構成となっている。PSC34およびPSC34Aはそれぞれ、光が入射する複数の開口領域344を有している。反射型偏光子33は、PSC34またはPSC34Aにおける複数の開口領域344のうちの1つの開口領域(例えば中心付近の開口領域344C)内にHDR照明光LHを入射させることが望ましい。
 HDR照明光LHは位相変調パネルにより変調された位相を崩さずにパネルコア40の輝度変調パネルまで到達させることが望ましい。よって、照明分布を均一化するインテグレータ光学系31を回避して合波することが望ましい。また、合波後に入射するPSC34により照明分布が分岐してはいけないので、PSC34またはPSC34Aにおける複数の開口領域344のうちの1つの開口領域内に入射させることが望ましい。
 図5に示した上下対称タイプのPSC34は、図6に示した上下非対称タイプのPSC34Aに比べて中心付近の開口領域344Cが広いため、合波の際にHDR照明光LHが蹴られにくいという利点がある。しかし、上下対称タイプのPSC34の中心付近の広い開口領域344Cを使用する際は、PSC34に対してP偏光で入射させる必要がある。これは、S偏光で入射させるとPSC34内で反射して照明光が分岐してしまうためである。
 PSC34の1つの開口領域344内であっても、HDR照明光LHが中心部を通る場合と端部を通る場合とでそれぞれ利点、欠点がある。
(PSC34の1つの開口領域内の中心部にHDR照明光LHを入射させる場合)
 図7は、図1に示したプロジェクタ1におけるPSC34の1つの開口領域内の中心部にHDR照明光LHを入射した状態の一例を示している。図8は、PSC34の1つの開口領域内の中心部にHDR照明光LHを入射させた場合の、投射レンズ51におけるSDR照明光LSおよびHDR照明光LHの通過状態の一例を示している。図9は、PSC34の1つの開口領域内の中心部にHDR照明光LHを入射させた場合の、パネルコア40における輝度変調パネル上のSDR照明光LSおよびHDR照明光LHの角度分布の一例を示している。なお、図9において、横軸は輝度変調パネル上の水平方向の角度θx、縦軸は輝度変調パネル上の垂直方向の角度θyを示す。図10は、PSC34の1つの開口領域内の中心部にHDR照明光LHを入射させた場合の、反射型偏光子33の周辺の光学部品による光線の蹴られの状態の一例を示している。
 図7に示したようにPSC34の1つの開口領域内の中心部にHDR照明光LHを入射させる場合、利点の一つとして、図8に示したように投射レンズ51の口径食による投影面(スクリーン面)での周辺減光が起こりにくいことがある。投射レンズ51の口径食による周辺減光とは、開口絞りStの位置での角度分布が大きい場合に、スクリーン中心では投影されるような角度の光線でも、スクリーン端に行く光線は角度によって投射レンズ51に蹴られてしまい、スクリーン周辺が暗くなる現象である。図8において、例えばレンズ端部511で光線が蹴られてしまう。HDR照明光LHをPSC34の中心部に入射させると開口絞りStの位置でのHDR照明光LHの角度分布は小さくなるため、スクリーン面の中心に行く光線およびスクリーン面の端に行く光線ともに投射レンズ51により蹴られにくく、周辺減光が起こりにくい。
 もう一つの利点は、図9に示したようにHDR照明光LHが投射レンズ51のFナンバーにより蹴られにくいことである。HDR照明光LHをPSC34の中心部に入射させると、パネルコア40における輝度変調パネルに対して光線がほぼ垂直に入射することになるため、投射レンズ51のFナンバーにより蹴られる心配はないということになる。
 欠点の一つとして、合波用の反射型偏光子33の設置性が悪いことがある。この問題に対しては、反射型偏光子33の長さを、インテグレータ光学系31とPSC34との距離d1(図10)が大きくならない方向に伸ばすことで設置性を良くするなどの対策が考えられる。この対策により反射型偏光子33を余分に大きくしたとしてもSDR照明光LSは問題なく透過されるため、効率低下などの影響はない。
 もう一つの欠点は、図10に示したように反射型偏光子33周辺の第2のフライアイレンズ31BやPSC34などの光学部品により光線が蹴られるおそれがあることである。SDR照明光LSの効率を保持するためには、第2のフライアイレンズ31BとPSC34との距離d1はなるべく近くする必要がある。しかし、反射型偏光子33を配置するためにはある程度の間隔が必要であり、さらに反射型偏光子33をPSC34の中心部に配置するとHDR照明光LHの発散角に合わせてさらに間隔を広げる必要がある。SDR照明光LSの効率を優先した場合に、HDR照明光LHが第2のフライアイレンズ31BやPSC34に蹴られる可能性がある。
(PSC34の1つの開口領域内の端部にHDR照明光LHを入射させる場合)
 図11は、図1に示したプロジェクタ1におけるPSC34の1つの開口領域内の端部にHDR照明光LHを入射した状態の一例を示している。図12は、PSC34の1つの開口領域内の端部にHDR照明光LHを入射させた場合の、投射レンズ51におけるSDR照明光LSおよびHDR照明光LHの通過状態の一例を示している。図13は、PSC34の1つの開口領域内の端部にHDR照明光LHを入射させた場合の、パネルコア40における輝度変調パネル上のSDR照明光LSおよびHDR照明光LHの角度分布の一例を示している。なお、図13において、横軸は輝度変調パネル上の水平方向の角度θx、縦軸は輝度変調パネル上の垂直方向の角度θyを示す。図14は、PSC34の1つの開口領域内の端部にHDR照明光LHを入射させた場合の、反射型偏光子33の周辺の光学部品による光線の蹴られの状態の一例を示している。
