Nothing Special   »   [go: up one dir, main page]

WO2021106161A1 - Cold heat source system and refrigeration cycle device - Google Patents

Cold heat source system and refrigeration cycle device Download PDF

Info

Publication number
WO2021106161A1
WO2021106161A1 PCT/JP2019/046629 JP2019046629W WO2021106161A1 WO 2021106161 A1 WO2021106161 A1 WO 2021106161A1 JP 2019046629 W JP2019046629 W JP 2019046629W WO 2021106161 A1 WO2021106161 A1 WO 2021106161A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
evaluation value
heat source
cold heat
compressor
Prior art date
Application number
PCT/JP2019/046629
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021561080A priority Critical patent/JP7154440B2/en
Priority to PCT/JP2019/046629 priority patent/WO2021106161A1/en
Publication of WO2021106161A1 publication Critical patent/WO2021106161A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/04Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with more than one refrigeration unit

Definitions

  • This disclosure relates to a cold heat source system and a refrigeration cycle device.
  • Japanese Patent Application Laid-Open No. 62-911178 discloses a refrigerator in which the frequency of power supplied to a compressor or fan device is changed by an inverter to adjust the cooling capacity.
  • This refrigerator detects the number of times the door is opened and the opening time with a detection device within a certain period of time. Then, when at least one of the number of times the door is opened and the opening time detected by the detection device exceeds the threshold value, the frequency is increased by the inverter.
  • An object of the present invention is to provide a cooling heat source system capable of uniformly cooling a cooling target space by appropriately controlling a plurality of compressors, and a refrigeration cycle device.
  • the present disclosure relates to a cold heat source system configured to be connected to a load device including a first evaporator and a second evaporator.
  • the cold heat source system is provided in the cooling target space in which the first compressor provided corresponding to the first evaporator, the second compressor provided corresponding to the second evaporator, and the load device are installed.
  • a control device for controlling the first compressor and the second compressor according to the first evaluation value and the second evaluation value, which are weighted differently with respect to the time when the first door is open, is provided.
  • the capacities of a plurality of compressors are appropriately controlled when the door is opened and closed, so that the temperature distribution of the cooling target space can be made uniform.
  • FIG. 1 It is a figure which shows the structure of the refrigeration cycle apparatus of the study example. It is a waveform figure which compared and showed two kinds of control about opening and closing of a door in the structure of the refrigerating cycle apparatus of the study example. It is a figure which shows the structure of the cold heat source system and refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which showed the relationship between the opening / closing signal of each door, and a weighting coefficient.
  • FIG. It is a flowchart which shows the process in each control part of the control apparatus of Embodiment 1.
  • FIG. It is a figure which shows the structure of the cold heat source system and refrigerating cycle apparatus which concerns on Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device of a study example.
  • the refrigeration cycle device shown in FIG. 1 includes a cold heat source machine 2, a load device 3, and extension pipes 82 and 86.
  • the cold heat source machine 2 is configured to be connected to the load device 3 by extension pipes 82 and 86.
  • the cold heat source machine 2 includes a compressor 10, a condenser 20, a fan 22, and pipes 80, 81, and 87.
  • the flow path from the compressor 10 to the connection port to the load device 3 via the condenser 20 is configured to form a circulation flow path through which the refrigerant circulates together with the load device 3.
  • the load device 3 includes an expansion device 50, an evaporator 60, a fan 62, and pipes 83, 84, 85.
  • the expansion device 50 is, for example, a temperature expansion valve that is controlled independently of the cold heat source machine 2.
  • the compressor 10 compresses the refrigerant sucked from the pipe 87 and discharges it to the pipe 80.
  • the compressor 10 is configured to adjust the operating frequency according to a control signal from the control device 91. By adjusting the operating frequency of the compressor 10, the circulation amount of the refrigerant is adjusted, and the refrigerating capacity of the refrigerating cycle device can be adjusted.
  • Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80 and flows it to the pipe 81.
  • the condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat with the outside air. By this heat exchange, the heat-dissipated refrigerant condenses and changes into a liquid phase.
  • the fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure on the discharge side of the compressor 10 can be adjusted.
  • the cold heat source machine 2 further includes a pressure sensor 97 and a control device 91.
  • the pressure sensor 97 detects the pressure PL of the suction refrigerant of the compressor 10 and outputs the detected value to the control device 91.
  • the control device 91 includes a CPU (Central Processing Unit) 92, a memory 94 (ROM (Read Only Memory) and RAM (Random Access Memory)), a receiving device 96 for inputting various signals, and the like. ..
  • the CPU 92 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 91 is described.
  • the control device 91 executes control of each device in the cold heat source machine 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the load device 3 is installed in the cooling chamber 4, which is the cooling target space.
  • the cooling chamber 4 is provided with a door 5 for taking in and out an object to be cooled, and an open / close detection device 98 for detecting the opening / closing of the door 5.
  • the open / close detection device 98 transmits an open / close signal indicating the opening / closing of the door 5 to the control device 91 by wireless or wired communication.
  • the control device 91 receives the open / close signal by the receiving device 96.
  • the CPU 92 integrates the opening time of the door 5 from the open / close signal and stores it in the memory 94.
  • control device 91 increases the refrigerating capacity of the refrigerating cycle device by increasing the operating frequency of the compressor 10 and prevents the temperature of the cooling chamber 4 from rising.
  • the control device 91 increases the operating frequency of the compressor 10 when the door opening time accumulated by the CPU 92 exceeds a certain time.
  • the processing for increasing / decreasing the operating frequency of the compressor 10 will be described below.
  • FIG. 2 is a waveform diagram showing a comparison of two types of controls for opening and closing the door in the configuration of the refrigeration cycle device of the study example.
  • the door 5 is open at time t1 and the door is closed at time t4.
  • an example of controlling the compressor 10 according to the opening and closing of the door 5 is shown by a solid line
  • an example of controlling the compressor 10 according to a change in the temperature inside the refrigerator is shown by a broken line.
  • the waveform shown by the solid line will be explained.
  • the temperature inside the refrigerator is constant, and the operating frequency is also controlled to a constant frequency f0.
  • the door 5 opens, and an open / close detection device 98 sends an open signal to the receiving device 96.
  • the CPU 92 starts the opening time integration process. Further, with the opening of the door, the temperature inside the refrigerator starts to rise from time t1.
  • the control device 91 increases the operating frequency of the compressor 10 from f0 to fA. Then, the cooling capacity of the load device 3 increases, and the temperature TA in the refrigerator starts to decrease.
  • a closing signal is transmitted from the open / close detection device 98 to the receiving device 96.
  • the CPU 92 stops the processing of integrating the door opening time.
  • the control device 91 changes the operating frequency of the compressor 10 between the frequency f0 before the door is opened and the frequency fA after the compressor speed is increased.
  • the control device 91 changes the operating frequency of the compressor 10 to a predetermined frequency f0, and continues the operation of the compressor 10.
  • the temperature inside the refrigerator may be detected by a temperature sensor (not shown), but the detection value of the pressure sensor 97 provided on the suction side of the compressor 10 may be substituted.
  • the control device 91 increases the operating frequency of the compressor 10 from f0 to fB at time t3. Then, the cooling capacity of the load device 3 increases, and the temperature TB in the refrigerator starts to decrease. Since fB> fA, the descending speed of the internal temperature TB has a larger inclination than the descending speed of the internal temperature TA. Then, when the door 5 is closed at time t4, the inclination of the decrease in the temperature TB in the partition where the cooling load is reduced increases. Then, at time t6, after the internal temperature TB reaches the set temperature, the control device 91 changes the operating frequency of the compressor 10 to a predetermined frequency f0, and continues the operation of the compressor 10.
  • the intrusion of the heat load due to the opening of the door is simulated by the opening time of the door, and the compressor 10 is accelerated before the temperature inside the chamber reaches the threshold value. It is possible to suppress the temperature rise in the refrigerator more than in the study example. As a result, the temperature rise of the object to be cooled can be suppressed, and the quality of the object to be cooled can be ensured.
  • the operating frequency of the compressor 10 is increased in order to secure the target internal temperature.
  • the change in frequency can be made smaller than that in the study example shown by the broken line in order to increase the operating frequency of the compressor 10 while the temperature rise in the refrigerator is still small.
  • the compressor 10 can be operated within a range of high operating efficiency, and an energy saving effect can be expected by suppressing power consumption.
  • Embodiment 1 In the first embodiment, a case where a plurality of compressors are included in the cold heat source will be described. Although the case where the cooling chamber has two doors is illustrated, the number of doors may be one.
  • FIG. 3 is a diagram showing a configuration of a cold heat source system and a refrigeration cycle device according to the first embodiment.
  • the refrigeration cycle device shown in FIG. 3 includes a cold heat source system 100, a load device 101, and extension pipes 182,186,282,286.
  • the cold heat source system 100 is configured to be connected to the load device 101 by extension pipes 182,186,282,286.
  • the cold heat source system 100 includes a cold heat source machine 102 and a cold heat source machine 202.
  • the load device 101 includes a cooler 103 and a cooler 203.
  • the cold heat source machine 102 includes a first compressor 110, a first condenser 120, and pipes 180, 181 and 187.
  • the cold heat source machine 202 includes a second compressor 210, a second condenser 220, and pipes 280, 281, 287.
  • the flow path from the first compressor 110 to the connection port to the cooler 103 via the first condenser 120 is configured to form a circulation flow path through which the refrigerant circulates together with the cooler 103.
  • the flow path from the second compressor 210 to the connection port to the cooler 203 via the second condenser 220 is configured to form a circulation flow path through which the refrigerant circulates together with the cooler 203.
  • the cooler 103 includes an expansion device 150, a first evaporator 160, a fan 162, and pipes 183, 184, 185.
  • the cooler 203 includes an expansion device 250, a second evaporator 260, a fan 262, and pipes 283, 284, 285.
  • As the expansion devices 150 and 250 for example, a temperature expansion valve controlled independently of the cold heat source system 100 is used.
  • the first compressor 110 and the second compressor 210 compress the refrigerant sucked from the pipes 187 and 287, respectively, and discharge the refrigerant to the pipes 180 and 280.
  • the first compressor 110 and the second compressor 210 are configured to adjust the operating frequency according to the control signals from the control devices 191,291, respectively. By adjusting the operating frequencies of the first compressor 110 and the second compressor 210, the circulation amount of the refrigerant can be adjusted, and the refrigerating capacity of the refrigeration cycle device can be adjusted.
  • Various types can be adopted for the first compressor 110 and the second compressor 210, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the first condenser 120 and the second condenser 220 condense the refrigerant discharged from the first compressor 110 and the second compressor 210 into the pipes 180 and 280, respectively, and flow them into the pipes 181, 281.
  • the first condenser 120 and the second condenser 220 are configured such that high-temperature and high-pressure gas refrigerants discharged from the first compressor 110 and the second compressor 210 exchange heat with the outside air, respectively. By these heat exchanges, the heat-dissipated refrigerant condenses and changes into a liquid phase.
  • the fans 122 and 222 supply the outside air through which the refrigerant exchanges heat in the first condenser 120 and the second condenser 220 to the first condenser 120 and the second condenser 220, respectively.
  • the refrigerant pressures on the discharge side of the first compressor 110 and the second compressor 210 can be adjusted, respectively.
  • the cold heat source machine 102 further includes a pressure sensor 197 and a control device 191.
  • the cold heat source machine 202 further includes a pressure sensor 297 and a control device 291.
  • the pressure sensors 197 and 297 detect the pressures of the intake refrigerants of the first compressor 110 and the second compressor 210, respectively, and output the detected values to the control devices 191, and 291.
  • the control device 191 includes a CPU 192, a memory 194 (ROM and RAM), a receiving device 196 for inputting various signals, and the like.
  • the control device 291 includes a CPU 292, a memory 294 (ROM and RAM), a receiving device 296 for inputting various signals, and the like.
  • the CPUs 192 and 292 expand the program stored in the ROM into a RAM or the like and execute it.
  • the program stored in the ROM is a program in which the processing procedure of the control devices 191 and 291 is described.
  • the control devices 191 and 291 execute control of each device in the cold heat source machines 102 and 202, respectively, according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • Both the coolers 103 and 203 are installed in the cooling chamber 104, which is the cooling target space.
  • the cooling chamber 104 is provided with a first door 105 and a second door 205 for taking in and out an object to be cooled, and open / close detection devices 198 and 298 for detecting the opening and closing of the first door 105 and the second door 205, respectively. ing.
  • the open / close detection devices 198 and 298 transmit the first open / close signal D1 and the second open / close signal D2 indicating the open / close of the first door 105 and the second door 205 to the control devices 191, and 291 respectively by wireless or wired communication.
  • the control device 191 receives the first open / close signal D1 by the receiving device 196.
  • the CPU 192 integrates the opening time of the first door 105 from the first opening / closing signal D1 and stores it in the memory 194.
  • the control device 291 receives the second open / close signal D2 by the receiving device 296.
  • the CPU 292 integrates the opening time of the second door 205 from the second open / close signal D2 and stores it in the memory 294.
  • the individual first open / close signal D1 and the second open / close signal D2 are transmitted to the receiving devices 196 and 296 provided in the individual cold heat source machines 102 and 202, respectively.
  • the evaluation value calculated by multiplying the door coefficient weighted for each opening / closing door in each CPU 192, 292 reaches a certain value or more, the frequency of the corresponding compressor is increased.
