Nothing Special   »   [go: up one dir, main page]

WO2021106030A1 - 障害物検知装置 - Google Patents

障害物検知装置 Download PDF

Info

Publication number
WO2021106030A1
WO2021106030A1 PCT/JP2019/045918 JP2019045918W WO2021106030A1 WO 2021106030 A1 WO2021106030 A1 WO 2021106030A1 JP 2019045918 W JP2019045918 W JP 2019045918W WO 2021106030 A1 WO2021106030 A1 WO 2021106030A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
calculated
unit
condition
reflection point
Prior art date
Application number
PCT/JP2019/045918
Other languages
English (en)
French (fr)
Inventor
裕 小野寺
浩章 村上
真一 原瀬
亘 辻田
元気 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/045918 priority Critical patent/WO2021106030A1/ja
Priority to JP2021560765A priority patent/JP7224491B2/ja
Publication of WO2021106030A1 publication Critical patent/WO2021106030A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to an obstacle detection device.
  • a device for detecting an obstacle in the surrounding area with respect to the vehicle has been developed by using a distance measuring sensor provided in the vehicle.
  • a distance measuring sensor provided in the vehicle.
  • the left area or the right area is collectively referred to as a “side area”.
  • an obstacle detection device is called an "obstacle detection device”.
  • a parking support system using an obstacle detection device has been developed. That is, a parking space (hereinafter referred to as “parking space”) in the lateral region is detected based on the detection result by the obstacle detection device. Next, control for assisting parking with respect to the detected parking space (hereinafter referred to as “parking support control”) is executed.
  • Patent Document 1 discloses a technique for detecting a parking space. More specifically, a technique for determining the depth limit of a parking space based on the distribution width of a plurality of reverberant signals collected in the measurement window is disclosed (see, for example, the abstract of Patent Document 1).
  • the obstacle detection device In the parking support system, it is required to accurately detect the parking space and accurately execute the parking support control. Therefore, when a plurality of obstacles are present in the lateral region, the obstacle detection device is required to detect each obstacle. In addition, it is required to identify the type of each obstacle and to determine the position of each obstacle.
  • parking obstacle an obstacle that can interfere with parking
  • the curb and the parking obstacle are present.
  • it is required to identify whether the individual obstacles are curbs or parking obstacles.
  • it is required to determine at least the position of parking obstacles. Further, it is required to output a signal indicating the determined position.
  • the technique described in Patent Document 1 determines the depth limit of the parking space based on the distribution width of a plurality of echo signals collected in the measurement window.
  • the technique described in Patent Document 1 does not detect individual obstacles when a plurality of obstacles are present in the lateral region. Therefore, when a plurality of obstacles exist in the lateral region, there is a problem that the type of each obstacle cannot be identified. Further, at this time, there is a problem that the position of each obstacle cannot be determined.
  • An object of the present invention is to provide an object detection device.
  • the obstacle detection device of the present invention uses a distance measuring sensor provided in the vehicle to detect an obstacle group in a lateral region with respect to a moving vehicle, and a discontinuous part in the obstacle group. Multiple parts included in the obstacle group by analyzing the discontinuous part detection part to detect, the analysis area extraction part to extract the analysis area based on the discontinuous part, and the frequency distribution related to a plurality of reflection points in the analysis area.
  • a grouping unit that sets a plurality of reflection point groups corresponding to an individual obstacle, distinguishes whether or not each of the plurality of obstacles is a curb, and each of the plurality of obstacles is a parking obstacle. It includes an identification unit that identifies whether or not it is an object, and an output unit that outputs a signal indicating at least the position of the parking obstacle when the distance between the curb and the parking obstacle is less than or equal to a predetermined distance. ..
  • the present invention since it is configured as described above, when the curb and the parking obstacle are arranged close to each other, it is possible to output at least a signal indicating the position of the parking obstacle.
  • FIG. 1 It is a block diagram which shows the main part of the parking support system including the obstacle detection device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the obstacle detection part in the obstacle detection device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the grouping part in the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the identification part in the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the hardware composition of the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware configuration of the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. 10A is an explanatory diagram showing an example of four obstacles in the lateral region and an example of a plurality of reflection points corresponding to each of the four obstacles.
  • FIG. 10B is an explanatory diagram showing an example of the distance between reflection points with respect to time.
  • Examples of two obstacles in one analysis area, examples of multiple reflection points corresponding to each of the two obstacles, and two reflections corresponding to the two obstacles one-to-one It is explanatory drawing which shows the example of a point group. It is explanatory drawing which shows the example of the frequency distribution for analysis in the 1st analysis part. It is explanatory drawing which shows the example of the frequency distribution for analysis in the 2nd analysis part. It is explanatory drawing which shows the example of the frequency distribution for analysis in the 2nd analysis part. Examples of three obstacles in one analysis area, examples of multiple reflection points corresponding to each of the three obstacles, and three reflections one-to-one with the three obstacles. It is explanatory drawing which shows the example of a point group.
  • FIG. 23A is an explanatory diagram showing an example of five obstacles in the lateral region and an example of a plurality of reflection points corresponding to each of the five obstacles.
  • FIG. 23B is an explanatory diagram showing an example of the variance value of the distance measurement value with respect to time.
  • FIG. 23C is an explanatory diagram showing an example of the amount of change in the dispersion value with respect to time. It is explanatory drawing which shows the example of one threshold value and two ranges in a feature amount coordinate system.
  • FIG. It is a block diagram which shows the main part of the grouping part in the obstacle detection apparatus which concerns on Embodiment 2.
  • FIG. 1 is a block diagram showing a main part of a parking support system including an obstacle detection device according to the first embodiment.
  • FIG. 2 is a block diagram showing a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment.
  • FIG. 3 is a block diagram showing a main part of the grouping unit in the obstacle detection device according to the first embodiment.
  • FIG. 4 is a block diagram showing a main part of the identification unit in the obstacle detection device according to the first embodiment.
  • a parking support system including an obstacle detection device according to the first embodiment will be described with reference to FIGS. 1 to 4.
  • the vehicle 1 has a distance measuring sensor 2, an obstacle detection device 100, and a parking support device 200.
  • the distance measuring sensor 2, the obstacle detection device 100, and the parking support device 200 constitute a main part of the parking support system 300.
  • the distance measuring sensor 2 is composed of a TOF (Time of Flight) type distance measuring sensor.
  • the ranging sensor 2 uses, for example, ultrasonic waves, radio waves (more specifically, millimeter waves) or light (more specifically, laser light).
  • ultrasonic waves, radio waves, light, and the like used by the distance measuring sensor 2 are collectively referred to as “exploration waves”.
  • the exploration wave transmitted or transmitted by the ranging sensor 2 may be referred to as a “transmitted wave”.
  • the exploration wave reflected or reflected by the obstacle O may be referred to as a "reflected wave”.
  • the exploration wave received or received by the ranging sensor 2 may be referred to as a “received wave”.
  • the distance measuring sensor 2 is provided on the left side of the vehicle 1. Alternatively, the distance measuring sensor 2 is provided on the right side of the vehicle 1. Alternatively, the distance measuring sensor 2 is provided on each of the left side portion of the vehicle 1 and the right side portion of the vehicle 1.
  • the distance measuring sensor 2 provided on the left side of the vehicle 1 moves to the left region at a predetermined time interval ⁇ T when the vehicle 1 is moving at a speed V of PV or less at a predetermined speed (for example, 30 km / h). It transmits exploration waves. Further, the distance measuring sensor 2 provided on the left side of the vehicle 1 receives the reflected wave by the obstacle group OG in the left region. On the other hand, the distance measuring sensor 2 provided on the right side of the vehicle 1 transmits an exploration wave to the right region at a predetermined time interval ⁇ T when the vehicle 1 is moving at a speed V equal to or less than a predetermined speed PV. Is what you do. Further, the distance measuring sensor 2 provided on the right side of the vehicle 1 receives the reflected wave by the obstacle group OG in the right region.
  • the obstacle group OG includes 0 obstacle O, 1 obstacle O, or a plurality of obstacle O.
  • Individual obstacles O are, for example, walls, other parked vehicles (hereinafter referred to as "parked vehicles"), guard rails, electric poles, poles, signs, plants, pedestrians, bicycles, wheelchairs, strollers, curbs, wheel chocks or It is composed of steps.
  • the obstacle O having a height H less than the threshold value H_th_1 is referred to as a "road surface obstacle”.
  • an obstacle O having a height H of the threshold value H_th_1 or more and less than the threshold value H_th_2 may be referred to as a “road obstacle”.
  • an obstacle O having a height H equal to or higher than the threshold value H_th_2 may be referred to as a "running obstacle”.
  • the traveling obstacle has a height H large enough to come into contact with the bumper portion of the vehicle 1.
  • Traveling obstacles include, for example, walls, parked vehicles, guardrails, electric poles, poles, signs, plants, pedestrians, bicycles, wheelchairs and strollers.
  • the road obstacle has a height H so small that it cannot come into contact with the bumper portion of the vehicle 1, and has a height H that is large to some extent because it is difficult for the vehicle 1 to get over it.
  • Road obstacles include, for example, curbs and wheel chocks.
  • the road surface obstacle has a height H so small that it cannot come into contact with the bumper portion of the vehicle 1, and has a height H that is easy to get over by the vehicle 1 and is small to some extent.
  • the road surface obstacle includes, for example, a step.
  • the obstacle O having a height H less than the threshold value H_th_3 may be referred to as a "low profile obstacle”.
  • an obstacle O having a height H equal to or higher than the threshold value H_th_3 may be referred to as a “tall obstacle”.
  • the threshold value H_th_3 is set to a value equivalent to, for example, the threshold value H_th_2.
  • the traveling obstacle is included in the tall obstacle, and the road obstacle and the road surface obstacle are included in the low-back obstacle.
  • the threshold value H_th_3 is set to a value equivalent to the threshold value H_th_1.
  • the traveling obstacle and the road obstacle are included in the tall obstacle, and the road surface obstacle is included in the low back obstacle.
  • the obstacle O having a width W less than the threshold value W_th_1 may be referred to as a "narrow obstacle”.
  • an obstacle O having a width W equal to or greater than the threshold value W_th_2 may be referred to as a "wide obstacle”.
  • the width W is the width with respect to the front-rear direction of the vehicle 1 (that is, the moving direction of the vehicle 1).
  • Wide obstacles include, for example, walls, guardrails, curbs and steps.
  • Narrow obstacles include, for example, utility poles, poles, signs, plants, pedestrians, bicycles, wheelchairs and strollers.
  • the threshold value W_th_1 for identifying narrow obstacles is set to, for example, 1 meter.
  • the moving obstacle O is sometimes called a "dynamic obstacle".
  • Dynamic obstacles include, for example, pedestrians, bicycles, wheelchairs and strollers.
  • the stationary obstacle O among the narrow obstacles may be referred to as a "static obstacle”.
  • Static obstacles include, for example, utility poles, poles, signs and plants.
  • the obstacle detection device 100 is composed of, for example, an electronic control unit (hereinafter referred to as "ECU").
  • the obstacle detection device 100 includes an obstacle detection unit 11, a discontinuous unit detection unit 12, an analysis area extraction unit 13, a grouping unit 14, an identification unit 15, and an output unit 16.
  • the parking support device 200 is composed of, for example, an ECU.
  • the parking support device 200 has a parking support control unit 21.
  • the obstacle detection device 100 has a function of acquiring information indicating the speed V of the vehicle 1 (hereinafter referred to as "vehicle speed information").
  • vehicle speed information is acquired by, for example, CAN (Control Area Network) communication.
  • the obstacle detection device 100 has a function of determining whether or not the vehicle 1 is moving at a speed V equal to or lower than a predetermined speed PV by using the acquired vehicle speed information.
  • the obstacle detection device 100 has a function of acquiring information indicating the position of the vehicle 1 and the direction of the vehicle 1 (hereinafter referred to as “vehicle position information").
  • vehicle position information is acquired by, for example, CAN communication.
  • the obstacle detection device 100 stores in advance information indicating the installation position of the distance measurement sensor 2 in the vehicle 1 and the installation direction of the distance measurement sensor 2 in the vehicle 1 (hereinafter referred to as “sensor installation position information”).
  • the obstacle detection device 100 has a function of calculating the position of the distance measuring sensor 2 and the direction of the distance measuring sensor 2 by using the acquired vehicle position information and the stored sensor installation position information. ..
  • the obstacle detection device 100 has a function of acquiring information indicating the yaw rate of the vehicle 1 (hereinafter referred to as "yaw rate information”) and information indicating the steering angle of the vehicle 1 (hereinafter referred to as “steering angle information”). doing.
  • the yaw rate information and the steering angle information are acquired by, for example, CAN communication.
  • the sensor installation position information is stored in advance in the obstacle detection device 100.
  • the obstacle detection device 100 has a function of calculating the position of the vehicle 1 and the direction of the vehicle 1 by using the acquired yaw rate information and the steering angle information.
  • the obstacle detection device 100 uses the stored sensor installation position information to determine the position of the distance measuring sensor 2 and the orientation of the distance measuring sensor 2 based on the calculated position of the vehicle 1 and the orientation of the vehicle 1. It has a function to calculate.
  • the function of determining whether or not the vehicle 1 is moving at a speed V of a predetermined speed PV or less is referred to as a "vehicle speed determination function”. Further, the function of calculating the position of the distance measuring sensor 2 and the orientation of the distance measuring sensor 2 is referred to as a "sensor position calculation function”.
  • the obstacle detection unit 11 includes a transmission signal output unit 31, a reception signal acquisition unit 32, a distance measurement value calculation unit 33, and a coordinate value calculation unit 34.
  • the transmission signal output unit 31 transmits an electric signal (hereinafter referred to as “transmission signal”) TS corresponding to the transmission wave at a predetermined time interval ⁇ T. It is output to the distance measuring sensor 2. As a result, the transmission signal output unit 31 causes the distance measuring sensor 2 to transmit the transmitted wave at a predetermined time interval ⁇ T. Whether or not the vehicle 1 is moving at a speed V equal to or lower than a predetermined speed PV is determined by the vehicle speed determination function.
  • the received signal acquisition unit 32 acquires an electrical signal (hereinafter referred to as “received signal”) RS corresponding to the received wave by the distance measuring sensor 2.
  • the distance measurement value calculation unit 33 calculates the distance measurement value D by the TOF method using the received signal RS.
  • Various known techniques can be used to calculate the distance measurement value D by the TOF method. Detailed description of these techniques will be omitted.
  • the coordinate value calculation unit 34 uses the distance measurement value D to indicate the position of the RP at the point where the exploration wave is reflected by the obstacle O (hereinafter referred to as “reflection point”) (hereinafter referred to as “reflection point coordinate value”). It may be that.) C_X and C_Y are calculated.
  • the coordinate values C_X and C_Y are, for example, the first axis (hereinafter referred to as "X-axis”) along the front-rear direction of the vehicle 1 (that is, the moving direction of the vehicle 1) and the left-right direction of the vehicle 1 (that is, the moving direction of the vehicle 1). It is a coordinate value in a coordinate system (hereinafter referred to as "XY coordinate system”) having a second axis (hereinafter referred to as "Y axis”) along the orthogonal direction).
  • the coordinate value calculation unit 34 calculates the coordinate values C_X and C_Y by obtaining the following vectors. That is, the coordinate value calculation unit 34 has a start point corresponding to the position of the distance measuring sensor 2 at the time when the corresponding exploration wave is transmitted, and has a direction corresponding to the direction of the distance measuring sensor 2 at that time. However, a vector having a magnitude corresponding to the corresponding distance measurement value D is obtained. At this time, the position of the distance measuring sensor 2 and the orientation of the distance measuring sensor 2 are calculated by the sensor position calculation function. This vector is a vector in the XY coordinate system.
  • the coordinate value C_X may be referred to as "X coordinate value”.
  • the coordinate value C_Y may be referred to as a "Y coordinate value”.
  • the direction along the X axis may be referred to as "X direction”.
  • the direction along the Y axis may be referred to as "Y direction” or "depth direction”.
  • the side far from the vehicle 1 with respect to an arbitrary point in the XY coordinate system may be referred to as the "back side”.
  • the side closer to the vehicle 1 with respect to an arbitrary point in the XY coordinate system may be referred to as the "front side".
  • the information indicating the waveform of the received signal RS corresponding to each reflection point RP is referred to as "waveform information”.
  • the information indicating the distance measurement value D corresponding to each reflection point RP is referred to as “distance measurement value information”.
  • the information indicating the coordinate values C_X and C_Y corresponding to the individual reflection point RP is referred to as “coordinate value information”.
  • information including waveform information, ranging value information and coordinate value information is referred to as "reflection point information”.
  • the obstacle detection unit 11 outputs the reflection point information to the discontinuous unit detection unit 12 and the analysis area extraction unit 13.
  • the processes executed by the obstacle detection unit 11 may be collectively referred to as "obstacle detection process". That is, the obstacle detection process outputs the transmission signal TS, the reception signal RS, the distance measurement value D, the coordinate values C_X and C_Y, and the reflection point information. It includes processing and so on.
  • the obstacle detection process is executed.
  • the coordinate values C_X and C_Y indicating the positions of the plurality of reflection point RPs are calculated.
  • a plurality of reflection point RPs corresponding to the obstacle group OG are detected.
  • the obstacle group OG is detected.
  • the discontinuous unit detection unit 12 acquires the reflection point information output by the obstacle detection unit 11.
  • the discontinuous portion detecting unit 12 detects the discontinuous portion (hereinafter referred to as “discontinuous portion”) DP in the obstacle group OG by using the acquired reflection point information.
  • the discontinuous unit detection unit 12 outputs information indicating the detected discontinuous unit DP (hereinafter referred to as “discontinuous unit information”) to the analysis area extraction unit 13.
  • the processes executed by the discontinuous portion detection unit 12 may be collectively referred to as “discontinuous portion detection processing". That is, the discontinuous portion detection process includes a process of acquiring reflection point information, a process of detecting the discontinuous portion DP, a process of outputting discontinuous portion information, and the like.
  • the analysis area extraction unit 13 acquires the discontinuous unit information output by the discontinuous unit detection unit 12.
  • the analysis area extraction unit 13 extracts the area for analysis (hereinafter referred to as “analysis area”) AA by the grouping unit 14 by using the acquired discontinuous part information.
  • the analysis region AA is a region formed by dividing the lateral region LA based on the discontinuous portion DP. A specific example of the analysis region AA will be described later with reference to FIG.
  • each analysis region AA contains a plurality of reflection point RPs.
  • the analysis area extraction unit 13 acquires the reflection point information output by the obstacle detection unit 11.
  • the analysis area extraction unit 13 outputs the reflection point information corresponding to the plurality of reflection point RPs included in the individual analysis area AA of the acquired reflection point information to the grouping unit 14. That is, the analysis area extraction unit 13 outputs the reflection point information for each analysis area AA to the grouping unit 14.
  • the processes executed by the analysis area extraction unit 13 may be collectively referred to as "analysis area extraction process". That is, the analysis area extraction process includes a process of acquiring discontinuous part information, a process of extracting the analysis area AA, a process of acquiring the reflection point information, a process of outputting the reflection point information for each analysis area AA, and the like. ..
  • the grouping unit 14 acquires the reflection point information output by the analysis area extraction unit 13.
  • the grouping unit 14 uses the acquired reflection point information to group a plurality of reflection point RPs included in each analysis area AA into individual obstacles O in each analysis area AA.
  • the corresponding reflection point group PG is set.
  • one analysis area AA of the plurality of analysis areas AA includes a plurality of reflection point RPs corresponding to one obstacle O
  • the plurality of reflection point RPs are grouped. By doing so, one reflection point group PG corresponding to the one obstacle O is set.
  • the other analysis region AA of the plurality of analysis regions AA includes a plurality of reflection point RPs corresponding to the plurality of obstacles O
  • the plurality of reflection point RPs are included.
  • a plurality of reflection point group PGs corresponding to the plurality of obstacles O on a one-to-one basis are set.
  • the grouping unit 14 has a first analysis unit 41 and a second analysis unit 42.
  • the first analysis unit 41 creates a frequency distribution FD_Y indicating the number of reflection point RPs with respect to the Y coordinate value C_Y by using the reflection point information corresponding to each analysis region AA.
  • the first analysis unit 41 analyzes the created frequency distribution FD_Y. More specifically, the first analysis unit 41 executes the peak separation process for the created frequency distribution FD_Y. As a result, one or more frequency groups FG_Y are set.
  • the second analysis unit 42 creates a frequency distribution FD_X indicating the number of reflection point RPs with respect to the X coordinate value C_X by using the reflection point information corresponding to each frequency group FG_Y.
  • the second analysis unit 42 analyzes the created frequency distribution FD_X. More specifically, the second analysis unit 42 executes the peak separation process for the created frequency distribution FD_X. As a result, one or more frequency groups FG_X are set.
  • the grouping unit 14 sets the reflection point cloud group PG corresponding to each obstacle O based on the analysis result by the first analysis unit 41 and the analysis result by the second analysis unit 42.
  • a specific example of the method of setting the reflection point group PG will be described later with reference to FIGS. 11 to 18.
  • each reflection point group PG includes a plurality of reflection point RPs.
  • the grouping unit 14 outputs the reflection point information corresponding to the plurality of reflection point RPs included in the individual reflection point group PG among the acquired reflection point information to the identification unit 15. That is, the grouping unit 14 outputs the reflection point information for each reflection point group PG to the identification unit 15.
  • grouping process the processes executed by the grouping unit 14 may be collectively referred to as "grouping process". That is, in the grouping process, the process of acquiring the reflection point information for each analysis area AA, the process of setting the reflection point group PG corresponding to each obstacle O, and the process of outputting the reflection point information for each reflection point group PG are output. It includes processing and so on.
  • the identification unit 15 acquires the reflection point information output by the grouping unit 14.
  • the identification unit 15 uses the acquired reflection point information to identify the type of obstacle O corresponding to each reflection point group PG.
  • the identification unit 15 has a width determination unit 51, a position determination unit 52, and a height determination unit 53.
  • the width determination unit 51 determines the width of each reflection point group PG with respect to the X direction by using the acquired reflection point information. As a result, the width W of each obstacle O with respect to the X direction is determined. The width determination unit 51 determines whether or not each obstacle O is a wide obstacle based on the result of the determination. Further, the width determination unit 51 determines whether or not each obstacle O is a narrow obstacle based on the result of the determination.
  • the position determination unit 52 determines the position of each reflection point group PG with respect to the X direction by using the acquired reflection point information. As a result, the position of each obstacle O with respect to the X direction is determined. Further, the position determination unit 52 determines the position of each reflection point group PG with respect to the depth direction by using the acquired reflection point information. As a result, the position of each obstacle O with respect to the depth direction is determined.
  • the height determination unit 53 determines the height H of each obstacle O by using the acquired reflection point information. Thereby, for example, it is determined whether the individual obstacle O is a traveling obstacle, a road obstacle, or a road surface obstacle.
  • the identification unit 15 identifies whether or not each obstacle O is a curb based on the judgment result of at least one of these judgment units (51, 52, 53). A specific example of a method for identifying whether or not each obstacle O is a curb will be described later. Further, the identification unit 15 identifies whether or not each obstacle O is a parking obstacle based on the determination result by at least one of these determination units (51, 52, 53). .. A specific example of a method for identifying whether or not each obstacle O is a parking obstacle will be described later.
  • the processes executed by the identification unit 15 may be collectively referred to as "identification processing". That is, the identification process includes a process of determining the width W of each obstacle O, a process of determining the position of each obstacle O, a process of determining the height H of each obstacle O, and an individual obstacle. It includes a process of identifying the type of O.
  • the output unit 16 outputs a signal indicating the result of the identification process (hereinafter referred to as "identification result signal”) to the parking support control unit 21.
  • the identification result signal is information indicating whether or not each obstacle O is a curb, information indicating whether or not each obstacle O is a parking obstacle, and the position of each obstacle O. It contains information indicating. Therefore, when the curb and the parking obstacle are included in the obstacle group OG and the curb and the parking obstacle are arranged close to each other (that is, when the distance between the curb and the parking obstacle is less than a predetermined distance), The identification result signal indicates at least the position of the parking obstacle.
  • the processing executed by the output unit 16 may be collectively referred to as "output processing". That is, the output process includes a process of outputting an identification result signal and the like.
  • the parking support control unit 21 acquires the identification result signal output by the output unit 16.
  • the parking support control unit 21 detects the parking space in the side region LA by using the acquired identification result signal.
  • the parking support control unit 21 executes parking support control for the detected parking space. Specifically, for example, the parking support control unit 21 executes control for realizing so-called "automatic parking”.
  • Various known techniques can be used for parking support control. Detailed description of these techniques will be omitted.
  • the obstacle detection device 100 has a processor 61 and a memory 62.
  • the memory 62 stores programs for realizing the functions of the obstacle detection unit 11, the discontinuous unit detection unit 12, the analysis area extraction unit 13, the grouping unit 14, the identification unit 15, and the output unit 16.
  • the processor 61 reads and executes such a program, the functions of the obstacle detection unit 11, the discontinuous unit detection unit 12, the analysis area extraction unit 13, the grouping unit 14, the identification unit 15, and the output unit 16 are realized. ..
  • the obstacle detection device 100 has a processing circuit 63.
  • the functions of the obstacle detection unit 11, the discontinuous unit detection unit 12, the analysis area extraction unit 13, the grouping unit 14, the identification unit 15, and the output unit 16 are realized by the dedicated processing circuit 63.
  • the obstacle detection device 100 has a processor 61, a memory 62, and a processing circuit 63 (not shown).
  • some of the functions of the obstacle detection unit 11, the discontinuous unit detection unit 12, the analysis area extraction unit 13, the grouping unit 14, the identification unit 15, and the output unit 16 are performed by the processor 61 and the memory 62.
  • the remaining functions are realized by the dedicated processing circuit 63.
  • the processor 61 is composed of one or a plurality of processors.
  • processors for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • DSP Digital Signal Processor
