Nothing Special   »   [go: up one dir, main page]

WO2021106153A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2021106153A1
WO2021106153A1 PCT/JP2019/046601 JP2019046601W WO2021106153A1 WO 2021106153 A1 WO2021106153 A1 WO 2021106153A1 JP 2019046601 W JP2019046601 W JP 2019046601W WO 2021106153 A1 WO2021106153 A1 WO 2021106153A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
magnet
axis
magnetic pole
rotor core
Prior art date
Application number
PCT/JP2019/046601
Other languages
French (fr)
Japanese (ja)
Inventor
勇気 日高
盛幸 枦山
宇宙 満田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020530392A priority Critical patent/JP6839376B1/en
Priority to PCT/JP2019/046601 priority patent/WO2021106153A1/en
Publication of WO2021106153A1 publication Critical patent/WO2021106153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current

Definitions

  • the present disclosure relates to a rotating electric machine equipped with an embedded magnet type rotor.
  • Patent Document 1 describes a magnet-embedded rotary electric machine.
  • the rotor core of this magnet-embedded rotary electric machine has a plurality of magnetic pole regions in the circumferential direction, and each magnetic pole region has a flux barrier extending along the q-axis magnetic path.
  • the inner wall of the flux barrier has a radial outer wall surface and a radial inner wall surface, and the radial inner wall surface extends from a position along the q-axis magnetic path toward an adjacent magnetic pole region.
  • the above-mentioned magnet-embedded rotary electric machine can increase the reluctance torque by the configuration that suppresses the d-axis inductance and maintains the q-axis inductance, but the q-axis leakage magnetic flux of the magnet magnetic flux due to the d-axis inductance suppression increases. There is a problem that the torque ripple characteristic is lowered.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a rotary electric machine capable of achieving both improvement of torque / induced voltage ratio and suppression of torque ripple.
  • the rotary electric machine has a stator, a rotor core in which a plurality of holes are formed, and a gap expanding portion provided on an outer peripheral surface of the rotor core, and magnets arranged in the plurality of holes.
  • the magnets constituting the magnet group which are a part of the magnets and have a plurality of magnet groups constituting one magnetic pole, and a rotor provided inside the diameter of the stator through a gap.
  • the width perpendicular to the magnetic pole center line of the magnet on the magnetic pole center line, which is the magnetic pole center line of one magnetic pole, is defined as the magnet width Wmag
  • the width orthogonal to the magnetic pole center line of the gap expanding portion is defined as the gap expanding portion width WA.
  • FIG. 5 is an external view of a rotor excluding a shaft end component of a rotary electric machine according to a first embodiment of the present disclosure. It is a top view which shows the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure. It is sectional drawing which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure.
  • Embodiment 1 The rotary electric machine according to the first embodiment of the present disclosure will be described.
  • FIG. 1 is an external view of the rotary electric machine according to the first embodiment of the present disclosure.
  • FIG. 2 is an external view of a stator of a rotary electric machine according to the first embodiment of the present disclosure.
  • FIG. 3 is an external view of a rotor of a rotary electric machine according to the first embodiment of the present disclosure.
  • the direction parallel to the axis of the rotation axis is the axial direction, and the axis of the rotation axis is the axis center.
  • the direction orthogonal to the axis center of the rotating shaft is the radial direction
  • the outer side in the radial direction is the outer diameter direction or the outer diameter direction
  • the inner side in the radial direction is the inner diameter direction or the inner diameter direction.
  • the direction of rotation about the rotation axis is the circumferential direction or the rotation direction
  • the direction opposite to the rotation direction is the counter-rotation direction.
  • the rotary electric machine 100 is supported by a stator 1 fixed to the front and rear brackets and front and rear brackets via bearings, and is rotatably arranged inside the diameter of the stator 1. It has a rotor 2 that has been bearing. It also has a shaft 3 that is inserted at the axial position of the rotor 2.
  • the stator 1 is provided so as to surround the outer periphery of the rotor 2 via a gap G that serves as a magnetic gap.
  • the stator 1 has a stator core 11 having a plurality of magnetic pole teeth 13 and a stator winding 12 wound around the stator core 11.
  • the stator winding 12 receives a magnetic flux from a magnet 231 provided on the rotor 2, which will be described later, and generates an induced voltage.
  • the rotor 2 has a cylindrical rotor core 21 having a shaft insertion hole for arranging the shaft 3 at the axial center position.
  • the shaft 3 arranged in the shaft insertion hole and the rotor core 21 are fixed to each other.
  • the rotor core 21 is configured by, for example, laminating and integrating thin plates of electrical steel sheets in the axial direction.
  • FIG. 4 is an external view of a rotor of a rotary electric machine according to the first embodiment of the present disclosure.
  • the shaft 3 and the shaft end parts are omitted.
  • FIG. 5 is a plan view of the rotary electric machine according to the first embodiment of the present disclosure when viewed from the axial direction.
  • FIG. 6 is a cross-sectional view of a main part of the rotor of the rotary electric machine according to the first embodiment of the present disclosure.
  • FIG. 7 is a plan view of a main part of the rotary electric machine according to the first embodiment of the present disclosure when viewed from the axial direction.
  • the reference numerals of some of the illustrated configurations are omitted.
  • the rotor core 21 of the rotor 2 has a plurality of holes 22 extending in the axial direction of the rotor core 21, slits 24, and an enlarged gap provided on the outer peripheral surface of the rotor core 21.
  • a portion 25 and a portion 25 are formed, and a magnet 231 is embedded in each of the plurality of hole portions 22.
  • the plurality of holes 22 penetrate in the axial direction of the rotor core 21. Further, each hole portion 22 is provided in the rotor core 21 in the circumferential direction in accordance with the arrangement position of the magnet 231 described later.
  • each magnet 231 is formed in a rectangular shape.
  • Each magnet 231 is magnetized in the direction from one long side of the rectangle to the other long side, that is, parallel to the short side.
  • the magnetic flux of the magnet 231 is magnetized so as to be directed toward the stator 1.
  • the magnetic flux of the magnet 231 is magnetized and arranged so as to be inside the diameter of the rotor 2.
  • each of the holes 22 is composed of a magnet insertion portion 221 in which the magnet 231 is embedded and an opening 222 in which the magnet 231 is not embedded.
  • the magnet insertion portion 221 is formed so as to border the shape of the magnet 231 to be embedded.
  • the openings 222 other than the magnet insertion portion 221 are formed at both ends of the magnet insertion portion 221 in the longitudinal direction. Further, the opening 222 is hollow.
  • a magnet group 23 arranged so as to form one magnetic pole is configured by some magnets 231 of the plurality of magnets 231.
  • a plurality of the magnet groups 23 are arranged adjacent to each other in the circumferential direction of the rotor core 21.
  • the magnet group 23 constituting one magnetic pole is composed of three magnets 231 and arranged so that the three magnets 231 form an arc shape having a bulge toward the center of the axis from the outer peripheral surface side of the rotor 2.
  • One of the magnets 231 constituting the magnet group 23 is located on the center of the magnetic pole, which is the center of the magnetic pole formed by the magnet group 23.
  • the magnetic pole center line (hereinafter, also referred to as d-axis)
  • the magnetic pole center line (d-axis) is straddled in the circumferential direction. Be placed.
  • the magnets 231 constituting the magnet group 23 the magnet 231 located on the d-axis is referred to as the magnet 232 for convenience of explanation.
  • the slit 24 is surrounded by the magnet group 23 constituting one magnetic pole, which is outside the diameter of the rotor 2 with respect to the magnet 232 located on the center of the magnetic pole among the magnet group 23 constituting one magnetic pole. It is provided on the rotor core 21 within the circumferential range.
  • the slit 24 is formed in an arc shape having a bulge in the same direction as the arc shape formed by the magnet group 23. That is, both ends of the slit 24 in the circumferential direction are formed on the rotor core 21 whose diameter is outside the central portion of the slit.
  • the slit 24 penetrates the rotor core 21 in the axial direction and is hollow. Further, it is formed so as to straddle the above-mentioned magnetic pole center line in the circumferential direction.
  • the gap expanding portion 25 is provided on the outer peripheral surface of the rotor core 21 surrounded by the slit 24 and the gap G.
  • the gap expanding portion 25 is provided in an arc shape recessed from the outer peripheral surface of the rotor core 21 toward the center of the shaft.
  • the range of the gap is expanded from each of the two intersections on the outer peripheral surface of the rotor core 21 on which the gap expanding portion 25 is formed toward the axial center of the rotor 2.
  • the circumferential range of the gap expanding portion 25 is formed to be smaller than the circumferential width of the slit 24.
  • the length in the rotation direction connecting the two intersections of the gap expanding portion 25 and the outermost circumference of the rotor core 21 so as to be orthogonal to the d-axis is defined as the gap expanding portion width WA.
  • the length of the line connecting both end points of the magnet 232 located on the magnetic pole center line in the rotational direction so as to be orthogonal to the d-axis is defined as the magnet width Wmag.
  • a line deviated from the magnetic pole center line (d-axis) by 90 degrees in the electric angle in the rotation direction or the counter-rotation direction is defined as the axis (q-axis).
  • the q-axis passes through the rotor core 21 between the adjacent magnet groups 23.
  • the width of the rotor core 21 in the orthogonal plane where the rotor core 21 and the q-axis located between the adjacent magnet groups 23 are orthogonal to each other is the hole closest to the q-axis of one of the adjacent magnet groups 23. It is the smallest in the rotor core 21 between 22 and the hole 22 closest to the q-axis of the other adjacent magnet group 23.
  • the width of the smallest rotor core 21 is defined as the minimum width WB.
  • the rotary electric machine 100 satisfies WA> Wmag in the relationship between the gap expanding portion width WA of the gap expanding portion 25 and the magnet width Wmag of the magnet 232. Further, Wmag> WB is satisfied in the minimum width WB and the magnet width Wmag of the magnet 232. Then, the relationship of WA> Wmag> WB is satisfied in the relationship between the gap expanding portion width WA, the magnet width Wmag, and the minimum width WB.
  • FIG. 8 illustrates the operation of the rotary electric machine 100 as an electric motor of the AC generator motor for vehicles. It has a power circuit unit 4, a control circuit unit 5, and a battery 6 as a configuration other than the rotary electric machine 100 for operating as an electric motor of an AC generator motor for vehicles.
  • the power circuit unit 4 has a switching element. This switching element is ON / OFF controlled by the control circuit unit 5. Then, the power circuit unit 4 converts the DC power supplied from the battery 6 into AC power by ON / OFF control of the switching element and supplies it to the rotary electric machine 100.
  • the control circuit unit 5 has a processor 51 and a storage unit 52.
  • the processor 51 performs the above-mentioned processing by executing the program stored in the storage unit 52.
  • the storage unit 52 is composed of a memory in which parameters necessary for control, a program describing the above processing, and the like are stored.
  • the processor is composed of a microcomputer (microcomputer), a DSP (Digital Signal Processor), an FPGA, and the like. Further, the plurality of processors 51 and the plurality of storage units 52 may cooperate to execute the above function. Since the power circuit unit 4, the control circuit unit 5, and the battery 6 are well-known techniques, other detailed description of each configuration will be omitted.
  • the AC power supplied to the rotary electric machine 100 is supplied to the stator winding 12 of the stator 1.
  • the driving torque is generated by the magnetic flux generated at this time and the magnetic flux formed by the magnet 232 interlinking with the direct current or alternating current flowing through the stator winding 12.
  • the rotor 2 is rotationally driven by this drive torque.
  • FIG. 9 is a magnetic flux path diagram showing the path of the magnetic flux interlinking the rotary electric machine 100 in the first embodiment of the present disclosure.
  • the solid line shown in FIG. 9 schematically shows the path of the magnetic flux generated from the magnet group 23 through the stator 1.
  • the magnetic flux interlinking the stator winding 12 of the stator 1 contributes to the drive torque. Therefore, the magnetic flux passing through the path shown by the solid line is the output contributing magnetic flux that contributes to the output.
  • the alternate long and short dash line shown in FIG. 9 schematically shows the path of the magnetic flux that closes in the rotor core 21 without passing through the stator winding 12 of the stator 1.