  • FIG. 4 is a diagram showing the relationship between the opening / closing signal of each door and the weighting coefficient.
  • the receiving device 196 of the cold heat source machine 102 receives the first opening / closing signal D1 indicating the opening / closing of the first door 105 and the second opening / closing signal D2 indicating the opening / closing of the second door 205.
  • the CPU 192 multiplies the first integrated value TS1 of the opening time indicated by the first opening / closing signal D1 by the coefficient K11 to obtain the second integrated value TS2 of the opening time indicated by the second opening / closing signal D2. Multiply by the coefficient K12 to obtain the sum of these as the first evaluation value TD1.
  • TD1 TS1 x K11 + TS2 x K12 ...
  • the CPU 192 controls the increase / decrease of the operating frequency of the first compressor 110 based on the first evaluation value TD1.
  • the receiving device 296 of the cold heat source machine 202 receives the first opening / closing signal D1 indicating the opening / closing of the first door 105 and the second opening / closing signal D2 indicating the opening / closing of the second door 205.
  • the CPU 292 multiplies the first integrated value TS1 of the opening time indicated by the first opening / closing signal D1 by the coefficient K21 to obtain the second integrated value TS2 of the opening time indicated by the second opening / closing signal D2. Multiply by the coefficient K22 to obtain the sum of these as the second evaluation value TD2.
  • TD2 TS1 x K21 + TS2 x K22 ... (2)
  • the CPU 292 controls the increase / decrease of the operating frequency of the second compressor 210 based on the second evaluation value TD2.
  • Each coefficient can be determined based on the distance between the corresponding cooler and the door.
  • K11> K12 and K21 ⁇ K22 K11> K12 and K21 ⁇ K22.
  • K11> K21 and K12 ⁇ K22 K11> K21 and K12 ⁇ K22.
  • Each coefficient may be determined in consideration of not only a simple distance but also the flow of cold air.
  • FIG. 5 is a waveform diagram for explaining the control in the configuration of the refrigeration cycle apparatus of the first embodiment.
  • the temperature inside the refrigerator is constant, and the operating frequency is also controlled to constant frequencies f110 and f210.
  • the load on the cold heat source machine 102 side increases and the temperature rises. Further, the temperature of the cold heat source machine 202 side rises with a delay.
  • the control devices 191 and 291 obtain the first evaluation value TD1 and the second evaluation value TD2 by multiplying the coefficients described in FIG. 4, respectively, and increase the frequency of the compressor when the determination threshold value TDth is reached.
  • the first evaluation value TD1 on the cold heat source machine 102 side having a large coefficient K11 of the first door 105 reaches the determination threshold value TDth earlier than the second evaluation value TD2 on the cold heat source machine 202 side. (T13).
  • the second evaluation value TD2 on the cold heat source machine 202 side reaches the determination threshold value TDth (t14).
  • the operating frequency f110 of the first compressor 110 is increased, and both the internal temperatures T1 and T2 start to decrease. Further, at time t14, the operating frequency f210 of the second compressor 210 is increased, and the rate of decrease in the temperature inside the chambers T1 and T2 is increased.
  • the first door 105 is closed, and the operating frequencies f110 and f210 are both lowered by one step accordingly.
  • the operating frequencies f110 and f210 are returned to the same frequencies as before the first door 105 was opened, in response to the return of the internal temperature T1.
  • FIG. 6 is a flowchart showing processing in each control unit of the control device of the first embodiment. The processing of the flowchart shown in FIG. 6 is executed in each of the control devices 191 and 291 shown in FIG.
  • step S1 it is detected that the door is opened by either the first open / close signal D1 or the second open / close signal D2, and in step S2, the operations of the first evaluation value TD1 and the second evaluation value TD2 are performed by the control device, respectively. It will start at 191,291.
  • step S3 the calculations of the first evaluation value TD1 and the second evaluation value TD2 are executed by the following equations (1) and (2) already described.
  • TD1 TS1 x K11 + TS2 x K12 ...
  • TD2 TS1 x K21 + TS2 x K22 ... (2)
  • TS1 indicates the total opening time of the first door 105 obtained from the first opening / closing signal D1.
  • TS2 indicates the total opening time of the second door 205 obtained from the second opening / closing signal D2.
  • K11, K12, K21, and K22 are the coefficients shown in FIG.
  • step S4 the control devices 191 and 291 determine whether or not the first evaluation value TD1 and the second evaluation value TD2 have reached the determination threshold value TDth, respectively. If the evaluation value has not reached the determination threshold value TDth (NO in S4), the process returns to step S3 and the operations of the first evaluation value TD1 and the second evaluation value TD2 are continued.
  • the operating frequency of the corresponding compressor is increased in step S5. Specifically, when the control device 191 detects that the first evaluation value TD1 has reached the determination threshold value TDth, the operating frequency of the first compressor 110 is increased. On the other hand, when the control device 291 detects that the second evaluation value TD2 has reached the determination threshold value TDth, the operating frequency of the second compressor 210 is increased.
  • the position of the door and the cooling position covered by the cold heat source machine are linked to correspond to each cold heat source machine.
  • the evaluation value is calculated by weighting the evaluation value of the door opening time.
  • the frequency of the compressor is increased only when the evaluation value exceeds the determination threshold value. This preferentially increases the capacity of the cold heat source unit near the position where cooling is required, while avoiding an inadvertent increase in the capacity of other cold heat source units. In this way, it is possible to avoid overcooling of the cooling chamber and realize energy-saving operation of the entire freezing and refrigerating warehouse system.
  • FIG. 7 is a diagram showing a configuration of a cold heat source system and a refrigeration cycle device according to the second embodiment.
  • the refrigeration cycle device of the second embodiment includes a cold heat source system 100A, a load device 101, and extension pipes 182,186,282,286.
  • the cold heat source system 100A includes a cold heat source machine 102A and a cold heat source machine 202A.
  • the cooling chamber 104 is provided with mass detection devices 199 and 299.
  • the mass detection device 199 is configured to detect the mass of the object to be cooled carried in from the first door 105.
  • the mass detection device 299 is configured to detect the mass of the object to be cooled carried in from the second door 205.
  • a load sensor installed on the floor can be used.
  • the cold heat source machine 102A includes a control device 191A instead of the control device 191 in the configuration of the cold heat source machine 102 shown in FIG.
  • the control device 191A includes a receiving device 196A instead of the receiving device 196 in the configuration of the control device 191 shown in FIG.
  • the receiving device 196A receives the mass signals W1 and W2 transmitted from the mass detecting devices 199 and 299 in addition to the first opening / closing signal D1 and the second opening / closing signal D2.
  • mass detection devices 199 and 299 are provided on each door.
  • the mass signals W1 and W2 from the mass detection devices 199 and 299 are transmitted to the receiving device 196A and also transmitted to the receiving device 296A.
  • the first evaluation value TD1 and the second evaluation value TD2 calculated in the first embodiment are corrected by using the coefficient corresponding to the mass.
  • the heat capacity of the object to be cooled has a correlation with mass rather than volume. Therefore, in the present embodiment, the mass of the object to be cooled carried into the cooling chamber 104 is measured, and the evaluation value is corrected accordingly.
  • the mass detected by the mass detection device 199 is reflected in the evaluation value by increasing the coefficient corresponding to the first door 105 and decreasing the coefficient corresponding to the second door 205. Further, the mass detected by the mass detection device 299 is reflected in the evaluation value by increasing the coefficient corresponding to the second door 205 and decreasing the coefficient corresponding to the first door 105.
  • the cooler 103 when the object to be cooled having a large mass is stored from the second door 205 is larger than the amount of increase in the load of the cooler 103 when the object to be cooled having a small mass is stored from the first door 105. It is possible that the amount of increase in the load of the door will be larger. In such a case, the refrigerating capacity of the coolers 103 and 203 should be appropriately increased by appropriately determining the coefficient for reflecting the mass in the evaluation value and controlling the first compressor 110 and the second compressor 210. Can be done.
  • the mass detection devices 199 and 299 are assumed to be load meters that measure the gravity of each forklift that carries the pallet on which the object to be cooled is placed.
  • the mass of the forklift known in advance may be subtracted and treated as the mass of the object to be cooled.
  • the mass signal W1 coefficient K W 11 coefficients to be reflected in the control of the cold heat source apparatus 102 a mass signal W1 and the coefficient K W 12 coefficients to be reflected in the control of the cold heat source apparatus 202.
  • the coefficient for reflecting the mass signal W2 in the control of the cold heat source machine 102 is a coefficient K W 21
  • the coefficient for reflecting the mass signal W2 in the control of the cold heat source machine 202 is a coefficient K W 22.
  • K W 21 When it is close to the device 299, K W 21 ⁇ K W 22. Further, when the mass detection device 199 is closer to the cooler 103 than the mass detection device 299 and the mass detection device 299 is closer to the cooler 203 than the mass detection device 199, K W 11> K W 21, K W 12 ⁇ K. W 22.
  • the corrected evaluation values TD1A and TD2A can be obtained by multiplying each term by a value obtained by multiplying the mass by a coefficient.
  • W 1 indicates the mass indicated by the mass signal W 1
  • W 2 indicates the mass indicated by the mass signal W 2.
  • TD1A TS1 x K11 x W 1 x K W 11 + TS2 x K12 x W 2 x K W 12 ...
  • TD2A TS1 x K21 x W 1 x K W 21 + TS2 x K22 x W 2 x K W 22 ...
  • the corrected evaluation values TD1A and TD2A can be obtained by simply adding the values obtained by multiplying the mass by the coefficient.
  • TD1A TS1 x K11 + W 1 x K W 11 + TS2 x K12 + W 2 x K W 12 ...
  • TD2A TS1 x K21 + W 1 x K W 21 + TS2 x K22 + W 2 x K W 22 ... (6)
  • the cold heat source system 100 shown in FIG. 3 is configured to be connected to a load device 101 including a first evaporator 160 and a second evaporator 260.
  • the cold heat source system 100 is a cooling system in which a first compressor 110 provided corresponding to the first evaporator 160, a second compressor 210 provided corresponding to the second evaporator 260, and a load device 101 are installed.
  • the first compressor 110 and the second compressor are respectively according to the first evaluation value TD1 and the second evaluation value TD2 obtained by applying different weights to the time when the first door 105 provided in the chamber 104 is open.
  • a control device 190 for controlling the machine 210 is provided.
  • control device 190 is divided and arranged in the control devices 191 and 291 provided corresponding to the first compressor 110 and the second compressor 210, respectively, but the control devices 190 are combined into one. You may be. Further, the control devices 190 which are divided into three or more may cooperate to realize the control device 190.
  • Weighting of the first integrated value TS1 which is the opening time of the first door 105, is performed by the coefficients K11 and K21 shown in FIG.
  • FIG. 3 shows an example in which the cooling chamber 104 is provided with two doors, the number of doors may be one.
  • the control device 190 is configured to receive the first opening / closing signal D1 indicating the opening / closing of the first door 105.
  • the control device 190 is configured to calculate the first evaluation value TD1 and the second evaluation value TD2 using the first integrated value TS1 indicating the total opening time of the first door 105 from the first opening / closing signal D1.
  • the first evaluation value TD1 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K11.
  • the second evaluation value TD2 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K21.
  • control device 190A shown in FIG. 7 corrects the first evaluation value TD1 and the second evaluation value TD2 based on the mass signal W1 indicating the weight of the object to be cooled carried from the first door 105 into the cooling chamber 104. It is configured to do.
  • the corrected evaluation values TD1A and TD2A are exemplified by the equations (3) to (6).
  • the opening and closing of the door often involves bringing in the object to be cooled.
  • the temperature inside the refrigerator is raised.
  • the cooling capacity is further increased, so that the temperature rise in the refrigerator can be suppressed.
  • the cooling chamber 104 shown in FIG. 3 is further provided with a second door 205 provided at a position different from that of the first door 105.
  • the control device 190 reflects the values obtained by weighting the first evaluation value TD1 and the second evaluation value TD2 differently with respect to the time when the second door 205 is open.
  • the control device 190 is configured to receive the first opening / closing signal D1 indicating the opening / closing of the first door 105 and the second opening / closing signal D2 indicating the opening / closing of the second door 205.
  • the control device 190 has a first integrated value TS1 indicating the total opening time of the first door 105 obtained from the first opening / closing signal D1 and a total of the opening times of the second door 205 obtained from the second opening / closing signal D2.
  • the first evaluation value TD1 and the second evaluation value TD2 are calculated by using the second integrated value TS2 indicating the above and the coefficients K11, K21, K12, and K22.
  • the first evaluation value TD1 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K11 and a value obtained by multiplying the second integrated value TS2 by the coefficient K12.
  • the second evaluation value TD2 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K21 and a value obtained by multiplying the second integrated value TS2 by the coefficient K22.
  • the control device 190A shown in FIG. 7 has a mass signal W1 indicating the weight of the object to be cooled carried from the first door 105 into the cooling chamber 104 and the weight of the object to be cooled carried from the second door 205 into the cooling chamber 104.
  • the first evaluation value TD1 and the second evaluation value TD2 are corrected based on the mass signal W2 indicating the above.
  • the correction is performed as shown in the equations (3) and (4) or the equations (5) and (6).
  • a refrigeration cycle device including the above-mentioned cold heat source system 100 or 100A and a load device 101 is also disclosed.
  • the present embodiment has been described above by exemplifying a refrigerator equipped with a refrigerating cycle device, the refrigerating cycle device disclosed in the present embodiment may be used as an air conditioner or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A cold heat source system (100) is configured so as to be connected to a load device (101) that includes a first evaporator (160) and a second evaporator (260). The cold heat source system (100) comprises: a first compressor (110) that is provided so as to correspond to the first evaporator (160); a second compressor (210) that is provided so as to correspond to the second evaporator (260); and a control device (190) that controls the first compressor (110) and the second compressor (210) according to a first evaluation value (TD1) and a second evaluation value (TD2) obtained by assigning different weights to the time when a first door (105) provided for a space (104) to be cooled where the load device (101) is installed is open.