  • the memory 62 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 62 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 62 is composed of one or a plurality of memories. Each memory uses, for example, a semiconductor memory or a magnetic disk. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memory is, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmory), an EEPROM (Electrically Erasable Programmory) drive, or a hard disk drive that uses a hard disk drive, a hard disk, or a drive solid state drive.
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmory), an EEPROM (Electrically Erasable Programmory) drive
  • EEPROM Electrically Erasable Programmory
  • the processing circuit 63 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 63 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 63 is composed of one or a plurality of processing circuits.
  • the individual processing circuits are, for example, ASIC (Application Special Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), FPGA (Field Program Is.
  • the parking support device 200 has a processor 71 and a memory 72.
  • the memory 72 stores a program for realizing the function of the parking support control unit 21.
  • the function of the parking support control unit 21 is realized by the processor 71 reading and executing such a program.
  • the parking support device 200 has a processing circuit 73.
  • the function of the parking support control unit 21 is realized by the dedicated processing circuit 73.
  • the parking support device 200 has a processor 71, a memory 72, and a processing circuit 73 (not shown).
  • some of the functions of the parking support control unit 21 are realized by the processor 71 and the memory 72, and the remaining functions are realized by the dedicated processing circuit 73.
  • the processor 71 is composed of one or a plurality of processors.
  • the individual processors use, for example, CPUs, GPUs, microprocessors, microcontrollers or DSPs.
  • the memory 72 is composed of one or a plurality of non-volatile memories.
  • the memory 72 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 72 is composed of one or a plurality of memories.
  • Each memory uses, for example, a semiconductor memory or a magnetic disk. More specifically, each volatile memory uses, for example, RAM. Further, each non-volatile memory uses, for example, a ROM, a flash memory, an EPROM, an EEPROM, a solid state drive, or a hard disk drive.
  • the processing circuit 73 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 73 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 73 is composed of one or a plurality of processing circuits.
  • the individual processing circuits use, for example, ASIC, PLD, FPGA, SoC or system LSI.
  • the operation of the parking support system 300 will be described focusing on the operations of the obstacle detection device 100 and the parking support device 200.
  • the obstacle detection unit 11 executes the obstacle detection process (step ST1).
  • the discontinuous portion detection unit 12 executes the discontinuous portion detection process (step ST2).
  • the analysis area extraction unit 13 executes the analysis area extraction process (step ST3).
  • the grouping unit 14 executes the grouping process (step ST4).
  • the identification unit 15 executes the identification process (step ST5).
  • the output unit 16 executes the output process (step ST6).
  • the parking support control unit 21 executes parking support control (step ST7).
  • Each of the obstacles O_1 and O_2 is composed of parked vehicles.
  • Obstacle O_3 is composed of curbs.
  • Obstacle O_4 is composed of utility poles or poles.
  • TR indicates a movement route of the vehicle 1 at a speed V of a predetermined speed PV or less.
  • a plurality of reflection points RP_1, RP_2, RP_3, and RP_4 corresponding to the obstacle group OG are detected.
  • Four reflection points RP_4 corresponding to are detected.
  • the exploration wave propagates while gradually spreading in the air. Therefore, there may be a plurality of propagation paths (so-called “paths”) of the exploration wave from the transmission by the distance measurement sensor 2 to the reception by the distance measurement sensor 2.
  • the ranging sensor 2 transmits the exploration wave at a predetermined time interval ⁇ T.
  • the transmitted exploration wave may be sequentially reflected by N obstacles O.
  • the first to Nth reflected waves may be sequentially received.
  • the nth reflected wave among the first to Nth reflected waves is referred to as an "nth wave".
  • N is an arbitrary integer of 2 or more.
  • n is an arbitrary integer from 1 to N.
  • the transmitted exploration wave may be sequentially reflected by two obstacles O_3 and O_4.
  • the first wave and the second wave are sequentially received.
  • the installation height of the distance measuring sensor 2 in the vehicle 1 is set to a height of about several tens of centimeters with respect to the road surface. Therefore, for an obstacle O having a small height H (for example, a road obstacle or a road surface obstacle), when the distance measuring sensor 2 transmits a search wave, the transmitted search wave may not be irradiated. As a result, the reflected wave may not be received by the distance measuring sensor 2 for the obstacle O having a small height H.
  • H for example, a road obstacle or a road surface obstacle
  • the reflection point RP may include one or more reflection point RPs corresponding to the first wave and one or more reflection point RPs corresponding to the second wave.
  • the four reflection points RP_4 corresponding to the obstacle O_4 include one reflection point RP_4 corresponding to the first wave and three reflection points RP_4 corresponding to the second wave. It has been. That is, in the figure, circles ( ⁇ ) indicate individual reflection point RPs corresponding to the first wave. Further, in the figure, triangle marks ( ⁇ ) indicate individual reflection point RPs corresponding to the second wave.
  • the distance d between each of the two adjacent reflection point RPs among the plurality of reflection point RPs corresponding to the nth wave of the plurality of reflection point RPs corresponding to the obstacle group OG is “reflected”. It is called “point-to-point distance”.
  • the distance d between reflection points is the Euclidean distance in the XY coordinate system.
  • FIG. 10B shows an example of the distance d between reflection points with respect to time for a plurality of reflection point RPs corresponding to the first wave.
  • the time axis corresponds to the X axis in the XY coordinate system.
  • the discontinuous portion detection unit 12 calculates the distance d between reflection points.
  • the discontinuous portion detecting unit 12 detects the discontinuous portion DP when the following conditions (hereinafter referred to as “first condition”) are satisfied with respect to the calculated distance d between reflection points. That is, the first condition is that the distance d between reflection points exceeds a predetermined threshold value d_th.
  • the distance d between reflection points exceeds the threshold value d_th at time t_1.
  • the distance d between reflection points exceeds the threshold value d_th at time t_2.
  • the distance d between reflection points exceeds the threshold value d_th at time t_2.
  • the distance d between reflection points exceeds the threshold value d_th at time t_2.
  • one discontinuous portion DP_2 is detected.
  • the side region LA is divided into three regions by the two discontinuous portions DP_1 and DP_2.
  • three analysis regions AA_1, AA_2, and AA_3 are extracted.
  • FIG. 11 shows an example of a plurality of reflection points RP_3 and RP_4 included in one analysis area AA_2. As shown in FIG. 11, 14 reflection points RP_3 corresponding to the obstacle O_3 and 4 reflection points RP_4 corresponding to the obstacle O_4 are included in the analysis region AA_2.
  • the first analysis unit 41 creates a frequency distribution FD_Y related to a plurality of reflection points RP_3 and RP_4 in the analysis region AA_2.
  • FIG. 12 shows an example of the frequency distribution FD_Y.
  • the frequency distribution FD_Y includes the frequency corresponding to the plurality of reflection points RP_3 (F_Y_1 in the figure) and the frequency corresponding to the plurality of reflection points RP_4 (F_Y_2 in the figure).
  • the first analysis unit 41 executes peak separation processing for the frequency distribution FD_Y.
  • two frequency groups FG_Y_1 and FG_Y_2 are set. That is, the frequency group FG_Y_1 corresponds to a plurality of reflection points RP_3. Further, the frequency group FG_Y_2 corresponds to a plurality of reflection points RP_4.
  • the second analysis unit 42 creates a frequency distribution FD_X_1 related to a plurality of reflection points RP_3 corresponding to the frequency group FG_Y_1.
  • FIG. 13 shows an example of the frequency distribution FD_X_1.
  • the frequency distribution FD_X_1 includes frequencies (F_X_1 in the figure) corresponding to a plurality of reflection points RP_3.
  • the second analysis unit 42 executes peak separation processing for the frequency distribution FD_X_1. As a result, one frequency group FG_X_1 is set. That is, the frequency group FG_X_1 corresponds to a plurality of reflection points RP_3.
  • the second analysis unit 42 creates a frequency distribution FD_X_2 related to a plurality of reflection points RP_4 corresponding to the frequency group FG_Y_2.
  • FIG. 14 shows an example of the frequency distribution FD_X_2.
  • the frequency distribution FD_X_2 includes frequencies (F_X_2 in the figure) corresponding to a plurality of reflection points RP_4.
  • the second analysis unit 42 executes peak separation processing for the frequency distribution FD_X_2. As a result, one frequency group FG_X_2 is set. That is, the frequency group FG_X_2 corresponds to a plurality of reflection points RP_4.
  • the grouping unit 14 sets one reflection point group PG_1 corresponding to the frequency group FG_Y_1 and the frequency group FG_X_1. Further, the grouping unit 14 sets one reflection point group PG_2 corresponding to the frequency group FG_Y_2 and the frequency group FG_X_2. As a result, as shown in FIG. 11, two reflection point groups PG_1 and PG_2 corresponding to two obstacles O_3 and O_4 are set one-to-one.
  • FIG. 15 shows an example of a plurality of reflection points RP_3, RP_4, and RP_5 included in one analysis area AA_2.
  • 21 reflection points RP_3 corresponding to the obstacle O_3, 4 reflection points RP_4 corresponding to the obstacle O_4, and 4 reflection points RP_5 corresponding to the obstacle O_5 are located in the analysis region AA_2.
  • the obstacle O_5 is composed of, for example, a signboard.
  • the first analysis unit 41 creates a frequency distribution FD_Y related to a plurality of reflection points RP_3, RP_4, and RP_5 for the analysis area AA_2.
  • FIG. 16 shows an example of the frequency distribution FD_Y.
  • the frequency distribution FD_Y includes the frequency corresponding to the plurality of reflection points RP_3 (F_Y_1 in the figure) and the frequency corresponding to the plurality of reflection points RP_4 and RP_5 (F_Y_2 in the figure).
  • the first analysis unit 41 executes peak separation processing for the frequency distribution FD_Y.
  • two frequency groups FG_Y_1 and FG_Y_2 are set. That is, the frequency group FG_Y_1 corresponds to a plurality of reflection points RP_3. Further, the frequency group FG_Y_2 corresponds to a plurality of reflection points RP_4 and RP_5.
  • the second analysis unit 42 creates a frequency distribution FD_X_1 related to a plurality of reflection points RP_3 corresponding to the frequency group FG_Y_1.
  • FIG. 17 shows an example of the frequency distribution FD_X_1.
  • the frequency distribution FD_X_1 includes frequencies (F_X_1 in the figure) corresponding to a plurality of reflection points RP_3.
  • the second analysis unit 42 executes peak separation processing for the frequency distribution FD_X_1. As a result, one frequency group FG_X_1 is set. That is, the frequency group FG_X_1 corresponds to a plurality of reflection points RP_3.
  • the second analysis unit 42 creates a frequency distribution FD_X_2 related to a plurality of reflection points RP_4 and RP_5 corresponding to the frequency group FG_Y_2.
  • FIG. 18 shows an example of the frequency distribution FD_X_2.
  • the frequency distribution FD_X_2 includes a frequency corresponding to a plurality of reflection points RP_4 (F_X_2_1 in the figure) and a frequency corresponding to the plurality of reflection points RP_5 (F_X_2_2 in the figure).
  • the second analysis unit 42 executes peak separation processing for the frequency distribution FD_X_2.
  • two frequency groups FG_X_2_1 and FG_X_2_2 are set. That is, the frequency group FG_X_2_1 corresponds to a plurality of reflection points RP_4. Further, the frequency group FG_X_2_2 corresponds to a plurality of reflection points RP_5.
  • the grouping unit 14 sets one reflection point group PG_1 corresponding to the frequency group FG_Y_1 and the frequency group FG_X_1. Further, the grouping unit 14 sets one reflection point group PG_2_1 corresponding to the frequency group FG_Y_1 and the frequency group FG_X_2_1. Further, the grouping unit 14 sets one reflection point group PG_2_2 corresponding to the frequency group FG_Y_2 and the frequency group FG_X_2_2. As a result, as shown in FIG. 15, three reflection point groups PG_1, PG_2_1, PG_2, which correspond one-to-one with the three obstacles O_3, O_4, O_5 are set.
  • a range in which the frequency F continuously exceeds a predetermined value may be extracted as one frequency group FG.
  • a clustering method such as the k-nearest neighbor method may be used.
  • the height determination unit 53 uses the waveform information included in the reflection point information corresponding to each reflection point RP, and the intensity of the received signal RS corresponding to each reflection point RP (hereinafter referred to as “received signal intensity”). Two feature quantities FA1 and FA2 related to SS are detected. Each of the feature quantities FA1 and FA2 has a correlation with the received signal strength SS.
  • the feature amount FA1 is referred to as “first feature amount”. Further, the feature amount FA2 is referred to as a “second feature amount”. Further, a waveform indicating the received signal strength SS with respect to time is referred to as a “received signal waveform”. FIG. 19 shows an example of the received signal waveform.
  • the height determination unit 53 detects the width (hereinafter referred to as “waveform width”) WW of the portion where the received signal strength SS in the received signal waveform exceeds a predetermined threshold value SS_th.
  • the height determination unit 53 uses the detected waveform width WW for the first feature amount FA1 or the second feature amount FA2.
  • the height determination unit 53 detects the area (hereinafter referred to as “waveform area”) WA of the portion where the received signal strength SS in the received signal waveform exceeds the threshold value SS_th.
  • the height determination unit 53 uses the detected waveform area WA for the first feature amount FA1 or the second feature amount FA2.
  • the height determination unit 53 detects the maximum value (hereinafter referred to as “waveform height”) WH of the height of the portion where the received signal strength SS in the received signal waveform exceeds the threshold value SS_th.
  • the height determination unit 53 uses the detected waveform height WH for the first feature amount FA1 or the second feature amount FA2.
  • the height determination unit 53 detects any two values of the waveform width WW, the waveform area WA, and the waveform height WH for each reflection point RP.
  • the height determination unit 53 uses one of the two detected values for the first feature amount FA1 and uses the other one of the two detected values. Used for the second feature amount FA2.
  • each reflection point group PG includes a plurality of reflection point RPs. Therefore, for each reflection point group PG, a plurality of first feature quantities FA1 corresponding to the plurality of reflection point RPs are detected, and a plurality of second feature quantities corresponding to the plurality of reflection point RPs are detected. FA2 is detected.
  • the height determination unit 53 calculates a statistic (hereinafter, sometimes referred to as “first statistic”) S1 based on a plurality of corresponding first feature amounts FA1 for each reflection point group PG. Further, the height determination unit 53 calculates a statistic (hereinafter, may be referred to as “second statistic value”) S2 based on a plurality of corresponding second feature amounts FA2 for each reflection point group PG.
  • various statistics can be used for the first statistic S1.
  • an instantaneous value, an average value, a variance value, or a median value obtained by a plurality of first feature quantities FA1 can be used.
  • a value obtained by combining any two or more of these values can be used.
  • various statistics can be used for the second statistic S2.
  • an instantaneous value, an average value, a variance value, or a median value obtained by a plurality of second feature quantities FA2 can be used.
  • a value obtained by combining any two or more of these values can be used.
  • a coordinate system having a first axis corresponding to the first statistic S1 and having a second axis corresponding to the second statistic S2 is referred to as a "feature amount coordinate system".
  • the height determination unit 53 is preset with threshold values S_th_1 and S_th_2 in the feature coordinate system.
  • FIG. 20 shows an example of the threshold values S_th_1 and S_th_2.
  • the threshold value S_th_1 corresponds to the threshold value H_th_1 related to the discrimination between the road surface obstacle and the road obstacle.
  • the threshold value S_th_2 corresponds to the threshold value H_th_2 related to the discrimination between the road obstacle and the traveling obstacle.
  • the height determination unit 53 plots the statistics S1 and S2 corresponding to the individual reflection point cloud PGs in the feature coordinate system.
  • the height determination unit 53 determines that the corresponding obstacle O is a road surface obstacle.
  • the height determination unit 53 determines that the corresponding obstacle O is a road obstacle.
  • the plotted statistics S1 and S2 are included in the range R_3 of the threshold value S_th_2 or more, the height determination unit 53 determines that the corresponding obstacle O is a traveling obstacle.
  • the height determination unit 53 determines that the corresponding obstacle O is a road surface obstacle. Determine. Further, when the statistics S1-2 and S2_2 corresponding to the other one reflection point group PG are included in the range R_2 (see FIG. 20), the height determination unit 53 indicates that the corresponding obstacle O is a road obstacle. To determine. Further, when the statistics S1_3 and S2_3 corresponding to the other one reflection point group PG are included in the range R_3 (see FIG. 20), the height determination unit 53 indicates that the corresponding obstacle O is a traveling obstacle. To determine.
  • the width determination unit 51 determines that a certain obstacle O is a wide obstacle, and the height determination unit 53 determines that it is a road obstacle. In this case, the identification unit 15 identifies that the obstacle O is a curb. If not, the identification unit 15 identifies that the obstacle O is not a curb.
  • the identification unit 15 determines that the obstacle O is a parking obstacle. If not, the identification unit 15 identifies that the obstacle O is not a parking obstacle.
  • the identification unit 15 identifies that the traveling obstacle is a parking obstacle.
  • the width determination unit 51 determines that the first obstacle O is a wide obstacle, and the height determination unit 53 determines that it is a road obstacle or a road surface obstacle. Further, it is assumed that the width determination unit 51 determines that the second obstacle O is a narrow obstacle. Further, it is assumed that the position determination unit 52 determines that the second obstacle O is located behind the first obstacle O.
  • the identification unit 15 identifies that the first obstacle O is not a parking obstacle and that the second obstacle O is a parking obstacle. In other words, the identification unit 15 identifies the second obstacle O as a parking obstacle regardless of the determination result of the height H of the second obstacle O by the height determination unit 53.
  • the accuracy of determining the height H by the height determining unit 53 may decrease due to the small number of corresponding reflection point RPs.
  • a narrow obstacle located on the back side of a curb or a step is likely to be a traveling obstacle (for example, a utility pole, a pole, or a signboard). Therefore, the identification unit 15 identifies the second obstacle O as a parking obstacle regardless of the determination result of the height H.
  • the width determination unit 51 determines that the first obstacle O is a wide obstacle. Further, it is assumed that the position determination unit 52 determines that the second obstacle O is located behind the first obstacle O.
  • the identification unit 15 identifies that the first obstacle O is not a parking obstacle. In other words, the identification unit 15 identifies that the first obstacle O is not a parking obstacle, regardless of the determination result of the height H of the first obstacle O by the height determination unit 53.
  • the traveling obstacle usually has a height H larger than the mounting height of the distance measuring sensor 2 in the vehicle 1. Therefore, when there is another obstacle behind the wide obstacle and the wide obstacle is a traveling obstacle, the reflected wave from the other obstacle is received by the distance measuring sensor 2. It is considered that there is no such thing. Therefore, the identification unit 15 identifies the first obstacle O as not being a parking obstacle regardless of the determination result of the height H.
  • the distance d_Y between reflection points in the Y direction between two obstacles O is determined according to the position of the two obstacles O in the real space.
  • the distance d_X between the reflection points in the X direction of each obstacle O is determined according to the speed V of the vehicle 1, and the time interval ⁇ T at which the exploration wave is transmitted by the distance measuring sensor 2. It is decided according to. That is, the lower the speed V of the vehicle 1, the smaller the distance d_X between the reflection points, and the denser the arrangement of the reflection points RP in the X direction. On the other hand, the higher the speed V of the vehicle 1, the larger the distance d_X between the reflection points, so that the arrangement of the reflection points RP in the X direction becomes sparse.
  • the shorter the time interval ⁇ T the smaller the distance d_X between the reflection points, and the denser the arrangement of the reflection points RP in the X direction.
  • the time interval ⁇ T becomes larger, the distance d_X between the reflection points becomes larger, so that the arrangement of the reflection points RP in the X direction becomes sparse.
  • the distance d_Y between the reflection points between the reflection points RP_3_1 and RP_4_1 depends on the position of the obstacles O_3 and O_4 in the real space. It is fixed.
  • the distance d_X between the reflection points between the reflection points RP_3_1 and RP_3_2, that is, the distance d_X between the reflection points between the reflection points RP_4_1 and RP_4_2 is determined according to the velocity V and according to the time interval ⁇ T. It is decided.
  • the distance between the reflection points d_X may be larger than the distance d_Y between the reflection points, as shown in FIG.
  • the distance between reflection points d_Y may be smaller than the distance between reflection points d_X.
  • the grouping unit in the conventional obstacle detection device includes the two reflection point RPs in the same reflection point group PG for each of the two reflection point RPs adjacent to each other when the distance d between the reflection points is small.
  • the two reflection point RPs are included in the reflection point group PGs different from each other.
  • the reflection points RP_3_1 and RP_3_2 and the reflection points RP_1 and RP_4_2 may be included in the same reflection point group PG due to the small distance d_Y between the reflection points. It was. Further, since the distance d_X between the reflection points is large, the reflection point RP_3_1 and the reflection point RP_3_2 are included in the reflection point group PG different from each other, and the reflection point RP_1 and the reflection point RP_4_2 are included in the reflection point group PG different from each other. There was a problem that there was something. That is, there is a problem that the reflection point group PG corresponding to each obstacle O cannot be set accurately.
  • the grouping unit 14 in the obstacle detection device 100 sets the reflection point group PG by executing the peak separation processing for each of the frequency distributions FD_Y and FD_X in each analysis region AA as described above. To do.
  • the reflection point cloud group PG corresponding to each obstacle O can be accurately set in each analysis region AA.
  • two reflection point cloud group PGs corresponding to two obstacles O_3 and O_4 can be set one-to-one.
  • the reflection point group PG corresponding to the curb and the reflection point corresponding to the parking obstacle A group PG can be set.
  • the reflection point group setting process it is preferable to use a plurality of reflection point RPs corresponding to the first wave to the Nth wave. As a result, the reflection point cloud group PG corresponding to each obstacle O can be set more accurately.
  • the discontinuous portion detection unit 12 may use the distance d between the reflection points in the plurality of reflection point RPs corresponding to the nth wave for the discontinuous portion detection process. That is, the discontinuous portion detection unit 12 replaces the plurality of reflection point RPs corresponding to the first wave with the plurality of reflection point RPs corresponding to the second wave or the plurality of reflection points corresponding to the third wave. The distance d between reflection points in the RP may be used for the discontinuous portion detection process.
  • the obstacle O_6 is composed of, for example, a step.
  • square marks ( ⁇ ) indicate individual reflection point RPs corresponding to the third wave.
  • the discontinuous portions DP_1 and DP_2 may not be detected.
  • two discontinuous portions DP_1 and DP_2 can be detected by using the distance d between the reflection points in the plurality of reflection point RPs corresponding to the second wave. Therefore, it is preferable to use the distance d between the reflection points in the plurality of reflection point RPs corresponding to the second wave.
  • the discontinuous portion detection unit 12 uses each of the first wave to the Nth wave instead of using the distance d between the reflection points in the plurality of reflection point RPs corresponding to the nth wave for the discontinuous portion detection process.
  • the distance d between the reflection points in the plurality of reflection point RPs corresponding to the above may be used for the discontinuous portion detection process. As a result, the discontinuous portion DP can be detected more reliably.
  • the discontinuous part detection process is not limited to the one based on the first condition.
  • the discontinuous portion detecting unit 12 may detect the discontinuous portion DP as follows.
  • FIG. 23A there are five obstacles O_1 to O_4 and O_6 in the lateral region LA.
  • a plurality of reflection points RP_1, RP_2, RP_3, RP_4, RP_6 corresponding to the obstacle group OG are detected.
  • the nine reflection points RP_1 corresponding to the obstacle O_1 the nine reflection points RP_2 corresponding to the obstacle O_2, the twelve reflection points RP_3 corresponding to the obstacle O_3, and the obstacle O_4.
  • the corresponding four reflection points RP_4 and the 26 reflection points RP_6 corresponding to the obstacle O_6 are detected.
  • the discontinuous unit detection unit 12 calculates the variance value s in one or more distance measurement values D corresponding to each transmitted wave.
  • the discontinuous unit detection unit 12 calculates the amount of change ⁇ s of the calculated variance value s by performing time differentiation with respect to the calculated variance value s.
  • FIG. 23B shows an example of the variance value s with respect to time.
  • FIG. 23C shows an example of the amount of change ⁇ s with respect to time.
  • the time axis corresponds to the X axis.
  • the discontinuous unit detection unit 12 detects the discontinuous unit DP when the following conditions (hereinafter referred to as “second condition”) are satisfied for the calculated change amount ⁇ s. That is, the second condition is that the amount of change ⁇ s exceeds a predetermined threshold value ⁇ s_th.
  • the variance value s of the distance measurement value D corresponding to the reflected wave (including the first wave and the second wave) by the obstacles O_6 and O_1 is the reflected wave (third) by the obstacles O_6 and O_3.
  • the waves reflected by obstacles O_6, O_3, and O_4 (the first wave, the second wave, and the third wave) that are smaller than the variance value s of the ranging value D corresponding to the first wave and the second wave). It is smaller than the variance value s of the ranging value D corresponding to).
  • the dispersion value s of the ranging value D corresponding to the reflected wave (including the first wave and the second wave) by the obstacles O_6 and O_2 is the reflected wave (the first wave and the second wave) by the obstacles O_6 and O_3. It is smaller than the variance value s of the ranging value D corresponding to (including waves), and corresponds to the reflected waves (including the first wave, the second wave, and the third wave) by the obstacles O_6, O_3, and O_4. It is smaller than the variance value s of the distance measurement value D to be measured.
  • the second condition is satisfied at time t_1, and one discontinuous portion DP_1 is detected. Then, at time t_2, the second condition is satisfied and one discontinuous portion DP_2 is detected. That is, two discontinuous portions DP_1 and DP_2 are detected.
  • the dispersion value s may be the dispersion value of the ranging value D corresponding to all of the first wave to the Nth wave, or any two or more of the first wave to the Nth wave. It may be a variance value of the ranging value D corresponding to n waves. However, from the viewpoint of more reliably including the distance measurement value D corresponding to the reflected wave due to the obstacle O having a small height H (for example, a curb or a step) in the calculation of the dispersion value s, all of the first wave to the Nth wave. It is more preferable to use the variance value of the ranging value D corresponding to.
  • the discontinuous part detection process is not limited to the one based on the first condition or the second condition.
  • the discontinuous portion detecting unit 12 may detect the discontinuous portion DP as follows.
  • the discontinuous portion detection unit 12 has a plurality of sets of reflection point coordinate values calculated by the obstacle detection unit 11 from the time when the immediately preceding discontinuous portion DP is detected to the present time (hereinafter, "first reflection point"). It may be referred to as "coordinate value”.)
  • first reflection point a reflection point coordinate value calculated by the obstacle detection unit 11 from the time when the immediately preceding discontinuous portion DP is detected to the present time. It may be referred to as "coordinate value”.
  • a regression line or a regression curve in the XY coordinate system is calculated.
  • the regression curve is, for example, an arc-shaped or parabolic-shaped curve.
  • Various known techniques eg, least squares method
  • the discontinuous portion detection unit 12 includes the calculated regression line or regression curve, and at least one set of reflection point coordinate values newly calculated by the obstacle detection unit 11 (hereinafter, “second reflection point coordinate value”). In some cases, the distances from C_X and C_Y are calculated. The discontinuous unit detection unit 12 compares the calculated distance with a predetermined threshold value. When the calculated distance exceeds the threshold value, the discontinuous unit detecting unit 12 detects the time point corresponding to this distance as the discontinuous unit DP.
  • the threshold value is set to, for example, a constant multiple of the so-called “residual distribution".
  • the residual distribution indicates the degree of variation in the distribution of a plurality of sets of first reflection point coordinate values C_X and C_Y around the regression line or the regression curve.
  • the regression line or the regression curve corresponds to the uncalculated predicted values of the second reflection point coordinate values C_X and C_Y based on the continuity of the calculated first plurality of reflection point coordinate values C_X and C_Y. .. Further, the distance between the regression line or the regression curve and the second reflection point coordinate values C_X and C_Y corresponds to the residual related to the predicted value.