 図11に示したようにPSC34の1つの開口領域内の端部にHDR照明光LHを入射させる場合、基本的には、中心部に入射させるときの利点が欠点に、欠点が利点となる。
 利点の一つとして、合波用の反射型偏光子33はPSC34の端部に配置するため、設置がしやすい。もう一つの利点は、反射型偏光子33が端部に配置されているため、HDR照明光LHの角度分布を広げたとしても、図14に示したように第2のフライアイレンズ31BやPSC34などの周辺の光学素子に蹴られる心配が少ないことである。
 欠点の一つとして、図12に示したように投射レンズ51の口径食によるスクリーン面での周辺減光が起こりやすいことである。HDR照明光LHをPSC34の端部に入射させると投射レンズ51の開口絞りStの位置での角度分布が大きくなり、スクリーンの中心に対して端部に行く光線が投射レンズ51により蹴られやすくなり、周辺減光が起こる可能性がある。図12において、例えばレンズ端部511で光線が蹴られてしまう。
 もう一つの欠点として、HDR照明光LHがパネルコア40の輝度変調パネルに対して大きな角度を持って入射するため、図13に示したように投射レンズ51のFナンバーに蹴られるおそれがあることがある。投射レンズ51のFナンバーにより光線が蹴られた場合、HDR照明光LHが全体的に暗くなる可能性がある。
[1.3 効果]
 以上説明したように、第1の実施の形態に係る照明装置、および表示装置によれば、HDR照明光LHとSDR照明光LSとを、インテグレータ光学系31とPSC34との間の光路上に配置された反射型偏光子33によって合波し、PSC34に入射させるようにしたので、所望の強度分布の照明光を得ることが可能となる。
 また、第1の実施の形態に係る照明装置、および表示装置によれば、HDR光源20の位相変調パネルで変調した位相を崩さずに、HDR照明光LHとSDR照明光LSとを合波することができる。HDR照明光LHはインテグレータ光学系31を回避してSDR照明光LSと合波される。さらに、PSC34ではHDR照明光LHが分岐されないようにPSC34の1つの開口領域内に入射する。これらのことから、HDR照明光LHは位相変調パネルにより生成された照明分布を崩さずにパネルコア40の輝度変調パネルに到達することができる。HDR照明光LHの位相を崩さないようにすることで、輝度変調パネルへの照明分布が忠実に再現され、より最大輝度を突き上げることができる。
 また、第1の実施の形態に係る照明装置、および表示装置によれば、上述したように、SDR照明光LSに対するHDR照明光LHの割合が変化しても色ずれが起こらないようにすることができる。
 また、第1の実施の形態に係る照明装置、および表示装置によれば、上述したように、PSC34を透過した後はHDR照明光LHとSDR照明光LSとのそれぞれの偏光が揃えられるため、パネルコア40の輝度変調パネルとして、液晶パネルを用いることが可能となる。
 また、第1の実施の形態に係る照明装置、および表示装置によれば、上述したように、反射型偏光子33に対してP偏光のSDR照明光LSはすべて透過し、S偏光のHDR照明光LHはすべて反射することが可能であるため、高効率である。効率が低下しないので、合波機構を導入することで光源を増やす必要はなく、低コスト化、低消費電力化、およびコンパクト化につながる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。
[1.4 変形例]
 以上の説明では、SDR光源10とHDR光源20とにそれぞれ、赤色、緑色および青色のレーザを使用した例を示したが、赤外光など他の波長のレーザを使用してもよい。また、3色以外の構成であってもよい。また、HDR光源20において、赤色用位相変調パネル22R、緑色用位相変調パネル22G、および青色用位相変調パネル22Bはそれぞれ、透過型の液晶パネルに限らず、例えば反射型の液晶パネルを用いた構成であってもよい。
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態に係る照明装置、および表示装置について説明する。なお、以下では、上記第1の実施の形態に係る照明装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 図15は、第2の実施の形態に係る表示装置としてのプロジェクタ1Aの要部の一構成例を示している。
 第2の実施の形態に係るプロジェクタ1Aは、照明光学系30において、図1に示したプロジェクタ1における反射型偏光子33に代えて、ミラー33Aを備えている。その他の構成は、上記第1の実施の形態に係る照明装置、および表示装置と略同様であってもよい。
 第2の実施の形態において、ミラー33Aは、本開示の技術における「反射素子」の一具体例に相当する。
 SDR照明光LSの効率低下を許容すれば、プロジェクタ1Aのように、SDR照明光LSとHDR照明光LHとを合波するために、ミラー33Aを使用してもよい。
<3.第3の実施の形態>
 次に、本開示の第3の実施の形態に係る照明装置、および表示装置について説明する。なお、以下では、上記第1または第2の実施の形態に係る照明装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 本開示の技術において用いる輝度変調パネルは、透過型の液晶パネルであってもよいし、反射型の液晶パネルであってもよい。それに合わせて、図1に示したパネルコア40は、透過型の液晶パネルを用いた3LCD方式の構成でもよいし、反射型の液晶パネルの場合はSコア方式に限らず、トライコア方式や3PBS方式の構成であってもよい。以下、各方式の概要を説明する。