Description

冷熱源システム、および冷凍サイクル装置Cold heat source system and refrigeration cycle equipment
 本開示は、冷熱源システム、および冷凍サイクル装置に関する。 This disclosure relates to a cold heat source system and a refrigeration cycle device.
 実開昭62-91178号公報には、コンプレッサまたはファン装置に供給する電力の周波数をインバータによって変化させて冷却能力を調整する冷蔵庫が開示されている。この冷蔵庫は、一定時間内に扉を開いた回数および開時間を検知装置で検知する。そして、検知装置に検知された扉を開いた回数と開時間の少なくとも一方がしきい値以上になったときにインバータによって周波数を上昇させる。 Japanese Patent Application Laid-Open No. 62-911178 discloses a refrigerator in which the frequency of power supplied to a compressor or fan device is changed by an inverter to adjust the cooling capacity. This refrigerator detects the number of times the door is opened and the opening time with a detection device within a certain period of time. Then, when at least one of the number of times the door is opened and the opening time detected by the detection device exceeds the threshold value, the frequency is increased by the inverter.
実開昭62-91178号公報Jikkai Sho 62-91178
 しかしながら、大型の冷凍冷蔵倉庫等に用いられるような、複数の圧縮機を含んで構成される冷熱源システムでは、扉の開閉にともなう熱負荷の変動は、扉の位置によっては冷却対象空間である庫内において均一ではない。したがって、個々の圧縮機に対して適切に制御し、冷凍能力を調整する必要がある。 However, in a cold heat source system including a plurality of compressors, such as that used in a large freezing and refrigerating warehouse, the fluctuation of the heat load due to the opening and closing of the door is a cooling target space depending on the position of the door. Not uniform in the refrigerator. Therefore, it is necessary to appropriately control each compressor and adjust the refrigerating capacity.
 この発明の目的は、複数の圧縮機に対して適切な制御を行なうことによって冷却対象空間を均一に冷却することができる冷熱源システム、および冷凍サイクル装置を提供することである。 An object of the present invention is to provide a cooling heat source system capable of uniformly cooling a cooling target space by appropriately controlling a plurality of compressors, and a refrigeration cycle device.
 本開示は、第1蒸発器および第2蒸発器を含む負荷装置に接続されるように構成された、冷熱源システムに関する。冷熱源システムは、第1蒸発器に対応して設けられる第1圧縮機と、第2蒸発器に対応して設けられる第2圧縮機と、負荷装置が設置される冷却対象空間に設けられた第1扉が開いている時間に対して、異なる重み付けを行なった第1評価値および第2評価値に応じてそれぞれ第1圧縮機および第2圧縮機を制御する制御装置とを備える。 The present disclosure relates to a cold heat source system configured to be connected to a load device including a first evaporator and a second evaporator. The cold heat source system is provided in the cooling target space in which the first compressor provided corresponding to the first evaporator, the second compressor provided corresponding to the second evaporator, and the load device are installed. A control device for controlling the first compressor and the second compressor according to the first evaluation value and the second evaluation value, which are weighted differently with respect to the time when the first door is open, is provided.
 本開示の冷熱源システム、および冷凍サイクル装置によれば、扉の開閉時に、複数の圧縮機の能力をそれぞれ適切に制御するので、冷却対象空間の温度分布を均一にすることができる。 According to the cold heat source system and the refrigeration cycle device of the present disclosure, the capacities of a plurality of compressors are appropriately controlled when the door is opened and closed, so that the temperature distribution of the cooling target space can be made uniform.
検討例の冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigeration cycle apparatus of the study example. 検討例の冷凍サイクル装置の構成において、扉の開閉についての2種類の制御を比較して示した波形図である。It is a waveform figure which compared and showed two kinds of control about opening and closing of a door in the structure of the refrigerating cycle apparatus of the study example. 実施の形態1に係る冷熱源システムおよび冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the cold heat source system and refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 各扉の開閉信号と重み付け係数の関係を示した図である。It is a figure which showed the relationship between the opening / closing signal of each door, and a weighting coefficient. 実施の形態1の冷凍サイクル装置の構成における制御を説明するための波形図である。It is a waveform diagram for demonstrating the control in the structure of the refrigeration cycle apparatus of Embodiment 1. FIG. 実施の形態1の制御装置の各制御部における処理を示すフローチャートである。It is a flowchart which shows the process in each control part of the control apparatus of Embodiment 1. FIG. 実施の形態2に係る冷熱源システムおよび冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the cold heat source system and refrigerating cycle apparatus which concerns on Embodiment 2. FIG.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application that the configurations described in the respective embodiments are appropriately combined. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 まず、理解を容易にするため、実施の形態の説明の前に検討例について説明する。検討例では1台の圧縮機かつ1つの扉を有する基本的な冷凍サイクル装置の制御について説明する。 First, in order to facilitate understanding, a study example will be described before the description of the embodiment. In the study example, the control of a basic refrigeration cycle device having one compressor and one door will be described.
 図1は、検討例の冷凍サイクル装置の構成を示す図である。図1に示す冷凍サイクル装置は、冷熱源機2と、負荷装置3と、延長配管82,86とを備える。 FIG. 1 is a diagram showing a configuration of a refrigeration cycle device of a study example. The refrigeration cycle device shown in FIG. 1 includes a cold heat source machine 2, a load device 3, and extension pipes 82 and 86.
 冷熱源機2は、延長配管82,86によって、負荷装置3に接続されるように構成される。冷熱源機2は、圧縮機10と、凝縮器20と、ファン22と、配管80,81,87とを備える。 The cold heat source machine 2 is configured to be connected to the load device 3 by extension pipes 82 and 86. The cold heat source machine 2 includes a compressor 10, a condenser 20, a fan 22, and pipes 80, 81, and 87.
 圧縮機10から、凝縮器20を経て負荷装置3への接続口に至る流路は、負荷装置3と共に、冷媒が循環する循環流路を形成するように構成される。 The flow path from the compressor 10 to the connection port to the load device 3 via the condenser 20 is configured to form a circulation flow path through which the refrigerant circulates together with the load device 3.
 負荷装置3は、膨張装置50と、蒸発器60と、ファン62と、配管83,84,85とを含む。膨張装置50は、たとえば、冷熱源機2と独立して制御される温度膨張弁である。 The load device 3 includes an expansion device 50, an evaporator 60, a fan 62, and pipes 83, 84, 85. The expansion device 50 is, for example, a temperature expansion valve that is controlled independently of the cold heat source machine 2.
 圧縮機10は、配管87から吸入される冷媒を圧縮して配管80へ吐出する。圧縮機10は、制御装置91からの制御信号に従って運転周波数を調整するように構成される。圧縮機10の運転周波数を調整することによって冷媒の循環量が調整され、冷凍サイクル装置の冷凍能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 compresses the refrigerant sucked from the pipe 87 and discharges it to the pipe 80. The compressor 10 is configured to adjust the operating frequency according to a control signal from the control device 91. By adjusting the operating frequency of the compressor 10, the circulation amount of the refrigerant is adjusted, and the refrigerating capacity of the refrigerating cycle device can be adjusted. Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
 凝縮器20は、圧縮機10から配管80に吐出された冷媒を凝縮して配管81へ流す。凝縮器20は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換を行なうように構成される。この熱交換により、放熱した冷媒は凝縮して液相に変化する。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転速度を調整することにより、圧縮機10の吐出側の冷媒圧力を調整することができる。 The condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80 and flows it to the pipe 81. The condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat with the outside air. By this heat exchange, the heat-dissipated refrigerant condenses and changes into a liquid phase. The fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure on the discharge side of the compressor 10 can be adjusted.
 冷熱源機2は、さらに、圧力センサ97と、制御装置91とを備える。
 圧力センサ97は、圧縮機10の吸入冷媒の圧力PLを検出し、その検出値を制御装置91へ出力する。
The cold heat source machine 2 further includes a pressure sensor 97 and a control device 91.
The pressure sensor 97 detects the pressure PL of the suction refrigerant of the compressor 10 and outputs the detected value to the control device 91.
 制御装置91は、CPU(Central Processing Unit)92と、メモリ94(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入力するための受信装置96等を含んで構成される。CPU92は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置91の処理手順が記されたプログラムである。制御装置91は、これらのプログラムに従って、冷熱源機2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 91 includes a CPU (Central Processing Unit) 92, a memory 94 (ROM (Read Only Memory) and RAM (Random Access Memory)), a receiving device 96 for inputting various signals, and the like. .. The CPU 92 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 91 is described. The control device 91 executes control of each device in the cold heat source machine 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 負荷装置3は、冷却対象空間である冷却室4に設置される。冷却室4には、被冷却物を出し入れするための扉5と、扉5の開閉を検出する開閉検知装置98とが設けられている。開閉検知装置98は、無線または有線による通信によって扉5の開閉を示す開閉信号を制御装置91に送信する。制御装置91は、受信装置96によって開閉信号を受信する。CPU92は、開閉信号から扉5の開時間を積算し、メモリ94に記憶させる。 The load device 3 is installed in the cooling chamber 4, which is the cooling target space. The cooling chamber 4 is provided with a door 5 for taking in and out an object to be cooled, and an open / close detection device 98 for detecting the opening / closing of the door 5. The open / close detection device 98 transmits an open / close signal indicating the opening / closing of the door 5 to the control device 91 by wireless or wired communication. The control device 91 receives the open / close signal by the receiving device 96. The CPU 92 integrates the opening time of the door 5 from the open / close signal and stores it in the memory 94.
 制御装置91は、扉5が開いた場合には、圧縮機10の運転周波数を増加させることによって、冷凍サイクル装置の冷凍能力を増加させ、冷却室4の温度の上昇を防ぐ。 When the door 5 is opened, the control device 91 increases the refrigerating capacity of the refrigerating cycle device by increasing the operating frequency of the compressor 10 and prevents the temperature of the cooling chamber 4 from rising.
 制御装置91は、CPU92において積算した扉開放時間が一定時間以上となったときに圧縮機10の運転周波数を増加させる。圧縮機10の運転周波数の増減処理について以下に説明する。 The control device 91 increases the operating frequency of the compressor 10 when the door opening time accumulated by the CPU 92 exceeds a certain time. The processing for increasing / decreasing the operating frequency of the compressor 10 will be described below.
 図2は、検討例の冷凍サイクル装置の構成において、扉の開閉についての2種類の制御を比較して示した波形図である。 FIG. 2 is a waveform diagram showing a comparison of two types of controls for opening and closing the door in the configuration of the refrigeration cycle device of the study example.
 図2において、時刻t1に扉5が開き、時刻t4に扉が閉じている。このときに扉5の開閉に応じて圧縮機10を制御する例が実線で示され、庫内温度の変化に応じて圧縮機10を制御する例が破線で示される。 In FIG. 2, the door 5 is open at time t1 and the door is closed at time t4. At this time, an example of controlling the compressor 10 according to the opening and closing of the door 5 is shown by a solid line, and an example of controlling the compressor 10 according to a change in the temperature inside the refrigerator is shown by a broken line.
 まず、実線で示す波形について説明する。図2の時刻t0~t1においては、庫内温度一定で、運転周波数も一定な周波数f0に制御される。 First, the waveform shown by the solid line will be explained. At times t0 to t1 in FIG. 2, the temperature inside the refrigerator is constant, and the operating frequency is also controlled to a constant frequency f0.
 時刻t1においては、扉5が開き、開閉検知装置98から受信装置96へ開信号が送信される。時刻t1においては、CPU92が開時間の積算処理を開始する。また扉の開放に伴い、時刻t1から庫内温度が上昇を開始する。 At time t1, the door 5 opens, and an open / close detection device 98 sends an open signal to the receiving device 96. At time t1, the CPU 92 starts the opening time integration process. Further, with the opening of the door, the temperature inside the refrigerator starts to rise from time t1.
 時刻t2では、CPU92が積算する扉開時間の積算値がある一定値PAに達したら、制御装置91は、圧縮機10の運転周波数をf0からfAに増加させる。すると、負荷装置3における冷却能力が増大し、庫内温度TAが低下を開始する。 At time t2, when the integrated value of the door opening time integrated by the CPU 92 reaches a certain constant value PA, the control device 91 increases the operating frequency of the compressor 10 from f0 to fA. Then, the cooling capacity of the load device 3 increases, and the temperature TA in the refrigerator starts to decrease.
 時刻t4において扉5が閉止された際、開閉検知装置98から受信装置96へ閉信号が送信される。これに伴い、CPU92は、扉開時間の積算処理を停止する。そして、制御装置91は、圧縮機10の運転周波数を、扉開前の周波数f0と圧縮機増速後の周波数fAとの間に変更する。 When the door 5 is closed at time t4, a closing signal is transmitted from the open / close detection device 98 to the receiving device 96. Along with this, the CPU 92 stops the processing of integrating the door opening time. Then, the control device 91 changes the operating frequency of the compressor 10 between the frequency f0 before the door is opened and the frequency fA after the compressor speed is increased.
 時刻t5において、庫内温度TAが設定温度に到達後、制御装置91は、圧縮機10の運転周波数を予め定めた周波数f0に変更し、圧縮機10の運転を継続する。なお、庫内温度の検出は、図示しない温度センサで行なっても良いが、圧縮機10の吸入側に設けた圧力センサ97の検出値を代用しても構わない。 At time t5, after the internal temperature TA reaches the set temperature, the control device 91 changes the operating frequency of the compressor 10 to a predetermined frequency f0, and continues the operation of the compressor 10. The temperature inside the refrigerator may be detected by a temperature sensor (not shown), but the detection value of the pressure sensor 97 provided on the suction side of the compressor 10 may be substituted.