  • the discontinuous unit detection unit 12 satisfies the condition that the value indicating the residual value related to the predicted value (hereinafter referred to as “residual value”) exceeds a predetermined threshold value (hereinafter referred to as “third condition”).
  • residual value the value indicating the residual value related to the predicted value
  • third condition a predetermined threshold value
  • the discontinuous unit detection unit 12 may detect the discontinuous unit DP when the first condition and the second condition are satisfied. Alternatively, the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when the first condition and the third condition are satisfied. Alternatively, the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when the second condition and the third condition are satisfied. Alternatively, the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when the first condition, the second condition, and the third condition are satisfied. That is, the discontinuous portion detecting unit 12 may detect the discontinuous portion DP under a plurality of conditions.
  • the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when at least one of the first condition and the second condition is satisfied. Alternatively, the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when at least one of the first condition and the third condition is satisfied. Alternatively, the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when at least one of the second condition and the third condition is satisfied. Alternatively, the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when at least one of the first condition, the second condition, and the third condition is satisfied. That is, the discontinuous portion detecting unit 12 may detect the discontinuous portion DP under a plurality of conditions.
  • the discontinuous unit detecting unit 12 may detect the discontinuous unit DP when at least two of the first condition, the second condition, and the third condition are satisfied. That is, the discontinuous portion detecting unit 12 may detect the discontinuous portion DP based on the result of majority voting under a plurality of conditions.
  • the detection accuracy of the discontinuous portion DP can be improved.
  • the discontinuous part DP can be detected accurately.
  • the analysis region extraction unit 13 When a predetermined time or a predetermined distance elapses in a state where the discontinuous portion DP is not detected by the discontinuous portion detecting unit 12, the analysis region extraction unit 13 newly divides the side region LA regardless of the discontinuous portion DP.
  • the analysis area AA may be set. In other words, the analysis area extraction unit 13 may divide the one analysis area AA into a plurality of analysis areas AA when the width of one analysis area AA exceeds a predetermined width. ..
  • the predetermined width is set to, for example, a value about twice the width of the parking space for the vehicle 1.
  • the analysis area extraction unit 13 is a discontinuous unit.
  • a new analysis area AA may be set by dividing the side area LA regardless of the DP.
  • the analysis area extraction unit 13 converts the one analysis area AA into a plurality of analysis areas AA. It may be divided.
  • the subsequent processing that is, the analysis area extraction processing, the grouping processing, the identification processing and the output processing
  • the discontinuous portion DP can be executed. Parking assistance control can be performed.
  • the amount of reflection point information corresponding to each analysis region AA can be reduced. As a result, it is possible to reduce the size of the storage area for reflection point information corresponding to each analysis area AA.
  • the identification unit 15 determines whether the individual obstacle O is a low-profile obstacle. It may be used to determine whether it is a tall obstacle.
  • the threshold value S_th_3 in the feature amount coordinate system is preset in the height determination unit 53.
  • FIG. 24 shows an example of the threshold value S_th_3.
  • the threshold value S_th_3 corresponds to the threshold value H_th_3 related to the discrimination between the low-back obstacle and the high-back obstacle.
  • the height determination unit 53 plots the statistics S1 and S2 corresponding to the individual reflection point cloud PGs in the feature coordinate system.
  • the height determination unit 53 determines that the corresponding obstacle O is a low-profile obstacle.
  • the height determination unit 53 determines that the corresponding obstacle O is a tall obstacle.
  • the height determination unit 53 indicates that the corresponding obstacle O is a low-profile obstacle. To determine. Further, when the statistics S1_5 and S2_5 corresponding to the other one reflection point group PG are included in the range R_5 (see FIG. 24), the height determination unit 53 indicates that the corresponding obstacle O is a tall obstacle. Determine if there is.
  • the exploration wave may be reflected multiple times between the obstacle O and the vehicle 1.
  • so-called “multiple reflected waves” may be received.
  • the reflection point RP corresponding to the multiple reflected wave is a so-called “virtual image”.
  • the imaginary image has a Y coordinate value C_Y corresponding to a value obtained by an integral multiple of 2 or more with respect to the distance between the obstacle O and the vehicle 1. It is preferable that the imaginary image is excluded from the target of the identification process.
  • the identification unit 15 has a Y coordinate value C_Y corresponding to a value obtained by an integral multiple of 2 or more with respect to the distance between the wide obstacle and the vehicle 1 for the wide obstacle located on the foremost side with respect to the vehicle 1.
  • the reflection point cloud group PG may be excluded from the target of the identification process. As a result, the virtual image based on the multiple reflected waves can be excluded from the target of the identification process.
  • the output unit 16 obtains information about the parking obstacle from the identification result signal. It may be excluded. In other words, when the parking obstacle is located behind the curb, the output unit 16 outputs information about the parking obstacle only when the distance between the curb and the parking obstacle is less than or equal to a predetermined distance. It may be included in the identification result signal.
  • the parking support system 300 may include a plurality of distance measuring sensors instead of one distance measuring sensor 2. That is, the plurality of distance measuring sensors may be provided on each of the left side portion of the vehicle 1, the right side portion of the vehicle 1, or the left side portion of the vehicle 1 and the right side portion of the vehicle 1.
  • the first statistic S1 is a plurality of first feature quantities related to the plurality of transmissions / receptions when a plurality of transmissions / receptions are realized by one or more transmissions / receptions by each of the plurality of distance measuring sensors. It may be a statistic based on FA1. Further, the second statistic S2 may be a statistic based on a plurality of second feature quantities FA2 related to the transmission / reception of the plurality of times.
  • the obstacle detection device 100 uses the distance measuring sensor 2 provided in the vehicle 1 to detect the obstacle group OG in the lateral region LA with respect to the moving vehicle 1 together with the obstacle detection unit 11.
  • the discontinuous part detection unit 12 that detects the discontinuous part DP in the obstacle group OG
  • the analysis area extraction unit 13 that extracts the analysis area AA based on the discontinuous part DP
  • a plurality of reflection point RPs in the analysis area AA By analyzing the frequency distributions FD_Y and FD_X related to the above, a grouping unit 14 for setting a plurality of reflection point group PGs corresponding to a plurality of obstacles O included in the obstacle group OG, and a plurality of obstacles.
  • the distance between the curb and the parking obstacle is predetermined with the identification unit 15 that identifies whether each of the O's is a curb or not and whether each of the plurality of obstacles O is a parking obstacle. It includes an output unit 16 that outputs at least a signal (identification result signal) indicating the position of a parking obstacle when the distance is less than or equal to the distance.
  • the reflection point group PG corresponding to the curb and the reflection point group PG corresponding to the parking obstacle can be set. Can be done. As a result, at least a signal indicating the position of the parking obstacle (identification result signal) can be output.
  • the discontinuous portion detection unit 12 detects the discontinuous portion DP when the first condition is satisfied, and the first condition is between the reflection points in the plurality of reflection point RPs corresponding to the nth wave.
  • the distance d is calculated, it is a condition that the calculated distance d between reflection points exceeds the threshold value d_th.
  • the discontinuous unit detection unit 12 detects the discontinuous unit DP when the second condition is satisfied, and the second condition is in one or more distance measurement values D corresponding to each transmitted wave.
  • the variance value s is calculated, it is a condition that the calculated change amount ⁇ s exceeds the threshold value ⁇ s_th when the change amount ⁇ s of the calculated dispersion value s is calculated.
  • the discontinuous portion detecting unit 12 detects the discontinuous portion DP when the third condition is satisfied, and the third condition is the continuity in the calculated reflection point coordinate values C_X and C_Y.
  • the calculated residual value I is a condition that exceeds the threshold value.
  • the discontinuous portion detecting unit 12 detects the discontinuous portion DP when at least one of the first condition and the second condition is satisfied, and the first condition is a plurality of corresponding nth waves.
  • the condition is that the calculated distance d between the reflection points exceeds the threshold value d_th
  • the second condition is 1 corresponding to each transmitted wave.
  • the dispersion value s for more than one distance measurement value D is calculated, when the change amount ⁇ s of the calculated dispersion value s is calculated, the calculated change amount ⁇ s exceeds the threshold value ⁇ s_th. is there.
  • the discontinuous portion detecting unit 12 detects the discontinuous portion DP when the first condition and the third condition are satisfied, and the first condition is a plurality of reflection point RPs corresponding to the nth wave.
  • the condition is that the calculated distance d between the reflection points exceeds the threshold value d_th
  • the third condition is the calculated plurality of sets of reflection point coordinate values C_X and C_Y.
  • the predicted value of at least one set of uncalculated reflection point coordinate values C_X and C_Y is calculated based on the continuity in, and the residual value related to the calculated predicted value is calculated, the calculated value is calculated.
  • the condition is that the residual value exceeds the threshold value.
  • the discontinuous unit detecting unit 12 detects the discontinuous unit DP when at least one of the second condition and the third condition is satisfied, and the second condition corresponds to each transmission wave.
  • the condition that the calculated change amount ⁇ s exceeds the threshold value ⁇ s_th when the change amount ⁇ s of the calculated variance value s is calculated.
  • the third condition is that when the predicted values of at least one set of uncalculated reflection point coordinate values C_X and C_Y are calculated based on the continuity of the calculated plurality of sets of reflection point coordinate values C_X and C_Y.
  • the residual value related to the calculated predicted value it is a condition that the calculated residual value exceeds the threshold value.
  • the discontinuous portion detecting unit 12 detects the discontinuous portion DP when at least one of the first condition, the second condition and the third condition is satisfied, and the first condition is the nth wave.
  • the condition is that the calculated distance d between the reflection points exceeds the threshold value d_th
  • the second condition is the transmitted wave of each time.
  • the dispersion value s in one or more distance measurement values D corresponding to is calculated, when the change amount ⁇ s of the calculated dispersion value s is calculated, the calculated change amount ⁇ s sets the threshold value ⁇ s_th.
  • the third condition is that the predicted values of at least one set of uncalculated reflection point coordinate values C_X and C_Y are calculated based on the continuity of the calculated plurality of sets of reflection point coordinate values C_X and C_Y.
  • the residual value related to the calculated predicted value it is a condition that the calculated residual value exceeds the threshold value.
  • the analysis area extraction unit 13 divides the analysis area AA into a plurality of analysis areas AA when the calculated number of the distance measurement values D corresponding to the analysis area AA exceeds a predetermined number. As a result, the amount of reflection point information corresponding to each analysis region AA can be reduced. As a result, it is possible to reduce the size of the storage area for reflection point information corresponding to each analysis area AA.
  • Embodiment 2 Normally, when the parking support system 300 searches for a parking space, the vehicle 1 moves in a direction along the longitudinal direction of a wide obstacle (for example, a curb or a step). Therefore, the arrangement direction of the plurality of reflection point RPs corresponding to the wide obstacle (hereinafter referred to as “reflection point arrangement direction”) is parallel or substantially parallel to the moving direction of the vehicle 1. That is, the reflection point arrangement direction is parallel to or substantially parallel to the X-axis.
  • parallel or substantially parallel is simply referred to as "parallel”.
  • FIG. 25 shows an example of a plurality of reflection points RP_3 and RP_4 corresponding to a plurality of obstacles O_3 and O_4 in one analysis region AA_2 in such a state.
  • the first analysis unit 41 creates a frequency distribution FD_Y related to a plurality of reflection points RP_3 and RP_4 in the analysis region AA_2.
  • FIG. 26 shows an example of the frequency distribution FD_Y.
  • the frequency distribution FD_Y includes frequencies (F_Y in the figure) corresponding to a plurality of reflection points RP_3 and RP_4.
  • the first analysis unit 41 executes peak separation processing for the frequency distribution FD_Y. As a result, one frequency group FG_Y corresponding to the plurality of reflection points RP_3 and RP_4 is set.
  • the second analysis unit 42 creates a frequency distribution FD_X related to a plurality of reflection points RP_3 and RP_4 corresponding to the frequency group FG_Y.
  • FIG. 27 shows an example of the frequency distribution FD_X.
  • the frequency distribution FD_X includes frequencies (F_X in the figure) corresponding to a plurality of reflection points RP_3 and RP_4.
  • the second analysis unit 42 executes peak separation processing for the frequency distribution FD_X. As a result, one frequency group FG_X corresponding to the plurality of reflection points RP_3 and RP_4 is set.
  • the grouping unit 14 sets one reflection point group PG corresponding to the frequency group FG_Y and the frequency group FG_X. As a result, as shown in FIG. 25, one reflection point group PG corresponding to the two obstacles O_3 and O_4 is set.
  • the obstacle detection device is intended to solve such a problem.
  • FIG. 28 is a block diagram showing a main part of the parking support system including the obstacle detection device according to the second embodiment.
  • FIG. 29 is a block diagram showing a main part of the grouping unit in the obstacle detection device according to the second embodiment. The obstacle detection device according to the second embodiment will be described with reference to FIGS. 28 and 29.
  • FIG. 28 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 29, the same blocks as those shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the vehicle 1 has a distance measuring sensor 2, an obstacle detection device 100a, and a parking support device 200.
  • the distance measuring sensor 2, the obstacle detection device 100a, and the parking support device 200 constitute a main part of the parking support system 300a.
  • the obstacle detection device 100a includes an obstacle detection unit 11, a discontinuous unit detection unit 12, an analysis area extraction unit 13, a grouping unit 14a, an identification unit 15, and an output unit 16.
  • the grouping unit 14a has a first analysis unit 41, a second analysis unit 42, and a correction unit 43.
  • the correction unit 43 sets the individual reflection point coordinate values C_X and C_Y included in the reflection point information acquired by the grouping unit 14a. By correcting, the reflection point arrangement direction is made parallel to the moving direction of the vehicle 1. A specific example of the correction method by the correction unit 43 will be described with reference to FIGS. 31 and 32.
  • the first analysis unit 41 uses the Y coordinate value C_Y corrected by the correction unit 43 to create the frequency distribution FD_Y. Further, the second analysis unit 42 uses the X coordinate value C_X corrected by the correction unit 43 to create the frequency distribution FD_X.
  • grouping processes the processes executed by the grouping unit 14a may be collectively referred to as "grouping processes". That is, the grouping process executed by the grouping unit 14a corrects the individual reflection point coordinate values C_X and C_Y in addition to the same processing as the processing included in the grouping process executed by the grouping unit 14. It includes processing and so on.
  • each function of the obstacle detection unit 11, the discontinuous unit detection unit 12, the analysis area extraction unit 13, the grouping unit 14a, the identification unit 15, and the output unit 16 is realized by the processor 61 and the memory 62. It may be present, or it may be realized by a dedicated processing circuit 63.
  • the operation of the parking support system 300a will be described focusing on the operations of the obstacle detection device 100a and the parking support device 200.
  • the same steps as those shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST4a the grouping unit 14a executes the grouping process.
  • steps ST5 to ST7 are executed.
  • the correction unit 43 sets a straight line (hereinafter referred to as "reference straight line”) SL_ref parallel to the X axis. Further, the correction unit 43 detects the straight line SL along the reflection point arrangement direction by using the reflection point information acquired by the grouping unit 14a. Next, the correction unit 43 calculates the angle ⁇ of the straight line SL with respect to the reference straight line SL_ref.
  • the correction unit 43 obtains the reflection point positions so that the positions of all the reflection point RPs in the corresponding analysis region AA rotate at a rotation angle ( ⁇ ) corresponding to the calculated angle ⁇ .
  • the individual reflection point coordinate values C_X and C_Y included in the information are corrected.
  • the rotation it is possible to realize a state in which the reflection point arrangement direction is parallel to the moving direction of the vehicle 1.
  • any point in the XY coordinate system can be used as the center of the rotation.
  • the center of rotation is shared by all reflection point RPs in the corresponding analysis region AA.
  • the correction unit 43 may detect the straight line SL by executing the straight line detection using the Hough transform on the plurality of reflection point RPs in the corresponding analysis region AA.
  • the correction unit 43 may detect the straight line SL by executing the straight line detection using the RANSAC (Random Sample Consensus) algorithm.
  • RANSAC Random Sample Consensus
  • M is an arbitrary integer of 2 or more.
  • the correction unit 43 indicates the number of reflection point RPs with respect to the Y coordinate value C_Y in a state where the positions of all reflection point RPs in the corresponding analysis region AA are rotated at a rotation angle ( ⁇ _1) corresponding to the angle ⁇ _1. Create a frequency distribution FD_ ⁇ _1. Further, the correction unit 43 has the number of reflection point RPs with respect to the Y coordinate value C_Y in a state where the positions of all reflection point RPs in the corresponding analysis region AA are rotated at a rotation angle ( ⁇ _2) corresponding to the angle ⁇ _2. Create a frequency distribution FD_ ⁇ _2 showing.
  • the correction unit 43 creates frequency distributions FD_ ⁇ _3 to FD_ ⁇ _M corresponding to the rotation angles ( ⁇ _3 to ⁇ _M), respectively. As a result, M frequency distributions FD_ ⁇ _1 to FD_ ⁇ _M are created.
  • any point in the XY coordinate system can be used as the center of the rotation.
  • the center of rotation is shared by all reflection point RPs in the corresponding analysis region AA.
  • the correction unit 43 calculates the maximum value F_max in each of the created frequency distributions FD_ ⁇ _1 to FD_ ⁇ _M. As a result, M maximum values F_max_1 to F_max_M corresponding to M frequency distributions FD_ ⁇ _1 to FD_ ⁇ _M on a one-to-one basis are calculated.
  • the correction unit 43 selects the largest value among the M maximum values F_max_1 to F_max_M.
  • the correction unit 43 selects an angle ⁇ corresponding to the selected value among the M angles ⁇ _1 to ⁇ _M.
  • the correction unit 43 obtains the reflection point positions so that the positions of all the reflection point RPs in the corresponding analysis region AA rotate at a rotation angle ( ⁇ ) corresponding to the selected angle ⁇ .
  • the individual reflection point coordinate values C_X and C_Y included in the information are corrected.
  • the angles ⁇ _1 to ⁇ _M may be set to different values. In other words, each of the angles ⁇ _1 to ⁇ _M may be set to any value. However, it is more preferable that the angles ⁇ _1 to ⁇ _M are set to the following values.
  • the angles ⁇ _1 to ⁇ _M are preferably set to values obtained by dividing the angle range ⁇ of the lower limit value ⁇ _min or more and the upper limit value ⁇ _max or less into M equal parts.
  • the lower limit value ⁇ _min is a value based on the following equation (1).
  • the upper limit value ⁇ _max is a value based on the following equation (2).
  • ⁇ _min ⁇ c ⁇ ( ⁇ w / 2) (1)
  • ⁇ _max ⁇ c + ( ⁇ w / 2) (2)
  • this is in consideration of not irradiating the obstacle O in the angle range below the lower limit value ⁇ _min with the exploration wave. Further, this is in consideration of not irradiating the obstacle O in the angle range exceeding the upper limit value ⁇ _max with the exploration wave.
  • the obstacle detection device 100a can employ various modifications similar to those described in the first embodiment. Further, the parking support system 300a can adopt various modifications similar to those described in the first embodiment.
  • the grouping unit 14a corrects the individual reflection point coordinate values C_X and C_Y so that the reflection point arrangement direction is parallel to the movement direction of the vehicle 1.
  • the reflection point cloud group PG corresponding to each obstacle O can be set regardless of the course of the vehicle 1.
  • FIG. 33 is a block diagram showing a main part of the parking support system including the obstacle detection device according to the third embodiment.
  • FIG. 34 is a block diagram showing a main part of the identification unit in the obstacle detection device according to the third embodiment. The obstacle detection device according to the third embodiment will be described with reference to FIGS. 33 and 34.
  • FIG. 33 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 34 the same blocks as those shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • the vehicle 1 has a distance measuring sensor 2, an obstacle detection device 100b, and a parking support device 200a.
  • the distance measuring sensor 2, the obstacle detection device 100b, and the parking support device 200a constitute a main part of the parking support system 300b.
  • the obstacle detection device 100b includes an obstacle detection unit 11, a discontinuous unit detection unit 12, an analysis area extraction unit 13, a grouping unit 14, an identification unit 15a, and an output unit 16.
  • the parking support device 200a has a parking support control unit 21a.
  • the identification unit 15a has a width determination unit 51, a position determination unit 52, a height determination unit 53, and a movement determination unit 54.
  • the motion determination unit 54 determines whether or not each obstacle O identified as a parking obstacle by the identification unit 15a is a dynamic obstacle by using the reflection point information acquired by the identification unit 15a. It is something to do. A specific example of the determination method by the motion determination unit 54 will be described later.
  • the processes executed by the identification unit 15a may be collectively referred to as "identification processing". That is, the identification process executed by the identification unit 15a determines whether or not each parking obstacle is a dynamic obstacle, in addition to the same process as the process included in the identification process executed by the identification unit 15. It includes the process of making a judgment.
  • the output unit 16 outputs a signal indicating the result of the identification process, that is, the identification result signal to the parking support control unit 21a.
  • the identification result signal in the third embodiment includes information indicating whether or not each obstacle O is a curb, information indicating whether or not each obstacle O is a parking obstacle, and individual obstacles.
  • the information indicating whether or not each parking obstacle is a dynamic obstacle is included.
  • the parking support control unit 21a executes parking support control similar to the parking support control executed by the parking support control unit 21. That is, the parking support control unit 21a executes control for realizing automatic parking, for example.
  • the parking support control unit 21a executes a control for sounding the horn of the vehicle 1 and excludes the dynamic obstacle from the target of avoidance in automatic parking. It has become.
  • This utilizes the fact that the dynamic obstacle usually includes a human being, but when the vehicle 1 sounds a horn, it is highly probable that the dynamic obstacle portion moves so as to avoid the vehicle 1. As a result, it is possible to prevent the vehicle 1 from making unnecessary avoidance in automatic parking.
  • each function of the obstacle detection unit 11, the discontinuous unit detection unit 12, the analysis area extraction unit 13, the grouping unit 14, the identification unit 15a, and the output unit 16 is realized by the processor 61 and the memory 62. It may be present, or it may be realized by a dedicated processing circuit 63.
  • the hardware configuration of the main part of the parking support device 200a is the same as that described with reference to FIGS. 7 and 8 in the first embodiment. Therefore, illustration and description will be omitted. That is, the function of the parking support control unit 21a may be realized by the processor 71 and the memory 72, or may be realized by the dedicated processing circuit 73.
  • FIG. 35 the operation of the parking support system 300b will be described focusing on the operations of the obstacle detection device 100b and the parking support device 200a.
  • the same steps as those shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST5a the process of step ST6 is executed.
  • step ST7a the parking support control
  • the motion determination unit 54 executes frequency analysis on the waveform of the received signal RS corresponding to each reflection point RP by using the waveform information included in the reflection point information corresponding to each reflection point RP. As a result, the first Doppler shift amount is calculated. Next, the motion determination unit 54 subtracts the component due to the movement of the vehicle 1 from the calculated first Doppler shift amount. As a result, the second Doppler shift amount is calculated. At this time, the component due to the movement of the vehicle 1 is calculated using the vehicle speed information.
  • the vehicle speed information is, for example, acquired by the obstacle detection device 100b by CAN communication.
  • the first Doppler shift amount is the Doppler shift amount based on the relative movement of the corresponding obstacle O with respect to the vehicle 1.
  • the second Doppler shift amount is a Doppler shift amount based on the absolute movement of the corresponding obstacle O.
  • the motion determination unit 54 calculates the moving speed of the corresponding obstacle O based on the calculated second Doppler shift amount and the speed of sound at the time when the corresponding reflected wave is received.
  • the speed of sound at that time is calculated using information indicating the temperature outside the vehicle at that time (hereinafter referred to as "temperature information”) and information indicating humidity outside the vehicle at that time (hereinafter referred to as “humidity information").
  • temperature information information indicating the temperature outside the vehicle at that time
  • humidity information information indicating humidity outside the vehicle at that time.
  • the temperature information and humidity information are, for example, acquired by the obstacle detection device 100b by CAN communication.
  • the motion determination unit 54 compares the calculated movement speed with a predetermined threshold value. When the movement speed is larger than the threshold value, the movement determination unit 54 determines that the corresponding obstacle O is a dynamic obstacle. If not, the motion determination unit 54 determines that the corresponding obstacle O is not a dynamic obstacle.
  • the received signal waveform corresponding to the dynamic obstacle has a plurality of peak portions P in the judgment time window (hereinafter referred to as “judgment window”) JW having a predetermined width w. That is, the received signal waveform corresponding to the dynamic obstacle has a substantially forest-like peak portion P.
  • FIG. 36 shows an example of a received signal waveform having three peak portions P_1, P_2, and P_3 in the determination window JW.
  • the width w is set to a value corresponding to, for example, the threshold value W_th_1 for identification of a narrow obstacle.
  • the surface shape of a static obstacle (for example, a utility pole, pole or signboard) is simpler than the surface shape of a dynamic obstacle (for example, a pedestrian). Therefore, the received signal waveform corresponding to the static obstacle has one peak portion P in the determination window JW. That is, the received signal waveform corresponding to the static obstacle has a substantially plate-shaped peak portion P.
  • FIG. 37 shows an example of a received signal waveform having one peak portion P in the determination window JW.
  • the motion determination unit 54 uses the waveform information included in the reflection point information corresponding to each reflection point RP, and the number of peak portions P in the determination window JW in the received signal waveform corresponding to each reflection point EP. Is calculated. When the calculated number is a predetermined number (for example, two) or more, the motion determination unit 54 determines that the corresponding obstacle O is a dynamic obstacle. If not, the motion determination unit 54 determines that the corresponding obstacle O is not a dynamic obstacle.
  • the obstacle detection device 100b can employ various modifications similar to those described in the first embodiment. Further, the parking support system 300b can adopt various modifications similar to those described in the first embodiment.
  • the obstacle detection device 100b may have a grouping unit 14a instead of the grouping unit 14.
  • the obstacle detection device 100b can employ various modifications similar to those described in the second embodiment.
  • the identification unit 15a determines whether or not the parking obstacle is a dynamic obstacle. Thereby, the determination result of whether or not the parking obstacle is a dynamic obstacle can be used for the parking support control. As a result, more appropriate parking support control can be realized.
  • the obstacle detection device of the present invention can be used in a parking support system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