(3LCD方式)
 図16は、第3の実施の形態に係る表示装置としてのプロジェクタの第1の構成例の要部を示している。
 第3の実施の形態に係るプロジェクタの第1の構成例は、図1に示したプロジェクタ1におけるパネルコア40に代えてパネルコア40Aを備えている。パネルコア40Aは、輝度変調パネルとして透過型の液晶パネルを用いた3LCD方式となっている。
 パネルコア40Aは、ダイクロイックミラー311と、ダイクロイックミラー312と、ミラー313と、ミラー314と、ミラー315と、ダイクロイックプリズム450とを有している。また、パネルコア40Aは、赤色用輝度変調パネル411R、緑色用輝度変調パネル411G、および青色用輝度変調パネル411Bを、さらに有している。
 赤色用輝度変調パネル411R、緑色用輝度変調パネル411G、および青色用輝度変調パネル411Bは、透過型の液晶パネルである。
 赤色用輝度変調パネル411Rは、ダイクロイックミラー311、ダイクロイックミラー312は、ミラー314、およびミラー315を介して赤色光で照明される。
 緑色用輝度変調パネル411Gは、ダイクロイックミラー311、およびミラー313を介して緑色光で照明される。
 青色用輝度変調パネル411Bは、ダイクロイックミラー311、およびダイクロイックミラー312を介して青色光で照明される。
 ダイクロイックプリズム450には、赤色用輝度変調パネル411Rによって生成された赤色の画像の光と、緑色用輝度変調パネル411Gによって生成された緑色の画像の光と、青色用輝度変調パネル411Bによって生成された青色の画像の光とが入射する。ダイクロイックプリズム450は、各色の画像の光を合成して投射光学系50に向けて出射する。
(トライコア方式)
 図17は、第3の実施の形態に係る表示装置としてのプロジェクタの第2の構成例の要部を示している。
 第3の実施の形態に係るプロジェクタの第2の構成例は、図1に示したプロジェクタ1におけるパネルコア40に代えてパネルコア40Bを備えている。パネルコア40Bは、輝度変調パネルとして反射型の液晶パネルを用いたトライコア方式となっている。
 パネルコア40Bは、ダイクロイックミラー321と、ミラー322と、レンズ323と、レンズ324と、ダイクロイックミラー325と、レンズ326と、レンズ327と、レンズ328と、ダイクロイックプリズム451とを有している。また、パネルコア40Bは、ワイヤーグリッド331、ワイヤーグリッド332、およびワイヤーグリッド333をさらに有している。ワイヤーグリッド331、ワイヤーグリッド332、およびワイヤーグリッド333は、偏光の方向によって透過率および反射率が異なる光学素子である。
 また、パネルコア40Bは、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bと、赤色用リターダ42R、緑色用リターダ42G、および青色用リターダ42Bとを、さらに有している。
 赤色用輝度変調パネル41Rは、ダイクロイックミラー321、ミラー322、レンズ323、ダイクロイックミラー325、レンズ326、ワイヤーグリッド331、および赤色用リターダ42Rを介して赤色光で照明される。
 緑色用輝度変調パネル41Gは、ダイクロイックミラー321、ミラー322、レンズ323、ダイクロイックミラー325、レンズ324、ワイヤーグリッド332、および緑色用リターダ42Gを介して緑色光で照明される。
 青色用輝度変調パネル41Bは、ダイクロイックミラー321、レンズ327、レンズ328、ワイヤーグリッド333、および青色用リターダ42Bを介して青色光で照明される。
 ダイクロイックプリズム451には、赤色用輝度変調パネル41Rによって生成された赤色の画像の光と、緑色用輝度変調パネル41Gによって生成された緑色の画像の光と、青色用輝度変調パネル41Bによって生成された青色の画像の光とが入射する。ダイクロイックプリズム451は、各色の画像の光を合成して投射光学系50に向けて出射する。
(3PBS方式)
 図18は、第3の実施の形態に係る表示装置としてのプロジェクタの第3の構成例の要部を示している。
 第3の実施の形態に係るプロジェクタの第3の構成例は、図1に示したプロジェクタ1におけるパネルコア40に代えてパネルコア40Cを備えている。パネルコア40Cは、輝度変調パネルとして3つの反射型の液晶パネルを用い、3つの反射型の液晶パネルのそれぞれに対してPBSを配置した3PBS方式となっている。
 パネルコア40Cは、ダイクロイックミラー351と、ミラー352と、ミラー353と、ダイクロイックミラー354とを有している。また、パネルコア40Cは、ダイクロイックプリズム460と、PBS461と、PBS462と、PBS463とを、さらに有している。また、パネルコア40Cは、赤色用輝度変調パネル41R、緑色用輝度変調パネル41G、および青色用輝度変調パネル41Bと、赤色用リターダ42R、緑色用リターダ42G、および青色用リターダ42Bとを、さらに有している。
 赤色用輝度変調パネル41Rは、ダイクロイックミラー351、ミラー352、PBS461、および赤色用リターダ42Rを介して赤色光で照明される。
 緑色用輝度変調パネル41Gは、ダイクロイックミラー351、ミラー353、ダイクロイックミラー354、PBS462、および緑色用リターダ42Gを介して緑色光で照明される。
