Nothing Special   »   [go: up one dir, main page]

WO2021124802A1 - Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer - Google Patents

Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer Download PDF

Info

Publication number
WO2021124802A1
WO2021124802A1 PCT/JP2020/043482 JP2020043482W WO2021124802A1 WO 2021124802 A1 WO2021124802 A1 WO 2021124802A1 JP 2020043482 W JP2020043482 W JP 2020043482W WO 2021124802 A1 WO2021124802 A1 WO 2021124802A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
layer
sealing layer
forming
solvent
Prior art date
Application number
PCT/JP2020/043482
Other languages
French (fr)
Japanese (ja)
Inventor
昇太 広沢
千代子 竹村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202080086721.2A priority Critical patent/CN114830825A/en
Priority to KR1020227013023A priority patent/KR102707503B1/en
Priority to JP2021565400A priority patent/JP7439837B2/en
Publication of WO2021124802A1 publication Critical patent/WO2021124802A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0082Digital printing on bodies of particular shapes
    • B41M5/0088Digital printing on bodies of particular shapes by ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an ink composition for forming an electronic device encapsulating layer, an electronic device encapsulating layer forming method, and an electronic device encapsulating layer, and particularly excellent in encapsulation performance and bending resistance and suppresses deterioration of the electronic device.
  • the present invention relates to an ink composition for forming an electronic device encapsulating layer and the like.
  • organic electroluminescence devices are organic EL elements in order to prevent the organic materials and electrodes used from being deteriorated by moisture. It has been proposed to cover the surface of the OLED with a sealing layer.
  • polysilazane is used as the second protective film.
  • the interfacial adhesion between the first protective film and the second protective film deteriorates under high temperature and high humidity of 85 ° C. and 85% RH of 100 hours or more.
  • Patent Document 2 a composition for forming a silica film containing a silicon-containing polymer and a mixed solvent containing at least two kinds of solvents, and the mixed solvent has a surface tension of 5 to 35 nN / m at 25 ° C.
  • Patent Document 3 in a coating liquid containing polysilazane, oxygen atoms are introduced into the polysilazane and a part of the polysilazane, and the atomic composition ratio (O) of the oxygen (O) atom to the silicon (Si) atom is (O).
  • a coating liquid containing polysilazane oxide in which / Si) is in the range of 0.01 to 0.1 is disclosed.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is an ink for forming an electronic device sealing layer, which is excellent in sealing performance and bending resistance and can suppress deterioration of an electronic device.
  • the present invention provides a composition, a method for forming an electronic device sealing layer, and an electronic device sealing layer.
  • the present inventor contains polysilazane, a high-drying solvent A and a low-drying solvent B, and the mole fraction of each solvent in the process of examining the cause of the above problem.
  • an ink composition in which the sum of the products of the vapor pressures of each solvent is defined in a specific range for forming a sealing layer, it is possible to have excellent sealing performance and bending resistance and suppress deterioration of electronic devices. I found it and came up with the present invention. That is, the above-mentioned problem according to the present invention is solved by the following means.
  • An ink composition for forming an electronic device encapsulating layer Contains polysilazane, The ink composition contains at least one kind of a high drying solvent A having a vapor pressure of 8.0 ⁇ 10 2 Pa or more and a low drying solvent B having a vapor pressure of 4.0 ⁇ 10 2 Pa or less at 20 ° C. Contains more The mole fraction of the highly dry solvent A with respect to the total amount of the solvent is m a1 , m a2 , ..., And the mole fraction of the low dry solvent B is m b1 , m b2 , .... When the vapor pressures are P a1 , P a2 , ...
  • the process of forming the first sealing layer on the electronic device by the vapor phase method A method for forming an electronic device encapsulation layer, comprising a step of forming a second encapsulation layer by applying an ink composition for forming the electronic device encapsulation layer on the first encapsulation layer.
  • An electronic device sealing layer that seals an electronic device.
  • a first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride, Defect areas mixed in the first sealing layer and A second sealing layer provided adjacent to the first sealing layer and containing polysilazane,
  • An electronic device sealing layer having a polysilazane region provided in a gap between the defect region and the first sealing layer and filled with polysilazane.
  • Item 2 The electronic device encapsulating layer according to Item 7, wherein the gap between the gaps is 15 nm or less when the cross section is observed using an electron microscope.
  • an ink composition for forming an electronic device sealing layer, an electronic device sealing layer forming method, and an electronic device sealing which are excellent in sealing performance and bending resistance and can suppress deterioration of an electronic device.
  • Layers can be provided.
  • the mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, it is inferred as follows.
  • An ink composition containing polysilazane, a high-drying solvent A and a low-drying solvent B, and in which the sum of the mole fraction of each solvent and the product of the vapor pressure of each solvent is defined in a specific range is applied to the sealing layer.
  • the high-drying solvent A When used for formation, there is a difference in the drying rate between the high-drying solvent A and the low-drying solvent B in the process of drying the solvent. Due to the difference in drying rate between the high-drying solvent A and the low-drying solvent B, the high-drying solvent A is pinned by being dried first, and the lower layer (first sealing layer) formed by the vapor phase method is formed. It is presumed that it contributes to the stable adhesion of the solvent. Further, it is presumed that the interface becomes stronger due to the adhesion to the lower layer, so that the moisture diffusion at the interface is suppressed and the deterioration of the electronic device due to the moisture passing through the interface is prevented. Further, by containing the low-drying solvent B, the ink ejection property and the patterning accuracy are excellent even when the inkjet method is used.
  • the ink composition for forming an electronic device sealing layer of the present invention is an ink composition for forming an electronic device sealing layer, which contains polysilazane, and the ink composition has a vapor pressure of 8 at 20 ° C.
  • the highly dry solvent A containing at least one of the highly dry solvent A of 0.0 ⁇ 10 2 Pa or more and the low dry solvent B of 4.0 ⁇ 10 2 Pa or less each contain the above-mentioned highly dry solvent A with respect to the total amount of the solvent.
  • the mole fraction is ma1 , ma2 , ...
  • the mole fraction of the low-drying solvent B is m b1 , m b2 , ...
  • the vapor pressure of the high-drying solvent A is P a1 , P a2 , ...
  • the P total represented by the following formula (i) is 0.5 ⁇ 10 2 to 3.6 ⁇ 10 2 Pa. Is within the range of.
  • the highly dry solvent A is dibutyl ether from the viewpoint of solubility of polysilazane, and it is appropriate that the low dry solvent B is decalin. It is preferable in that dischargeability and patterning property can be obtained.
  • the method for forming an electronic device sealing layer of the present invention is a method for forming a sealing layer using the ink composition for forming the electronic device sealing layer, and the first sealing is performed on the electronic device by the vapor phase method. It includes a step of forming a stop layer and a step of forming a second sealing layer by applying the electronic device sealing layer forming ink on the first sealing layer.
  • the high-drying solvent A is pinned by being dried first due to the difference in drying speed between the high-drying solvent A and the low-drying solvent B contained in the ink composition, and is formed by the vapor phase method.
  • the adhesiveness between the first sealing layer and the second sealing layer is excellent, and the sealing performance and bending resistance are excellent. Further, since the interface is strengthened by the adhesion between the first sealing layer and the second sealing layer, the diffusion of water at the interface can be suppressed, and the deterioration of the electronic device due to the water passing through the interface can be suppressed.
  • a step of forming the third sealing layer on the second sealing layer by the vapor phase method from the viewpoint of excellent sealing performance. It is preferable to use an inkjet method for the step of forming the second sealing layer because the layer can be formed with high accuracy.
  • the electronic device encapsulation layer of the present invention has a first encapsulation layer containing silicon nitride, silicon oxide or silicon oxynitride, a defect region mixed in the first encapsulation layer, and adjacent to the first encapsulation layer. It has a second sealing layer containing polysilazane and a polysilazane region filled in a gap between the defect region and the first sealing layer.
  • the polysilazane region filled in the gap between the defect region and the first sealing layer provides excellent adhesion between the first sealing layer and the second sealing layer, and is excellent in sealing performance and bending resistance. ..
  • the interface is strengthened by the adhesion between the first sealing layer and the second sealing layer, the diffusion of water at the interface can be suppressed, and the deterioration of the electronic device due to the water passing through the interface can be suppressed.
  • the gap between the gaps is 15 nm or less when the cross section is observed using an electron microscope, because a superior effect can be obtained as compared with the conventional ink.
  • the ink composition for forming an electronic device encapsulating layer of the present invention (hereinafter, also simply referred to as an ink composition) is an ink composition for forming an electronic device encapsulating layer, which contains polysilazane and has the ink composition.
  • the product contains at least one or more of a high-drying solvent A having a vapor pressure of 8.0 ⁇ 10 2 Pa or more and a low-drying solvent B having a vapor pressure of 4.0 ⁇ 10 2 Pa or less at 20 ° C.
  • the molar proportions of the highly dry solvent A with respect to the total amount of the solvent are m a1 , ma2 , ..., And the molar proportions of the low dry solvent B are m b1 , m b2 , ...
  • the "electronic device” in the present invention refers to an element that generates, amplifies, converts, or controls an electric signal by utilizing the kinetic energy, potential energy, etc. of an electron.
  • active elements such as light emitting diode elements, organic electroluminescence elements, photoelectric conversion elements and transistors can be mentioned.
  • a passive element that performs passive work such as "resisting” and "storing” in response to an action from others, such as a resistor and a capacitor, is also included in the electronic device. Therefore, the ink composition of the present invention is used to form a sealing layer for sealing the electronic device described above.
  • the highly dry solvent A according to the present invention has a vapor pressure of 8.0 ⁇ 10 2 Pa or more at 20 ° C. and an upper limit of 2.0 ⁇ 10 4 Pa or less.
  • the vapor pressure (Pa) of the highly dry solvent A according to the present invention at 20 ° C. can be determined according to the following method. For example, a lead method based on JIS K2258-1: 2009, a triple expansion method based on JIS K2258-2: 2009, and the like can be mentioned. Further, a static method, a boiling point method, an isoteniscope, a gas flow method, and a DSC method, which are known as general methods for measuring vapor pressure, can also be applied. Furthermore, it is also possible to utilize the vapor pressure data described in publicly known documents, for example, "New Edition Solvent Pocket Book" (edited by the Church of Synthetic Organic Chemistry, Ohmsha).
  • the highly dry solvent A having a vapor pressure of 8.0 ⁇ 10 2 Pa or more is not particularly limited as long as it does not react with polysilazane, and known ones can be used as appropriate. Specific examples thereof include aromatic solvents, alcan solvents, ester solvents, ether solvents, ketone solvents, amide solvents, and other solvents.
  • xylene ethylene glycol monomethyl ether (also known as methyl cellosolve), isopentyl acetate (also known as isoamyl acetate), dibutyl ether (DBE), chlorobenzene, normal-butyl acetate, methyl-normal-butyl ketone, tetrachloroethylene (also known as:: Parkrolethylene), isobutyl acetate, methylisobutylketone, normal-propyl acetate, toluene, 1,4-dioxane, isopropyl alcohol, trimethylpentane (TMP), isopropyl acetate, trichloroethylene, 1,2-dichloroethane (also known as dichloride) Ethyl acetate), ethyl acetate, methyl ethyl ketone, carbon tetrachloride, 1,1,1-trichloroethane, normal hexane, t
  • the low-drying solvent B according to the present invention has a vapor pressure of 4.0 ⁇ 10 2 Pa or less at 20 ° C., and has a lower limit of 1.0 ⁇ 10 -1 Pa or more. In order to solve the problem of the present invention, it is necessary to be 4.0 ⁇ 10 2 Pa or less in order to obtain an appropriate drying rate, and in order to obtain a drying property for removing a solvent after coating film, 1.0 ⁇ It must be 10 -1 Pa or more.
  • a method for measuring the vapor pressure (Pa) of the low-drying solvent B at 20 ° C. the same method as the above-mentioned method for measuring the vapor pressure of the high-drying solvent A can be adopted.
  • the low-drying solvent B having a vapor pressure of 4.0 ⁇ 10 2 Pa or less is not particularly limited as long as it is a solvent that does not react with polysilazane, and a known solvent can be used as appropriate. Examples thereof include aromatic solvents, alcan solvents, ester solvents, ether solvents, ketone solvents, amide solvents, and other solvents.
  • hexadecane diethylene glycol dibutyl ether (DEGDBE), diphenyl ether, ethylene glycol, 1-methylnaphthylene, cyclohexylbenzene, 3,3,5-trimethylcyclohexanol, 4'-methylacetophenone, decamethylcyclopentasiloxane (D5), N.
  • DEGDBE diethylene glycol dibutyl ether
  • D5 decamethylcyclopentasiloxane
  • NMP -Methylpyrrolidone
  • 4-ethylanisole, tetralin, cresol butyl benzoate, diethylene glycol diacrylate, diethylene glycol diethyl ether, ethylene glycol mono-normal-butyl ether (also known as butyl cellosolve), n-butylbenzene, cyclohexyl acetate, 1 , 2-Dichlorobenzene, ethylene glycol monoethyl ether acetate (also known as cellosolve acetate), methylcyclohexanol, phenetol, sec-butylbenzene, tert-butylbenzene, decalin (also known as decahydronaphthalene), 1,3,5- Examples thereof include trimethylbenzene (mesitylene), diethylene glycol dimethyl ether, N, N-dimethylformamide, methylcyclohexanone, ethylene glycol monophenyl ether (EGMPE) and
  • the mole fraction of the high-drying solvent A is set to m a1 , m a2 , ...
  • the mole fraction of the low-drying solvent B is set to m b1 , m b2 , ... the vapor pressure of the drying solvent a and P a1, P a2, ... an, when the vapor pressure of the low drying solvent B was P b1, P b2, ... and, P total represented by the following formula (i) is, It is in the range of 0.5 ⁇ 10 2 to 3.6 ⁇ 10 2 Pa, and more preferably in the range of 1.4 ⁇ 10 2 to 3.4 ⁇ 10 2 Pa.
  • P total P a1 ⁇ ma1 + P a2 ⁇ ma2 +..., P b1 ⁇ m b1 + P b2 ⁇ m b2 +...
  • the mole fractions of the high-drying solvent A and the low-drying solvent B are not particularly limited as long as the formula (i) is satisfied, but for example, the molar fraction of the high-drying solvent A is 5.
  • the mole fraction of the low-drying solvent B is preferably in the range of 95 to 60 within the range of ⁇ 40.
  • the "polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond in its structure and is a precursor of silicon nitride, and a polymer having the structure of the following general formula (1) is preferably used. ..
  • R 1 , R 2 , and R 3 represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group, respectively.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness of the obtained sealing layer.
  • the polysilazane used in the present invention preferably has a weight average molecular weight Mw of 1000 or more, more preferably 3000 or more, and particularly preferably 7000 or more. Further, it is preferable that such a high molecular weight polysilazane is contained in an amount of 50% by mass or more based on the total polysilazane. By containing the high molecular weight polysilazane, the viscosity of the ink composition can be adjusted.
  • polysilazane having an Mw of 3000 or more for example, a polysilazane having only a high molecular weight component having a weight average molecular weight Mw of 3000 or more can be obtained by referring to the method described in Japanese Patent No. 5172867.
  • the polysilazane used in the present invention those commercially available in the state of a solution dissolved in an organic solvent can be used.
  • the organic solvent is not particularly limited as long as it can dissolve polysilazane, but does not contain water and a reactive group (for example, a hydroxy group or an amine group) that easily reacts with polysilazane, and is resistant to polysilazane.
  • An inert organic solvent is preferred, and an aprotic organic solvent is more preferred.
  • an aproton solvent for example, carbonization of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, sorbesso, turpen and the like.
  • Hydrogen solvent Halogen hydrocarbon solvent such as methylene chloride and trichloroethane
  • Esters such as ethyl acetate and butyl acetate
  • Ketones such as acetone and methyl ethyl ketone
  • Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran, alicyclic ether and the like Ethers: Examples thereof include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglimes).
  • the solvent is selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more kinds. Further, the polysilazane raw solution in which polysilazane is dissolved in an organic solvent may be catalyst-free or may contain a catalyst.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N', N'- Amine catalysts such as tetramethyl-1,3-diaminopropane, N, N, N', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd. , Metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst to be added at this time is preferably in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 2% by mass, based on the silicon compound.
  • concentration of the catalyst to be added at this time is preferably in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 2% by mass, based on the silicon compound.
  • the viscosity of the ink composition of the present invention is preferably in the range of 1 to 20 mPa ⁇ s at 20 ° C. because it has an appropriate viscosity and the ejection stability by the inkjet method is good.
  • the viscosity can be measured by a commercially available rotary or vibration viscometer.
  • the ink composition of the present invention contains a volatile thickener because the viscosity of the ink composition can be adjusted.
  • a volatile thickener a liquid compound having volatileness that does not inhibit the film formation of the ink composition and having a viscosity at 20 ° C. of about 1 mPa ⁇ s or more, or a liquid compound having a viscosity of about 1 mPa ⁇ s or more when mixed, or 1 mPa ⁇ s or more by mixing.
  • Water-insoluble volatile oils and glycol ethers which are highly soluble and have low water solubility, are preferred.
  • the volatile oils include, for example, terepine, petrol, mineral spirit, ⁇ -pinene, isoparaffin, and volatile silicone oils
  • the glycol ethers include, for example, diethylene glycol dibutyl ether (DEGDBE) and tripropylene glycol dimethyl ether.
  • compounds having appropriate viscosity, volatility and water insolubility such as diethylene glycol dibutyl ether and volatile silicone oil can also be used as a diluting solvent. It is preferable in that it can be done.
  • the ink composition of the present invention can be obtained by adding a high-drying solvent A and a low-drying solvent B to a polysilazane raw solution dissolved in the above organic solvent so as to have a predetermined mole fraction.
  • the volatile thickener to the polysilazane original solution in addition to the highly dry solvent A and the low dry solvent B. It is preferable to stir during and after the addition of the high-drying solvent A, the low-drying solvent B and the volatile thickener, and further, it is preferable to heat and stir.
  • the heating temperature is preferably equal to or lower than the boiling point of the high-drying solvent A and the low-drying solvent B, and more preferably in the range of 50 to 120 ° C.
  • the heating means and the stirring means are not particularly limited, and a general method for heating and stirring the solution can be applied, but when heating, the container or the kettle containing the solution is indirectly heated. The method of heating the liquid with is preferable.
  • a method of rotating a shaft to which a stirring blade is attached by a motor a method of stirring using a stirrer and a stirrer if the amount of liquid is small, and the like can be applied.
  • a method of stirring using a stirrer and a stirrer if the amount of liquid is small, and the like can be applied.
  • the ink composition of the present invention can be a stable ink composition without bubbles when the amount of increase ( ⁇ V) of the dissolved gas amount after the elapsed time is ⁇ V ⁇ 100 ppm / day. It is preferable in that it can be done. Further, ⁇ V ⁇ 10 ppm / day is more preferable, and ⁇ V ⁇ 1 ppm / day is particularly preferable.
  • the method for measuring the amount of dissolved gas is, for example, to identify the gas by collecting the gas generated after heating, stirring or ultrasonically dispersing the ink composition, and combining GC / MS and a detector suitable for the gas to be detected. And quantification is possible.
  • ammonia gas and silane gas are the gases that are generated in the oxidation reaction of polysilazane and may be dissolved in the coating liquid, gas detector tubes and gas detectors according to the target gas are used. It is also possible to quantify the amount generated using this and estimate the total amount as the amount of dissolved gas.
  • the method for forming an electronic device encapsulating layer of the present invention is a method for forming an encapsulating layer using the above-mentioned ink composition of the present invention, and a first encapsulating layer is formed on an electronic device by a vapor phase method.
  • a step of forming a second sealing layer by applying the ink composition onto the first sealing layer is provided.
  • the first sealing layer forming step the first sealing layer is formed on the electronic device by the vapor phase method.
  • the vapor phase method includes a sputtering method (including a reactive sputtering method such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, and bipolar AC rotating magnetron sputtering), and a vapor deposition method (for example, resistance heating).
  • the first sealing layer contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the thickness of the first sealing layer is preferably in the range of, for example, 10 to 1000 nm, and more preferably in the range of 100 to 500 nm.
  • the second sealing layer is formed by applying the above-mentioned ink composition of the present invention on the first sealing layer. Specifically, it is preferable to further perform a drying step of applying the ink composition on the first sealing layer (coating step) and drying the obtained coating film, and after the drying step, obtain the ink composition. It may have a step of irradiating the coated film with vacuum ultraviolet rays in a nitrogen atmosphere to modify it.
  • any suitable method can be adopted as the coating method of the ink composition, for example, spin coating method, roll coating method, flow coating method, inkjet method, spray coating method, printing method, dip coating method, flow.
  • Examples include a spread film forming method, a bar coating method, and a gravure printing method.
  • the inkjet method As the inkjet method, a known method can be used.
  • the inkjet method is roughly divided into a drop-on-demand method and a continuous method, both of which can be used.
  • the drop-on-demand method includes an electric-mechanical conversion method (for example, single cavity type, double cavity type, bender type, piston type, shared mode type, shared wall type, etc.) and an electric-heat conversion method (for example, thermal).
  • an inkjet type a bubble jet (registered trademark) type, etc.)
  • an electrostatic attraction method for example, an electric field control type, a slit jet type, etc.
  • a discharge method for example, a spark jet type, etc.
  • an electric-mechanical conversion method or an electric-heat conversion method head A method of dropping droplets (for example, a coating liquid) by an inkjet method may be called an "inkjet method".
  • the ink composition When applying the ink composition, it is preferable to apply it in a nitrogen atmosphere.
  • the solvent contained in the coating film (solvent containing high drying solvent A, low drying solvent B, etc.) is dried by drying the coating film obtained by coating with the ink composition. Remove.
  • the drying step is also preferably performed in a nitrogen atmosphere.
  • the drying method shall be adopted with reference to the conventionally known paragraphs "0058" to "0064" of JP-A-2014-151571, paragraphs "0052” to "0056” of JP-A-2011-183773, and the like. Can be done.
  • the modification treatment step may include a step of irradiating the obtained coating film with vacuum ultraviolet rays in a nitrogen atmosphere after the drying step to perform the modification treatment.
  • the reforming treatment refers to a conversion reaction of polysilazane to silicon oxide or silicon nitride. Similarly, the reforming treatment is performed under a nitrogen atmosphere such as in a glove box or under reduced pressure.
  • a known method based on the conversion reaction of polysilazane can be selected.
  • a conversion reaction using plasma, ozone, or ultraviolet rays, which can be converted at a low temperature is preferable. Conventionally known methods can be used for plasma and ozone.
  • VUV vacuum ultraviolet light
  • the thickness of the second sealing layer is preferably in the range of 10 to 1000 nm, more preferably in the range of 100 to 500 nm.
  • the entire layer may be modified, but the thickness of the modified layer after modification is preferably in the range of 1 to 50 nm, and is preferably 1 to 30 nm. Within the range is more preferred.
  • the illuminance of the vacuum ultraviolet rays on the coating film surface received by the coating film is preferably in the range of 30 to 200 mW / cm 2 , and is preferably 50 to 160 mW / cm 2. It is more preferable that it is within the range of.
  • the reforming efficiency can be sufficiently improved, and when it is 200 mW / cm 2 or less, the damage occurrence rate to the coating film is extremely suppressed, and the substrate can be used. It is preferable because it can also reduce the damage of the illuminance.
  • the amount of vacuum ultraviolet irradiation energy on the coating film surface is preferably in the range of 1 to 10 J / cm 2 , and from the viewpoint of barrier properties and moist heat resistance for maintaining the desiccant function, 3 More preferably, it is in the range of about 7 J / cm 2.
  • a rare gas excimer lamp is preferably used as a light source for vacuum ultraviolet rays. Since vacuum ultraviolet light is absorbed by oxygen, the efficiency in the vacuum ultraviolet irradiation step tends to decrease. Therefore, it is preferable to irradiate vacuum ultraviolet light in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration during vacuum ultraviolet light irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm, further preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm. Is within the range of.
  • the reforming treatment can also be performed in combination with the heat treatment.
  • the heating conditions are preferably in the range of 50 to 300 ° C., more preferably in the range of 60 to 150 ° C., preferably in combination with heat treatment for 1 second to 60 minutes, more preferably 10 seconds to 10 minutes. By doing so, the dehydration condensation reaction at the time of modification can be promoted, and the modified product can be formed more efficiently.
  • Examples of the heat treatment include a method of contacting a base material with a heating element such as a heat block to heat the coating film by heat conduction, a method of heating the atmosphere with an external heater using a resistance wire or the like, and an infrared region such as an IR heater.
  • a method using the light of the above can be mentioned, but the method is not particularly limited. Further, a method capable of maintaining the smoothness of the coating film containing the silicon compound may be appropriately selected.
  • the third sealing layer is formed on the second sealing layer by the vapor phase method.
  • the vapor phase method is the same as the vapor phase method used in the first sealing layer forming step, such as a sputtering method (for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.).
  • a sputtering method for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.
  • vapor deposition method for example, resistance heating vapor deposition, electron beam deposition, ion beam vapor deposition, plasma-assisted vapor deposition, etc.
  • thermal CVD method catalytic chemical vapor deposition method (Cat-CVD), capacity.
  • Cat-CVD catalytic chemical vapor deposition method
  • Examples thereof include a combined plasma CVD method (CCP-CVD), an optical CVD method, a plasma CVD method (PE-CVD), an epitaxial growth method, a chemical vapor deposition method such as an atomic layer growth method, and the like. Above all, it is preferably formed by the CVD method.
  • the third sealing layer contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • the thickness of the third sealing layer is preferably in the range of, for example, 10 to 1000 nm, and more preferably in the range of 100 to 500 nm.
  • the second sealing layer is derived from polysilazane>
  • polysilazane as a precursor, particularly preferably perhydropolysilazane, but the final finished second sealing layer is made of polysilazane.
  • the formed layer can be demonstrated by analysis by the following method.
  • Equation (C) y 0.8-x / 3, x ⁇ 0, y ⁇ 0,
  • the original composition SiN 0.8 H w
  • all the compositions at each measurement point in the thickness direction are as described above. That would be the case (there is a few percent error).
  • the composition distribution of the Si-containing layer in the thickness direction is analyzed and indicated by SiO x N y , it is 80% or more of the thickness of the formed second sealing layer. If the composition of the measurement point is in the range of ⁇ 2% of the value of y (0.8-x / 3), it is estimated that the membrane is a sealing layer formed from perhydropolysilazane. Is possible.
  • the electronic device encapsulation layer of the present invention has a first encapsulation layer containing silicon nitride, silicon oxide or silicon oxynitride, a defect region mixed in the first encapsulation layer, and adjacent to the first encapsulation layer. It has a second sealing layer containing polysilazane and a polysilazane region provided in a gap between the defect region and the first sealing layer and filled with polysilazane.
  • the electronic device sealing layer of the present invention is formed by the method for forming an electronic device sealing layer. That is, the second sealing layer and the polysilazane region are formed by using the ink composition of the present invention described above. Further, in the electronic device encapsulation layer of the present invention, a third encapsulation layer formed by a vapor phase method may be further provided on the second encapsulation layer.
  • the first sealing layer is a layer formed on the electronic device by the vapor phase method described above. Specifically, it contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
  • Defect regions are mixed in the first sealing layer.
  • the "defect region” referred to in the present invention means a foreign substance mixed in the first sealing layer by the gas phase method when forming the first sealing layer, and a foreign substance formed by the gas phase method by the foreign substance.
  • the part where the membrane has grown abnormally Specifically, as shown in FIG. 1, the region including the foreign matter 4 and the abnormally grown portion 5 around the foreign matter 4 is referred to as a defect region 6. Further, a gap 7 is formed between the defect region 6 and the first sealing layer 2.
  • the interval P of the gap 7 is preferably 15 nm or less, preferably 10 nm or less, when the cross section is observed at a 200 k magnification (acceleration voltage 200 kV) using an electron microscope (for example, JEM-2010F manufactured by JEOL). Is more preferable.
  • the interval P of the gap 7 was measured as follows. First, a horizontal line A 1 at a position of 1/3 and a horizontal line A 2 at a position of 2/3 are drawn from the lower side of the thickness of the first sealing layer 2. Next, in the first sealing layer 2, a tangent line B 1 connecting the intersecting points of the horizontal line A 1 at the 1/3 position and the horizontal line A 2 at the 2/3 position is drawn.
  • reference numeral 1 indicates an electronic device
  • reference numeral 3 indicates a second sealing layer.
  • the gap is provided with a polysilazane region filled with polysilazane.
  • the polysilazane region is formed by applying the ink composition of the present invention containing polysilazane, a high-drying solvent A, and a low-drying solvent B on the first sealing layer (second sealing layer forming step). , The ink composition is applied to the gap to form the gap. Therefore, by drying the coating film to which the ink composition is applied, the solvent contained in the coating film (solvent containing high-drying solvent A, low-drying solvent B, etc.) is removed, and polysilazane is contained. A polysilazane region will be formed in the gap. Since the gap between the first sealing layer and the defective region is sealed by such a polysilazane region, the sealing performance is improved.
  • the second sealing layer is a layer provided adjacent to the first sealing layer and containing polysilazane.
  • the second sealing layer is formed by applying the ink composition on the first sealing layer. Therefore, the second sealing layer is a solvent contained in the coating film (high-drying solvent A and low-drying solvent) by drying the coating film coated with the ink composition, similarly to the polysilazane region. The solvent (solvent containing B and the like) is removed to form a layer containing polysilazane.
  • the third sealing layer is a layer provided adjacent to the second sealing layer and formed by the vapor phase method described above. Specifically, it contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride as in the first sealing layer.
  • examples of the electronic device to be sealed include an organic EL element, a liquid crystal display element (LCD), a thin film, a touch panel, an electronic paper, and a solar cell. (PV) and the like can be mentioned. From the viewpoint that the effects of the present invention can be obtained more efficiently, an organic EL element or a solar cell is preferable, and an organic EL element is particularly preferable.
  • LCD liquid crystal display element
  • PV solar cell.
  • the organic EL element adopted as the electronic device according to the present invention may be a bottom emission type, that is, one in which light is extracted from the transparent substrate side.
  • the bottom emission type is configured by laminating a transparent electrode serving as a cathode, a light emitting functional layer, and a counter electrode serving as an anode on a transparent base material in this order.
  • the organic EL element according to the present invention may be a top emission type, that is, one in which light is taken out from the transparent electrode side which is the cathode opposite to the base material.
  • the top emission type has a configuration in which a counter electrode serving as an anode is provided on the base material side, and a light emitting functional layer and a transparent electrode serving as a cathode are laminated in this order on the surface thereof.
  • the intermediate layer may be a charge generation layer or may have a multi-photon unit configuration.
  • Japanese Patent Application Laid-Open No. 2013-157634 Japanese Patent Application Laid-Open No. 2013-168552, Japanese Patent Application Laid-Open No. 2013-177361, Japanese Patent Application Laid-Open No. 2013-187211, JP-A-2013 2013-191644, 2013-191804, 2013-225678, 2013-235994, 2013-243234, 2013-243236, 2013-2013 242366, 2013-243371, 2013-245179, 2014-003249, 2014-003299, 2014-013910, 2014-017493
  • Examples thereof include the configurations described in Japanese Patent Application Laid-Open No. 2014-017494.
  • a base material (hereinafter, also referred to as a support substrate, a base, a substrate, a support, etc.) that can be used for the organic EL element, it is preferable to apply a glass or a resin film, and flexibility is required. If so, it is preferably a resin film. Further, it may be transparent or opaque. In the case of the so-called bottom emission type in which light is extracted from the base material side, the base material is preferably transparent.
  • Preferred resins include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, and cellulose acylate resin.
  • the base material is preferably made of a material having heat resistance. Specifically, a substrate having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • the base material meets the requirements for electronic component applications and laminated films for displays. That is, when the sealing film of the present invention is used for these applications, the base material may be exposed to a step of 150 ° C. or higher. In this case, if the coefficient of linear expansion of the base material exceeds 100 ppm / K, the substrate dimensions will not be stable when the substrate is passed through the process at the above temperature, and the blocking performance will deteriorate due to thermal expansion and contraction. Or, the problem of not being able to withstand the thermal process is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
  • the Tg and the coefficient of linear expansion of the base material can be adjusted with an additive or the like. More preferable specific examples of the thermoplastic resin that can be used as a base material include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic type.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • alicyclic type alicyclic type.
  • Polyethylene for example, manufactured by Nippon Zeon Co., Ltd., Zeonoa (registered trademark) 1600: 160 ° C.), polyarylate (PAr: 210 ° C.), polyethersulfone (PES: 220 ° C.), polysulfone (PSF: 190 ° C.), cycloolefin copolymer (COC: Compound described in JP-A-2001-150584: 162 ° C.), Polyethylene (for example, manufactured by Mitsubishi Gas Chemicals Co., Ltd., Neoprim (registered trademark): 260 ° C.), Fluorene ring-modified polycarbonate (BCF-PC: JP-A.) Compound described in JP-A-2000-227603: 225 ° C.), alicyclic-modified polycarbonate (IP-PC: compound described in JP-A-2000-227603: 205 ° C.), acryloyl compound (Japanese Patent Laid-Open No. 2002-8
  • the base material is transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, an integrating sphere type light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the base material listed above may be an unstretched film or a stretched film.
  • the base material can be produced by a conventionally known general method. As for the method for producing these base materials, the matters described in paragraphs "0051" to "0055" of International Publication No. 2013/002026 can be appropriately adopted.
  • the surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, etc., and the above treatments may be combined as necessary. May be. Further, the base material may be subjected to an easy-adhesion treatment.
  • the base material may have a single layer or a laminated structure of two or more layers.
  • each base material may be of the same type or of a different type.
  • the thickness of the base material according to the present invention is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m.
  • the film base material has a gas barrier layer.
  • the gas barrier layer for the film base material may have a film of an inorganic substance, an organic substance, or a hybrid film of both of them formed on the surface of the film base material, and is measured by a method according to JIS K 7129-1992. and water vapor transmission rate is preferably (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is barrier film follows 0.01g / m 2 ⁇ 24h, more, JIS K 7126- oxygen permeability was measured in compliance with the method 1987 is, 1 ⁇ 10 -3 mL / m 2 ⁇ 24h ⁇ atm or less, the water vapor permeability is, 1 ⁇ 10 -3 g / m 2 ⁇ 24h or less high gas barrier It is preferably a sex film.
  • the material for forming the gas barrier layer may be any material having a function of suppressing infiltration of substances such as moisture and oxygen that cause deterioration of the element, and for example, silicon monoxide, silicon dioxide, silicon nitride, silicon nitride, and the like. Silicon carbide, silicon acid acid carbide and the like can be used.
  • the gas barrier layer is not particularly limited, but in the case of an inorganic gas barrier layer such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, silicon acid carbide, for example, the inorganic material is subjected to a sputtering method (for example).
  • Magneton cathode sputtering magneton cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.
  • vapor deposition method for example, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma assisted vapor deposition, etc.
  • thermal CVD Method for example, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma assisted vapor deposition, etc.
  • thermal CVD Method for example, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma assisted vapor deposition, etc.
  • thermal CVD Method for example, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma assisted vapor deposition, etc.
  • thermal CVD Method for example, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma assisted vapor deposition, etc.
  • an inorganic gas barrier layer by applying a coating liquid containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS) on the support and then performing a modification treatment by irradiation with vacuum ultraviolet light or the like.
  • the inorganic gas barrier layer is also formed by metal plating on a resin base material, film metallization technology such as bonding a metal foil and a resin base material, and the like.
  • the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
  • the organic layer is, for example, coated with an organic monomer or an organic oligomer on a resin substrate to form a layer, which is subsequently polymerized using, for example, an electron beam device, a UV light source, a discharge device, or other suitable device. And, if necessary, it can be formed by cross-linking. It can also be formed, for example, by depositing an organic monomer or an organic oligomer capable of flash evaporation and radiation cross-linking, and then forming a polymer from the organic monomer or the organic oligomer. Coating efficiency can be improved by cooling the resin substrate.
  • Examples of the method for applying the organic monomer or organic oligomer include roll coating (for example, gravure roll coating) and spray coating (for example, electrostatic spray coating).
  • examples of the laminate of the inorganic layer and the organic layer include the laminate described in International Publication No. 2012/003198 and International Publication No. 2011/013341.
  • the thickness of each layer may be the same or different.
  • the thickness of the inorganic layer is preferably in the range of 3 to 1000 nm, more preferably in the range of 10 to 300 nm.
  • the thickness of the organic layer is preferably in the range of 100 nm to 100 ⁇ m, more preferably in the range of 1 to 50 ⁇ m.
  • DBE dibutyl ether
  • PHPS perhydropolysilazane
  • the weight average molecular weight (Mw) of polysilazane determined from GPC (Gel Permeation Chromatography) polystyrene conversion was 7,000.
  • the molecular weight of polysilazane was adjusted during the synthesis of polysilazane.
  • the mole fraction, vapor pressure, P total, etc. of each solvent in the obtained ink composition 1 are shown in the table below.
  • ⁇ Manufacturing of organic EL element 1-1> (1) Preparation of substrate A non-alkali glass substrate was prepared as a substrate. (2) Formation of First Electrode An Al film was formed on one surface of the glass substrate as the first electrode (metal layer) under the following conditions. The thickness of the formed first electrode was 150 nm. The thickness of the first electrode is a value measured by a contact type surface shape measuring instrument (DECTAK). The Al film was formed by using a vacuum deposition apparatus to reduce the pressure to a vacuum degree of 1 ⁇ 10 -4 Pa, and then using a tungsten resistance heating crucible.
  • DECTAK contact type surface shape measuring instrument
  • each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in the optimum amount for manufacturing the device.
  • a crucible for vapor deposition a crucible made of molybdenum or tungsten made of a resistance heating material was used.
  • Electron Injection Layer (Metal Affinity Layer)
  • a heating boat containing the following compound I-1 as an electron injection material is energized and heated, and the electron injection layer made of Liq is electron-transported. Formed on the layer.
  • the vapor deposition rate was set in the range of 0.01 to 0.02 nm / sec, and the thickness was set to 2 nm.
  • the electron injection layer functions as a metal affinity layer. From the above, an organic EL layer that emits white light was formed.
  • silicon nitride SiN, Vickers hardness HV900 having a thickness of 500 nm was used by a plasma CVD method. Formed.
  • Second Sealing Layer Formation of Second Sealing Layer
  • the cartridge-integrated head of the inkjet device was filled with the ink composition 1 prepared above.
  • the ink composition 1 is applied to the organic EL element formed up to the first sealing layer by an inkjet method in a nitrogen environment, and then the element is moved to a hot plate and dried at 100 ° C. for 5 minutes.
  • a second sealing layer having a thickness of 300 nm was formed.
  • silicon nitride SiN, Vickers hardness HV900 having a thickness of 500 nm was formed as a third sealing layer on the second sealing layer by a plasma CVD method, and the first -The organic EL element 1-1 for evaluation in which the third sealing layer was formed was obtained.
  • Each organic EL element 2-1 to 2-39 for evaluation is wrapped around a metal roller having a diameter of 10 mm and left in a constant temperature and humidity chamber under high temperature and high humidity (temperature 60 ° C., relative humidity 90%). Then, an accelerated deterioration test was conducted. At this time, the polyimide film is wound so as to be in contact with the metal roller. After 1500 hours, each organic EL element was taken out from the constant temperature and humidity chamber, and the state of light emission (dark spot area ratio) was confirmed by microscopic confirmation at room temperature. Ranks 3 to 5 of the following evaluation criteria were passed.
  • the organic EL device on which the sealing layer using the ink composition of the present invention is formed has higher sealing performance than the organic EL device of the comparative example, and at the time of bending. It can be seen that the adhesion between the sealing layer and the electronic device is good, and the light emitting performance is excellent.
  • the foreign matter portion is identified by SEM observation (Hitachi High-Tech S4800) on the surface, and the foreign matter portion is identified by the FIB apparatus (JEOL JIB-4000PLUS).
  • SEM observation Hagachi High-Tech S4800
  • FIB apparatus JEOL JIB-4000PLUS.
  • the polysilazane region and the second sealing layer can provide an organic EL device having excellent sealing performance and bending resistance.
  • the gaps were all 15 nm or less.
  • a void region was confirmed instead of the polysilazane region.
  • the present invention is used for an ink composition for forming an electronic device sealing layer, a method for forming an electronic device sealing layer, and an electronic device sealing layer, which are excellent in sealing performance and bending resistance and can suppress deterioration of an electronic device. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This ink composition for forming an electronic device sealing layer contains polysilazane, and the ink composition contains at least one type of each of a high-drying solvent A having a vapor pressure at 20°C of 8.0×102 Pa or higher and a low-drying solvent B having a vapor pressure at 20°C of 4.0×102 Pa or lower, Ptotal represented by formula (i) being within the range of 0.5×102-3.6×102 Pa, where ma1, ma2, . . . is the mole fraction of the high-drying solvent A with respect to the total quantity of solvent, mb1, mb2, . . . is the mole fraction of the low-drying solvent B, Pa1, Pa2, . . . is the vapor pressure of the high-drying solvent A, and Pb1, Pb2, . . . is the vapor pressure of the low-drying solvent B. (Equation 1) Ptotal = Pa1 × ma1 + Pa2 × ma2 + . . ., Pb1 × m b1 + P b2 × mb2+ . . .