障害物検知装置(100)は、車両(1)に設けられた測距センサ(2)を用いて、移動中の車両(1)に対する側方領域(LA)における障害物群(OG)を検知する障害物検知部(11)と、障害物群(OG)における非連続部(DP)を検知する非連続部検知部(12)と、非連続部(DP)に基づく解析領域(AA)を抽出する解析領域抽出部(13)と、解析領域(AA)における複数個の反射点(RP)に係る度数分布(FD_Y,FD_X)を解析することにより、障害物群(OG)に含まれる複数個の障害物(O)に対応する複数個の反射点群(PG)を設定するグループ化部(14)と、複数個の障害物(O)の各々が縁石であるか否かを識別するとともに、複数個の障害物(O)の各々が駐車障害物であるか否かを識別する識別部(15)と、縁石と駐車障害物間の距離が所定距離以下であるとき、少なくとも駐車障害物の位置を示す信号を出力する出力部(16)と、を備える。

Description

障害物検知装置
 本発明は、障害物検知装置に関する。
 従来、車両に設けられた測距センサを用いて、当該車両に対する周囲の領域における障害物を検知する装置が開発されている。特に、車両が低速度にて移動しているとき、当該車両に対する左方の領域(以下「左方領域」という。)又は当該車両に対する右方の領域(以下「右方領域」という。)における障害物を検知する装置が開発されている。以下、左方領域又は右方領域を総称して「側方領域」という。また、かかる装置を「障害物検知装置」という。
 また、従来、障害物検知装置を用いた駐車支援システムが開発されている。すなわち、障害物検知装置による検知結果に基づき、側方領域における駐車用の空間(以下「駐車スペース」という。)が検知される。次いで、当該検知された駐車スペースに対する駐車を支援するための制御(以下「駐車支援制御」という。)が実行される。
 ここで、特許文献1には、駐車スペースを検知する技術が開示されている。より具体的には、測定ウィンドウ内にて収集された複数の反響信号の分布幅に基づき駐車スペースの奥行き限度を確定する技術が開示されている(例えば、特許文献1の要約参照。)。
国際公開第2007/014595号
 駐車支援システムにおいては、駐車スペースを正確に検知すること及び駐車支援制御を正確に実行することが求められる。このため、複数個の障害物が側方領域に存在するとき、障害物検知装置においては、個々の障害物を検知することが求められる。また、個々の障害物の種別を識別すること及び個々の障害物の位置を判断することなどが求められる。
 例えば、縁石が側方領域に存在しており、かつ、駐車の妨げとなり得る障害物(以下「駐車障害物」という。)が側方領域に存在している場合において、縁石及び駐車障害物が互いに近接配置されているとき、個々の障害物が縁石であるか駐車障害物であるかを識別することが求められる。また、少なくとも駐車障害物の位置を判断することが求められる。また、当該判断された位置を示す信号を出力することが求められる。
 ここで、上記のとおり、特許文献1記載の技術は、測定ウィンドウ内にて収集された複数の反響信号の分布幅に基づき駐車スペースの奥行き限度を確定するものである。換言すれば、特許文献1記載の技術は、複数個の障害物が側方領域に存在するとき、個々の障害物を検知するものではない。したがって、複数個の障害物が側方領域に存在するとき、個々の障害物の種別を識別することができない問題があった。また、このとき、個々の障害物の位置を判断することができない問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、縁石及び駐車障害物が互いに近接配置されているとき、少なくとも駐車障害物の位置を示す信号を出力することができる障害物検知装置を提供することを目的とする。
 本発明の障害物検知装置は、車両に設けられた測距センサを用いて、移動中の車両に対する側方領域における障害物群を検知する障害物検知部と、障害物群における非連続部を検知する非連続部検知部と、非連続部に基づく解析領域を抽出する解析領域抽出部と、解析領域における複数個の反射点に係る度数分布を解析することにより、障害物群に含まれる複数個の障害物に対応する複数個の反射点群を設定するグループ化部と、複数個の障害物の各々が縁石であるか否かを識別するとともに、複数個の障害物の各々が駐車障害物であるか否かを識別する識別部と、縁石と駐車障害物間の距離が所定距離以下であるとき、少なくとも駐車障害物の位置を示す信号を出力する出力部と、を備えるものである。
 本発明によれば、上記のように構成したので、縁石及び駐車障害物が互いに近接配置されているとき、少なくとも駐車障害物の位置を示す信号を出力することができる。
実施の形態1に係る障害物検知装置を含む駐車支援システムの要部を示すブロック図である。 実施の形態1に係る障害物検知装置における障害物検知部の要部を示すブロック図である。 実施の形態1に係る障害物検知装置におけるグループ化部の要部を示すブロック図である。 実施の形態1に係る障害物検知装置における識別部の要部を示すブロック図である。 実施の形態1に係る障害物検知装置のハードウェア構成を示すブロック図である。 実施の形態1に係る障害物検知装置の他のハードウェア構成を示すブロック図である。 実施の形態1に係る障害物検知装置を含む駐車支援システムにおける駐車支援装置のハードウェア構成を示す説明図である。 実施の形態1に係る障害物検知装置を含む駐車支援システムにおける駐車支援装置の他のハードウェア構成を示す説明図である。 実施の形態1に係る障害物検知装置を含む駐車支援システムの動作を示すフローチャートである。 図10Aは、側方領域における4個の障害物の例、及び当該4個の障害物の各々に対応する複数個の反射点の例を示す説明図である。図10Bは、時間に対する反射点間距離の例を示す説明図である。 1個の解析領域における2個の障害物の例、当該2個の障害物の各々に対応する複数個の反射点の例、及び当該2個の障害物と一対一に対応する2個の反射点群の例を示す説明図である。 第1解析部における解析用の度数分布の例を示す説明図である。 第2解析部における解析用の度数分布の例を示す説明図である。 第2解析部における解析用の度数分布の例を示す説明図である。 1個の解析領域における3個の障害物の例、当該3個の障害物の各々に対応する複数個の反射点の例、及び当該3個の障害物と一対一に対応する3個の反射点群の例を示す説明図である。 第1解析部における解析用の度数分布の例を示す説明図である。 第2解析部における解析用の度数分布の例を示す説明図である。 第2解析部における解析用の度数分布の例を示す説明図である。 受信信号波形における波形幅、波形面積及び波形高さの例を示す説明図である。 特徴量座標系における2個の閾値及び3個の範囲の例を示す説明図である。 X方向に対する反射点間距離がY方向に対する反射点間距離よりも大きい状態の例を示す説明図である。 側方領域における5個の障害物の例、及び当該5個の障害物の各々に対応する複数個の反射点の例を示す説明図である。 図23Aは、側方領域における5個の障害物の例、及び当該5個の障害物の各々に対応する複数個の反射点の例を示す説明図である。図23Bは、時間に対する測距値の分散値の例を示す説明図である。図23Cは、時間に対する分散値の変化量の例を示す説明図である。 特徴量座標系における1個の閾値及び2個の範囲の例を示す説明図である。 1個の解析領域における2個の障害物の例、当該2個の障害物の各々に対応する複数個の反射点の例、及び当該2個の障害物と一対一に対応しない1個の反射点群の例を示す説明図である。 第1解析部における解析用の度数分布の例を示す説明図である。 第2解析部における解析用の度数分布の例を示す説明図である。 実施の形態2に係る障害物検知装置を含む駐車支援システムの要部を示すブロック図である。 実施の形態2に係る障害物検知装置におけるグループ化部の要部を示すブロック図である。 実施の形態2に係る障害物検知装置を含む駐車支援システムの動作を示すフローチャートである。 補正部における補正用の回転角度の例を示す説明図である。 補正部における補正用の度数分布の例を示す説明図である。 実施の形態3に係る障害物検知装置を含む駐車支援システムの要部を示すブロック図である。 実施の形態3に係る障害物検知装置における識別部の要部を示すブロック図である。 実施の形態3に係る障害物検知装置を含む駐車支援システムの動作を示すフローチャートである。 判断窓内に3個のピーク部を有する受信信号波形の例を示す説明図である。 判断窓内に1個のピーク部を有する受信信号波形の例を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る障害物検知装置を含む駐車支援システムの要部を示すブロック図である。図2は、実施の形態1に係る障害物検知装置における障害物検知部の要部を示すブロック図である。図3は、実施の形態1に係る障害物検知装置におけるグループ化部の要部を示すブロック図である。図4は、実施の形態1に係る障害物検知装置における識別部の要部を示すブロック図である。図1~図4を参照して、実施の形態1に係る障害物検知装置を含む駐車支援システムについて説明する。
 図1に示す如く、車両1は、測距センサ2、障害物検知装置100及び駐車支援装置200を有している。測距センサ2、障害物検知装置100及び駐車支援装置200により、駐車支援システム300の要部が構成されている。
 測距センサ2は、TOF(Time of Flight)方式の測距センサにより構成されている。測距センサ2は、例えば、超音波、電波(より具体的にはミリ波)又は光(より具体的にはレーザ光)を用いるものである。以下、測距センサ2により用いられる超音波、電波又は光などを総称して「探査波」という。また、測距センサ2により送信される又は送信された探査波を「送信波」ということがある。また、障害物Oにより反射される又は反射された探査波を「反射波」ということがある。また、測距センサ2により受信される又は受信された探査波を「受信波」ということがある。
 測距センサ2は、車両1の左側部に設けられている。または、測距センサ2は、車両1の右側部に設けられている。または、測距センサ2は、車両1の左側部及び車両1の右側部の各々に設けられている。
 車両1の左側部に設けられた測距センサ2は、車両1が所定速度(例えば30キロメートル毎時)PV以下の速度Vにて移動しているとき、所定の時間間隔ΔTにて左方領域に探査波を送信するものである。また、車両1の左側部に設けられた測距センサ2は、左方領域内の障害物群OGによる反射波を受信するものである。他方、車両1の右側部に設けられた測距センサ2は、車両1が所定速度PV以下の速度Vにて移動しているとき、所定の時間間隔ΔTにて右方領域に探査波を送信するものである。また、車両1の右側部に設けられた測距センサ2は、右方領域内の障害物群OGによる反射波を受信するものである。
 以下、車両1の左側部に測距センサ2が設けられている例を中心に説明する。
 ここで、障害物群OGは、0個の障害物O、1個の障害物O又は複数個の障害物Oを含むものである。個々の障害物Oは、例えば、壁、駐車中の他車両(以下「駐車車両」という。)、ガードレール、電柱、ポール、看板、植木、歩行者、自転車、車いす、ベビーカー、縁石、車輪止め又は段差により構成されている。
 以下、障害物Oの高さHに対する2個の閾値H_th_1,H_th_2が設定されているとき(H_th_1<H_th_2)、閾値H_th_1未満の高さHを有する障害物Oを「路面障害物」ということがある。また、閾値H_th_1以上かつ閾値H_th_2未満の高さHを有する障害物Oを「路上障害物」ということがある。また、閾値H_th_2以上の高さHを有する障害物Oを「走行障害物」ということがある。
 走行障害物は、車両1のバンパ部に接触し得る程度に大きい高さHを有している。走行障害物は、例えば、壁、駐車車両、ガードレール、電柱、ポール、看板、植木、歩行者、自転車、車いす及びベビーカーを含むものである。路上障害物は、車両1のバンパ部に接触し得ない程度に小さい高さHを有しており、かつ、車両1による乗り越えが困難である程度に大きい高さHを有している。路上障害物は、例えば、縁石及び車輪止めを含むものである。路面障害物は、車両1のバンパ部に接触し得ない程度に小さい高さHを有しており、かつ、車両1による乗り越えが容易である程度に小さい高さHを有している。路面障害物は、例えば、段差を含むものである。
 また、障害物Oの高さHに対する1個の閾値H_th_3が設定されているとき、閾値H_th_3未満の高さHを有する障害物Oを「低背障害物」ということがある。また、閾値H_th_3以上の高さHを有する障害物Oを「高背障害物」ということがある。
 閾値H_th_3は、例えば、閾値H_th_2と同等の値に設定されている。この場合、走行障害物が高背障害物に含まれるものであり、かつ、路上障害物及び路面障害物が低背障害物に含まれるものである。または、例えば、閾値H_th_3は、閾値H_th_1と同等の値に設定されている。この場合、走行障害物及び路上障害物が高背障害物に含まれるものであり、かつ、路面障害物が低背障害物に含まれるものである。
 また、障害物Oの幅Wに対する2個の閾値W_th_1,W_th_2が設定されているとき(W_th_1<W_th_2)、閾値W_th_1未満の幅Wを有する障害物Oを「狭幅障害物」ということがある。また、閾値W_th_2以上の幅Wを有する障害物Oを「広幅障害物」ということがある。ここで、幅Wは、車両1の前後方向(すなわち車両1の移動方向)に対する幅である。
 広幅障害物は、例えば、壁、ガードレール、縁石及び段差を含むものである。狭幅障害物は、例えば、電柱、ポール、看板、植木、歩行者、自転車、車いす及びベビーカーを含むものである。狭幅障害物の識別に係る閾値W_th_1は、例えば、1メートルに設定されている。
 また、狭幅障害物のうちの移動している障害物Oを「動的障害物」ということがある。動的障害物は、例えば、歩行者、自転車、車いす及びベビーカーを含むものである。また、狭幅障害物のうちの静止している障害物Oを「静的障害物」ということがある。静的障害物は、例えば、電柱、ポール、看板及び植木を含むものである。
 以下、側方領域LAに障害物群OGが存在している場合において、障害物群OGに複数個の障害物Oが含まれているときの例を中心に説明する。
 障害物検知装置100は、例えば、電子制御ユニット(以下「ECU」と記載する。)により構成されている。障害物検知装置100は、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15及び出力部16を有している。駐車支援装置200は、例えば、ECUにより構成されている。駐車支援装置200は、駐車支援制御部21を有している。
 障害物検知装置100は、車両1の速度Vを示す情報(以下「車両速度情報」という。)を取得する機能を有している。車両速度情報は、例えば、CAN(Controller Area Network)通信により取得される。障害物検知装置100は、当該取得された車両速度情報を用いて、車両1が所定速度PV以下の速度Vにて移動中であるか否かを判定する機能を有している。
 障害物検知装置100は、車両1の位置及び車両1の向きを示す情報(以下「車両位置情報」という。)を取得する機能を有している。車両位置情報は、例えば、CAN通信により取得される。障害物検知装置100には、車両1における測距センサ2の設置位置及び車両1における測距センサ2の設置方向を示す情報(以下「センサ設置位置情報」という。)が予め記憶されている。障害物検知装置100は、当該取得された車両位置情報及び当該記憶されているセンサ設置位置情報を用いて、測距センサ2の位置及び測距センサ2の向きを算出する機能を有している。
 または、障害物検知装置100は、車両1のヨーレートを示す情報(以下「ヨーレート情報」という。)及び車両1の操舵角を示す情報(以下「操舵角情報」という。)を取得する機能を有している。ヨーレート情報及び操舵角情報は、例えば、CAN通信により取得される。障害物検知装置100には、センサ設置位置情報が予め記憶されている。障害物検知装置100は、当該取得されたヨーレート情報及び操舵角情報を用いて、車両1の位置及び車両1の向きを算出する機能を有している。障害物検知装置100は、当該記憶されているセンサ設置位置情報を用いて、当該算出された車両1の位置及び車両1の向きに基づき、測距センサ2の位置及び測距センサ2の向きを算出する機能を有している。
 以下、車両1が所定速度PV以下の速度Vにて移動中であるか否かを判定する機能を「車両速度判定機能」という。また、測距センサ2の位置及び測距センサ2の向きを算出する機能を「センサ位置算出機能」という。
 図2に示す如く、障害物検知部11は、送信信号出力部31、受信信号取得部32、測距値算出部33及び座標値算出部34を有している。
 送信信号出力部31は、車両1が所定速度PV以下の速度Vにて移動中であるとき、送信波に対応する電気信号(以下「送信信号」という。)TSを所定の時間間隔ΔTにて測距センサ2に出力するものである。これにより、送信信号出力部31は、測距センサ2に所定の時間間隔ΔTにて送信波を送信させるものである。車両1が所定速度PV以下の速度Vにて移動中であるか否かは、車両速度判定機能により判定される。
 受信信号取得部32は、測距センサ2による受信波に対応する電気信号(以下「受信信号」という。)RSを取得するものである。
 測距値算出部33は、受信信号RSを用いて、TOF法による測距値Dを算出するものである。TOF法による測距値Dの算出には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。
 座標値算出部34は、測距値Dを用いて、障害物Oにより探査波が反射された地点(以下「反射点」という。)RPの位置を示す座標値(以下「反射点座標値」ということがある。)C_X,C_Yを算出するものである。座標値C_X,C_Yは、例えば、車両1の前後方向(すなわち車両1の移動方向)に沿う第1軸(以下「X軸」という。)及び車両1の左右方向(すなわち車両1の移動方向に対する直交方向)に沿う第2軸(以下「Y軸」という。)を有する座標系(以下「XY座標系」という。)における座標値である。
 具体的には、例えば、座標値算出部34は、以下のようなベクトルを求めることにより座標値C_X,C_Yを算出する。すなわち、座標値算出部34は、対応する探査波が送信された時点における測距センサ2の位置に相当する始点を有し、かつ、当該時点における測距センサ2の向きに相当する向きを有し、かつ、対応する測距値Dに相当する大きさを有するベクトルを求める。このとき、測距センサ2の位置及び測距センサ2の向きは、センサ位置算出機能により算出される。このベクトルは、XY座標系におけるベクトルである。
 以下、座標値C_Xを「X座標値」ということがある。また、座標値C_Yを「Y座標値」ということがある。また、X軸に沿う方向を「X方向」ということがある。また、Y軸に沿う方向を「Y方向」又は「奥行き方向」ということがある。また、Y方向について、XY座標系における任意の点に対して、車両1から遠い側を「奥側」ということがある。また、Y方向について、XY座標系における任意の点に対して、車両1に近い側を「手前側」ということがある。
 以下、個々の反射点RPに対応する受信信号RSの波形を示す情報を「波形情報」という。また、個々の反射点RPに対応する測距値Dを示す情報を「測距値情報」という。また、個々の反射点RPに対応する座標値C_X,C_Yを示す情報を「座標値情報」という。また、波形情報、測距値情報及び座標値情報を含む情報を「反射点情報」という。障害物検知部11は、反射点情報を非連続部検知部12及び解析領域抽出部13に出力するものである。
 以下、障害物検知部11により実行される処理を総称して「障害物検知処理」ということがある。すなわち、障害物検知処理は、送信信号TSを出力する処理、受信信号RSを取得する処理、測距値Dを算出する処理、座標値C_X,C_Yを算出する処理、及び反射点情報を出力する処理などを含むものである。
 側方領域LAに障害物群OGが存在している場合において、1個の障害物O又は複数個の障害物Oが障害物群OGに含まれているとき、障害物検知処理が実行されることにより、複数個の反射点RPの各々の位置を示す座標値C_X,C_Yが算出される。換言すれば、障害物群OGに対応する複数個の反射点RPが検知される。これにより、障害物群OGが検知される。
 非連続部検知部12は 障害物検知部11により出力された反射点情報を取得するものである。非連続部検知部12は、当該取得された反射点情報を用いて、障害物群OGにおける非連続的な部位(以下「非連続部」という。)DPを検知するものである。非連続部DPの検知方法の具体例については、図10を参照して後述する。非連続部検知部12は、当該検知された非連続部DPを示す情報(以下「非連続部情報」という。)を解析領域抽出部13に出力するものである。
 以下、非連続部検知部12により実行される処理を総称して「非連続部検知処理」ということがある。すなわち、非連続部検知処理は、反射点情報を取得する処理、非連続部DPを検知する処理、及び非連続部情報を出力する処理などを含むものである。
 解析領域抽出部13は、非連続部検知部12により出力された非連続部情報を取得するものである。解析領域抽出部13は、当該取得された非連続部情報を用いて、グループ化部14による解析用の領域(以下「解析領域」という。)AAを抽出するものである。ここで、解析領域AAは、非連続部DPに基づき側方領域LAを分割してなる領域である。解析領域AAの具体例については、図10を参照して後述する。通常、個々の解析領域AAは、複数個の反射点RPを含むものである。
 解析領域抽出部13は、障害物検知部11により出力された反射点情報を取得するものである。解析領域抽出部13は、当該取得された反射点情報のうちの個々の解析領域AAに含まれる複数個の反射点RPに対応する反射点情報をグループ化部14に出力するものである。すなわち、解析領域抽出部13は、解析領域AA毎の反射点情報をグループ化部14に出力するものである。
 以下、解析領域抽出部13により実行される処理を総称して「解析領域抽出処理」ということがある。すなわち、解析領域抽出処理は、非連続部情報を取得する処理、解析領域AAを抽出する処理、反射点情報を取得する処理、及び解析領域AA毎の反射点情報を出力する処理などを含むものである。
 グループ化部14は、解析領域抽出部13により出力された反射点情報を取得するものである。グループ化部14は、当該取得された反射点情報を用いて、個々の解析領域AAに含まれる複数個の反射点RPをグループ化することにより、個々の解析領域AAにおける個々の障害物Oに対応する反射点群PGを設定するものである。
 例えば、複数個の解析領域AAのうちの1個の解析領域AAに1個の障害物Oに対応する複数個の反射点RPが含まれている場合、当該複数個の反射点RPがグループ化されることにより、当該1個の障害物Oに対応する1個の反射点群PGが設定される。また、複数個の解析領域AAのうちの他の1個の解析領域AAに複数個の障害物Oに対応する複数個の反射点RPが含まれている場合、当該複数個の反射点RPがグループ化されることにより、当該複数個の障害物Oと一対一に対応する複数個の反射点群PGが設定される。
 ここで、図3に示す如く、グループ化部14は、第1解析部41及び第2解析部42を有している。
 第1解析部41は、個々の解析領域AAに対応する反射点情報を用いて、Y座標値C_Yに対する反射点RPの個数を示す度数分布FD_Yを作成するものである。第1解析部41は、当該作成された度数分布FD_Yを解析するものである。より具体的には、第1解析部41は、当該作成された度数分布FD_Yに対するピーク分離処理を実行するものである。これにより、1個以上の度数群FG_Yが設定される。
 第2解析部42は、個々の度数群FG_Yに対応する反射点情報を用いて、X座標値C_Xに対する反射点RPの個数を示す度数分布FD_Xを作成するものである。第2解析部42は、当該作成された度数分布FD_Xを解析するものである。より具体的には、第2解析部42は、当該作成された度数分布FD_Xに対するピーク分離処理を実行するものである。これにより、1個以上の度数群FG_Xが設定される。
