WO2021117153A1 - Fluorescence detection device and fluorescence detection method - Google Patents
Fluorescence detection device and fluorescence detection method Download PDFInfo
- Publication number
- WO2021117153A1 WO2021117153A1 PCT/JP2019/048398 JP2019048398W WO2021117153A1 WO 2021117153 A1 WO2021117153 A1 WO 2021117153A1 JP 2019048398 W JP2019048398 W JP 2019048398W WO 2021117153 A1 WO2021117153 A1 WO 2021117153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorescence
- sample
- fluorescent
- focus
- objective lens
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
Definitions
- the present disclosure relates to a fluorescence detection device that detects fluorescence emission generated from a sample.
- the next-generation sequencer is widely used as a device for analyzing nucleic acids such as DNA (deoxyribonucleic acid). Measurement by the next-generation sequencer is carried out using a flow cell (sample substrate) in which a large number of minute reaction fields are fixed. The next-generation sequencer irradiates the reaction field on the flow cell with excitation light via an objective lens, and fluoresces from the reaction field using a two-dimensional sensor such as a CCD (Charge Coupled Device) camera or a CMOS (Complementary Metal Oxide Sensor) camera. Is detected. As a result, the base information can be obtained as a fluorescence image. In this way, by causing a chemical reaction on a microreaction field fixed to the flow cell and observing fluorescence, it is possible to analyze the base sequence of the target DNA.
- CCD Charge Coupled Device
- CMOS Complementary Metal Oxide Sensor
- Patent Document 1 describes an autofocus device using a laser and its algorithm.
- the DNA sequence to be analyzed is basically a random sequence, and the ratios of A, T, G, and C are stochastically almost the same.
- a sequence containing identification information of a sample called a barcode sequence is often added to the DNA sequence. Since the barcode sequence is an artificially designed sequence, the proportions of the four types of bases are not equal and may contain only one to three types of bases.
- fluorescent dyes of multiple colors there are fluorescent dyes in which the DNA sequence reading error is less likely to occur when the focus is given priority. Therefore, it is considered more desirable to calibrate the autofocus system after determining the priority color.
- the present disclosure has been made in view of the above problems, and provides a fluorescence detection device capable of automatically calibrating an autofocus system.
- the fluorescence detection device acquires a fluorescence emission image of a sample for each fluorescence color while moving an objective lens in the optical axis direction, acquires a focus value for each fluorescence color, and obtains a focus value for each of the fluorescence colors in a plurality of the fluorescence colors. If there is a peak of the focus value, the autofocus drive system is calibrated using a predetermined priority color among the fluorescent colors.
- the autofocus system can be calibrated correctly even when the distribution ratio of each fluorescence color is not equal.
- FIG. 5 is a flowchart illustrating a method of capturing a fluorescence image of a sample using the fluorescence detection device according to the first embodiment. It is a block diagram of the fluorescence detection apparatus 1 which concerns on Embodiment 1. FIG. It is a block diagram of the fluorescence detection apparatus 1 which concerns on Embodiment 2. FIG. It is a schematic diagram which shows the structural example of 2D sensor 204.
- Nucleotides fluorescently labeled with multiple colors are bound to the sample.
- a reversible terminator (protecting group) that inhibits the elongation of the next base is bound to the fluorescently labeled nucleotide, whereby only one base of the fluorescently labeled nucleotide that is complementary to the nucleic acid to be read is taken up.
- the floating fluorescently labeled nucleotides are removed by washing. After that, the autofocus is calibrated and a fluorescence image is taken. When imaging is complete, the fluorescent dye and protecting groups are removed.
- the base sequence is determined by repeating the above steps as one cycle.
- FIG. 1 is a flowchart illustrating a method of capturing a fluorescence image of a sample using the fluorescence detection device according to the first embodiment. This flowchart describes a method from binding a fluorescently labeled nucleotide to a DNA sample to completing autofocus calibration. Each step of this flowchart can be carried out by the control unit 209 described later. Each step of FIG. 1 will be described below.
- step S1 nucleotides fluorescently labeled with a plurality of colors are bound to the sample.
- Four types of fluorescent dyes can be used, one for each of the four types of bases A, T, G, and C, but the present invention is not limited to this. It is possible to identify four types of bases even with two or three types of fluorescent dyes. For example, when three types of fluorescent dyes are used, if they are the first, second, and third fluorescent dyes, the first fluorescent dye is bound to A, the second fluorescent dye is bound to T, and G is used. By designing so that the third fluorescent dye is bound to C and the first and second fluorescent dyes are bound to C, four kinds of bases can be identified by the three kinds of fluorescent dyes.
- step S2 the fluorescent dye bonded in S1 is made to emit light in all colors. If all colors can be imaged at the same time, all colors may be emitted at the same time. Alternatively, each fluorescent color may be emitted in turn and images may be taken in order.
- a fluorescent image of all fluorescent colors is captured by a two-dimensional sensor.
- the two-dimensional sensor may be a separate two-dimensional sensor corresponding to each of a plurality of colors, or may be a sensor capable of color imaging that can image all fluorescent colors at once.
- the focus value is acquired from all the colors of the captured fluorescence image.
- the focus value is a value that becomes maximum when an image is taken at the best focus position.
- As the focus value for example, a value proportional to the contrast of the image can be used. Other appropriate values may be used.
- the focus value can also be calculated by a predetermined calculation formula. It is not necessary to capture the focus value after saving the acquired image in a storage medium such as a hard disk, and the focus value may be calculated on the image processing circuit attached to the sensor. Examples of the image processing circuit include circuits such as FPGA (Field Programmable Gate Array). Specific examples will be described later.
- step S5 it is determined whether or not a predetermined number of fluorescent images have been captured.
- a peak of the focus value exists in step S7, it is necessary to acquire the focus value from a plurality of images.
- the specified number of images is not limited to, for example, if the image is acquired three times, the peak of the focus value may be obtained. If the predetermined number of images have been captured, the process proceeds to step S7, and if not, the process proceeds to step S6.
- step S6 the objective lens is moved in the optical axis direction by the objective lens driving device 207 described later. If the moving distance of the objective lens by performing this step once is small, it may not be possible to take an image at the position where the best focus is obtained, and if the moving distance is large, the image may be taken after passing the best focus position. There is. If the specified number of sheets is increased and the moving distance by one step is reduced, the possibility of imaging at the best focus position increases, but imaging takes time and the sample is irradiated with an excessive amount of excitation light. This may cause the fluorescent dye to fade. Therefore, the driving distance is preferably about 100 nm to 10 um, but is not limited to this.
- step S7 it is determined whether or not a peak of the focus value exists.
- the ratio of the maximum value to the minimum value among the focus values obtained from a plurality of images is calculated.
- the ratio of the maximum value to the minimum value is equal to or greater than the threshold value, it can be determined that the fluorescent color is emitting light.
- the process proceeds to step S8. If there are no peaks in all fluorescent colors, the process proceeds to the abend step.
- Possibility 1 and Possibility 2 if there is a variation in fluorescence emission for each imaging region, it may be possible to deal with it by changing the imaging region.
- Possibility 3 may be dealt with by expanding the imaging range in the optical axis direction of the objective lens.
- the analysis can be stopped. If the analysis is not stopped, (a) change the imaging area and repeat the same procedure according to this flowchart, (b) expand the imaging range, that is, increase the specified number of images, or increase the driving amount of the objective lens. Alternatively, both are performed and the same procedure is repeated according to this flowchart, or (c) the amount of movement of the objective lens for one time is reduced (that is, the step width is reduced). These may be combined. Even if the analysis is not stopped, it is desirable to set the upper limit of the number of changes in the imaging area and the number of expansions of the imaging range, and if it fails a certain number of times, it is judged as abnormal and the analysis is stopped.
- step S8 it is determined whether or not the peak of the focus value is obtained for a plurality of fluorescent colors.
- the process proceeds to step S9, and when the peak of the focus value is obtained for only one color, the process proceeds to step S10.
- the autofocus is calibrated using the priority color.
- the priority color is the priority color having the highest priority in order from the one having the lowest fluorescence intensity obtained from the sample.
- autofocus calibration it is necessary to calculate the best focus position by some method and correct the zero point of the autofocus system to the focus peak position. Therefore, if the focus peak is calculated using the priority color and the zero point correction is performed at that position, the objective lens can be driven to the best focus position of the priority color. After that, when all the fluorescent colors are emitted and an image is taken by the two-dimensional sensor, it is possible to acquire a fluorescent image in which the priority color is the best focus.
- step S10 autofocus calibration is performed on the fluorescent color from which the focus peak has been obtained.
- Fluorescent colors for which no focus peak was obtained mean that they do not contain the corresponding bases or are negligibly low in proportion. Therefore, even if those fluorescent colors are priority colors, it is not necessary to focus them, so that the autofocus calibration may be performed using the color from which the focus peak is obtained.
- the calibration of the autofocus system can be performed by matching the position of the objective lens, which is the peak among the plurality of focus values, with the zero point of the autofocus system. Specifically, both positions can be matched by moving the position of the objective lens in the optical axis direction. After calibrating the autofocus system, the position where the detection signal output by the autofocus drive system 214, which will be described later, is 0 (or the smallest value in the vicinity of 0) can be regarded as the best focus position.
- FIG. 2 is a configuration diagram of the fluorescence detection device 1 according to the first embodiment.
- the vertical direction of the paper surface is the vertical direction.
- the fluorescence detection device 1 is, for example, a nucleic acid analysis device that analyzes a base sequence of a nucleic acid, and includes an optical system 200, a stage 208, and a control unit 209.
- the stage 208 mounts the sample substrate 201.
- the control unit 209 controls the entire fluorescence detection device 1.
- the sample substrate 201 is, for example, a flow cell and has a flow path for the reaction solution.
- the number of flow paths may be one or a plurality.
- a nucleic acid to be read such as single-stranded DNA, is fixed in the flow path, and a reaction solution (reagent) is introduced by a liquid feeding mechanism (not shown).
- a method of capturing a fluorescence image of nucleic acid using the fluorescence detection device 1 will be described.
- the filter unit 205A separates the first fluorescence from the second fluorescence, and the filter unit 205B separates the third fluorescence from the fourth fluorescence.
- the stage 208 supports the sample substrate 201 so that the sample substrate 201 is orthogonal to the optical axis of the objective lens 203.
- the stage 208 is configured to be movable at least horizontally by a drive device (not shown).
- the stage 208 may have a temperature control mechanism such as a heat block at a position in contact with the sample substrate 201, and the elongation reaction can be promoted by heating and cooling the sample substrate 201 as necessary.
- the stage 208 may be configured so that a plurality of sample substrates 201 can be mounted at the same time.
- the optical system 200 includes a light source 202, an objective lens 203, a two-dimensional sensor 204, a filter unit 205A (first unit), a filter unit 205B (second unit), a filter unit switching mechanism 206, and an objective lens driving device 207.
- the light source 202 emits light including excitation light having a wavelength capable of exciting the fluorescent dye bound to the sample.
- the excitation wavelengths of all the fluorescent dyes must be included so that all the fluorescent dyes of multiple colors emit light.
- a plurality of light sources that emit light of each fluorescence may be prepared, and each of them may be switched to emit light.
- the light source 202 for example, an Xe lamp or a white LED can be used. Not only one type of light source but also a light source in which a plurality of types of LEDs are combined may be used.
- the filter unit 205A includes a transmission filter 210A, a dichroic mirror 211A, and a fluorescence filter 212A.
- the transmission filter 210A transmits the excitation light from the light source 202.