  • the magnetic flux passing through the path indicated by the alternate long and short dash line is a leakage magnetic flux that does not contribute to the output because the stator winding 12 of the stator 1 is not interlocked.
  • the output contributing magnetic flux is mainly contributed by the magnetic flux created by the magnet 232 arranged on the d-axis line. That is, the drive torque can be increased by increasing the magnetic flux of the magnet 232 on the d-axis line.
  • the induced voltage increases.
  • the induced voltage of the rotary electric machine 100 exceeds the voltage of the battery 6 shown in FIG.
  • the regenerative mode in which power is supplied from the rotary electric machine 100 to the battery 6 side is entered. In principle, the drive torque cannot be obtained unless the voltage of the rotary electric machine 100 is lower than the voltage of the battery 6.
  • the induced voltage of the rotary electric machine 100 can be made lower than the voltage of the battery 6. It is also possible to obtain the drive torque. However, since the current for suppressing the induced voltage is not the current for obtaining torque, the current required for obtaining the desired torque increases, and the loss increases. As a result, the output of the rotary electric machine 100 decreases. From these facts, it is desirable to reduce the induced voltage, and in order to reduce the induced voltage, it is desirable to reduce the magnetic flux induced in the stator winding 12 of the stator 1.
  • Torque ripple contributes to torque ripple by increasing. Torque ripple is expressed as torque fluctuation range / average torque. Therefore, it is possible to suppress the torque ripple by reducing the leakage magnetic flux shown in FIG.
  • the gap expanding portion 25 is provided so as to cover the circumferential direction on the outer diameter of the magnet 231 arranged on the d-axis line. That is, the gap expanding portion 25 is provided on the path of the magnet magnetic flux created by the magnet 232 arranged on the d-axis line.
  • the magnetic resistance of the rotor core 21 in the range where the void expansion portion 25 is formed increases. Therefore, the effect of reducing the induced voltage induced in the stator winding 12 of the stator 1 can be obtained.
  • the gap expanding portion 25 and increasing the d-axis magnetic resistance the q-axis magnetic resistance with respect to the d-axis magnetic resistance becomes relatively lower than when the gap expanding portion 25 is not provided. Therefore, it is possible to increase the reluctance torque obtained by the difference in the magnetic resistance between the d-axis and the q-axis.
  • FIG. 10 is a graph showing the effect of improving the torque / induced voltage ratio of the rotary electric machine 100 in the first embodiment of the present disclosure.
  • WA> Wmag is configured between the gap expanding portion width WA of the gap expanding portion 25 and the magnet width Wmag of the magnet 232 on the d-axis. It is the result of the torque / induced voltage ratio.
  • the other is the result of the torque / induced voltage ratio when the relationship of WA ⁇ Wmag is established between the gap expanding portion width WA and the magnet width Wmag of the magnet 232 on the d-axis.
  • the torque / induced voltage ratio can be improved by configuring WA> Wmag in relation to the gap expanding portion width WA and the magnet width Wmag of the rotor magnet on the d-axis. ..
  • the minimum width WB is smaller than the magnet width Wmag of the magnet 232 on the d-axis.
  • FIG. 11 is a graph showing the effect of suppressing the torque ripple of the torque fluctuation width / average torque of the rotary electric machine 100 in the first embodiment of the present disclosure.
  • One of the graphs shown in FIG. 11 is the result of the torque fluctuation width / average torque when Wmag> WB is satisfied in the relationship between the minimum width WB and the magnet width Wmag of the magnet 232 on the d-axis.
  • the other is the result of the torque fluctuation width / average torque when Wmag ⁇ WB in the relationship between the minimum width WB and the magnet width Wmag of the magnet 232 on the d-axis. As shown in FIG.
  • the torque fluctuation width / average torque that is, the torque ripple is suppressed by configuring so that Wmag> WB is satisfied. be able to.
  • the magnet width Wmag of the magnet 232 arranged on the d-axis, and the minimum width WB WA> Wmag> Meet the WB. That is, the magnet width of the magnet 232 is smaller than the width of the void expansion portion, and the minimum width WB of the rotor core 21 on the leakage magnetic flux path of the magnet 232 is the minimum width WB of the magnet 232 arranged on the d-axis line. Is configured to be smaller than.
  • the torque ripple suppression function can be obtained, and both the torque / induced voltage ratio improvement and the torque ripple suppression can be achieved at the same time.
  • the magnet group 23 is arranged in an arc shape intermittently by a plurality of magnets 231 and 232.
  • the rotor core 21 is present between the magnets 231 and 232 forming the arc shape.
  • a rotor core 21 that connects the outer diameter and the inner diameter of the magnet group 23 exists between the magnets 231 and 232.
  • the maximum principal stress applied to the rotor core 21 passing through the q-axis between the adjacent magnet groups 23 can be reduced.
  • the number of magnets 231 constituting the magnet group 23 is not limited to three.
  • the magnets 231 constituting the magnet group 23 may be arranged in an arc shape along the magnetic flux created by the stator winding 12.
  • the stator winding 12 has five magnets 231. It may be arranged in an arc along the magnetic flux to be created.
  • the shape of each magnet 231 is rectangular, the shape is not limited to a rectangle, and the magnets 231 may be formed in an arc shape and arranged along the magnetic flux generated by the stator winding 12. Further, the magnetizing method does not need to be magnetized parallel to the short side.
  • the opening 222 and the slit 24 do not necessarily have to be hollow, and for example, a non-magnetic material such as resin may be embedded. Further, the hole portion 22 may be configured not to have the opening portion 222.
  • FIG. 13 is an axial plan view showing a main part of the rotor of the rotary electric machine according to the second embodiment of the present disclosure.
  • FIG. 14 is a magnetic flux path diagram showing the path of the magnetic flux interlinking the rotary electric machine according to the second embodiment of the present disclosure.
  • the minimum width WB is the other of the orthogonal surfaces of the rotor core 21 orthogonal to the q-axis, which is adjacent to the hole 22 closest to the q-axis of one of the adjacent magnet groups 23. It was explained that it is the width of the rotor core 21 between the magnet group 23 and the hole 22 closest to the q-axis. In the second embodiment of the present disclosure, this minimum width WB is the width of the rotor core 21 between the end points of one adjacent hole 22 and the other 22 end points.
  • the hole portion 22 is composed of a magnet insertion portion 221 in which the magnet 231 is embedded and an opening 222 in which the magnet 231 is not embedded. Further, the magnet insertion portion 221 is formed so as to border the shape of the magnet 231 to be embedded.
  • the rotor core 21 between the end point of the magnet insertion portion 221 formed so as to border the magnet 231 and the end point of the adjacent magnet insertion portion 221 has a minimum width WB. .. In other words, the minimum width WB is between the end points of the magnet insertion portions 221 of the magnet group 23 closest to the q-axis passing between the adjacent magnet groups 23.
  • the rotor core 21 passing through the q-axis serves as a path of leakage magnetic flux that closes in the rotor core 21 without passing through the stator winding 12 of the stator 1.
  • This leakage magnetic flux includes the leakage magnetic flux from the magnet 232 located on the d-axis constituting the magnet group 23 as shown by the alternate long and short dash line in FIG. 9, and separately, as shown by the alternate long and short dash line in FIG.
  • the magnetic flux leakage from the magnet 231 arranged on the q-axis side of the magnet group 23 is also included.
  • the path of the magnetic flux leakage of the magnet 231 arranged on the q-axis side passes through the inside of the arc formed by the magnet group 23, and goes to the same magnet 231 via the rotor core 21 through which the q-axis passes without passing through the stator 1. It will be a return route.
  • the inflow surface when the leakage magnetic flux returns to the magnet 231 is the rotor core 21 between the end point of the magnet insertion portion 221 and the end point of the adjacent magnet insertion portion 221.
  • the minimum width WB is set between the end points of the magnet insertion portions 221 of the magnet group 23 closest to the q-axis passing between the adjacent magnet groups 23, so that the minimum width WB is obtained from the magnets 231 and 232.
  • the magnetic resistance of the rotor core 21 in the leakage magnetic flux path through which the leakage magnetic flux passes can be increased. Further, in particular, it is possible to maximize the reluctance at the inflow surface to the magnet 231 in the path of the magnetic flux leakage in which the magnetic flux generated from the magnet 231 arranged on the q-axis side returns to the same magnet 231 without passing through the stator 1. it can.
  • the magnet insertion portion 221 also has a function of holding the position of the magnet 231 to be embedded. Therefore, in addition to the same effect as that of the first embodiment of the present disclosure, the effect of being able to further reduce the torque ripple while maintaining the position of the magnet 231 is also obtained.
  • FIG. 15 is an axial plan view showing a main part of the rotor of the AC rotary electric machine according to the third embodiment of the present disclosure.
  • the end points inside the diameter of the rotor core 21 are orthogonal to the q-axis.
  • the width tied to is the maximum width WC.
  • the magnet width Wmag> the maximum width WC is satisfied. That is, the entire width of the path of the leakage magnetic flux on the q-axis side generated by the magnetic flux of the magnet 231 is smaller than the magnet width Wmag of the magnet 231 on the d-axis line. As a result, the magnetic resistance of the rotor core 21 passing through the q-axis, which is the path of the leakage magnetic flux, can be increased.
  • the torque ripple can be further suppressed by further enhancing the function of reducing the leakage magnetic flux.
  • FIG. 16 is a plan view of a main part of the rotor of the rotary electric machine according to the fourth embodiment of the present disclosure.
  • the magnetic pole tooth width of the surface (innermost diameter inner surface) located on the innermost diameter side in the radial direction and facing the gap G is WT. And. Specifically, it is the width when both ends of one magnetic pole tooth 13 in the rotation direction are connected so as to be orthogonal to the q-axis.
  • WT> WB is satisfied in relation to the minimum width WB. That is, in the path of the magnetic flux flowing from the magnetic pole tooth width of the magnetic pole tooth 13 to the rotor core 21 passing through the q-axis, the width of the surface of the rotor core 21 into which the magnetic flux flows is smaller.
  • the leakage magnetic flux illustrated and described in FIG. 14 does not contribute to the drive torque because it does not pass through the magnetic pole teeth 13 of the stator 1. Therefore, it is preferable that the magnetic flux passing through the path on the q-axis side without passing through the magnetic pole teeth 13 is small.
  • the width of the surface of the child core 21 can be reduced.
  • the magnetic resistance of the rotor core 21 on the leakage magnetic flux path can be increased, and in particular, the rotor core 21 can be moved from the magnet 231 other than the magnet 232 located on the d-axis to the rotor core 21 without the magnetic pole teeth 13 of the stator 1.
  • the leakage magnetic flux can be reduced.
  • the leakage magnetic flux of the magnet 231 not arranged on the d-axis can be reduced, and the torque ripple can be further suppressed. It has the effect of
  • FIG. 17 is a plan view of a main part of the rotor of the rotary electric machine according to the fifth embodiment of the present disclosure.
  • the gap expanding portion 25 is provided line-symmetrically with respect to the d-axis. Further, the magnet 231 located on the d-axis of the magnet group 23 is also provided line-symmetrically with respect to the d-axis. That is, the center line of the gap expanding portion 25 and the center line of the magnet 232 located on the d-axis are on the same line.
  • the center line of the gap expanding portion 25 is a line bisected by perpendicular to a line connecting both ends of the gap expanding portion 25 in the rotation direction so as to be orthogonal to the q-axis.
  • the center line of the magnet 231 located on the d-axis is a line bisected by perpendicular to a line connecting both ends of the magnet 231 located on the d-axis in the rotational direction so as to be orthogonal to the q-axis.
  • the gap expanding portion 25 can more effectively suppress the magnetic flux generated by the magnet 231 located on the d-axis. Therefore, in addition to the same effects as those of the first to fourth embodiments of the present disclosure, the torque / induced voltage ratio can be further improved.
  • the line that bisects the void expansion portion 25 in the rotation direction (first bisector) and the magnet 231 located on the d-axis are bisected in the rotation direction (second bisector line). )
  • the gap expanding portion 25 and the magnet 231 located on the d-axis do not necessarily have to be provided line-symmetrically on the d-axis. Further, each center line does not have to coincide with the d-axis. Even in this case, the effect of improving the torque / induced voltage ratio is achieved.