Description

電子デバイス封止層形成用のインク組成物、電子デバイス封止層形成方法及び電子デバイス封止層Ink composition for forming an electronic device sealing layer, a method for forming an electronic device sealing layer, and an electronic device sealing layer
 本発明は、電子デバイス封止層形成用のインク組成物、電子デバイス封止層形成方法及び電子デバイス封止層に関し、特に、封止性能及び屈曲耐性に優れ、電子デバイスの劣化を抑制することができる電子デバイス封止層形成用のインク組成物等に関する。 The present invention relates to an ink composition for forming an electronic device encapsulating layer, an electronic device encapsulating layer forming method, and an electronic device encapsulating layer, and particularly excellent in encapsulation performance and bending resistance and suppresses deterioration of the electronic device. The present invention relates to an ink composition for forming an electronic device encapsulating layer and the like.
 電子デバイス、特に有機エレクトロルミネッセンスデバイス(以下、「有機ELデバイス」又は「有機EL素子」ともいう。)は、用いられている有機材料や電極が水分により劣化することを防止するため、有機EL素子の表面を封止層により覆うことが提案されている。 Electronic devices, particularly organic electroluminescence devices (hereinafter, also referred to as "organic EL devices" or "organic EL elements"), are organic EL elements in order to prevent the organic materials and electrodes used from being deteriorated by moisture. It has been proposed to cover the surface of the OLED with a sealing layer.
 有機EL素子を封止する技術として、例えば、特許文献1に記載の技術では、有機EL素子を覆うように有機EL素子の表面上に乾式法(CVD法)により形成された第1の保護膜と、当該第1の保護膜の表面上に湿式法により形成され、かつ、第1の保護膜の未付着部分を穴埋めするための第2の保護膜とを備えた有機EL装置が開示されている。また、第2の保護膜としてポリシラザンを用いることが記載されている。
 しかしながら、前記特許文献1に記載の有機EL装置では、85℃85%RH100時間以上の高温高湿下において、第1の保護膜と第2の保護膜との界面密着が劣化することに起因する(と推定される)第1の保護膜と第2の保護膜との界面における水分透過の問題があり、封止性能が劣っていた。
 また、前記第2の保護膜のパターニングとしてインクジェットを用いたときに、特許文献1に開示されている組成物にてインクジェット法を適用したところ、インクの吐出性やパターニング精度に問題があった。さらに、インクジェット印刷法により形成された第2の保護膜の粒界が発生して、前記界面における水分透過の問題が顕著であった。
As a technique for sealing the organic EL element, for example, in the technique described in Patent Document 1, a first protective film formed on the surface of the organic EL element by a dry method (CVD method) so as to cover the organic EL element. Disclosed is an organic EL device formed on the surface of the first protective film by a wet method and provided with a second protective film for filling a non-adhered portion of the first protective film. There is. It is also described that polysilazane is used as the second protective film.
However, in the organic EL device described in Patent Document 1, the interfacial adhesion between the first protective film and the second protective film deteriorates under high temperature and high humidity of 85 ° C. and 85% RH of 100 hours or more. There was a problem of moisture permeation at the interface between the first protective film (presumably) and the second protective film, and the sealing performance was inferior.
Further, when inkjet is used for patterning the second protective film, when the inkjet method is applied to the composition disclosed in Patent Document 1, there are problems in ink ejection property and patterning accuracy. Further, grain boundaries of the second protective film formed by the inkjet printing method were generated, and the problem of water permeation at the interface was remarkable.
 一方、特許文献2では、ケイ素含有重合体と、少なくとも2種の溶媒を含む混合溶媒とを含有し、前記混合溶媒が25℃で5~35nN/mの表面張力を有するシリカ膜形成用組成物が開示されている。
 さらに、特許文献3では、ポリシラザンを含有する塗布液であって、前記ポリシラザンと、前記ポリシラザンの一部に酸素原子が導入され、シリコン(Si)原子に対する酸素(O)原子の原子組成比(O/Si)が0.01~0.1の範囲内である酸化ポリシラザンと、を含有する塗布液が開示されている。
On the other hand, in Patent Document 2, a composition for forming a silica film containing a silicon-containing polymer and a mixed solvent containing at least two kinds of solvents, and the mixed solvent has a surface tension of 5 to 35 nN / m at 25 ° C. Is disclosed.
Further, in Patent Document 3, in a coating liquid containing polysilazane, oxygen atoms are introduced into the polysilazane and a part of the polysilazane, and the atomic composition ratio (O) of the oxygen (O) atom to the silicon (Si) atom is (O). A coating liquid containing polysilazane oxide in which / Si) is in the range of 0.01 to 0.1 is disclosed.
 しかしながら、特許文献2に記載の組成物又は特許文献3に記載の塗布液を用いて、気相法によるCVD層上にインクジェットにより塗布して封止層を形成したところ、インクの吐出性は改善されていたものの、CVD層と当該CVD層上の塗布膜との界面における水分透過が問題であった。また、屈曲時における界面の密着性も低下するという問題があった。 However, when the composition described in Patent Document 2 or the coating liquid described in Patent Document 3 is used and coated on the CVD layer by the vapor phase method by inkjet to form a sealing layer, the ink ejection property is improved. However, there was a problem of moisture permeation at the interface between the CVD layer and the coating film on the CVD layer. In addition, there is a problem that the adhesion of the interface at the time of bending is also lowered.
特開2005-056587号公報Japanese Unexamined Patent Publication No. 2005-056587 特開2017-031040号公報Japanese Unexamined Patent Publication No. 2017-031040 特開2019-036517号公報Japanese Unexamined Patent Publication No. 2019-036517
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、封止性能及び屈曲耐性に優れ、電子デバイスの劣化を抑制することができる電子デバイス封止層形成用のインク組成物、電子デバイス封止層形成方法及び電子デバイス封止層を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is an ink for forming an electronic device sealing layer, which is excellent in sealing performance and bending resistance and can suppress deterioration of an electronic device. The present invention provides a composition, a method for forming an electronic device sealing layer, and an electronic device sealing layer.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ポリシラザンと、高乾燥性溶媒A及び低乾燥性溶媒Bを含有し、かつ、各溶媒のモル分率と各溶媒の蒸気圧の積の和を特定範囲に規定したインク組成物を、封止層の形成に用いることで、封止性能及び屈曲耐性に優れ、電子デバイスの劣化を抑制することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventor contains polysilazane, a high-drying solvent A and a low-drying solvent B, and the mole fraction of each solvent in the process of examining the cause of the above problem. By using an ink composition in which the sum of the products of the vapor pressures of each solvent is defined in a specific range for forming a sealing layer, it is possible to have excellent sealing performance and bending resistance and suppress deterioration of electronic devices. I found it and came up with the present invention.
That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.電子デバイス封止層形成用のインク組成物であって、
 ポリシラザンを含有し、
 当該インク組成物が、20℃における蒸気圧が、8.0×102Pa以上の高乾燥性溶媒Aと、4.0×102Pa以下である低乾燥性溶媒Bとをそれぞれ少なくとも1種以上含有し、
 溶媒全量に対する前記高乾燥性溶媒Aのモル分率をma1,ma2,…とし、前記低乾燥性溶媒Bのモル分率をmb1,mb2,…とし、前記高乾燥性溶媒Aの蒸気圧をPa1,Pa2,…とし、前記低乾燥性溶媒Bの蒸気圧をPb1,Pb2,…としたとき、下記式(i)で表されるPtotalが、0.5×102~3.6×102Paの範囲内である電子デバイス封止層形成用のインク組成物。
 (式i)Ptotal=Pa1×ma1+Pa2×ma2+…、Pb1×mb1+Pb2×mb2+…
1. 1. An ink composition for forming an electronic device encapsulating layer.
Contains polysilazane,
The ink composition contains at least one kind of a high drying solvent A having a vapor pressure of 8.0 × 10 2 Pa or more and a low drying solvent B having a vapor pressure of 4.0 × 10 2 Pa or less at 20 ° C. Contains more
The mole fraction of the highly dry solvent A with respect to the total amount of the solvent is m a1 , m a2 , ..., And the mole fraction of the low dry solvent B is m b1 , m b2 , .... When the vapor pressures are P a1 , P a2 , ... And the vapor pressures of the low-drying solvent B are P b1 , P b2 , ..., P total represented by the following formula (i) is 0.5 ×. An ink composition for forming an electronic device encapsulating layer in the range of 10 2 to 3.6 × 10 2 Pa.
(Equation i) P total = P a1 × ma1 + P a2 × ma2 +…, P b1 × m b1 + P b2 × m b2 +…
 2.前記高乾燥性溶媒Aが、ジブチルエーテルである第1項に記載の電子デバイス封止層形成用のインク組成物。 2. The ink composition for forming an electronic device encapsulating layer according to item 1, wherein the highly dry solvent A is dibutyl ether.
 3.前記低乾燥性溶媒Bが、デカリンである第1項又は第2項に記載の電子デバイス封止層形成用のインク組成物。 3. The ink composition for forming an electronic device encapsulating layer according to item 1 or 2, wherein the low-drying solvent B is decalin.
 4.第1項から第3項までのいずれか一項に記載の電子デバイス封止層形成用のインク組成物を用いて、封止層を形成する方法であって、
 電子デバイス上に気相法により第1封止層を形成する工程と、
 前記第1封止層上に前記電子デバイス封止層形成用のインク組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止層形成方法。
4. A method of forming a sealing layer using the ink composition for forming an electronic device sealing layer according to any one of items 1 to 3.
The process of forming the first sealing layer on the electronic device by the vapor phase method,
A method for forming an electronic device encapsulation layer, comprising a step of forming a second encapsulation layer by applying an ink composition for forming the electronic device encapsulation layer on the first encapsulation layer.
 5.前記第2封止層上に、気相法により第3封止層を形成する工程を備える第4項に記載の電子デバイス封止層形成方法。 5. The method for forming an electronic device encapsulation layer according to item 4, further comprising a step of forming a third encapsulation layer on the second encapsulation layer by a vapor phase method.
 6.前記第2封止層を形成する工程が、インクジェット法を用いる第4項又は第5項に記載の電子デバイス封止層形成方法。 6. The method for forming an electronic device sealing layer according to item 4 or 5, wherein the step of forming the second sealing layer is an inkjet method.
 7.電子デバイスを封止する電子デバイス封止層であって、
 窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
 前記第1封止層に混在する欠陥領域と、
 前記第1封止層に隣接して設けられ、ポリシラザンを含有する第2封止層と、
 前記欠陥領域と前記第1封止層との間の隙間に設けられ、ポリシラザンが充填されたポリシラザン領域と、を有する電子デバイス封止層。
7. An electronic device sealing layer that seals an electronic device.
A first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride,
Defect areas mixed in the first sealing layer and
A second sealing layer provided adjacent to the first sealing layer and containing polysilazane,
An electronic device sealing layer having a polysilazane region provided in a gap between the defect region and the first sealing layer and filled with polysilazane.
 8.前記隙間の間隔が、電子顕微鏡を用いて断面観察した際に15nm以下である第7項に記載の電子デバイス封止層。 8. Item 2. The electronic device encapsulating layer according to Item 7, wherein the gap between the gaps is 15 nm or less when the cross section is observed using an electron microscope.
 本発明の上記手段により、封止性能及び屈曲耐性に優れ、電子デバイスの劣化を抑制することができる電子デバイス封止層形成用のインク組成物、電子デバイス封止層形成方法及び電子デバイス封止層を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 ポリシラザンと、高乾燥性溶媒A及び低乾燥性溶媒Bを含有し、かつ、各溶媒のモル分率と各溶媒の蒸気圧の積の和を特定範囲に規定したインク組成物を封止層の形成に用いることにより、溶媒が乾燥する過程において高乾燥性溶媒Aと低乾燥性溶媒Bの乾燥速度に差異が生じる。高乾燥性溶媒Aと低乾燥性溶媒Bとの乾燥速度差により、高乾燥性溶媒Aが先に乾燥されることによりピニングされ、気相法により形成された下層(第1封止層)への安定な密着に寄与されるものと推定される。また、前記下層への密着により界面が強くなることで、界面の水分拡散が抑制され、界面を透過する水分による電子デバイスの劣化を防ぐことが推察される。
 また、低乾燥性溶媒Bを含有することにより、インクジェット法を用いた場合にもインクの吐出性やパターニング精度に優れる。
By the above means of the present invention, an ink composition for forming an electronic device sealing layer, an electronic device sealing layer forming method, and an electronic device sealing, which are excellent in sealing performance and bending resistance and can suppress deterioration of an electronic device. Layers can be provided.
Although the mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, it is inferred as follows.
An ink composition containing polysilazane, a high-drying solvent A and a low-drying solvent B, and in which the sum of the mole fraction of each solvent and the product of the vapor pressure of each solvent is defined in a specific range is applied to the sealing layer. When used for formation, there is a difference in the drying rate between the high-drying solvent A and the low-drying solvent B in the process of drying the solvent. Due to the difference in drying rate between the high-drying solvent A and the low-drying solvent B, the high-drying solvent A is pinned by being dried first, and the lower layer (first sealing layer) formed by the vapor phase method is formed. It is presumed that it contributes to the stable adhesion of the solvent. Further, it is presumed that the interface becomes stronger due to the adhesion to the lower layer, so that the moisture diffusion at the interface is suppressed and the deterioration of the electronic device due to the moisture passing through the interface is prevented.
Further, by containing the low-drying solvent B, the ink ejection property and the patterning accuracy are excellent even when the inkjet method is used.
本発明の電子デバイス封止層の断面画像を示した図(電子顕微鏡写真)The figure which showed the cross-sectional image of the electronic device sealing layer of this invention (electron micrograph)
 本発明の電子デバイス封止層形成用のインク組成物は、電子デバイス封止層形成用のインク組成物であって、ポリシラザンを含有し、当該インク組成物が、20℃における蒸気圧が、8.0×102Pa以上の高乾燥性溶媒Aと、4.0×102Pa以下である低乾燥性溶媒Bとをそれぞれ少なくとも1種以上含有し、溶媒全量に対する前記高乾燥性溶媒Aのモル分率をma1,ma2,…とし、前記低乾燥性溶媒Bのモル分率をmb1,mb2,…とし、前記高乾燥性溶媒Aの蒸気圧をPa1,Pa2,…とし、前記低乾燥性溶媒Bの蒸気圧をPb1,Pb2,…としたとき、下記式(i)で表されるPtotalが、0.5×102~3.6×102Paの範囲内である。
 (式i)Ptotal=Pa1×ma1+Pa2×ma2+…、Pb1×mb1+Pb2×mb2+…
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
The ink composition for forming an electronic device sealing layer of the present invention is an ink composition for forming an electronic device sealing layer, which contains polysilazane, and the ink composition has a vapor pressure of 8 at 20 ° C. The highly dry solvent A containing at least one of the highly dry solvent A of 0.0 × 10 2 Pa or more and the low dry solvent B of 4.0 × 10 2 Pa or less each contain the above-mentioned highly dry solvent A with respect to the total amount of the solvent. The mole fraction is ma1 , ma2 , ..., The mole fraction of the low-drying solvent B is m b1 , m b2 , ..., And the vapor pressure of the high-drying solvent A is P a1 , P a2 , ... When the vapor pressure of the low-drying solvent B is P b1 , P b2 , ..., The P total represented by the following formula (i) is 0.5 × 10 2 to 3.6 × 10 2 Pa. Is within the range of.
(Equation i) P total = P a1 × ma1 + P a2 × ma2 +…, P b1 × m b1 + P b2 × m b2 +…
This feature is a technical feature common to or corresponding to each of the following embodiments.
 本発明の実施態様としては、前記高乾燥性溶媒Aが、ジブチルエーテルであることが、ポリシラザンの溶解性の観点で好ましく、前記低乾燥性溶媒Bが、デカリンであることが、適切なインクの吐出性やパターニング性を得ることができる点で好ましい。 In an embodiment of the present invention, it is preferable that the highly dry solvent A is dibutyl ether from the viewpoint of solubility of polysilazane, and it is appropriate that the low dry solvent B is decalin. It is preferable in that dischargeability and patterning property can be obtained.
 本発明の電子デバイス封止層形成方法は、前記電子デバイス封止層形成用のインク組成物を用いて、封止層を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記電子デバイス封止層形成用インクを塗布することにより第2封止層を形成する工程と、を備える。
 これにより、前記インク組成物に含有される高乾燥性溶媒Aと低乾燥性溶媒Bとの乾燥速度差により、高乾燥性溶媒Aが先に乾燥されることによりピニングされ、気相法により形成された第1封止層と第2封止層との密着性に優れ、封止性能及び屈曲耐性に優れる。
また、第1封止層と第2封止層の密着により界面が強くなることで、界面の水分拡散が抑制され、界面を透過する水分による電子デバイスの劣化を抑制することができる。
The method for forming an electronic device sealing layer of the present invention is a method for forming a sealing layer using the ink composition for forming the electronic device sealing layer, and the first sealing is performed on the electronic device by the vapor phase method. It includes a step of forming a stop layer and a step of forming a second sealing layer by applying the electronic device sealing layer forming ink on the first sealing layer.
As a result, the high-drying solvent A is pinned by being dried first due to the difference in drying speed between the high-drying solvent A and the low-drying solvent B contained in the ink composition, and is formed by the vapor phase method. The adhesiveness between the first sealing layer and the second sealing layer is excellent, and the sealing performance and bending resistance are excellent.
Further, since the interface is strengthened by the adhesion between the first sealing layer and the second sealing layer, the diffusion of water at the interface can be suppressed, and the deterioration of the electronic device due to the water passing through the interface can be suppressed.
 また、前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、封止性能により優れる点で好ましい。
 前記第2封止層を形成する工程が、インクジェット法を用いることが、高精度に層形成できる点で好ましい。
Further, it is preferable to provide a step of forming the third sealing layer on the second sealing layer by the vapor phase method from the viewpoint of excellent sealing performance.
It is preferable to use an inkjet method for the step of forming the second sealing layer because the layer can be formed with high accuracy.
 本発明の電子デバイス封止層は、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記第1封止層に混在する欠陥領域と、前記第1封止層に隣接して設けられ、ポリシラザンを含有する第2封止層と、前記欠陥領域と前記第1封止層との間の隙間に充填されたポリシラザン領域と、を有する。
 これにより、欠陥領域と第1封止層との間の隙間に充填されたポリシラザン領域によって、第1封止層と第2封止層との密着性に優れ、封止性能及び屈曲耐性に優れる。また、第1封止層と第2封止層との密着により界面が強くなることで、界面の水分拡散が抑制され、界面を透過する水分による電子デバイスの劣化を抑制することができる。
The electronic device encapsulation layer of the present invention has a first encapsulation layer containing silicon nitride, silicon oxide or silicon oxynitride, a defect region mixed in the first encapsulation layer, and adjacent to the first encapsulation layer. It has a second sealing layer containing polysilazane and a polysilazane region filled in a gap between the defect region and the first sealing layer.
As a result, the polysilazane region filled in the gap between the defect region and the first sealing layer provides excellent adhesion between the first sealing layer and the second sealing layer, and is excellent in sealing performance and bending resistance. .. Further, since the interface is strengthened by the adhesion between the first sealing layer and the second sealing layer, the diffusion of water at the interface can be suppressed, and the deterioration of the electronic device due to the water passing through the interface can be suppressed.
 前記隙間の間隔が、電子顕微鏡を用いて断面観察した際に15nm以下であることで、従来のインクよりも優位な効果が得られる点で好ましい。 It is preferable that the gap between the gaps is 15 nm or less when the cross section is observed using an electron microscope, because a superior effect can be obtained as compared with the conventional ink.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
[本発明の電子デバイス封止層形成用のインク組成物の概要]
 本発明の電子デバイス封止層形成用のインク組成物(以下、単にインク組成物ともいう。)は、電子デバイス封止層形成用のインク組成物であって、ポリシラザンを含有し、当該インク組成物が、20℃における蒸気圧が、8.0×102Pa以上の高乾燥性溶媒Aと、4.0×102Pa以下である低乾燥性溶媒Bとをそれぞれ少なくとも1種以上含有し、溶媒全量に対する前記高乾燥性溶媒Aのモル分率をma1,ma2,…とし、前記低乾燥性溶媒Bのモル分率をmb1,mb2,…とし、前記高乾燥性溶媒Aの蒸気圧をPa1,Pa2,…とし、前記低乾燥性溶媒Bの蒸気圧をPb1,Pb2,…としたとき、下記式(i)で表されるPtotalが、0.5×102~3.6×102Paの範囲内である。
 (式i)Ptotal=Pa1×ma1+Pa2×ma2+…、Pb1×mb1+Pb2×mb2+…
[Outline of Ink Composition for Forming Electronic Device Encapsulating Layer of the Present Invention]