- the dichroic mirror 211A reflects the excitation light and causes it to enter the sample substrate 201 to transmit the fluorescence from the sample.
- the fluorescence filter 212A allows only the fluorescence from the sample to pass through.
- the transmission filter 210A and the fluorescence filter 212A can efficiently excite the sample and remove components other than fluorescence generated from the sample. As a result, the contrast of the obtained fluorescent image is increased.
- the filter unit 205B also has a transmission filter 210B, a dichroic mirror 211B, and a fluorescence filter 212B.
- the filter unit switching mechanism 206 is configured so that the positions of the filter units 205A and 205B can be changed, and one of these is arranged on the optical axis of the objective lens 203.
- a motor or a solenoid can be used as the drive mechanism of the filter unit switching mechanism 206.
- the two-dimensional sensors 204A and 204B acquire an image of fluorescence incident on the sensor surface and transmit the fluorescence image to the control unit 209.
- a CCD camera or a CMOS camera can be used as the two-dimensional sensors 204A and 204B.
- the objective lens driving device 207 is connected to the objective lens 203, and the objective lens 203 is configured to be movable in the vertical direction. This makes it possible to adjust the distance between the objective lens 203 and the sample substrate 201.
- the objective lens driving device 207 includes, for example, a stepping motor, a stage fixed to the objective lens 203, a pulse oscillator, and the like. Instead of providing the objective lens driving device 207, a driving device capable of driving the stage 208 not only in the horizontal direction but also in the vertical direction may be used.
- the control unit 209 irradiates light by the light source 202, switches by the filter unit switching mechanism 206, captures images by the two-dimensional sensors 204A and 204B, drives the objective lens driving device 207, drives the driving device (not shown) of the stage 208, and reacts. Controls the drive of the liquid feeding mechanism (not shown).
- the control unit 209 executes a process of analyzing the base sequence of nucleic acid based on the fluorescence images acquired by the two-dimensional sensors 204A and 204B.
- the mirror 213 is provided to reflect the laser to the autofocus drive system 214.
- the autofocus drive system 214 irradiates the mirror 213 with a laser beam, whereby the laser beam reflected from the mirror 213 is incident on the sample substrate 201.
- the autofocus drive system 214 detects the laser beam reflected from the sample substrate 201.
- a fluorescent reagent having a wavelength of visible light is used, and since infrared light has relatively little damage to the sample, infrared light is used as the laser light of the autofocus drive system 214, and infrared light is used as the mirror 213.
- a dichroic mirror that reflects light can be used, but is not limited thereto. For example, when a laser beam in a visible light region such as 532 nm is used in the autofocus drive system 214, a mirror 213 that reflects only 532 nm can be used.
- the irradiation of the laser beam by the autofocus drive system 214 is controlled by the control unit 209.
- the autofocus drive system 214 outputs the detected signal of the reflected light to the control unit 209.
- the control unit 209 drives the objective lens driving device 207 based on the detection signal of the autofocus driving system 214.
- the autofocus drive system 214 outputs a detection signal proportional to the distance z between the objective lens 203 and the sample substrate 201.
- the autofocus drive system 214 uses the detection signal to perform autofocus on the objective lens 203 with reference to the zero point set by calibration.
- the detection signal after calibration becomes 0 when the fluorescence from the sample is in focus.
- the detection signal becomes 0 at the best focus position of the priority color, and only one color is focused. If no peak is obtained, the detection signal becomes 0 at the best focus position of the color.
- the dichroic mirror 215 is arranged on the optical axis of the objective lens 203, and the fluorescence that has passed through the filter unit 205A or 205B is incident on the two-dimensional sensors 204A and 204B. Specifically, the fluorescence transmitted through the dichroic mirror 215 is imaged on the two-dimensional sensor 204A, and the fluorescence reflected by the dichroic mirror 215 is imaged on the two-dimensional sensor 204B.
- the dichroic mirror 215 is arranged at an angle of, for example, 45 ° with respect to the optical axis of the objective lens 203.
- a beam splitter (optical element) such as a half mirror may be used instead of the dichroic mirror 215.
- the first fluorescence and the second fluorescence are obtained when the filter unit 205A is used, and the third fluorescence and the fourth fluorescence are obtained when the filter unit 205B is used. Therefore, when there is one zero point value that can be stored in the autofocus drive system 214, calibration is performed using one priority color. When there are two zero point values that can be stored in the autofocus drive system 214, when a fluorescent image is imaged using the filter unit 205A, one of the first and second fluorescent colors is the priority color. When the calibration is performed using the filter unit 205B and a fluorescent image is captured using the filter unit 205B, the calibration can be performed using one of the priority colors of the third and fourth fluorescent colors. ..
- the filter unit 205A or 205B calibrate using the two colors of the filter unit that did not obtain fluorescence. Cannot be implemented. In that case, the zero point stored in advance in the autofocus drive system 214 can be used as the calibration value of the filter unit for which fluorescence was not obtained, instead of abnormal termination.
- the resulting image may be defocused due to the effects of temperature drift, but the two colors do not provide fluorescence in the first place and do not contain the corresponding bases or are contained in negligibly low proportions. Since there is no such thing, the analysis result of the sequence is not affected.
- the number of colors that can be fluorescently imaged with high quality by the fluorescence detection device 1 of the first embodiment is not limited to four colors.
- a method of binding a three-color fluorescent dye to a nucleic acid to be analyzed (such as single-stranded DNA) and analyzing its base sequence will be described.
- a fluorescently labeled nucleotide labeled with a three-color fluorescent dye (first fluorescent dye to third fluorescent dye) that emits first fluorescence to third fluorescence, respectively, is used.
- nucleic acid bases Since there are four types of nucleic acid bases, one type of base cannot be detected by fluorescence of three colors. Therefore, three of the four nucleotides are each labeled with one of the first fluorescent dye to the third fluorescent dye, and the remaining one nucleotide is labeled with, for example, two of the first fluorescent dye and the second fluorescent dye. It is assumed that it has been done. As a result, when both the first fluorescence and the second fluorescence are detected, that is, when two of the three colors of fluorescence are detected at the same time, it can be determined to be the fourth type of base.
- the first fluorescence and the second fluorescence are separated by the filter unit 205A, and the third fluorescence is separated by the filter unit 205B. Since this method is the same as the analysis method (FIG. 2) in the case of the above-mentioned four-color label, the description of other steps will be omitted.
- the first fluorescence may be separated by the filter unit 205A, and the second fluorescence and the third fluorescence may be separated by the filter unit 205B.
- a fourth type of base can be detected by combining fluorescence detection with a method other than fluorescence detection such as an electrochemical luminescence method.
- the fluorescence detection device 1 acquires a focus value for each fluorescence color, and if a peak of the focus value exists, calibrates the autofocus drive system 214 using a predetermined priority color. Implementation. As a result, even when calibration is performed using the fluorescent color of an artificially created base sequence such as a barcode sequence, this can be performed appropriately and automatically.
- the fluorescence detection device 1 selects the fluorescent colors as priority colors in ascending order of fluorescence emission intensity from the sample. By performing calibration based on a fluorescent color having a low emission intensity, it is possible to improve the accuracy of calibration for other fluorescent colors as well.
- FIG. 3 is a configuration diagram of the fluorescence detection device 1 according to the second embodiment of the present disclosure.
- the filter unit switching mechanism 206 is not provided.
- the two-dimensional sensor 204 is a color camera capable of simultaneously capturing a plurality of fluorescent colors. Since it is not necessary to switch the filter unit and only one imaging is required, the structure can be simplified and the time required for imaging can be shortened.
- pixels that detect only one fluorescent color among a plurality of fluorescent colors there are pixels that detect only one fluorescent color among a plurality of fluorescent colors.
- a plurality of types of pixels may be arranged regularly in a plane, for example, in a Bayer arrangement.
- the pixels may be arranged in the vertical direction, and the pixels for detecting each fluorescent color may be arranged in multiple layers.
- the transmission filter 210A is capable of separating excitation light for a plurality of fluorescent colors
- the dichroic mirror 211A is capable of separating a plurality of fluorescences from a sample
- the fluorescence filter 212A is capable of separating a plurality of fluorescences from a sample. Only multiple fluorescence from is transmitted.
- the fluorescence filter 212A can be omitted if the pixels corresponding to each fluorescence are not affected by other fluorescence.
- FIG. 4 is a schematic view showing a configuration example of the two-dimensional sensor 204.
- the two-dimensional sensor 204 may include an arithmetic circuit 2042 (for example, FPGA) in addition to the sensor element 2041.
- the sensor element 2041 and the arithmetic circuit 2042 can be mounted on different boards or on the same board.
- FIG. 4 shows an example of mounting on another substrate.
- the two-dimensional sensors 204A and 204B described in the first embodiment can also have the same configuration.
- the arithmetic circuit 2042 performs fluorescence imaging in parallel with outputting the fluorescence imaging image from the sensor element 2041 to the control unit 209, or before outputting the fluorescence imaging image from the sensor element 2041 to the control unit 209. Calculate the focus value of the image. As a result, the focus value can be calculated efficiently.
- the fluorescence image is output from the sensor element 2041 to the control unit 209 and the focus value is calculated by the control unit 209, in a sample in which a large amount of time is required to transfer the fluorescence image. Will take a long time to perform auto-calibration. Therefore, there is an advantage that the focus value is calculated in the two-dimensional sensor 204 as in the third embodiment.
- the present disclosure is not limited to the embodiments described above, but includes various modifications.
- the above-described embodiment has been described in detail in order to explain the present disclosure in an easy-to-understand manner, and does not necessarily have all the configurations described.
- a part of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of another embodiment with respect to a part of the configuration of each embodiment.
- control unit 209 can be configured by hardware such as a circuit device that implements the function, or an arithmetic unit such as a CPU (Central Processing Unit) executes software that implements the function. It can also be configured by.
- the control unit 209 further includes a storage unit that stores a program and various data for driving and analyzing each component of the fluorescence detection device 1, a processor that reads the program and various data and executes the above operation, and a user. It may have an input unit for inputting data and instructions, and the like.
- the DNA sequencer has been described as an example of the fluorescence detection device, but the fluorescence detection device according to the present disclosure is not limited to this.
- the method according to the present disclosure can also be used in other fluorescence detection devices that acquire a fluorescence emission image of a sample.
- Optical system 201 Sample substrate 202: Light source 203: Objective lens 204, 204A, 204B: Two-dimensional sensor 205A, 205B: Filter unit 206: Filter unit switching mechanism 207: Objective lens drive device 208: Stage 209: Control unit 210A , 210B: Transmission filter 211A, 211B: Dichroic mirror 212A, 212B: Fluorescent filter 213: Mirror 214: Autofocus drive system 215: Dichroic mirror
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Microscoopes, Condenser (AREA)
Abstract
This disclosure provides a fluorescence detection device capable of automatically carrying out calibration for automatic focusing systems. The fluorescence detection device according to the present disclosure acquires a fluorescent light emitting image of a sample for each fluorescent color while moving an objective lens in the light axis direction, acquires a focus value for each fluorescent color, and when peaks of the focus values are present for the fluorescent colors, carries out calibration for the automatic focusing driving system using a preferential color set in advance among the fluorescent colors (see FIG. 1).
Description
本開示は、試料から生じる蛍光発光を検出する蛍光検出装置に関する。
The present disclosure relates to a fluorescence detection device that detects fluorescence emission generated from a sample.