 次に、破線で示す波形について説明する。時刻t1において扉5が開くと、時刻t3において、図示しない温度センサで測定されている庫内温度TBが予め定められた閾値に到達する。これに応じて、制御装置91は、時刻t3において圧縮機10の運転周波数をf0からfBに増加させる。すると、負荷装置3における冷却能力が増大し、庫内温度TBが低下を開始する。fB>fAのため、庫内温度TBの下降速度は、庫内温度TAの下降速度よりも傾きが大である。そして、時刻t4において扉5が閉じられると、冷却負荷が減る分庫内温度TBの低下の傾きが増す。そして時刻t6において、庫内温度TBが設定温度に到達後、制御装置91は、圧縮機10の運転周波数を予め定めた周波数f0に変更し、圧縮機10の運転を継続する。 Next, the waveform shown by the broken line will be described. When the door 5 opens at time t1, at time t3, the temperature inside the refrigerator TB measured by a temperature sensor (not shown) reaches a predetermined threshold value. In response to this, the control device 91 increases the operating frequency of the compressor 10 from f0 to fB at time t3. Then, the cooling capacity of the load device 3 increases, and the temperature TB in the refrigerator starts to decrease. Since fB> fA, the descending speed of the internal temperature TB has a larger inclination than the descending speed of the internal temperature TA. Then, when the door 5 is closed at time t4, the inclination of the decrease in the temperature TB in the partition where the cooling load is reduced increases. Then, at time t6, after the internal temperature TB reaches the set temperature, the control device 91 changes the operating frequency of the compressor 10 to a predetermined frequency f0, and continues the operation of the compressor 10.
 このように、扉5の開閉を庫内温度の変化によって検出することも考えられるが、庫内温度がしきい値まで上昇するのは時間がかかるため、庫内温度の上昇が大きくなる傾向がある。このため、庫内温度の上昇を待たずに、扉5がある程度の時間開状態となり庫内温度の上昇が予想される場合に、圧縮機10の運転周波数を増加する方が、庫内温度を一定に保つ上で好ましい。 In this way, it is conceivable to detect the opening and closing of the door 5 by changing the temperature inside the refrigerator, but since it takes time for the temperature inside the refrigerator to rise to the threshold value, the temperature inside the refrigerator tends to rise significantly. is there. Therefore, when the door 5 is opened for a certain period of time and the temperature inside the refrigerator is expected to rise without waiting for the temperature inside the refrigerator to rise, it is better to increase the operating frequency of the compressor 10 to increase the temperature inside the refrigerator. It is preferable to keep it constant.
 実線に示した検討例では、扉解放による熱負荷の侵入を扉の開放時間で模擬的に予測し、庫内温度がしきい値に達する前に圧縮機10を増速させるため、破線で示した検討例よりも庫内の温度上昇を抑制できる。その結果、被冷却物の温度上昇を抑制でき、冷却物の品質を確保できる。 In the study example shown by the solid line, the intrusion of the heat load due to the opening of the door is simulated by the opening time of the door, and the compressor 10 is accelerated before the temperature inside the chamber reaches the threshold value. It is possible to suppress the temperature rise in the refrigerator more than in the study example. As a result, the temperature rise of the object to be cooled can be suppressed, and the quality of the object to be cooled can be ensured.
 また、実線、破線で示した両検討例共に、目標の庫内温度を確保するために、圧縮機10の運転周波数を増加させている。実線で示した検討例は、庫内の温度上昇がまだ小さいうちに圧縮機10の運転周波数を増加させるために、破線で示した検討例と比べて周波数の変化を小さくすることができる。その結果、圧縮機10を運転効率の高い範囲内で運転させることができ、消費電力の抑制による省エネルギー効果も期待できる。 Further, in both the study examples shown by the solid line and the broken line, the operating frequency of the compressor 10 is increased in order to secure the target internal temperature. In the study example shown by the solid line, the change in frequency can be made smaller than that in the study example shown by the broken line in order to increase the operating frequency of the compressor 10 while the temperature rise in the refrigerator is still small. As a result, the compressor 10 can be operated within a range of high operating efficiency, and an energy saving effect can be expected by suppressing power consumption.
 実施の形態1.
 実施の形態1では、複数の圧縮機が冷熱源に含まれる場合について説明する。冷却室の扉は2つである場合を例示するが、扉は1つであっても良い。
Embodiment 1.
In the first embodiment, a case where a plurality of compressors are included in the cold heat source will be described. Although the case where the cooling chamber has two doors is illustrated, the number of doors may be one.
 図3は、実施の形態1に係る冷熱源システムおよび冷凍サイクル装置の構成を示す図である。 FIG. 3 is a diagram showing a configuration of a cold heat source system and a refrigeration cycle device according to the first embodiment.
 図3に示す冷凍サイクル装置は、冷熱源システム100と、負荷装置101と、延長配管182,186,282,286とを備える。 The refrigeration cycle device shown in FIG. 3 includes a cold heat source system 100, a load device 101, and extension pipes 182,186,282,286.
 冷熱源システム100は、延長配管182,186,282,286によって、負荷装置101に接続されるように構成される。冷熱源システム100は、冷熱源機102と冷熱源機202とを含む。負荷装置101は、冷却器103と冷却器203とを含む。 The cold heat source system 100 is configured to be connected to the load device 101 by extension pipes 182,186,282,286. The cold heat source system 100 includes a cold heat source machine 102 and a cold heat source machine 202. The load device 101 includes a cooler 103 and a cooler 203.
 冷熱源機102は、第1圧縮機110と、第1凝縮器120と、配管180,181,187とを含む。冷熱源機202は、第2圧縮機210と、第2凝縮器220と、配管280,281,287とを含む。 The cold heat source machine 102 includes a first compressor 110, a first condenser 120, and pipes 180, 181 and 187. The cold heat source machine 202 includes a second compressor 210, a second condenser 220, and pipes 280, 281, 287.
 第1圧縮機110から、第1凝縮器120を経て冷却器103への接続口に至る流路は、冷却器103と共に、冷媒が循環する循環流路を形成するように構成される。第2圧縮機210から、第2凝縮器220を経て冷却器203への接続口に至る流路は、冷却器203と共に、冷媒が循環する循環流路を形成するように構成される。 The flow path from the first compressor 110 to the connection port to the cooler 103 via the first condenser 120 is configured to form a circulation flow path through which the refrigerant circulates together with the cooler 103. The flow path from the second compressor 210 to the connection port to the cooler 203 via the second condenser 220 is configured to form a circulation flow path through which the refrigerant circulates together with the cooler 203.
 冷却器103は、膨張装置150と、第1蒸発器160と、ファン162と、配管183,184,185とを含む。冷却器203は、膨張装置250と、第2蒸発器260と、ファン262と、配管283,284,285とを含む。膨張装置150,250としては、たとえば、冷熱源システム100と独立して制御される温度膨張弁が用いられる。 The cooler 103 includes an expansion device 150, a first evaporator 160, a fan 162, and pipes 183, 184, 185. The cooler 203 includes an expansion device 250, a second evaporator 260, a fan 262, and pipes 283, 284, 285. As the expansion devices 150 and 250, for example, a temperature expansion valve controlled independently of the cold heat source system 100 is used.
 第1圧縮機110および第2圧縮機210は、それぞれ配管187,287から吸入される冷媒を圧縮して配管180,280へ吐出する。第1圧縮機110および第2圧縮機210は、それぞれ制御装置191,291からの制御信号に従って運転周波数を調整するように構成される。第1圧縮機110および第2圧縮機210の運転周波数を調整することによって冷媒の循環量が調整され、冷凍サイクル装置の冷凍能力を調整することができる。第1圧縮機110および第2圧縮機210には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The first compressor 110 and the second compressor 210 compress the refrigerant sucked from the pipes 187 and 287, respectively, and discharge the refrigerant to the pipes 180 and 280. The first compressor 110 and the second compressor 210 are configured to adjust the operating frequency according to the control signals from the control devices 191,291, respectively. By adjusting the operating frequencies of the first compressor 110 and the second compressor 210, the circulation amount of the refrigerant can be adjusted, and the refrigerating capacity of the refrigeration cycle device can be adjusted. Various types can be adopted for the first compressor 110 and the second compressor 210, and for example, scroll type, rotary type, screw type and the like can be adopted.
 第1凝縮器120および第2凝縮器220は、それぞれ第1圧縮機110および第2圧縮機210から配管180,280に吐出された冷媒を凝縮して配管181,281へ流す。第1凝縮器120および第2凝縮器220は、それぞれ第1圧縮機110および第2圧縮機210から吐出された高温高圧のガス冷媒が外気と熱交換を行なうように構成される。これらの熱交換により、放熱した冷媒は凝縮して液相に変化する。ファン122,222は、それぞれ第1凝縮器120および第2凝縮器220において冷媒が熱交換を行なう外気を第1凝縮器120および第2凝縮器220に供給する。ファン122,222の回転速度を調整することにより、それぞれ第1圧縮機110および第2圧縮機210の吐出側の冷媒圧力を調整することができる。 The first condenser 120 and the second condenser 220 condense the refrigerant discharged from the first compressor 110 and the second compressor 210 into the pipes 180 and 280, respectively, and flow them into the pipes 181, 281. The first condenser 120 and the second condenser 220 are configured such that high-temperature and high-pressure gas refrigerants discharged from the first compressor 110 and the second compressor 210 exchange heat with the outside air, respectively. By these heat exchanges, the heat-dissipated refrigerant condenses and changes into a liquid phase. The fans 122 and 222 supply the outside air through which the refrigerant exchanges heat in the first condenser 120 and the second condenser 220 to the first condenser 120 and the second condenser 220, respectively. By adjusting the rotation speeds of the fans 122 and 222, the refrigerant pressures on the discharge side of the first compressor 110 and the second compressor 210 can be adjusted, respectively.
 冷熱源機102は、さらに、圧力センサ197と、制御装置191とを含む。冷熱源機202は、さらに、圧力センサ297と、制御装置291とを含む。 The cold heat source machine 102 further includes a pressure sensor 197 and a control device 191. The cold heat source machine 202 further includes a pressure sensor 297 and a control device 291.
 圧力センサ197,297は、それぞれ第1圧縮機110および第2圧縮機210の吸入冷媒の圧力を検出し、その検出値を制御装置191,291へ出力する。 The pressure sensors 197 and 297 detect the pressures of the intake refrigerants of the first compressor 110 and the second compressor 210, respectively, and output the detected values to the control devices 191, and 291.
 制御装置191は、CPU192と、メモリ194(ROMおよびRAM)と、各種信号を入力するための受信装置196等を含んで構成される。制御装置291は、CPU292と、メモリ294(ROMおよびRAM)と、各種信号を入力するための受信装置296等を含んで構成される。 The control device 191 includes a CPU 192, a memory 194 (ROM and RAM), a receiving device 196 for inputting various signals, and the like. The control device 291 includes a CPU 292, a memory 294 (ROM and RAM), a receiving device 296 for inputting various signals, and the like.
 CPU192,292は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置191,291の処理手順が記されたプログラムである。制御装置191,291は、これらのプログラムに従って、それぞれ冷熱源機102,202における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The CPUs 192 and 292 expand the program stored in the ROM into a RAM or the like and execute it. The program stored in the ROM is a program in which the processing procedure of the control devices 191 and 291 is described. The control devices 191 and 291 execute control of each device in the cold heat source machines 102 and 202, respectively, according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 冷却器103,203は、ともに、冷却対象空間である冷却室104に設置される。冷却室104には、被冷却物を出し入れするための第1扉105および第2扉205と、第1扉105および第2扉205の開閉をそれぞれ検出する開閉検知装置198,298とが設けられている。開閉検知装置198,298は、無線または有線による通信によって第1扉105および第2扉205の開閉を示す第1開閉信号D1および第2開閉信号D2をそれぞれ制御装置191,291に送信する。制御装置191は、受信装置196によって第1開閉信号D1を受信する。CPU192は、第1開閉信号D1から第1扉105の開時間を積算し、メモリ194に記憶させる。制御装置291は、受信装置296によって第2開閉信号D2を受信する。CPU292は、第2開閉信号D2から第2扉205の開時間を積算し、メモリ294に記憶させる。 Both the coolers 103 and 203 are installed in the cooling chamber 104, which is the cooling target space. The cooling chamber 104 is provided with a first door 105 and a second door 205 for taking in and out an object to be cooled, and open / close detection devices 198 and 298 for detecting the opening and closing of the first door 105 and the second door 205, respectively. ing. The open / close detection devices 198 and 298 transmit the first open / close signal D1 and the second open / close signal D2 indicating the open / close of the first door 105 and the second door 205 to the control devices 191, and 291 respectively by wireless or wired communication. The control device 191 receives the first open / close signal D1 by the receiving device 196. The CPU 192 integrates the opening time of the first door 105 from the first opening / closing signal D1 and stores it in the memory 194. The control device 291 receives the second open / close signal D2 by the receiving device 296. The CPU 292 integrates the opening time of the second door 205 from the second open / close signal D2 and stores it in the memory 294.
 このような構成において、個々の第1開閉信号D1および第2開閉信号D2は、それぞれ個々の冷熱源機102,202に備わる受信装置196,296に送信される。各CPU192,292において各開閉扉毎に重み付けされた扉係数を乗じて演算した評価値が一定値以上に達したら該当の圧縮機の周波数を増加させる。 In such a configuration, the individual first open / close signal D1 and the second open / close signal D2 are transmitted to the receiving devices 196 and 296 provided in the individual cold heat source machines 102 and 202, respectively. When the evaluation value calculated by multiplying the door coefficient weighted for each opening / closing door in each CPU 192, 292 reaches a certain value or more, the frequency of the corresponding compressor is increased.
 各開閉扉毎に重み付けされた扉係数を乗じて演算した評価値についての詳細を以下に説明する。 The details of the evaluation value calculated by multiplying the weighted door coefficient for each opening / closing door will be described below.
 図4は、各扉の開閉信号と重み付け係数の関係を示した図である。図3,図4を参照して、冷熱源機102の受信装置196は、第1扉105の開閉を示す第1開閉信号D1および第2扉205の開閉を示す第2開閉信号D2を受ける。CPU192は、下式(1)に示すように、第1開閉信号D1が示す開時間の第1積算値TS1に係数K11を掛け、第2開閉信号D2が示す開時間の第2積算値TS2に係数K12を掛けて、これらの合計を第1評価値TD1とする。
TD1=TS1×K11+TS2×K12 …(1)
 CPU192は、第1評価値TD1に基づいて、第1圧縮機110の運転周波数の増減の制御を実行する。
FIG. 4 is a diagram showing the relationship between the opening / closing signal of each door and the weighting coefficient. With reference to FIGS. 3 and 4, the receiving device 196 of the cold heat source machine 102 receives the first opening / closing signal D1 indicating the opening / closing of the first door 105 and the second opening / closing signal D2 indicating the opening / closing of the second door 205. As shown in the following equation (1), the CPU 192 multiplies the first integrated value TS1 of the opening time indicated by the first opening / closing signal D1 by the coefficient K11 to obtain the second integrated value TS2 of the opening time indicated by the second opening / closing signal D2. Multiply by the coefficient K12 to obtain the sum of these as the first evaluation value TD1.