  • FIG. 18 is an axial plan view showing a main part of the rotor of the rotary electric machine according to the fifth embodiment of the present disclosure.
  • FIG. 19 is a magnetic flux path diagram showing the path of the magnetic flux interlinking the rotary electric machine according to the sixth embodiment of the present disclosure.
  • the magnet length of half of the magnet 231 obtained by dividing the length of the magnet 231 on the d-axis in the rotation direction by the d-axis is defined as Wmagk. At this time, Wmagk> WB is satisfied in relation to the minimum width WB.
  • the dotted line in FIG. 19 shows the path of the magnetic flux created by the magnet 231 located on the d-axis.
  • Half of the magnetic flux generated by the magnet 231 located on the d-axis creates a magnetic flux leakage path in the rotor core 21 passing through the q-axis on the rotation direction side, and the other half creates a leakage magnetic flux in the rotor core 21 on the opposite rotation direction side.
  • the minimum width WB of the rotor core 21 on the leakage magnetic flux path is smaller than the length Wmagk divided by the d-axis of the magnet 231 located on the d-axis, so that it is on the q-axis side.
  • the magnetic resistance can be increased. Therefore, the magnetic flux leakage to the q-axis side can be further reduced.
  • the torque ripple can be further suppressed.
  • the magnet lengths divided by the d-axis have been described by showing an example of being the same, they do not necessarily have to be the same and may be larger than the corresponding minimum width WB.
  • the magnet 231 on the d-axis does not necessarily have to be provided so as to be orthogonal to the d-axis.
  • Wmagk is defined as the magnet length by the length connecting the ends of the magnets 231 in the rotation direction so as to be orthogonal to the d-axis, and if Wmagk> WB is satisfied in relation to the minimum width WB. Good. The same effect can be obtained in this case as well.
  • stator 1 stator, 2 rotor, 3 shaft, 4 power circuit, 5 control circuit, 6 battery, 11 stator core, 12 stator winding, 13 magnetic pole teeth, 21 rotor core, 22 holes, 23 magnets Group, 24 slits, 25 void enlargement part, 100 rotary electric machine, 221 magnet insertion part, 222 opening part, 231 and 232 magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

The purpose of the present invention is to provide a rotary electric machine capable of achieving both an improvement in torque/induced voltage ratio and a suppression of torque ripple. The rotary electric machine comprises: a stator (1); and a rotor (2) having a rotor core (21) in which a plurality of holes (22) are formed, a gap expanding portion (25) provided on the outer peripheral surface of the rotor core (21), and a plurality of magnet groups (23) that are a part of magnets arranged in the plurality of holes (22) and constitute a magnetic pole of one magnetic pole, the rotor being provided radially inside the stator (1) with a gap therebetween, wherein when the width perpendicular to the magnetic pole center line of the magnet on the magnetic pole center line, among the magnets constituting the magnet group (23), is defined as a magnet width Wmag, the width perpendicular to the magnetic pole center line of the gap expanding portion (25) is defined as a gap expanding portion width WA, and the width perpendicular to the magnetic pole center line of the rotor core (21) through which the axis line deviates by 90 degrees in the electric angle from the magnetic pole center line in the rotation direction or counter-rotation direction of the rotor (1) is the minimum width WB, the relationship, gap expanding portion width WA > magnet width Wmag > minimum width WB, is satisfied.

Description

回転電機Rotating machine
 本開示は、埋込磁石型回転子を備えた回転電機に関するものである。 The present disclosure relates to a rotating electric machine equipped with an embedded magnet type rotor.
 特許文献1には、磁石埋込式回転電機が記載されている。この磁石埋込式回転電機のロータコアは、周方向に複数の磁極領域を有するとともに、q軸磁路に沿って延びるフラックスバリアを各磁極領域に有している。フラックスバリアの内壁は、径方向外側壁面と径方向内側壁面とを有し、径方向内側壁面がq軸磁路に沿った位置より隣の磁極領域へ向かって広がっている。 Patent Document 1 describes a magnet-embedded rotary electric machine. The rotor core of this magnet-embedded rotary electric machine has a plurality of magnetic pole regions in the circumferential direction, and each magnetic pole region has a flux barrier extending along the q-axis magnetic path. The inner wall of the flux barrier has a radial outer wall surface and a radial inner wall surface, and the radial inner wall surface extends from a position along the q-axis magnetic path toward an adjacent magnetic pole region.
国際公開第2016/147945号International Publication No. 2016/147945
 上記の磁石埋込式回転電機はd軸インダクタンス抑制とq軸インダクタンス維持を実現する構成によりリラクタンストルクを増加させることができるが、d軸インダクタンス抑制に伴う磁石磁束のq軸漏磁束が増大し、トルクリップル特性が低下するという課題があった。 The above-mentioned magnet-embedded rotary electric machine can increase the reluctance torque by the configuration that suppresses the d-axis inductance and maintains the q-axis inductance, but the q-axis leakage magnetic flux of the magnet magnetic flux due to the d-axis inductance suppression increases. There is a problem that the torque ripple characteristic is lowered.
 本開示は、上述の課題を解決するためになされたものであり、トルク/誘起電圧比率向上とトルクリップル抑制を両立させることができる回転電機を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a rotary electric machine capable of achieving both improvement of torque / induced voltage ratio and suppression of torque ripple.
 本開示にかかる回転電機は、固定子と、複数の孔部が形成された回転子コア、回転子コアの外周面に設けられる空隙拡大部、を有するとともに、複数の孔部に配置される磁石のうちの一部であって1磁極の磁極を構成する磁石群を複数有し、固定子の径内側に空隙を介して設けられる回転子と、を備え、磁石群を構成する磁石のうち、1磁極の磁極中心の線である磁極中心線にある磁石の磁極中心線に直行する幅を磁石幅Wmagとし、空隙拡大部の磁極中心線に直行する幅を空隙拡大部幅WAとし、磁極中心線から回転子の回転方向または反回転方向に電気角で90度ずれた線である軸線がとおる回転子コアの磁極中心線に直行する幅を最小幅WBとしたとき、空隙拡大部幅WA>磁石幅Wmag>最小幅WBの関係を満たすものである。 The rotary electric machine according to the present disclosure has a stator, a rotor core in which a plurality of holes are formed, and a gap expanding portion provided on an outer peripheral surface of the rotor core, and magnets arranged in the plurality of holes. Among the magnets constituting the magnet group, which are a part of the magnets and have a plurality of magnet groups constituting one magnetic pole, and a rotor provided inside the diameter of the stator through a gap. The width perpendicular to the magnetic pole center line of the magnet on the magnetic pole center line, which is the magnetic pole center line of one magnetic pole, is defined as the magnet width Wmag, and the width orthogonal to the magnetic pole center line of the gap expanding portion is defined as the gap expanding portion width WA. When the width perpendicular to the magnetic pole center line of the rotor core through which the axis, which is a line deviated by 90 degrees in the electric angle from the line to the rotation direction or counter-rotation direction of the rotor, is the minimum width WB, the gap expansion portion width WA> It satisfies the relationship of magnet width Wmag> minimum width WB.
 本開示の回転電機によれば、トルク/誘起電圧比率向上とトルクリップル抑制を両立させることができる。 According to the rotary electric machine of the present disclosure, it is possible to achieve both improvement of the torque / induced voltage ratio and suppression of torque ripple.
本開示の実施の形態1に係る回転電機の外観図である。It is an external view of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の固定子の外観図である。It is external drawing of the stator of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の回転子の外観図である。It is external drawing of the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の軸端部品を除いた回転子の外観図である。FIG. 5 is an external view of a rotor excluding a shaft end component of a rotary electric machine according to a first embodiment of the present disclosure. 本開示の実施の形態1に係る回転電機の回転子を示す平面図である。It is a top view which shows the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の回転子の要部を示す断面図である。It is sectional drawing which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の回転子の要部を示す平面図である。It is a top view which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の動作を示す回路図である。It is a circuit diagram which shows the operation of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1における回転電機を鎖交する磁束の経路を示した磁束経路図である。It is a magnetic flux path diagram which showed the path of the magnetic flux which interlinks a rotary electric machine in Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機のトルク/誘起電圧比率を示すグラフである。It is a graph which shows the torque / induced voltage ratio of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1における回転電機のトルク変動幅/平均トルクを示すグラフである。It is a graph which shows the torque fluctuation width / average torque of the rotary electric machine in Embodiment 1 of this disclosure. 本開示の実施の形態1に係る回転電機の回転子の変更例を示す平面図である。It is a top view which shows the modification example of the rotor of the rotary electric machine which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態2に係る回転電機の回転子の要部を示す平面図である。It is a top view which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 2 of this disclosure. 本開示の実施の形態2における回転電機を鎖交する磁束の経路を示した磁束経路図である。It is a magnetic flux path diagram which showed the path of the magnetic flux which interlinks a rotary electric machine in Embodiment 2 of this disclosure. 本開示の実施の形態3に係る回転電機の回転子の要部を示す平面図である。It is a top view which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 3 of this disclosure. 本開示の実施の形態4に係る回転電機の回転子の要部を示す断面図である。It is sectional drawing which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 4 of this disclosure. 本開示の実施の形態5に係る回転電機の回転子の要部を示す平面図である。It is a top view which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 5 of this disclosure. 本開示の実施の形態6に係る回転電機の回転子の要部を示す平面図である。It is a top view which shows the main part of the rotor of the rotary electric machine which concerns on Embodiment 6 of this disclosure. 本開示の実施の形態6に係る回転電機を鎖交する磁束の経路を示した磁束経路図である。It is a magnetic flux path diagram which showed the path of the magnetic flux which interlinks the rotary electric machine which concerns on Embodiment 6 of this disclosure.
実施の形態1.
 本開示の実施の形態1に係る回転電機について説明する。
Embodiment 1.
The rotary electric machine according to the first embodiment of the present disclosure will be described.
 図1は、本開示の実施の形態1に係る回転電機の外観図である。図2は本開示の実施の形態1に係る回転電機の固定子の外観図である。図3は、本開示の実施の形態1に係る回転電機の回転子の外観図である。本明細書においては説明に必要な構成を図示し、説明の便宜上リアブラケット、フロントブラケット、軸受等の一部の構成を省略している。回転軸の軸心と平行な方向を軸方向、回転軸の軸心を軸中心とする。回転軸の軸中心と直交する方向を径方向とし、径方向における外側を径外方向または径外側、径方向における内側を径内方向または径内側とする。回転軸を中心として回転する方向を周方向または回転方向、回転方向とは反対の方向を反回転方向とする。 FIG. 1 is an external view of the rotary electric machine according to the first embodiment of the present disclosure. FIG. 2 is an external view of a stator of a rotary electric machine according to the first embodiment of the present disclosure. FIG. 3 is an external view of a rotor of a rotary electric machine according to the first embodiment of the present disclosure. In this specification, the configurations necessary for the explanation are illustrated, and some configurations of the rear bracket, the front bracket, the bearing, and the like are omitted for convenience of explanation. The direction parallel to the axis of the rotation axis is the axial direction, and the axis of the rotation axis is the axis center. The direction orthogonal to the axis center of the rotating shaft is the radial direction, the outer side in the radial direction is the outer diameter direction or the outer diameter direction, and the inner side in the radial direction is the inner diameter direction or the inner diameter direction. The direction of rotation about the rotation axis is the circumferential direction or the rotation direction, and the direction opposite to the rotation direction is the counter-rotation direction.
 本開示の実施の形態1の回転電機100は、フロント・リヤブラケットに固定された固定子1と、フロント・リヤブラケットに軸受を介して支持され、固定子1の径内側に回転自在に配設された回転子2を有している。また、回転子2の軸心位置に挿入されるシャフト3を有している。固定子1は、磁気的ギャップとなる空隙Gを介して回転子2の外周を囲むように設けられている。 The rotary electric machine 100 according to the first embodiment of the present disclosure is supported by a stator 1 fixed to the front and rear brackets and front and rear brackets via bearings, and is rotatably arranged inside the diameter of the stator 1. It has a rotor 2 that has been bearing. It also has a shaft 3 that is inserted at the axial position of the rotor 2. The stator 1 is provided so as to surround the outer periphery of the rotor 2 via a gap G that serves as a magnetic gap.