次世代シーケンサは、DNA(deoxyribonucleic acid)などの核酸を解析する装置として広く用いられている。次世代シーケンサによる計測は、多数の微小反応場が固定されたフローセル(サンプル基板)を用いて実施される。次世代シーケンサは、フローセル上の反応場に対し対物レンズを介して励起光を照射し、CCD(Charge Coupled Device)カメラやCMOS(Complementary Metal Oxide Semiconductor)カメラなどの2次元センサにより反応場からの蛍光を検出する。これにより塩基情報を蛍光画像として入手することができる。このように、フローセルに固定された微小反応場上で化学反応を生じさせ、蛍光観察することにより、目的とするDNAの塩基配列の解析が可能になる。
The next-generation sequencer is widely used as a device for analyzing nucleic acids such as DNA (deoxyribonucleic acid). Measurement by the next-generation sequencer is carried out using a flow cell (sample substrate) in which a large number of minute reaction fields are fixed. The next-generation sequencer irradiates the reaction field on the flow cell with excitation light via an objective lens, and fluoresces from the reaction field using a two-dimensional sensor such as a CCD (Charge Coupled Device) camera or a CMOS (Complementary Metal Oxide Sensor) camera. Is detected. As a result, the base information can be obtained as a fluorescence image. In this way, by causing a chemical reaction on a microreaction field fixed to the flow cell and observing fluorescence, it is possible to analyze the base sequence of the target DNA.
蛍光画像を取得する際には、正確かつ自動でピントを合わせる必要がある。そのため、種々のオートフォーカスシステムが用いられている。たとえば下記特許文献1は、レーザを用いたオートフォーカス装置とそのアルゴリズムを記載している。
When acquiring a fluorescent image, it is necessary to focus accurately and automatically. Therefore, various autofocus systems are used. For example, Patent Document 1 below describes an autofocus device using a laser and its algorithm.
レーザを用いたオートフォーカスシステムの場合、別の手段を用いてベストフォーカスの位置を検出し、オートフォーカスシステムのゼロ点補正をする必要がある。ベストフォーカス位置を検出する手段としては、サンプルからの蛍光画像のコントラストに比例するフォーカス値を用いることができる。フォーカス値が最大となる点でゼロ点補正することにより、正しくフォーカスを合わせることが可能となる。
In the case of an autofocus system using a laser, it is necessary to detect the position of the best focus using another means and correct the zero point of the autofocus system. As a means for detecting the best focus position, a focus value proportional to the contrast of the fluorescence image from the sample can be used. By correcting the zero point at the point where the focus value becomes the maximum, it is possible to focus correctly.
しかし、急激に温度が変化すると、熱ドリフトの影響によりゼロ点がずれてしまう。次世代シーケンサは、1回のDNA配列解析のために数時間から数十時間かかるので、その間の温度変化により正しくフォーカスを合わせられなくなる可能性がある。よって、DNAの配列解析中の温度変化に追従するためには、自動でキャリブレーションする必要がある。
However, if the temperature changes suddenly, the zero point will shift due to the effect of heat drift. Since the next-generation sequencer takes several hours to several tens of hours for one DNA sequence analysis, it may not be possible to focus correctly due to temperature changes during that time. Therefore, in order to follow the temperature change during DNA sequence analysis, it is necessary to calibrate automatically.
解析対象となるDNA配列は、基本的にはランダムな配列であり、A、T、G、Cの割合は確率論的にほぼ同じになる。しかし、DNA配列にはバーコード配列という検体の識別情報などが含まる配列が付与されることが多い。バーコード配列は人工的に設計された配列であるので、4種類の塩基の割合は均等ではなく、1から3種類の塩基しか含まれない場合がある。
The DNA sequence to be analyzed is basically a random sequence, and the ratios of A, T, G, and C are stochastically almost the same. However, a sequence containing identification information of a sample called a barcode sequence is often added to the DNA sequence. Since the barcode sequence is an artificially designed sequence, the proportions of the four types of bases are not equal and may contain only one to three types of bases.
A、T、G、Cの4種類の塩基を識別するためには、複数色の蛍光色素を用いる必要がある。通常の配列の読み取りの場合、すべての蛍光色素が発光するので、いずれかの色を用いればオートフォーカスシステムのキャリブレーションを実施することができる。しかし、バーコード配列を読み取る際には、あらかじめ蛍光が得られる蛍光色を判別しておかないと、ベストフォーカス位置の探索に失敗し、キャリブレーションが失敗する恐れがある。
In order to identify the four types of bases A, T, G, and C, it is necessary to use fluorescent dyes of multiple colors. In the case of normal sequence reading, all fluorescent dyes emit light, so any color can be used to calibrate the autofocus system. However, when reading the barcode array, if the fluorescence color at which fluorescence can be obtained is not determined in advance, the search for the best focus position may fail and the calibration may fail.
さらに、複数色の蛍光色素のうち、優先的にフォーカスを合わせたほうがDNA配列の読み取りエラーが起こりにくい蛍光色素が存在する。よって、優先色を判別してからオートフォーカスシステムのキャリブレーションを実施するほうが、より望ましいと考えられる。
Furthermore, among the fluorescent dyes of multiple colors, there are fluorescent dyes in which the DNA sequence reading error is less likely to occur when the focus is given priority. Therefore, it is considered more desirable to calibrate the autofocus system after determining the priority color.
本開示は、上記のような課題に鑑みてなされたものであり、オートフォーカスシステムのキャリブレーションを自動的に実施することができる蛍光検出装置を提供するものである。
The present disclosure has been made in view of the above problems, and provides a fluorescence detection device capable of automatically calibrating an autofocus system.
本開示に係る蛍光検出装置は、対物レンズを光軸方向において移動させながら、試料の蛍光発光画像を蛍光色ごとに取得し、フォーカス値を前記蛍光色ごとに取得し、複数の前記蛍光色においてそれぞれ前記フォーカス値のピークが存在する場合は、前記蛍光色のうちあらかじめ定めておいた優先色を用いて、オートフォーカス駆動系のキャリブレーションを実施する。
The fluorescence detection device according to the present disclosure acquires a fluorescence emission image of a sample for each fluorescence color while moving an objective lens in the optical axis direction, acquires a focus value for each fluorescence color, and obtains a focus value for each of the fluorescence colors in a plurality of the fluorescence colors. If there is a peak of the focus value, the autofocus drive system is calibrated using a predetermined priority color among the fluorescent colors.
本開示に係る蛍光検出装置によれば、各蛍光色の分布割合が均等ではない場合であっても、正しくオートフォーカスシステムのキャリブレーションを実施することができる。また、優先的にフォーカスを合わせたい蛍光色素に対してピントを合わせることが可能となる。上記以外の課題、構成、および効果は、以下の実施の形態の説明により明らかにされる。
According to the fluorescence detection device according to the present disclosure, the autofocus system can be calibrated correctly even when the distribution ratio of each fluorescence color is not equal. In addition, it becomes possible to focus on the fluorescent dye to be preferentially focused. Issues, configurations, and effects other than the above will be clarified by the following description of embodiments.
<実施の形態1>
本開示の実施形態1においては、蛍光検出装置が次世代DNAシーケンサとして構成されている例について説明する。まず初めに、次世代シーケンサを用いて塩基配列を決定する一般的方法について説明し、次に本開示の実施形態について説明する。 <Embodiment 1>
In the first embodiment of the present disclosure, an example in which the fluorescence detection device is configured as a next-generation DNA sequencer will be described. First, a general method for determining a base sequence using a next-generation sequencer will be described, and then embodiments of the present disclosure will be described.
本開示の実施形態1においては、蛍光検出装置が次世代DNAシーケンサとして構成されている例について説明する。まず初めに、次世代シーケンサを用いて塩基配列を決定する一般的方法について説明し、次に本開示の実施形態について説明する。 <Embodiment 1>
In the first embodiment of the present disclosure, an example in which the fluorescence detection device is configured as a next-generation DNA sequencer will be described. First, a general method for determining a base sequence using a next-generation sequencer will be described, and then embodiments of the present disclosure will be described.
サンプルに対して、複数色で蛍光標識したヌクレオチドを結合させる。蛍光標識ヌクレオチドには、次の塩基の伸長を阻害する可逆的ターミネータ(保護基)が結合しており、これにより読み取り対象の核酸に対して相補的な蛍光標識ヌクレオチドが1塩基だけ取り込まれる。1塩基が取り込まれた後、浮遊する蛍光標識ヌクレオチドが洗浄により除去される。その後、オートフォーカスの校正を実施し、蛍光画像を撮像する。撮像が完了したら、蛍光色素及び保護基を除去する。以上の工程を1サイクルとして、これを繰り返すことにより塩基配列が決定される。
Nucleotides fluorescently labeled with multiple colors are bound to the sample. A reversible terminator (protecting group) that inhibits the elongation of the next base is bound to the fluorescently labeled nucleotide, whereby only one base of the fluorescently labeled nucleotide that is complementary to the nucleic acid to be read is taken up. After one base is taken up, the floating fluorescently labeled nucleotides are removed by washing. After that, the autofocus is calibrated and a fluorescence image is taken. When imaging is complete, the fluorescent dye and protecting groups are removed. The base sequence is determined by repeating the above steps as one cycle.
図1は、本実施形態1に係る蛍光検出装置を用いて試料の蛍光画像を撮像する方法を説明するフローチャートである。本フローチャートは、蛍光標識したヌクレオチドをDNAサンプルに対して結合させてから、オートフォーカスのキャリブレーションが完了するまでの手法について記述している。本フローチャートの各ステップは、後述する制御部209によって実施することができる。以下図1の各ステップについて説明する。
FIG. 1 is a flowchart illustrating a method of capturing a fluorescence image of a sample using the fluorescence detection device according to the first embodiment. This flowchart describes a method from binding a fluorescently labeled nucleotide to a DNA sample to completing autofocus calibration. Each step of this flowchart can be carried out by the control unit 209 described later. Each step of FIG. 1 will be described below.
ステップS1において、複数色で蛍光標識したヌクレオチドをサンプルに対して結合する。A、T、G、Cの4種類の塩基に対し、それぞれ1種類ずつ4種類の蛍光色素を用いることができるが、これに限定されない。2種類、または3種類の蛍光色素であっても4種類の塩基を識別することは可能である。たとえば、3種類の蛍光色素を用いる場合、それぞれを第1、第2、第3の蛍光色素とすると、Aには第1の蛍光色素が結合、Tには第2の蛍光色素が結合、Gには第3の蛍光色素が結合、Cには第1と第2の蛍光色素が結合するように設計することにより、3種類の蛍光色素で4種類の塩基を識別することができる。
In step S1, nucleotides fluorescently labeled with a plurality of colors are bound to the sample. Four types of fluorescent dyes can be used, one for each of the four types of bases A, T, G, and C, but the present invention is not limited to this. It is possible to identify four types of bases even with two or three types of fluorescent dyes. For example, when three types of fluorescent dyes are used, if they are the first, second, and third fluorescent dyes, the first fluorescent dye is bound to A, the second fluorescent dye is bound to T, and G is used. By designing so that the third fluorescent dye is bound to C and the first and second fluorescent dyes are bound to C, four kinds of bases can be identified by the three kinds of fluorescent dyes.
ステップS2において、S1で結合した蛍光色素を全色発光させる。全色同時に撮像できる場合は全色同時に発光させてよい。または、それぞれの蛍光色ずつ順番に発光させ、順番に撮像してもよい。
In step S2, the fluorescent dye bonded in S1 is made to emit light in all colors. If all colors can be imaged at the same time, all colors may be emitted at the same time. Alternatively, each fluorescent color may be emitted in turn and images may be taken in order.