 グループ化部14は、第1解析部41による解析結果及び第2解析部42による解析結果に基づき、個々の障害物Oに対応する反射点群PGを設定するものである。反射点群PGの設定方法の具体例については、図11~図18を参照して後述する。
 通常、個々の反射点群PGは、複数個の反射点RPを含むものである。グループ化部14は、上記取得された反射点情報のうちの個々の反射点群PGに含まれる複数個の反射点RPに対応する反射点情報を識別部15に出力するものである。すなわち、グループ化部14は、反射点群PG毎の反射点情報を識別部15に出力するものである。
 以下、グループ化部14により実行される処理を総称して「グループ化処理」ということがある。すなわち、グループ化処理は、解析領域AA毎の反射点情報を取得する処理、個々の障害物Oに対応する反射点群PGを設定する処理、及び反射点群PG毎の反射点情報を出力する処理などを含むものである。
 識別部15は、グループ化部14により出力された反射点情報を取得するものである。識別部15は、当該取得された反射点情報を用いて、個々の反射点群PGに対応する障害物Oの種別を識別するものである。
 ここで、図4に示す如く、識別部15は、幅判断部51、位置判断部52及び高さ判断部53を有している。
 幅判断部51は、上記取得された反射点情報を用いて、X方向に対する個々の反射点群PGの幅を判断するものである。これにより、X方向に対する個々の障害物Oの幅Wが判断される。幅判断部51は、当該判断の結果に基づき、個々の障害物Oが広幅障害物であるか否かを判断するものである。また、幅判断部51は、当該判断の結果に基づき、個々の障害物Oが狭幅障害物であるか否かを判断するものである。
 位置判断部52は、上記取得された反射点情報を用いて、X方向に対する個々の反射点群PGの位置を判断するものである。これにより、X方向に対する個々の障害物Oの位置が判断される。また、位置判断部52は、上記取得された反射点情報を用いて、奥行き方向に対する個々の反射点群PGの位置を判断するものである。これにより、奥行き方向に対する個々の障害物Oの位置が判断される。
 高さ判断部53は、上記取得された反射点情報を用いて、個々の障害物Oの高さHを判断するものである。これにより、例えば、個々の障害物Oが走行障害物、路上障害物又は路面障害物のうちのいずれであるかが判断される。
 個々の障害物Oの幅Wの判断には、公知の種々の技術を用いることができる。また、個々の障害物Oの位置の判断には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。これに対して、個々の障害物Oの高さHの判断方法の具体例については、図19及び図20を参照して後述する。
 識別部15は、これらの判断部(51,52,53)のうちの少なくとも1個の判断部による判断結果に基づき、個々の障害物Oが縁石であるか否かを識別する。個々の障害物Oが縁石であるか否かの識別方法の具体例については後述する。また、識別部15は、これらの判断部(51,52,53)のうちの少なくとも1個の判断部による判断結果に基づき、個々の障害物Oが駐車障害物であるか否かを識別する。個々の障害物Oが駐車障害物であるか否かの識別方法の具体例については後述する。
 以下、識別部15により実行される処理を総称して「識別処理」ということがある。すなわち、識別処理は、個々の障害物Oの幅Wを判断する処理、個々の障害物Oの位置を判断する処理、個々の障害物Oの高さHを判断する処理、及び個々の障害物Oの種別を識別する処理などを含むものである。
 出力部16は、識別処理の結果を示す信号(以下「識別結果信号」という。)を駐車支援制御部21に出力するものである。
 ここで、識別結果信号は、個々の障害物Oが縁石であるか否かを示す情報、個々の障害物Oが駐車障害物であるか否かを示す情報、及び個々の障害物Oの位置を示す情報を含むものである。したがって、障害物群OGに縁石及び駐車障害物が含まれる場合において、縁石及び駐車障害物が互いに近接配置されているとき(すなわち縁石と駐車障害物間の距離が所定距離以下であるとき)、識別結果信号は、少なくとも駐車障害物の位置を示すものである。
 以下、出力部16により実行される処理を総称して「出力処理」ということがある。すなわち、出力処理は、識別結果信号を出力する処理などを含むものである。
 駐車支援制御部21は、出力部16により出力された識別結果信号を取得するものである。駐車支援制御部21は、当該取得された識別結果信号を用いて、側方領域LAにおける駐車スペースを検知するものである。駐車支援制御部21は、当該検知された駐車スペースに対する駐車支援制御を実行するものである。具体的には、例えば、駐車支援制御部21は、いわゆる「自動駐車」を実現するための制御を実行するものである。駐車支援制御には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。
 次に、図5及び図6を参照して、障害物検知装置100の要部のハードウェア構成について説明する。
 図5に示す如く、障害物検知装置100は、プロセッサ61及びメモリ62を有している。メモリ62には、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15及び出力部16の機能を実現するためのプログラムが記憶されている。かかるプログラムをプロセッサ61が読み出して実行することにより、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15及び出力部16の機能が実現される。
 または、図6に示す如く、障害物検知装置100は、処理回路63を有している。この場合、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15及び出力部16の機能が専用の処理回路63により実現される。
 または、障害物検知装置100は、プロセッサ61、メモリ62及び処理回路63を有している(不図示)。この場合、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15及び出力部16の機能のうちの一部の機能がプロセッサ61及びメモリ62により実現されるとともに、残余の機能が専用の処理回路63により実現される。
 プロセッサ61は、1個又は複数個のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。
 メモリ62は、1個又は複数個の不揮発性メモリにより構成されている。または、メモリ62は、1個又は複数個の不揮発性メモリ及び1個又は複数個の揮発性メモリにより構成されている。すなわち、メモリ62は、1個又は複数個のメモリにより構成されている。個々のメモリは、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。また、個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ソリッドステートドライブ又はハードディスクドライブを用いたものである。
 処理回路63は、1個又は複数個のデジタル回路により構成されている。または、処理回路63は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路63は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System on a Chip)又はシステムLSI(Large Scale Integration)を用いたものである。
 次に、図7及び図8を参照して、駐車支援装置200の要部のハードウェア構成について説明する。
 図7に示す如く、駐車支援装置200は、プロセッサ71及びメモリ72を有している。メモリ72には、駐車支援制御部21の機能を実現するためのプログラムが記憶されている。かかるプログラムをプロセッサ71が読み出して実行することにより、駐車支援制御部21の機能が実現される。
 または、図8に示す如く、駐車支援装置200は、処理回路73を有している。この場合、駐車支援制御部21の機能が専用の処理回路73により実現される。
 または、駐車支援装置200は、プロセッサ71、メモリ72及び処理回路73を有している(不図示)。この場合、駐車支援制御部21の機能のうちの一部の機能がプロセッサ71及びメモリ72により実現されるとともに、残余の機能が専用の処理回路73により実現される。
 プロセッサ71は、1個又は複数個のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU、GPU、マイクロプロセッサ、マイクロコントローラ又はDSPを用いたものである。
 メモリ72は、1個又は複数個の不揮発性メモリにより構成されている。または、メモリ72は、1個又は複数個の不揮発性メモリ及び1個又は複数個の揮発性メモリにより構成されている。すなわち、メモリ72は、1個又は複数個のメモリにより構成されている。個々のメモリは、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、個々の揮発性メモリは、例えば、RAMを用いたものである。また、個々の不揮発性メモリは、例えば、ROM、フラッシュメモリ、EPROM、EEPROM、ソリッドステートドライブ又はハードディスクドライブを用いたものである。
 処理回路73は、1個又は複数個のデジタル回路により構成されている。または、処理回路73は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路73は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC、PLD、FPGA、SoC又はシステムLSIを用いたものである。
 次に、図9を参照して、駐車支援システム300の動作について、障害物検知装置100及び駐車支援装置200の動作を中心に説明する。
 まず、障害物検知部11が障害物検知処理を実行する(ステップST1)。次いで、非連続部検知部12が非連続部検知処理を実行する(ステップST2)。次いで、解析領域抽出部13が解析領域抽出処理を実行する(ステップST3)。次いで、グループ化部14がグループ化処理を実行する(ステップST4)。次いで、識別部15が識別処理を実行する(ステップST5)。次いで、出力部16が出力処理を実行する(ステップST6)。次いで、駐車支援制御部21が駐車支援制御を実行する(ステップST7)。
 次に、図10を参照して、非連続部検知部12による非連続部DPの検知方法の具体例について説明する。また、解析領域抽出部13により抽出される解析領域AAの具体例について説明する。
 いま、図10Aに示す如く、側方領域LAに4個の障害物O_1~O_4が存在している。障害物O_1,O_2の各々は、駐車車両により構成されている。障害物O_3は、縁石により構成されている。障害物O_4は、電柱又はポールにより構成されている。図中、TRは、所定速度PV以下の速度Vによる車両1の移動経路を示している。
 この場合、障害物検知処理が実行されることにより、障害物群OGに対応する複数個の反射点RP_1,RP_2,RP_3,RP_4が検知される。具体的には、例えば、障害物O_1に対応する10個の反射点RP_1、障害物O_2に対応する10個の反射点RP_2、障害物O_3に対応する12個の反射点RP_3、及び障害物O_4に対応する4個の反射点RP_4が検知される。
 ここで、探査波は、空気中を次第に広がりながら伝搬する。このため、測距センサ2により送信されてから測距センサ2により受信されるまでの探査波の伝搬経路(いわゆる「パス」)は、複数存在し得るものである。
 上記のとおり、測距センサ2は、探査波を所定の時間間隔ΔTにて送信する。測距センサ2が探査波を1回送信したとき、当該送信された探査波がN個の障害物Oにより順次反射されることがある。これにより、第1番目~第N番目の反射波が順次受信されることがある。以下、第1番目~第N番目の反射波のうちの第n番目の反射波を「第n波」という。ここで、Nは、2以上の任意の整数である。また、nは、1~Nのうちの任意の整数である。
 例えば、測距センサ2が探査波を1回送信したとき、当該送信された探査波が2個の障害物O_3,O_4により順次反射されることがある。これにより、第1波及び第2波が順次受信される。
 通常、車両1における測距センサ2の設置高さは、路面に対する数十センチメートル程度の高さに設定されている。このため、小さい高さHを有する障害物O(例えば路上障害物又は路面障害物)については、測距センサ2が探査波を送信したとき、当該送信された探査波が照射されないことがある。この結果、小さい高さHを有する障害物Oについては、測距センサ2により反射波が受信されないことがある。
 このため、小さい高さHを有する障害物Oに対する奥側に大きい高さHを有する障害物O(例えば走行障害物)が存在するとき、大きい高さHを有する障害物Oに対応する複数個の反射点RPには、第1波に対応する1個以上の反射点RPと第2波に対応する1個以上の反射点RPとが含まれる状態となることがある。
 図10Aに示す例においては、障害物O_4に対応する4個の反射点RP_4に、第1波に対応する1個の反射点RP_4と第2波に対応する3個の反射点RP_4とが含まれている。すなわち、図中、丸印(○)は、第1波に対応する個々の反射点RPを示している。また、図中、三角印(△)は、第2波に対応する個々の反射点RPを示している。
 以下、障害物群OGに対応する複数個の反射点RPのうちの第n波に対応する複数個の反射点RPのうちの互いに隣接する各2個の反射点RP間の距離dを「反射点間距離」という。反射点間距離dは、XY座標系におけるユークリッド距離である。図10Bは、第1波に対応する複数個の反射点RPについて、時間に対する反射点間距離dの例を示している。ここで、時間軸は、XY座標系におけるX軸に対応している。
 非連続部検知部12は、反射点間距離dを算出する。非連続部検知部12は、当該算出された反射点間距離dについて、以下の条件(以下「第1条件」という。)が満たされたとき、非連続部DPを検知する。すなわち、第1条件は、反射点間距離dが所定の閾値d_thを超えるという条件である。
 図10Bに示す例においては、時刻t_1にて反射点間距離dが閾値d_thを超える。これにより、1個の非連続部DP_1が検知される。次いで、時刻t_2にて反射点間距離dが閾値d_thを超える。これにより、1個の非連続部DP_2が検知される。
 すなわち、図10に示す例においては、2個の非連続部DP_1,DP_2が検知される。2個の非連続部DP_1,DP_2により、側方領域LAが3個の領域に分割される。これにより、3個の解析領域AA_1,AA_2,AA_3が抽出される。
 次に、図11~図18を参照して、グループ化部14による反射点群PGの設定方法の具体例について説明する。
 図11は、1個の解析領域AA_2に含まれる複数個の反射点RP_3,RP_4の例を示している。図11に示す如く、障害物O_3に対応する14個の反射点RP_3及び障害物O_4に対応する4個の反射点RP_4が解析領域AA_2に含まれている。
 この場合、まず、第1解析部41は、解析領域AA_2について、複数個の反射点RP_3,RP_4に係る度数分布FD_Yを作成する。図12は、度数分布FD_Yの例を示している。図12に示す如く、度数分布FD_Yは、複数個の反射点RP_3に対応する度数(図中F_Y_1)及び複数個の反射点RP_4に対応する度数(図中F_Y_2)を含むものとなる。第1解析部41は、度数分布FD_Yに対するピーク分離処理を実行する。これにより、2個の度数群FG_Y_1,FG_Y_2が設定される。すなわち、度数群FG_Y_1は、複数個の反射点RP_3に対応するものである。また、度数群FG_Y_2は、複数個の反射点RP_4に対応するものである。
 次いで、第2解析部42は、度数群FG_Y_1に対応する複数個の反射点RP_3に係る度数分布FD_X_1を作成する。図13は、度数分布FD_X_1の例を示している。図13に示す如く、度数分布FD_X_1は、複数個の反射点RP_3に対応する度数(図中F_X_1)を含むものとなる。第2解析部42は、度数分布FD_X_1に対するピーク分離処理を実行する。これにより、1個の度数群FG_X_1が設定される。すなわち、度数群FG_X_1は、複数個の反射点RP_3に対応するものである。
 次いで、第2解析部42は、度数群FG_Y_2に対応する複数個の反射点RP_4に係る度数分布FD_X_2を作成する。図14は、度数分布FD_X_2の例を示している。図14に示す如く、度数分布FD_X_2は、複数個の反射点RP_4に対応する度数(図中F_X_2)を含むものとなる。第2解析部42は、度数分布FD_X_2に対するピーク分離処理を実行する。これにより、1個の度数群FG_X_2が設定される。すなわち、度数群FG_X_2は、複数個の反射点RP_4に対応するものである。
 次いで、グループ化部14は、度数群FG_Y_1及び度数群FG_X_1に対応する1個の反射点群PG_1を設定する。また、グループ化部14は、度数群FG_Y_2及び度数群FG_X_2に対応する1個の反射点群PG_2を設定する。これにより、図11に示す如く、2個の障害物O_3,O_4と一対一に対応する2個の反射点群PG_1,PG_2が設定される。
 図15は、1個の解析領域AA_2に含まれる複数個の反射点RP_3,RP_4,RP_5の例を示している。図11に示す如く、障害物O_3に対応する21個の反射点RP_3、障害物O_4に対応する4個の反射点RP_4、及び障害物O_5に対応する4個の反射点RP_5が解析領域AA_2に含まれている。障害物O_5は、例えば、看板により構成されている。
 この場合、まず、第1解析部41は、解析領域AA_2について、複数個の反射点RP_3,RP_4,RP_5に係る度数分布FD_Yを作成する。図16は、度数分布FD_Yの例を示している。図16に示す如く、度数分布FD_Yは、複数個の反射点RP_3に対応する度数(図中F_Y_1)及び複数個の反射点RP_4,RP_5に対応する度数(図中F_Y_2)を含むものとなる。第1解析部41は、度数分布FD_Yに対するピーク分離処理を実行する。これにより、2個の度数群FG_Y_1,FG_Y_2が設定される。すなわち、度数群FG_Y_1は、複数個の反射点RP_3に対応するものである。また、度数群FG_Y_2は、複数個の反射点RP_4,RP_5に対応するものである。
 次いで、第2解析部42は、度数群FG_Y_1に対応する複数個の反射点RP_3に係る度数分布FD_X_1を作成する。図17は、度数分布FD_X_1の例を示している。図17に示す如く、度数分布FD_X_1は、複数個の反射点RP_3に対応する度数(図中F_X_1)を含むものとなる。第2解析部42は、度数分布FD_X_1に対するピーク分離処理を実行する。これにより、1個の度数群FG_X_1が設定される。すなわち、度数群FG_X_1は、複数個の反射点RP_3に対応するものである。
 次いで、第2解析部42は、度数群FG_Y_2に対応する複数個の反射点RP_4,RP_5に係る度数分布FD_X_2を作成する。図18は、度数分布FD_X_2の例を示している。図18に示す如く、度数分布FD_X_2は、複数個の反射点RP_4に対応する度数(図中F_X_2_1)及び複数個の反射点RP_5に対応する度数(図中F_X_2_2)を含むものとなる。第2解析部42は、度数分布FD_X_2に対するピーク分離処理を実行する。これにより、2個の度数群FG_X_2_1,FG_X_2_2が設定される。すなわち、度数群FG_X_2_1は、複数個の反射点RP_4に対応するものである。また、度数群FG_X_2_2は、複数個の反射点RP_5に対応するものである。
 次いで、グループ化部14は、度数群FG_Y_1及び度数群FG_X_1に対応する1個の反射点群PG_1を設定する。また、グループ化部14は、度数群FG_Y_2及び度数群FG_X_2_1に対応する1個の反射点群PG_2_1を設定する。また、グループ化部14は、度数群FG_Y_2及び度数群FG_X_2_2に対応する1個の反射点群PG_2_2を設定する。これにより、図15に示す如く、3個の障害物O_3,O_4,O_5と一対一に対応する3個の反射点群PG_1,PG_2_1,PG_2_2が設定される。
 ここで、第1解析部41及び第2解析部42の各々におけるピーク分離処理には、公知の種々の技術を用いることができる。例えば、度数Fが連続的に所定値を超えている範囲が1個の度数群FGとして抽出されるものであっても良い。また、例えば、k近傍法等のクラスタリング手法が用いられるものであっても良い。
 次に、図19及び図20を参照して、高さ判断部53による個々の障害物Oの高さHの判断方法の具体例について説明する。
 高さ判断部53は、個々の反射点RPに対応する反射点情報に含まれる波形情報を用いて、個々の反射点RPに対応する受信信号RSの強度(以下「受信信号強度」という。)SSに関する2個の特徴量FA1,FA2を検知する。特徴量FA1,FA2の各々は、受信信号強度SSに対する相関を有するものである。
 以下、特徴量FA1を「第1特徴量」という。また、特徴量FA2を「第2特徴量」という。また、時間に対する受信信号強度SSを示す波形を「受信信号波形」という。図19は、受信信号波形の例を示している。
 具体的には、例えば、高さ判断部53は、受信信号波形における受信信号強度SSが所定の閾値SS_thを超えている部位の幅(以下「波形幅」という。)WWを検知する。高さ判断部53は、当該検知された波形幅WWを第1特徴量FA1又は第2特徴量FA2に用いる。
 また、例えば、高さ判断部53は、受信信号波形における受信信号強度SSが閾値SS_thを超えている部位の面積(以下「波形面積」という。)WAを検知する。高さ判断部53は、当該検知された波形面積WAを第1特徴量FA1又は第2特徴量FA2に用いる。
 また、例えば、高さ判断部53は、受信信号波形における受信信号強度SSが閾値SS_thを超えている部位の高さの最大値(以下「波形高さ」という。)WHを検知する。高さ判断部53は、当該検知された波形高さWHを第1特徴量FA1又は第2特徴量FA2に用いる。
 すなわち、高さ判断部53は、個々の反射点RPについて、波形幅WW、波形面積WA及び波形高さWHのうちのいずれか2個の値を検知する。高さ判断部53は、当該検知された2個の値のうちの1個の値を第1特徴量FA1に用いるとともに、当該検知された2個の値のうちの他の1個の値を第2特徴量FA2に用いる。
 上記のとおり、個々の反射点群PGは、複数個の反射点RPを含むものである。このため、個々の反射点群PGについて、複数個の反射点RPに対応する複数個の第1特徴量FA1が検知されるとともに、複数個の反射点RPに対応する複数個の第2特徴量FA2が検知される。高さ判断部53は、個々の反射点群PGについて、対応する複数個の第1特徴量FA1による統計量(以下「第1統計量」ということがある。)S1を算出する。また、高さ判断部53は、個々の反射点群PGについて、対応する複数個の第2特徴量FA2による統計量(以下「第2統計値」ということがある。)S2を算出する。
 ここで、第1統計量S1には、種々の統計量を用いることができる。例えば、第1統計量S1には、複数個の第1特徴量FA1による瞬時値、平均値、分散値又は中央値を用いることができる。または、例えば、第1統計量S1には、これらの値のうちの任意の2個以上の値を組み合わせてなる値を用いることができる。
 同様に、第2統計量S2には、種々の統計量を用いることができる。例えば、第2統計量S2には、複数個の第2特徴量FA2による瞬時値、平均値、分散値又は中央値を用いることができる。または、例えば、第2統計量S2には、これらの値のうちの任意の2個以上の値を組み合わせてなる値を用いることができる。