The ink composition for forming an electronic device encapsulating layer of the present invention (hereinafter, also simply referred to as an ink composition) is an ink composition for forming an electronic device encapsulating layer, which contains polysilazane and has the ink composition. The product contains at least one or more of a high-drying solvent A having a vapor pressure of 8.0 × 10 2 Pa or more and a low-drying solvent B having a vapor pressure of 4.0 × 10 2 Pa or less at 20 ° C. The molar proportions of the highly dry solvent A with respect to the total amount of the solvent are m a1 , ma2 , ..., And the molar proportions of the low dry solvent B are m b1 , m b2 , ... When the vapor pressures of the low-drying solvent B are P a1 , P a2 , ... And the vapor pressures of the low-drying solvent B are P b1 , P b2 , ..., P total represented by the following formula (i) is 0.5. It is in the range of × 10 2 to 3.6 × 10 2 Pa.
(Equation i) P total = P a1 × ma1 + P a2 × ma2 +…, P b1 × m b1 + P b2 × m b2 +…
 ここで、本発明における「電子デバイス」とは、電子のもつ運動エネルギー、位置エネルギーなどを利用して電気信号の発生、増幅、変換、又は制御などを行う素子をいう。例えば、発光ダイオード素子、有機エレクトロルミネッセンス素子、光電変換素子及びトランジスターなどの能動素子が挙げられる。また、本発明においては、他からの働きかけに対し、「抵抗する」「蓄える」などの受け身的な仕事をする受動素子、例えば、抵抗器・コンデンサーなども電子デバイスに含める。
 したがって、本発明のインク組成物は、前記した電子デバイスを封止するための封止層を形成するために用いられる。
Here, the "electronic device" in the present invention refers to an element that generates, amplifies, converts, or controls an electric signal by utilizing the kinetic energy, potential energy, etc. of an electron. For example, active elements such as light emitting diode elements, organic electroluminescence elements, photoelectric conversion elements and transistors can be mentioned. Further, in the present invention, a passive element that performs passive work such as "resisting" and "storing" in response to an action from others, such as a resistor and a capacitor, is also included in the electronic device.
Therefore, the ink composition of the present invention is used to form a sealing layer for sealing the electronic device described above.
<高乾燥性溶媒A>
 本発明に係る高乾燥性溶媒Aは、20℃における蒸気圧が8.0×102Pa以上であり、上限値としては2.0×104Pa以下である。
 本発明の課題を解決するために適切な乾燥速度を得るために8.0×102Pa以上である必要があり、また、インク吐出前やインク吐出時の自然乾燥による組成変化に対する安定性を得るために2.0×104Pa以下である必要がある。
<Highly dry solvent A>
The highly dry solvent A according to the present invention has a vapor pressure of 8.0 × 10 2 Pa or more at 20 ° C. and an upper limit of 2.0 × 10 4 Pa or less.
In order to solve the problem of the present invention, it is necessary to have 8.0 × 10 2 Pa or more in order to obtain an appropriate drying rate, and the stability against composition change due to natural drying before ink ejection or during ink ejection is required. It needs to be 2.0 × 10 4 Pa or less to obtain.
 本発明に係る高乾燥性溶媒Aの20℃における蒸気圧(Pa)は、下記の方法に準じ求めることができる。例えば、JIS K2258-1:2009に準拠したリード法やJIS K2258-2:2009に準拠した3回膨張法等を挙げることができる。また、一般的な蒸気圧の測定方法として知られている、静止法、沸点法、アイソテニスコープ、気体流通法、DSC法も適用することができる。さらには、公知文献、例えば、「新版 溶剤ポケットブック」(有機合成化学教会編、オーム社)に記載されている蒸気圧データを活用することもできる。 The vapor pressure (Pa) of the highly dry solvent A according to the present invention at 20 ° C. can be determined according to the following method. For example, a lead method based on JIS K2258-1: 2009, a triple expansion method based on JIS K2258-2: 2009, and the like can be mentioned. Further, a static method, a boiling point method, an isoteniscope, a gas flow method, and a DSC method, which are known as general methods for measuring vapor pressure, can also be applied. Furthermore, it is also possible to utilize the vapor pressure data described in publicly known documents, for example, "New Edition Solvent Pocket Book" (edited by the Church of Synthetic Organic Chemistry, Ohmsha).
 前記蒸気圧が8.0×102Pa以上の高乾燥性溶媒Aとしては、ポリシラザンと反応しない溶媒であれば特に制限されず、適宜公知のものを使用することができる。具体的には、芳香族系溶媒、アルカン系溶媒、エステル系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、他の溶媒等が挙げられる。例えば、キシレン、エチレングリコールモノメチルエーテル(別名:メチルセロソルブ)、酢酸イソペンチル(別名:酢酸イソアミル)、ジブチルエーテル(DBE)、クロルベンゼン、酢酸ノルマル-ブチル、メチル-ノルマル-ブチルケトン、テトラクロルエチレン(別名:パークロルエチレン)、酢酸イソブチル、メチルイソブチルケトン、酢酸ノルマル-プロピル、トルエン、1,4-ジオキサン、イソプロピルアルコール、トリメチルペンタン(TMP)、酢酸イソプロピル、トリクロルエチレン、1,2-ジクロルエタン(別名:二塩化エチレン)、酢酸エチル、メチルエチルケトン、四塩化炭素、1,1,1-トリクロルエタン、ノルマルヘキサン、テトラヒドロフラン等が挙げられる。これらの中でも、DBE、キシレンが好ましく、また、1種類を用いてもよいし、複数種用いてもよい。 The highly dry solvent A having a vapor pressure of 8.0 × 10 2 Pa or more is not particularly limited as long as it does not react with polysilazane, and known ones can be used as appropriate. Specific examples thereof include aromatic solvents, alcan solvents, ester solvents, ether solvents, ketone solvents, amide solvents, and other solvents. For example, xylene, ethylene glycol monomethyl ether (also known as methyl cellosolve), isopentyl acetate (also known as isoamyl acetate), dibutyl ether (DBE), chlorobenzene, normal-butyl acetate, methyl-normal-butyl ketone, tetrachloroethylene (also known as:: Parkrolethylene), isobutyl acetate, methylisobutylketone, normal-propyl acetate, toluene, 1,4-dioxane, isopropyl alcohol, trimethylpentane (TMP), isopropyl acetate, trichloroethylene, 1,2-dichloroethane (also known as dichloride) Ethyl acetate), ethyl acetate, methyl ethyl ketone, carbon tetrachloride, 1,1,1-trichloroethane, normal hexane, tetrahydrofuran and the like. Among these, DBE and xylene are preferable, and one type may be used or a plurality of types may be used.
<低乾燥性溶媒B>
 本発明に係る低乾燥性溶媒Bは、20℃における蒸気圧が4.0×102Pa以下であり、下限値としては、1.0×10-1Pa以上である。
 本発明の課題を解決するために適切な乾燥速度を得るために4.0×102Pa以下である必要があり、塗膜後に溶剤を除去するための乾燥性を得るために1.0×10-1Pa以上である必要がある。
 低乾燥性溶媒Bの20℃における蒸気圧(Pa)の測定方法は、前記した高乾燥性溶媒Aの蒸気圧の測定方法と同様の方法を採用することができる。
<Low drying solvent B>
The low-drying solvent B according to the present invention has a vapor pressure of 4.0 × 10 2 Pa or less at 20 ° C., and has a lower limit of 1.0 × 10 -1 Pa or more.
In order to solve the problem of the present invention, it is necessary to be 4.0 × 10 2 Pa or less in order to obtain an appropriate drying rate, and in order to obtain a drying property for removing a solvent after coating film, 1.0 × It must be 10 -1 Pa or more.
As a method for measuring the vapor pressure (Pa) of the low-drying solvent B at 20 ° C., the same method as the above-mentioned method for measuring the vapor pressure of the high-drying solvent A can be adopted.
 前記蒸気圧が4.0×102Pa以下の低乾燥性溶媒Bとしては、ポリシラザンと反応しない溶媒であれば特に制限されず、適宜公知のものを使用することができる、具体的には、芳香族系溶媒、アルカン系溶媒、エステル系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、他の溶媒等が挙げられる。例えば、ヘキサデカン、ジエチレングリコールジブチルエーテル(DEGDBE)、ジフェニルエーテル、エチレングリコール、1-メチルナフタレン、シクロヘキシルベンゼン、3,3,5-トリメチルシクロヘキサノール、4′-メチルアセトフェノン、デカメチルシクロペンタシロキサン(D5)、N-メチルピロリドン(NMP)、4-エチルアニソール、テトラリン、クレゾール、安息香酸ブチル、ジエチレングリコールジアクリレート、ジエチレングリコールジエチルエーテル、エチレングリコールモノ-ノルマル-ブチルエーテル(別名:ブチルセロソルブ)、n-ブチルベンゼン、酢酸シクロヘキシル、1,2-ジクロロベンゼン、エチレングリコールモノエチルエーテルアセテート(別名:セロソルブアセテート)、メチルシクロヘキサノール、フェネトール、sec-ブチルベンゼン、tert-ブチルベンゼン、デカリン(別名:デカヒドロナフタレン)、1,3,5-トリメチルベンゼン(メシチレン)、ジエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド、メチルシクロヘキサノンン、エチレングリコールモノフェニルエーテル(EGMPE)等が挙げられる。これらの中でも、デカリン、DEGDBE、テトラリンが好ましく、また、1種類を用いてもよいし、複数種用いてもよい。 The low-drying solvent B having a vapor pressure of 4.0 × 10 2 Pa or less is not particularly limited as long as it is a solvent that does not react with polysilazane, and a known solvent can be used as appropriate. Examples thereof include aromatic solvents, alcan solvents, ester solvents, ether solvents, ketone solvents, amide solvents, and other solvents. For example, hexadecane, diethylene glycol dibutyl ether (DEGDBE), diphenyl ether, ethylene glycol, 1-methylnaphthylene, cyclohexylbenzene, 3,3,5-trimethylcyclohexanol, 4'-methylacetophenone, decamethylcyclopentasiloxane (D5), N. -Methylpyrrolidone (NMP), 4-ethylanisole, tetralin, cresol, butyl benzoate, diethylene glycol diacrylate, diethylene glycol diethyl ether, ethylene glycol mono-normal-butyl ether (also known as butyl cellosolve), n-butylbenzene, cyclohexyl acetate, 1 , 2-Dichlorobenzene, ethylene glycol monoethyl ether acetate (also known as cellosolve acetate), methylcyclohexanol, phenetol, sec-butylbenzene, tert-butylbenzene, decalin (also known as decahydronaphthalene), 1,3,5- Examples thereof include trimethylbenzene (mesitylene), diethylene glycol dimethyl ether, N, N-dimethylformamide, methylcyclohexanone, ethylene glycol monophenyl ether (EGMPE) and the like. Among these, decalin, DEGDBE, and tetralin are preferable, and one type may be used, or a plurality of types may be used.
 本発明のインク組成物は、溶媒全量に対する高乾燥性溶媒Aのモル分率をma1,ma2,…とし、低乾燥性溶媒Bのモル分率をmb1,mb2,…とし、高乾燥性溶媒Aの蒸気圧をPa1,Pa2,…とし、低乾燥性溶媒Bの蒸気圧をPb1,Pb2,…としたとき、下記式(i)で表されるPtotalが、0.5×102~3.6×102Paの範囲内であり、より好ましくは、1.4×102~3.4×102Paの範囲内である。
 (式i)Ptotal=Pa1×ma1+Pa2×ma2+…、Pb1×mb1+Pb2×mb2+…
In the ink composition of the present invention, the mole fraction of the high-drying solvent A is set to m a1 , m a2 , ... With respect to the total amount of the solvent, and the mole fraction of the low-drying solvent B is set to m b1 , m b2 , ... the vapor pressure of the drying solvent a and P a1, P a2, ... an, when the vapor pressure of the low drying solvent B was P b1, P b2, ... and, P total represented by the following formula (i) is, It is in the range of 0.5 × 10 2 to 3.6 × 10 2 Pa, and more preferably in the range of 1.4 × 10 2 to 3.4 × 10 2 Pa.
(Equation i) P total = P a1 × ma1 + P a2 × ma2 +…, P b1 × m b1 + P b2 × m b2 +…
 前記高乾燥性溶媒Aと低乾燥性溶媒Bのモル分率は、前記式(i)を満たせば、特に限定されるものではないが、例えば、高乾燥性溶媒Aのモル分率が、5~40の範囲内で、低乾燥性溶媒Bのモル分率が、95~60の範囲内であることが好ましい。 The mole fractions of the high-drying solvent A and the low-drying solvent B are not particularly limited as long as the formula (i) is satisfied, but for example, the molar fraction of the high-drying solvent A is 5. The mole fraction of the low-drying solvent B is preferably in the range of 95 to 60 within the range of ~ 40.
<ポリシラザン>
 本発明に用いられる「ポリシラザン」とは、構造内にケイ素-窒素結合を持つポリマーで、酸窒化ケイ素の前駆体となるポリマーであり、下記一般式(1)の構造を有するものが好ましく用いられる。
<Polysilazane>
The "polysilazane" used in the present invention is a polymer having a silicon-nitrogen bond in its structure and is a precursor of silicon nitride, and a polymer having the structure of the following general formula (1) is preferably used. ..
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、R1、R2、及びR3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。 In the formula, R 1 , R 2 , and R 3 represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group, respectively.
 本発明では、得られる封止層としての緻密性の観点からは、R1、R2及びR3の全てが水素原子であるパーヒドロポリシラザンが特に好ましい。 In the present invention, perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness of the obtained sealing layer.
 また、本発明に用いられるポリシラザンは、重量平均分子量Mwが1000以上であることが好ましく、より好ましくは3000以上であり、特に7000以上であることが好ましい。また、このような高分子のポリシラザンを全ポリシラザンに対して50質量%以上含有することが好ましい。高分子のポリシラザンを含有することで、インク組成物の粘度調整を行うことができる。
 Mwが、3000以上のポリシラザンとしては、例えば、特許第5172867号公報に記載の方法を参考にして、重量平均分子量Mwが3000以上の高分子量成分のみを有するポリシラザンを得ることができる。
Further, the polysilazane used in the present invention preferably has a weight average molecular weight Mw of 1000 or more, more preferably 3000 or more, and particularly preferably 7000 or more. Further, it is preferable that such a high molecular weight polysilazane is contained in an amount of 50% by mass or more based on the total polysilazane. By containing the high molecular weight polysilazane, the viscosity of the ink composition can be adjusted.
As the polysilazane having an Mw of 3000 or more, for example, a polysilazane having only a high molecular weight component having a weight average molecular weight Mw of 3000 or more can be obtained by referring to the method described in Japanese Patent No. 5172867.
 本発明に用いられるポリシラザンは、有機溶媒に溶解した溶液の状態で市販されているものを使用することができる。
 有機溶媒としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水及び反応性基(例えば、ヒドロキシ基、又はアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。
 具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
 また、ポリシラザンが有機溶媒に溶解したポリシラザン原溶液は、無触媒であってもよいし、触媒を含んでいてもよい。
 触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N',N'-テトラメチル-1,3-ジアミノプロパン、N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1~5質量%の範囲内、より好ましくは0.5~2質量%の範囲内である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成及び膜密度の低下、膜欠陥の増大などを避けることができる。また、これらの触媒を添加することで、より微量の水分量でポリシラザンの酸化を進行する。
 ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。
As the polysilazane used in the present invention, those commercially available in the state of a solution dissolved in an organic solvent can be used.
The organic solvent is not particularly limited as long as it can dissolve polysilazane, but does not contain water and a reactive group (for example, a hydroxy group or an amine group) that easily reacts with polysilazane, and is resistant to polysilazane. An inert organic solvent is preferred, and an aprotic organic solvent is more preferred.
Specifically, as the solvent, an aproton solvent; for example, carbonization of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, sorbesso, turpen and the like. Hydrogen solvent; Halogen hydrocarbon solvent such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran, alicyclic ether and the like Ethers: Examples thereof include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglimes). The solvent is selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more kinds.
Further, the polysilazane raw solution in which polysilazane is dissolved in an organic solvent may be catalyst-free or may contain a catalyst.
As the catalyst, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N', N'- Amine catalysts such as tetramethyl-1,3-diaminopropane, N, N, N', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd. , Metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst to be added at this time is preferably in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 2% by mass, based on the silicon compound. By setting the amount of the catalyst added within this range, it is possible to avoid excessive silanol formation, a decrease in the film density, an increase in film defects, and the like due to the rapid progress of the reaction. In addition, by adding these catalysts, the oxidation of polysilazane proceeds with a smaller amount of water.
Examples of commercially available products of the polysilazane solution include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
 その他、ポリシラザンの詳細については、従来公知である特開2013-255910号公報の段落「0024」~「0040」、特開2013-188942号公報の段落「0037」~「0043」、特開2013-151123号公報の段落「0014」~「0021」、特開2013-052569号公報の段落「0033」~「0045」、特開2013-129557号公報の段落「0062」~「0075」、特開2013-226758号公報の段落「0037」~「0064」等を参照して採用することができる。 In addition, for details of polysilazane, paragraphs "0024" to "0040" of JP2013-255910A, paragraphs "0037" to "0043" of JP2013-188942A, and JP2013-2013, which are conventionally known. Paragraphs "0014" to "0021" of Japanese Patent Application Laid-Open No. 151123, paragraphs "0033" to "0045" of Japanese Patent Application Laid-Open No. 2013-052569, paragraphs "0062" to "0075" of JP-A-2013-129557, Japanese Patent Application Laid-Open No. 2013 -226758 It can be adopted by referring to paragraphs "0037" to "0064" of the publication.
 本発明のインク組成物の粘度は、20℃において1~20mPa・sの範囲内であることが、適度な粘度を有し、インクジェット法による吐出安定性が良好となる点で好ましい。
 粘度の測定は、市販されている回転式や振動式の粘度計によって行うことができる。
The viscosity of the ink composition of the present invention is preferably in the range of 1 to 20 mPa · s at 20 ° C. because it has an appropriate viscosity and the ejection stability by the inkjet method is good.
The viscosity can be measured by a commercially available rotary or vibration viscometer.
 また、本発明のインク組成物は、揮発性増粘剤を含有することが、インク組成物の粘度調整を行うことができる点で好ましい。
 揮発性増粘剤としては、インク組成物の膜形成を阻害しない程度の揮発性を有し、20℃における粘度が概ね1mPa・s以上の液状化合物、又は、混合することで1mPa・s以上の粘度となるような液状混合物であれば特に制限されないが、前述した高乾燥性溶媒A、低乾燥性溶媒B及びポリシラザンとの相溶性があり、ポリシラザンとの反応性を有さないような非プロトン性で、水の溶解度が低い非水溶性の揮発性オイルやグリコールエーテルが好ましい。
 具体的には、揮発性オイルとしては、例えば、テレピン、ペトロール、ミネラルスピリット、α-ピネン、イソパラフィン、揮発性シリコーンオイルなど、グリコールエーテルとしては、例えば、ジエチレングリコールジブチルエーテル(DEGDBE)、トリプロピレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、ジプロピレングリコールジメチルエーテルなどが挙げられ、中でも、ジエチレングリコールジブチルエーテルや、揮発性シリコーンオイルなどの適度な粘度と揮発性と非水溶性を有する化合物は、希釈溶剤と兼用することができる点で好ましい。
Further, it is preferable that the ink composition of the present invention contains a volatile thickener because the viscosity of the ink composition can be adjusted.
As a volatile thickener, a liquid compound having volatileness that does not inhibit the film formation of the ink composition and having a viscosity at 20 ° C. of about 1 mPa · s or more, or a liquid compound having a viscosity of about 1 mPa · s or more when mixed, or 1 mPa · s or more by mixing. It is not particularly limited as long as it is a liquid mixture having a viscosity, but it is an aproton that is compatible with the above-mentioned high-drying solvent A, low-drying solvent B and polysilazane and does not have reactivity with polysilazane. Water-insoluble volatile oils and glycol ethers, which are highly soluble and have low water solubility, are preferred.
Specifically, the volatile oils include, for example, terepine, petrol, mineral spirit, α-pinene, isoparaffin, and volatile silicone oils, and the glycol ethers include, for example, diethylene glycol dibutyl ether (DEGDBE) and tripropylene glycol dimethyl ether. , Diethylene glycol butyl methyl ether, dipropylene glycol dimethyl ether, etc. Among them, compounds having appropriate viscosity, volatility and water insolubility such as diethylene glycol dibutyl ether and volatile silicone oil can also be used as a diluting solvent. It is preferable in that it can be done.
 本発明のインク組成物は、上記有機溶媒に溶解したポリシラザン原溶液に、高乾燥性溶媒A及び低乾燥性溶媒Bを所定のモル分率となるように添加することによって得ることができる。 The ink composition of the present invention can be obtained by adding a high-drying solvent A and a low-drying solvent B to a polysilazane raw solution dissolved in the above organic solvent so as to have a predetermined mole fraction.
 また、ポリシラザン原溶液に、前記高乾燥性溶媒A及び低乾燥性溶媒Bの他に、前記揮発性増粘剤を添加することが好ましい。
 前記高乾燥性溶媒A、低乾燥性溶媒B及び揮発性増粘剤の添加中から添加後にかけて撹拌することが好ましく、さらに、加熱撹拌することが好ましい。加熱温度としては、前記高乾燥性溶媒A及び低乾燥性溶媒Bの沸点以下であることが好ましく、50~120℃の範囲内がより好ましい。加熱手段や撹拌手段としては特に制限はなく、溶液を加熱、撹拌するための一般的な方法を適用することができるが、加熱する場合は、間接的に溶液の入った容器や釜を温めることで液を加熱する方法が好ましい。また、撹拌の場合は、撹拌羽を取り付けたシャフトをモーターにより回転させる方法、液が少量であれば撹拌子とスターラーを用いて撹拌する方法などが適用できる。
 また、塗布液を安定化(脱泡)させるために、加熱、撹拌又は超音波分散させることが好ましい。