 青色用輝度変調パネル41Bは、ダイクロイックミラー351、ミラー353、ダイクロイックミラー354、PBS463、および青色用リターダ42Bを介して青色光で照明される。
 ダイクロイックプリズム460には、赤色用輝度変調パネル41Rによって生成された赤色の画像の光と、緑色用輝度変調パネル41Gによって生成された緑色の画像の光と、青色用輝度変調パネル41Bによって生成された青色の画像の光とが入射する。ダイクロイックプリズム460は、各色の画像の光を合成して投射光学系50に向けて出射する。
 その他の構成、動作および効果は、上記第1または第2の実施の形態に係る照明装置、および表示装置と略同様であってもよい。
<4.第4の実施の形態>
 次に、本開示の第4の実施の形態に係る照明装置、および表示装置について説明する。なお、以下では、上記第1ないし第3のいずれかの実施の形態に係る照明装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 本開示の技術において輝度変調パネルは、RGBを時分割に駆動してカラーの映像を出すような単板方式や2板方式であってもよい。また、輝度変調パネルはDMDであってもよい。
 また、本開示の技術においてHDR光源に用いる位相変調パネルは単板であってもよい。単板であっても、RGBそれぞれの位相変調は、時分割や、パネル領域をRGBに分ける空間分割などで可能である。
 以下、輝度変調パネルが単板方式の場合の構成例を説明する。
 図19は、第4の実施の形態に係る表示装置としてのプロジェクタの要部の一構成例を示している。
 第4の実施の形態に係るプロジェクタは、図1に示したプロジェクタ1におけるパネルコア40に代えてパネルコア40Dを備えている。
 パネルコア40Dは、レンズ350と、輝度変調パネル410と、リターダ420と、PBS470とを有している。輝度変調パネル410は、例えば反射型の液晶パネルとなっている。
 パネルコア40Dでは、赤色光、緑色光、および青色光は、レンズ350、PBS470、およびリターダ420を介して、時分割で輝度変調パネル410に照射される。輝度変調パネル410は、各色の映像を時分割で生成する。
 PBS470は、変調パネル410によって生成された各色の映像を時分割で投射光学系50に向けて出射する。
 その他の構成、動作および効果は、上記第1または第2の実施の形態に係る照明装置、および表示装置と略同様であってもよい。
<5.第5の実施の形態>
 次に、本開示の第5の実施の形態に係る照明装置、および表示装置について説明する。なお、以下では、上記第1ないし第4のいずれかの実施の形態に係る照明装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 本開示の技術では、反射素子によって、同一波長の光の合波が可能であるため、SDR照明光LSとHDR照明光LHとを同一光源から分岐させるような構成が可能である。同じ波長の光を合波するということは、HDR照明光LHとSDR照明光LSとにそれぞれ別の波長スペクトルを持つ光源を用意するのではなく、同一光源から分岐して利用できる。この場合、プロジェクタの小型化や低コスト化につながる。
 図20は、第5の実施の形態に係る表示装置としてのプロジェクタ1Bの全体構成例を示している。
 第5の実施の形態に係るプロジェクタ1Bは、図1に示したプロジェクタ1におけるSDR光源10に代えてSDR光源10Aを備えている。また、第5の実施の形態に係るプロジェクタ1Bは、図1に示したプロジェクタ1におけるHDR光源20に代えてHDR光源20Aを備えている。
 HDR光源20Aは、図1に示したプロジェクタ1におけるHDR光源20の構成に対して、ダイクロイックミラー121、ダイクロイックミラー122、およびダイクロイックミラー123をさらに有している。
 SDR光源10Aは、一部の構成要素がHDR光源20Aと共通化されている。SDR光源10Aは、HDR光源20Aと共通化された構成要素として、赤色LD21R、緑色LD21G、および青色LD21Bと、ダイクロイックミラー121、ダイクロイックミラー122、およびダイクロイックミラー123とを有している。また、SDR光源10Aは、拡散板16と、レンズ124と、レンズ125と、ミラー126とをさらに有している。
 SDR光源10Aは、HDR光源20Aにおける赤色LD21R、緑色LD21G、および青色LD21Bからのそれぞれの色光を、ダイクロイックミラー121、ダイクロイックミラー122、およびダイクロイックミラー123を用いて分岐させることによって、互いに波長の異なる複数の色光を含むSDR照明光LSを生成して出射する
 その他の構成、動作および効果は、上記第1ないし第4のいずれかの実施の形態に係る照明装置、および表示装置と略同様であってもよい。
<6.第6の実施の形態>
 次に、本開示の第6の実施の形態に係る照明装置、および表示装置について説明する。なお、以下では、上記第1ないし第5のいずれかの実施の形態に係る照明装置、および表示装置の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 本開示の技術では、反射素子による合波を行うため、合波の際には、HDR照明光LHとSDR照明光LSとのそれぞれの波長スペクトルに依存しない。そのため、SDR光源10に広波長帯域の光源、例えば蛍光体光源を使用することも可能である。
 図21は、第6の実施の形態に係る表示装置としてのプロジェクタ1Cの全体構成例を示している。