 以下、第1統計量S1に対応する第1軸を有し、かつ、第2統計量S2に対応する第2軸を有する座標系を「特徴量座標系」という。高さ判断部53には、特徴量座標系における閾値S_th_1,S_th_2が予め設定されている。図20は、閾値S_th_1,S_th_2の例を示している。ここで、閾値S_th_1は、路面障害物と路上障害物との識別に係る閾値H_th_1に対応するものである。また、閾値S_th_2は、路上障害物と走行障害物との識別に係る閾値H_th_2に対応するものである。
 高さ判断部53は、個々の反射点群PGに対応する統計量S1,S2を特徴量座標系にプロットする。当該プロットされた統計量S1,S2が閾値S_th_1以下の範囲R_1に含まれる場合、高さ判断部53は、対応する障害物Oが路面障害物であると判断する。当該プロットされた統計量S1,S2が閾値S_th_1,S_th_2間の範囲R_2に含まれる場合、高さ判断部53は、対応する障害物Oが路上障害物であると判断する。当該プロットされた統計量S1,S2が閾値S_th_2以上の範囲R_3に含まれる場合、高さ判断部53は、対応する障害物Oが走行障害物であると判断する。
 例えば、ある1個の反射点群PGに対応する統計量S1_1,S2_1が範囲R_1に含まれる場合(図20参照)、高さ判断部53は、対応する障害物Oが路面障害物であると判別する。また、他の1個の反射点群PGに対応する統計量S1_2,S2_2が範囲R_2に含まれる場合(図20参照)、高さ判断部53は、対応する障害物Oが路上障害物であると判別する。また、他の1個の反射点群PGに対応する統計量S1_3,S2_3が範囲R_3に含まれる場合(図20参照)、高さ判断部53は、対応する障害物Oが走行障害物であると判別する。
 次に、識別部15による個々の障害物Oが縁石であるか否かの識別方法の具体例について説明する。また、識別部15による個々の障害物Oが駐車障害物であるか否かの識別方法の具体例について説明する。
〈縁石に係る識別方法の具体例〉
 ある障害物Oについて、幅判断部51により広幅障害物であると判断されて、かつ、高さ判断部53により路上障害物であると判断されたものとする。この場合、識別部15は、この障害物Oが縁石であると識別する。そうでない場合、識別部15は、この障害物Oが縁石でないと識別する。
〈駐車障害物に係る判断方法の第1具体例〉
 ある障害物Oについて、高さ判断部53により走行障害物であると判断されたものとする。この場合、識別部15は、この障害物Oが駐車障害物であると判断する。そうでない場合、識別部15は、この障害物Oが駐車障害物でないと識別する。
 すなわち、側方領域LAにおける走行障害物は、車両1の駐車の妨げとなる蓋然性が高い。そこで、識別部15は、かかる走行障害物が駐車障害物であると識別するのである。
〈駐車障害物に係る判断方法の第2具体例〉
 第1の障害物Oについて、幅判断部51により広幅障害物であると判断されて、かつ、高さ判断部53により路上障害物又は路面障害物であると判断されたものとする。また、第2の障害物Oについて、幅判断部51により狭幅障害物であると判断されたものとする。また、位置判断部52により、第1の障害物Oに対する奥側に第2の障害物Oが位置していると判断されたものとする。
 この場合、識別部15は、第1の障害物Oが駐車障害物でないと識別するとともに、第2の障害物Oが駐車障害物であると識別する。換言すれば、識別部15は、高さ判断部53による第2の障害物Oの高さHの判断結果にかかわらず、第2の障害物Oが駐車障害物であると識別する。
 すなわち、狭幅障害物については、対応する反射点RPの個数が少ないことにより、高さ判断部53による高さHの判断精度が低下する可能性がある。他方、通常、縁石又は段差に対する奥側に位置する狭幅障害物は、走行障害物(例えば電柱、ポール又は看板)である蓋然性が高い。そこで、識別部15は、第2の障害物Oについて、高さHの判断結果にかかわらず、駐車障害物であると識別するのである。
〈駐車障害物に係る判断方法の第3具体例〉
 第1の障害物Oについて、幅判断部51により広幅障害物であると判断されたものとする。また、位置判断部52により、第1の障害物Oに対する奥側に第2の障害物Oが位置していると判断されたものとする。
 この場合、識別部15は、第1の障害物Oが駐車障害物でないと識別する。換言すれば、識別部15は、高さ判断部53による第1の障害物Oの高さHの判断結果にかかわらず、第1の障害物Oが駐車障害物でないと識別する。
 すなわち、通常、走行障害物は、車両1における測距センサ2の取付け高さよりも大きい高さHを有している。このため、広幅障害物に対する奥側に他の障害物が存在する場合において、当該広幅障害物が走行障害物であるとき、当該他の障害物による反射波が測距センサ2により受信されることはないと考えられる。そこで、識別部15は、第1の障害物Oについて、高さHの判断結果にかかわらず、駐車障害物でないと識別するのである。
 次に、図21を参照して、障害物検知装置100の効果について、グループ化部14の効果を中心に説明する。
 通常、2個の障害物O間におけるY方向に対する反射点間距離d_Yは、実空間における当該2個の障害物Oの位置に応じて定まるものである。これに対して、個々の障害物OにおけるX方向に対する反射点間距離d_Xは、車両1の速度Vに応じて定まるものであり、かつ、測距センサ2により探査波が送信される時間間隔ΔTに応じて定まるものである。すなわち、車両1の速度Vが低いほど、反射点間距離d_Xが小さくなることにより、X方向に対する反射点RPの配置が密になる。他方、車両1の速度Vが高いほど、反射点間距離d_Xが大きくなることにより、X方向に対する反射点RPの配置が疎になる。また、時間間隔ΔTが小さいほど、反射点間距離d_Xが小さくなることにより、X方向に対する反射点RPの配置が密になる。他方、時間間隔ΔTが大きいほど、反射点間距離d_Xが大きくなることにより、X方向に対する反射点RPの配置が疎になる。
 例えば、図21に示す例において、反射点RP_3_1,RP_4_1間の反射点間距離d_Y、すなわち反射点RP_3_2,RP_4_2間の反射点間距離d_Yは、実空間における障害物O_3,O_4の位置に応じて定まるものである。これに対して、反射点RP_3_1,RP_3_2間の反射点間距離d_X、すなわち反射点RP_4_1,RP_4_2間の反射点間距離d_Xは、速度Vに応じて定まるものであり、かつ、時間間隔ΔTに応じて定まるものである。
 ここで、X方向に対する反射点RPの配置が疎であるとき、図21に示す如く、反射点間距離d_Xが反射点間距離d_Yよりも大きくなることがある。換言すれば、反射点間距離d_Yが反射点間距離d_Xよりも小さくなることがある。
 従来の障害物検知装置におけるグループ化部は、互いに隣接する各2個の反射点RPについて、反射点間距離dが小さいときは当該2個の反射点RPを互いに同一の反射点群PGに含めるものであり、かつ、反射点間距離dが大きいときは当該2個の反射点RPを互いに異なる反射点群PGに含めるものであった。
 このため、図21に示す例において、反射点間距離d_Yが小さいことにより、反射点RP_3_1,RP_3_2と反射点RP_4_1,RP_4_2とが互いに同一の反射点群PGに含まれることがあるという問題があった。また、反射点間距離d_Xが大きいことにより、反射点RP_3_1と反射点RP_3_2とが互いに異なる反射点群PGに含まれるとともに、反射点RP_4_1と反射点RP_4_2とが互いに異なる反射点群PGに含まれることがあるという問題があった。すなわち、個々の障害物Oに対応する反射点群PGを正確に設定することができないという問題があった。
 これに対して、障害物検知装置100におけるグループ化部14は、上記のとおり、個々の解析領域AAにおいて、度数分布FD_Y,FD_Xの各々に対するピーク分離処理を実行することにより反射点群PGを設定するものである。これにより、個々の解析領域AAにおいて、個々の障害物Oに対応する反射点群PGを正確に設定することができる。例えば、図21に示す例においても、2個の障害物O_3,O_4と一対一に対応する2個の反射点群PGを設定することができる。
 すなわち、側方領域LAにて縁石(O_3)と駐車障害物(O_4)とが互いに近接配置されている場合であっても、縁石に対応する反射点群PGと駐車障害物に対応する反射点群PGとを設定することができる。
 なお、上記のとおり、非連続部検知処理においては、第n波(例えば第1波)に対応する複数個の反射点RPが用いられるものであった。これに対して、反射点群設定処理においては、第1波~第N波に対応する複数個の反射点RPを用いるのが好適である。これにより、個々の障害物Oに対応する反射点群PGを更に正確に設定することができる。
 次に、図22を参照して、非連続部検知部12の変形例について説明する。
 上記のとおり、非連続部検知部12は、第n波に対応する複数個の反射点RPにおける反射点間距離dを非連続部検知処理に用いるものであれば良い。すなわち、非連続部検知部12は、第1波に対応する複数個の反射点RPに代えて、第2波に対応する複数個の反射点RP又は第3波に対応する複数個の反射点RPにおける反射点間距離dを非連続部検知処理に用いるものであっても良い。
 例えば、図22に示す如く、側方領域LAに5個の障害物O_1~O_4,O_6が存在しているものとする。障害物O_6は、例えば、段差により構成されている。図中、四角印(□)は、第3波に対応する個々の反射点RPを示している。
 この場合、第1波に対応する複数個の反射点RPにおける反射点間距離dが非連続部検知処理に用いられる場合、非連続部DP_1,DP_2が検知されないことがある。これに対して、第2波に対応する複数個の反射点RPにおける反射点間距離dを用いることにより、2個の非連続部DP_1,DP_2を検知することができる。したがって、第2波に対応する複数個の反射点RPにおける反射点間距離dを用いるのが好適である。
 なお、非連続部検知部12は、第n波に対応する複数個の反射点RPにおける反射点間距離dを非連続部検知処理に用いるのに代えて、第1波~第N波の各々に対応する複数個の反射点RPにおける反射点間距離dを非連続部検知処理に用いるものであっても良い。これにより、非連続部DPをより確実に検知することができる。
 次に、図23を参照して、非連続部検知部12の他の変形例について説明する。
 非連続部検知処理は、第1条件によるものに限定されるものではない。非連続部検知部12は、以下のようにして非連続部DPを検知するものであっても良い。
 いま、図23Aに示す如く、側方領域LAに5個の障害物O_1~O_4,O_6が存在している。この場合、障害物検知処理が実行されることにより、障害物群OGに対応する複数個の反射点RP_1,RP_2,RP_3,RP_4,RP_6が検知される。具体的には、例えば、障害物O_1に対応する9個の反射点RP_1、障害物O_2に対応する9個の反射点RP_2、障害物O_3に対応する12個の反射点RP_3、障害物O_4に対応する4個の反射点RP_4、及び障害物O_6に対応する26個の反射点RP_6が検知される。
 非連続部検知部12は、各回の送信波に対応する1個以上の測距値Dにおける分散値sを算出する。非連続部検知部12は、当該算出された分散値sに対する時間微分をすることにより、当該算出された分散値sの変化量Δsを算出する。図23Bは、時間に対する分散値sの例を示している。図23Cは、時間に対する変化量Δsの例を示している。上記のとおり、時間軸は、X軸に対応している。
 非連続部検知部12は、当該算出された変化量Δsについて、以下の条件(以下「第2条件」という。)が満たされたとき、非連続部DPを検知する。すなわち、第2条件は、変化量Δsが所定の閾値Δs_thを超えるという条件である。
 図23に示す例において、障害物O_6,O_1による反射波(第1波及び第2波を含む。)に対応する測距値Dの分散値sは、障害物O_6,O_3による反射波(第1波及び第2波を含む。)に対応する測距値Dの分散値sよりも小さく、かつ、障害物O_6,O_3,O_4による反射波(第1波、第2波及び第3波を含む。)に対応する測距値Dの分散値sよりも小さい。また、障害物O_6,O_2による反射波(第1波及び第2波を含む。)に対応する測距値Dの分散値sは、障害物O_6,O_3による反射波(第1波及び第2波を含む。)に対応する測距値Dの分散値sよりも小さく、かつ、障害物O_6,O_3,O_4による反射波(第1波、第2波及び第3波を含む。)に対応する測距値Dの分散値sよりも小さい。
 これにより、時刻t_1にて第2条件が満たされて、1個の非連続部DP_1が検知される。次いで、時刻t_2にて第2条件が満たされて、1個の非連続部DP_2が検知される。すなわち、2個の非連続部DP_1,DP_2が検知される。
 なお、分散値sは、第1波~第N波の全てに対応する測距値Dの分散値であっても良く、又は、第1波~第N波のうちの任意の2以上の第n波に対応する測距値Dの分散値であっても良い。ただし、小さい高さHを有する障害物O(例えば縁石又は段差)による反射波に対応する測距値Dをより確実に分散値sの算出に含める観点から、第1波~第N波の全てに対応する測距値Dの分散値を用いるのがより好適である。
 次に、非連続部検知部12の他の変形例について説明する。
 非連続部検知処理は、第1条件又は第2条件によるものに限定されるものではない。非連続部検知部12は、以下のようにして非連続部DPを検知するものであっても良い。
 すなわち、非連続部検知部12は、直前の非連続部DPが検知された時点から現時点までの間に障害物検知部11により算出された複数組の反射点座標値(以下「第1反射点座標値」ということがある。)C_X,C_Yについて、XY座標系における回帰直線又は回帰曲線を算出する。回帰曲線は、例えば、円弧状又は放物線状の曲線である。回帰直線又は回帰曲線の算出には、公知の種々の技術(例えば最小二乗法)を用いることができる。
 次いで、非連続部検知部12は、当該算出された回帰直線又は回帰曲線と、障害物検知部11により新たに算出された少なくとも1組の反射点座標値(以下「第2反射点座標値」ということがある。)C_X,C_Yとの距離を算出する。非連続部検知部12は、当該算出された距離を所定の閾値と比較する。非連続部検知部12は、当該算出された距離が閾値を超えている場合、この距離に対応する時点を非連続部DPとして検知する。
 このとき、閾値は、例えば、いわゆる「残差分布」に対する定数倍の値に設定される。残差分布は、回帰直線又は回帰曲線の周囲における複数組の第1反射点座標値C_X,C_Yの分布のばらつきの程度を示すものである。
 ここで、回帰直線又は回帰曲線は、算出済みの複数組の第1反射点座標値C_X,C_Yにおける連続性に基づく未算出の第2反射点座標値C_X,C_Yの予測値に対応している。また、回帰直線又は回帰曲線と第2反射点座標値C_X,C_Yとの距離は、当該予測値に係る残差に対応している。
 すなわち、非連続部検知部12は、当該予測値に係る残差を示す値(以下「残差値」という。)が所定の閾値を超えるという条件(以下「第3条件」という。)が満たされたとき、非連続部DPを検知するものである。これにより、例えば、複数個の反射点RPが曲線状に配置されている場合であっても、非連続部DPを検知することができる。
 次に、非連続部検知部12の他の変形例について説明する。
 非連続部検知部12は、第1条件及び第2条件が満たされたとき、非連続部DPを検知するものであっても良い。または、非連続部検知部12は、第1条件及び第3条件が満たされたとき、非連続部DPを検知するものであっても良い。または、非連続部検知部12は、第2条件及び第3条件が満たされたとき、非連続部DPを検知するものであっても良い。または、非連続部検知部12は、第1条件、第2条件及び第3条件が満たされたとき、非連続部DPを検知するものであっても良い。すなわち、非連続部検知部12は、複数個の条件により非連続部DPを検知するものであっても良い。
 または、非連続部検知部12は、第1条件及び第2条件のうちの少なくとも一方が満たされたとき、非連続部DPを検知するものであっても良い。または、非連続部検知部12は、第1条件及び第3条件のうちの少なくとも一方が満たされたとき、非連続部DPを検知するものであっても良い。または、非連続部検知部12は、第2条件及び第3条件のうちの少なくとも一方が満たされたとき、非連続部DPを検知するものであっても良い。または、非連続部検知部12は、第1条件、第2条件及び第3条件のうちの少なくとも一つが満たされたとき、非連続部DPを検知するものであっても良い。すなわち、非連続部検知部12は、複数個の条件により非連続部DPを検知するものであっても良い。
 または、非連続部検知部12は、第1条件、第2条件及び第3条件のうちの少なくとも二つが満たされたとき、非連続部DPを検知するものであっても良い。すなわち、非連続部検知部12は、複数個の条件による多数決の結果に基づき非連続部DPを検知するものであっても良い。
 このように、複数個の条件を用いることにより、非連続部DPの検知精度を向上することができる。換言すれば、非連続部DPを正確に検知することができる。
 次に、解析領域抽出部13の変形例について説明する。
 解析領域抽出部13は、非連続部検知部12により非連続部DPが検知されない状態にて所定時間又は所定距離が経過したとき、非連続部DPにかかわらず側方領域LAを区切ることにより新たな解析領域AAを設定するものであっても良い。換言すれば、解析領域抽出部13は、1個の解析領域AAの幅が所定幅を超えたとき、当該1個の解析領域AAを複数個の解析領域AAに分割するものであっても良い。所定幅は、例えば、車両1用の駐車スペースの幅に対する2倍程度の値に設定される。
 または、解析領域抽出部13は、非連続部検知部12により非連続部DPが検知されない状態にて障害物検知部11による測距値Dの算出数が所定数を超えたとき、非連続部DPにかかわらず側方領域LAを区切ることにより新たな解析領域AAを設定するものであっても良い。換言すれば、解析領域抽出部13は、1個の解析領域AAに対応する測距値Dの算出数が所定数を超えたとき、当該1個の解析領域AAを複数個の解析領域AAに分割するものであっても良い。
 これにより、非連続部DPが検知されない場合であっても、非連続部検知処理に対する後段の処理(すなわち解析領域抽出処理、グループ化処理、識別処理及び出力処理)を実行することができるとともに、駐車支援制御を実行することができる。また、個々の解析領域AAに対応する反射点情報の量の低減することができる。これにより、個々の解析領域AAに対応する反射点情報用の記憶領域の小型化を図ることができる。
 次に、図24を参照して、識別部15の変形例について説明する。
 識別部15は、個々の障害物Oが路面障害物、路上障害物及び走行障害物のうちのいずれであるかを判断するのに代えて、個々の障害物Oが低背障害物であるか高背障害物であるかを判断するものであっても良い。
 すなわち、高さ判断部53には、特徴量座標系における閾値S_th_3が予め設定されている。図24は、閾値S_th_3の例を示している。ここで、閾値S_th_3は、低背障害物と高背障害物との識別に係る閾値H_th_3に対応するものである。
 高さ判断部53は、個々の反射点群PGに対応する統計量S1,S2を特徴量座標系にプロットする。当該プロットされた統計量S1,S2が閾値S_th_3未満の範囲R_4に含まれる場合、高さ判断部53は、対応する障害物Oが低背障害物であると判断する。当該プロットされた統計量S1,S2が閾値S_th_3以上の範囲R_5に含まれる場合、高さ判断部53は、対応する障害物Oが高背障害物であると判断する。
 例えば、ある1個の反射点群PGに対応する統計量S1_4,S2_4が範囲R_4に含まれる場合(図24参照)、高さ判断部53は、対応する障害物Oが低背障害物であると判別する。また、他の1個の反射点群PGに対応する統計量S1_5,S2_5が範囲R_5に含まれる場合(図24参照)、高さ判断部53は、対応する障害物Oが高背障害物であると判別する。
 次に、識別部15の他の変形例について説明する。
 広幅障害物であり、かつ、走行障害物である障害物Oが存在する場合、当該障害物Oと車両1間にて探査波が複数回反射されることがある。これにより、いわゆる「多重反射波」が受信されることがある。多重反射波に対応する反射点RPは、いわゆる「虚像」である。虚像は、当該障害物Oと車両1間の距離に対する2以上の整数倍の値に対応するY座標値C_Yを有するものとなる。虚像は、識別処理の対象から除外されるのが好適である。
 そこで、識別部15は、車両1に対して最も手前側に位置する広幅障害物について、当該広幅障害物と車両1間の距離に対する2以上の整数倍の値に対応するY座標値C_Yを有する反射点群PGを識別処理の対象から除外するものであって良い。これにより、多重反射波に基づく虚像を識別処理の対象から除外することができる。
 次に、出力部16の変形例について説明する。
 出力部16は、縁石に対する奥側に駐車障害物が位置している場合において、当該縁石と当該駐車障害物間の距離が所定距離よりも大きいとき、当該駐車障害物に関する情報を識別結果信号から除外するものであっても良い。換言すれば、出力部16は、縁石に対する奥側に駐車障害物が位置している場合、当該縁石と当該駐車障害物間の距離が所定距離以下であるときのみ、当該駐車障害物に関する情報を識別結果信号に含めるものであっても良い。
 これにより、駐車支援制御に不要な情報が識別結果信号に含まれるのを回避することができる。この結果、障害物検知装置100と駐車支援装置200間の通信量を低減することができるとともに、駐車支援装置200における演算量を低減することができる。
 次に、駐車支援システム300の変形例について説明する。
 駐車支援システム300は、1個の測距センサ2に代えて、複数個の測距センサを含むものであっても良い。すなわち、車両1の左側部、車両1の右側部、又は車両1の左側部及び車両1の右側部の各々に当該複数個の測距センサが設けられているものであっても良い。
 この場合、第1統計量S1は、当該複数個の測距センサの各々による1回以上の送受信により複数回分の送受信が実現されるとき、当該複数回分の送受信に係る複数個の第1特徴量FA1による統計量であっても良い。また、第2統計量S2は、当該複数回分の送受信に係る複数個の第2特徴量FA2による統計量であっても良い。
 以上のように、障害物検知装置100は、車両1に設けられた測距センサ2を用いて、移動中の車両1に対する側方領域LAにおける障害物群OGを検知する障害物検知部11と、障害物群OGにおける非連続部DPを検知する非連続部検知部12と、非連続部DPに基づく解析領域AAを抽出する解析領域抽出部13と、解析領域AAにおける複数個の反射点RPに係る度数分布FD_Y,FD_Xを解析することにより、障害物群OGに含まれる複数個の障害物Oに対応する複数個の反射点群PGを設定するグループ化部14と、複数個の障害物Oの各々が縁石であるか否かを識別するとともに、複数個の障害物Oの各々が駐車障害物であるか否かを識別する識別部15と、縁石と駐車障害物間の距離が所定距離以下であるとき、少なくとも駐車障害物の位置を示す信号(識別結果信号)を出力する出力部16と、を備える。グループ化部14を備えることにより、縁石及び駐車障害物が互いに近接配置されている場合であっても、縁石に対応する反射点群PG及び駐車障害物に対応する反射点群PGを設定することができる。これにより、少なくとも駐車障害物の位置を示す信号(識別結果信号)を出力することができる。
 また、非連続部検知部12は、第1条件が満たされたとき非連続部DPを検知するものであり、第1条件は、第n波に対応する複数個の反射点RPにおける反射点間距離dが算出される場合において、当該算出された反射点間距離dが閾値d_thを超えるという条件である。第1条件を用いることにより、非連続部DPの検知を実現することができる。
 また、非連続部検知部12は、第2条件が満たされたとき非連続部DPを検知するものであり、第2条件は、各回の送信波に対応する1個以上の測距値Dにおける分散値sが算出される場合において、当該算出された分散値sの変化量Δsが算出されるとき、当該算出された変化量Δsが閾値Δs_thを超えるという条件である。第2条件を用いることにより、非連続部DPの検知を実現することができる。