 図2に示すように、固定子1は、複数の磁極歯13を具備する固定子鉄心11と、固定子鉄心11に巻装される固定子巻線12と、を有している。
 固定子巻線12は、回転子2の回転に伴い、後述する回転子2に設けられた磁石231からの磁束をうけ、誘起電圧を発生させる。
As shown in FIG. 2, the stator 1 has a stator core 11 having a plurality of magnetic pole teeth 13 and a stator winding 12 wound around the stator core 11.
As the rotor 2 rotates, the stator winding 12 receives a magnetic flux from a magnet 231 provided on the rotor 2, which will be described later, and generates an induced voltage.
 図3に示すように、回転子2は、軸心位置にシャフト3を配置するシャフト挿入孔をもうけた円筒状の回転子コア21を有する。シャフト挿入孔に配置されたシャフト3と回転子コア21とは固着されている。回転子コア21は、例えば、電磁鋼板の薄板を軸方向に積層、一体化して構成される。 As shown in FIG. 3, the rotor 2 has a cylindrical rotor core 21 having a shaft insertion hole for arranging the shaft 3 at the axial center position. The shaft 3 arranged in the shaft insertion hole and the rotor core 21 are fixed to each other. The rotor core 21 is configured by, for example, laminating and integrating thin plates of electrical steel sheets in the axial direction.
 本開示の実施の形態1における回転子2について図4から図6を用いてさらに説明する。
 図4は、本開示の実施の形態1に係る回転電機の回転子の外観図である。説明の便宜上シャフト3、軸端部品は省略している。図5は、本開示の実施の形態1に係る回転電機を軸方向からみたときの平面図である。図6は、本開示の実施の形態1に係る回転電機の回転子の要部断面図である。図7は本開示の実施の形態1に係る回転電機を軸方向からみたときの要部平面図である。各図面が煩雑になるのを防ぐため図示した一部の構成の符号を省略している。
The rotor 2 according to the first embodiment of the present disclosure will be further described with reference to FIGS. 4 to 6.
FIG. 4 is an external view of a rotor of a rotary electric machine according to the first embodiment of the present disclosure. For convenience of explanation, the shaft 3 and the shaft end parts are omitted. FIG. 5 is a plan view of the rotary electric machine according to the first embodiment of the present disclosure when viewed from the axial direction. FIG. 6 is a cross-sectional view of a main part of the rotor of the rotary electric machine according to the first embodiment of the present disclosure. FIG. 7 is a plan view of a main part of the rotary electric machine according to the first embodiment of the present disclosure when viewed from the axial direction. In order to prevent each drawing from becoming complicated, the reference numerals of some of the illustrated configurations are omitted.
 図4に示すように、回転子2の回転子コア21は、回転子コア21の軸方向に伸びた複数の孔部22と、スリット24と、回転子コア21の外周面に設けられる空隙拡大部25と、が形成され、複数の孔部22にはそれぞれ磁石231が埋設されている。複数の孔部22は、回転子コア21の軸方向に貫通している。また、各孔部22は、後述する磁石231の配設位置に合わせて回転子コア21に周方向に設けられる。 As shown in FIG. 4, the rotor core 21 of the rotor 2 has a plurality of holes 22 extending in the axial direction of the rotor core 21, slits 24, and an enlarged gap provided on the outer peripheral surface of the rotor core 21. A portion 25 and a portion 25 are formed, and a magnet 231 is embedded in each of the plurality of hole portions 22. The plurality of holes 22 penetrate in the axial direction of the rotor core 21. Further, each hole portion 22 is provided in the rotor core 21 in the circumferential direction in accordance with the arrangement position of the magnet 231 described later.
 図5に示すように、各磁石231はそれぞれ長方形に形成されている。各磁石231は、長方形の一方の長辺から他方の長辺へ向かう方向、すなわち短辺と平行に着磁されている。具体的には、図5の矢印で示すように、固定子1に磁石の磁束が鎖交する経路を形成するN極磁極においては、磁石231の磁束が固定子1側に向かうように着磁されて配置される。また、固定子1から回転子2に向かう経路を形成するS極磁極においては、磁石231の磁束が回転子2の径内側に向かうように着磁されて配置される。このように着磁、配置することにより各磁石231が作り固定子1に鎖交する磁束を効果的に増大することができる。これにより回転電機100の所望の出力を実現するために必要な回転子2に配置される磁石231の磁石量を最小限の量で形成することが可能となる。 As shown in FIG. 5, each magnet 231 is formed in a rectangular shape. Each magnet 231 is magnetized in the direction from one long side of the rectangle to the other long side, that is, parallel to the short side. Specifically, as shown by the arrow in FIG. 5, in the N-pole magnetic pole forming a path in which the magnetic flux of the magnet is interlinked with the stator 1, the magnetic flux of the magnet 231 is magnetized so as to be directed toward the stator 1. And placed. Further, in the S pole magnetic pole forming a path from the stator 1 to the rotor 2, the magnetic flux of the magnet 231 is magnetized and arranged so as to be inside the diameter of the rotor 2. By magnetizing and arranging in this way, the magnetic flux formed by each magnet 231 and interlinking with the stator 1 can be effectively increased. This makes it possible to form the magnet amount of the magnet 231 arranged on the rotor 2 required to realize the desired output of the rotary electric machine 100 with the minimum amount.
 図6に示すように孔部22のそれぞれは、磁石231が埋設される磁石挿入部221と磁石231が埋設されない開口部222とで構成される。磁石挿入部221は埋設される磁石231の形状を縁取るように形成される。磁石挿入部221以外の開口部222は、磁石挿入部221の長手方向の両端に形成される。また、開口部222は空洞となっている。 As shown in FIG. 6, each of the holes 22 is composed of a magnet insertion portion 221 in which the magnet 231 is embedded and an opening 222 in which the magnet 231 is not embedded. The magnet insertion portion 221 is formed so as to border the shape of the magnet 231 to be embedded. The openings 222 other than the magnet insertion portion 221 are formed at both ends of the magnet insertion portion 221 in the longitudinal direction. Further, the opening 222 is hollow.
 また、複数の磁石231のうちの一部の磁石231によって1磁極構成するように配設された磁石群23が構成される。この磁石群23は、隣接して回転子コア21の周方向に複数配列される。1磁極を構成する磁石群23は3つの磁石231から構成され、3つの磁石231が回転子2の外周面側から軸中心に向かうふくらみを有する弧状を形成するように配置される。磁石群23を構成する磁石231のうちの1つは、磁石群23によって構成される磁極の中心である磁極中心上に位置する。すなわち、回転子コア21の軸中心から磁石群23によって構成される磁極中心をとおる線を磁極中心線(以下d軸ともいう)としたとき、磁極中心線(d軸)を周方向に跨いで配置される。磁石群23を構成する磁石231のうちd軸上に位置する磁石231を説明の便宜上磁石232とする。 Further, a magnet group 23 arranged so as to form one magnetic pole is configured by some magnets 231 of the plurality of magnets 231. A plurality of the magnet groups 23 are arranged adjacent to each other in the circumferential direction of the rotor core 21. The magnet group 23 constituting one magnetic pole is composed of three magnets 231 and arranged so that the three magnets 231 form an arc shape having a bulge toward the center of the axis from the outer peripheral surface side of the rotor 2. One of the magnets 231 constituting the magnet group 23 is located on the center of the magnetic pole, which is the center of the magnetic pole formed by the magnet group 23. That is, when the line from the axis center of the rotor core 21 through the magnetic pole center formed by the magnet group 23 is defined as the magnetic pole center line (hereinafter, also referred to as d-axis), the magnetic pole center line (d-axis) is straddled in the circumferential direction. Be placed. Of the magnets 231 constituting the magnet group 23, the magnet 231 located on the d-axis is referred to as the magnet 232 for convenience of explanation.
 図6に示すようにスリット24は、1磁極を構成する磁石群23のうち、磁極中心上に位置する磁石232よりも回転子2の径外側、かつ、1磁極を構成する磁石群23で囲まれた周方向範囲内の回転子コア21に設けられる。スリット24は、磁石群23が形成する弧状と同方向にふくらみを有した弧状に形成される。すなわちスリット24の周方向の両端部は、スリットの中央部よりも径外側の回転子コア21に形成される。 As shown in FIG. 6, the slit 24 is surrounded by the magnet group 23 constituting one magnetic pole, which is outside the diameter of the rotor 2 with respect to the magnet 232 located on the center of the magnetic pole among the magnet group 23 constituting one magnetic pole. It is provided on the rotor core 21 within the circumferential range. The slit 24 is formed in an arc shape having a bulge in the same direction as the arc shape formed by the magnet group 23. That is, both ends of the slit 24 in the circumferential direction are formed on the rotor core 21 whose diameter is outside the central portion of the slit.
 スリット24は、回転子コア21を軸方向に貫通しており、空洞となっている。また、上述の磁極中心線上を周方向に跨いで形成されている。このようにスリット24を設けることで、固定子1と回転子2との間の空隙Gの距離によらず、d軸をとおる磁束経路の磁気抵抗を高めることができる。すなわち、回転子2の磁束出力面である外周面の表面積を維持しながら、d軸の磁気抵抗を高める効果を両立することが可能となる。 The slit 24 penetrates the rotor core 21 in the axial direction and is hollow. Further, it is formed so as to straddle the above-mentioned magnetic pole center line in the circumferential direction. By providing the slit 24 in this way, the magnetic resistance of the magnetic flux path through the d-axis can be increased regardless of the distance of the gap G between the stator 1 and the rotor 2. That is, it is possible to achieve both the effect of increasing the d-axis magnetic resistance while maintaining the surface area of the outer peripheral surface which is the magnetic flux output surface of the rotor 2.
 空隙拡大部25は、スリット24と空隙Gとで囲まれた回転子コア21の外周面に設けられる。空隙拡大部25は回転子コア21の外周面から軸中心側に窪む弧状に設けられる。これにより、空隙拡大部25が形成される回転子コア21の外周面上の2つの各交点から回転子2の軸中心に向かって空隙の範囲が拡大される。また、空隙拡大部25の周方向範囲はスリット24の周方向幅より小さく形成される。 The gap expanding portion 25 is provided on the outer peripheral surface of the rotor core 21 surrounded by the slit 24 and the gap G. The gap expanding portion 25 is provided in an arc shape recessed from the outer peripheral surface of the rotor core 21 toward the center of the shaft. As a result, the range of the gap is expanded from each of the two intersections on the outer peripheral surface of the rotor core 21 on which the gap expanding portion 25 is formed toward the axial center of the rotor 2. Further, the circumferential range of the gap expanding portion 25 is formed to be smaller than the circumferential width of the slit 24.
 回転子コア21が有する、孔部22、スリット24、空隙拡大部25、磁石231、の関係について図7を用いて説明する。 The relationship between the hole portion 22, the slit 24, the void enlargement portion 25, and the magnet 231 of the rotor core 21 will be described with reference to FIG. 7.
 図7に示すように、空隙拡大部25と回転子コア21の最外周との2つの交点をd軸に直行するように結んだ回転方向の長さを空隙拡大部幅WAとする。また、1磁極を形成する磁石群23のうち、磁極中心線上に位置する磁石232の回転方向の両端点をd軸に直行するように結んだ線の長さを磁石幅Wmagとする。そして、磁極中心線(d軸)に対して、電気角で90度回転方向または反回転方向にずれた線を軸線(q軸)とする。 As shown in FIG. 7, the length in the rotation direction connecting the two intersections of the gap expanding portion 25 and the outermost circumference of the rotor core 21 so as to be orthogonal to the d-axis is defined as the gap expanding portion width WA. Further, among the magnet group 23 forming one magnetic pole, the length of the line connecting both end points of the magnet 232 located on the magnetic pole center line in the rotational direction so as to be orthogonal to the d-axis is defined as the magnet width Wmag. Then, a line deviated from the magnetic pole center line (d-axis) by 90 degrees in the electric angle in the rotation direction or the counter-rotation direction is defined as the axis (q-axis).