Further, it is preferable to add the volatile thickener to the polysilazane original solution in addition to the highly dry solvent A and the low dry solvent B.
It is preferable to stir during and after the addition of the high-drying solvent A, the low-drying solvent B and the volatile thickener, and further, it is preferable to heat and stir. The heating temperature is preferably equal to or lower than the boiling point of the high-drying solvent A and the low-drying solvent B, and more preferably in the range of 50 to 120 ° C. The heating means and the stirring means are not particularly limited, and a general method for heating and stirring the solution can be applied, but when heating, the container or the kettle containing the solution is indirectly heated. The method of heating the liquid with is preferable. Further, in the case of stirring, a method of rotating a shaft to which a stirring blade is attached by a motor, a method of stirring using a stirrer and a stirrer if the amount of liquid is small, and the like can be applied.
Further, in order to stabilize (defoam) the coating liquid, it is preferable to heat, stir or ultrasonically disperse it.
 本発明のインク組成物は、溶存ガス量の経過時間後の増加量(ΔV)が、ΔV<100ppm/dayであることが、気泡が発生せずに、安定化したインク組成物とすることができる点で好ましい。また、ΔV<10ppm/dayであることがより好ましく、ΔV<1ppm/dayであることが特に好ましい。
 溶存ガス量の測定方法は、例えば、インク組成物を加熱、撹拌又は超音波分散後に発生したガスを捕集し、GC/MS及び検出したいガスに適した検出器を組み合わせることで、ガスの同定及び定量が可能となる。また、ポリシラザンの酸化反応で発生し塗布液への溶存が懸念されるガスとしては、アンモニアガス、シランガスであることが分かっているため、対象となるガスに応じたガス検知管やガス検知器を用いて発生量を定量し、その総量を溶存ガス量として推算することも可能である。
The ink composition of the present invention can be a stable ink composition without bubbles when the amount of increase (ΔV) of the dissolved gas amount after the elapsed time is ΔV <100 ppm / day. It is preferable in that it can be done. Further, ΔV <10 ppm / day is more preferable, and ΔV <1 ppm / day is particularly preferable.
The method for measuring the amount of dissolved gas is, for example, to identify the gas by collecting the gas generated after heating, stirring or ultrasonically dispersing the ink composition, and combining GC / MS and a detector suitable for the gas to be detected. And quantification is possible. In addition, since it is known that ammonia gas and silane gas are the gases that are generated in the oxidation reaction of polysilazane and may be dissolved in the coating liquid, gas detector tubes and gas detectors according to the target gas are used. It is also possible to quantify the amount generated using this and estimate the total amount as the amount of dissolved gas.
[電子デバイス封止層形成方法]
 本発明の電子デバイス封止層形成方法は、前記した本発明のインク組成物を用いて、封止層を形成する方法であって、電子デバイス上に気相法により第1封止層を形成する工程と、前記第1封止層上に前記インク組成物を塗布することにより第2封止層を形成する工程と、を備える。
 また、前記第2封止層上に、気相法により第3封止層を形成する工程を備えることが、電子デバイスの封止性能をより高めることができる点で好ましい。
[Method for forming an electronic device encapsulation layer]
The method for forming an electronic device encapsulating layer of the present invention is a method for forming an encapsulating layer using the above-mentioned ink composition of the present invention, and a first encapsulating layer is formed on an electronic device by a vapor phase method. A step of forming a second sealing layer by applying the ink composition onto the first sealing layer is provided.
Further, it is preferable to provide a step of forming the third sealing layer on the second sealing layer by the vapor phase method in that the sealing performance of the electronic device can be further improved.
<第1封止層形成工程>
 第1封止層形成工程は、電子デバイス上に気相法により第1封止層を形成する。
 気相法としては、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法等の化学蒸着法等が挙げられる。中でも、CVD法により形成することが好ましい。
 第1封止層は、窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
 第1封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
<First sealing layer forming step>
In the first sealing layer forming step, the first sealing layer is formed on the electronic device by the vapor phase method.
The vapor phase method includes a sputtering method (including a reactive sputtering method such as magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, and bipolar AC rotating magnetron sputtering), and a vapor deposition method (for example, resistance heating). Vapor deposition, electron beam vapor deposition, ion beam vapor deposition, plasma-assisted vapor deposition, etc.), thermal CVD method, catalytic chemical vapor deposition method (Cat-CVD), capacitive coupling plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method. (PE-CVD), an epitaxial growth method, a chemical vapor deposition method such as an atomic layer growth method, and the like can be mentioned. Above all, it is preferably formed by the CVD method.
The first sealing layer contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
The thickness of the first sealing layer is preferably in the range of, for example, 10 to 1000 nm, and more preferably in the range of 100 to 500 nm.
<第2封止層形成工程>
 第2封止層形成工程は、前記第1封止層上に前記した本発明のインク組成物を塗布することにより第2封止層を形成する。
 具体的には、前記第1封止層上に、前記インク組成物を塗布し(塗布工程)、得られた塗布膜を乾燥させる乾燥工程をさらに行うことが好ましく、また、乾燥工程後、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
<Second sealing layer forming step>
In the second sealing layer forming step, the second sealing layer is formed by applying the above-mentioned ink composition of the present invention on the first sealing layer.
Specifically, it is preferable to further perform a drying step of applying the ink composition on the first sealing layer (coating step) and drying the obtained coating film, and after the drying step, obtain the ink composition. It may have a step of irradiating the coated film with vacuum ultraviolet rays in a nitrogen atmosphere to modify it.
 (塗布工程)
 インク組成物の塗布方法としては、任意の適切な方法を採用することができ、例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。中でも、インクジェット法を用いることが有機EL素子などの電子デバイスを封止する際に求められる微細なパターニングをオンデマンドで行える点で好ましい。
(Applying process)
Any suitable method can be adopted as the coating method of the ink composition, for example, spin coating method, roll coating method, flow coating method, inkjet method, spray coating method, printing method, dip coating method, flow. Examples include a spread film forming method, a bar coating method, and a gravure printing method. Above all, it is preferable to use the inkjet method in that fine patterning required when encapsulating an electronic device such as an organic EL element can be performed on demand.
 インクジェット方式としては、公知の方法を用いることができる。
 インクジェット方式は、大別するとドロップオンデマンド方式とコンティニュアス方式二つに分けられ、どちらも使用することができる。ドロップオンデマンド方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)及び放電方式(例えば、スパークジェット型等)等がある。インクジェットヘッドのコストや生産性の観点からは、電気-機械変換方式、又は電気-熱変換方式のヘッドを用いることが好ましい。なお、インクジェット方式により、液滴(例えば、塗布液)を滴下させる方法を「インクジェット法」と呼ぶ場合がある。
As the inkjet method, a known method can be used.
The inkjet method is roughly divided into a drop-on-demand method and a continuous method, both of which can be used. The drop-on-demand method includes an electric-mechanical conversion method (for example, single cavity type, double cavity type, bender type, piston type, shared mode type, shared wall type, etc.) and an electric-heat conversion method (for example, thermal). There are an inkjet type, a bubble jet (registered trademark) type, etc.), an electrostatic attraction method (for example, an electric field control type, a slit jet type, etc.) and a discharge method (for example, a spark jet type, etc.). From the viewpoint of cost and productivity of the inkjet head, it is preferable to use an electric-mechanical conversion method or an electric-heat conversion method head. A method of dropping droplets (for example, a coating liquid) by an inkjet method may be called an "inkjet method".
 前記インク組成物を塗布する際には、窒素雰囲気下にて行うことが好ましい。 When applying the ink composition, it is preferable to apply it in a nitrogen atmosphere.
 (乾燥工程)
 前記乾燥工程では、前記インク組成物と塗布して得られた塗布膜を乾燥することによって、塗布膜中に含有される溶媒(高乾燥性溶媒A及び低乾燥性溶媒B等を含む溶媒)を除去する。
 乾燥工程も、窒素雰囲気下にて行うことが好ましい。乾燥方法については、従来公知である特開2014-151571号公報の段落「0058」~「0064」、特開2011-183773号公報の段落「0052」~「0056」等を参照して採用することができる。
(Drying process)
In the drying step, the solvent contained in the coating film (solvent containing high drying solvent A, low drying solvent B, etc.) is dried by drying the coating film obtained by coating with the ink composition. Remove.
The drying step is also preferably performed in a nitrogen atmosphere. The drying method shall be adopted with reference to the conventionally known paragraphs "0058" to "0064" of JP-A-2014-151571, paragraphs "0052" to "0056" of JP-A-2011-183773, and the like. Can be done.
 (改質処理工程)
 前記改質処理工程では、乾燥工程後、得られた塗布膜に窒素雰囲気下にて真空紫外線照射して改質処理する工程を有してもよい。
 改質処理とは、ポリシラザンの酸化ケイ素又は酸窒化ケイ素への転化反応をいう。改質処理も、同様に、グローブボックス内といった窒素雰囲気下や減圧下で行う。
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。本発明においては、低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明においては、上記塗布膜を設け、波長200nm以下の真空紫外光(VUVともいう。)を照射して改質処理することにより、本発明の第2封止層を形成することが好ましい。
(Modification process)
The modification treatment step may include a step of irradiating the obtained coating film with vacuum ultraviolet rays in a nitrogen atmosphere after the drying step to perform the modification treatment.
The reforming treatment refers to a conversion reaction of polysilazane to silicon oxide or silicon nitride. Similarly, the reforming treatment is performed under a nitrogen atmosphere such as in a glove box or under reduced pressure.
For the modification treatment in the present invention, a known method based on the conversion reaction of polysilazane can be selected. In the present invention, a conversion reaction using plasma, ozone, or ultraviolet rays, which can be converted at a low temperature, is preferable. Conventionally known methods can be used for plasma and ozone. In the present invention, it is preferable to form the second sealing layer of the present invention by providing the coating film and irradiating it with vacuum ultraviolet light (also referred to as VUV) having a wavelength of 200 nm or less for modification treatment.
 第2封止層の厚さは、10~1000nmの範囲内が好ましく、より好ましくは100~500nmの範囲内である。
 当該第2封止層のうち、層全体が改質された層であってもよいが、改質処理された改質層の厚さは、1~50nmの範囲内が好ましく、1~30nmの範囲内がさらに好ましい。
The thickness of the second sealing layer is preferably in the range of 10 to 1000 nm, more preferably in the range of 100 to 500 nm.
Of the second sealing layer, the entire layer may be modified, but the thickness of the modified layer after modification is preferably in the range of 1 to 50 nm, and is preferably 1 to 30 nm. Within the range is more preferred.
 前記真空紫外線を照射して改質処理する工程において、塗布膜が受ける塗布膜面での該真空紫外線の照度は30~200mW/cm2の範囲内であることが好ましく、50~160mW/cm2の範囲内であることがより好ましい。真空紫外線の照度を30mW/cm2以上とすることで、改質効率を十分に向上することができ、200mW/cm2以下では、塗布膜への損傷発生率を極めて抑え、また、基材への損傷も低減させることができるため、好ましい。 In the step of irradiating the vacuum ultraviolet rays for the modification treatment, the illuminance of the vacuum ultraviolet rays on the coating film surface received by the coating film is preferably in the range of 30 to 200 mW / cm 2 , and is preferably 50 to 160 mW / cm 2. It is more preferable that it is within the range of. By setting the illuminance of the vacuum ultraviolet rays to 30 mW / cm 2 or more, the reforming efficiency can be sufficiently improved, and when it is 200 mW / cm 2 or less, the damage occurrence rate to the coating film is extremely suppressed, and the substrate can be used. It is preferable because it can also reduce the damage of the illuminance.
 真空紫外線の照射は、塗布膜面における真空紫外線の照射エネルギー量は、1~10J/cm2の範囲内であることが好ましく、デシカント機能を維持するためのバリアー性及び湿熱耐性の観点から、3~7J/cm2の範囲内であることがより好ましい。 For vacuum ultraviolet irradiation, the amount of vacuum ultraviolet irradiation energy on the coating film surface is preferably in the range of 1 to 10 J / cm 2 , and from the viewpoint of barrier properties and moist heat resistance for maintaining the desiccant function, 3 More preferably, it is in the range of about 7 J / cm 2.
 なお、真空紫外線の光源としては、希ガスエキシマランプが好ましく用いられる。真空紫外光は、酸素による吸収があるため真空紫外線照射工程での効率が低下しやすいことから、真空紫外光の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外光照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内、さらに好ましくは80~4500ppmの範囲内、最も好ましくは100~1000ppmの範囲内である。 A rare gas excimer lamp is preferably used as a light source for vacuum ultraviolet rays. Since vacuum ultraviolet light is absorbed by oxygen, the efficiency in the vacuum ultraviolet irradiation step tends to decrease. Therefore, it is preferable to irradiate vacuum ultraviolet light in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration during vacuum ultraviolet light irradiation is preferably in the range of 10 to 10000 ppm, more preferably in the range of 50 to 5000 ppm, further preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm. Is within the range of.
 改質処理は、加熱処理と組み合わせて行うこともできる。加熱条件としては、好ましくは50~300℃の範囲内、より好ましくは60~150℃の範囲内の温度で、好ましくは1秒~60分間、より好ましくは10秒~10分間、加熱処理を併用することで、改質時の脱水縮合反応を促進し、より効率的に改質体を形成することができる。 The reforming treatment can also be performed in combination with the heat treatment. The heating conditions are preferably in the range of 50 to 300 ° C., more preferably in the range of 60 to 150 ° C., preferably in combination with heat treatment for 1 second to 60 minutes, more preferably 10 seconds to 10 minutes. By doing so, the dehydration condensation reaction at the time of modification can be promoted, and the modified product can be formed more efficiently.
 加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に限定されない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。 Examples of the heat treatment include a method of contacting a base material with a heating element such as a heat block to heat the coating film by heat conduction, a method of heating the atmosphere with an external heater using a resistance wire or the like, and an infrared region such as an IR heater. A method using the light of the above can be mentioned, but the method is not particularly limited. Further, a method capable of maintaining the smoothness of the coating film containing the silicon compound may be appropriately selected.
<第3封止層形成工程>
 第3封止層形成工程は、前記第2封止層上に気相法により第3封止層を形成する。
 気相法としては、第1封止層形成工程で用いた気相法と同様に、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法等の化学蒸着法等が挙げられる。中でも、CVD法により形成することが好ましい。
 第3封止層は、窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
 第3封止層の厚さは、例えば、10~1000nmの範囲内であることが好ましく、100~500nmの範囲内であることがより好ましい。
<Third sealing layer forming step>
In the third sealing layer forming step, the third sealing layer is formed on the second sealing layer by the vapor phase method.
The vapor phase method is the same as the vapor phase method used in the first sealing layer forming step, such as a sputtering method (for example, magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.). , Including reactive sputtering method), vapor deposition method (for example, resistance heating vapor deposition, electron beam deposition, ion beam vapor deposition, plasma-assisted vapor deposition, etc.), thermal CVD method, catalytic chemical vapor deposition method (Cat-CVD), capacity. Examples thereof include a combined plasma CVD method (CCP-CVD), an optical CVD method, a plasma CVD method (PE-CVD), an epitaxial growth method, a chemical vapor deposition method such as an atomic layer growth method, and the like. Above all, it is preferably formed by the CVD method.
The third sealing layer contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
The thickness of the third sealing layer is preferably in the range of, for example, 10 to 1000 nm, and more preferably in the range of 100 to 500 nm.
<第2封止層がポリシラザン由来であることの判定>
 本発明に係る第2封止層においては、前駆体としてポリシラザン、特に好ましくはパーヒドロポリシラザンを用いて形成することが好ましい態様であるが、最終完成物である第2封止層が、ポリシラザンにより形成された層であることは、下記の方法により分析することにより実証することができる。
<Determination that the second sealing layer is derived from polysilazane>
In the second sealing layer according to the present invention, it is preferable to form polysilazane as a precursor, particularly preferably perhydropolysilazane, but the final finished second sealing layer is made of polysilazane. The formed layer can be demonstrated by analysis by the following method.
 本発明においては、ポリシラザンとしてはパーヒドロポリシラザンを適用した例について説明する。 In the present invention, an example in which perhydropolysilazane is applied as polysilazane will be described.
 市販のパーヒドロポリシラザンの一般的な組成をSiNvwとしたときに、vは0.78~0.80となる。パーヒドロポリシラザンから形成された前駆体層は、形成雰囲気の水分や酸素を取り込み、アンモニアや水素を放出して、下式(A)及び式(B)で示すように組成が変化していく。 When the general composition of commercially available perhydropolysilazane is SiN v H w , v is 0.78 to 0.80. The precursor layer formed from perhydropolysilazane takes in water and oxygen in the forming atmosphere and releases ammonia and hydrogen, and the composition changes as shown by the following formulas (A) and (B).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 その過程において、窒素が1個放出されるのに対し、酸素が3個取り込まれるという法則におおよそ従う。これは、上述の種々の改質処理を行った場合にもあてはまるものである。したがって、パーヒドロポリシラザンから塗布形成された第2封止層の組成をSiOxyで示した際に、xとyの関係は下式(C)に従う。 In the process, one nitrogen is released, while three oxygens are taken in. This also applies when the above-mentioned various reforming treatments are performed. Therefore, when the composition of the second sealing layer coated and formed from perhydropolysilazane is shown by SiO x N y , the relationship between x and y follows the following formula (C).
 式(C)
   y=0.8-x/3、x≧0、y≧0、
 元の組成がSiN0.8wの場合、パーヒドロポリシラザンから塗布形成された層の厚さ方向の組成分布をXPSにより分析した場合、厚さ方向の各測定点でのいずれの組成も上記式にあてはまることになる(数%の誤差は存在する)。
Equation (C)
y = 0.8-x / 3, x ≧ 0, y ≧ 0,
When the original composition is SiN 0.8 H w , when the composition distribution in the thickness direction of the layer coated and formed from perhydropolysilazane is analyzed by XPS, all the compositions at each measurement point in the thickness direction are as described above. That would be the case (there is a few percent error).
 したがって、Siを含有する層の厚さ方向の組成分布を分析して、SiOxyで示した際に、その形成した第2封止層の厚さに対して、その80%以上となる測定点の組成が、yの値が(0.8-x/3)の±2%の範囲に入っていた場合、その膜はパーヒドロポリシラザンから形成された封止層であると推定することが可能となる。 Therefore, when the composition distribution of the Si-containing layer in the thickness direction is analyzed and indicated by SiO x N y , it is 80% or more of the thickness of the formed second sealing layer. If the composition of the measurement point is in the range of ± 2% of the value of y (0.8-x / 3), it is estimated that the membrane is a sealing layer formed from perhydropolysilazane. Is possible.