TD1 = TS1 x K11 + TS2 x K12 ... (1)
The CPU 192 controls the increase / decrease of the operating frequency of the first compressor 110 based on the first evaluation value TD1.
 同様に、冷熱源機202の受信装置296は、第1扉105の開閉を示す第1開閉信号D1および第2扉205の開閉を示す第2開閉信号D2を受ける。CPU292は、下式(2)に示すように、第1開閉信号D1が示す開時間の第1積算値TS1に係数K21を掛け、第2開閉信号D2が示す開時間の第2積算値TS2に係数K22を掛けて、これらの和を第2評価値TD2とする。
TD2=TS1×K21+TS2×K22 …(2)
 CPU292は、第2評価値TD2に基づいて、第2圧縮機210の運転周波数の増減の制御を実行する。
Similarly, the receiving device 296 of the cold heat source machine 202 receives the first opening / closing signal D1 indicating the opening / closing of the first door 105 and the second opening / closing signal D2 indicating the opening / closing of the second door 205. As shown in the following equation (2), the CPU 292 multiplies the first integrated value TS1 of the opening time indicated by the first opening / closing signal D1 by the coefficient K21 to obtain the second integrated value TS2 of the opening time indicated by the second opening / closing signal D2. Multiply by the coefficient K22 to obtain the sum of these as the second evaluation value TD2.
TD2 = TS1 x K21 + TS2 x K22 ... (2)
The CPU 292 controls the increase / decrease of the operating frequency of the second compressor 210 based on the second evaluation value TD2.
 各係数は、対応する冷却器と扉との距離に基づいて定めることができる。冷却器203よりも冷却器103が第1扉105に近く、冷却器103よりも冷却器203が第2扉205に近い場合、K11>K12,K21<K22である。また、第1扉105が第2扉205よりも冷却器103に近く、第2扉205が第1扉よりも冷却器203に近い場合、K11>K21,K12<K22である。たとえば、図4に示すように各係数をK11=1.0,K12=0.3,K21=0.3,K22=1.0のように定めることができる。単純な距離だけではなく、冷気の流れなどを考慮して各係数を定めても良い。 Each coefficient can be determined based on the distance between the corresponding cooler and the door. When the cooler 103 is closer to the first door 105 than the cooler 203 and the cooler 203 is closer to the second door 205 than the cooler 103, K11> K12 and K21 <K22. Further, when the first door 105 is closer to the cooler 103 than the second door 205 and the second door 205 is closer to the cooler 203 than the first door, K11> K21 and K12 <K22. For example, as shown in FIG. 4, each coefficient can be defined as K11 = 1.0, K12 = 0.3, K21 = 0.3, K22 = 1.0. Each coefficient may be determined in consideration of not only a simple distance but also the flow of cold air.
 図5は、実施の形態1の冷凍サイクル装置の構成における制御を説明するための波形図である。 FIG. 5 is a waveform diagram for explaining the control in the configuration of the refrigeration cycle apparatus of the first embodiment.
 時刻t11~t12においては、庫内温度一定で、運転周波数も一定な周波数f110,f210に制御される。時刻t12~t13において、第1扉105が開放され、第2扉205が閉止状態において、冷熱源機102側は負荷が増大し、温度が上昇する。また、冷熱源機202側は遅れて温度が上昇する。 From time t11 to t12, the temperature inside the refrigerator is constant, and the operating frequency is also controlled to constant frequencies f110 and f210. At times t12 to t13, when the first door 105 is opened and the second door 205 is closed, the load on the cold heat source machine 102 side increases and the temperature rises. Further, the temperature of the cold heat source machine 202 side rises with a delay.
 制御装置191,291は、それぞれ、第1評価値TD1および第2評価値TD2を図4で説明した係数を乗じて求め、判定しきい値TDthに達したら圧縮機の周波数を増加する。図5に示した例では、第1扉105の係数K11が大きい冷熱源機102側の第1評価値TD1が冷熱源機202側の第2評価値TD2よりも判定しきい値TDthに早く到達する(t13)。遅れて、冷熱源機202側の第2評価値TD2が判定しきい値TDthに到達する(t14)。 The control devices 191 and 291 obtain the first evaluation value TD1 and the second evaluation value TD2 by multiplying the coefficients described in FIG. 4, respectively, and increase the frequency of the compressor when the determination threshold value TDth is reached. In the example shown in FIG. 5, the first evaluation value TD1 on the cold heat source machine 102 side having a large coefficient K11 of the first door 105 reaches the determination threshold value TDth earlier than the second evaluation value TD2 on the cold heat source machine 202 side. (T13). After a delay, the second evaluation value TD2 on the cold heat source machine 202 side reaches the determination threshold value TDth (t14).
 時刻t13では、第1圧縮機110の運転周波数f110が増加され、庫内温度T1,T2ともに温度が低下を開始する。さらに時刻t14では、第2圧縮機210の運転周波数f210が増加され、庫内温度T1,T2の温度の低下速度が増す。 At time t13, the operating frequency f110 of the first compressor 110 is increased, and both the internal temperatures T1 and T2 start to decrease. Further, at time t14, the operating frequency f210 of the second compressor 210 is increased, and the rate of decrease in the temperature inside the chambers T1 and T2 is increased.
 時刻t15では、第1扉105が閉じられ、これに応じて、運転周波数f110,f210が共に1段階下げられる。庫内温度T1が元に戻ったことに応じて、運転周波数f110,f210は第1扉105が開く前と同じ周波数に戻される。 At time t15, the first door 105 is closed, and the operating frequencies f110 and f210 are both lowered by one step accordingly. The operating frequencies f110 and f210 are returned to the same frequencies as before the first door 105 was opened, in response to the return of the internal temperature T1.
 図6は、実施の形態1の制御装置の各制御部における処理を示すフローチャートである。図6に示すフローチャートの処理は、図3に示す制御装置191,291の各々において実行されている。 FIG. 6 is a flowchart showing processing in each control unit of the control device of the first embodiment. The processing of the flowchart shown in FIG. 6 is executed in each of the control devices 191 and 291 shown in FIG.
 まずステップS1では、第1開閉信号D1および第2開閉信号D2のいずれかによって扉が開いたことが検出され、ステップS2において、第1評価値TD1および第2評価値TD2の演算がそれぞれ制御装置191,291で開始される。ステップS3では、既出の以下の式(1),(2)によって第1評価値TD1および第2評価値TD2の演算が実行される。
TD1=TS1×K11+TS2×K12 …(1)
TD2=TS1×K21+TS2×K22 …(2)
 なお、TS1は、第1開閉信号D1から得られた第1扉105の開時間の総和を示す。また、TS2は、第2開閉信号D2から得られた第2扉205の開時間の総和を示す。K11,K12,K21,K22は図4に示した係数である。
First, in step S1, it is detected that the door is opened by either the first open / close signal D1 or the second open / close signal D2, and in step S2, the operations of the first evaluation value TD1 and the second evaluation value TD2 are performed by the control device, respectively. It will start at 191,291. In step S3, the calculations of the first evaluation value TD1 and the second evaluation value TD2 are executed by the following equations (1) and (2) already described.
TD1 = TS1 x K11 + TS2 x K12 ... (1)
TD2 = TS1 x K21 + TS2 x K22 ... (2)
Note that TS1 indicates the total opening time of the first door 105 obtained from the first opening / closing signal D1. Further, TS2 indicates the total opening time of the second door 205 obtained from the second opening / closing signal D2. K11, K12, K21, and K22 are the coefficients shown in FIG.
 続いて、ステップS4において、制御装置191,291は、それぞれ第1評価値TD1および第2評価値TD2が判定しきい値TDthに到達したか否かを判断する。評価値が判定しきい値TDthに到達していなければ(S4でNO)、ステップS3に戻り第1評価値TD1および第2評価値TD2の演算が継続される。 Subsequently, in step S4, the control devices 191 and 291 determine whether or not the first evaluation value TD1 and the second evaluation value TD2 have reached the determination threshold value TDth, respectively. If the evaluation value has not reached the determination threshold value TDth (NO in S4), the process returns to step S3 and the operations of the first evaluation value TD1 and the second evaluation value TD2 are continued.
 第1評価値TD1および第2評価値TD2のいずれかが判定しきい値に到達した場合(S4でYES)、ステップS5において、対応する圧縮機の運転周波数が増加される。具体的には、第1評価値TD1が判定しきい値TDthに到達したことを制御装置191が検出した場合、第1圧縮機110の運転周波数が増加される。一方、第2評価値TD2が判定しきい値TDthに到達したことを制御装置291が検出した場合、第2圧縮機210の運転周波数が増加される。 When either the first evaluation value TD1 or the second evaluation value TD2 reaches the determination threshold value (YES in S4), the operating frequency of the corresponding compressor is increased in step S5. Specifically, when the control device 191 detects that the first evaluation value TD1 has reached the determination threshold value TDth, the operating frequency of the first compressor 110 is increased. On the other hand, when the control device 291 detects that the second evaluation value TD2 has reached the determination threshold value TDth, the operating frequency of the second compressor 210 is increased.
 実施の形態1では、冷凍倉庫に対して複数の冷熱源機と複数の開閉扉を備えた場合において、扉の位置と冷熱源機が賄う冷却位置とを紐付け、各冷熱源機に対応する扉の開放時間の評価値を重み付けて評価値を演算させる。そして、評価値が判定しきい値を超えた場合にのみ圧縮機の周波数を増加させる。これにより、冷却が必要とされる位置に近い冷熱源機の能力を優先的に増加させる一方で、他の冷熱源機の能力の不用意な増加を回避する。このようにして、冷却室の過冷却を避け、冷凍冷蔵倉庫システム全体の省エネ運転を実現できる。 In the first embodiment, when a plurality of cold heat source machines and a plurality of opening / closing doors are provided for the refrigerating warehouse, the position of the door and the cooling position covered by the cold heat source machine are linked to correspond to each cold heat source machine. The evaluation value is calculated by weighting the evaluation value of the door opening time. Then, the frequency of the compressor is increased only when the evaluation value exceeds the determination threshold value. This preferentially increases the capacity of the cold heat source unit near the position where cooling is required, while avoiding an inadvertent increase in the capacity of other cold heat source units. In this way, it is possible to avoid overcooling of the cooling chamber and realize energy-saving operation of the entire freezing and refrigerating warehouse system.
 実施の形態2.
 図7は、実施の形態2に係る冷熱源システムおよび冷凍サイクル装置の構成を示す図である。実施の形態2の冷凍サイクル装置は、冷熱源システム100Aと、負荷装置101と、延長配管182,186,282,286とを備える。冷熱源システム100Aは、冷熱源機102Aと冷熱源機202Aとを含む。
Embodiment 2.
FIG. 7 is a diagram showing a configuration of a cold heat source system and a refrigeration cycle device according to the second embodiment. The refrigeration cycle device of the second embodiment includes a cold heat source system 100A, a load device 101, and extension pipes 182,186,282,286. The cold heat source system 100A includes a cold heat source machine 102A and a cold heat source machine 202A.
 冷却室104には、図3に示した開閉検知装置198,298に加えて、質量検知装置199,299が設けられる。質量検知装置199は、第1扉105から搬入される被冷却物の質量を検出するように構成される。質量検知装置299は、第2扉205から搬入される被冷却物の質量を検出するように構成される。これらの質量検知装置として、たとえば、床に設置される荷重センサを使用することができる。 In addition to the open / close detection devices 198 and 298 shown in FIG. 3, the cooling chamber 104 is provided with mass detection devices 199 and 299. The mass detection device 199 is configured to detect the mass of the object to be cooled carried in from the first door 105. The mass detection device 299 is configured to detect the mass of the object to be cooled carried in from the second door 205. As these mass detection devices, for example, a load sensor installed on the floor can be used.
 冷熱源機102Aは、図3に示した冷熱源機102の構成において、制御装置191に代えて制御装置191Aを備える。制御装置191Aは、図3に示した制御装置191の構成において受信装置196に代えて受信装置196Aを備える。受信装置196Aは、第1開閉信号D1および第2開閉信号D2に加えて、質量検知装置199,299から送信される質量信号W1,W2を受信する。 The cold heat source machine 102A includes a control device 191A instead of the control device 191 in the configuration of the cold heat source machine 102 shown in FIG. The control device 191A includes a receiving device 196A instead of the receiving device 196 in the configuration of the control device 191 shown in FIG. The receiving device 196A receives the mass signals W1 and W2 transmitted from the mass detecting devices 199 and 299 in addition to the first opening / closing signal D1 and the second opening / closing signal D2.
 冷熱源機102A,202Aの他の構成は、図3に示した冷熱源機102,202とそれぞれ同じであるので、説明は繰り返さない。また負荷装置101については、実施の形態1と同じであるので、説明は繰り返さない。 Since the other configurations of the cold heat source machines 102A and 202A are the same as those of the cold heat source machines 102 and 202 shown in FIG. 3, the description will not be repeated. Further, since the load device 101 is the same as that of the first embodiment, the description will not be repeated.
 このように、実施の形態2の冷凍サイクル装置では、各扉には質量検知装置199,299が設けられている。質量検知装置199,299からの質量信号W1,W2は、受信装置196Aに送信されるとともに、受信装置296Aにも送信される。 As described above, in the refrigeration cycle device of the second embodiment, mass detection devices 199 and 299 are provided on each door. The mass signals W1 and W2 from the mass detection devices 199 and 299 are transmitted to the receiving device 196A and also transmitted to the receiving device 296A.
 CPU192において、質量に対応する係数を用いて、実施の形態1で演算した第1評価値TD1および第2評価値TD2が補正される。 In the CPU 192, the first evaluation value TD1 and the second evaluation value TD2 calculated in the first embodiment are corrected by using the coefficient corresponding to the mass.
 一般に、被冷却物の熱容量は、体積よりも質量に相関がある。したがって、本実施の形態では、冷却室104に搬入される被冷却物の質量を測定して、これによって評価値を補正する。 In general, the heat capacity of the object to be cooled has a correlation with mass rather than volume. Therefore, in the present embodiment, the mass of the object to be cooled carried into the cooling chamber 104 is measured, and the evaluation value is corrected accordingly.
 被冷却物が搬入された扉の近くには、その被冷却物が置かれる可能性が高い。したがって、質量検知装置199で検出された質量の評価値への反映は、第1扉105に対応する係数を大きくし、第2扉205に対応する係数を小さくすることによって行なう。また、質量検知装置299で検出された質量の評価値への反映は、第2扉205に対応する係数を大きくし、第1扉105に対応する係数を小さくすることによって行なう。 There is a high possibility that the object to be cooled will be placed near the door where the object to be cooled has been brought in. Therefore, the mass detected by the mass detection device 199 is reflected in the evaluation value by increasing the coefficient corresponding to the first door 105 and decreasing the coefficient corresponding to the second door 205. Further, the mass detected by the mass detection device 299 is reflected in the evaluation value by increasing the coefficient corresponding to the second door 205 and decreasing the coefficient corresponding to the first door 105.