 このときq軸は、隣接する磁石群23の間の回転子コア21をとおる。そして、隣接する各磁石群23の間に位置する回転子コア21とq軸とが直行する回転子コア21の直行面における幅は、隣接する一方の磁石群23のq軸に最も近い孔部22と、隣接する他方の磁石群23のq軸に最も近い孔部22と、の間の回転子コア21で最も小さくなっている。この最も小さい回転子コア21の幅を最小幅WBとする。 At this time, the q-axis passes through the rotor core 21 between the adjacent magnet groups 23. The width of the rotor core 21 in the orthogonal plane where the rotor core 21 and the q-axis located between the adjacent magnet groups 23 are orthogonal to each other is the hole closest to the q-axis of one of the adjacent magnet groups 23. It is the smallest in the rotor core 21 between 22 and the hole 22 closest to the q-axis of the other adjacent magnet group 23. The width of the smallest rotor core 21 is defined as the minimum width WB.
 本開示の実施の形態1における回転電機100は、空隙拡大部25の空隙拡大部幅WAと磁石232の磁石幅Wmagとの関係において、WA>Wmagを満たす。また、最小幅WBと磁石232の磁石幅Wmagにおいて、Wmag>WBを満たす。そして空隙拡大部幅WAと磁石幅Wmagと最小幅WBとの関係においてWA>Wmag>WBの関係を満たす。 The rotary electric machine 100 according to the first embodiment of the present disclosure satisfies WA> Wmag in the relationship between the gap expanding portion width WA of the gap expanding portion 25 and the magnet width Wmag of the magnet 232. Further, Wmag> WB is satisfied in the minimum width WB and the magnet width Wmag of the magnet 232. Then, the relationship of WA> Wmag> WB is satisfied in the relationship between the gap expanding portion width WA, the magnet width Wmag, and the minimum width WB.
 次に、本開示の実施の形態1における回転電機100の動作について説明する。図8は、回転電機100が車両用交流発電電動機の電動機としての動作を説明するものである。車両用交流発電電動機の電動機として動作するための回転電機100以外の構成として、パワー回路部4、制御回路部5、バッテリ6を有している。 Next, the operation of the rotary electric machine 100 according to the first embodiment of the present disclosure will be described. FIG. 8 illustrates the operation of the rotary electric machine 100 as an electric motor of the AC generator motor for vehicles. It has a power circuit unit 4, a control circuit unit 5, and a battery 6 as a configuration other than the rotary electric machine 100 for operating as an electric motor of an AC generator motor for vehicles.
 パワー回路部4は、スイッチング素子を有している。このスイッチング素子は、制御回路部5によってON/OFF制御される。そして、パワー回路部4は、スイッチングの素子のON/OFF制御によりバッテリ6から供給された直流電力を交流電力に変換して回転電機100に供給する。 The power circuit unit 4 has a switching element. This switching element is ON / OFF controlled by the control circuit unit 5. Then, the power circuit unit 4 converts the DC power supplied from the battery 6 into AC power by ON / OFF control of the switching element and supplies it to the rotary electric machine 100.
 制御回路部5はプロセッサ51と、記憶部52を有する。プロセッサ51は、記憶部52に記憶されたプログラムを実行することにより、上述の処理を行う。ここで、記憶部52は、制御に必要なパラメータ、上記の処理を記述したプログラムなどが記憶されたメモリにより構成される。プロセッサは、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)、FPGAなどにより構成される。また、複数のプロセッサ51および複数の記憶部52が連携して上記機能を実行してもよい。
 なお、パワー回路部4、制御回路部5、バッテリ6は周知技術であるため各構成のその他の詳細な説明は省略する。
The control circuit unit 5 has a processor 51 and a storage unit 52. The processor 51 performs the above-mentioned processing by executing the program stored in the storage unit 52. Here, the storage unit 52 is composed of a memory in which parameters necessary for control, a program describing the above processing, and the like are stored. The processor is composed of a microcomputer (microcomputer), a DSP (Digital Signal Processor), an FPGA, and the like. Further, the plurality of processors 51 and the plurality of storage units 52 may cooperate to execute the above function.
Since the power circuit unit 4, the control circuit unit 5, and the battery 6 are well-known techniques, other detailed description of each configuration will be omitted.
 回転電機100に供給された交流電力は、具体的には固定子1の固定子巻線12に供給される。この際に発生する磁束と磁石232により形成された磁石磁束が、固定子巻線12に流れる直流電流もしくは交流電流と鎖交することで、駆動トルクが発生する。この駆動トルクにより、回転子2が回転駆動される。 Specifically, the AC power supplied to the rotary electric machine 100 is supplied to the stator winding 12 of the stator 1. The driving torque is generated by the magnetic flux generated at this time and the magnetic flux formed by the magnet 232 interlinking with the direct current or alternating current flowing through the stator winding 12. The rotor 2 is rotationally driven by this drive torque.
 図9は本開示の実施の形態1における回転電機100を鎖交する磁束の経路を示した磁束経路図である。図9に示した実線は、磁石群23から出た磁石磁束が固定子1を介する磁束の経路を模式的に示したものである。上述のように、固定子1の固定子巻線12に鎖交した磁束は駆動トルクに寄与する。したがって実線で示した経路をとおる磁束は出力に寄与する出力寄与磁束である。また、図9に示した一点破線は、固定子1の固定子巻線12を介さず、回転子コア21内で閉じる磁束の経路を模式的に示したものである。この一点破線で示した経路をとおる磁束は固定子1の固定子巻線12を鎖交しないため、出力に寄与しない漏磁束である。 FIG. 9 is a magnetic flux path diagram showing the path of the magnetic flux interlinking the rotary electric machine 100 in the first embodiment of the present disclosure. The solid line shown in FIG. 9 schematically shows the path of the magnetic flux generated from the magnet group 23 through the stator 1. As described above, the magnetic flux interlinking the stator winding 12 of the stator 1 contributes to the drive torque. Therefore, the magnetic flux passing through the path shown by the solid line is the output contributing magnetic flux that contributes to the output. Further, the alternate long and short dash line shown in FIG. 9 schematically shows the path of the magnetic flux that closes in the rotor core 21 without passing through the stator winding 12 of the stator 1. The magnetic flux passing through the path indicated by the alternate long and short dash line is a leakage magnetic flux that does not contribute to the output because the stator winding 12 of the stator 1 is not interlocked.
 出力寄与磁束は、主にd軸線上に配置された磁石232が作る磁束が寄与している。すなわち、d軸線上の磁石232の磁束を増加させることにより、駆動トルクを大きくすることができる。その一方で、各磁石231、232の磁束が増えると、誘起電圧が増加する。誘起電圧が増加すると回転電機100の誘起電圧が図8に示したバッテリ6の電圧を超える。回転電機100の誘起電圧がバッテリ6の電圧を超えると、回転電機100からバッテリ6側に電力供給される回生モードに入る。原理的にバッテリ6の電圧よりも回転電機100の電圧が低い状態でなければ、駆動トルクを得ることができない。例えば、パワー回路部4のスイッチングの素子のОN/ОFF制御により回転電機100の誘起電圧を抑制する電流を供給すれば、回転電機100の誘起電圧をバッテリ6の電圧よりも低くすることができ、駆動トルクを得ることも可能である。しかしながら誘起電圧を抑制するための電流はトルクを得るための電流ではないため所望のトルクを得るために必要な電流が増加し、損失が増加する。その結果、回転電機100の出力が低下する。これらのことから誘起電圧を減らすことが望ましく、誘起電圧を減らすためには、固定子1の固定子巻線12に誘起する磁束を減らすことが望ましい。 The output contributing magnetic flux is mainly contributed by the magnetic flux created by the magnet 232 arranged on the d-axis line. That is, the drive torque can be increased by increasing the magnetic flux of the magnet 232 on the d-axis line. On the other hand, as the magnetic flux of each magnet 231 and 232 increases, the induced voltage increases. When the induced voltage increases, the induced voltage of the rotary electric machine 100 exceeds the voltage of the battery 6 shown in FIG. When the induced voltage of the rotary electric machine 100 exceeds the voltage of the battery 6, the regenerative mode in which power is supplied from the rotary electric machine 100 to the battery 6 side is entered. In principle, the drive torque cannot be obtained unless the voltage of the rotary electric machine 100 is lower than the voltage of the battery 6. For example, if a current that suppresses the induced voltage of the rotary electric machine 100 is supplied by ON / ОFF control of the switching element of the power circuit unit 4, the induced voltage of the rotary electric machine 100 can be made lower than the voltage of the battery 6. It is also possible to obtain the drive torque. However, since the current for suppressing the induced voltage is not the current for obtaining torque, the current required for obtaining the desired torque increases, and the loss increases. As a result, the output of the rotary electric machine 100 decreases. From these facts, it is desirable to reduce the induced voltage, and in order to reduce the induced voltage, it is desirable to reduce the magnetic flux induced in the stator winding 12 of the stator 1.
 漏磁束は、増加することによりトルクリップルに寄与する。トルクリップルはトルク変動幅/平均トルクで表される。したがって図9に示す漏磁束を減らすことによってトルクリップルを抑制することが可能となる。 Leakage magnetic flux contributes to torque ripple by increasing. Torque ripple is expressed as torque fluctuation range / average torque. Therefore, it is possible to suppress the torque ripple by reducing the leakage magnetic flux shown in FIG.
 本開示の実施の形態1において空隙拡大部25は、d軸線上に配置された磁石231の径外側で周方向を覆うように設けられている。すなわちd軸線上に配置された磁石232が作る磁石磁束の経路上に空隙拡大部25を有している。これにより空隙拡大部25が形成された範囲の回転子コア21の磁気抵抗が高くなる。よって、固定子1の固定子巻線12に誘起する誘起電圧の低減効果を得ることができる。また、空隙拡大部25を設け、d軸の磁気抵抗を高めることによって、d軸の磁気抵抗に対するq軸の磁気抵抗は、空隙拡大部25を設けない場合に対して相対的に低くなる。よって、d軸とq軸との磁気抵抗の差により得られるリラクタンストルクを高めることが可能となる。 In the first embodiment of the present disclosure, the gap expanding portion 25 is provided so as to cover the circumferential direction on the outer diameter of the magnet 231 arranged on the d-axis line. That is, the gap expanding portion 25 is provided on the path of the magnet magnetic flux created by the magnet 232 arranged on the d-axis line. As a result, the magnetic resistance of the rotor core 21 in the range where the void expansion portion 25 is formed increases. Therefore, the effect of reducing the induced voltage induced in the stator winding 12 of the stator 1 can be obtained. Further, by providing the gap expanding portion 25 and increasing the d-axis magnetic resistance, the q-axis magnetic resistance with respect to the d-axis magnetic resistance becomes relatively lower than when the gap expanding portion 25 is not provided. Therefore, it is possible to increase the reluctance torque obtained by the difference in the magnetic resistance between the d-axis and the q-axis.
 図10は本開示の実施の形態1における回転電機100のトルク/誘起電圧比率向上の効果を示すグラフである。図9に示したグラフの一方は、空隙拡大部25の空隙拡大部幅WAとd軸線上の磁石232の磁石幅Wmagとの間でWA>Wmagとの関係になるように構成された場合のトルク/誘起電圧比率の結果である。他方は、空隙拡大部幅WAとd軸線上の磁石232の磁石幅Wmagとの間でWA<Wmagの関係になるように構成された場合のトルク/誘起電圧比率の結果である。図10に示すように空隙拡大部幅WAと、d軸線上回転子磁石の磁石幅Wmagとの関係においてWA>Wmagとなるように構成することで、トルク/誘起電圧比率を向上することができる。 FIG. 10 is a graph showing the effect of improving the torque / induced voltage ratio of the rotary electric machine 100 in the first embodiment of the present disclosure. One of the graphs shown in FIG. 9 is a case where WA> Wmag is configured between the gap expanding portion width WA of the gap expanding portion 25 and the magnet width Wmag of the magnet 232 on the d-axis. It is the result of the torque / induced voltage ratio. The other is the result of the torque / induced voltage ratio when the relationship of WA <Wmag is established between the gap expanding portion width WA and the magnet width Wmag of the magnet 232 on the d-axis. As shown in FIG. 10, the torque / induced voltage ratio can be improved by configuring WA> Wmag in relation to the gap expanding portion width WA and the magnet width Wmag of the rotor magnet on the d-axis. ..