[電子デバイス封止層]
 本発明の電子デバイス封止層は、窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、前記第1封止層に混在する欠陥領域と、前記第1封止層に隣接して設けられ、ポリシラザンを含有する第2封止層と、前記欠陥領域と前記第1封止層との間の隙間に設けられ、ポリシラザンが充填されたポリシラザン領域と、を有する。
 本発明の電子デバイス封止層は、前記電子デバイス封止層形成方法により形成される。すなわち、前記した本発明のインク組成物を用いて第2封止層及びポリシラザン領域が形成される。
 また、本発明の電子デバイス封止層は、前記第2封止層上に、さらに気相法により形成される第3封止層を設けてもよい。
[Electronic device sealing layer]
The electronic device encapsulation layer of the present invention has a first encapsulation layer containing silicon nitride, silicon oxide or silicon oxynitride, a defect region mixed in the first encapsulation layer, and adjacent to the first encapsulation layer. It has a second sealing layer containing polysilazane and a polysilazane region provided in a gap between the defect region and the first sealing layer and filled with polysilazane.
The electronic device sealing layer of the present invention is formed by the method for forming an electronic device sealing layer. That is, the second sealing layer and the polysilazane region are formed by using the ink composition of the present invention described above.
Further, in the electronic device encapsulation layer of the present invention, a third encapsulation layer formed by a vapor phase method may be further provided on the second encapsulation layer.
<第1封止層>
 第1封止層は、電子デバイス上に前記した気相法により形成される層である。具体的には、窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
<First sealing layer>
The first sealing layer is a layer formed on the electronic device by the vapor phase method described above. Specifically, it contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride.
<欠陥領域>
 前記第1封止層には、欠陥領域が混在している。
 本発明でいう「欠陥領域」とは、前記第1封止層を形成する際の気相法により、当該第1封止層中に混在する異物、及び、当該異物により前記気相法による成膜が異常成長した部分をいう。
 具体的には、図1に示すように、異物4と、当該異物4の周囲の異常成長した部分5を含む領域を欠陥領域6という。また、このような欠陥領域6と前記第1封止層2との間には、隙間7が生じている。当該隙間7の間隔Pは、電子顕微鏡(例えば、JEOL社製のJEM-2010F)を用いて200k倍率(加速電圧200kV)で断面観察した際に15nm以下であることが好ましく、10nm以下であることがより好ましい。
 前記隙間7の間隔Pは、以下のとおりにして計測した。
 まず、第1封止層2の厚さの下側から1/3の位置の水平線A1と、2/3の位置の水平線A2とをそれぞれ引く。次いで、第1封止層2において、前記1/3の位置の水平線A1と、前記2/3の位置の水平線A2との交差する点同士をそれぞれ結ぶ接線B1を引く。同様にして、異常成長した部分5においても、前記1/3の位置の水平線A1と、前記2/3の位置の水平線A2との交差する点同士をそれぞれ結ぶ接線B2を引く。そして、第1封止層2側の前記接線B1と、異常成長した部分5側の前記接線B2の中点同士の距離を計測する。
 なお、図1中、符号1は電子デバイス、符号3は第2封止層を示す。
<Defect area>
Defect regions are mixed in the first sealing layer.
The "defect region" referred to in the present invention means a foreign substance mixed in the first sealing layer by the gas phase method when forming the first sealing layer, and a foreign substance formed by the gas phase method by the foreign substance. The part where the membrane has grown abnormally.
Specifically, as shown in FIG. 1, the region including the foreign matter 4 and the abnormally grown portion 5 around the foreign matter 4 is referred to as a defect region 6. Further, a gap 7 is formed between the defect region 6 and the first sealing layer 2. The interval P of the gap 7 is preferably 15 nm or less, preferably 10 nm or less, when the cross section is observed at a 200 k magnification (acceleration voltage 200 kV) using an electron microscope (for example, JEM-2010F manufactured by JEOL). Is more preferable.
The interval P of the gap 7 was measured as follows.
First, a horizontal line A 1 at a position of 1/3 and a horizontal line A 2 at a position of 2/3 are drawn from the lower side of the thickness of the first sealing layer 2. Next, in the first sealing layer 2, a tangent line B 1 connecting the intersecting points of the horizontal line A 1 at the 1/3 position and the horizontal line A 2 at the 2/3 position is drawn. Similarly, in the abnormally grown portion 5, a tangent line B 2 connecting the intersecting points of the horizontal line A 1 at the 1/3 position and the horizontal line A 2 at the 2/3 position is drawn. Then, the distance between the tangent line B 1 on the first sealing layer 2 side and the midpoint of the tangent line B 2 on the abnormally grown portion 5 side is measured.
In FIG. 1, reference numeral 1 indicates an electronic device, and reference numeral 3 indicates a second sealing layer.
 前記隙間には、ポリシラザンが充填されたポリシラザン領域が設けられている。
 前記ポリシラザン領域は、前記第1封止層上に、ポリシラザン、高乾燥性溶媒A及び低乾燥性溶媒Bを含有した本発明のインク組成物を塗布すること(第2封止層形成工程)によって、前記隙間にインク組成物が塗布されて形成される。そのため、前記インク組成物を塗布した塗布膜を乾燥することによって、塗布膜中に含有される溶媒(高乾燥性溶媒A及び低乾燥性溶媒B等を含む溶媒)が除去されてポリシラザンを含有するポリシラザン領域が、前記隙間に形成されることになる。このようなポリシラザン領域により、第1封止層と欠陥領域との間の隙間が封止されるため、封止性能が向上する。
The gap is provided with a polysilazane region filled with polysilazane.
The polysilazane region is formed by applying the ink composition of the present invention containing polysilazane, a high-drying solvent A, and a low-drying solvent B on the first sealing layer (second sealing layer forming step). , The ink composition is applied to the gap to form the gap. Therefore, by drying the coating film to which the ink composition is applied, the solvent contained in the coating film (solvent containing high-drying solvent A, low-drying solvent B, etc.) is removed, and polysilazane is contained. A polysilazane region will be formed in the gap. Since the gap between the first sealing layer and the defective region is sealed by such a polysilazane region, the sealing performance is improved.
<第2封止層>
 第2封止層は、前記第1封止層に隣接して設けられ、ポリシラザンを含有する層である。第2封止層は、前記第1封止層上に前記インク組成物を塗布することにより形成される。
 したがって、第2封止層は、前記ポリシラザン領域と同様に、前記インク組成物を塗布した塗布膜を乾燥することによって、塗布膜中に含有される溶媒(高乾燥性溶媒A及び低乾燥性溶媒B等を含む溶媒)が除去されてポリシラザンを含有する層となる。
<Second sealing layer>
The second sealing layer is a layer provided adjacent to the first sealing layer and containing polysilazane. The second sealing layer is formed by applying the ink composition on the first sealing layer.
Therefore, the second sealing layer is a solvent contained in the coating film (high-drying solvent A and low-drying solvent) by drying the coating film coated with the ink composition, similarly to the polysilazane region. The solvent (solvent containing B and the like) is removed to form a layer containing polysilazane.
<第3封止層>
 第3封止層は、前記第2封止層に隣接して設けられ、前記した気相法により形成される層である。具体的には、第1封止層と同様に窒化ケイ素(SiN)、酸化ケイ素(一酸化ケイ素、二酸化ケイ素等)又は酸窒化ケイ素を含有する。
<Third sealing layer>
The third sealing layer is a layer provided adjacent to the second sealing layer and formed by the vapor phase method described above. Specifically, it contains silicon nitride (SiN), silicon oxide (silicon monoxide, silicon dioxide, etc.) or silicon oxynitride as in the first sealing layer.
[電子デバイス]
 本発明の電子デバイス封止層形成方法及び電子デバイス封止層において、封止される電子デバイスとしては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスター、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子又は太陽電池が好ましく、有機EL素子が特に好ましい。
[Electronic device]
In the electronic device sealing layer forming method and the electronic device sealing layer of the present invention, examples of the electronic device to be sealed include an organic EL element, a liquid crystal display element (LCD), a thin film, a touch panel, an electronic paper, and a solar cell. (PV) and the like can be mentioned. From the viewpoint that the effects of the present invention can be obtained more efficiently, an organic EL element or a solar cell is preferable, and an organic EL element is particularly preferable.
<有機EL素子>
 本発明に係る電子デバイスとして採用される有機EL素子は、ボトムエミッション型、すなわち、透明基材側から光を取り出すようにしたものであってもよい。
 ボトムエミッション型は、具体的には、透明基材上に、カソードとなる透明電極、発光機能層、アノードとなる対向電極をこの順で積層することにより構成されている。
 また、本発明に係る有機EL素子は、トップエミッション型、すなわち、基材とは逆のカソードとなる透明電極側から光を取り出すようにしたものであってもよい。
 トップエミッション型は、具体的には、基材側にアノードとなる対向電極を設け、この表面に発光機能層、カソードとなる透明電極を順に積層した構成である。
<Organic EL element>
The organic EL element adopted as the electronic device according to the present invention may be a bottom emission type, that is, one in which light is extracted from the transparent substrate side.
Specifically, the bottom emission type is configured by laminating a transparent electrode serving as a cathode, a light emitting functional layer, and a counter electrode serving as an anode on a transparent base material in this order.
Further, the organic EL element according to the present invention may be a top emission type, that is, one in which light is taken out from the transparent electrode side which is the cathode opposite to the base material.
Specifically, the top emission type has a configuration in which a counter electrode serving as an anode is provided on the base material side, and a light emitting functional layer and a transparent electrode serving as a cathode are laminated in this order on the surface thereof.
 以下に、有機EL素子の構成の代表例を示す。
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 さらに、有機EL素子は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
A typical example of the configuration of the organic EL element is shown below.
(I) Anophode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (ii) anode / hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer / cathode (iii) anode / Hole injection transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer / cathode (iv) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / Cathode (v) anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode (vi) anode / hole injection layer / hole transport layer / electron blocking Layer / light emitting layer / hole blocking layer / electron transporting layer / electron injection layer / cathode Further, the organic EL element may have a non-luminescent intermediate layer. The intermediate layer may be a charge generation layer or may have a multi-photon unit configuration.
Regarding the outline of the organic EL element applicable to the present invention, for example, Japanese Patent Application Laid-Open No. 2013-157634, Japanese Patent Application Laid-Open No. 2013-168552, Japanese Patent Application Laid-Open No. 2013-177361, Japanese Patent Application Laid-Open No. 2013-187211, JP-A-2013 2013-191644, 2013-191804, 2013-225678, 2013-235994, 2013-243234, 2013-243236, 2013-2013 242366, 2013-243371, 2013-245179, 2014-003249, 2014-003299, 2014-013910, 2014-017493 Examples thereof include the configurations described in Japanese Patent Application Laid-Open No. 2014-017494.
<基材>
 前記有機EL素子に用いることのできる基材(以下、支持基板、基体、基板、支持体等ともいう。)としては、具体的には、ガラス又は樹脂フィルムの適用が好ましく、フレキシブル性を要求される場合は、樹脂フィルムであることが好ましい。
 また、透明であっても不透明であってもよい。基材側から光を取り出す、いわゆるボトムエミッション型の場合には、基材は透明であることが好ましい。
<Base material>
Specifically, as a base material (hereinafter, also referred to as a support substrate, a base, a substrate, a support, etc.) that can be used for the organic EL element, it is preferable to apply a glass or a resin film, and flexibility is required. If so, it is preferably a resin film.
Further, it may be transparent or opaque. In the case of the so-called bottom emission type in which light is extracted from the base material side, the base material is preferably transparent.
 好ましい樹脂としては、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂は、単独でも又は2種以上組み合わせても用いることができる。 Preferred resins include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, and cellulose acylate resin. , Polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic modified polycarbonate resin, fluorene ring modified Examples thereof include a base material containing a thermoplastic resin such as a polyester resin and an acryloyl compound. The resin can be used alone or in combination of two or more.
 基材は、耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の基材が使用される。
 該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。すなわち、これらの用途に本発明の封止膜を用いる場合、基材は、150℃以上の工程に曝されることがある。この場合、基材の線膨張係数が100ppm/Kを超えると、前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張及び収縮に伴い、遮断性性能が劣化する不都合や、又は熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。
The base material is preferably made of a material having heat resistance. Specifically, a substrate having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
The base material meets the requirements for electronic component applications and laminated films for displays. That is, when the sealing film of the present invention is used for these applications, the base material may be exposed to a step of 150 ° C. or higher. In this case, if the coefficient of linear expansion of the base material exceeds 100 ppm / K, the substrate dimensions will not be stable when the substrate is passed through the process at the above temperature, and the blocking performance will deteriorate due to thermal expansion and contraction. Or, the problem of not being able to withstand the thermal process is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
 基材のTgや線膨張係数は、添加剤などによって調整することができる。
 基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内温度はTgを示す)。
The Tg and the coefficient of linear expansion of the base material can be adjusted with an additive or the like.
More preferable specific examples of the thermoplastic resin that can be used as a base material include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic type. Polyethylene (for example, manufactured by Nippon Zeon Co., Ltd., Zeonoa (registered trademark) 1600: 160 ° C.), polyarylate (PAr: 210 ° C.), polyethersulfone (PES: 220 ° C.), polysulfone (PSF: 190 ° C.), cycloolefin copolymer (COC: Compound described in JP-A-2001-150584: 162 ° C.), Polyethylene (for example, manufactured by Mitsubishi Gas Chemicals Co., Ltd., Neoprim (registered trademark): 260 ° C.), Fluorene ring-modified polycarbonate (BCF-PC: JP-A.) Compound described in JP-A-2000-227603: 225 ° C.), alicyclic-modified polycarbonate (IP-PC: compound described in JP-A-2000-227603: 205 ° C.), acryloyl compound (Japanese Patent Laid-Open No. 2002-80616). The compound described: 300 ° C. or higher) and the like (the temperature in parentheses indicates Tg).
 本発明に係る電子デバイスは、有機EL素子等の電子デバイスであることから、基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the electronic device according to the present invention is an electronic device such as an organic EL element, it is preferable that the base material is transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, an integrating sphere type light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 また、上記に挙げた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号の段落「0051」~「0055」の記載された事項を適宜採用することができる。 Further, the base material listed above may be an unstretched film or a stretched film. The base material can be produced by a conventionally known general method. As for the method for producing these base materials, the matters described in paragraphs "0051" to "0055" of International Publication No. 2013/002026 can be appropriately adopted.
 基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、又はプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。また、基材には易接着処理を行ってもよい。 The surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, etc., and the above treatments may be combined as necessary. May be. Further, the base material may be subjected to an easy-adhesion treatment.
 該基材は、単層でもよいし2層以上の積層構造であってもよい。該基材が2層以上の積層構造である場合、各基材は同じ種類であってもよいし異なる種類であってもよい。 The base material may have a single layer or a laminated structure of two or more layers. When the base material has a laminated structure of two or more layers, each base material may be of the same type or of a different type.
 本発明に係る基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The thickness of the base material according to the present invention (in the case of a laminated structure of two or more layers, the total thickness thereof) is preferably 10 to 200 μm, more preferably 20 to 150 μm.
 また、フィルム基材の場合は、ガスバリアー層付きフィルム基材であることが好ましい。 Further, in the case of a film base material, it is preferable that the film base material has a gas barrier layer.
 前記フィルム基材用のガスバリアー層は、フィルム基材の表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m2・24h以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m2・24h・atm以下、水蒸気透過度が、1×10-3g/m2・24h以下の高ガスバリアー性フィルムであることが好ましい。 The gas barrier layer for the film base material may have a film of an inorganic substance, an organic substance, or a hybrid film of both of them formed on the surface of the film base material, and is measured by a method according to JIS K 7129-1992. and water vapor transmission rate is preferably (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is barrier film follows 0.01g / m 2 · 24h, more, JIS K 7126- oxygen permeability was measured in compliance with the method 1987 is, 1 × 10 -3 mL / m 2 · 24h · atm or less, the water vapor permeability is, 1 × 10 -3 g / m 2 · 24h or less high gas barrier It is preferably a sex film.
 前記ガスバリアー層を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等を用いることができる。 The material for forming the gas barrier layer may be any material having a function of suppressing infiltration of substances such as moisture and oxygen that cause deterioration of the element, and for example, silicon monoxide, silicon dioxide, silicon nitride, silicon nitride, and the like. Silicon carbide, silicon acid acid carbide and the like can be used.
 当該ガスバリアー層は、特に限定されないが、例えば、一酸化ケイ素、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等の無機ガスバリアー層の場合は、無機材料をスパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、二極AC平板マグネトロンスパッタリング、二極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法、反応性スパッタ法等の化学蒸着法等によって層形成することが好ましい。 The gas barrier layer is not particularly limited, but in the case of an inorganic gas barrier layer such as silicon monoxide, silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, silicon acid carbide, for example, the inorganic material is subjected to a sputtering method (for example). , Magneton cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotary magnetron sputtering, etc.), vapor deposition method (for example, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma assisted vapor deposition, etc.), thermal CVD Method, catalytic chemical vapor deposition method (Cat-CVD), capacitively coupled plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method (PE-CVD), epitaxial growth method, atomic layer growth method, reactive sputtering method It is preferable to form a layer by a chemical vapor deposition method or the like.