 第6の実施の形態に係るプロジェクタ1Cは、図1に示したプロジェクタ1におけるSDR光源10に代えてSDR光源10Bを備えている。
 SDR光源10Bは、蛍光体ホイール110と、青色LD111Bと、レンズ113と、偏光リサイクル素子114とを有している。
 なお、第6の実施の形態において、蛍光体ホイール110および青色LD111Bは、本開示の技術における「蛍光体光源」の一具体例に相当する。また、偏光リサイクル素子114は、本開示の技術における「反射型偏光変換素子」の一具体例に相当する。
 SDR光源10Bは、複数の色光を含む広帯域の光を発する蛍光体光源を有する。偏光リサイクル素子114は、蛍光体光源と反射型偏光子33との間の光路上に配置され、蛍光体光源からの出射光の偏光方向を所定の方向に揃える。
 蛍光体ホイール110は、波長変換材料としての蛍光体112を有している。青色LD111Bは、蛍光体112を励起する励起光源であり、励起光として青色光を発する。蛍光体112は、青色光によって励起され、赤色光および緑色光を含む光を発する。
 図22は、図21に示したプロジェクタ1Cにおける偏光リサイクル素子14の光学作用の一例を示している。
 偏光リサイクル素子114は、偏光膜115を有している。偏光膜115は、偏光リサイクル素子114に対してS偏光の光は反射し、P偏光の光は透過する特性を有する。
 蛍光体光源のような偏光の揃っていない広波長帯域の光源の場合、HDR照明光LHと合波する前に、SDR照明光LSの偏光を揃えておくことが望ましい。このため、図22に示す偏光リサイクル素子114のような偏光を揃える光学素子を合波用の反射型偏光子33の前に配置することが望ましい。偏光リサイクル素子114は偏光ビームスプリッタを複数個組み合わせた構造となっており、偏光リサイクル素子114に対してS偏光の光は反射し、P偏光の光は透過する。反射されたS偏光の光は偏光リサイクル素子114に対してP偏光になり透過されるまで、波長変換材料と偏光リサイクル素子114との間を行き来することになる。
 図23は、図21に示したプロジェクタ1CにおけるSDR照明光LSの色度範囲とHDR照明光LHの色度範囲との一例を示している。図23には、SDR照明光LSの色度範囲とHDR照明光LHの色度範囲との一例を、CIEで規定されたCIE1931色空間のxy色度図上で表している。図24は、図21に示したプロジェクタ1CにおけるSDR照明光LSの波長スペクトル(図24の(A))とHDR照明光LHの波長スペクトル(図24の(B))との一例を示している。また、図24の(C)には、SDR照明光LSとHDR照明光LHとを合波した状態の波長スペクトルの一例を示す。
 輝度変調パネルへの照明光として、SDR照明光LSに対してHDR照明光LHの割合が少ないと蛍光体光源の色域に引き付けられて色域は狭くなるが、SDR光源10BとHDR光源20の色度範囲を所定の範囲にすることで、色度点のずれは極力抑えることができる。
 プロジェクタ1Cでは、前提として、HDR照明光LHは、スペクトル幅の狭いレーザ光源を使用しているため、xy色度図の広範囲の色を表現することができる、つまり広色域である。一方、SDR照明光LSは、スペクトル幅の比較的広い蛍光体光源を使用しているため、HDR照明光LHよりも色域は狭くなる。
 HDR国際規格BT.2020によると、赤は630nm、緑は532nm、青は467nmの色域を表現すべきなので、HDR光源20はこの波長に近いレーザ光源を使用することが望ましい。SDR光源10Bにおいても、色域は狭くなってはしまうが、図23に示したように、プロジェクタ1Cの白色点とHDR照明光LHのRGBのそれぞれの色度点とを結ぶ直線上に、色域の頂点があるとよい。こうすることにより、HDR照明光LHおよびSDR照明光LSのそれぞれの色域の違いはあるものの、プロジェクタ1Cとして自然な映像を表現することができる。
 その他の構成、動作および効果は、上記第1ないし第4のいずれかの実施の形態に係る照明装置、および表示装置と略同様であってもよい。
<7.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
 例えば、上記各実施の形態では、照明装置をプロジェクタに適用し、照明装置による被照明対象物が、映像を生成する輝度変調パネルである場合を例に説明したが、照明装置をプロジェクタ以外の機器に適用してもよい。
 例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、第1の照明光と第2の照明光とを、インテグレータ光学系と偏光変換素子との間の光路上に配置された反射素子によって合波し、偏光変換素子に入射させるようにしたので、所望の強度分布の照明光を得ることが可能となる。
 例えば、本技術は以下のような構成を取ることもできる。
(1)
 所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、
 第2の照明光を出射する第2の光源と、
 前記第2の照明光の強度分布を均一化するインテグレータ光学系と、
 入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、
 前記インテグレータ光学系と前記偏光変換素子との間の光路上に配置され、前記第1の照明光と前記第2の照明光とを合波して、前記第1の照明光と前記第2の照明光とをそれぞれ前記偏光変換素子に入射させる反射素子と
 を備える
 照明装置。
(2)
 前記反射素子は、反射型偏光子である
 上記(1)に記載の照明装置。
(3)