 第1扉105に近い冷却器103の負荷について考える。たとえば、第1扉105から質量が小さい被冷却物が入庫された場合の冷却器103の負荷の増加量よりも、第2扉205から質量が大きい被冷却物が入庫された場合の冷却器103の負荷の増加量の方が大きくなることもあり得る。このような場合には質量を評価値に反映させる係数を適切に定めて第1圧縮機110および第2圧縮機210を制御することによって、冷却器103,203の冷凍能力を適切に増加させることができる。 Consider the load of the cooler 103 near the first door 105. For example, the cooler 103 when the object to be cooled having a large mass is stored from the second door 205 is larger than the amount of increase in the load of the cooler 103 when the object to be cooled having a small mass is stored from the first door 105. It is possible that the amount of increase in the load of the door will be larger. In such a case, the refrigerating capacity of the coolers 103 and 203 should be appropriately increased by appropriately determining the coefficient for reflecting the mass in the evaluation value and controlling the first compressor 110 and the second compressor 210. Can be done.
 質量検知装置199,299は、具体的には被冷却物を載せたパレットを運搬するフォークリフトごと重力を測定するような荷重計が想定される。この場合、予め分かっているフォークリフトの質量を引いて、被冷却物の質量として処理するとよい。 Specifically, the mass detection devices 199 and 299 are assumed to be load meters that measure the gravity of each forklift that carries the pallet on which the object to be cooled is placed. In this case, the mass of the forklift known in advance may be subtracted and treated as the mass of the object to be cooled.
 図4に準じて、質量信号W1を冷熱源機102の制御に反映させる係数を係数K11,質量信号W1を冷熱源機202の制御に反映させる係数を係数K12とする。また、質量信号W2を冷熱源機102の制御に反映させる係数を係数K21,質量信号W2を冷熱源機202の制御に反映させる係数を係数K22とする。冷却器203よりも冷却器103が第1扉105側の質量検知装置199に近い場合、K11>K12であり,冷却器103よりも冷却器203が第2扉205側の質量検知装置299に近い場合、K21<K22である。また、質量検知装置199が質量検知装置299よりも冷却器103に近く、質量検知装置299が質量検知装置199よりも冷却器203に近い場合、K11>K21,K12<K22である。 In accordance with FIG. 4, the mass signal W1 coefficient K W 11 coefficients to be reflected in the control of the cold heat source apparatus 102, a mass signal W1 and the coefficient K W 12 coefficients to be reflected in the control of the cold heat source apparatus 202. Further, the coefficient for reflecting the mass signal W2 in the control of the cold heat source machine 102 is a coefficient K W 21, and the coefficient for reflecting the mass signal W2 in the control of the cold heat source machine 202 is a coefficient K W 22. When the cooler 103 is closer to the mass detection device 199 on the first door 105 side than the cooler 203, K W 11> K W 12, and the cooler 203 is closer to the mass detection device on the second door 205 side than the cooler 103. When it is close to the device 299, K W 21 <K W 22. Further, when the mass detection device 199 is closer to the cooler 103 than the mass detection device 299 and the mass detection device 299 is closer to the cooler 203 than the mass detection device 199, K W 11> K W 21, K W 12 <K. W 22.
 下式(3)、(4)に示すように、質量に係数を掛けた値を各項に乗算して、補正後の評価値TD1A,TD2Aを得ることができる。なお、以下の式においては、Wは、質量信号W1が示す質量を示し、Wは、質量信号W2が示す質量を示す。
TD1A=TS1×K11×W×K11+TS2×K12×W×K12…(3)
TD2A=TS1×K21×W×K21+TS2×K22×W×K22…(4)
 または、下式(5)、(6)に示すように、質量に係数を掛けた値を単純に加算して、補正後の評価値TD1A,TD2Aを得ることができる。
TD1A=TS1×K11+W×K11+TS2×K12+W×K12…(5)
TD2A=TS1×K21+W×K21+TS2×K22+W×K22…(6)
 このように、入庫される被冷却物の質量を測定することによって、被冷却物の熱負荷を直接予測することができる。したがって、入庫される被冷却物の熱負荷を考慮した評価値TD1A,TD2Aを熱源機の制御に反映させることによって、庫内の温度調整を一層円滑に制御できる。
As shown in the following equations (3) and (4), the corrected evaluation values TD1A and TD2A can be obtained by multiplying each term by a value obtained by multiplying the mass by a coefficient. In the following equation, W 1 indicates the mass indicated by the mass signal W 1, and W 2 indicates the mass indicated by the mass signal W 2.
TD1A = TS1 x K11 x W 1 x K W 11 + TS2 x K12 x W 2 x K W 12 ... (3)
TD2A = TS1 x K21 x W 1 x K W 21 + TS2 x K22 x W 2 x K W 22 ... (4)
Alternatively, as shown in the following equations (5) and (6), the corrected evaluation values TD1A and TD2A can be obtained by simply adding the values obtained by multiplying the mass by the coefficient.
TD1A = TS1 x K11 + W 1 x K W 11 + TS2 x K12 + W 2 x K W 12 ... (5)
TD2A = TS1 x K21 + W 1 x K W 21 + TS2 x K22 + W 2 x K W 22 ... (6)
By measuring the mass of the object to be cooled in this way, the heat load of the object to be cooled can be directly predicted. Therefore, by reflecting the evaluation values TD1A and TD2A in consideration of the heat load of the object to be cooled in the control of the heat source machine, the temperature adjustment in the refrigerator can be controlled more smoothly.
 (まとめ)
 以下に、本願実施の形態について、再び図面を参照して総括する。
(Summary)
The embodiments of the present application will be summarized below with reference to the drawings again.
 図3に示す冷熱源システム100は、第1蒸発器160および第2蒸発器260を含む負荷装置101に接続されるように構成される。冷熱源システム100は、第1蒸発器160に対応して設けられる第1圧縮機110と、第2蒸発器260に対応して設けられる第2圧縮機210と、負荷装置101が設置される冷却室104に設けられた第1扉105が開いている時間に対して、異なる重み付けを行なって得られる第1評価値TD1および第2評価値TD2に応じてそれぞれ第1圧縮機110および第2圧縮機210を制御する制御装置190とを備える。 The cold heat source system 100 shown in FIG. 3 is configured to be connected to a load device 101 including a first evaporator 160 and a second evaporator 260. The cold heat source system 100 is a cooling system in which a first compressor 110 provided corresponding to the first evaporator 160, a second compressor 210 provided corresponding to the second evaporator 260, and a load device 101 are installed. The first compressor 110 and the second compressor are respectively according to the first evaluation value TD1 and the second evaluation value TD2 obtained by applying different weights to the time when the first door 105 provided in the chamber 104 is open. A control device 190 for controlling the machine 210 is provided.
 なお、制御装置190は、本実施の形態では、第1圧縮機110および第2圧縮機210にそれぞれ対応して設けられた制御装置191,291に分割配置されているが、1つにまとめられていてもよい。また3以上に分割配置された制御装置が協働して制御装置190を実現しても良い。 In the present embodiment, the control device 190 is divided and arranged in the control devices 191 and 291 provided corresponding to the first compressor 110 and the second compressor 210, respectively, but the control devices 190 are combined into one. You may be. Further, the control devices 190 which are divided into three or more may cooperate to realize the control device 190.
 第1扉105の開時間である第1積算値TS1に対する重み付けは、図4に示した係数K11,K21によって行なわれる。なお、図3では、冷却室104に扉が2つ設けられている例が示されているが、扉は1つであってもよい。この場合には、各評価値の算出は、式(1)、(2)において、TS2=0とすれば良い。 Weighting of the first integrated value TS1, which is the opening time of the first door 105, is performed by the coefficients K11 and K21 shown in FIG. Although FIG. 3 shows an example in which the cooling chamber 104 is provided with two doors, the number of doors may be one. In this case, the calculation of each evaluation value may be performed by setting TS2 = 0 in the equations (1) and (2).
 このような構成とすることによって、冷却室の温度上昇を抑制しつつ、冷却室内の温度分布のばらつきを抑制することができる。これにより、過度な冷却が避けられるためエネルギー消費を低減させることができる。 With such a configuration, it is possible to suppress the temperature rise in the cooling chamber and the variation in the temperature distribution in the cooling chamber. As a result, excessive cooling can be avoided and energy consumption can be reduced.
 制御装置190は、第1扉105の開閉を示す第1開閉信号D1を受信するように構成される。制御装置190は、第1開閉信号D1から第1扉105の開時間の合計を示す第1積算値TS1を用いて第1評価値TD1および第2評価値TD2を算出するように構成される。式(1)、(2)に示したように、第1評価値TD1は、第1積算値TS1に係数K11を乗じた値を含む。第2評価値TD2は、第1積算値TS1に係数K21を乗じた値を含む。 The control device 190 is configured to receive the first opening / closing signal D1 indicating the opening / closing of the first door 105. The control device 190 is configured to calculate the first evaluation value TD1 and the second evaluation value TD2 using the first integrated value TS1 indicating the total opening time of the first door 105 from the first opening / closing signal D1. As shown in the formulas (1) and (2), the first evaluation value TD1 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K11. The second evaluation value TD2 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K21.
 さらに、図7に示す制御装置190Aは、第1扉105から冷却室104に搬入される被冷却物の重量を示す質量信号W1に基づいて、第1評価値TD1および第2評価値TD2を補正するように構成される。補正後の評価値TD1A,TD2Aは、式(3)~(6)に例示される。 Further, the control device 190A shown in FIG. 7 corrects the first evaluation value TD1 and the second evaluation value TD2 based on the mass signal W1 indicating the weight of the object to be cooled carried from the first door 105 into the cooling chamber 104. It is configured to do. The corrected evaluation values TD1A and TD2A are exemplified by the equations (3) to (6).
 扉の開閉には被冷却物の搬入が伴う場合が多い。被冷却物は熱容量が大きい場合、庫内温度を上昇させる。図7に示すような構成とすることによって、熱容量が大きい被冷却物が入庫された場合には冷却能力をより一層増加させるため、庫内の温度上昇を抑制することができる。 The opening and closing of the door often involves bringing in the object to be cooled. When the object to be cooled has a large heat capacity, the temperature inside the refrigerator is raised. With the configuration as shown in FIG. 7, when an object to be cooled having a large heat capacity is stored, the cooling capacity is further increased, so that the temperature rise in the refrigerator can be suppressed.
 図3に示す冷却室104には、第1扉105と異なる位置に設けられた第2扉205がさらに設けられる。制御装置190は、第1評価値TD1および第2評価値TD2に対して、第2扉205が開いている時間に対して異なる重み付けを行なった値を反映させる。 The cooling chamber 104 shown in FIG. 3 is further provided with a second door 205 provided at a position different from that of the first door 105. The control device 190 reflects the values obtained by weighting the first evaluation value TD1 and the second evaluation value TD2 differently with respect to the time when the second door 205 is open.
 制御装置190は、第1扉105の開閉を示す第1開閉信号D1と、第2扉205の開閉を示す第2開閉信号D2とを受信するように構成される。 The control device 190 is configured to receive the first opening / closing signal D1 indicating the opening / closing of the first door 105 and the second opening / closing signal D2 indicating the opening / closing of the second door 205.
 制御装置190は、第1開閉信号D1から得られた第1扉105の開時間の合計を示す第1積算値TS1と、第2開閉信号D2から得られた第2扉205の開時間の合計を示す第2積算値TS2と、係数K11,K21,K12,K22とを用いて第1評価値TD1および第2評価値TD2を算出するように構成される。 The control device 190 has a first integrated value TS1 indicating the total opening time of the first door 105 obtained from the first opening / closing signal D1 and a total of the opening times of the second door 205 obtained from the second opening / closing signal D2. The first evaluation value TD1 and the second evaluation value TD2 are calculated by using the second integrated value TS2 indicating the above and the coefficients K11, K21, K12, and K22.
 式(1)に示したように、第1評価値TD1は、第1積算値TS1に係数K11を乗じた値と、第2積算値TS2に係数K12を乗じた値とを含む。また、式(2)に示したように、第2評価値TD2は、第1積算値TS1に係数K21を乗じた値と、第2積算値TS2に係数K22を乗じた値とを含む。 As shown in the equation (1), the first evaluation value TD1 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K11 and a value obtained by multiplying the second integrated value TS2 by the coefficient K12. Further, as shown in the equation (2), the second evaluation value TD2 includes a value obtained by multiplying the first integrated value TS1 by the coefficient K21 and a value obtained by multiplying the second integrated value TS2 by the coefficient K22.
 図7に示す制御装置190Aは、第1扉105から冷却室104に搬入される被冷却物の重量を示す質量信号W1と、第2扉205から冷却室104に搬入される被冷却物の重量を示す質量信号W2とに基づいて、第1評価値TD1および第2評価値TD2を補正するように構成される。 The control device 190A shown in FIG. 7 has a mass signal W1 indicating the weight of the object to be cooled carried from the first door 105 into the cooling chamber 104 and the weight of the object to be cooled carried from the second door 205 into the cooling chamber 104. The first evaluation value TD1 and the second evaluation value TD2 are corrected based on the mass signal W2 indicating the above.
 具体的には、式(3)および(4)、または式(5)および(6)に示したように補正が行なわれる。 Specifically, the correction is performed as shown in the equations (3) and (4) or the equations (5) and (6).
 本実施の形態では、また、上記の冷熱源システム100または100Aと、負荷装置101とを備える、冷凍サイクル装置が開示される。 In this embodiment, a refrigeration cycle device including the above-mentioned cold heat source system 100 or 100A and a load device 101 is also disclosed.
 以上、冷凍サイクル装置を備える冷凍機を例示して本実施の形態を説明したが、本実施の形態で開示した冷凍サイクル装置は、空気調和機などに利用されても良い。 Although the present embodiment has been described above by exemplifying a refrigerator equipped with a refrigerating cycle device, the refrigerating cycle device disclosed in the present embodiment may be used as an air conditioner or the like.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 2,102,102A,202,202A 冷熱源機、3,101 負荷装置、4,104 冷却室、5 扉、10 圧縮機、20,120,220 凝縮器、22,122,222 ファン、50,150,250 膨張装置、60 蒸発器、80,81,83,84,85,87,180,181,183,184,185,187,280,281,283,284,285,287 配管、82,86,182,186,282,286 延長配管、91,190,190A,191,191A,291 制御装置、94,194,294 メモリ、96,196,196A,296,296A 受信装置、97,197,297 圧力センサ、98,198,298 開閉検知装置、100,100A 冷熱源システム、103,203 冷却器、105 第1扉、110 第1圧縮機、160 第1蒸発器、199,299 質量検知装置、205 第2扉、210 第2圧縮機、260 第2蒸発器。 2,102,102A, 202,202A Cold heat source machine, 3,101 load device, 4,104 cooling room, 5 doors, 10 compressors, 20,120,220 condensers, 22,122,222 fans, 50,150 , 250 Inflator, 60 Evaporator, 80,81,83,84,85,87,180,181,183,184,185,187,280,281,283,284,285,287 Piping, 82,86, 182,186,282,286 extension pipe, 91,190,190A,191,191A,291 control device, 94,194,294 memory, 96,196,196A,296,296A receiver, 97,197,297 pressure sensor , 98,198,298 Open / close detection device, 100,100A Cold heat source system, 103,203 Cooler, 105 1st door, 110 1st compressor, 160 1st evaporator, 199,299 Mass detector, 205 2nd Door, 210 second compressor, 260 second evaporator.