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上に塗布した後、真空紫外光の照射などにより改質処理を行い、無機ガスバリアー層を形成する方法や、樹脂基材への金属めっき、金属箔と樹脂基材とを接着させる等のフィルム金属化技術などによっても、無機ガスバリアー層は形成される。 Further, a method of forming an inorganic gas barrier layer by applying a coating liquid containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS) on the support and then performing a modification treatment by irradiation with vacuum ultraviolet light or the like. The inorganic gas barrier layer is also formed by metal plating on a resin base material, film metallization technology such as bonding a metal foil and a resin base material, and the like.
 また、無機ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、無機ガスバリアー層は、無機材料を含む無機層と有機層との積層体であってもよい。 Further, the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
 有機層は、例えば、有機モノマー又は有機オリゴマーを樹脂基材に塗布し、層を形成し、続いて、例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、有機モノマー又は有機オリゴマーからポリマーを形成することによっても形成することができる。コーティング効率は、樹脂基材を冷却することにより改善され得る。 The organic layer is, for example, coated with an organic monomer or an organic oligomer on a resin substrate to form a layer, which is subsequently polymerized using, for example, an electron beam device, a UV light source, a discharge device, or other suitable device. And, if necessary, it can be formed by cross-linking. It can also be formed, for example, by depositing an organic monomer or an organic oligomer capable of flash evaporation and radiation cross-linking, and then forming a polymer from the organic monomer or the organic oligomer. Coating efficiency can be improved by cooling the resin substrate.
 有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。 Examples of the method for applying the organic monomer or organic oligomer include roll coating (for example, gravure roll coating) and spray coating (for example, electrostatic spray coating). In addition, examples of the laminate of the inorganic layer and the organic layer include the laminate described in International Publication No. 2012/003198 and International Publication No. 2011/013341.
 無機層と有機層との積層体である場合、各層の厚さは同じでもよいし、異なっていてもよい。無機層の厚さは、好ましくは3~1000nmの範囲内、より好ましくは10~300nmの範囲内である。有機層の厚さは、好ましくは100nm~100μmの範囲内、より好ましくは1~50μmの範囲内である。 In the case of a laminate of an inorganic layer and an organic layer, the thickness of each layer may be the same or different. The thickness of the inorganic layer is preferably in the range of 3 to 1000 nm, more preferably in the range of 10 to 300 nm. The thickness of the organic layer is preferably in the range of 100 nm to 100 μm, more preferably in the range of 1 to 50 μm.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, "%" and "parts" mean "mass%" and "parts by mass", respectively.
<インク組成物1の調製>
 パーヒドロポリシラザン(PHPS)20質量%のジブチルエーテル(DBE)溶液(AZエレクトロニックマテリアルズ株式会社製)を減圧乾燥機にて溶媒を除去した。
 溶媒を除去したのち、パーヒドロポリシラザン濃度が10質量%になるように、高乾燥性溶媒A及び低乾燥性溶媒Bで希釈した。具体的には、窒素環境下にて高乾燥性溶媒AとしてDBEの全溶媒におけるモル分率が0.11、及び、低乾燥性溶媒BとしてDEGDBEの全溶媒におけるモル分率が0.89となるように、各溶媒を加え、十分に撹拌することでインク組成物1を得た。
 なお、インク組成物1の調製において、GPC(Gel Permeation Chromatography ゲル浸透クロマトグラフィー)ポリスチレン換算から求めたポリシラザンの重量平均分子量(Mw)は、7000であった。ポリシラザンの分子量は、ポリシラザンの合成時に調整した。
 得られたインク組成物1における各溶媒のモル分率、蒸気圧、及びPtotal等を下記表に示した。
<Preparation of Ink Composition 1>
A 20% by mass dibutyl ether (DBE) solution of perhydropolysilazane (PHPS) (manufactured by AZ Electronic Materials Co., Ltd.) was dried under reduced pressure to remove the solvent.
After removing the solvent, it was diluted with a high-drying solvent A and a low-drying solvent B so that the perhydropolysilazane concentration became 10% by mass. Specifically, in a nitrogen environment, the mole fraction of DBE as a highly dry solvent A in all solvents was 0.11, and the mole fraction of DEGDBE as a low dry solvent B in all solvents was 0.89. Ink composition 1 was obtained by adding each solvent and stirring sufficiently.
In the preparation of the ink composition 1, the weight average molecular weight (Mw) of polysilazane determined from GPC (Gel Permeation Chromatography) polystyrene conversion was 7,000. The molecular weight of polysilazane was adjusted during the synthesis of polysilazane.
The mole fraction, vapor pressure, P total, etc. of each solvent in the obtained ink composition 1 are shown in the table below.
<インク組成物2~39の調製>
 前記インク組成物1の調製において、PHPSの重量平均分子量(Mw)、PHPS濃度(質量%)、高乾燥層性溶媒A及び低乾燥溶媒Bの種類、各溶媒におけるモル分率を下記表に示すように変更した以外は同様にして、インク組成物2~39を調製した。
<Preparation of ink compositions 2-39>
In the preparation of the ink composition 1, the weight average molecular weight (Mw) of PHPS, the pHPS concentration (mass%), the types of the high dry layer solvent A and the low dry solvent B, and the mole fraction in each solvent are shown in the table below. Ink compositions 2-39 were prepared in the same manner except that the above was changed.
<有機EL素子1-1の作製>
(1)基板の準備
 基板として、無アルカリガラス基板を準備した。
(2)第1電極の形成
 前記ガラス基板の一方の面に、第1電極(金属層)として下記条件でAl膜を形成した。形成した第1電極の厚さは150nmであった。なお、第1電極の厚さは、接触式表面形状測定器(DECTAK)により測定した値である。
 Al膜は、真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、タングステン製の抵抗加熱用るつぼを使用して形成した。
<Manufacturing of organic EL element 1-1>
(1) Preparation of substrate A non-alkali glass substrate was prepared as a substrate.
(2) Formation of First Electrode An Al film was formed on one surface of the glass substrate as the first electrode (metal layer) under the following conditions. The thickness of the formed first electrode was 150 nm. The thickness of the first electrode is a value measured by a contact type surface shape measuring instrument (DECTAK).
The Al film was formed by using a vacuum deposition apparatus to reduce the pressure to a vacuum degree of 1 × 10 -4 Pa, and then using a tungsten resistance heating crucible.
(3)有機EL層の形成
 まず、真空蒸着装置内の蒸着用るつぼの各々に、有機機能層の各層を構成する下記に示す材料を各々素子作製に最適の量で充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
(3) Formation of Organic EL Layer First, each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the following materials constituting each layer of the organic functional layer in the optimum amount for manufacturing the device. As the crucible for vapor deposition, a crucible made of molybdenum or tungsten made of a resistance heating material was used.
(3-1)正孔注入層の形成
 真空度1×10-4Paまで減圧した後、下記化合物A-1の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で第1電極(金属層側)上に蒸着し、厚さ10nmの正孔注入層を形成した。
(3-1) Formation of hole injection layer After depressurizing to a vacuum degree of 1 × 10 -4 Pa, the crucible for vapor deposition containing the following compound A-1 is energized and heated, and the vapor deposition rate is 0.1 nm / sec. A hole injection layer having a thickness of 10 nm was formed by vapor deposition on the first electrode (metal layer side).
(3-2)正孔輸送層の形成
 次に、下記化合物M-2の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。
(3-2) Formation of hole transport layer Next, the crucible for vapor deposition containing the following compound M-2 is energized and heated, and the hole is vapor-deposited on the hole injection layer at a vapor deposition rate of 0.1 nm / sec to make the thickness. A hole transport layer having a diameter of 30 nm was formed.
(3-3)発光層の形成
 次に、下記化合物BD-1及び下記化合物H-1を、化合物BD-1が7質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの青色発光を呈する発光層(蛍光発光層)を形成した。
 次に、下記化合物GD-1、下記化合物RD-1及び下記化合物H-2を、化合物GD-1が20質量%、RD-1が0.5質量%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、厚さ15nmの黄色を呈する発光層(リン光発光層)を形成した。
(3-3) Formation of Light Emitting Layer Next, the following compound BD-1 and the following compound H-1 are co-deposited at a vapor deposition rate of 0.1 nm / sec so that the compound BD-1 has a concentration of 7% by mass. , A light emitting layer (fluorescent light emitting layer) exhibiting blue light emission having a thickness of 15 nm was formed.
Next, the vapor deposition rate of the following compound GD-1, the following compound RD-1 and the following compound H-2 was set to 0% by mass so that the compound GD-1 had a concentration of 20% by mass and the RD-1 had a concentration of 0.5% by mass. Co-deposited at 1 nm / sec, a yellow light emitting layer (phosphorescent light emitting layer) having a thickness of 15 nm was formed.
(3-4)電子輸送層の形成
 その後、電子輸送材料として下記化合物T-1の入った加熱ボートを通電し、Alq3(トリス(8-キノリノール))よりなる電子輸送層を、発光層上に形成した。この際、蒸着速度を0.1~0.2nm/秒の範囲内とし、厚さを30nmとした。
(3-4) Formation of electron transport layer After that, a heating boat containing the following compound T-1 as an electron transport material is energized, and an electron transport layer made of Alq 3 (tris (8-quinolinol)) is placed on the light emitting layer. Formed in. At this time, the vapor deposition rate was set in the range of 0.1 to 0.2 nm / sec, and the thickness was set to 30 nm.
(3-5)電子注入層(金属親和性層)の形成
 次に、電子注入材料として下記化合物I-1の入った加熱ボートに通電して加熱し、Liqよりなる電子注入層を、電子輸送層上に形成した。この際、蒸着速度を0.01~0.02nm/秒の範囲内とし、厚さを2nmとした。なお、この電子注入層は金属親和性層の機能を果たす。
 以上により、白色に発光する有機EL層を形成した。
(3-5) Formation of Electron Injection Layer (Metal Affinity Layer) Next, a heating boat containing the following compound I-1 as an electron injection material is energized and heated, and the electron injection layer made of Liq is electron-transported. Formed on the layer. At this time, the vapor deposition rate was set in the range of 0.01 to 0.02 nm / sec, and the thickness was set to 2 nm. The electron injection layer functions as a metal affinity layer.
From the above, an organic EL layer that emits white light was formed.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(4)第2電極の形成
 さらに、Mg/Ag混合物(Mg:Ag=1:9(vol比))を厚さ10nmで蒸着して第2電極と、その取り出し電極を形成した。
(4) Formation of Second Electrode Further, a Mg / Ag mixture (Mg: Ag = 1: 9 (vol ratio)) was vapor-deposited to a thickness of 10 nm to form a second electrode and a take-out electrode thereof.
(5)キャッピング層の形成
 その後、元の真空槽内に移送し、第2電極上に、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1~0.2nm/秒の範囲内で厚さが40nmとなるまで蒸着し、光取り出し改良を目的とするキャッピング層を形成した。
(5) Formation of capping layer After that, it is transferred into the original vacuum chamber, and α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) is placed on the second electrode. Was vapor-deposited to a thickness of 40 nm within a vapor deposition rate of 0.1 to 0.2 nm / sec to form a capping layer for the purpose of improving light extraction.
(6)第1封止層の形成
 次に、前記で作製した有機EL素子の発光部を覆う第1封止層として、プラズマCVD法により厚さ500nmの窒化珪素(SiN、ビッカース硬度HV900)を形成した。
(6) Formation of First Sealing Layer Next, as the first sealing layer covering the light emitting portion of the organic EL element produced above, silicon nitride (SiN, Vickers hardness HV900) having a thickness of 500 nm was used by a plasma CVD method. Formed.
(7)第2封止層の形成
 次に、窒素環境下で、インクジェット装置のカートリッジ一体型ヘッドへ、前記で調製したインク組成物1を充填した。そして、前記第1封止層まで形成した有機EL素子を窒素環境下にてインクジェット法を用いてインク組成物1を塗布し、その後、ホットプレートへ素子を移動して100℃5分乾燥処理を行い、厚さ300nmの第2封止層を形成した。
(7) Formation of Second Sealing Layer Next, in a nitrogen environment, the cartridge-integrated head of the inkjet device was filled with the ink composition 1 prepared above. Then, the ink composition 1 is applied to the organic EL element formed up to the first sealing layer by an inkjet method in a nitrogen environment, and then the element is moved to a hot plate and dried at 100 ° C. for 5 minutes. A second sealing layer having a thickness of 300 nm was formed.
(8)第3封止層の形成
 次に、第2封止層上に第3封止層として、プラズマCVD法により厚さ500nmの窒化珪素(SiN、ビッカース硬度HV900)を形成し、第1~第3封止層が形成された評価用の有機EL素子1-1を得た。
(8) Formation of Third Sealing Layer Next, silicon nitride (SiN, Vickers hardness HV900) having a thickness of 500 nm was formed as a third sealing layer on the second sealing layer by a plasma CVD method, and the first -The organic EL element 1-1 for evaluation in which the third sealing layer was formed was obtained.
<有機EL素子1-2~1-39の作製>
 前記有機EL素子1-1の作製において、前記第2封止層の形成におけるインク組成物1を下記表に示すとおりにそれぞれ変更した以外は同様にして、評価用の有機EL素子1-2~1-39を作製した。
<Manufacturing of organic EL elements 1-2 to 1-39>
In the production of the organic EL element 1-1, the same applies except that the ink composition 1 in the formation of the second sealing layer is changed as shown in the table below, and the organic EL elements 1-2 to evaluation are carried out in the same manner. 1-39 was prepared.
[封止性能評価]
 評価用の各有機EL素子1-2~1-39を高温高湿下(温度85℃、相対湿度85%)の恒温恒湿槽に放置し加速劣化試験を行った。一定時間ごとに恒温恒湿槽から各有機EL素子を取り出して室温下で発光させ、85℃85%での加速劣化時のダークスポット(DS)の有無を確認した。発光領域内におけるダークスポット面積比率が0.5%に到達するまでの時間を寿命と定義し、寿命を評価した。寿命が長いほど、封止性能が高いことを示している。下記評価基準のランク3~5を合格とした。
 (評価基準)
 ランク1:寿命50時間未満
 ランク2:寿命50時間以上100時間未満
 ランク3:寿命100時間以上300時間未満
 ランク4:寿命300時間以上500時間未満
 ランク5:寿命500時間以上
[Seal performance evaluation]
Each of the organic EL elements 1-2 to 1-39 for evaluation was left in a constant temperature and humidity chamber under high temperature and high humidity (temperature 85 ° C., relative humidity 85%) to perform an accelerated deterioration test. Each organic EL element was taken out from a constant temperature and humidity chamber at regular intervals to emit light at room temperature, and the presence or absence of dark spots (DS) during accelerated deterioration at 85 ° C. and 85% was confirmed. The time required for the dark spot area ratio in the light emitting region to reach 0.5% was defined as the life, and the life was evaluated. The longer the life, the higher the sealing performance. Ranks 3 to 5 of the following evaluation criteria were passed.
(Evaluation criteria)
Rank 1: Lifespan less than 50 hours Rank 2: Lifespan 50 hours or more and less than 100 hours Rank 3: Lifespan 100 hours or more and less than 300 hours Rank 4: Lifespan 300 hours or more and less than 500 hours Rank 5: Lifespan 500 hours or more
<有機EL素子2-1~2-39の作製>
 前記有機EL素子1-1の作製において、前記無アルカリガラス基板の代わりに、15ミクロンのポリイミドフィルムに変更し、かつ、第1封止層及び第3封止層の厚さを1000nmに変更した以外は同様にして評価用の有機EL素子2-1を作製した。
 また、有機EL素子2-1の作製において、前記第2封止層の形成におけるインク組成物1を下記表に示すとおりにそれぞれ変更した以外は同様にして、評価用の有機EL素子2-2~2-39を作製した。
<Manufacturing of organic EL elements 2-1 to 2-39>
In the production of the organic EL element 1-1, instead of the non-alkali glass substrate, a 15-micron polyimide film was changed, and the thicknesses of the first sealing layer and the third sealing layer were changed to 1000 nm. An organic EL element 2-1 for evaluation was produced in the same manner except for the above.
Further, in the production of the organic EL element 2-1 in the same manner, the organic EL element 2-2 for evaluation is carried out in the same manner except that the ink composition 1 in the formation of the second sealing layer is changed as shown in the table below. ~ 2-39 was prepared.
[屈曲耐性評価]
 評価用の各有機EL素子2-1~2-39を、直径10mmの金属製ローラーの周囲に巻き付かせて高温高湿下(温度60℃、相対湿度90%)の恒温恒湿槽に放置して加速劣化試験を行った。このとき、ポリイミドフィルムが金属製ローラーへ接するように巻き付かせている。1500時間後に恒温恒湿槽から各有機EL素子を取り出し室温下で顕微鏡確認及び発光状態(ダークスポット面積比率)を確認した。下記評価基準のランク3~5を合格とした。
 (評価基準)
 ランク1:封止層の剥離又は非発光
 ランク2:ダークスポット面積比率が1%以上
 ランク3:ダークスポット面積比率が0.5%以上1%未満
 ランク4:ダークスポット面積比率が0.1%以上0.5%未満
 ランク5:ダークスポット面積比率が0.1%未満
[Bending resistance evaluation]
Each organic EL element 2-1 to 2-39 for evaluation is wrapped around a metal roller having a diameter of 10 mm and left in a constant temperature and humidity chamber under high temperature and high humidity (temperature 60 ° C., relative humidity 90%). Then, an accelerated deterioration test was conducted. At this time, the polyimide film is wound so as to be in contact with the metal roller. After 1500 hours, each organic EL element was taken out from the constant temperature and humidity chamber, and the state of light emission (dark spot area ratio) was confirmed by microscopic confirmation at room temperature. Ranks 3 to 5 of the following evaluation criteria were passed.
(Evaluation criteria)
Rank 1: Peeling of sealing layer or non-emission Rank 2: Dark spot area ratio is 1% or more Rank 3: Dark spot area ratio is 0.5% or more and less than 1% Rank 4: Dark spot area ratio is 0.1% More than 0.5% Rank 5: Dark spot area ratio is less than 0.1%
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記結果に示されるように、本発明のインク組成物を用いた封止層が形成された有機EL素子は、比較例の有機EL素子に比べて、封止性能が高く、かつ、屈曲時における封止層と電子デバイスとの密着性が良好で、発光性能に優れていることが分かる。 As shown in the above results, the organic EL device on which the sealing layer using the ink composition of the present invention is formed has higher sealing performance than the organic EL device of the comparative example, and at the time of bending. It can be seen that the adhesion between the sealing layer and the electronic device is good, and the light emitting performance is excellent.
 また、本発明のインク組成物を用いた封止層が形成された有機EL素子について、表面のSEM観察(日立ハイテク S4800)で異物箇所を特定し、異物箇所についてFIB装置(JEOL製JIB-4000PLUS )にて断面の薄片試料を作製した。作製した断面をTEM(JEOL製JEM-2010F、加速電圧200kV)にて200k倍率で観察したところ、いずれも第1封止層中の欠陥領域と、第1封止層との間の隙間にはポリシラザン領域が確認された。したがって、当該ポリシラザン領域及び第2封止層によって、封止性能及び屈曲耐性に優れた有機EL素子が得られることが認められる。また、隙間の間隔はいずれも15nm以下であった。
 一方、比較例の有機EL素子では、ポリシラザン領域の代わりに空隙の領域が確認された。
Further, regarding the organic EL element on which the sealing layer using the ink composition of the present invention is formed, the foreign matter portion is identified by SEM observation (Hitachi High-Tech S4800) on the surface, and the foreign matter portion is identified by the FIB apparatus (JEOL JIB-4000PLUS). ) To prepare a flaky sample of the cross section. When the prepared cross section was observed with a TEM (JEM-2010F manufactured by JEOL, acceleration voltage 200 kV) at a magnification of 200 k, the gap between the defect region in the first sealing layer and the first sealing layer was found. The polysilazane region was confirmed. Therefore, it is recognized that the polysilazane region and the second sealing layer can provide an organic EL device having excellent sealing performance and bending resistance. The gaps were all 15 nm or less.
On the other hand, in the organic EL device of the comparative example, a void region was confirmed instead of the polysilazane region.
 本発明は、封止性能及び屈曲耐性に優れ、電子デバイスの劣化を抑制することができる電子デバイス封止層形成用のインク組成物、電子デバイス封止層形成方法及び電子デバイス封止層に利用することができる。 INDUSTRIAL APPLICABILITY The present invention is used for an ink composition for forming an electronic device sealing layer, a method for forming an electronic device sealing layer, and an electronic device sealing layer, which are excellent in sealing performance and bending resistance and can suppress deterioration of an electronic device. can do.
1 電子デバイス
2 第1封止層
3 第2封止層
4 異物
5 異常成長した部分
6 欠陥領域
7 隙間(ポリシラザン領域)
1 Electronic device 2 1st sealing layer 3 2nd sealing layer 4 Foreign matter 5 Abnormally grown part 6 Defect area 7 Gap (polysilazane area)