 前記第1の光源から出射された前記第1の照明光の偏光方向と、前記第2の光源から出射された前記第2の照明光の偏光方向とが互いに異なり、
 前記反射型偏光子は、偏光方向の違いに基づいて、前記第1の照明光を前記偏光変換素子に向けて反射すると共に、前記第2の照明光を前記偏光変換素子に向けて透過する
 上記(2)に記載の照明装置。
(4)
 前記偏光変換素子は、光が入射する複数の開口領域を有し、
 前記反射素子は、前記偏光変換素子における前記複数の開口領域のうちの1つの開口領域に前記第1の照明光を入射させる
 上記(1)ないし(3)のいずれか1つに記載の照明装置。
(5)
 前記反射素子は、前記偏光変換素子における前記1つの開口領域内の中心部に前記第1の照明光を入射させる
 上記(4)に記載の照明装置。
(6)
 前記反射素子は、前記偏光変換素子における前記1つの開口領域内の端部に前記第1の照明光を入射させる
 上記(4)に記載の照明装置。
(7)
 前記第1の光源は、互いに波長の異なる色光を発する第1の複数のレーザ光源を有し、
 前記第2の光源は、前記第1の光源における前記第1の複数のレーザ光源のそれぞれと同一の波長の色光を発する第2の複数のレーザ光源を有する
 上記(1)ないし(6)のいずれか1つに記載の照明装置。
(8)
 前記第1の光源は、互いに波長の異なる色光を発する複数のレーザ光源を有し、
 前記第2の光源は、前記第1の光源における前記複数のレーザ光源からのそれぞれの色光を分岐させることによって、互いに波長の異なる複数の色光を含む前記第2の照明光を出射する
 上記(1)ないし(6)のいずれか1つに記載の照明装置。
(9)
 前記第1の光源は、互いに波長の異なる色光を発する複数のレーザ光源を有し、
 前記第2の光源は、複数の色光を含む広帯域の光を発する蛍光体光源を有する
 上記(1)ないし(6)のいずれか1つに記載の照明装置。
(10)
 前記蛍光体光源と前記反射素子との間の光路上に配置され、前記蛍光体光源からの出射光の偏光方向を所定の方向に揃える反射型偏光変換素子、をさらに備える
 上記(9)に記載の照明装置。
(11)
 映像を生成する輝度変調パネルに対する照明光を生成する
 上記(1)ないし(10)のいずれか1つに記載の照明装置。
(12)
 所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、
 第2の照明光を出射する第2の光源と、
 前記第2の照明光の強度分布を均一化するインテグレータ光学系と、
 入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、
 前記インテグレータ光学系と前記偏光変換素子との間の光路上に配置され、前記第1の照明光と前記第2の照明光とを合波して、前記第1の照明光と前記第2の照明光とをそれぞれ前記偏光変換素子に入射させる反射素子と、
 前記偏光変換素子から出射された前記第1の照明光と前記第2の照明光とを含む照明光に基づいて映像を生成する輝度変調パネルと
 を備える
 表示装置。
(13)
 前記輝度変調パネルによって生成された映像を投影面に投影する投射光学系、をさらに備える
 上記(12)に記載の表示装置。
 本出願は、日本国特許庁において2019年12月25日に出願された日本特許出願番号第2019-234675号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (13)

  1.  所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、
     第2の照明光を出射する第2の光源と、
     前記第2の照明光の強度分布を均一化するインテグレータ光学系と、
     入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、
     前記インテグレータ光学系と前記偏光変換素子との間の光路上に配置され、前記第1の照明光と前記第2の照明光とを合波して、前記第1の照明光と前記第2の照明光とをそれぞれ前記偏光変換素子に入射させる反射素子と
     を備える
     照明装置。
  2.  前記反射素子は、反射型偏光子である
     請求項1に記載の照明装置。
  3.  前記第1の光源から出射された前記第1の照明光の偏光方向と、前記第2の光源から出射された前記第2の照明光の偏光方向とが互いに異なり、
     前記反射型偏光子は、偏光方向の違いに基づいて、前記第1の照明光を前記偏光変換素子に向けて反射すると共に、前記第2の照明光を前記偏光変換素子に向けて透過する
     請求項2に記載の照明装置。
  4.  前記偏光変換素子は、光が入射する複数の開口領域を有し、
     前記反射素子は、前記偏光変換素子における前記複数の開口領域のうちの1つの開口領域に前記第1の照明光を入射させる
     請求項1に記載の照明装置。
  5.  前記反射素子は、前記偏光変換素子における前記1つの開口領域内の中心部に前記第1の照明光を入射させる
     請求項4に記載の照明装置。
  6.  前記反射素子は、前記偏光変換素子における前記1つの開口領域内の端部に前記第1の照明光を入射させる
     請求項4に記載の照明装置。
  7.  前記第1の光源は、互いに波長の異なる色光を発する第1の複数のレーザ光源を有し、
     前記第2の光源は、前記第1の光源における前記第1の複数のレーザ光源のそれぞれと同一の波長の色光を発する第2の複数のレーザ光源を有する
     請求項1に記載の照明装置。