 また、非連続部検知部12は、第3条件が満たされたとき非連続部DPを検知するものであり、第3条件は、算出済みの複数組の反射点座標値C_X,C_Yにおける連続性に基づき未算出の少なくとも1組の反射点座標値C_X,C_Yの予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である。第3条件を用いることにより、非連続部DPの検知を実現することができる。
 また、非連続部検知部12は、第1条件及び第2条件のうちの少なくとも一方が満たされたとき非連続部DPを検知するものであり、第1条件は、第n波に対応する複数個の反射点RPにおける反射点間距離dが算出される場合において、当該算出された反射点間距離dが閾値d_thを超えるという条件であり、第2条件は、各回の送信波に対応する1個以上の測距値Dにおける分散値sが算出される場合において、当該算出された分散値sの変化量Δsが算出されるとき、当該算出された変化量Δsが閾値Δs_thを超えるという条件である。複数個の条件を用いることにより、非連続部DPを精度良く検知することができる。
 また、非連続部検知部12は、第1条件及び第3条件が満たされたとき非連続部DPを検知するものであり、第1条件は、第n波に対応する複数個の反射点RPにおける反射点間距離dが算出される場合において、当該算出された反射点間距離dが閾値d_thを超えるという条件であり、第3条件は、算出済みの複数組の反射点座標値C_X,C_Yにおける連続性に基づき未算出の少なくとも1組の反射点座標値C_X,C_Yの予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である。複数個の条件を用いることにより、非連続部DPを精度良く検知することができる。
 また、非連続部検知部12は、第2条件及び第3条件のうちの少なくとも一方が満たされたとき非連続部DPを検知するものであり、第2条件は、各回の送信波に対応する1個以上の測距値Dにおける分散値sが算出される場合において、当該算出された分散値sの変化量Δsが算出されるとき、当該算出された変化量Δsが閾値Δs_thを超えるという条件であり、第3条件は、算出済みの複数組の反射点座標値C_X,C_Yにおける連続性に基づき未算出の少なくとも1組の反射点座標値C_X,C_Yの予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である。複数個の条件を用いることにより、非連続部DPを精度良く検知することができる。
 また、非連続部検知部12は、第1条件、第2条件及び第3条件のうちの少なくとも一つが満たされたとき非連続部DPを検知するものであり、第1条件は、第n波に対応する複数個の反射点RPにおける反射点間距離dが算出される場合において、当該算出された反射点間距離dが閾値d_thを超えるという条件であり、第2条件は、各回の送信波に対応する1個以上の測距値Dにおける分散値sが算出される場合において、当該算出された分散値sの変化量Δsが算出されるとき、当該算出された変化量Δsが閾値Δs_thを超えるという条件であり、第3条件は、算出済みの複数組の反射点座標値C_X,C_Yにおける連続性に基づき未算出の少なくとも1組の反射点座標値C_X,C_Yの予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である。複数個の条件を用いることにより、非連続部DPを精度良く検知することができる。
 また、解析領域抽出部13は、解析領域AAに対応する測距値Dの算出数が所定数を超えたとき、解析領域AAを複数個の解析領域AAに分割する。これにより、個々の解析領域AAに対応する反射点情報の量を低減することができる。この結果、個々の解析領域AAに対応する反射点情報用の記憶領域の小型化を図ることができる。
実施の形態2.
 通常、駐車支援システム300が駐車スペースを探索するとき、車両1は、広幅障害物(例えば縁石又は段差)の長手方向に沿う方向に移動する。このため、広幅障害物に対応する複数個の反射点RPの配列方向(以下「反射点配列方向」という。)は、車両1の移動方向に対して平行又は略平行な状態となる。すなわち、反射点配列方向は、X軸に対して平行又は略平行な状態となる。以下、平行又は略平行を総称して単に「平行」という。
 しかしながら、車両1の進路によっては、反射点配列方向が車両1の移動方向に対して非平行な状態となることがある。図25は、かかる状態における1個の解析領域AA_2における複数個の障害物O_3,O_4に対応する複数個の反射点RP_3,RP_4の例を示している。
 この場合、まず、第1解析部41は、解析領域AA_2について、複数個の反射点RP_3,RP_4に係る度数分布FD_Yを作成する。図26は、度数分布FD_Yの例を示している。図26に示す如く、度数分布FD_Yは、複数個の反射点RP_3,RP_4に対応する度数(図中F_Y)を含むものとなる。第1解析部41は、度数分布FD_Yに対するピーク分離処理を実行する。これにより、複数個の反射点RP_3,RP_4に対応する1個の度数群FG_Yが設定される。
 次いで、第2解析部42は、度数群FG_Yに対応する複数個の反射点RP_3,RP_4に係る度数分布FD_Xを作成する。図27は、度数分布FD_Xの例を示している。図27に示す如く、度数分布FD_Xは、複数個の反射点RP_3,RP_4に対応する度数(図中F_X)を含むものとなる。第2解析部42は、度数分布FD_Xに対するピーク分離処理を実行する。これにより、複数個の反射点RP_3,RP_4に対応する1個の度数群FG_Xが設定される。
 次いで、グループ化部14は、度数群FG_Y及び度数群FG_Xに対応する1個の反射点群PGを設定する。これにより、図25に示す如く、2個の障害物O_3,O_4に対応する1個の反射点群PGが設定される。
 このように、反射点配列方向が車両1の移動方向に対して非平行であるとき、個々の解析領域AAにおいて、個々の障害物Oに対応する反射点群PGを正確に設定することができないという問題が生ずる。実施の形態2に係る障害物検知装置は、かかる問題の解消を図るものである。
 図28は、実施の形態2に係る障害物検知装置を含む駐車支援システムの要部を示すブロック図である。図29は、実施の形態2に係る障害物検知装置におけるグループ化部の要部を示すブロック図である。図28及び図29を参照して、実施の形態2に係る障害物検知装置について説明する。
 なお、図28において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図29において、図3に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 図28に示す如く、車両1は、測距センサ2、障害物検知装置100a及び駐車支援装置200を有している。測距センサ2、障害物検知装置100a及び駐車支援装置200により、駐車支援システム300aの要部が構成されている。障害物検知装置100aは、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14a、識別部15及び出力部16を有している。図29に示す如く、グループ化部14aは、第1解析部41、第2解析部42及び補正部43を有している。
 補正部43は、反射点配列方向が車両1の移動方向に対して非平行な状態であるとき、グループ化部14aにより取得された反射点情報に含まれる個々の反射点座標値C_X,C_Yを補正することにより、反射点配列方向が車両1の移動方向に対して平行な状態にするものである。補正部43による補正方法の具体例については、図31及び図32を参照して説明する。
 第1解析部41は、補正部43による補正後のY座標値C_Yを度数分布FD_Yの作成に用いるようになっている。また、第2解析部42は、補正部43による補正後のX座標値C_Xを度数分布FD_Xの作成に用いるようになっている。
 以下、グループ化部14aにより実行される処理を総称して「グループ化処理」ということがある。すなわち、グループ化部14aにより実行されるグループ化処理は、グループ化部14により実行されるグループ化処理に含まれる処理と同様の処理に加えて、個々の反射点座標値C_X,C_Yを補正する処理などを含むものである。
 障害物検知装置100aの要部のハードウェア構成は、実施の形態1にて図5及び図6を参照して説明したものと同様である。このため、図示及び説明を省略する。すなわち、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14a、識別部15及び出力部16の各々の機能は、プロセッサ61及びメモリ62により実現されるものであっても良く、又は専用の処理回路63により実現されるものであっても良い。
 次に、図30を参照して、駐車支援システム300aの動作について、障害物検知装置100a及び駐車支援装置200の動作を中心に説明する。なお、図30において、図9に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST3の処理が実行される。次いで、グループ化部14aがグループ化処理を実行する(ステップST4a)。次いで、ステップST5~ST7の処理が実行される。
 次に、図31を参照して、補正部43による補正方法の第1具体例について説明する。
 まず、補正部43は、X軸に対して平行な直線(以下「基準直線」という。)SL_refを設定する。また、補正部43は、グループ化部14aにより取得された反射点情報を用いて、反射点配列方向に沿う直線SLを検出する。次いで、補正部43は、基準直線SL_refに対する直線SLの角度θを算出する。
 次いで、補正部43は、対応する解析領域AAにおける全ての反射点RPの位置が当該算出された角度θに応じた回転角度(-θ)にて回転するように、上記取得された反射点位置情報に含まれる個々の反射点座標値C_X,C_Yを補正する。当該回転により、反射点配列方向が車両1の移動方向に対して平行な状態を実現することができる。
 このとき、当該回転の中心には、XY座標系における任意の点を用いることができる。当該回転の中心は、対応する解析領域AAにおける全ての反射点RPにより共用されるものである。
 なお、直線SLの検出には、公知の種々の技術を用いることができる。例えば、補正部43は、対応する解析領域AAにおける複数個の反射点RPに対して、Hough変換を用いた直線検出を実行することにより、直線SLを検出するものであっても良い。
 または、例えば、補正部43は、RANSAC(Random Sample Consensus)アルゴリズムを用いた直線検出を実行することにより、直線SLを検出するものであっても良い。これにより、広幅障害物と異なる障害物(例えば図31における障害物O_4)に対応する複数個の反射点(例えば図31における反射点RP_4)が含まれる解析領域AAにおいても、直線SLを精度良く検出することができる。
 次に、図32を参照して、補正部43による補正方法の第2具体例について説明する。
 補正部43には、M個の角度φ_1~φ_Mを示す情報が予め記憶されている。ここで、Mは、2以上の任意の整数である。
 補正部43は、対応する解析領域AAにおける全ての反射点RPの位置を角度φ_1に応じた回転角度(-φ_1)にて回転させた状態において、Y座標値C_Yに対する反射点RPの個数を示す度数分布FD_φ_1を作成する。また、補正部43は、対応する解析領域AAにおける全ての反射点RPの位置を角度φ_2に応じた回転角度(-φ_2)にて回転させた状態において、Y座標値C_Yに対する反射点RPの個数を示す度数分布FD_φ_2を作成する。以下同様にして、補正部43は、回転角度(-φ_3~-φ_M)にそれぞれ対応する度数分布FD_φ_3~FD_φ_Mを作成する。これにより、M個の度数分布FD_φ_1~FD_φ_Mが作成される。
 このとき、当該回転の中心には、XY座標系における任意の点を用いることができる。当該回転の中心は、対応する解析領域AAにおける全ての反射点RPにより共用されるものである。
 次いで、補正部43は、当該作成された度数分布FD_φ_1~FD_φ_Mの各々における最大値F_maxを算出する。これにより、M個の度数分布FD_φ_1~FD_φ_Mと一対一に対応するM個の最大値F_max_1~F_max_Mが算出される。
 次いで、補正部43は、M個の最大値F_max_1~F_max_Mのうちの最も大きい値を選択する。補正部43は、M個の角度φ_1~φ_Mのうちの当該選択された値に対応する角度φを選択する。
 次いで、補正部43は、対応する解析領域AAにおける全ての反射点RPの位置が当該選択された角度φに応じた回転角度(-φ)にて回転するように、上記取得された反射点位置情報に含まれる個々の反射点座標値C_X,C_Yを補正する。当該回転により、反射点配列方向が車両1の移動方向に対して平行な状態を実現することができる。これは、φ=θであるときF_maxの値が最大となることを利用したものである。
 なお、角度φ_1~φ_Mは、互いに異なる値に設定されたものであれば良い。換言すれば、角度φ_1~φ_Mの各々は、如何なる値に設定されたものであっても良い。ただし、角度φ_1~φ_Mは、以下のような値に設定されるのがより好適である。
 いま、測距センサ2による探査波の送信方向に対応する角度、すなわちY方向に対応する角度がθcであるものとする。また、当該方向に対する送信波の広がりを示す角度がθwであるものとする。このとき、角度φ_1~φ_Mは、下限値φ_min以上かつ上限値φ_max以下の角度範囲ΔφをM等分してなる値に設定されるのが好適である。ここで、下限値φ_minは、以下の式(1)に基づく値である。また、上限値φ_maxは、以下の式(2)に基づく値である。
 φ_min=θc-(θw/2)  (1)
 φ_max=θc+(θw/2)  (2)
 すなわち、これは、下限値φ_min未満の角度範囲における障害物Oには探査波が照射されないことを考慮したものである。また、これは、上限値φ_maxを超える角度範囲における障害物Oには探査波が照射されないことを考慮したものである。
 なお、障害物検知装置100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。また、駐車支援システム300aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、グループ化部14aは、反射点配列方向が車両1の移動方向に対して平行な状態となるように個々の反射点座標値C_X,C_Yを補正する。これにより、車両1の進路にかかわらず、個々の障害物Oに対応する反射点群PGを設定することができる。
実施の形態3.
 図33は、実施の形態3に係る障害物検知装置を含む駐車支援システムの要部を示すブロック図である。図34は、実施の形態3に係る障害物検知装置における識別部の要部を示すブロック図である。図33及び図34を参照して、実施の形態3に係る障害物検知装置について説明する。
 なお、図33において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図34において、図4に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 図33に示す如く、車両1は、測距センサ2、障害物検知装置100b及び駐車支援装置200aを有している。測距センサ2、障害物検知装置100b及び駐車支援装置200aにより、駐車支援システム300bの要部が構成されている。障害物検知装置100bは、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15a及び出力部16を有している。駐車支援装置200aは、駐車支援制御部21aを有している。図34に示す如く、識別部15aは、幅判断部51、位置判断部52、高さ判断部53及び動き判断部54を有している。
 動き判断部54は、識別部15aにより取得された反射点情報を用いて、識別部15aにより駐車障害物であると識別された個々の障害物Oが動的障害物であるか否かを判断するものである。動き判断部54による判断方法の具体例については後述する。
 以下、識別部15aにより実行される処理を総称して「識別処理」ということがある。すなわち、識別部15aにより実行される識別処理は、識別部15により実行される識別処理に含まれる処理と同様の処理に加えて、個々の駐車障害物が動的障害物であるか否かを判断する処理などを含むものである。
 出力部16は、識別処理の結果を示す信号、すなわち識別結果信号を駐車支援制御部21aに出力するものである。ここで、実施の形態3における識別結果信号は、個々の障害物Oが縁石であるか否かを示す情報、個々の障害物Oが駐車障害物であるか否かを示す情報、及び個々の障害物Oの位置を示す情報に加えて、個々の駐車障害物が動的障害物であるか否かを示す情報を含むものである。
 駐車支援制御部21aは、駐車支援制御部21により実行される駐車支援制御と同様の駐車支援制御を実行するものである。すなわち、駐車支援制御部21aは、例えば、自動駐車を実現するための制御を実行するものである。
 ただし、駐車支援制御部21aは、側方領域LAに動的障害物が存在する場合、車両1の警笛を鳴らす制御を実行するとともに、動的障害物を自動駐車における回避の対象から除外するようになっている。これは、通常、動的障害物は人間を含むものであるところ、車両1が警笛を鳴らすことにより、動的障害部が車両1を回避するように移動する蓋然性が高いことを利用したものである。これにより、自動駐車において、車両1による不要な回避がなされるのを抑制することができる。
 障害物検知装置100bの要部のハードウェア構成は、実施の形態1にて図5及び図6を参照して説明したものと同様である。このため、図示及び説明を省略する。すなわち、障害物検知部11、非連続部検知部12、解析領域抽出部13、グループ化部14、識別部15a及び出力部16の各々の機能は、プロセッサ61及びメモリ62により実現されるものであっても良く、又は専用の処理回路63により実現されるものであっても良い。
 駐車支援装置200aの要部のハードウェア構成は、実施の形態1にて図7及び図8を参照して説明したものと同様である。このため、図示及び説明を省略する。すなわち、駐車支援制御部21aの機能は、プロセッサ71及びメモリ72により実現されるものであっても良く、又は専用の処理回路73により実現されるものであっても良い。
 次に、図35を参照して、駐車支援システム300bの動作について、障害物検知装置100b及び駐車支援装置200aの動作を中心に説明する。なお、図35において、図9に示すステップと同様のステップには同一符号を付して説明を省略する。
 まず、ステップST1~ST4の処理が実行される。次いで、識別部15aが識別処理を実行する(ステップST5a)。次いで、ステップST6の処理が実行される。次いで、駐車支援制御部21aが駐車支援制御を実行する(ステップST7a)。
 次に、動き判断部54による判断方法の第1具体例について説明する。
 動き判断部54は、個々の反射点RPに対応する反射点情報に含まれる波形情報を用いて、個々の反射点RPに対応する受信信号RSの波形に対する周波数分析を実行する。これにより、第1ドップラーシフト量が算出される。次いで、動き判断部54は、当該算出された第1ドップラーシフト量から車両1の移動による成分を差し引く。これにより、第2ドップラーシフト量が算出される。このとき、車両1の移動による成分は、車両速度情報を用いて算出される。車両速度情報は、例えば、障害物検知装置100bがCAN通信により取得したものである。
 すなわち、第1ドップラーシフト量は、対応する障害物Oの車両1に対する相対的な移動に基づくドップラーシフト量である。これに対して、第2ドップラーシフト量は、対応する障害物Oの絶対的な移動に基づくドップラーシフト量である。
 次いで、動き判断部54は、当該算出された第2ドップラーシフト量と対応する反射波が受信された時点における音速とに基づき、対応する障害物Oの移動速度を算出する。このとき、当該時点における音速は、当該時点における車外温度を示す情報(以下「温度情報」という。)及び当該時点における車外湿度を示す情報(以下「湿度情報」という。)を用いて算出される。温度情報及び湿度情報は、例えば、障害物検知装置100bがCAN通信により取得したものである。
 次いで、動き判断部54は、当該算出された移動速度を所定の閾値と比較する。移動速度が閾値よりも大きい場合、動き判断部54は、対応する障害物Oが動的障害物であると判断する。そうでない場合、動き判断部54は、対応する障害物Oが動的障害物でないと判断する。
 次に、図36及び図37を参照して、動き判断部54による判断方法の第2具体例について説明する。
 通常、動的障害物(例えば歩行者)の表面形状は、静的障害物(例えば電柱、ポール又は看板)の表面形状に比して複雑である。このため、動的障害物に対応する受信信号波形は、所定の幅wを有する判断用の時間窓(以下「判断窓」という。)JW内に複数個のピーク部Pを有するものとなる。すなわち、動的障害物に対応する受信信号波形は、略林状のピーク部Pを有するものとなる。図36は、判断窓JW内に3個のピーク部P_1,P_2,P_3を有する受信信号波形の例を示している。幅wは、例えば、狭幅障害物に係る識別用の閾値W_th_1に対応する値に設定されている。
 他方、静的障害物(例えば電柱、ポール又は看板)の表面形状は、動的障害物(例えば歩行者)の表面形状に比して単純である。このため、静的障害物に対応する受信信号波形は、判断窓JW内に1個のピーク部Pを有するものとなる。すなわち、静的障害物に対応する受信信号波形は、略板状のピーク部Pを有するものとなる。図37は、判断窓JW内に1個のピーク部Pを有する受信信号波形の例を示している。
 そこで、動き判断部54は、個々の反射点RPに対応する反射点情報に含まれる波形情報を用いて、個々の反射点EPに対応する受信信号波形における判断窓JW内のピーク部Pの個数を算出する。当該算出された個数が所定数(例えば2個)以上である場合、動き判断部54は、対応する障害物Oが動的障害物であると判断する。そうでない場合、動き判断部54は、対応する障害物Oが動的障害物でないと判断する。
 なお、障害物検知装置100bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。また、駐車支援システム300bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。
 また、障害物検知装置100bは、グループ化部14に代えてグループ化部14aを有するものであっても良い。この場合、障害物検知装置100bは、実施の形態2にて説明したものと同様の種々の変形例を採用することができる。
 以上のように、識別部15aは、駐車障害物が動的障害物であるか否かを判断する。これにより、駐車障害物が動的障害物であるか否かの判断結果を駐車支援制御に用いることができる。この結果、より適切な駐車支援制御を実現することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明の障害物検知装置は、駐車支援システムに用いることができる。
 1 車両、2 測距センサ、11 障害物検知部、12 非連続部検知部、13 解析領域抽出部、14,14a グループ化部、15,15a 識別部、16 出力部、21,21a 駐車支援制御部、31 送信信号出力部、32 受信信号取得部、33 測距値算出部、34 座標値算出部、41 第1解析部、42 第2解析部、43 補正部、51 幅判断部、52 位置判断部、53 高さ判断部、54 動き判断部、61 プロセッサ、62 メモリ、63 処理回路、71 プロセッサ、72 メモリ、73 処理回路、100,100a,100b 障害物検知装置、200,200a 駐車支援装置、300,300a,300b 駐車支援システム。