ステップS3において、2次元センサで全蛍光色の蛍光画像を撮像する。2次元センサは複数色それぞれに対応する別々の2次元センサでもよいし、すべての蛍光色を一度に撮像可能な、カラー撮像可能なセンサでもよい。
In step S3, a fluorescent image of all fluorescent colors is captured by a two-dimensional sensor. The two-dimensional sensor may be a separate two-dimensional sensor corresponding to each of a plurality of colors, or may be a sensor capable of color imaging that can image all fluorescent colors at once.
ステップS4において、撮像した蛍光画像全色から、フォーカス値を取得する。フォーカス値とは、ベストフォーカス位置で撮像した際に最大になる値のことである。フォーカス値としては、例えば画像のコントラストに比例する値を用いることができる。その他適当な値を用いてもよい。あらかじめ規定した計算式によってフォーカス値を計算することもできる。取得した画像を例えばハードディスクなどの記憶媒体に保存してからフォーカス値を撮像する必要はなく、センサに付属の画像処理回路上でフォーカス値を算出してよい。画像処理回路としてはFPGA(Field Programmable Gate Array)などの回路があげられる。具体例は後述する。
In step S4, the focus value is acquired from all the colors of the captured fluorescence image. The focus value is a value that becomes maximum when an image is taken at the best focus position. As the focus value, for example, a value proportional to the contrast of the image can be used. Other appropriate values may be used. The focus value can also be calculated by a predetermined calculation formula. It is not necessary to capture the focus value after saving the acquired image in a storage medium such as a hard disk, and the focus value may be calculated on the image processing circuit attached to the sensor. Examples of the image processing circuit include circuits such as FPGA (Field Programmable Gate Array). Specific examples will be described later.
ステップS5において、蛍光画像を規定枚数撮像したかどうか判定する。ステップS7においてフォーカス値のピークが存在するかどうか判定するためには、複数枚の画像からフォーカス値を取得する必要がある。また、複数枚の画像には、ベストフォーカスとなる位置の画像を含める必要がある。規定枚数としては、例えば3回画像を取得すればフォーカス値のピークが得られる可能性があるが、これに限定されない。規定枚数の撮像が完了していた場合にはステップS7へ進み、そうでない場合はステップS6へ進む。
In step S5, it is determined whether or not a predetermined number of fluorescent images have been captured. In order to determine whether or not a peak of the focus value exists in step S7, it is necessary to acquire the focus value from a plurality of images. In addition, it is necessary to include the image at the position where the best focus is obtained in the plurality of images. The specified number of images is not limited to, for example, if the image is acquired three times, the peak of the focus value may be obtained. If the predetermined number of images have been captured, the process proceeds to step S7, and if not, the process proceeds to step S6.
ステップS6において、後述する対物レンズ駆動装置207により、対物レンズを光軸方向に動かす。本ステップを1回実施することによる対物レンズの移動距離が小さいと、ベストフォーカスとなる位置で撮像できない可能性があり、移動距離が大きいと、ベストフォーカス位置を通り過ぎてから撮像してしまう可能性がある。規定枚数を増やし、本ステップ1回による移動距離を小さくすると、ベストフォーカス位置で撮像できる可能性が高くなるが、撮像に時間がかかり、またサンプルに対して過剰な量の励起光が照射されることにより蛍光色素が退色してしまう恐れがある。よって、駆動距離は100nm~10um程度が望ましいが、これに限定されない。
In step S6, the objective lens is moved in the optical axis direction by the objective lens driving device 207 described later. If the moving distance of the objective lens by performing this step once is small, it may not be possible to take an image at the position where the best focus is obtained, and if the moving distance is large, the image may be taken after passing the best focus position. There is. If the specified number of sheets is increased and the moving distance by one step is reduced, the possibility of imaging at the best focus position increases, but imaging takes time and the sample is irradiated with an excessive amount of excitation light. This may cause the fluorescent dye to fade. Therefore, the driving distance is preferably about 100 nm to 10 um, but is not limited to this.
ステップS7において、フォーカス値のピークが存在しているかどうか判定する。ある蛍光色について、複数枚の画像から得られたフォーカス値のうち最大値と最小値の比を算出する。最大値と最小値の比が閾値値以上だった場合にはその蛍光色が発光していると判定することができる。発光しているか否かの判定方法としては、最大値と最小値の比だけではなく、それぞれの蛍光色のフォーカス値の最大値が閾値以上であるか否かによって判定することもできる。いずれかの蛍光色においてフォーカス値のピークが存在する場合はステップS8へ進む。すべての蛍光色においてピークがない場合は、異常終了ステップへ進む。
In step S7, it is determined whether or not a peak of the focus value exists. For a certain fluorescent color, the ratio of the maximum value to the minimum value among the focus values obtained from a plurality of images is calculated. When the ratio of the maximum value to the minimum value is equal to or greater than the threshold value, it can be determined that the fluorescent color is emitting light. As a method for determining whether or not light is emitted, not only the ratio of the maximum value to the minimum value but also whether or not the maximum value of the focus value of each fluorescent color is equal to or greater than the threshold value can be determined. If there is a peak of the focus value in any of the fluorescent colors, the process proceeds to step S8. If there are no peaks in all fluorescent colors, the process proceeds to the abend step.
ステップS7においてすべての蛍光色でピークがないと判定される要因としては、下記の3つの可能性が考えられる。可能性1と可能性2に関しては、撮像する領域ごとに蛍光発光のばらつきがある場合、撮像する領域を変更することによって対処できる可能性がある。可能性3に関しては、撮像する範囲を対物レンズの光軸方向に拡張することにより対処できる可能性がある。
The following three possibilities are considered as factors for determining that there is no peak in all fluorescent colors in step S7. Regarding Possibility 1 and Possibility 2, if there is a variation in fluorescence emission for each imaging region, it may be possible to deal with it by changing the imaging region. Possibility 3 may be dealt with by expanding the imaging range in the optical axis direction of the objective lens.
(可能性1)サンプルが撮像領域内に存在しない、または数が少ない
(可能性2)サンプルに対し蛍光色素が結合できていない、または数が少ない
(可能性3)対物レンズを動かした範囲内にベストフォーカスの位置が存在しない (Possibility 1) The sample does not exist in the imaging region or the number is small. (Possibility 2) The fluorescent dye cannot be bound to the sample or the number is small. (Possibility 3) Within the range in which the objective lens is moved. There is no best focus position in
(可能性2)サンプルに対し蛍光色素が結合できていない、または数が少ない
(可能性3)対物レンズを動かした範囲内にベストフォーカスの位置が存在しない (Possibility 1) The sample does not exist in the imaging region or the number is small. (Possibility 2) The fluorescent dye cannot be bound to the sample or the number is small. (Possibility 3) Within the range in which the objective lens is moved. There is no best focus position in
異常終了後の処理としては、異常と判定し、解析を中止することができる。解析を中止しない場合は、(a)撮像領域を変更し、本フローチャートにしたがって同じ手順を繰り返す、(b)撮像範囲を拡張する、つまり規定枚数を増やすか、対物レンズの駆動量を増やすか、またはその両方を実施し、本フローチャートにしたがって同じ手順を繰り返す、(c)対物レンズの1回分の移動量を小さくする(すなわちステップ幅を細かくする)、のいずれかが考えられる。これらを組み合わせてもよい。解析を中止しない場合であっても、撮像領域の変更回数や撮像範囲の拡張回数の上限値をセットしておき、一定回数失敗した場合には異常と判定し、解析を中止することが望ましい。
As the processing after the abnormal end, it can be judged as abnormal and the analysis can be stopped. If the analysis is not stopped, (a) change the imaging area and repeat the same procedure according to this flowchart, (b) expand the imaging range, that is, increase the specified number of images, or increase the driving amount of the objective lens. Alternatively, both are performed and the same procedure is repeated according to this flowchart, or (c) the amount of movement of the objective lens for one time is reduced (that is, the step width is reduced). These may be combined. Even if the analysis is not stopped, it is desirable to set the upper limit of the number of changes in the imaging area and the number of expansions of the imaging range, and if it fails a certain number of times, it is judged as abnormal and the analysis is stopped.
ステップS8において、複数の蛍光色でフォーカス値のピークが得られたか判定する。複数色でフォーカス値のピークが得られた場合にはステップS9へ進み、1色のみフォーカス値のピークが得られた場合にはステップS10へ移行する。
In step S8, it is determined whether or not the peak of the focus value is obtained for a plurality of fluorescent colors. When the peak of the focus value is obtained for a plurality of colors, the process proceeds to step S9, and when the peak of the focus value is obtained for only one color, the process proceeds to step S10.
ステップS9において、優先色を用いてオートフォーカスのキャリブレーションを実施する。優先色は、複数色の蛍光色のうち、サンプルから得られる蛍光強度が最も低いものから順に、優先度が高い優先色とする。オートフォーカスのキャリブレーションにおいては、ベストフォーカス位置を何らかの方法で算出し、オートフォーカスシステムのゼロ点をフォーカスピーク位置に補正する必要がある。よって、優先色を用いてフォーカスピークを算出し、その位置でゼロ点補正を実施すると、優先色のベストフォーカス位置へ対物レンズを駆動することが可能となる。その後、すべての蛍光色を発光させ、2次元センサで画像を撮像すると、優先色がベストフォーカスである蛍光画像を取得可能となる。
In step S9, the autofocus is calibrated using the priority color. Among the plurality of fluorescent colors, the priority color is the priority color having the highest priority in order from the one having the lowest fluorescence intensity obtained from the sample. In autofocus calibration, it is necessary to calculate the best focus position by some method and correct the zero point of the autofocus system to the focus peak position. Therefore, if the focus peak is calculated using the priority color and the zero point correction is performed at that position, the objective lens can be driven to the best focus position of the priority color. After that, when all the fluorescent colors are emitted and an image is taken by the two-dimensional sensor, it is possible to acquire a fluorescent image in which the priority color is the best focus.
ステップS10において、フォーカスピークが得られた蛍光色に対し、オートフォーカスのキャリブレーションを実施する。フォーカスピークが得られなかった蛍光色は、それぞれが対応する塩基が含まれていない、もしくは無視できるほど割合が少ないことを意味する。よって、それらの蛍光色が仮に優先色だったとしても、フォーカスを合わせる必要がないので、フォーカスピークが得られた色を用いてオートフォーカスのキャリブレーションを実施すればよい。
In step S10, autofocus calibration is performed on the fluorescent color from which the focus peak has been obtained. Fluorescent colors for which no focus peak was obtained mean that they do not contain the corresponding bases or are negligibly low in proportion. Therefore, even if those fluorescent colors are priority colors, it is not necessary to focus them, so that the autofocus calibration may be performed using the color from which the focus peak is obtained.
S9とS10において、オートフォーカスシステムのキャリブレーションは、複数のフォーカス値のなかでピークとなる対物レンズ位置とオートフォーカスシステムのゼロ点を一致させることにより、実施できる。具体的には、対物レンズの光軸方向における位置を移動させることにより、両位置を一致させることができる。オートフォーカスシステムの校正後は、後述するオートフォーカス駆動系214が出力する検出信号が0(または0近傍の最も小さい値)である位置をベストフォーカス位置とみなすことができる。
In S9 and S10, the calibration of the autofocus system can be performed by matching the position of the objective lens, which is the peak among the plurality of focus values, with the zero point of the autofocus system. Specifically, both positions can be matched by moving the position of the objective lens in the optical axis direction. After calibrating the autofocus system, the position where the detection signal output by the autofocus drive system 214, which will be described later, is 0 (or the smallest value in the vicinity of 0) can be regarded as the best focus position.