  8.  前記第1の光源は、互いに波長の異なる色光を発する複数のレーザ光源を有し、
     前記第2の光源は、前記第1の光源における前記複数のレーザ光源からのそれぞれの色光を分岐させることによって、互いに波長の異なる複数の色光を含む前記第2の照明光を出射する
     請求項1に記載の照明装置。
  9.  前記第1の光源は、互いに波長の異なる色光を発する複数のレーザ光源を有し、
     前記第2の光源は、複数の色光を含む広帯域の光を発する蛍光体光源を有する
     請求項1に記載の照明装置。
  10.  前記蛍光体光源と前記反射素子との間の光路上に配置され、前記蛍光体光源からの出射光の偏光方向を所定の方向に揃える反射型偏光変換素子、をさらに備える
     請求項9に記載の照明装置。
  11.  映像を生成する輝度変調パネルに対する照明光を生成する
     請求項1に記載の照明装置。
  12.  所望の強度分布を持つように位相変調された第1の照明光を出射する第1の光源と、
     第2の照明光を出射する第2の光源と、
     前記第2の照明光の強度分布を均一化するインテグレータ光学系と、
     入射した光の偏光方向を1つの偏光方向に揃える偏光変換素子と、
     前記インテグレータ光学系と前記偏光変換素子との間の光路上に配置され、前記第1の照明光と前記第2の照明光とを合波して、前記第1の照明光と前記第2の照明光とをそれぞれ前記偏光変換素子に入射させる反射素子と、
     前記偏光変換素子から出射された前記第1の照明光と前記第2の照明光とを含む照明光に基づいて映像を生成する輝度変調パネルと
     を備える
     表示装置。
  13.  前記輝度変調パネルによって生成された映像を投影面に投影する投射光学系、をさらに備える
     請求項12に記載の表示装置。
PCT/JP2020/047366 2019-12-25 2020-12-18 照明装置、および表示装置 WO2021132059A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021567385A JPWO2021132059A1 (ja) 2019-12-25 2020-12-18
CN202080089955.2A CN114868080A (zh) 2019-12-25 2020-12-18 照明设备和显示装置
US17/757,696 US20230020225A1 (en) 2019-12-25 2020-12-18 Illumination device and display apparatus
EP20906214.0A EP4057062A4 (en) 2019-12-25 2020-12-18 LIGHTING DEVICE AND INDICATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019234675 2019-12-25
JP2019-234675 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021132059A1 true WO2021132059A1 (ja) 2021-07-01

Family

ID=76574629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047366 WO2021132059A1 (ja) 2019-12-25 2020-12-18 照明装置、および表示装置

Country Status (5)

Country Link
US (1) US20230020225A1 (ja)
EP (1) EP4057062A4 (ja)
JP (1) JPWO2021132059A1 (ja)
CN (1) CN114868080A (ja)
WO (1) WO2021132059A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002675A1 (ja) * 2021-07-21 2023-01-26 ソニーグループ株式会社 照明装置
WO2023186324A1 (en) * 2022-04-01 2023-10-05 Barco Nv Color projector with a beam-steered illumination and method for providing beam-steered illumination to a color projector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309667A (ja) * 2003-04-03 2004-11-04 Sony Corp 照明装置及び画像表示装置
JP2009288408A (ja) * 2008-05-28 2009-12-10 Canon Inc 画像表示装置
JP2018060042A (ja) * 2016-10-05 2018-04-12 Necディスプレイソリューションズ株式会社 光源装置およびプロジェクタ
JP2018532152A (ja) 2015-10-06 2018-11-01 エムティティ イノベーション インコーポレイテッドMtt Innovation Incorporated 投影システムおよび方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613049B2 (ja) * 1999-01-18 2005-01-26 セイコーエプソン株式会社 照明装置およびそれを用いた投写型表示装置