 本開示の実施の形態1において最小幅WBは、d軸線上の磁石232の磁石幅Wmagよりも小さくなっている。磁石231の磁束出力面に対するq軸側の回転子コア21の漏磁束の経路の経路面が小さくなることにより漏磁束の経路上の回転子コア21の磁気抵抗が高くなる。よって、漏磁束を低減することができる。 In the first embodiment of the present disclosure, the minimum width WB is smaller than the magnet width Wmag of the magnet 232 on the d-axis. As the path surface of the leakage magnetic flux path of the rotor core 21 on the q-axis side with respect to the magnetic flux output surface of the magnet 231 becomes smaller, the magnetic resistance of the rotor core 21 on the leakage magnetic flux path increases. Therefore, the leakage magnetic flux can be reduced.
 図11は本開示の実施の形態1における回転電機100のトルク変動幅/平均トルクのトルクリップル抑制の効果を示すグラフである。図11に示したグラフの一方は、最小幅WBとd軸線上の磁石232の磁石幅Wmagとの関係において、Wmag>WBを満たす場合のトルク変動幅/平均トルクの結果である。他方は、最小幅WBとd軸線上の磁石232の磁石幅Wmagとの関係において、Wmag<WBになるように構成された場合のトルク変動幅/平均トルクの結果である。図11に示すように、最小幅WBとd軸線上の磁石232の磁石幅Wmagとの関係において、Wmag>WBを満たすように構成することでトルク変動幅/平均トルク、すなわちトルクリップルを抑制することができる。 FIG. 11 is a graph showing the effect of suppressing the torque ripple of the torque fluctuation width / average torque of the rotary electric machine 100 in the first embodiment of the present disclosure. One of the graphs shown in FIG. 11 is the result of the torque fluctuation width / average torque when Wmag> WB is satisfied in the relationship between the minimum width WB and the magnet width Wmag of the magnet 232 on the d-axis. The other is the result of the torque fluctuation width / average torque when Wmag <WB in the relationship between the minimum width WB and the magnet width Wmag of the magnet 232 on the d-axis. As shown in FIG. 11, in the relationship between the minimum width WB and the magnet width Wmag of the magnet 232 on the d-axis, the torque fluctuation width / average torque, that is, the torque ripple is suppressed by configuring so that Wmag> WB is satisfied. be able to.
 本開示の実施の形態1では、上述のように空隙拡大部25の空隙拡大部幅WAとd軸線上に配置された磁石232の磁石幅Wmagと最小幅WBとの関係において、WA>Wmag>WBを満たす。すなわち、空隙拡大部幅よりも磁石232の磁石幅の方が小さく、かつ、磁石232の漏磁束経路上の回転子コア21の最小幅WBはd軸線上に配置された磁石232の最小幅WBよりも小さくなるように構成される。これによりトルク/誘起電圧比率向上効果に加えて、トルクリップル抑制機能を獲得することができ、トルク/誘起電圧比率向上とトルクリップル抑制を両立することが可能となる。 In the first embodiment of the present disclosure, as described above, in the relationship between the gap expanding portion width WA of the gap expanding portion 25, the magnet width Wmag of the magnet 232 arranged on the d-axis, and the minimum width WB, WA> Wmag> Meet the WB. That is, the magnet width of the magnet 232 is smaller than the width of the void expansion portion, and the minimum width WB of the rotor core 21 on the leakage magnetic flux path of the magnet 232 is the minimum width WB of the magnet 232 arranged on the d-axis line. Is configured to be smaller than. As a result, in addition to the effect of improving the torque / induced voltage ratio, the torque ripple suppression function can be obtained, and both the torque / induced voltage ratio improvement and the torque ripple suppression can be achieved at the same time.
 また、磁石群23が複数の磁石231、232によって断続した弧状に配置されている。これにより弧状を形成する各磁石231、232間は回転子コア21が存在することとなる。具体的には、磁石群23の径外側と径内側とをつなぐ回転子コア21が各磁石231、232間に存在する。これにより、隣接する磁石群23同士の間のq軸がとおる回転子コア21にかかる最大主応力を低減することができる。 Further, the magnet group 23 is arranged in an arc shape intermittently by a plurality of magnets 231 and 232. As a result, the rotor core 21 is present between the magnets 231 and 232 forming the arc shape. Specifically, a rotor core 21 that connects the outer diameter and the inner diameter of the magnet group 23 exists between the magnets 231 and 232. As a result, the maximum principal stress applied to the rotor core 21 passing through the q-axis between the adjacent magnet groups 23 can be reduced.
 なお、本開示の実施の形態1において磁石群23は3つの磁石で構成された例を用いて説明したが、磁石群23を構成する磁石231は、3つに限られない。磁石群23を構成する磁石231は、固定子巻線12が作る磁束に沿うように弧状に配置されていればよく、例えば図12に示すように5つの磁石231を、固定子巻線12が作る磁束に沿うように弧状に配置してもよい。また、各磁石231の形状は長方形としたが、長方形には限られず、弧状に形成して、固定子巻線12が作る磁束に沿うように配置してもよい。また、着磁方法は短辺と平行に着磁されている必要はない。 Although the magnet group 23 has been described with reference to an example in which the magnet group 23 is composed of three magnets in the first embodiment of the present disclosure, the number of magnets 231 constituting the magnet group 23 is not limited to three. The magnets 231 constituting the magnet group 23 may be arranged in an arc shape along the magnetic flux created by the stator winding 12. For example, as shown in FIG. 12, the stator winding 12 has five magnets 231. It may be arranged in an arc along the magnetic flux to be created. Further, although the shape of each magnet 231 is rectangular, the shape is not limited to a rectangle, and the magnets 231 may be formed in an arc shape and arranged along the magnetic flux generated by the stator winding 12. Further, the magnetizing method does not need to be magnetized parallel to the short side.
 また、開口部222およびスリット24は必ずしも空洞である必要はなく、例えば、樹脂などの非磁性材料等を埋設してもよい。また、孔部22は開口部222を有しない構成としてもよい。 Further, the opening 222 and the slit 24 do not necessarily have to be hollow, and for example, a non-magnetic material such as resin may be embedded. Further, the hole portion 22 may be configured not to have the opening portion 222.
 また、車両用交流発電電動機の電動機として動作する例を示したが、用途はこれに限られず回転電機として動作するものであれば適用可能である。 In addition, an example of operating as an electric motor for an AC generator motor for vehicles has been shown, but the application is not limited to this and can be applied as long as it operates as a rotary electric machine.
 いずれの場合においても上述した同様の効果を得ることができる。 In either case, the same effect as described above can be obtained.
実施の形態2.
 本開示の実施の形態2に係る回転電機について説明する。図1から図12と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。実施の形態1と異なる部分のみを説明する。図13は、本開示の実施の形態2に係る回転電機の回転子の要部を示す軸方向平面図である。図14は、本開示の実施の形態2に係る回転電機を鎖交する磁束の経路を示した磁束経路図である。
Embodiment 2.
The rotary electric machine according to the second embodiment of the present disclosure will be described. Those having the same reference numerals as those in FIGS. 1 to 12 indicate the same or corresponding configurations, and the description thereof will be omitted. Only the part different from the first embodiment will be described. FIG. 13 is an axial plan view showing a main part of the rotor of the rotary electric machine according to the second embodiment of the present disclosure. FIG. 14 is a magnetic flux path diagram showing the path of the magnetic flux interlinking the rotary electric machine according to the second embodiment of the present disclosure.
 本開示の実施の形態1において、最小幅WBは、q軸と直行する回転子コア21の直行面のうち、隣接する一方の磁石群23のq軸に最も近い孔部22と隣接する他方の磁石群23のq軸に最も近い孔部22との間の回転子コア21の幅であると説明した。本開示の実施の形態2においては、この最小幅WBは、隣接する一方の孔部22の端点と他方の孔部22端点との間の回転子コア21の幅となる。 In the first embodiment of the present disclosure, the minimum width WB is the other of the orthogonal surfaces of the rotor core 21 orthogonal to the q-axis, which is adjacent to the hole 22 closest to the q-axis of one of the adjacent magnet groups 23. It was explained that it is the width of the rotor core 21 between the magnet group 23 and the hole 22 closest to the q-axis. In the second embodiment of the present disclosure, this minimum width WB is the width of the rotor core 21 between the end points of one adjacent hole 22 and the other 22 end points.
 さらに具体的に説明する。上述のように孔部22は磁石231が埋設される磁石挿入部221と磁石231が埋設されない開口部222とで構成される。また、磁石挿入部221は埋設される磁石231の形状を縁取るように形成される。本開示の実施の形態2においては、この磁石231を縁取るように形成された磁石挿入部221の端点と隣接する磁石挿入部221の端点との間の回転子コア21で最小幅WBとなる。言い換えると、最小幅WBは、隣接する磁石群23の間を通るq軸に最も近い磁石群23の磁石挿入部221の端点同士の間である。 I will explain more specifically. As described above, the hole portion 22 is composed of a magnet insertion portion 221 in which the magnet 231 is embedded and an opening 222 in which the magnet 231 is not embedded. Further, the magnet insertion portion 221 is formed so as to border the shape of the magnet 231 to be embedded. In the second embodiment of the present disclosure, the rotor core 21 between the end point of the magnet insertion portion 221 formed so as to border the magnet 231 and the end point of the adjacent magnet insertion portion 221 has a minimum width WB. .. In other words, the minimum width WB is between the end points of the magnet insertion portions 221 of the magnet group 23 closest to the q-axis passing between the adjacent magnet groups 23.
 上述したようにq軸がとおる回転子コア21は、固定子1の固定子巻線12を介さず、回転子コア21内で閉じる漏磁束の経路となる。この漏磁束には図9に一点破線で図示したように磁石群23を構成するd軸上に位置する磁石232からの漏磁束と、これとは別に、図14に一点破線で示すような、磁石群23のうちq軸側に配置された磁石231からの漏磁束も含まれる。このq軸側に配置された磁石231の漏磁束の経路は、磁石群23が形成する弧状の内側をとおり、固定子1を介さずq軸がとおる回転子コア21を介して同じ磁石231へ戻る経路となる。このとき漏磁束が磁石231へ戻る際の流入面となるのが磁石挿入部221の端点と隣接する磁石挿入部221の端点との間の回転子コア21である。 As described above, the rotor core 21 passing through the q-axis serves as a path of leakage magnetic flux that closes in the rotor core 21 without passing through the stator winding 12 of the stator 1. This leakage magnetic flux includes the leakage magnetic flux from the magnet 232 located on the d-axis constituting the magnet group 23 as shown by the alternate long and short dash line in FIG. 9, and separately, as shown by the alternate long and short dash line in FIG. The magnetic flux leakage from the magnet 231 arranged on the q-axis side of the magnet group 23 is also included. The path of the magnetic flux leakage of the magnet 231 arranged on the q-axis side passes through the inside of the arc formed by the magnet group 23, and goes to the same magnet 231 via the rotor core 21 through which the q-axis passes without passing through the stator 1. It will be a return route. At this time, the inflow surface when the leakage magnetic flux returns to the magnet 231 is the rotor core 21 between the end point of the magnet insertion portion 221 and the end point of the adjacent magnet insertion portion 221.
 このように、隣接する磁石群23の間を通るq軸に最も近い磁石群23の磁石挿入部221の端点同士の間が最小幅WBとなるようにすることで、各磁石231、232からの漏磁束がとおる漏磁束経路における回転子コア21の磁気抵抗を高めることができる。また、特に、q軸側に配置された磁石231からでた磁束が固定子1を介さず同じ磁石231へと戻る漏磁束の経路における磁石231への流入面での磁気抵抗を最も高めることができる。 In this way, the minimum width WB is set between the end points of the magnet insertion portions 221 of the magnet group 23 closest to the q-axis passing between the adjacent magnet groups 23, so that the minimum width WB is obtained from the magnets 231 and 232. The magnetic resistance of the rotor core 21 in the leakage magnetic flux path through which the leakage magnetic flux passes can be increased. Further, in particular, it is possible to maximize the reluctance at the inflow surface to the magnet 231 in the path of the magnetic flux leakage in which the magnetic flux generated from the magnet 231 arranged on the q-axis side returns to the same magnet 231 without passing through the stator 1. it can.