図2は、本実施形態1に係る蛍光検出装置1の構成図である。図2において、紙面上下方向を鉛直方向とする。蛍光検出装置1は、例えば核酸の塩基配列を解析する核酸解析装置であり、光学系200、ステージ208、制御部209を備える。ステージ208は、サンプル基板201を載置する。制御部209は、蛍光検出装置1の全体を制御する。
FIG. 2 is a configuration diagram of the fluorescence detection device 1 according to the first embodiment. In FIG. 2, the vertical direction of the paper surface is the vertical direction. The fluorescence detection device 1 is, for example, a nucleic acid analysis device that analyzes a base sequence of a nucleic acid, and includes an optical system 200, a stage 208, and a control unit 209. The stage 208 mounts the sample substrate 201. The control unit 209 controls the entire fluorescence detection device 1.
サンプル基板201は例えばフローセルであり、反応液の流路を有している。流路の本数は1本であってもよいし、複数本であってもよい。流路には、1本鎖DNAなどの読み取り対象の核酸が固定されており、図示しない送液機構により反応液(試薬)が導入される。
The sample substrate 201 is, for example, a flow cell and has a flow path for the reaction solution. The number of flow paths may be one or a plurality. A nucleic acid to be read, such as single-stranded DNA, is fixed in the flow path, and a reaction solution (reagent) is introduced by a liquid feeding mechanism (not shown).
蛍光検出装置1を用いて核酸の蛍光画像を撮像する方法について説明する。本実施形態1においては、DNAサンプルのA、T、G、Cがそれぞれ別々の4色の蛍光色で標識されるとする。フィルタユニット205Aは第1蛍光と第2蛍光を分離し、フィルタユニット205Bは第3蛍光と第4蛍光を分離することとする。
A method of capturing a fluorescence image of nucleic acid using the fluorescence detection device 1 will be described. In the first embodiment, it is assumed that A, T, G, and C of the DNA sample are labeled with four different fluorescent colors. The filter unit 205A separates the first fluorescence from the second fluorescence, and the filter unit 205B separates the third fluorescence from the fourth fluorescence.
ステージ208は、サンプル基板201が対物レンズ203の光軸と直交するように、サンプル基板201を支持する。ステージ208は、図示しない駆動装置により少なくとも水平方向に移動可能に構成される。ステージ208は、サンプル基板201に接する箇所にヒートブロック等の温調機構を有していてもよく、必要に応じてサンプル基板201を加熱・冷却することにより、伸長反応を促進することができる。ステージ208は、複数のサンプル基板201を同時に載置可能に構成されていてもよい。
The stage 208 supports the sample substrate 201 so that the sample substrate 201 is orthogonal to the optical axis of the objective lens 203. The stage 208 is configured to be movable at least horizontally by a drive device (not shown). The stage 208 may have a temperature control mechanism such as a heat block at a position in contact with the sample substrate 201, and the elongation reaction can be promoted by heating and cooling the sample substrate 201 as necessary. The stage 208 may be configured so that a plurality of sample substrates 201 can be mounted at the same time.
光学系200は、光源202、対物レンズ203、2次元センサ204、フィルタユニット205A(第1ユニット)、フィルタユニット205B(第2ユニット)、フィルタユニット切替機構206、対物レンズ駆動装置207を有する。
The optical system 200 includes a light source 202, an objective lens 203, a two-dimensional sensor 204, a filter unit 205A (first unit), a filter unit 205B (second unit), a filter unit switching mechanism 206, and an objective lens driving device 207.
光源202は、サンプルに結合された蛍光色素を励起可能な波長の励起光を含む光を出射する。複数色の蛍光色素がすべて発光するように、すべての蛍光色素の励起波長が含まれる必要がある。または、それぞれの蛍光が発光する光源を複数用意し、それぞれを切り替えて発光させてもよい。光源202としては例えばXeランプや白色LEDを用いることができる。1種類の光源だけでなく、例えば複数種類のLEDを組み合わせた光源であってもよい。
The light source 202 emits light including excitation light having a wavelength capable of exciting the fluorescent dye bound to the sample. The excitation wavelengths of all the fluorescent dyes must be included so that all the fluorescent dyes of multiple colors emit light. Alternatively, a plurality of light sources that emit light of each fluorescence may be prepared, and each of them may be switched to emit light. As the light source 202, for example, an Xe lamp or a white LED can be used. Not only one type of light source but also a light source in which a plurality of types of LEDs are combined may be used.
フィルタユニット205Aは、透過フィルタ210A、ダイクロイックミラー211A、蛍光フィルタ212Aを有する。透過フィルタ210Aは、光源202からの励起光を透過させる。ダイクロイックミラー211Aは、励起光を反射してサンプル基板201に入射させ、サンプルからの蛍光を透過させる。蛍光フィルタ212Aは、サンプルからの蛍光のみを透過させる。透過フィルタ210Aと蛍光フィルタ212Aにより、サンプルを効率よく励起するとともにサンプルから発生した蛍光以外の成分を除去することができる。これにより、得られる蛍光画像のコントラストが上昇する。フィルタユニット205Bも同様に、透過フィルタ210B、ダイクロイックミラー211B、蛍光フィルタ212Bを有する。
The filter unit 205A includes a transmission filter 210A, a dichroic mirror 211A, and a fluorescence filter 212A. The transmission filter 210A transmits the excitation light from the light source 202. The dichroic mirror 211A reflects the excitation light and causes it to enter the sample substrate 201 to transmit the fluorescence from the sample. The fluorescence filter 212A allows only the fluorescence from the sample to pass through. The transmission filter 210A and the fluorescence filter 212A can efficiently excite the sample and remove components other than fluorescence generated from the sample. As a result, the contrast of the obtained fluorescent image is increased. Similarly, the filter unit 205B also has a transmission filter 210B, a dichroic mirror 211B, and a fluorescence filter 212B.
フィルタユニット切替機構206は、フィルタユニット205Aと205Bの位置を変更可能に構成され、これらのいずれか一方を対物レンズ203の光軸上に配置する。フィルタユニット切替機構206の駆動機構としては、例えばモータやソレノイドなどを用いることができる。
The filter unit switching mechanism 206 is configured so that the positions of the filter units 205A and 205B can be changed, and one of these is arranged on the optical axis of the objective lens 203. As the drive mechanism of the filter unit switching mechanism 206, for example, a motor or a solenoid can be used.
2次元センサ204Aと204Bは、センサ面に入射した蛍光の画像を取得し、該蛍光画像を制御部209に送信する。2次元センサ204Aと204Bとしては、例えばCCDカメラやCMOSカメラを用いることができる。
The two- dimensional sensors 204A and 204B acquire an image of fluorescence incident on the sensor surface and transmit the fluorescence image to the control unit 209. As the two- dimensional sensors 204A and 204B, for example, a CCD camera or a CMOS camera can be used.
対物レンズ駆動装置207は対物レンズ203に接続されており、対物レンズ203を鉛直方向に移動可能に構成される。これにより、対物レンズ203とサンプル基板201との間の距離を調節することが可能である。対物レンズ駆動装置207は、例えばステッピングモータ、対物レンズ203に固定されるステージ及びパルス発振器等を有する。対物レンズ駆動装置207を設ける代わりに、ステージ208を水平方向だけでなく鉛直方向にも駆動可能な駆動装置を用いてもよい。
The objective lens driving device 207 is connected to the objective lens 203, and the objective lens 203 is configured to be movable in the vertical direction. This makes it possible to adjust the distance between the objective lens 203 and the sample substrate 201. The objective lens driving device 207 includes, for example, a stepping motor, a stage fixed to the objective lens 203, a pulse oscillator, and the like. Instead of providing the objective lens driving device 207, a driving device capable of driving the stage 208 not only in the horizontal direction but also in the vertical direction may be used.
制御部209は、光源202による光の照射、フィルタユニット切替機構206による切り替え、2次元センサ204Aおよび204Bによる撮像、対物レンズ駆動装置207の駆動、ステージ208の駆動装置(不図示)の駆動、反応液の送液機構(不図示)の駆動などを制御する。制御部209は、2次元センサ204Aと204Bが取得した蛍光画像に基づいて、核酸の塩基配列を解析する処理を実行する。
The control unit 209 irradiates light by the light source 202, switches by the filter unit switching mechanism 206, captures images by the two- dimensional sensors 204A and 204B, drives the objective lens driving device 207, drives the driving device (not shown) of the stage 208, and reacts. Controls the drive of the liquid feeding mechanism (not shown). The control unit 209 executes a process of analyzing the base sequence of nucleic acid based on the fluorescence images acquired by the two- dimensional sensors 204A and 204B.
ミラー213は、オートフォーカス駆動系214に対しレーザを反射するために設けられる。オートフォーカス駆動系214はミラー213に対してレーザ光を照射し、これによりミラー213から反射したレーザ光がサンプル基板201に入射する。オートフォーカス駆動系214は、サンプル基板201から反射したレーザ光を検出する。
The mirror 213 is provided to reflect the laser to the autofocus drive system 214. The autofocus drive system 214 irradiates the mirror 213 with a laser beam, whereby the laser beam reflected from the mirror 213 is incident on the sample substrate 201. The autofocus drive system 214 detects the laser beam reflected from the sample substrate 201.
一般に蛍光試薬は可視光の波長のものが用いられ、また、赤外光は比較的サンプルに対するダメージが小さいので、オートフォーカス駆動系214のレーザ光として赤外光を用い、ミラー213としては赤外光を反射するダイクロイックミラーを用いることができるが、これに限定されない。例えば、532nmなどの可視光域のレーザ光をオートフォーカス駆動系214で用いた場合には、532nmのみを反射するミラー213を用いることができる。
Generally, a fluorescent reagent having a wavelength of visible light is used, and since infrared light has relatively little damage to the sample, infrared light is used as the laser light of the autofocus drive system 214, and infrared light is used as the mirror 213. A dichroic mirror that reflects light can be used, but is not limited thereto. For example, when a laser beam in a visible light region such as 532 nm is used in the autofocus drive system 214, a mirror 213 that reflects only 532 nm can be used.
オートフォーカス駆動系214によるレーザ光の照射は、制御部209により制御される。オートフォーカス駆動系214は、反射光の検出信号を制御部209に出力する。制御部209は、オートフォーカス駆動系214の検出信号に基づいて、対物レンズ駆動装置207を駆動する。具体的には、オートフォーカス駆動系214は、対物レンズ203とサンプル基板201との距離zに比例した検出信号を出力する。オートフォーカス駆動系214は、キャリブレーションによってセットされたゼロ点を基準として、検出信号を用いて対物レンズ203のオートフォーカスを実施する。キャリブレーション後の検出信号は、サンプルからの蛍光に対しピントが合っている場合に0となる。
The irradiation of the laser beam by the autofocus drive system 214 is controlled by the control unit 209. The autofocus drive system 214 outputs the detected signal of the reflected light to the control unit 209. The control unit 209 drives the objective lens driving device 207 based on the detection signal of the autofocus driving system 214. Specifically, the autofocus drive system 214 outputs a detection signal proportional to the distance z between the objective lens 203 and the sample substrate 201. The autofocus drive system 214 uses the detection signal to perform autofocus on the objective lens 203 with reference to the zero point set by calibration. The detection signal after calibration becomes 0 when the fluorescence from the sample is in focus.
図1の方法でオートフォーカス駆動系214のキャリブレーションを実施したとき、複数色の蛍光色でフォーカスピークが得られた場合には優先色のベストフォーカス位置で検出信号が0となり、1色しかフォーカスピークが得られなかった場合には、その色のベストフォーカス位置で検出信号が0となる。
When the autofocus drive system 214 is calibrated by the method shown in FIG. 1, when a focus peak is obtained with a plurality of fluorescent colors, the detection signal becomes 0 at the best focus position of the priority color, and only one color is focused. If no peak is obtained, the detection signal becomes 0 at the best focus position of the color.