Claims (8)

  1.  電子デバイス封止層形成用のインク組成物であって、
     ポリシラザンを含有し、
     当該インク組成物が、20℃における蒸気圧が、8.0×102Pa以上の高乾燥性溶媒Aと、4.0×102Pa以下である低乾燥性溶媒Bとをそれぞれ少なくとも1種以上含有し、
     溶媒全量に対する前記高乾燥性溶媒Aのモル分率をma1,ma2,…とし、前記低乾燥性溶媒Bのモル分率をmb1,mb2,…とし、前記高乾燥性溶媒Aの蒸気圧をPa1,Pa2,…とし、前記低乾燥性溶媒Bの蒸気圧をPb1,Pb2,…としたとき、下記式(i)で表されるPtotalが、0.5×102~3.6×102Paの範囲内である電子デバイス封止層形成用のインク組成物。
     (式i)Ptotal=Pa1×ma1+Pa2×ma2+…、Pb1×mb1+Pb2×mb2+…
    An ink composition for forming an electronic device encapsulating layer.
    Contains polysilazane,
    The ink composition contains at least one kind of a high drying solvent A having a vapor pressure of 8.0 × 10 2 Pa or more and a low drying solvent B having a vapor pressure of 4.0 × 10 2 Pa or less at 20 ° C. Contains more
    The mole fraction of the highly dry solvent A with respect to the total amount of the solvent is m a1 , m a2 , ..., And the mole fraction of the low dry solvent B is m b1 , m b2 , .... When the vapor pressures are P a1 , P a2 , ... And the vapor pressures of the low-drying solvent B are P b1 , P b2 , ..., P total represented by the following formula (i) is 0.5 ×. An ink composition for forming an electronic device encapsulating layer in the range of 10 2 to 3.6 × 10 2 Pa.
    (Equation i) P total = P a1 × ma1 + P a2 × ma2 +…, P b1 × m b1 + P b2 × m b2 +…
  2.  前記高乾燥性溶媒Aが、ジブチルエーテルである請求項1に記載の電子デバイス封止層形成用のインク組成物。 The ink composition for forming an electronic device encapsulating layer according to claim 1, wherein the highly dry solvent A is dibutyl ether.
  3.  前記低乾燥性溶媒Bが、デカリンである請求項1又は請求項2に記載の電子デバイス封止層形成用のインク組成物。 The ink composition for forming an electronic device encapsulating layer according to claim 1 or 2, wherein the low-drying solvent B is decalin.
  4.  請求項1から請求項3までのいずれか一項に記載の電子デバイス封止層形成用のインク組成物を用いて、封止層を形成する方法であって、
     電子デバイス上に気相法により第1封止層を形成する工程と、
     前記第1封止層上に前記電子デバイス封止層形成用のインク組成物を塗布することにより第2封止層を形成する工程と、を備える電子デバイス封止層形成方法。
    A method of forming a sealing layer using the ink composition for forming an electronic device sealing layer according to any one of claims 1 to 3.
    The process of forming the first sealing layer on the electronic device by the vapor phase method,
    A method for forming an electronic device encapsulation layer, comprising a step of forming a second encapsulation layer by applying an ink composition for forming the electronic device encapsulation layer on the first encapsulation layer.
  5.  前記第2封止層上に、気相法により第3封止層を形成する工程を備える請求項4に記載の電子デバイス封止層形成方法。 The electronic device encapsulation layer forming method according to claim 4, further comprising a step of forming a third encapsulation layer on the second encapsulation layer by a vapor phase method.
  6.  前記第2封止層を形成する工程が、インクジェット法を用いる請求項4又は請求項5に記載の電子デバイス封止層形成方法。 The electronic device encapsulation layer forming method according to claim 4 or 5, wherein the step of forming the second encapsulation layer is an inkjet method.
  7.  電子デバイスを封止する電子デバイス封止層であって、
     窒化ケイ素、酸化ケイ素又は酸窒化ケイ素を含有する第1封止層と、
     前記第1封止層に混在する欠陥領域と、
     前記第1封止層に隣接して設けられ、ポリシラザンを含有する第2封止層と、
     前記欠陥領域と前記第1封止層との間の隙間に設けられ、ポリシラザンが充填されたポリシラザン領域と、を有する電子デバイス封止層。
    An electronic device sealing layer that seals an electronic device.
    A first sealing layer containing silicon nitride, silicon oxide or silicon oxynitride,
    Defect areas mixed in the first sealing layer and
    A second sealing layer provided adjacent to the first sealing layer and containing polysilazane,
    An electronic device sealing layer having a polysilazane region provided in a gap between the defect region and the first sealing layer and filled with polysilazane.
  8.  前記隙間の間隔が、電子顕微鏡を用いて断面観察した際に15nm以下である請求項7に記載の電子デバイス封止層。 The electronic device encapsulation layer according to claim 7, wherein the gap between the gaps is 15 nm or less when the cross section is observed using an electron microscope.
PCT/JP2020/043482 2019-12-17 2020-11-20 Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer WO2021124802A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080086721.2A CN114830825A (en) 2019-12-17 2020-11-20 Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer
KR1020227013023A KR102707503B1 (en) 2019-12-17 2020-11-20 Ink composition for forming an electronic device sealing layer, method for forming an electronic device sealing layer, and electronic device sealing layer
JP2021565400A JP7439837B2 (en) 2019-12-17 2020-11-20 Ink composition for forming an electronic device sealing layer and method for forming an electronic device sealing layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019226917 2019-12-17
JP2019-226917 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021124802A1 true WO2021124802A1 (en) 2021-06-24