Claims (7)

  1.  第1蒸発器および第2蒸発器を含む負荷装置に接続されるように構成された、冷熱源システムであって、
     前記第1蒸発器に対応して設けられる第1圧縮機と、
     前記第2蒸発器に対応して設けられる第2圧縮機と、
     前記負荷装置が設置される冷却対象空間に設けられた第1扉が開いている時間に対して、異なる重み付けを行なって得られる第1評価値および第2評価値に応じてそれぞれ前記第1圧縮機および前記第2圧縮機を制御する制御装置とを備える、冷熱源システム。
    A cold heat source system configured to be connected to a load device including a first evaporator and a second evaporator.
    A first compressor provided corresponding to the first evaporator and
    A second compressor provided corresponding to the second evaporator and
    The first compression is performed according to the first evaluation value and the second evaluation value obtained by differently weighting the time when the first door provided in the cooling target space in which the load device is installed is open. A cold heat source system including a machine and a control device for controlling the second compressor.
  2.  前記制御装置は、前記第1扉の開閉を示す第1開閉信号を受信するように構成され、
     前記制御装置は、前記第1開閉信号から得られた前記第1扉の開時間の合計を示す第1積算値と、第1係数と、第2係数とを用いて前記第1評価値および前記第2評価値を算出するように構成され、
     前記第1評価値は、前記第1積算値に前記第1係数を乗じた値を含み、
     前記第2評価値は、前記第1積算値に前記第2係数を乗じた値を含む、請求項1に記載の冷熱源システム。
    The control device is configured to receive a first open / close signal indicating the opening / closing of the first door.
    The control device uses the first integrated value indicating the total opening time of the first door obtained from the first opening / closing signal, the first coefficient, and the second coefficient to obtain the first evaluation value and the said. It is configured to calculate the second evaluation value,
    The first evaluation value includes a value obtained by multiplying the first integrated value by the first coefficient.
    The cold heat source system according to claim 1, wherein the second evaluation value includes a value obtained by multiplying the first integrated value by the second coefficient.
  3.  前記制御装置は、前記第1扉から前記冷却対象空間に搬入される被冷却物の重量を示す信号に基づいて、前記第1評価値および前記第2評価値を補正するように構成される、請求項1に記載の冷熱源システム。 The control device is configured to correct the first evaluation value and the second evaluation value based on a signal indicating the weight of the object to be cooled carried into the cooling target space from the first door. The cold heat source system according to claim 1.
  4.  前記冷却対象空間には、前記第1扉と異なる位置に設けられた第2扉がさらに設けられ、
     前記制御装置は、前記第1評価値および前記第2評価値に対して、前記第2扉が開いている時間に対して異なる重み付けを行なった値を反映させる、請求項1に記載の冷熱源システム。
    The cooling target space is further provided with a second door provided at a position different from that of the first door.
    The cold heat source according to claim 1, wherein the control device reflects a value obtained by weighting the first evaluation value and the second evaluation value differently with respect to the time when the second door is open. system.
  5.  前記制御装置は、前記第1扉の開閉を示す第1開閉信号と、前記第2扉の開閉を示す第2開閉信号とを受信するように構成され、
     前記制御装置は、前記第1開閉信号から得られた前記第1扉の開時間の合計を示す第1積算値と、前記第2開閉信号から得られた前記第2扉の開時間の合計を示す第2積算値と、第1~第4係数とを用いて前記第1評価値および前記第2評価値を算出するように構成され、
     前記第1評価値は、前記第1積算値に前記第1係数を乗じた値と、前記第2積算値に前記第3係数を乗じた値とを含み、
     前記第2評価値は、前記第1積算値に前記第2係数を乗じた値と、前記第2積算値に前記第4係数を乗じた値とを含む、請求項4に記載の冷熱源システム。
    The control device is configured to receive a first open / close signal indicating the opening / closing of the first door and a second opening / closing signal indicating the opening / closing of the second door.
    The control device combines the first integrated value indicating the total opening time of the first door obtained from the first opening / closing signal and the total opening time of the second door obtained from the second opening / closing signal. It is configured to calculate the first evaluation value and the second evaluation value using the second integrated value shown and the first to fourth coefficients.
    The first evaluation value includes a value obtained by multiplying the first integrated value by the first coefficient and a value obtained by multiplying the second integrated value by the third coefficient.
    The cold heat source system according to claim 4, wherein the second evaluation value includes a value obtained by multiplying the first integrated value by the second coefficient and a value obtained by multiplying the second integrated value by the fourth coefficient. ..
  6.  前記制御装置は、前記第1扉から前記冷却対象空間に搬入される被冷却物の重量を示す第1信号と、前記第2扉から前記冷却対象空間に搬入される被冷却物の重量を示す第2信号とに基づいて、前記第1評価値および前記第2評価値を補正するように構成される、請求項4に記載の冷熱源システム。 The control device indicates a first signal indicating the weight of the object to be cooled carried into the space to be cooled from the first door and a weight of the object to be cooled to be carried into the space to be cooled from the second door. The cooling heat source system according to claim 4, wherein the first evaluation value and the second evaluation value are corrected based on the second signal.
  7.  請求項1~6のいずれか1項に記載の冷熱源システムと、前記負荷装置とを備える、冷凍サイクル装置。 A refrigeration cycle device including the cold heat source system according to any one of claims 1 to 6 and the load device.
PCT/JP2019/046629 2019-11-28 2019-11-28 Cold heat source system and refrigeration cycle device WO2021106161A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021561080A JP7154440B2 (en) 2019-11-28 2019-11-28 Cold heat source system and refrigeration cycle equipment
PCT/JP2019/046629 WO2021106161A1 (en) 2019-11-28 2019-11-28 Cold heat source system and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046629 WO2021106161A1 (en) 2019-11-28 2019-11-28 Cold heat source system and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021106161A1 true WO2021106161A1 (en) 2021-06-03