ダイクロイックミラー215は、対物レンズ203の光軸上に配置され、フィルタユニット205Aまたは205Bを通過した蛍光を2次元センサ204Aと204Bへ入射させる。具体的には、ダイクロイックミラー215を透過した蛍光は2次元センサ204Aに結像され、ダイクロイックミラー215により反射された蛍光は、2次元センサ204Bに結像される。ダイクロイックミラー215は、対物レンズ203の光軸に対して例えば45°の角度で配置される。ダイクロイックミラー215の代わりに、ハーフミラーなどのビームスプリッタ(光学素子)を用いてもよい。
The dichroic mirror 215 is arranged on the optical axis of the objective lens 203, and the fluorescence that has passed through the filter unit 205A or 205B is incident on the two- dimensional sensors 204A and 204B. Specifically, the fluorescence transmitted through the dichroic mirror 215 is imaged on the two-dimensional sensor 204A, and the fluorescence reflected by the dichroic mirror 215 is imaged on the two-dimensional sensor 204B. The dichroic mirror 215 is arranged at an angle of, for example, 45 ° with respect to the optical axis of the objective lens 203. A beam splitter (optical element) such as a half mirror may be used instead of the dichroic mirror 215.
本実施形態1では、フィルタユニット205Aを用いた場合に第1蛍光と第2蛍光が得られ、フィルタユニット205Bを用いた場合に第3蛍光と第4蛍光が得られる。よってオートフォーカス駆動系214に保存できるゼロ点の値が1つの場合は、優先色1色を用いてキャリブレーションを実施する。オートフォーカス駆動系214に保存できるゼロ点の値が2つある場合には、フィルタユニット205Aを用いて蛍光画像を撮像する場合には、第1および第2蛍光色のうち、どちらかの優先色を用いてキャリブレーションを実施し、フィルタユニット205Bを用いて蛍光画像を撮像する場合には、第3および第4蛍光色のうち、どちらかの優先色を用いてキャリブレーションを実施することができる。
In the first embodiment, the first fluorescence and the second fluorescence are obtained when the filter unit 205A is used, and the third fluorescence and the fourth fluorescence are obtained when the filter unit 205B is used. Therefore, when there is one zero point value that can be stored in the autofocus drive system 214, calibration is performed using one priority color. When there are two zero point values that can be stored in the autofocus drive system 214, when a fluorescent image is imaged using the filter unit 205A, one of the first and second fluorescent colors is the priority color. When the calibration is performed using the filter unit 205B and a fluorescent image is captured using the filter unit 205B, the calibration can be performed using one of the priority colors of the third and fourth fluorescent colors. ..
フォーカス値のピークがある蛍光色が1色しかない場合、またはフィルタユニット205Aか205Bどちらかにおいて蛍光が得られなかった場合は、蛍光が得られなかったフィルタユニットの2色を用いてキャリブレーションを実施することができない。その場合は、異常終了するのではなく、蛍光が得られなかったフィルタユニットのキャリブレーション値として、オートフォーカス駆動系214にあらかじめ保存されていたゼロ点を用いることができる。温度ドリフトの影響により、得られる画像がデフォーカスする可能性があるが、そもそも蛍光が得られない2色であり、対応する塩基が含まれていない、または無視できるほど低い割合でしか含まれていないので、配列の解析結果には影響がない。
If there is only one fluorescent color with a peak focus value, or if fluorescence is not obtained in either the filter unit 205A or 205B, calibrate using the two colors of the filter unit that did not obtain fluorescence. Cannot be implemented. In that case, the zero point stored in advance in the autofocus drive system 214 can be used as the calibration value of the filter unit for which fluorescence was not obtained, instead of abnormal termination. The resulting image may be defocused due to the effects of temperature drift, but the two colors do not provide fluorescence in the first place and do not contain the corresponding bases or are contained in negligibly low proportions. Since there is no such thing, the analysis result of the sequence is not affected.
<実施の形態1:分析方法の他の例>
本実施形態1の蛍光検出装置1により高品質に蛍光撮像できる色の数は4色に限定されない。以下においては、3色の蛍光色素を分析対象の核酸(1本鎖DNAなど)に結合させてその塩基配列を解析する方法について説明する。この場合、第1蛍光~第3蛍光をそれぞれ発する3色の蛍光色素(第1蛍光色素~第3蛍光色素)で標識された蛍光標識ヌクレオチドを用いる。 <Embodiment 1: Another Example of Analytical Method>
The number of colors that can be fluorescently imaged with high quality by the fluorescence detection device 1 of the first embodiment is not limited to four colors. In the following, a method of binding a three-color fluorescent dye to a nucleic acid to be analyzed (such as single-stranded DNA) and analyzing its base sequence will be described. In this case, a fluorescently labeled nucleotide labeled with a three-color fluorescent dye (first fluorescent dye to third fluorescent dye) that emits first fluorescence to third fluorescence, respectively, is used.
本実施形態1の蛍光検出装置1により高品質に蛍光撮像できる色の数は4色に限定されない。以下においては、3色の蛍光色素を分析対象の核酸(1本鎖DNAなど)に結合させてその塩基配列を解析する方法について説明する。この場合、第1蛍光~第3蛍光をそれぞれ発する3色の蛍光色素(第1蛍光色素~第3蛍光色素)で標識された蛍光標識ヌクレオチドを用いる。 <Embodiment 1: Another Example of Analytical Method>
The number of colors that can be fluorescently imaged with high quality by the fluorescence detection device 1 of the first embodiment is not limited to four colors. In the following, a method of binding a three-color fluorescent dye to a nucleic acid to be analyzed (such as single-stranded DNA) and analyzing its base sequence will be described. In this case, a fluorescently labeled nucleotide labeled with a three-color fluorescent dye (first fluorescent dye to third fluorescent dye) that emits first fluorescence to third fluorescence, respectively, is used.
核酸の塩基は4種類あるので、3色の蛍光では1種類の塩基が検出できない。そこで、4つのヌクレオチドのうち3つはそれぞれ第1蛍光色素~第3蛍光色素のいずれかにより標識されており、残りの1つのヌクレオチドは例えば第1蛍光色素と第2蛍光色素の2つにより標識されていることとする。これにより、第1蛍光と第2蛍光の両方が検出された場合、すなわち3色の蛍光のうち2色が同時に検出された場合に、4種類目の塩基と判定することができる。
Since there are four types of nucleic acid bases, one type of base cannot be detected by fluorescence of three colors. Therefore, three of the four nucleotides are each labeled with one of the first fluorescent dye to the third fluorescent dye, and the remaining one nucleotide is labeled with, for example, two of the first fluorescent dye and the second fluorescent dye. It is assumed that it has been done. As a result, when both the first fluorescence and the second fluorescence are detected, that is, when two of the three colors of fluorescence are detected at the same time, it can be determined to be the fourth type of base.
本分析方法においては、フィルタユニット205Aにより第1蛍光と第2蛍光を分離し、フィルタユニット205Bにより第3蛍光を分離することとする。本方法は、上述の4色標識の場合の分析方法(図2)と同様であるので、他のステップについては説明を省略する。フィルタユニット205Aにより第1蛍光を分離し、フィルタユニット205Bにより第2蛍光と第3蛍光を分離するようにしてもよい。
In this analysis method, the first fluorescence and the second fluorescence are separated by the filter unit 205A, and the third fluorescence is separated by the filter unit 205B. Since this method is the same as the analysis method (FIG. 2) in the case of the above-mentioned four-color label, the description of other steps will be omitted. The first fluorescence may be separated by the filter unit 205A, and the second fluorescence and the third fluorescence may be separated by the filter unit 205B.
以上、3色の蛍光色素を用いて、4色目の塩基には2つの蛍光色素を結合させることにより当該塩基を検出する例について説明したが、4色目の塩基を検出する手法はこれに限定されない。例えば、蛍光の検出と、電気化学発光法などの蛍光検出以外の方法とを組み合わせることによって、4種類目の塩基を検出することもできる。
The example of detecting the base by binding two fluorescent dyes to the base of the fourth color using the fluorescent dyes of three colors has been described above, but the method of detecting the base of the fourth color is not limited to this. .. For example, a fourth type of base can be detected by combining fluorescence detection with a method other than fluorescence detection such as an electrochemical luminescence method.
<実施の形態1:まとめ>
本実施形態1に係る蛍光検出装置1は、フォーカス値を蛍光色ごとに取得し、フォーカス値のピークが存在する場合は、あらかじめ定めておいた優先色を用いて、オートフォーカス駆動系214のキャリブレーションを実施する。これにより、バーコード配列のように人為的に作成された塩基配列の蛍光色を用いてキャリブレーションを実施する場合であっても、適切かつ自動的にこれを実施することができる。 <Embodiment 1: Summary>
The fluorescence detection device 1 according to the first embodiment acquires a focus value for each fluorescence color, and if a peak of the focus value exists, calibrates theautofocus drive system 214 using a predetermined priority color. Implementation. As a result, even when calibration is performed using the fluorescent color of an artificially created base sequence such as a barcode sequence, this can be performed appropriately and automatically.
本実施形態1に係る蛍光検出装置1は、フォーカス値を蛍光色ごとに取得し、フォーカス値のピークが存在する場合は、あらかじめ定めておいた優先色を用いて、オートフォーカス駆動系214のキャリブレーションを実施する。これにより、バーコード配列のように人為的に作成された塩基配列の蛍光色を用いてキャリブレーションを実施する場合であっても、適切かつ自動的にこれを実施することができる。 <Embodiment 1: Summary>
The fluorescence detection device 1 according to the first embodiment acquires a focus value for each fluorescence color, and if a peak of the focus value exists, calibrates the
本実施形態1に係る蛍光検出装置1は、複数の蛍光色においてフォーカス値のピークが存在する場合は、その蛍光色のなかで試料からの蛍光発光強度が低い順に、優先色として選択する。発光強度が低い蛍光色を基準としてキャリブレーションを実施することにより、他の蛍光色においてもキャリブレーションの精度を高めることができる。
When the focus value peaks are present in a plurality of fluorescent colors, the fluorescence detection device 1 according to the first embodiment selects the fluorescent colors as priority colors in ascending order of fluorescence emission intensity from the sample. By performing calibration based on a fluorescent color having a low emission intensity, it is possible to improve the accuracy of calibration for other fluorescent colors as well.
<実施の形態2>
図3は、本開示の実施形態2に係る蛍光検出装置1の構成図である。本実施形態2においては、フィルタユニットは205の1つのみであり、フィルタユニット切替機構206は備えていない。2次元センサ204は、複数の蛍光色を同時に撮像可能なカラーカメラである。フィルタユニットの切り替えが不要になり、撮像が1回でよいので、構造が単純になるとともに、撮像にかかる時間を短縮することが可能となる。 <Embodiment 2>
FIG. 3 is a configuration diagram of the fluorescence detection device 1 according to the second embodiment of the present disclosure. In the second embodiment, there is only one filter unit 205, and the filterunit switching mechanism 206 is not provided. The two-dimensional sensor 204 is a color camera capable of simultaneously capturing a plurality of fluorescent colors. Since it is not necessary to switch the filter unit and only one imaging is required, the structure can be simplified and the time required for imaging can be shortened.