Family

ID=76477226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043482 WO2021124802A1 (en) 2019-12-17 2020-11-20 Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer

Country Status (4)

Country Link
JP (1) JP7439837B2 (en)
KR (1) KR102707503B1 (en)
CN (1) CN114830825A (en)
WO (1) WO2021124802A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056587A (en) * 2003-08-01 2005-03-03 Toyota Industries Corp El device and manufacturing method thereof
JP2009111029A (en) * 2007-10-26 2009-05-21 Az Electronic Materials Kk Composition containing polysilazane compound, which can provide dense siliceous film
JP2011238560A (en) * 2010-05-13 2011-11-24 Toshiba Mobile Display Co Ltd Organic el device manufacturing method and organic el device manufacturing apparatus
JP2014051637A (en) * 2012-09-10 2014-03-20 Tokyo Institute Of Technology Silica composite material, coating composition, and method for producing silica composite membrane
WO2016047362A1 (en) * 2014-09-26 2016-03-31 富士フイルム株式会社 Coating material, pattern formation method, and electronic device and method for manufacturing same
JP2017031040A (en) * 2015-07-31 2017-02-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Silica film forming composition, method for producing silica film and silica film
JP2019036517A (en) * 2017-08-18 2019-03-07 コニカミノルタ株式会社 Coating liquid, ink for ink jet using the coating liquid, encapsulation film and forming method for encapsulation film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190232611A1 (en) * 2016-10-28 2019-08-01 Lintec Corporation Laminate film, electronic device member, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056587A (en) * 2003-08-01 2005-03-03 Toyota Industries Corp El device and manufacturing method thereof
JP2009111029A (en) * 2007-10-26 2009-05-21 Az Electronic Materials Kk Composition containing polysilazane compound, which can provide dense siliceous film
JP2011238560A (en) * 2010-05-13 2011-11-24 Toshiba Mobile Display Co Ltd Organic el device manufacturing method and organic el device manufacturing apparatus
JP2014051637A (en) * 2012-09-10 2014-03-20 Tokyo Institute Of Technology Silica composite material, coating composition, and method for producing silica composite membrane
WO2016047362A1 (en) * 2014-09-26 2016-03-31 富士フイルム株式会社 Coating material, pattern formation method, and electronic device and method for manufacturing same
JP2017031040A (en) * 2015-07-31 2017-02-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Silica film forming composition, method for producing silica film and silica film
JP2019036517A (en) * 2017-08-18 2019-03-07 コニカミノルタ株式会社 Coating liquid, ink for ink jet using the coating liquid, encapsulation film and forming method for encapsulation film

Also Published As

Publication number Publication date
KR102707503B1 (en) 2024-09-13
CN114830825A (en) 2022-07-29
JP7439837B2 (en) 2024-02-28
JPWO2021124802A1 (en) 2021-06-24
KR20220066130A (en) 2022-05-23

Similar Documents

Publication Publication Date Title
JP6056854B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
US9646940B2 (en) Gas barrier film and electronic device
JP5803937B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
US9362524B2 (en) Method for producing gas barrier film, gas barrier film, and electronic device
JP5929775B2 (en) Gas barrier film, method for producing the same, and electronic device including the gas barrier film
US7074501B2 (en) Coatings with low permeation of gases and vapors
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
JP5862565B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
EP2919557A1 (en) Electronic device and gas barrier film fabrication method
WO2015053405A1 (en) Method for manufacturing gas barrier film
US20160072096A1 (en) Sealing film, method for producing same and functional element sealed by sealing film
WO2015119260A1 (en) Modified polysilazane, coating solution containing said modified polysilazane, and gas barrier film produced using said coating solution
WO2021124802A1 (en) Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer
WO2016084791A1 (en) Sealing film, function element and method for producing sealing film
JP7013832B2 (en) A coating liquid, an inkjet ink using the coating liquid, a sealing film, and a method for forming a sealing film.
WO2015133286A1 (en) Sealing method for functional elements, and functional element sealed by said sealing method
JP2016089083A (en) Method for producing gas barrier film, gas barrier film and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013023

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021565400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902235

Country of ref document: EP

Kind code of ref document: A1