 これにより、q軸がとおる回転子コア21への漏磁束をより抑制することが可能となり、トルクリップルを抑制できる効果を奏する。さらに、磁石挿入部221は埋設される磁石231の位置を保持する機能も有している。したがって、本開示の実施の形態1と同様の効果に加え、磁石231の位置を保持しつつ、よりトルクリップルを低減することができる効果も奏する。 This makes it possible to further suppress the magnetic flux leakage to the rotor core 21 passing through the q-axis, and has the effect of suppressing torque ripple. Further, the magnet insertion portion 221 also has a function of holding the position of the magnet 231 to be embedded. Therefore, in addition to the same effect as that of the first embodiment of the present disclosure, the effect of being able to further reduce the torque ripple while maintaining the position of the magnet 231 is also obtained.
実施の形態3.
 本開示の実施の形態3に係る回転電機について説明する。図1から図14と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。実施の形態1および実施の形態2と異なる部分のみを説明する。図15は本開示の実施の形態3に係る交流回転電機の回転子の要部を示す軸方向平面図である。
Embodiment 3.
The rotary electric machine according to the third embodiment of the present disclosure will be described. Those having the same reference numerals as those in FIGS. 1 to 14 indicate the same or corresponding configurations, and the description thereof will be omitted. Only the parts different from the first embodiment and the second embodiment will be described. FIG. 15 is an axial plan view showing a main part of the rotor of the AC rotary electric machine according to the third embodiment of the present disclosure.
 図15に示すように、q軸がとおる回転子コア21を介して隣接する孔部22の磁石挿入部221の端点のうち、回転子コア21の径内側の端点同士をq軸に直行するように結んだ幅を最大幅WCとする。 As shown in FIG. 15, among the end points of the magnet insertion portions 221 of the adjacent holes 22 via the rotor core 21 through which the q-axis passes, the end points inside the diameter of the rotor core 21 are orthogonal to the q-axis. The width tied to is the maximum width WC.
 このとき、d軸線上の磁石232の磁石幅Wmagとの関係において、磁石幅Wmag>最大幅WCを満たす。すなわち、磁石231の磁束によって発生するq軸側の漏磁束の経路のすべて幅は、d軸線上の磁石231の磁石幅Wmagより小さくなる。これにより、漏磁束の経路であるq軸がとおる回転子コア21の磁気抵抗を高めることができる。 At this time, in relation to the magnet width Wmag of the magnet 232 on the d-axis, the magnet width Wmag> the maximum width WC is satisfied. That is, the entire width of the path of the leakage magnetic flux on the q-axis side generated by the magnetic flux of the magnet 231 is smaller than the magnet width Wmag of the magnet 231 on the d-axis line. As a result, the magnetic resistance of the rotor core 21 passing through the q-axis, which is the path of the leakage magnetic flux, can be increased.
 したがって、本開示の実施の形態1および実施の形態2と同様の効果に加え、漏磁束を低減する機能をより高めることにより、よりトルクリップル抑制することが可能となる効果を奏する。 Therefore, in addition to the same effects as those of the first and second embodiments of the present disclosure, the torque ripple can be further suppressed by further enhancing the function of reducing the leakage magnetic flux.
実施の形態4.
 本開示の実施の形態4に係る回転電機について説明する。図1から図15と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。実施の形態1から実施の形態3と異なる部分のみを説明する。図16は本開示の実施の形態4に係る回転電機の回転子の要部平面図である。
Embodiment 4.
The rotary electric machine according to the fourth embodiment of the present disclosure will be described. Those having the same reference numerals as those in FIGS. 1 to 15 indicate the same or corresponding configurations, and the description thereof will be omitted. Only the parts different from the first to third embodiments will be described. FIG. 16 is a plan view of a main part of the rotor of the rotary electric machine according to the fourth embodiment of the present disclosure.
 図16に示すように、固定子1から回転子2側へ突出する磁極歯13において、径方向の最内径側に位置し、空隙Gに面する面(最径内面)の磁極歯幅をWTとする。具体的には、1つの磁極歯13の回転方向両端部をq軸に直行するように結んだときの幅である。 As shown in FIG. 16, in the magnetic pole tooth 13 protruding from the stator 1 to the rotor 2 side, the magnetic pole tooth width of the surface (innermost diameter inner surface) located on the innermost diameter side in the radial direction and facing the gap G is WT. And. Specifically, it is the width when both ends of one magnetic pole tooth 13 in the rotation direction are connected so as to be orthogonal to the q-axis.
 このとき、最小幅WBとの関係において、WT>WBを満たす。すなわち、磁極歯13の磁極歯幅からq軸がとおる回転子コア21に流れる磁束の経路において、磁束が流入する回転子コア21の面の幅の方が小さくなっている。 At this time, WT> WB is satisfied in relation to the minimum width WB. That is, in the path of the magnetic flux flowing from the magnetic pole tooth width of the magnetic pole tooth 13 to the rotor core 21 passing through the q-axis, the width of the surface of the rotor core 21 into which the magnetic flux flows is smaller.
 上述したように図14に図示して説明した漏磁束は、固定子1の磁極歯13を介していないため、駆動トルクには寄与しない。よって磁極歯13を介さずq軸側の経路をとおる磁束は少ないほうが好ましい。 As described above, the leakage magnetic flux illustrated and described in FIG. 14 does not contribute to the drive torque because it does not pass through the magnetic pole teeth 13 of the stator 1. Therefore, it is preferable that the magnetic flux passing through the path on the q-axis side without passing through the magnetic pole teeth 13 is small.
 本開示の実施の形態4では、磁極歯13の磁極歯幅WTと最小幅WBとの関係においてWT>WBを満たすことにより、磁石231の磁束出力面に対して、この漏磁束が流入する回転子コア21の面の幅を小さくすることができる。これにより漏磁束経路上の回転子コア21の磁気抵抗を高めることができ、特に、d軸上に位置する磁石232以外の磁石231から固定子1の磁極歯13を介さず回転子コア21をとおる漏磁束を低減することができる。 In the fourth embodiment of the present disclosure, by satisfying WT> WB in the relationship between the magnetic pole tooth width WT and the minimum width WB of the magnetic pole tooth 13, the rotation in which the leakage magnetic flux flows into the magnetic flux output surface of the magnet 231. The width of the surface of the child core 21 can be reduced. As a result, the magnetic resistance of the rotor core 21 on the leakage magnetic flux path can be increased, and in particular, the rotor core 21 can be moved from the magnet 231 other than the magnet 232 located on the d-axis to the rotor core 21 without the magnetic pole teeth 13 of the stator 1. The leakage magnetic flux can be reduced.
 よって、本開示の実施の形態1から実施の形態3と同様の効果に加え、d軸上に配置されていない磁石231の漏磁束の低減が可能となり、よりトルクリップルを抑制することが可能となる効果を奏する。 Therefore, in addition to the same effects as those of the first to third embodiments of the present disclosure, the leakage magnetic flux of the magnet 231 not arranged on the d-axis can be reduced, and the torque ripple can be further suppressed. It has the effect of
実施の形態5.
 本開示の実施の形態5に係る回転電機について説明する。図1から図16と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。本開示の実施の形態1から実施の形態4と異なる部分のみを説明する。図17は本開示の実施の形態5に係る回転電機の回転子の要部平面図である。
Embodiment 5.
The rotary electric machine according to the fifth embodiment of the present disclosure will be described. Those having the same reference numerals as those in FIGS. 1 to 16 indicate the same or corresponding configurations, and the description thereof will be omitted. Only the parts different from the first to fourth embodiments of the present disclosure will be described. FIG. 17 is a plan view of a main part of the rotor of the rotary electric machine according to the fifth embodiment of the present disclosure.
 図17に示すように、空隙拡大部25はd軸に対して線対称に設けられる。また、磁石群23のうちd軸上に位置する磁石231もd軸に対して線対称に設けられる。すなわち、空隙拡大部25の中心線とd軸上に位置する磁石232の中心線とは同一線上に存在する。空隙拡大部25の中心線は空隙拡大部25の回転方向両端をq軸に直行するように結んだ線と直行して二等分線する線である。またd軸上に位置する磁石231の中心線はd軸上に位置する磁石231の回転方向両端をq軸に直行するように結んだ線と直行して二等分する線である。 As shown in FIG. 17, the gap expanding portion 25 is provided line-symmetrically with respect to the d-axis. Further, the magnet 231 located on the d-axis of the magnet group 23 is also provided line-symmetrically with respect to the d-axis. That is, the center line of the gap expanding portion 25 and the center line of the magnet 232 located on the d-axis are on the same line. The center line of the gap expanding portion 25 is a line bisected by perpendicular to a line connecting both ends of the gap expanding portion 25 in the rotation direction so as to be orthogonal to the q-axis. The center line of the magnet 231 located on the d-axis is a line bisected by perpendicular to a line connecting both ends of the magnet 231 located on the d-axis in the rotational direction so as to be orthogonal to the q-axis.
 これにより、空隙拡大部25は、d軸上に位置する磁石231が作る磁束をより効果的に抑制することができる。したがって、本開示の実施の形態1から実施の形態4と同様の効果に加え、トルク/誘起電圧比率をより向上することができる効果を奏する。 As a result, the gap expanding portion 25 can more effectively suppress the magnetic flux generated by the magnet 231 located on the d-axis. Therefore, in addition to the same effects as those of the first to fourth embodiments of the present disclosure, the torque / induced voltage ratio can be further improved.
 なお、空隙拡大部25を回転方向に二等分する線(第一の二等分線)とd軸上の位置する磁石231を回転方向に二等分線(第二の二等分線線)が一致していればよく、空隙拡大部25およびd軸上に位置する磁石231は必ずしもd軸に線対称に設けなくてもよい。また、各中心線はd軸と一致していなくてもよい。この場合においてもトルク/誘起電圧比率を向上する効果を奏する。 The line that bisects the void expansion portion 25 in the rotation direction (first bisector) and the magnet 231 located on the d-axis are bisected in the rotation direction (second bisector line). ) Are the same, and the gap expanding portion 25 and the magnet 231 located on the d-axis do not necessarily have to be provided line-symmetrically on the d-axis. Further, each center line does not have to coincide with the d-axis. Even in this case, the effect of improving the torque / induced voltage ratio is achieved.
実施の形態6.
 本開示の実施の形態6に係る回転電機について説明する。図1から図17と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。本開示の実施の形態1から実施の形態5と異なる部分のみを説明する。図18は、本開示の実施の形態5に係る回転電機の回転子の要部を示す軸方向平面図である。図19は、本開示の実施の形態6に係る回転電機を鎖交する磁束の経路を示した磁束経路図である。
Embodiment 6.
The rotary electric machine according to the sixth embodiment of the present disclosure will be described. Those having the same reference numerals as those in FIGS. 1 to 17 indicate the same or corresponding configurations, and the description thereof will be omitted. Only the parts different from the first to fifth embodiments of the present disclosure will be described. FIG. 18 is an axial plan view showing a main part of the rotor of the rotary electric machine according to the fifth embodiment of the present disclosure. FIG. 19 is a magnetic flux path diagram showing the path of the magnetic flux interlinking the rotary electric machine according to the sixth embodiment of the present disclosure.
 図18に示すようにd軸上の磁石231の回転方向長さをd軸によって分割した磁石231の半分の磁石長さをWmagkとする。このとき、最小幅WBとの関係において、Wmagk>WBを満たす。 As shown in FIG. 18, the magnet length of half of the magnet 231 obtained by dividing the length of the magnet 231 on the d-axis in the rotation direction by the d-axis is defined as Wmagk. At this time, Wmagk> WB is satisfied in relation to the minimum width WB.