図3は、本開示の実施形態2に係る蛍光検出装置1の構成図である。本実施形態2においては、フィルタユニットは205の1つのみであり、フィルタユニット切替機構206は備えていない。2次元センサ204は、複数の蛍光色を同時に撮像可能なカラーカメラである。フィルタユニットの切り替えが不要になり、撮像が1回でよいので、構造が単純になるとともに、撮像にかかる時間を短縮することが可能となる。 <Embodiment 2>
FIG. 3 is a configuration diagram of the fluorescence detection device 1 according to the second embodiment of the present disclosure. In the second embodiment, there is only one filter unit 205, and the filter
カラーカメラの表面には、複数の蛍光色のうち、1色の蛍光色のみを検出する画素が存在する。画素の配置方法としては、例えばベイヤー配列のように、複数種の画素を平面的に規則的に並べてもよい。または、画素を垂直方向に配置し、それぞれの蛍光色を検出する画素を多層化して配置してもよい。
On the surface of the color camera, there are pixels that detect only one fluorescent color among a plurality of fluorescent colors. As a method of arranging the pixels, a plurality of types of pixels may be arranged regularly in a plane, for example, in a Bayer arrangement. Alternatively, the pixels may be arranged in the vertical direction, and the pixels for detecting each fluorescent color may be arranged in multiple layers.
本実施形態2において、透過フィルタ210Aは複数の蛍光色に対する励起光を分離することが可能であり、ダイクロイックミラー211Aはサンプルからの複数の蛍光を分離することが可能であり、蛍光フィルタ212Aはサンプルからの複数の蛍光のみを透過する。各蛍光に対応する画素が、他の蛍光からの影響を受けない場合は、蛍光フィルタ212Aは省略可能である。
In the second embodiment, the transmission filter 210A is capable of separating excitation light for a plurality of fluorescent colors, the dichroic mirror 211A is capable of separating a plurality of fluorescences from a sample, and the fluorescence filter 212A is capable of separating a plurality of fluorescences from a sample. Only multiple fluorescence from is transmitted. The fluorescence filter 212A can be omitted if the pixels corresponding to each fluorescence are not affected by other fluorescence.
<実施の形態3>
図4は、2次元センサ204の構成例を示す模式図である。2次元センサ204は、センサ素子2041に加えて、演算回路2042(例えばFPGA)を備えることもできる。センサ素子2041と演算回路2042は、それぞれ別の基板に実装することもできるし、同じ基板に実装することもできる。図4においては別の基板に実装した例を示した。実施形態1で説明した2次元センサ204Aと204Bも同様の構成を備えることができる。 <Embodiment 3>
FIG. 4 is a schematic view showing a configuration example of the two-dimensional sensor 204. The two-dimensional sensor 204 may include an arithmetic circuit 2042 (for example, FPGA) in addition to the sensor element 2041. The sensor element 2041 and the arithmetic circuit 2042 can be mounted on different boards or on the same board. FIG. 4 shows an example of mounting on another substrate. The two- dimensional sensors 204A and 204B described in the first embodiment can also have the same configuration.
図4は、2次元センサ204の構成例を示す模式図である。2次元センサ204は、センサ素子2041に加えて、演算回路2042(例えばFPGA)を備えることもできる。センサ素子2041と演算回路2042は、それぞれ別の基板に実装することもできるし、同じ基板に実装することもできる。図4においては別の基板に実装した例を示した。実施形態1で説明した2次元センサ204Aと204Bも同様の構成を備えることができる。 <Embodiment 3>
FIG. 4 is a schematic view showing a configuration example of the two-
演算回路2042は、センサ素子2041から制御部209に対して蛍光撮像画像を出力するのと並行して、またはセンサ素子2041から制御部209に対して蛍光撮像画像を出力する前に、その蛍光撮像画像のフォーカス値を計算する。これにより、フォーカス値を効率的に計算することができる。これに対して、センサ素子2041から制御部209に対して蛍光撮像画像を出力し、制御部209においてフォーカス値を算出する場合、蛍光撮像画像を転送するために多大な時間を要するような試料においては、オートキャリブレーションを実施するための所要時間が長くなってしまう。そこで本実施形態3のように2次元センサ204においてフォーカス値を計算する利点がある。
The arithmetic circuit 2042 performs fluorescence imaging in parallel with outputting the fluorescence imaging image from the sensor element 2041 to the control unit 209, or before outputting the fluorescence imaging image from the sensor element 2041 to the control unit 209. Calculate the focus value of the image. As a result, the focus value can be calculated efficiently. On the other hand, when the fluorescence image is output from the sensor element 2041 to the control unit 209 and the focus value is calculated by the control unit 209, in a sample in which a large amount of time is required to transfer the fluorescence image. Will take a long time to perform auto-calibration. Therefore, there is an advantage that the focus value is calculated in the two-dimensional sensor 204 as in the third embodiment.
<本開示の変形例について>
本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除または置換することもできる。 <About a modified example of the present disclosure>
The present disclosure is not limited to the embodiments described above, but includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present disclosure in an easy-to-understand manner, and does not necessarily have all the configurations described. In addition, a part of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of another embodiment with respect to a part of the configuration of each embodiment.
本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除または置換することもできる。 <About a modified example of the present disclosure>
The present disclosure is not limited to the embodiments described above, but includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present disclosure in an easy-to-understand manner, and does not necessarily have all the configurations described. In addition, a part of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of another embodiment with respect to a part of the configuration of each embodiment.
以上の実施形態において、制御部209は、その機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、その機能を実装したソフトウェアをCPU(Central Processing Unit)などの演算装置が実行することにより構成することもできる。制御部209はさらに、蛍光検出装置1の各構成要素の駆動や解析処理を実行するためのプログラムと各種データを格納する記憶部、プログラムと各種データを読み出して上記動作を実行するプロセッサ、ユーザがデータや指示を入力するための入力部、などを有してもよい。
In the above embodiment, the control unit 209 can be configured by hardware such as a circuit device that implements the function, or an arithmetic unit such as a CPU (Central Processing Unit) executes software that implements the function. It can also be configured by. The control unit 209 further includes a storage unit that stores a program and various data for driving and analyzing each component of the fluorescence detection device 1, a processor that reads the program and various data and executes the above operation, and a user. It may have an input unit for inputting data and instructions, and the like.
以上の実施形態においては、蛍光検出装置の例としてDNAシーケンサを説明したが、本開示に係る蛍光検出装置はこれに限るものではない。試料の蛍光発光画像を取得するその他の蛍光検出装置においても、本開示に係る手法を用いることができる。
In the above embodiments, the DNA sequencer has been described as an example of the fluorescence detection device, but the fluorescence detection device according to the present disclosure is not limited to this. The method according to the present disclosure can also be used in other fluorescence detection devices that acquire a fluorescence emission image of a sample.
200:光学系
201:サンプル基板
202:光源
203:対物レンズ
204、204A、204B:2次元センサ
205A、205B:フィルタユニット
206:フィルタユニット切替機構
207:対物レンズ駆動装置
208:ステージ
209:制御部
210A、210B:透過フィルタ
211A、211B:ダイクロイックミラー
212A、212B:蛍光フィルタ
213:ミラー
214:オートフォーカス駆動系
215:ダイクロイックミラー 200: Optical system 201: Sample substrate 202: Light source 203: Objective lens 204, 204A, 204B: Two- dimensional sensor 205A, 205B: Filter unit 206: Filter unit switching mechanism 207: Objective lens drive device 208: Stage 209: Control unit 210A , 210B: Transmission filter 211A, 211B: Dichroic mirror 212A, 212B: Fluorescent filter 213: Mirror 214: Autofocus drive system 215: Dichroic mirror
201:サンプル基板
202:光源
203:対物レンズ
204、204A、204B:2次元センサ
205A、205B:フィルタユニット
206:フィルタユニット切替機構
207:対物レンズ駆動装置
208:ステージ
209:制御部
210A、210B:透過フィルタ
211A、211B:ダイクロイックミラー
212A、212B:蛍光フィルタ
213:ミラー
214:オートフォーカス駆動系
215:ダイクロイックミラー 200: Optical system 201: Sample substrate 202: Light source 203:
Claims (14)
- 試料から生じる蛍光発光を検出する蛍光検出装置であって、
前記試料に対して対向して配置される対物レンズ、
前記対物レンズを光軸方向に移動させる対物レンズ駆動装置、
前記対物レンズが前記試料に対してピントが合っているか否かを示すフォーカス検出信号を出力するとともに、前記対物レンズのオートフォーカスを実施する、オートフォーカス駆動系、
前記試料の蛍光発光画像を撮像するセンサ、
前記対物レンズ駆動装置を制御することにより前記試料に対する前記対物レンズのフォーカス位置を調整する制御部、
を備え、
前記制御部は、前記対物レンズを前記光軸方向において移動させながら、前記試料の蛍光発光画像を蛍光色ごとに取得し、
前記制御部は、ベストフォーカス位置において撮像した際に最大となるフォーカス値を前記蛍光発光画像から前記蛍光色ごとに取得し、
前記制御部は、複数の前記蛍光色においてそれぞれ前記フォーカス値のピークが存在する場合は、前記蛍光色のうちあらかじめ定めておいた優先色を用いて、前記オートフォーカス駆動系のキャリブレーションを実施する
ことを特徴とする蛍光検出装置。 A fluorescence detection device that detects fluorescence emission generated from a sample.
An objective lens arranged to face the sample,
An objective lens driving device that moves the objective lens in the optical axis direction,
An autofocus drive system that outputs a focus detection signal indicating whether or not the objective lens is in focus with respect to the sample and also performs autofocus of the objective lens.
A sensor that captures a fluorescence emission image of the sample,
A control unit that adjusts the focus position of the objective lens with respect to the sample by controlling the objective lens driving device.
With
The control unit acquires a fluorescence emission image of the sample for each fluorescence color while moving the objective lens in the optical axis direction.
The control unit acquires the maximum focus value when an image is taken at the best focus position from the fluorescence emission image for each fluorescence color.
When the peak of the focus value exists in each of the plurality of fluorescent colors, the control unit calibrates the autofocus drive system using a predetermined priority color among the fluorescent colors. A fluorescence detection device characterized in that. - 前記制御部は、単一の前記蛍光色においてのみ前記フォーカス値のピークが存在する場合は、前記フォーカス値のピークが存在する前記蛍光色を用いて、前記オートフォーカス駆動系のキャリブレーションを実施する
ことを特徴とする請求項1記載の蛍光検出装置。 When the focus value peak is present only in the single fluorescent color, the control unit calibrates the autofocus drive system using the fluorescent color in which the focus value peak is present. The fluorescence detection device according to claim 1. - 前記制御部は、いずれの前記蛍光色においても前記フォーカス値のピークが存在しない場合は、
前記試料の表面上において前記センサが撮像する撮像領域を変更する、
前記対物レンズを前記光軸方向において移動させる際に1回の移動によって移動する移動幅を小さくする、
前記光軸方向における前記対物レンズの移動距離を増やす、
のうち少なくともいずれかを実施した上で、あらためて前記フォーカス値を前記蛍光発光画像から前記蛍光色ごとに取得する
ことを特徴とする請求項1記載の蛍光検出装置。 When the peak of the focus value does not exist in any of the fluorescent colors, the control unit may use the control unit.
The imaging region imaged by the sensor is changed on the surface of the sample.
When moving the objective lens in the optical axis direction, the movement width moved by one movement is reduced.
Increasing the moving distance of the objective lens in the optical axis direction,
The fluorescence detection device according to claim 1, wherein the focus value is acquired from the fluorescence emission image for each fluorescence color after performing at least one of the above. - 前記制御部は、同じ前記蛍光色について取得した前記フォーカス値のなかから最大値と最小値を取得し、
前記制御部は、前記最小値に対する前記最大値の比率が閾値以上である場合は、前記最大値と前記最小値を取得した前記蛍光色において前記フォーカス値のピークが存在すると判定する
ことを特徴とする請求項1記載の蛍光検出装置。 The control unit acquires the maximum value and the minimum value from the focus values acquired for the same fluorescent color.