Family

ID=76129243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046629 WO2021106161A1 (en) 2019-11-28 2019-11-28 Cold heat source system and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7154440B2 (en)
WO (1) WO2021106161A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291178U (en) * 1985-11-29 1987-06-11
JP2005090917A (en) * 2003-09-19 2005-04-07 Hoshizaki Electric Co Ltd Cooling storage cabinet
JP2012037159A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Control device for air conditioner and control device for freezer
JP2013228130A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Freezer
JP2015096776A (en) * 2013-11-15 2015-05-21 富士電機株式会社 Cold storage system
JP2015152234A (en) * 2014-02-14 2015-08-24 富士電機株式会社 Cold storage system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291178B2 (en) 2013-07-17 2018-03-14 株式会社竹中工務店 Column beam structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291178U (en) * 1985-11-29 1987-06-11
JP2005090917A (en) * 2003-09-19 2005-04-07 Hoshizaki Electric Co Ltd Cooling storage cabinet
JP2012037159A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Control device for air conditioner and control device for freezer
JP2013228130A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Freezer
JP2015096776A (en) * 2013-11-15 2015-05-21 富士電機株式会社 Cold storage system
JP2015152234A (en) * 2014-02-14 2015-08-24 富士電機株式会社 Cold storage system

Also Published As

Publication number Publication date
JP7154440B2 (en) 2022-10-17
JPWO2021106161A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US11022346B2 (en) Method for detecting a loss of refrigerant charge of a refrigeration system
US20100094434A1 (en) Optimization of air cooled chiller system operation
US20040107715A1 (en) Air conditioner and method for controlling electronic expansion valve of air conditioner
KR100850672B1 (en) Refrigerator and its control method
US8640473B2 (en) Refrigeration apparatus and method for controlling the same
US10941951B2 (en) Systems and methods for temperature and humidity control
EP3129719A1 (en) Hvac systems and controls
KR100870541B1 (en) Refrigerator and its control method
JP6223564B2 (en) refrigerator
CN106091288B (en) Air conditioner and its starting control method
JP6355325B2 (en) Refrigerator and control method of refrigerator
JP5487167B2 (en) Environmental test equipment
WO2021106161A1 (en) Cold heat source system and refrigeration cycle device
KR101652523B1 (en) A refrigerator and a control method the same
WO2019058542A1 (en) Refrigeration device
US5661982A (en) Electronic refrigerant compressor for a cooling system
EP3623730B1 (en) Refrigerator and method for controlling the same
EP3859246A1 (en) Refrigeration system
CN108027176A (en) Multiple compression refrigerating circulatory device
KR101153420B1 (en) Method for controlling air-conditioner
JP2014156946A (en) Refrigerator
KR20180109598A (en) control apparatis for refrigerator and control method using thereof
JP2011089714A (en) Refrigerating device
JP2008107880A (en) Automatic vending machine
CN116892806A (en) Refrigerator air quantity adjusting device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953749

Country of ref document: EP

Kind code of ref document: A1