WO2010086984A1 (ja) * 2009-01-29 2010-08-05 Necディスプレイソリューションズ株式会社 投写型表示装置
US10488746B2 (en) * 2017-11-14 2019-11-26 Dolby Laboratories Licensing Corporation Aperture sharing for highlight projection
WO2019225052A1 (ja) * 2018-05-22 2019-11-28 株式会社Jvcケンウッド プロジェクタ及びマルチプロジェクションシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309667A (ja) * 2003-04-03 2004-11-04 Sony Corp 照明装置及び画像表示装置
JP2009288408A (ja) * 2008-05-28 2009-12-10 Canon Inc 画像表示装置
JP2018532152A (ja) 2015-10-06 2018-11-01 エムティティ イノベーション インコーポレイテッドMtt Innovation Incorporated 投影システムおよび方法
JP2018060042A (ja) * 2016-10-05 2018-04-12 Necディスプレイソリューションズ株式会社 光源装置およびプロジェクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002675A1 (ja) * 2021-07-21 2023-01-26 ソニーグループ株式会社 照明装置
WO2023186324A1 (en) * 2022-04-01 2023-10-05 Barco Nv Color projector with a beam-steered illumination and method for providing beam-steered illumination to a color projector

Also Published As

Publication number Publication date
CN114868080A (zh) 2022-08-05
EP4057062A1 (en) 2022-09-14
JPWO2021132059A1 (ja) 2021-07-01
EP4057062A4 (en) 2023-01-04
US20230020225A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US10819961B2 (en) Light source apparatus for use in projection three-dimensional display apparatus, with dynamic diffusion plate
JP7163140B2 (ja) 光源装置及びこれを用いた投写型表示装置
US8593579B2 (en) Projection display
JP4514440B2 (ja) 投写型映像表示装置
US9389427B2 (en) Optical system and projection display apparatus using the same
JP3055683B2 (ja) 電子画像表示投射装置
JP2010204333A (ja) プロジェクター
EP3561593B1 (en) Projection display system
JP2015145976A (ja) 光源装置およびこれを用いた投射型表示装置
US6530663B2 (en) Projecting device for displaying electrical images
WO2021132059A1 (ja) 照明装置、および表示装置
US20080030687A1 (en) Image display device
JP2015222418A (ja) 色分離合成系およびこれを用いた色分離合成装置、画像表示装置
JP2007322584A (ja) 照明装置及びそれを用いた投写型映像表示装置
JP6659061B2 (ja) プロジェクタ
JP7282575B2 (ja) 光源装置および画像投射装置
JP2007065408A (ja) 照明装置及び投写型映像表示装置
JP2007065412A (ja) 照明装置及び投写型映像表示装置
JP6503816B2 (ja) プロジェクター
JP2004151173A (ja) 光学エンジン
JP2007279749A (ja) 投射型表示装置
JP2013200374A (ja) 画像表示装置
EP0961501B1 (en) Color image projecting device
JP2006525542A (ja) 投射システム
KR0141548B1 (ko) 액정 투사형 화상표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567385

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020906214

Country of ref document: EP

Effective date: 20220608

NENP Non-entry into the national phase

Ref country code: DE