 図19における点線は、d軸上に位置する磁石231が作る磁束の経路を示している。
d軸上に位置する磁石231が作る磁束の半分は、回転方向側のq軸がとおる回転子コア21に漏磁束経路を作り、残り半分は、反回転方向側の回転子コア21に漏磁束の経路を形成する。
The dotted line in FIG. 19 shows the path of the magnetic flux created by the magnet 231 located on the d-axis.
Half of the magnetic flux generated by the magnet 231 located on the d-axis creates a magnetic flux leakage path in the rotor core 21 passing through the q-axis on the rotation direction side, and the other half creates a leakage magnetic flux in the rotor core 21 on the opposite rotation direction side. Form the path of.
 本開示の実施の形態6では、漏磁束経路上の回転子コア21の最小幅WBは、d軸上に位置する磁石231のd軸によって分割した長さWmagkよりも小さいため、q軸側の磁気抵抗を高めることができる。よって、q軸側への漏磁束をより低減することができる。 In the sixth embodiment of the present disclosure, the minimum width WB of the rotor core 21 on the leakage magnetic flux path is smaller than the length Wmagk divided by the d-axis of the magnet 231 located on the d-axis, so that it is on the q-axis side. The magnetic resistance can be increased. Therefore, the magnetic flux leakage to the q-axis side can be further reduced.
 したがって、本開示の実施の形態1から実施の形態5と同様の効果に加え、トルクリップルをより抑制することが可能となる効果を奏する。 Therefore, in addition to the same effects as those of the first to fifth embodiments of the present disclosure, the torque ripple can be further suppressed.
 なお、d軸によって分けられる磁石長さは、同じである例を示して説明したが、必ずしも同じである必要はなく、それぞれ対応する最小幅WBよりも大きければよい。また、d軸上の磁石231は、d軸に対して必ずしも直行するように設けられる必要はない。その場合においては磁石231の回転方向端部同士をd軸に直行するように結んだ長さによって磁石長さをWmagkを定義し、最小幅WBとの関係において、Wmagk>WBを満たしていればよい。この場合においても同様の効果を得ることができる。 Although the magnet lengths divided by the d-axis have been described by showing an example of being the same, they do not necessarily have to be the same and may be larger than the corresponding minimum width WB. Further, the magnet 231 on the d-axis does not necessarily have to be provided so as to be orthogonal to the d-axis. In that case, Wmagk is defined as the magnet length by the length connecting the ends of the magnets 231 in the rotation direction so as to be orthogonal to the d-axis, and if Wmagk> WB is satisfied in relation to the minimum width WB. Good. The same effect can be obtained in this case as well.
 各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
Each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
1 固定子、2 回転子、3 シャフト、4 パワー回路部、5 制御回路部、6 バッテリ、11 固定子鉄心、12 固定子巻線、13 磁極歯、21 回転子コア、22 孔部、23 磁石群、24 スリット、25 空隙拡大部、100 回転電機、221磁石挿入部、222開口部、231、232磁石 1 stator, 2 rotor, 3 shaft, 4 power circuit, 5 control circuit, 6 battery, 11 stator core, 12 stator winding, 13 magnetic pole teeth, 21 rotor core, 22 holes, 23 magnets Group, 24 slits, 25 void enlargement part, 100 rotary electric machine, 221 magnet insertion part, 222 opening part, 231 and 232 magnets

Claims (8)

  1. 固定子と、
    複数の孔部が形成された回転子コア、前記回転子コアの外周面に設けられる空隙拡大部、を有するとともに、前記複数の孔部に配置される磁石のうちの一部であって1磁極の磁極を構成する磁石群を複数有し、前記固定子の径内側に空隙を介して設けられる回転子と、
    を備え、
    前記磁石群を構成する磁石のうち、1磁極の磁極中心の線である磁極中心線にある磁石の前記磁極中心線に直行する幅を磁石幅Wmagとし、
    前記空隙拡大部の前記磁極中心線に直行する幅を空隙拡大部幅WAとし、
    前記磁極中心線から前記回転子の回転方向または反回転方向に電気角で90度ずれた線である軸線がとおる前記回転子コアの前記磁極中心線に直行する幅を最小幅WBとしたとき、
    空隙拡大部幅WA>磁石幅Wmag>最小幅WBの関係を満たす回転電機。
    Stator and
    It has a rotor core in which a plurality of holes are formed, a gap expanding portion provided on the outer peripheral surface of the rotor core, and is a part of magnets arranged in the plurality of holes and has one magnetic pole. A rotor having a plurality of magnet groups constituting the magnetic poles of the above and provided inside the diameter of the stator through a gap, and
    With
    Among the magnets constituting the magnet group, the width perpendicular to the magnetic pole center line of the magnet on the magnetic pole center line, which is the magnetic pole center line of one magnetic pole, is defined as the magnet width Wmag.
    The width of the gap expanding portion perpendicular to the magnetic pole center line is defined as the gap expanding portion width WA.
    When the width perpendicular to the magnetic pole center line of the rotor core passing through the axis, which is a line deviated by 90 degrees in the electric angle from the magnetic pole center line in the rotation direction or the counter-rotation direction of the rotor, is defined as the minimum width WB.
    A rotary electric machine that satisfies the relationship of void expansion portion width WA> magnet width Wmag> minimum width WB.
  2. 前記最小幅WBは、前記軸線を介して隣接する一方の前記孔部と、前記軸線を介して隣接する他方の前記孔部と、の間の前記回転子コアの幅である請求項1に記載の回転電機。 The minimum width WB is the width of the rotor core between one of the holes adjacent via the axis and the other hole adjacent via the axis, according to claim 1. Rotating electric machine.
  3. 前記孔部は、前記磁石が配置される磁石挿入部と前記磁石挿入部以外の開口部とを有し、
    前記最小幅WBは、前記軸線を介して隣接する一方の前記磁石挿入部と、前記軸線を介して隣接する他方の前記磁石挿入部と、の間の前記回転子コアの幅である請求項2に記載の回転電機。
    The hole portion has a magnet insertion portion in which the magnet is arranged and an opening other than the magnet insertion portion.
    The minimum width WB is the width of the rotor core between one magnet insertion portion adjacent via the axis and the other magnet insertion portion adjacent via the axis. The rotary electric machine described in.
  4. 前記最小幅WBは、前記軸線を介して隣接する一方の前記磁石挿入部の前記軸線に最も近い端点と、前記軸線を介して隣接する他方の前記磁石挿入部の前記軸線に最も近い端点と、の間の前記回転子コアの幅である請求項3に記載の回転電機。 The minimum width WB includes an end point closest to the axis of one of the magnet insertion portions adjacent via the axis, and an end point closest to the axis of the other magnet insertion portion adjacent via the axis. The rotary electric machine according to claim 3, which is the width of the rotor core between the two.
  5. 前記軸線を介して隣接する一方の前記磁石挿入部の端点うち、前記回転子コアの径内側の端点と、前記軸線を介して隣接する他方の前記磁石挿入部の端点のうち、前記回転子コアの径内側の端点との間の前記回転子コアの幅を最大幅WCとしたとき、
    磁石幅Wmag>最大幅WCの関係を満たす請求項3または請求項4に記載の回転電機。
    Of the end points of one of the magnet insertion portions adjacent via the axis, the end points inside the diameter of the rotor core and the end points of the other magnet insertion portion adjacent via the axis, the rotor core When the width of the rotor core between the end points on the inner diameter of the rotor core is the maximum width WC,
    The rotary electric machine according to claim 3 or 4, which satisfies the relationship of magnet width Wmag> maximum width WC.
  6. 前記空隙拡大部を回転方向に二等分する線を第一の二等分線とし、前記磁極中心線上の前記磁石を回転方向に二等分する線を第二の二等分線としたとき、
    前記第一の二等分線と前記第二の二等分線は同一線上に存在する請求項1から請求項5のいずれか1項に記載の回転電機。
    When the line that bisects the gap expansion portion in the rotation direction is defined as the first bisector, and the line that bisects the magnet on the magnetic pole center line in the rotation direction is defined as the second bisector. ,
    The rotary electric machine according to any one of claims 1 to 5, wherein the first bisector and the second bisector are on the same line.
  7. 前記回転子コアの前記最小幅WBは、前記磁石幅Wmagの半分の幅よりも小さい請求項1から請求項6のいずれか1項に記載の回転電機。 The rotary electric machine according to any one of claims 1 to 6, wherein the minimum width WB of the rotor core is smaller than half the width of the magnet width Wmag.
  8. 前記固定子は、前記回転子側に突出した磁極歯を有し、
    前記磁極歯の最径内面の幅を磁極歯幅WTとしたとき、
    磁極歯幅WT>最小幅WBの関係を満たす請求項1から請求項7のいずれか1項に記載の回転電機。
    The stator has magnetic pole teeth protruding toward the rotor side.
    When the width of the innermost diameter inner surface of the magnetic pole tooth is defined as the magnetic pole tooth width WT,
    The rotary electric machine according to any one of claims 1 to 7, which satisfies the relationship of magnetic pole tooth width WT> minimum width WB.
PCT/JP2019/046601 2019-11-28 2019-11-28 Rotary electric machine WO2021106153A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020530392A JP6839376B1 (en) 2019-11-28 2019-11-28 Rotating machine
PCT/JP2019/046601 WO2021106153A1 (en) 2019-11-28 2019-11-28 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046601 WO2021106153A1 (en) 2019-11-28 2019-11-28 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2021106153A1 true WO2021106153A1 (en) 2021-06-03

Family

ID=74845214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046601 WO2021106153A1 (en) 2019-11-28 2019-11-28 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP6839376B1 (en)
WO (1) WO2021106153A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202726A1 (en) 2021-03-22 2022-09-22 Zf Friedrichshafen Ag Electrical machine and method for manufacturing an electrical machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145850A1 (en) * 2005-12-21 2007-06-28 Hsu John S Permanent magnet machine and method with reluctance poles and non-identical PM poles for high density operation
JP2015006124A (en) * 2013-05-21 2015-01-08 株式会社東芝 Rotary electric machine
WO2015189938A1 (en) * 2014-06-11 2015-12-17 三菱電機株式会社 Permanent-magnet-embedded electric motor
WO2016147945A1 (en) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 Rotor for rotating electrical machine
JP2019054624A (en) * 2017-09-14 2019-04-04 本田技研工業株式会社 Rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145850A1 (en) * 2005-12-21 2007-06-28 Hsu John S Permanent magnet machine and method with reluctance poles and non-identical PM poles for high density operation
JP2015006124A (en) * 2013-05-21 2015-01-08 株式会社東芝 Rotary electric machine
WO2015189938A1 (en) * 2014-06-11 2015-12-17 三菱電機株式会社 Permanent-magnet-embedded electric motor
WO2016147945A1 (en) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 Rotor for rotating electrical machine
JP2019054624A (en) * 2017-09-14 2019-04-04 本田技研工業株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JPWO2021106153A1 (en) 2021-12-02
JP6839376B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
US9071118B2 (en) Axial motor
JP5774081B2 (en) Rotating electric machine
JP4900132B2 (en) Rotor and rotating electric machine
JP4844570B2 (en) Permanent magnet type motor
JP2005176424A (en) Rotor for dynamo-electric machine
JP6589624B2 (en) motor
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP6832538B2 (en) Rotating electric machine
KR19990038193U (en) Permanent Magnet Flush Motor
JP2008271640A (en) Axial gap motor
JP5347588B2 (en) Embedded magnet motor
JP2006340487A (en) Brushless motor
JPH08251848A (en) Rotor of permanent magnet type synchronous rotary machine
JP2006223052A (en) Permanent-magnet motor
JPWO2020017078A1 (en) Rotating electric machine
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2014107939A (en) Brushless motor
US20150200573A1 (en) Generator
JP6839376B1 (en) Rotating machine
JP6944675B2 (en) Rotor and permanent magnet type rotary electric machine
JP6760014B2 (en) Rotating electric machine
JP6201405B2 (en) Rotating electric machine
JP2006050820A (en) Rotary electric machine
JP2003018770A (en) Rotary electric machine
JP6191375B2 (en) Motor generator and engine unit including the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530392

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954540

Country of ref document: EP

Kind code of ref document: A1