Claims (11)

  1.  車両に設けられた測距センサを用いて、移動中の前記車両に対する側方領域における障害物群を検知する障害物検知部と、
     前記障害物群における非連続部を検知する非連続部検知部と、
     前記非連続部に基づく解析領域を抽出する解析領域抽出部と、
     前記解析領域における複数個の反射点に係る度数分布を解析することにより、前記障害物群に含まれる複数個の障害物に対応する複数個の反射点群を設定するグループ化部と、
     前記複数個の障害物の各々が縁石であるか否かを識別するとともに、前記複数個の障害物の各々が駐車障害物であるか否かを識別する識別部と、
     前記縁石と前記駐車障害物間の距離が所定距離以下であるとき、少なくとも前記駐車障害物の位置を示す信号を出力する出力部と、
     を備える障害物検知装置。
  2.  前記非連続部検知部は、第1条件が満たされたとき前記非連続部を検知するものであり、
     前記第1条件は、第n波に対応する複数個の反射点における反射点間距離が算出される場合において、当該算出された反射点間距離が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  3.  前記非連続部検知部は、第2条件が満たされたとき前記非連続部を検知するものであり、
     前記第2条件は、各回の送信波に対応する1個以上の測距値における分散値が算出される場合において、当該算出された分散値の変化量が算出されるとき、当該算出された変化量が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  4.  前記非連続部検知部は、第3条件が満たされたとき前記非連続部を検知するものであり、
     前記第3条件は、算出済みの複数組の反射点座標値における連続性に基づき未算出の少なくとも1組の反射点座標値の予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  5.  前記非連続部検知部は、第1条件及び第2条件のうちの少なくとも一方が満たされたとき前記非連続部を検知するものであり、
     前記第1条件は、第n波に対応する複数個の反射点における反射点間距離が算出される場合において、当該算出された反射点間距離が閾値を超えるという条件であり、
     前記第2条件は、各回の送信波に対応する1個以上の測距値における分散値が算出される場合において、当該算出された分散値の変化量が算出されるとき、当該算出された変化量が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  6.  前記非連続部検知部は、第1条件及び第3条件のうちの少なくとも一方が満たされたとき前記非連続部を検知するものであり、
     前記第1条件は、第n波に対応する複数個の反射点における反射点間距離が算出される場合において、当該算出された反射点間距離が閾値を超えるという条件であり、
     前記第3条件は、算出済みの複数組の反射点座標値における連続性に基づき未算出の少なくとも1組の反射点座標値の予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  7.  前記非連続部検知部は、第2条件及び第3条件のうちの少なくとも一方が満たされたとき前記非連続部を検知するものであり、
     前記第2条件は、各回の送信波に対応する1個以上の測距値における分散値が算出される場合において、当該算出された分散値の変化量が算出されるとき、当該算出された変化量が閾値を超えるという条件であり、
     前記第3条件は、算出済みの複数組の反射点座標値における連続性に基づき未算出の少なくとも1組の反射点座標値の予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  8.  前記非連続部検知部は、第1条件、第2条件及び第3条件のうちの少なくとも一つが満たされたとき前記非連続部を検知するものであり、
     前記第1条件は、第n波に対応する複数個の反射点における反射点間距離が算出される場合において、当該算出された反射点間距離が閾値を超えるという条件であり、
     前記第2条件は、各回の送信波に対応する1個以上の測距値における分散値が算出される場合において、当該算出された分散値の変化量が算出されるとき、当該算出された変化量が閾値を超えるという条件であり、
     前記第3条件は、算出済みの複数組の反射点座標値における連続性に基づき未算出の少なくとも1組の反射点座標値の予測値が算出される場合において、当該算出された予測値に係る残差値が算出されるとき、当該算出された残差値が閾値を超えるという条件である
     ことを特徴とする請求項1記載の障害物検知装置。
  9.  前記解析領域抽出部は、前記解析領域に対応する測距値の算出数が所定数を超えたとき、前記解析領域を複数個の解析領域に分割することを特徴とする請求項1記載の障害物検知装置。
  10.  前記グループ化部は、反射点配列方向が前記車両の移動方向に対して平行な状態となるように個々の反射点座標値を補正することを特徴とする請求項1記載の障害物検知装置。
  11.  前記識別部は、前記駐車障害物が動的障害物であるか否かを判断することを特徴とする請求項1記載の障害物検知装置。
PCT/JP2019/045918 2019-11-25 2019-11-25 障害物検知装置 WO2021106030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/045918 WO2021106030A1 (ja) 2019-11-25 2019-11-25 障害物検知装置
JP2021560765A JP7224491B2 (ja) 2019-11-25 2019-11-25 障害物検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045918 WO2021106030A1 (ja) 2019-11-25 2019-11-25 障害物検知装置

Publications (1)

Publication Number Publication Date
WO2021106030A1 true WO2021106030A1 (ja) 2021-06-03

Family

ID=76129227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045918 WO2021106030A1 (ja) 2019-11-25 2019-11-25 障害物検知装置

Country Status (2)

Country Link
JP (1) JP7224491B2 (ja)
WO (1) WO2021106030A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059341A1 (de) * 2002-12-20 2004-07-15 Daimlerchrysler Ag Verfahren zum erfassen von umgebungsinformationen und zum bestimmen der lage einer parklücke
JP2007139665A (ja) * 2005-11-21 2007-06-07 Toyota Motor Corp 物体検出装置および物体検出方法
JP2011150633A (ja) * 2010-01-25 2011-08-04 Toyota Central R&D Labs Inc 対象物検出装置及びプログラム
JP2014157501A (ja) * 2013-02-15 2014-08-28 Nippon Soken Inc 障害物検知装置
JP2016175620A (ja) * 2015-03-23 2016-10-06 三菱電機株式会社 駐車支援装置
JP2017138219A (ja) * 2016-02-04 2017-08-10 株式会社デンソー 物体認識装置
WO2018047295A1 (ja) * 2016-09-09 2018-03-15 三菱電機株式会社 駐車支援装置
JP2018055222A (ja) * 2016-09-27 2018-04-05 日産自動車株式会社 走路検出方法及び走路検出装置
WO2018134915A1 (ja) * 2017-01-18 2018-07-26 三菱電機株式会社 駐車支援装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059341A1 (de) * 2002-12-20 2004-07-15 Daimlerchrysler Ag Verfahren zum erfassen von umgebungsinformationen und zum bestimmen der lage einer parklücke
JP2007139665A (ja) * 2005-11-21 2007-06-07 Toyota Motor Corp 物体検出装置および物体検出方法
JP2011150633A (ja) * 2010-01-25 2011-08-04 Toyota Central R&D Labs Inc 対象物検出装置及びプログラム
JP2014157501A (ja) * 2013-02-15 2014-08-28 Nippon Soken Inc 障害物検知装置
JP2016175620A (ja) * 2015-03-23 2016-10-06 三菱電機株式会社 駐車支援装置
JP2017138219A (ja) * 2016-02-04 2017-08-10 株式会社デンソー 物体認識装置
WO2018047295A1 (ja) * 2016-09-09 2018-03-15 三菱電機株式会社 駐車支援装置
JP2018055222A (ja) * 2016-09-27 2018-04-05 日産自動車株式会社 走路検出方法及び走路検出装置
WO2018134915A1 (ja) * 2017-01-18 2018-07-26 三菱電機株式会社 駐車支援装置

Also Published As

Publication number Publication date
JP7224491B2 (ja) 2023-02-17
JPWO2021106030A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
CN111352110B (zh) 处理雷达数据的方法和装置
US10605896B2 (en) Radar-installation-angle calculating device, radar apparatus, and radar-installation-angle calculating method
US10274598B2 (en) Navigation based on radar-cued visual imaging
EP3164859B1 (en) Vehicle radar methods and systems
US6631324B2 (en) Vehicle surroundings monitoring apparatus
JP2015506474A (ja) 車両における車輪に依存しない速度測定のための方法及び装置
JP2004534947A (ja) 路上車用の物体の位置探知システム
US12065141B2 (en) Driving assistance device
US20230008630A1 (en) Radar device
JP2006234494A (ja) 物体認識装置
CN110361740B (zh) 识别对象的方法
JP2018190220A (ja) 駐車空間検出装置
US7557907B2 (en) Object-detection device for vehicle
US11798417B2 (en) Driving assistance device
JP7401273B2 (ja) 移動体の制御装置及び方法
WO2021106030A1 (ja) 障害物検知装置
JP7199436B2 (ja) 障害物検知装置及び運転支援装置
JP7186923B2 (ja) 障害物検知装置、駐車支援装置、衝突回避装置及び障害物検知方法
US12123942B2 (en) Target detection apparatus
WO2020049650A1 (ja) 運転支援装置
WO2020008536A1 (ja) 障害物検知装置
US20240338950A1 (en) Systems and methods for sensing environment around vehicles
US20230008853A1 (en) Radar device
JPWO2020230231A1 (ja) 障害物検知装置
JP7554029B2 (ja) 物体検知装置、車両、および、物体検知装置における検知感度の設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954021

Country of ref document: EP

Kind code of ref document: A1