When the ratio of the maximum value to the minimum value is equal to or greater than a threshold value, the control unit determines that a peak of the focus value exists in the fluorescent color obtained from the maximum value and the minimum value. The fluorescence detection device according to claim 1. - 前記制御部は、同じ前記蛍光色について取得した前記フォーカス値のなかから最大値を取得し、
前記制御部は、前記最大値が閾値以上である場合は、前記最大値を取得した前記蛍光色において前記フォーカス値のピークが存在すると判定する
ことを特徴とする請求項1記載の蛍光検出装置。 The control unit acquires the maximum value from the focus values acquired for the same fluorescent color.
The fluorescence detection device according to claim 1, wherein when the maximum value is equal to or greater than a threshold value, the control unit determines that a peak of the focus value exists in the fluorescence color that has acquired the maximum value. - 前記制御部は、前記フォーカス値のピークが存在する複数の前記蛍光色のなかから、前記試料からの蛍光発光強度が低い順に、前記優先色として選択する
ことを特徴とする請求項1記載の蛍光検出装置。 The fluorescence according to claim 1, wherein the control unit selects as the priority color in ascending order of fluorescence emission intensity from the sample from among the plurality of fluorescence colors in which the peak of the focus value exists. Detection device. - 前記蛍光検出装置はさらに、光をフィルタリングするフィルタユニットを備え、
前記フィルタユニットは、
光源からの光を透過させる透過フィルタ、
前記試料からの蛍光発光を透過させる蛍光フィルタ、
前記透過フィルタを透過した光を前記対物レンズへ向かって反射するとともに、前記試料からの蛍光発光を前記蛍光フィルタへ向かって透過させる、フィルタ素子、
を備える
ことを特徴とする請求項1記載の蛍光検出装置。 The fluorescence detector further comprises a filter unit for filtering light.
The filter unit is
A transmission filter that allows light from a light source to pass through,
A fluorescent filter that transmits fluorescent light from the sample,
A filter element that reflects light transmitted through the transmission filter toward the objective lens and transmits fluorescence emission from the sample toward the fluorescence filter.
The fluorescence detection device according to claim 1, further comprising. - 前記センサは、第1蛍光を撮像する第1撮像素子と、第2蛍光を撮像する第2撮像素子とを備え、
前記フィルタユニットは、前記試料からの前記第1蛍光を前記第1撮像素子へ向かって透過させる第1ユニットと、前記試料からの前記第2蛍光を前記第2撮像素子へ向かって透過させる第2ユニットとを備え、
前記蛍光検出装置はさらに、前記試料からの蛍光の光路上に、前記第1ユニットと前記第2ユニットのいずれを配置するかを切り替える、フィルタユニット切替機構を備える
ことを特徴とする請求項7記載の蛍光検出装置。 The sensor includes a first image sensor that captures the first fluorescence and a second image sensor that captures the second fluorescence.
The filter unit includes a first unit that transmits the first fluorescence from the sample toward the first image sensor, and a second unit that transmits the second fluorescence from the sample toward the second image sensor. Equipped with a unit,
7. The seventh aspect of the present invention is characterized in that the fluorescence detection device further includes a filter unit switching mechanism for switching which of the first unit and the second unit is arranged on the optical path of fluorescence from the sample. Fluorescence detector. - 前記第1撮像素子は、前記第1蛍光に加えて第3蛍光を撮像し、
前記第2撮像素子は、前記第2蛍光に加えて第4蛍光を撮像し、
前記第1ユニットは、前記試料からの前記第3蛍光を前記第1撮像素子へ向かって透過させ、
前記第2ユニットは、前記試料からの前記第4蛍光を前記第2撮像素子へ向かって透過させる
ことを特徴とする請求項8記載の蛍光検出装置。 The first image sensor captures a third fluorescence in addition to the first fluorescence.
The second image sensor captures a fourth fluorescence in addition to the second fluorescence.
The first unit transmits the third fluorescence from the sample toward the first image sensor.
The fluorescence detection device according to claim 8, wherein the second unit transmits the fourth fluorescence from the sample toward the second image pickup device. - 前記センサは、複数の蛍光色を撮像することができるマルチカラーカメラとして構成されており、
前記フィルタ素子は、前記センサが撮像する各前記蛍光色の蛍光発光をそれぞれ前記蛍光フィルタへ向かって透過させる
ことを特徴とする請求項7記載の蛍光検出装置。 The sensor is configured as a multicolor camera capable of capturing a plurality of fluorescent colors.
The fluorescence detection device according to claim 7, wherein the filter element transmits fluorescence emission of each of the fluorescent colors imaged by the sensor toward the fluorescent filter. - 前記制御部は、前記フォーカス値がピークとなる前記対物レンズの位置に、前記フォーカス検出信号のゼロ点をセットすることにより、前記オートフォーカス駆動系のキャリブレーションを実施する
ことを特徴とする請求項1記載の蛍光検出装置。 The control unit calibrates the autofocus drive system by setting a zero point of the focus detection signal at a position of the objective lens at which the focus value peaks. 1. The fluorescence detection device according to 1. - 前記センサは、前記フォーカス値を計算する演算回路を備え、
前記センサは、前記蛍光発光画像を前記制御部に対して出力するのと並行して、または前記蛍光発光画像を前記制御部に対して出力する前に、その蛍光発光画像の前記フォーカス値を前記演算回路によって計算する
ことを特徴とする請求項1記載の蛍光検出装置。 The sensor includes an arithmetic circuit for calculating the focus value.
The sensor obtains the focus value of the fluorescence emission image in parallel with outputting the fluorescence emission image to the control unit or before outputting the fluorescence emission image to the control unit. The fluorescence detection device according to claim 1, wherein the fluorescence is calculated by an arithmetic circuit. - 前記センサは、前記試料が有する4種類のDNA塩基それぞれから生じる蛍光を撮像することにより、前記試料が有する塩基構成についての情報を記述した前記蛍光発光画像を撮像し、
前記制御部は、前記蛍光発光画像を解析することにより、前記試料が有する塩基構成を解析するように構成されている
ことを特徴とする請求項1記載の蛍光検出装置。 By imaging the fluorescence generated from each of the four types of DNA bases of the sample, the sensor captures the fluorescence emission image describing the information about the base composition of the sample.
The fluorescence detection device according to claim 1, wherein the control unit is configured to analyze the base configuration of the sample by analyzing the fluorescence emission image. - 試料から生じる蛍光発光を検出する蛍光検出方法であって、
前記試料に対して対向して配置される対物レンズを光軸方向において移動させながら、前記試料の蛍光発光画像を蛍光色ごとに取得するステップ、
ベストフォーカス位置において撮像した際に最大となるフォーカス値を前記蛍光発光画像から前記蛍光色ごとに取得するステップ、
前記対物レンズのオートフォーカスを実施するオートフォーカス駆動系のキャリブレーションを実施するステップ、
を有し、
前記キャリブレーションを実施するステップは、複数の前記蛍光色においてそれぞれ前記フォーカス値のピークが存在する場合は、前記蛍光色のうちあらかじめ定めておいた優先色を用いて、前記キャリブレーションを実施する
ことを特徴とする蛍光検出方法。 A fluorescence detection method for detecting fluorescence emission generated from a sample.
A step of acquiring a fluorescence emission image of the sample for each fluorescence color while moving an objective lens arranged to face the sample in the optical axis direction.
A step of acquiring the maximum focus value when an image is taken at the best focus position from the fluorescence emission image for each fluorescence color.
Steps for calibrating the autofocus drive system for autofocusing the objective lens,
Have,
In the step of performing the calibration, when a peak of the focus value is present in each of the plurality of fluorescent colors, the calibration is performed using a predetermined priority color among the fluorescent colors. A fluorescence detection method characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/048398 WO2021117153A1 (en) | 2019-12-11 | 2019-12-11 | Fluorescence detection device and fluorescence detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/048398 WO2021117153A1 (en) | 2019-12-11 | 2019-12-11 | Fluorescence detection device and fluorescence detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117153A1 true WO2021117153A1 (en) | 2021-06-17 |
Family
ID=76329979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/048398 WO2021117153A1 (en) | 2019-12-11 | 2019-12-11 | Fluorescence detection device and fluorescence detection method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021117153A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100157086A1 (en) * | 2008-12-15 | 2010-06-24 | Illumina, Inc | Dynamic autofocus method and system for assay imager |
JP2011099720A (en) * | 2009-11-05 | 2011-05-19 | Hitachi High-Technologies Corp | Analyzer, autofocus device, and autofocusing method |
WO2015163211A1 (en) * | 2014-04-21 | 2015-10-29 | コニカミノルタ株式会社 | Biological substance quantitation method, image processing device, pathological diagnosis support system, and image processing program |
-
2019
- 2019-12-11 WO PCT/JP2019/048398 patent/WO2021117153A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100157086A1 (en) * | 2008-12-15 | 2010-06-24 | Illumina, Inc | Dynamic autofocus method and system for assay imager |
JP2011099720A (en) * | 2009-11-05 | 2011-05-19 | Hitachi High-Technologies Corp | Analyzer, autofocus device, and autofocusing method |
WO2015163211A1 (en) * | 2014-04-21 | 2015-10-29 | コニカミノルタ株式会社 | Biological substance quantitation method, image processing device, pathological diagnosis support system, and image processing program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2702577C2 (en) | Systems and methods for biological analysis | |
US12092808B2 (en) | Self-calibrating and directional focusing systems and methods for infinity corrected microscopes | |
US7307802B2 (en) | Optical lens system and method for microfluidic devices | |
KR101287189B1 (en) | Multi fluorescent microscope and observing method using the same and multi fluorescent observation system | |
KR102126032B1 (en) | Multi-channel fluorescence detecting module and nucleic acid analysis system having the same | |
US10591416B2 (en) | Optical systems and methods for biological analysis | |
US10005083B2 (en) | Optical alignment tool | |
EP2924487B1 (en) | Optical microscope and autofocus device for optical microscope | |
JP6581707B2 (en) | Nucleic acid analyzer and nucleic acid analysis method | |
WO2015087824A1 (en) | Optical apparatus, measuring apparatus, measuring method, screening apparatus, and screening method | |
JP2022084889A (en) | Slide inventory and reinsertion system | |
US7936503B2 (en) | Laser scanning microscope | |
WO2015053144A1 (en) | Nucleic-acid-sequence determination device and nucleic-acid-sequence determination method | |
JP6416530B2 (en) | Fluorescence observation apparatus and fluorescence observation method | |
CN114667723A (en) | High speed scanning system for super resolution imaging | |
WO2021019597A1 (en) | Nucleic acid analysis device and method | |
WO2021117153A1 (en) | Fluorescence detection device and fluorescence detection method | |
CN117891042A (en) | Focusing method, optical imaging system, sequencing system and medium | |
WO2021070259A1 (en) | Analysis device and analysis method | |
JPH1152252A (en) | Fluorescent microscope | |
WO2007049843A1 (en) | Bio-chip scanner | |
US12085703B2 (en) | Physical calibration slide | |
JP2004184379A (en) | Method of reading microarray | |
WO2016157458A1 (en) | Measurement apparatus, measurement system, signal string processing method, and program | |
KR20210083489A (en) | small and low-cost fluorescent optic module for Point-of-Care Molecular diagnostic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19955417 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19955417 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |