WO2021199260A1 - 超硬合金及びそれを備える切削工具 - Google Patents
超硬合金及びそれを備える切削工具 Download PDFInfo
- Publication number
- WO2021199260A1 WO2021199260A1 PCT/JP2020/014778 JP2020014778W WO2021199260A1 WO 2021199260 A1 WO2021199260 A1 WO 2021199260A1 JP 2020014778 W JP2020014778 W JP 2020014778W WO 2021199260 A1 WO2021199260 A1 WO 2021199260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- range
- tungsten carbide
- cemented carbide
- carbide particles
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B41/00—Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
Definitions
- This disclosure relates to cemented carbide and cutting tools equipped with it.
- JP-A-2007-92090 Japanese Unexamined Patent Publication No. 2012-52237 Japanese Unexamined Patent Publication No. 2012-117100
- the cemented carbide of the present disclosure is a cemented carbide including a first phase composed of a plurality of tungsten carbide particles and a second phase containing cobalt.
- the equivalent circle diameter of each of the tungsten carbide particles is calculated by performing image processing on the image of the cemented carbide taken with a scanning electron microscope, the equivalent circle diameter is 0.3 ⁇ m or more and 1.0 ⁇ m.
- the ratio based on the number of the tungsten carbide particles below is 50% or more.
- the distribution of the equivalent circle diameter of the tungsten carbide particles is represented by a histogram with the frequency as the vertical axis and the class as the horizontal axis,
- the frequency is the number of the tungsten carbide particles, and is In the class, the equivalent circle diameter is divided in ascending order at intervals of 0.1 ⁇ m.
- On the horizontal axis a range of more than 0.3 ⁇ m and 0.6 ⁇ m or less is defined as the first range, and a range of more than 0.6 ⁇ m and 1.0 ⁇ m or less is defined as the second range.
- the first range and the second range each have at least one maximum frequency.
- the ratio of the largest first maximum power to the total number of the tungsten carbide particles is 10% or more. It is a cemented carbide in which the ratio of the largest second maximum power to the total number of the tungsten carbide particles among the maximum powers existing in the second range is 10% or more.
- the cutting tool of the present disclosure is a cutting tool having a cutting edge made of the above-mentioned cemented carbide.
- FIG. 1 is an example of an image of the cemented carbide of the present disclosure taken by a scanning electron microscope.
- FIG. 2 is an image obtained by performing image processing on the captured image of FIG.
- FIG. 3 is a diagram showing an example of the distribution of the equivalent circle diameters of the tungsten carbide particles in the cemented carbide of the present disclosure.
- FIG. 4 is a diagram showing another example of the distribution of the equivalent circle diameters of the tungsten carbide particles in the cemented carbide of the present disclosure.
- FIG. 5 is a diagram showing another example of the distribution of the equivalent circle diameters of the tungsten carbide particles in the cemented carbide of the present disclosure.
- FIG. 6 is a diagram showing another example of the distribution of the equivalent circle diameters of the tungsten carbide particles in the cemented carbide of the present disclosure.
- an object of the present disclosure is to provide a cemented carbide capable of extending the life of a tool when used as a tool material, particularly even in microfabrication of a printed circuit board, and a cutting tool provided with the cemented carbide. ..
- the cemented carbide of the present disclosure enables a long life of a tool, especially in microfabrication of a printed circuit board.
- the cemented carbide of the present disclosure is a cemented carbide including a first phase composed of a plurality of tungsten carbide particles and a second phase containing cobalt.
- the equivalent circle diameter of each of the tungsten carbide particles is calculated by performing image processing on the image of the cemented carbide taken with a scanning electron microscope, the equivalent circle diameter is 0.3 ⁇ m or more and 1.0 ⁇ m.
- the ratio based on the number of the tungsten carbide particles below is 50% or more.
- the distribution of the equivalent circle diameter of the tungsten carbide particles is represented by a histogram with the frequency as the vertical axis and the class as the horizontal axis,
- the frequency is the number of the tungsten carbide particles, and is In the class, the equivalent circle diameter is divided in ascending order at intervals of 0.1 ⁇ m.
- On the horizontal axis a range of more than 0.3 ⁇ m and 0.6 ⁇ m or less is defined as the first range, and a range of more than 0.6 ⁇ m and 1.0 ⁇ m or less is defined as the second range.
- the first range and the second range each have at least one maximum frequency.
- the ratio of the largest first maximum power to the total number of the tungsten carbide particles is 10% or more. It is a cemented carbide in which the ratio of the largest second maximum power to the total number of the tungsten carbide particles among the maximum powers existing in the second range is 10% or more.
- the cemented carbide of the present disclosure makes it possible to extend the life of the tool, especially in the microfabrication of printed circuit boards.
- the cemented carbide contains 75 area% or more and less than 100 area% of the first phase and more than 0% by volume and 20 area% or less of the second phase in an image taken by a scanning electron microscope. Is preferable. According to this, the tool life is further improved.
- the cemented carbide preferably contains the second phase in an amount of 5 area% or more and 12 area% or less in an image taken with a scanning electron microscope. According to this, the tool life is further improved.
- the cemented carbide contains chromium and contains chromium.
- the mass-based ratio of the chromium to the cobalt is preferably 5% or more and 10% or less. According to this, the breakage resistance of the cemented carbide is improved, and the tool life is further improved.
- the mass-based content of the vanadium in the cemented carbide is preferably less than 100 ppm. According to this, the strength of the cemented carbide is improved.
- the ratio based on the number of the tungsten carbide particles having the equivalent circle diameter of less than 0.3 ⁇ m is preferably 7% or less. According to this, the tool life is further improved.
- the ratio of the second maximum frequency to the first maximum frequency is preferably 0.8 or more and 1.2 or less. According to this, the tool life is further improved.
- the third range has the first maximal frequency and the fourth range preferably has the second maximum frequency. According to this, the tool life is further improved.
- the cutting tool of the present disclosure is a cutting tool provided with a cutting edge made of the above-mentioned cemented carbide.
- the cutting tools of the present disclosure have a long tool life.
- the cutting tool is preferably a rotary tool for processing a printed circuit board.
- the cutting tool of the present disclosure is suitable for microfabrication of a printed circuit board.
- the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less) unless otherwise defined, and the unit is not described in A and the unit is described only in B. If so, the unit of A and the unit of B are the same.
- a compound or the like when represented by a chemical formula in the present specification, it shall include all conventionally known atomic ratios when the atomic ratio is not particularly limited, and should not necessarily be limited to those in the stoichiometric range.
- the ratio of the number of atoms constituting the WC includes any conventionally known atomic ratio.
- a glass epoxy substrate in which a glass woven cloth in which glass fibers are woven into a cloth shape is impregnated with an epoxy resin, a glass polyimide substrate in which a glass woven cloth is impregnated with a polyimide resin, or the like is used. ing.
- the cemented carbide of the present disclosure is a cemented carbide including a first phase composed of a plurality of tungsten carbide particles and a second phase containing cobalt.
- the equivalent circle diameter of each of the tungsten carbide particles is calculated by performing image processing on the image of the cemented carbide taken with a scanning electron microscope, the equivalent circle diameter is 0.3 ⁇ m or more and 1.0 ⁇ m or less.
- the ratio based on the number of tungsten carbide particles is 50% or more, and when the distribution of the equivalent circle diameter of the tungsten carbide particles is represented by a histogram with the frequency as the vertical axis and the class as the horizontal axis, the frequency is the tungsten carbide particles.
- the equivalent circle diameter is divided in ascending order at 0.1 ⁇ m intervals, and the range of more than 0.3 ⁇ m and 0.6 ⁇ m or less is defined as the first range on the horizontal axis, and is 0.6 ⁇ m.
- the range of super 1.0 ⁇ m or less is defined as the second range, and the first range and the second range each have at least one maximum frequency, and the first maximum frequency existing in the first range is the largest.
- the ratio of the maximum frequency to the total number of tungsten carbide particles is 10% or more, and the ratio of the maximum second maximum frequency to the total number of tungsten carbide particles existing in the second range is 10% or more. It is a cemented carbide.
- the cemented carbide of the present disclosure makes it possible to extend the life of the tool, especially in the microfabrication of printed circuit boards. The reason for this is not clear, but it is presumed to be as shown in (i) and (ii) below.
- the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less is 50% or more. According to this, the cemented carbide structure becomes homogeneous, it is possible to suppress a decrease in the accuracy of microfabrication due to use, and the tool life is extended.
- the distribution of the equivalent circle diameter of the WC particles is in the range of the particle size of more than 0.3 ⁇ m and not more than 0.6 ⁇ m (first range) and the range of more than 0.6 ⁇ m and not more than 1.0 ⁇ m (the first range).
- Each of the second range) has at least one maximum frequency.
- the maximum maximum power in the first range (first maximum power) and the maximum maximum power in the second range (second maximum power) are each 10% of the total number of tungsten carbide particles in the cemented carbide. That is all.
- the cemented carbide has a structure in which WC particles having a large circle-equivalent diameter form a skeleton, and WC particles having a small circle-equivalent diameter fill a gap between the WC particles. Since the WC particles are bonded to each other in the cemented carbide, the wear resistance is improved by suppressing the WC particles from falling off. Further, by suppressing wear, an increase in cutting resistance is suppressed and breakage resistance is improved. Therefore, the tool life is extended.
- the amount of cobalt exposed on the tool surface during machining is reduced as compared with the conventional fine-grained cemented carbide. Therefore, the cobalt is less likely to be worn during processing, the WC particles can be suppressed from falling off, and the tool life is extended.
- the first phase consists of tungsten carbide particles.
- tungsten carbide includes not only "pure WC (WC containing no impurity elements, WC in which impurity elements are below the detection limit)", but also "as long as the effects of the present disclosure are not impaired.”"WC” in which other impurity elements are intentionally or unavoidably contained is also included.
- the concentration of impurities contained in tungsten carbide (when two or more kinds of elements constituting the impurities are the total concentration thereof) is less than 0.1% by mass with respect to the total amount of the tungsten carbide and the impurities. ..
- the content of impurity elements in the first phase is measured by ICP emission spectrometry (Inductively Coupled Plasma) Emission Spectroscopy (measuring apparatus: Shimadzu Corporation "ICPS-8100" (trademark)).
- the ratio of the number-based number of tungsten carbide particles having a circle-equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less is 50% or more. According to this, the cemented carbide structure becomes homogeneous, it is possible to suppress a decrease in the accuracy of microfabrication due to use, and the tool life is extended.
- the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less is 50% or more, preferably 70% or more, from the viewpoint of improving the homogeneity of the cemented carbide structure.
- the upper limit of the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less is not particularly limited, but may be, for example, 100% or less, 90% or less, or 80% or less.
- the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less can be 50% or more and 100% or less, 60% or more and 90% or less, and 70% or more and 80% or less.
- the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of less than 0.3 ⁇ m is preferably 7% or less.
- Tungsten carbide particles having a circle-equivalent diameter of less than 0.3 ⁇ m have a small contribution to improving the strength of cemented carbide and reducing the amount of cobalt exposed on the tool surface during machining. Therefore, by reducing the ratio based on the number of tungsten carbide particles having a circle-equivalent diameter of less than 0.3 ⁇ m, the tool life is further extended.
- the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of less than 0.3 ⁇ m is preferably 0% or more and 7% or less, and more preferably 0% or more and 5% or less. Further, the ratio based on the number of tungsten carbide particles having a circle equivalent diameter of less than 0.2 ⁇ m is preferably 0% or more and 3% or less.
- the equivalent circle diameter of the tungsten carbide particles is measured by the following procedures (A1) to (C1).
- (A1) Mirror finish any surface or any cross section of cemented carbide. Examples of the mirror surface processing method include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
- FIB device focused ion beam device
- CP device cross section polisher device
- FIG. 1 shows an example of an image of the cemented carbide of the present disclosure taken with a scanning electron microscope. On the lower right scale of FIG. 1, one scale indicates 1 ⁇ m.
- (C1) The captured image obtained in (B1) above is taken into a computer, image processing is performed using image analysis software (ImageJ: https://imagej.nih.gov/ij/), and a circle of tungsten carbide particles.
- the equivalent diameter (Heywood diameter: equivalent area circle equivalent diameter) is calculated.
- the first phase composed of tungsten carbide particles and the second phase containing cobalt can be distinguished by the shade of color in the photographed image.
- An image obtained by performing image processing on the captured image of FIG. 1 is shown in FIG. In FIG. 2, the black region is the first phase and the white region is the second phase. White lines indicate grain boundaries. On the lower right scale of FIG. 2, one scale indicates 1 ⁇ m.
- the ratio based on the number of tungsten carbide particles having a circle-equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less in the cemented carbide is calculated by the following procedures (D1) and (E1).
- D1) The image processing of the above (C1) is performed in three measurement fields of view.
- the size of one measurement field of view is a rectangle having a length of 25.3 ⁇ m and a width of 17.6 ⁇ m.
- the ratio of the number-based number of tungsten carbide particles having a circle equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less in the cemented carbide is selected as the measurement field. It was confirmed that even if the measurement results were changed multiple times, the variation in the measurement results was small, and even if the measurement field was set arbitrarily, it would not be arbitrary.
- the distribution of the equivalent circle diameter of the tungsten carbide particles contained in the cemented carbide of the present disclosure satisfies the following (a). Further, when the distribution of the equivalent circle diameters of the tungsten carbide particles contained in the cemented carbide of the present disclosure is represented by a histogram having the frequency as the vertical axis and the class as the horizontal axis, the following (b) and (c) are satisfied.
- the frequency is the number of tungsten carbide particles
- the class is divided by 0.1 ⁇ m intervals in ascending order of the equivalent circle diameters.
- the ratio based on the number of tungsten carbide particles having a circle-equivalent diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less is 50% or more.
- the ratio of the largest first maximum power to the total number of tungsten carbide particles is 10% or more, which is the largest among the maximum powers existing in the second range.
- the ratio to the total number of tungsten carbide particles having the second maximum frequency is 10% or more.
- the histogram is prepared by the following procedures (A2) and (B2).
- the equivalent circle diameter of the tungsten carbide particles is calculated by the procedure (A1) to (C1) described in the above method for measuring the equivalent circle diameter of the tungsten carbide particles.
- the measurement of the equivalent circle diameter of the tungsten carbide particles is performed in three measurement fields.
- the maximum frequency is the frequency of a class whose frequency is one lower than the class to which the frequency belongs (the side having a smaller equivalent circle diameter), and the frequency of the class to which the frequency belongs (one higher than the class to which the frequency belongs (). It means that it is larger than any of the frequencies of the class (on the side with the larger equivalent diameter of the circle).
- the class one level below the class to which the maximum frequency belongs and the class one level above the class to which the maximum frequency belongs may be a class outside the first range or a class outside the second range.
- the class to which the maximum frequency belongs in the first range is more than 0.3 ⁇ m and 0.4 ⁇ m or less
- the next lower class is more than 0.2 ⁇ m and 0.3 ⁇ m or less outside the first range.
- the class to which the maximum frequency belongs in the second range is more than 0.9 ⁇ m and 1.0 ⁇ m or less
- the class one level higher is more than 1.0 ⁇ m and 1.1 ⁇ m or less outside the second range.
- FIGS. 3 to 6 are examples of diagrams showing the distribution of the equivalent circle diameters of the tungsten carbide particles in the cemented carbide of the present disclosure, respectively.
- the horizontal axis shows the class in which the equivalent circle diameter is divided in ascending order at intervals of 0.1 ⁇ m
- the vertical axis shows the ratio (%) of the number of tungsten particles belonging to each class to all the tungsten particles. ..
- the notation in the form of "C to D” means C super D or less.
- the notation “0 to 0.1” on the horizontal axis of FIGS. 3 to 6 means more than 0 ⁇ m and 0.1 ⁇ m or less
- the notation “0.1 to 0.2” means 0. It means more than 1 ⁇ m and 0.2 ⁇ m or less.
- FIGS. 3 to 6 can be regarded as the shape of the histogram when the rules of the class on the horizontal axis are the same and the frequency on the vertical axis is the number of tungsten carbide particles. Therefore, the above (a) to (c) can be described using the shapes of FIGS. 3 to 6.
- the vertical axis shows the ratio (%) of the number of tungsten particles belonging to each class to the total tungsten particles.
- the axis may be referred to as frequency.
- the frequency in the class having a circle equivalent diameter of more than 0.4 ⁇ m and 0.5 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the circle equivalent diameter is more than 0.3 ⁇ m and 0.4 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs (the equivalent circle diameter is more than 0.5 ⁇ m and 0.6 ⁇ m or less). That is, in FIG. 3, the first range (the equivalent circle diameter is more than 0.3 ⁇ m and 0.6 ⁇ m or less) has one maximum frequency.
- the frequency in the class having a circle equivalent diameter of more than 0.7 ⁇ m and 0.8 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the circle equivalent diameter is more than 0.6 ⁇ m and 0.7 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs (the equivalent circle diameter is more than 0.8 ⁇ m and 0.9 ⁇ m or less). That is, in FIG. 3, the second range (the equivalent circle diameter is more than 0.6 ⁇ m and 1.0 ⁇ m or less) has one maximum frequency.
- the first maximum frequency which is the largest maximum frequency existing in the first range, is a frequency in a class having a circle equivalent diameter of more than 0.4 ⁇ m and 0.5 ⁇ m or less.
- the ratio of the first maximum power to the total number of tungsten carbide particles is 10% or more (about 14.3%).
- the second maximum frequency which is the largest maximum frequency existing in the second range, is a frequency in a class having a circle equivalent diameter of more than 0.7 ⁇ m and 0.8 ⁇ m or less.
- the ratio of the second maximum power to the total number of tungsten carbide particles is 10% or more (about 12.6%).
- the frequency in the class having a circle equivalent diameter of more than 0.5 ⁇ m and 0.6 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the circle equivalent diameter is more than 0.4 ⁇ m and 0.5 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs (the equivalent circle diameter is more than 0.6 ⁇ m and 0.7 ⁇ m or less). That is, in FIG. 4, the first range (the equivalent circle diameter is more than 0.3 ⁇ m and 0.6 ⁇ m or less) has one maximum frequency.
- the frequency in the class having a circle equivalent diameter of more than 0.7 ⁇ m and 0.8 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the circle equivalent diameter is more than 0.6 ⁇ m and 0.7 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs is more than 0.8 ⁇ m and 0.9 ⁇ m or less.
- the frequency in the class having a circle equivalent diameter of more than 0.9 ⁇ m and 1.0 ⁇ m or less is one class lower than the class to which the frequency belongs (the circle equivalent diameter is more than 0.8 ⁇ m and 0.9 ⁇ m or less).
- the equivalent circle diameter is more than 1.0 ⁇ m and 1.1 ⁇ m or less. That is, in FIG. 4, the second range (the equivalent circle diameter is more than 0.6 ⁇ m and 1.0 ⁇ m or less) has two maximum frequencies.
- the first maximum frequency which is the largest maximum frequency existing in the first range, is a frequency in a class having a circle equivalent diameter of more than 0.5 ⁇ m and 0.6 ⁇ m or less.
- the ratio of the first maximum power to the total number of tungsten carbide particles is 10% or more (about 13.4%).
- the second maximum frequency which is the largest maximum frequency existing in the second range, is a frequency in a class having a circle equivalent diameter of more than 0.7 ⁇ m and 0.8 ⁇ m or less.
- the ratio of the second maximum power to the total number of tungsten carbide particles is 10% or more (about 12.7%).
- the frequency in the class having the equivalent circle diameter of more than 0.3 ⁇ m and 0.4 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the equivalent circle diameter is more than 0.2 ⁇ m and 0.3 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs (the equivalent circle diameter is more than 0.4 ⁇ m and 0.5 ⁇ m or less). That is, in FIG. 5, the first range (the equivalent circle diameter is more than 0.3 ⁇ m and 0.6 ⁇ m or less) has one maximum frequency.
- the frequency in the class having a circle equivalent diameter of more than 0.7 ⁇ m and 0.8 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the circle equivalent diameter is more than 0.6 ⁇ m and 0.7 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs is more than 0.8 ⁇ m and 0.9 ⁇ m or less.
- the frequency in the class having a circle equivalent diameter of more than 0.9 ⁇ m and 1.0 ⁇ m or less is one class lower than the class to which the frequency belongs (the circle equivalent diameter is more than 0.8 ⁇ m and 0.9 ⁇ m or less).
- the equivalent circle diameter is more than 1.0 ⁇ m and 1.1 ⁇ m or less. That is, in FIG. 5, the second range (the equivalent circle diameter is more than 0.6 ⁇ m and 1.0 ⁇ m or less) has two maximum frequencies.
- the first maximum frequency which is the largest maximum frequency existing in the first range, is a frequency in a class having a circle equivalent diameter of more than 0.3 ⁇ m and 0.4 ⁇ m or less.
- the ratio of the first maximum power to the total number of tungsten carbide particles is 10% or more (about 11.8%).
- the second maximum frequency which is the largest maximum frequency existing in the second range, is a frequency in a class having a circle equivalent diameter of more than 0.7 ⁇ m and 0.8 ⁇ m or less.
- the ratio of the second maximum power to the total number of tungsten carbide particles is 10% or more (about 12.2%).
- the frequency in the class having the equivalent circle diameter of more than 0.4 ⁇ m and 0.5 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the equivalent circle diameter is more than 0.3 ⁇ m and 0.4 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs (the equivalent circle diameter is more than 0.5 ⁇ m and 0.6 ⁇ m or less). That is, in FIG. 6, the first range (the equivalent circle diameter is more than 0.3 ⁇ m and 0.6 ⁇ m or less) has one maximum frequency.
- the frequency in the class having a circle equivalent diameter of more than 0.6 ⁇ m and 0.7 ⁇ m or less is the frequency of the class one below the class to which the frequency belongs (the circle equivalent diameter is more than 0.5 ⁇ m and 0.6 ⁇ m or less).
- the frequency of the class one level higher than the class to which the frequency belongs (the equivalent circle diameter is more than 0.7 ⁇ m and 0.8 ⁇ m or less). That is, in FIG. 6, the second range (the equivalent circle diameter is more than 0.6 ⁇ m and 1.0 ⁇ m or less) has one maximum frequency.
- the first maximum frequency which is the largest maximum frequency existing in the first range, is a frequency in a class having a circle equivalent diameter of more than 0.4 ⁇ m and 0.5 ⁇ m or less.
- the ratio of the first maximum power to the total number of tungsten carbide particles is 10% or more (about 14.2%).
- the second maximum frequency which is the largest maximum frequency existing in the second range, is a frequency in a class having a circle equivalent diameter of more than 0.6 ⁇ m and 0.7 ⁇ m or less.
- the ratio of the second maximum power to the total number of tungsten carbide particles is 10% or more (about 12.4%).
- the range of more than 0.4 ⁇ m and less than 0.6 ⁇ m is defined as the third range, and the range of more than 0.6 ⁇ m and less than 0.8 ⁇ m is defined as the third range.
- the third range has a first maximum frequency and the fourth range has a second maximum frequency. According to this, the tool life is further improved.
- the ratio of the second maximum frequency to the first maximum frequency is preferably 0.8 or more and 1.2 or less. According to this, the tool life is further improved. The reason for this is that the bonding by contact between the tungsten carbide particles is important, and when the difference between the maximum power existing in the first range and the maximum power existing in the second range becomes large, the tungsten carbide in the cemented carbide eventually becomes large. It is presumed that this is because the contact between particles is reduced.
- the second phase contains cobalt.
- the second phase is a bonding phase in which the tungsten carbide particles constituting the first phase are bonded to each other.
- the second phase contains cobalt (Co)
- the main component of the second phase is Co.
- the main component of the second phase is Co means that the mass ratio of cobalt in the second phase is 90% by mass or more and 100% by mass or less.
- the mass ratio of cobalt in the second phase can be measured by ICP emission spectroscopic analysis (equipment used: "ICPS-8100” (trademark) manufactured by Shimadzu Corporation).
- the second phase can contain iron group elements such as nickel and dissolved substances (Cr, W, etc.) in the alloy in addition to cobalt.
- iron group elements such as nickel and dissolved substances (Cr, W, etc.) in the alloy in addition to cobalt.
- the cemented carbide includes a first phase composed of a plurality of tungsten carbide particles and a second phase containing cobalt.
- the cemented carbide preferably contains 75 area% or more and less than 100 area% of the first phase and 0 area% or more and 20 area% or less of the second phase in the image taken by the scanning electron microscope.
- the ratio of the second phase in the cemented carbide is 20 area% or less, it is possible to suppress the dissolution of fine tungsten carbide particles having a circle equivalent diameter of 0.6 ⁇ m or less in the cobalt of the second phase. It is possible to suppress the decrease of tungsten carbide particles having a circle-equivalent diameter of more than 0.3 ⁇ m and 0.6 ⁇ m or less. In addition, the amount of cobalt exposed on the tool surface during machining is further reduced. Therefore, the tool life is further improved.
- the cemented carbide preferably contains the second phase in an amount of 5 area% or more and 12 area% or less in the image taken by the scanning electron microscope. According to this, the hardness and wear resistance required for processing the printed circuit board can be exhibited, and the occurrence of variation in tool life can be suppressed.
- the lower limit of the ratio of the first phase in the cemented carbide can be 75 area% or more and 85 area% or more.
- the upper limit of the ratio of the first phase in the cemented carbide can be less than 100 area% and 95 area% or less.
- the ratio of the first phase in the cemented carbide can be 75 area% or more and less than 100 area%, and 85 area% or more and 95 area% or less.
- the lower limit of the ratio of the second phase in the cemented carbide can be more than 0 area% and 5 area% or more.
- the upper limit of the ratio of the second phase in the cemented carbide can be 20 area% or less and 12 area% or less.
- the ratio of the second phase in the cemented carbide can be more than 0 area% and 20 area% or less, 5 area% or more and 12 area% or less.
- the area ratio of each of the first phase and the second phase in the cemented carbide is measured by the following procedures (A3) to (C3).
- (C3) Perform the image processing of (B3) above in five measurement fields of view.
- the average of the area ratios of the first phase obtained in the five measurement fields is taken as the area ratio of the first phase in the cemented carbide.
- the average of the area ratios of the second phase obtained in the five measurement fields is taken as the area ratio of the second phase in the cemented carbide.
- the cemented carbide contains chromium (Cr), and the mass-based ratio of chromium to cobalt is preferably 5% or more and 10% or less. Chromium has a grain growth inhibitory effect on tungsten carbide particles. Further, by solid-solving in cobalt, the generation of lattice strain of cobalt is promoted. Therefore, when the cemented carbide contains chromium in the above ratio, the breakage resistance is further improved.
- chromium may precipitate as carbide and become the starting point of damage.
- mass-based ratio of chromium to cobalt is 5% or more and 10% or less, precipitation of chromium carbide is unlikely to occur, and the effect of improving breakage resistance can be obtained.
- the mass-based ratio of chromium to cobalt is 10% or less, the degree of grain growth inhibitory action becomes appropriate, and the amount of tungsten carbide particles having a circle equivalent diameter of more than 1.0 ⁇ m in the cemented carbide becomes excessive. It can be suppressed.
- the lower limit of the mass-based ratio of chromium to cobalt is preferably 5% or more, more preferably 7% or more.
- the mass-based ratio of chromium to cobalt is preferably 10% or less, more preferably 9% or less.
- the mass standard of chromium with respect to cobalt can be 5% or more and 10% or less, and 7% or more and 9% or less.
- the content of cobalt and chromium in cemented carbide is measured by ICP emission spectroscopy.
- the mass-based content of vanadium in the cemented carbide is preferably less than 100 ppm.
- vanadium Since vanadium has a grain growth inhibitory effect, it has been used in the production of conventional ultrafine cemented carbide. If vanadium is present during the grain growth of the tungsten carbide particles, vanadium is precipitated on the surface of the tungsten carbide particles, or vanadium intervenes in the growth surface of the tungsten carbide particles in a short period of time, so that the tungsten carbide particles grow. It is thought to be suppressed.
- the content of vanadium in the cemented carbide is preferably 100 ppm or less, more preferably 10 ppm or less. Since the smaller the content of vanadium in the cemented carbide is, the more preferable it is, the lower limit thereof is preferably 0 ppm. In addition, vanadium of several ppm may be unintentionally detected in the manufacturing process.
- the content of vanadium in the cemented carbide can be 0 ppm or more and 100 ppm or less, and 0 ppm or more and 10 ppm or less.
- the content of vanadium in cemented carbide is measured by ICP emission spectroscopy.
- the cemented carbide of the present embodiment can be typically produced by performing a raw material powder preparation step, a mixing step, a molding step, a sintering step, and a cooling step in the above order. Hereinafter, each step will be described.
- the preparation step is a step of preparing all the raw material powders of the materials constituting the cemented carbide.
- the raw material powder include tungsten carbide powder, which is a raw material for the first phase, and cobalt (Co) powder, which is a raw material for the second phase, as essential raw material powders.
- chromium carbide (Cr 3 C 2 ) powder can be prepared as a grain growth inhibitor.
- Vanadium carbide (VC) powder can also be prepared as long as the effects of the present disclosure are exhibited.
- As the tungsten carbide powder, cobalt powder, chromium carbide powder, and vanadium carbide powder commercially available ones can be used.
- the tungsten carbide powder includes (a) tungsten carbide powder having an average particle size of 0.4 ⁇ m or more and 1.2 ⁇ m or less (hereinafter, also referred to as “first tungsten carbide powder”), and (b) an average particle size of 0.8 ⁇ m or more and 1.2 ⁇ m or more.
- Tungsten carbide powder of ⁇ m or less (hereinafter, also referred to as “second tungsten carbide powder”) is prepared.
- the first tungsten carbide powder having an average particle size smaller than the average particle size of the second tungsten carbide powder is prepared.
- the average particle size of the raw material powder means a median diameter d50 having a diameter equivalent to a circle.
- the average particle size is measured using a particle size distribution measuring device (trade name: MT3300EX) manufactured by Microtrac.
- the average particle size of the cobalt powder can be 0.8 ⁇ m or more and 1.2 ⁇ m or less.
- the average particle size of the chromium carbide powder can be 1.0 ⁇ m or more and 2.0 ⁇ m or less.
- the average particle size of the vanadium carbide powder can be 0.5 ⁇ m or more and 1.0 ⁇ m or less.
- the mixing process is a step of mixing each raw material powder prepared in the preparation step. By the mixing step, a mixed powder in which each raw material powder is mixed is obtained.
- the ratio of the first tungsten carbide powder in the mixed powder can be, for example, 30% by mass or more and 94.6% by mass or less.
- the ratio of the second tungsten carbide powder in the mixed powder can be, for example, 30% by mass or more and 64.6% by mass or less.
- the ratio of the cobalt powder in the mixed powder can be, for example, 2.8% by mass or more and 10% by mass or less.
- the ratio of chromium carbide powder in the mixed powder can be, for example, 0.2% by mass or more and 1.2% by mass or less.
- the ratio of vanadium carbide powder in the mixed powder can be, for example, 0% by mass or more and 0.2% by mass or less.
- the mixing time can be 20 hours or more and 48 hours or less.
- the mixed powder may be granulated as needed.
- a known granulation method can be applied to the granulation, and for example, a commercially available granulator such as a spray dryer can be used.
- the molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a molded product.
- a predetermined shape include a cutting tool shape (for example, the shape of a small-diameter drill).
- the sintering step is a step of sintering the molded product obtained in the molding step to obtain a cemented carbide.
- the sintering temperature can be a general cemented carbide sintering temperature (1350 to 1500 ° C.).
- Cemented carbide is generally sintered at 1350 to 1500 ° C., but fine tungsten carbide particles have a large surface area and are easily dissolved in cobalt, so that an abnormal structure is likely to occur due to dissolution and reprecipitation. Therefore, in the sintering of fine tungsten carbide particles, in order to suppress dissolution and reprecipitation, sintering is performed in a low temperature region of 1350 to 1380 ° C., which has a low solid solution limit of tungsten carbide with cobalt. However, in the cemented carbide obtained by sintering in a low temperature region, the tungsten carbide particles do not grow, so the surface of the tungsten carbide particles remains crushed by crushing or mixing in the previous process. It has become. Therefore, the bonding force between the tungsten carbide particles and cobalt and the interface between the tungsten carbide particles is low, and the wear resistance and breakage resistance tend to decrease.
- the generation of fragments of ultrafine tungsten carbide particles generated by crushing or mixing raw materials is suppressed, and the effect of suppressing grain growth by chromium is maximized. Furthermore, it has been found that abnormal grain growth can be suppressed even in a temperature range where grain growth normally occurs by providing a distribution of coarse particles and fine particles having peaks having similar particle sizes in the fine structure. .. Therefore, in the method for producing cemented carbide of the present disclosure, even if the tungsten carbide particles are sintered at a higher temperature than before, the generation of abnormal structure can be suppressed, and the interface between the tungsten carbide particles and cobalt can be suppressed. Further, by improving the bonding force at the interface between the tungsten carbide particles, it is possible to improve the wear resistance and the breaking resistance of the cemented carbide. This was newly discovered by the present inventors as a result of diligent studies.
- the cooling step is a step of cooling the cemented carbide after the sintering is completed.
- the cooling condition general conditions may be adopted, and there is no particular limitation.
- the cutting tool of the present disclosure includes a cutting edge made of the above cemented carbide.
- the cutting edge means a portion involved in cutting, and in cemented carbide, the distance between the cutting edge ridge line and the cutting edge ridge line from the cutting edge ridge line to the cemented carbide side along the perpendicular line of the tangent line of the cutting edge ridge line is 2 mm. It means a virtual surface that is and an area surrounded by.
- the cutting tool examples include a cutting tool, a drill, an end mill, a cutting tip with a replaceable cutting edge for milling, a cutting tip with a replaceable cutting edge for turning, a metal saw, a gear cutting tool, a reamer or a tap, and the like.
- the cutting tool of the present disclosure can exert an excellent effect in the case of a small-diameter drill for processing a printed circuit board.
- the cemented carbide of the present embodiment may constitute the whole of these tools, or may constitute a part of them.
- “partially constituting” indicates an embodiment in which the cemented carbide of the present embodiment is brazed to a predetermined position of an arbitrary base material to form a cutting edge portion.
- the cutting tool according to the present embodiment may further include a hard film that covers at least a part of the surface of a base material made of cemented carbide.
- a hard film for example, diamond-like carbon or diamond can be used.
- Example 1 cemented carbides of Samples 1 to 24 were prepared by changing the type and compounding ratio of the raw material powder. A small-diameter drill having a cutting edge made of the cemented carbide was produced and evaluated.
- ⁇ Preparation of sample ⁇ As the raw material powder, a powder having the composition shown in the “raw material” column of Table 1 was prepared. A plurality of tungsten carbide (WC) powders having different average particle sizes were prepared. The average particle size of the carbonized WC powder is as shown in the "Average particle size ( ⁇ m)" column of the "first WC powder” in Table 1.
- WC tungsten carbide
- the average particle size of cobalt (Co) powder is 1 [mu] m
- an average particle diameter of the vanadium carbide (VC) powder was 0.8 [mu] m
- an average particle size of chromium carbide (Cr 3 C 2) powder is 1 [mu] m.
- Co powder, VC powder and Cr 3 C 2 powder are commercially available products.
- the average particle size of the raw material powder is a value measured using a particle size distribution measuring device (trade name: MT3300EX) manufactured by Microtrac.
- the distribution of the equivalent circle diameter of the tungsten carbide particles was measured, and the ratio based on the number of tungsten carbide particles having the equivalent circle diameter of 0.3 ⁇ m or more and 1.0 ⁇ m or less, and the existence of the first maximum frequency.
- the class to be used the ratio of the first maximum frequency to the total number of tungsten carbide particles, the class in which the second maximum frequency exists, the ratio of the second maximum frequency to the total number of tungsten carbide particles, and the ratio of the second maximum frequency to the first maximum frequency. Calculated. Since the specific measurement method and calculation method are described in the first embodiment, the description thereof will not be repeated.
- the maximum frequency does not exist within the first range (more than 0.3 ⁇ m and less than 0.6 ⁇ m) or the second range (more than 0.6 ⁇ m and less than 1.0 ⁇ m), it is indicated as “-”. If the maximum frequency is outside the first range (more than 0.3 ⁇ m and 0.6 ⁇ m or less) or outside the second range (more than 0.6 ⁇ m and 1.0 ⁇ m or less), the class of the maximum frequency is shown in parentheses. Shown in parentheses.
- Samples 1, 4 and 12 do not have a maximum frequency (second maximum frequency) within the second range, and correspond to a comparative example.
- the maximum frequency was present in the class of more than 1.0 ⁇ m and 1.1 ⁇ m or less.
- Samples 2, 10 and 11 do not have a maximum frequency (first maximum frequency) within the first range, and correspond to a comparative example.
- Sample 2 had a maximum frequency in a class of more than 0.2 ⁇ m and 0.3 ⁇ m or less, and the ratio of the number standard of this maximum frequency was 10.1%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Drilling Tools (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Drilling And Boring (AREA)
Abstract
複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、炭化タングステン粒子のそれぞれの円相当径を算出した場合、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上であり、炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、度数は、炭化タングステン粒子の個数であり、階級は、前記円相当径が昇順に0.1μm間隔で区切られており、横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、第1範囲及び第2範囲は、それぞれ少なくとも一つの極大度数を有し、第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上であり、第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上である。
Description
本開示は、超硬合金及びそれを備える切削工具に関する。
プリント回路基板の穴あけでは、φ1mm以下の小径の穴あけが主流である。このため、小径ドリル等の工具に用いられる超硬合金としては、硬質相が平均粒径1μm以下の炭化タングステン粒子からなる、いわゆる微粒超硬合金が用いられている(例えば、特開2007-92090号公報(特許文献1)、特開2012-52237号公報(特許文献2)、特開2012-117100号公報(特許文献3))。
本開示の超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、
前記超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、前記炭化タングステン粒子のそれぞれの円相当径を算出した場合、前記円相当径が0.3μm以上1.0μm以下である前記炭化タングステン粒子の個数基準の割合は50%以上であり、
前記炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、
前記度数は、前記炭化タングステン粒子の個数であり、
前記階級は、前記円相当径が昇順に0.1μm間隔で区切られており、
前記横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、
前記第1範囲及び前記第2範囲は、それぞれ少なくとも一つの極大度数を有し、
前記第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上であり、
前記第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金である。
前記超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、前記炭化タングステン粒子のそれぞれの円相当径を算出した場合、前記円相当径が0.3μm以上1.0μm以下である前記炭化タングステン粒子の個数基準の割合は50%以上であり、
前記炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、
前記度数は、前記炭化タングステン粒子の個数であり、
前記階級は、前記円相当径が昇順に0.1μm間隔で区切られており、
前記横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、
前記第1範囲及び前記第2範囲は、それぞれ少なくとも一つの極大度数を有し、
前記第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上であり、
前記第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金である。
本開示の切削工具は、上記の超硬合金からなる刃先を備える、切削工具である。
[本開示が解決しようとする課題]
近年、5G(第5世代移動通信システム)の拡大に伴い、情報の高容量化が進んでいる。このため、プリント回路基板には更なる耐熱性が求められている。プリント回路基板の耐熱性の向上のため、プリント回路基板を構成する樹脂やガラスフィラーの耐熱性を向上させる技術が開発されている。一方、これによりプリント回路基板の難削化が進んでいる。
近年、5G(第5世代移動通信システム)の拡大に伴い、情報の高容量化が進んでいる。このため、プリント回路基板には更なる耐熱性が求められている。プリント回路基板の耐熱性の向上のため、プリント回路基板を構成する樹脂やガラスフィラーの耐熱性を向上させる技術が開発されている。一方、これによりプリント回路基板の難削化が進んでいる。
そこで、本開示は、工具材料として用いた場合に、特にプリント回路基板の微細加工においても、工具の長寿命化を可能とする超硬合金およびそれを備える切削工具を提供することを目的とする。
[本開示の効果]
本開示の超硬合金は、工具材料として用いた場合に、特にプリント回路基板の微細加工においても、工具の長寿命化を可能とする。
本開示の超硬合金は、工具材料として用いた場合に、特にプリント回路基板の微細加工においても、工具の長寿命化を可能とする。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、
前記超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、前記炭化タングステン粒子のそれぞれの円相当径を算出した場合、前記円相当径が0.3μm以上1.0μm以下である前記炭化タングステン粒子の個数基準の割合は50%以上であり、
前記炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、
前記度数は、前記炭化タングステン粒子の個数であり、
前記階級は、前記円相当径が昇順に0.1μm間隔で区切られており、
前記横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、
前記第1範囲及び前記第2範囲は、それぞれ少なくとも一つの極大度数を有し、
前記第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上であり、
前記第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金である。
最初に本開示の実施態様を列記して説明する。
(1)本開示の超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、
前記超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、前記炭化タングステン粒子のそれぞれの円相当径を算出した場合、前記円相当径が0.3μm以上1.0μm以下である前記炭化タングステン粒子の個数基準の割合は50%以上であり、
前記炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、
前記度数は、前記炭化タングステン粒子の個数であり、
前記階級は、前記円相当径が昇順に0.1μm間隔で区切られており、
前記横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、
前記第1範囲及び前記第2範囲は、それぞれ少なくとも一つの極大度数を有し、
前記第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上であり、
前記第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金である。
本開示の超硬合金は、工具材料として用いた場合に、特にプリント回路基板の微細加工においても、工具の長寿命化を可能とする。
(2)前記超硬合金は、走査型電子顕微鏡で撮影した画像において、前記第1相を75面積%以上100面積%未満、かつ、前記第2相を0体積%超20面積%以下含むことが好ましい。これによると、工具寿命が更に向上する。
(3)前記超硬合金は、走査型電子顕微鏡で撮影した画像において、前記第2相を5面積%以上12面積%以下含むことが好ましい。これによると、工具寿命が更に向上する。
(4)前記超硬合金は、クロムを含み、
前記コバルトに対する前記クロムの質量基準の割合は、5%以上10%以下であることが好ましい。これによると、超硬合金の耐折損性が向上し、工具寿命が更に向上する。
前記コバルトに対する前記クロムの質量基準の割合は、5%以上10%以下であることが好ましい。これによると、超硬合金の耐折損性が向上し、工具寿命が更に向上する。
(5)前記超硬合金がバナジウムを含む場合、前記超硬合金の前記バナジウムの質量基準の含有率は、100ppm未満であることが好ましい。これによると、超硬合金の強度が向上する。
(6)前記円相当径が0.3μm未満である前記炭化タングステン粒子の個数基準の割合は7%以下であることが好ましい。これによると、工具寿命が更に向上する。
(7)前記第1極大度数に対する、前記第2極大度数の割合は、0.8以上1.2以下であることが好ましい。これによると、工具寿命が更に向上する。
(8)前記横軸において、0.4μm超0.6μm以下の範囲を第3範囲と規定し、0.6μm超0.8μm以下の範囲を第4範囲と規定した場合、
前記第3範囲は、前記第1極大度数を有し、
前記第4範囲は、前記第2極大度数を有することが好ましい。これによると、工具寿命が更に向上する。
前記第3範囲は、前記第1極大度数を有し、
前記第4範囲は、前記第2極大度数を有することが好ましい。これによると、工具寿命が更に向上する。
(9)本開示の切削工具は、上記の超硬合金からなる刃先を備える、切削工具である。本開示の切削工具は、長い工具寿命を有する。
(10)前記切削工具は、プリント回路基板加工用回転工具であることが好ましい。本開示の切削工具は、プリント回路基板の微細加工に好適である。
[本開示の実施形態の詳細]
本開示の超硬合金及び切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
本開示の超硬合金及び切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
本明細書において「A~B」という形式の表記は、特に定義のない場合、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「WC」と記載されている場合、WCを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。
本発明者らは、工具の長寿命化を可能とする超硬合金を得るために、従来の微粒超硬合金からなる工具を用いてプリント回路基板を微細加工した場合の、工具の損傷形態を検討したところ、下記の知見を得た。
プリント回路基板に用いられる基板としては、ガラス繊維を布状に編んだガラス織布にエポキシ樹脂を含浸させたガラスエポキシ基板や、ガラス織布にポリイミド樹脂を含浸させたガラスポリイミド基板等が用いられている。
従来の微粒超硬合金からなる工具を用いてプリント回路基板を微細加工したところ、プリント回路基板中の樹脂やガラス繊維により、超硬合金の結合相であるコバルトが局所的に摩耗し、炭化タングステン粒子(以下、「WC粒子」とも記す。)が露出し、該WC粒子が脱落することが確認された。
よって、本発明者らは、長い工具寿命を達成するためには、加工中に工具表面に露出するコバルト(Co)の量を減少させること、及び、WC粒子同士の結合力を高めることが重要であると推測した。また、本発明者らは、超硬合金中のWC粒子がプリント回路基板の切削に直接的に関与することから、微細加工の精度を維持するためには、WC粒子が工具表面に連続的及び緻密に現れることも重要であると推測した。
Coが存在するWC同士の界面を減らし、加工中に工具表面に露出するコバルトの量を減少させるためには、超硬合金中のWC粒子の粒径を大きくし、コバルト量を減少させることが考えられる。しかし、WC粒子の粒径を大きくし、コバルト量を減少させると、強度が低下し、加工中に折損が発生しやすくなる。
上記の知見に基づき、本発明者らは鋭意検討の結果、WC粒子の粒径を制御することにより、WC粒子間の結合力を高めることが出来ることを新たに見出し、本開示の超硬合金を完成させた。本開示の超硬合金及びそれを備える切削工具の詳細について、下記に説明する。
[実施形態1:超硬合金]
本開示の超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、
超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、炭化タングステン粒子のそれぞれの円相当径を算出した場合、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上であり、炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、度数は、炭化タングステン粒子の個数であり、階級は、前記円相当径が昇順に0.1μm間隔で区切られており、横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、第1範囲及び第2範囲は、それぞれ少なくとも一つの極大度数を有し、第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上であり、第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金である。
本開示の超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、
超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、炭化タングステン粒子のそれぞれの円相当径を算出した場合、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上であり、炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、度数は、炭化タングステン粒子の個数であり、階級は、前記円相当径が昇順に0.1μm間隔で区切られており、横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、第1範囲及び第2範囲は、それぞれ少なくとも一つの極大度数を有し、第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上であり、第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金である。
本開示の超硬合金は、工具材料として用いた場合に、特にプリント回路基板の微細加工においても、工具の長寿命化を可能とする。この理由は明らかではないが、下記の(i)及び(ii)の通りと推察される。
(i)本開示の超硬合金において、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上である。これによると、超硬合金組織が均質となり、使用に伴う微細加工の精度の低下を抑制することができ、工具寿命が長くなる。
(ii)本開示の超硬合金において、WC粒子の円相当径の分布は、粒径0.3μm超0.6μm以下の範囲(第1範囲)及び0.6μm超1.0μm以下の範囲(第2範囲)のそれぞれに、少なくとも一つの極大度数を有する。第1範囲内の最大の極大度数(第1極大度数)及び第2範囲内の最大の極大度数(第2極大度数)のそれぞれは、超硬合金中の炭化タングステン粒子の総数に対する割合が10%以上である。
これによると、超硬合金は、円相当径の大きいWC粒子が骨格となり、該WC粒子間に、円相当径の小さいWC粒子が隙間を埋める形態の組織を有する。該超硬合金ではWC粒子同士が結合しているため、WC粒子の脱落が抑制されることで耐摩耗性が向上する。更に、摩耗が抑制されることで、切削抵抗の増加が抑制され耐折損性が向上する。よって工具寿命が長くなる。
更に、該超硬合金では、加工中に工具表面に露出するコバルト量が、従来の微粒超硬合金よりも低減されている。このため、加工中のコバルトの摩耗が生じ難く、WC粒子の脱落を抑制でき、工具寿命が長くなる。
<第1相>
(第1相の組成)
第1相は、炭化タングステン粒子からなる。ここで、炭化タングステンには、「純粋なWC(不純物元素が一切含有されないWC、不純物元素が検出限界未満となるWCも含む。)」だけではなく、「本開示の効果を損なわない限りにおいて、その内部に他の不純物元素が意図的あるいは不可避的に含有されるWC」も含まれる。炭化タングステンに含有される不純物の濃度(不純物を構成する元素が二種類以上の場合は、それらの合計濃度。)は、上記炭化タングステン及び上記不純物の総量に対して0.1質量%未満である。第1相中の不純物元素の含有量は、ICP発光分析(Inductively Coupled Plasma)Emission Spectroscopy(測定装置:島津製作所「ICPS-8100」(商標))により測定される。
(第1相の組成)
第1相は、炭化タングステン粒子からなる。ここで、炭化タングステンには、「純粋なWC(不純物元素が一切含有されないWC、不純物元素が検出限界未満となるWCも含む。)」だけではなく、「本開示の効果を損なわない限りにおいて、その内部に他の不純物元素が意図的あるいは不可避的に含有されるWC」も含まれる。炭化タングステンに含有される不純物の濃度(不純物を構成する元素が二種類以上の場合は、それらの合計濃度。)は、上記炭化タングステン及び上記不純物の総量に対して0.1質量%未満である。第1相中の不純物元素の含有量は、ICP発光分析(Inductively Coupled Plasma)Emission Spectroscopy(測定装置:島津製作所「ICPS-8100」(商標))により測定される。
(炭化タングステン粒子の円相当径の分布)
炭化タングステン粒子は、その円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合が50%以上である。これによると、超硬合金組織が均質となり、使用に伴う微細加工の精度の低下を抑制することができ、工具寿命が長くなる。
炭化タングステン粒子は、その円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合が50%以上である。これによると、超硬合金組織が均質となり、使用に伴う微細加工の精度の低下を抑制することができ、工具寿命が長くなる。
超硬合金中のコバルト量が一定の場合、円相当径が1μm超の粗粒の炭化タングステン粒子の割合が増加すると、硬度が低下して耐摩耗性が低下する傾向があり、円相当径が0.3μm未満の微粒の炭化タングステン粒子の割合が増加すると、炭化タングステン粒子の脱落が進み耐摩耗性が低下する傾向がある。本開示の超硬合金では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合が50%以上であるため、優れた耐摩耗性を有することができる。
円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は、超硬合金組織の均質性向上の観点から、50%以上であり、70%以上が好ましい。円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合の上限は特に限定されないが、例えば、100%以下、90%以下、80%以下とすることができる。円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は、50%以上100%以下、60%以上90%以下、70%以上80%以下とすることができる。
円相当径が0.3μm未満である炭化タングステン粒子の個数基準の割合は7%以下であることが好ましい。円相当径が0.3μm未満である炭化タングステン粒子は、超硬合金の強度の向上や、加工中に工具表面に露出するコバルト量の低減への寄与が小さい。従って、円相当径が0.3μm未満である炭化タングステン粒子の個数基準の割合を低減することで、工具寿命が更に長くなる。
円相当径が0.3μm未満である炭化タングステン粒子の個数基準の割合は0%以上7%以下が好ましく、0%以上5%以下が更に好ましい。また、円相当径が0.2μm未満である炭化タングステン粒子の個数基準の割合は0%以上3%以下が好ましい。
炭化タングステン粒子の円相当径は、下記(A1)~(C1)の手順で測定される。
(A1)超硬合金の任意の表面又は任意の断面を鏡面加工する。鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。
(A1)超硬合金の任意の表面又は任意の断面を鏡面加工する。鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。
(B1)超硬合金の加工面を走査型電子顕微鏡で撮影する。観察倍率は5000倍とする。本開示の超硬合金の走査型電子顕微鏡での撮影画像の一例を図1に示す。図1の右下のスケールにおいて、1目盛は1μmを示す。
(C1)上記(B1)で得られた撮影画像をコンピュータに取り込み、画像解析ソフトウェア(ImageJ:https://imagej.nih.gov/ij/)を用いて画像処理を行い、炭化タングステン粒子の円相当径(Heywood径:等面積円相当径)を算出する。炭化タングステン粒子からなる第1相とコバルトを含む第2相とは、上記撮影画像中の色の濃淡で識別できる。図1の撮影画像に対して画像処理を行って得られた画像を図2に示す。図2において、黒色領域は第1相であり、白色領域は第2相である。白色の線は粒界を示す。図2の右下のスケールにおいて、1目盛は1μmを示す。
本明細書において、超硬合金における円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は、下記(D1)及び(E1)の手順で算出される。
(D1)上記(C1)の画像処理を3つの測定視野で行う。1つの測定視野の大きさは、縦25.3μm×幅17.6μmの矩形とする。
(D1)上記(C1)の画像処理を3つの測定視野で行う。1つの測定視野の大きさは、縦25.3μm×幅17.6μmの矩形とする。
(E1)3つの測定視野のそれぞれにおいて、測定視野中の全炭化タングステン粒子に対する、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合を算出する。これらの平均を超硬合金における円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合とする。
出願人が測定した限りでは、同一の試料において測定する限りにおいては、超硬合金における円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合を、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。
本開示の超硬合金に含まれる炭化タングステン粒子の円相当径の分布は下記(a)を満たす。さらに本開示の超硬合金に含まれる炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、下記(b)及び(c)を満たす。ここで、度数は、炭化タングステン粒子の個数であり、階級は、前記円相当径が昇順に0.1μm間隔で区切られている。
(a)円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上である。
(b)横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定した場合、第1範囲及び第2範囲は、それぞれ少なくとも一つの極大度数を有する。
(c)第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上であり、第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上である。
本明細書において、ヒストグラムは下記(A2)及び(B2)の手順で作製される。
(A2)上記の炭化タングステン粒子の円相当径の測定方法に記載される(A1)~(C1)の手順により、炭化タングステン粒子の円相当径を算出する。炭化タングステン粒子の円相当径の測定は、3つの測定視野で行う。
(B2)3つの測定視野で測定された全ての炭化タングステン粒子の円相当径に基づき、度数を縦軸とし、階級を横軸とするヒストグラムを作成する。度数は、炭化タングステン粒子の個数であり、階級は、円相当径が昇順に0.1μm間隔で区切られている。
本明細書において、極大度数とは、その度数が、その度数の属する階級よりも一つ下(円相当径が小さい側)の階級の度数、及び、その度数の属する階級よりも一つ上(円相当径が大きい側)の階級の度数のいずれよりも大きいことを意味する。
なお、極大度数の属する階級よりも一つ下の階級、及び、極大度数の属する階級よりも一つ上の階級は、第1範囲外又は第2範囲外の階級であってもよい。具体的には、第1範囲内の極大度数の属する階級が0.3μm超0.4μm以下の場合、一つ下の階級は第1範囲外の0.2μm超0.3μm以下となる。第2範囲内の極大度数の属する階級が0.9μm超1.0μm以下の場合、一つ上の階級は第2範囲外の1.0μm超1.1μm以下となる。
上記(a)~(c)を満たすことにより、使用に伴う微細加工の精度の低下を抑制することができ、強度が向上し、耐折損性が向上し、WC粒子の脱落を抑制でき、工具寿命が長くなる。
上記(a)~(c)について、図3~図6を用いて説明する。図3~図6は、それぞれ本開示の超硬合金中の炭化タングステン粒子の円相当径の分布を示す図の一例である。図3~図6では、横軸は円相当径を昇順に0.1μm間隔で区切った階級を示し、縦軸は全タングステン粒子に対する各階級に属するタングステン粒子の個数基準の割合(%)を示す。
図3~図6において、「C~D」という形式の表記は、C超D以下を意味する。具体的には、図3~図6の横軸の「0~0.1」という表記は、0μm超0.1μm以下を意味し、「0.1~0.2」という表記は、0.1μm超0.2μm以下を意味する。
図3~図6の形状は、横軸の階級の規定が同一で、かつ、縦軸の度数を炭化タングステン粒子の個数とした場合のヒストグラムの形状と見做すことが出来る。従って、図3~図6の形状を用いて、上記(a)~(c)について説明することができる。図3~図6では、縦軸は全タングステン粒子に対する各階級に属するタングステン粒子の個数基準の割合(%)を示すが、以下では、説明を容易にするために、図3~図6の縦軸を、度数と表記する場合がある。
(図3)
図3では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約72%)である。従って、図3で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図3では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約72%)である。従って、図3で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図3では、円相当径が0.4μm超0.5μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.3μm超0.4μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.5μm超0.6μm以下)の度数よりも大きい。すなわち、図3では、第1範囲(円相当径が0.3μm超0.6μm以下)は一つの極大度数を有する。
図3では、円相当径が0.7μm超0.8μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.6μm超0.7μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.8μm超0.9μm以下)の度数よりも大きい。すなわち、図3では、第2範囲(円相当径が0.6μm超1.0μm以下)は一つの極大度数を有する。
上記より、図3で示される炭化タングステン粒子の円相当径の分布は、上記(b)を満たす。
図3において、第1範囲内に存在する最も大きい極大度数である第1極大度数は、円相当径が0.4μm超0.5μm以下の階級における度数である。該第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約14.3%)である。
図3において、第2範囲内に存在する最も大きい極大度数である第2極大度数は、円相当径が0.7μm超0.8μm以下の階級における度数である。該第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約12.6%)である。
上記より、図3で示される炭化タングステン粒子の円相当径の分布は、上記(c)を満たす。
(図4)
図4では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約72.1%)である。従って、図4で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図4では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約72.1%)である。従って、図4で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図4では、円相当径が0.5μm超0.6μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.4μm超0.5μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.6μm超0.7μm以下)の度数よりも大きい。すなわち、図4では、第1範囲(円相当径が0.3μm超0.6μm以下)は一つの極大度数を有する。
図4では、円相当径が0.7μm超0.8μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.6μm超0.7μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.8μm超0.9μm以下)の度数よりも大きい。また、図4では、円相当径が0.9μm超1.0μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.8μm超0.9μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が1.0μm超1.1μm以下)の度数よりも大きい。すなわち、図4では、第2範囲(円相当径が0.6μm超1.0μm以下)は二つの極大度数を有する。
上記より、図4で示される炭化タングステン粒子の円相当径の分布は、上記(b)を満たす。
図4において、第1範囲内に存在する最も大きい極大度数である第1極大度数は、円相当径が0.5μm超0.6μm以下の階級における度数である。該第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約13.4%)である。
図4において、第2範囲内に存在する最も大きい極大度数である第2極大度数は、円相当径が0.7μm超0.8μm以下の階級における度数である。該第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約12.7%)である。
上記より、図4で示される炭化タングステン粒子の円相当径の分布は、上記(c)を満たす。
(図5)
図5では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約73.5%)である。従って、図5で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図5では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約73.5%)である。従って、図5で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図5では、円相当径が0.3μm超0.4μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.2μm超0.3μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.4μm超0.5μm以下)の度数よりも大きい。すなわち、図5では、第1範囲(円相当径が0.3μm超0.6μm以下)は一つの極大度数を有する。
図5では、円相当径が0.7μm超0.8μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.6μm超0.7μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.8μm超0.9μm以下)の度数よりも大きい。また、図5では、円相当径が0.9μm超1.0μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.8μm超0.9μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が1.0μm超1.1μm以下)の度数よりも大きい。すなわち、図5では、第2範囲(円相当径が0.6μm超1.0μm以下)は二つの極大度数を有する。
上記より、図5で示される炭化タングステン粒子の円相当径の分布は、上記(b)を満たす。
図5において、第1範囲内に存在する最も大きい極大度数である第1極大度数は、円相当径が0.3μm超0.4μm以下の階級における度数である。該第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約11.8%)である。
図5において、第2範囲内に存在する最も大きい極大度数である第2極大度数は、円相当径が0.7μm超0.8μm以下の階級における度数である。該第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約12.2%)である。
上記より、図5で示される炭化タングステン粒子の円相当径の分布は、上記(c)を満たす。
(図6)
図6では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約72.6%)である。従って、図6で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図6では、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合は50%以上(約72.6%)である。従って、図6で示される炭化タングステン粒子の円相当径の分布は、上記(a)を満たす。
図6では、円相当径が0.4μm超0.5μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.3μm超0.4μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.5μm超0.6μm以下)の度数よりも大きい。すなわち、図6では、第1範囲(円相当径が0.3μm超0.6μm以下)は一つの極大度数を有する。
図6では、円相当径が0.6μm超0.7μm以下の階級における度数は、その度数の属する階級よりも一つ下の階級(円相当径が0.5μm超0.6μm以下)の度数、及び、その度数の属する階級よりも一つ上の階級(円相当径が0.7μm超0.8μm以下)の度数よりも大きい。すなわち、図6では、第2範囲(円相当径が0.6μm超1.0μm以下)は一つの極大度数を有する。
上記より、図6で示される炭化タングステン粒子の円相当径の分布は、上記(b)を満たす。
図6において、第1範囲内に存在する最も大きい極大度数である第1極大度数は、円相当径が0.4μm超0.5μm以下の階級における度数である。該第1極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約14.2%)である。
図6において、第2範囲内に存在する最も大きい極大度数である第2極大度数は、円相当径が0.6μm超0.7μm以下の階級における度数である。該第2極大度数の炭化タングステン粒子の総数に対する割合は10%以上(約12.4%)である。
上記より、図6で示される炭化タングステン粒子の円相当径の分布は、上記(c)を満たす。
本開示の炭化タングステン粒子の円相当径の分布を示すヒストグラムの横軸において、0.4μm超0.6μm以下の範囲を第3範囲と規定し、0.6μm超0.8μm以下の範囲を第4範囲と規定した場合、第3範囲は、第1極大度数を有し、第4範囲は、第2極大度数を有することが好ましい。これによると、工具寿命が更に向上する。
第1極大度数に対する、第2極大度数の割合は、0.8以上1.2以下であることが好ましい。これによると、工具寿命が更に向上する。この理由は、炭化タングステン粒子同士の接触による結合が重要であり、第1範囲内に存在する極大度数と第2範囲に存在する極大度数の差が大きくなると、結果的に超硬合金における炭化タングステン粒子同士の接触が少なくなるためと推察される。
<第2相>
第2相は、コバルトを含む。第2相は、第1相を構成する炭化タングステン粒子同士を結合させる結合相である。
第2相は、コバルトを含む。第2相は、第1相を構成する炭化タングステン粒子同士を結合させる結合相である。
ここで、「第2相はコバルト(Co)を含む」とは、第2相の主成分がCoであることを意味する。「第2相の主成分がCoである」とは、第2相中のコバルトの質量比率が90質量%以上100質量%以下であることを意味する。第2相中のコバルトの質量比率は、ICP発光分光分析法(使用機器:島津製作所製「ICPS-8100」(商標))により測定することができる。
第2相は、コバルトに加えて、ニッケルなどの鉄属元素、合金中の溶解物(Cr,W等)を含むことができる。
<超硬合金の組成>
(組成)
超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える。超硬合金は、走査型電子顕微鏡で撮影した画像において、第1相を75面積%以上100面積%未満、かつ、第2相を0面積%超20面積%以下含むことが好ましい。
(組成)
超硬合金は、複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える。超硬合金は、走査型電子顕微鏡で撮影した画像において、第1相を75面積%以上100面積%未満、かつ、第2相を0面積%超20面積%以下含むことが好ましい。
超硬合金中の第2相の割合が20面積%以下であると、円相当径が0.6μm以下である微粒の炭化タングステン粒子が第2相のコバルト中に溶解することを抑制することができ、円相当径が0.3μm超0.6μm以下の炭化タングステン粒子の減少を抑制することができる。また、加工中に工具表面に露出するコバルト量が更に減少する。よって、工具寿命が更に向上する。
超硬合金は、走査型電子顕微鏡で撮影した画像において、第2相を5面積%以上12面積%以下含むことが好ましい。これによると、プリント回路基板の加工に対して必要な硬度と耐摩耗性が発揮され、工具寿命のばらつきの発生を抑制することができる。
超硬合金中の第1相の割合の下限は、75面積%以上、85面積%以上とすることができる。超硬合金中の第1相の割合の上限は、100面積%未満、95面積%以下とすることができる。超硬合金中の第1相の割合は、75面積%以上100面積%未満、85面積%以上95面積%以下とすることができる。
超硬合金中の第2相の割合の下限は、0面積%超、5面積%以上とすることができる。超硬合金中の第2相の割合の上限は、20面積%以下、12面積%以下とすることができる。超硬合金中の第2相の割合は、0面積%超20面積%以下、5面積%以上12面積%以下とすることができる。
超硬合金中の第1相及び第2相のそれぞれの面積割合は、下記(A3)~(C3)の手順で測定される。
(A3)上記の炭化タングステン粒子の円相当径の測定方法に記載される(A1)及び(B1)と同様の手順で、超硬合金の断面の撮像画像を得る。
(B3)上記(A3)で得られた撮影画像をコンピュータに取り込み、画像解析ソフトウェア(ImageJ:https://imagej.nih.gov/ij/)を用いて画像処理を行い、測定視野全体(縦25.3μm×幅17.6μmの矩形)を分母として第1相及び第2相のそれぞれの面積割合を測定する。第1相と第2相とは、上記撮影画像中の色の濃淡で識別できる。
(C3)上記(B3)の画像処理を5つの測定視野で行う。5つの測定視野で得られた第1相の面積割合の平均を、超硬合金中の第1相の面積割合とする。5つの測定視野で得られた第2相の面積割合の平均を、超硬合金中の第2相の面積割合とする。
(クロム含有量)
超硬合金はクロム(Cr)を含み、コバルトに対するクロムの質量基準の割合は、5%以上10%以下であることが好ましい。クロムは炭化タングステン粒子の粒成長抑制作用を有する。更に、コバルト中に固溶することにより、コバルトの格子歪みの発生を促進する。よって、超硬合金がクロムを上記の割合で含むと、耐折損性が更に向上する。
超硬合金はクロム(Cr)を含み、コバルトに対するクロムの質量基準の割合は、5%以上10%以下であることが好ましい。クロムは炭化タングステン粒子の粒成長抑制作用を有する。更に、コバルト中に固溶することにより、コバルトの格子歪みの発生を促進する。よって、超硬合金がクロムを上記の割合で含むと、耐折損性が更に向上する。
一方、クロムの量が過剰であると、クロムが炭化物として析出し、破損の起点となる場合がある。コバルトに対するクロムの質量基準の割合が5%以上10%以下であると、クロムの炭化物の析出が発生しにくく、耐折損性の向上効果を得ることができる。
また、コバルトに対するクロムの質量基準の割合が10%以下であると、粒成長抑制作用の程度が適度となり、超硬合金中の円相当径が1.0μm超の炭化タングステン粒子の量が過剰になるのを抑制することができる。
コバルトに対するクロムの質量基準の割合の下限は、5%以上が好ましく、7%以上がより好ましい。コバルトに対するクロムの質量基準の割合は、10%以下が好ましく、9%以下がより好ましい。コバルトに対するクロムの質量基準は5%以上10%以下、7%以上9%以下とすることができる。
超硬合金中のコバルト及びクロムの含有量は、ICP発光分光分析法により測定される。
(バナジウム)
超硬合金がバナジウムを含む場合、超硬合金のバナジウムの質量基準の含有率は、100ppm未満であることが好ましい。
超硬合金がバナジウムを含む場合、超硬合金のバナジウムの質量基準の含有率は、100ppm未満であることが好ましい。
バナジウムは粒成長抑制作用を有するため、従来の超微粒超硬合金の製造時に用いられていた。炭化タングステン粒子の粒成長の際にバナジウムが存在すると、炭化タングステン粒子の表面にバナジウムが析出する、又は、炭化タングステン粒子の成長面に短期的にバナジウムが介在することにより、炭化タングステン粒子の成長が抑制されると考えられる。
従って、バナジウムを添加すると、粒成長抑制作用を得ることができるが、炭化タングステン粒子とコバルトとの界面や、炭化タングステン粒子同士の界面に炭化タングステンが存在することから、濡れ性の低下や強度の低下を生じる傾向がある。従って、炭化タングステン中のバナジウムの含有量が少ないほど、炭化タングステン粒子とコバルトとの親和性や、炭化タングステン粒子同士の親和性を高く維持することができ、超硬合金の強度が向上する。
超硬合金中のバナジウムの含有量は、100ppm以下が好ましく、10ppm以下がより好ましい。超硬合金中のバナジウムの含有量は少ないほど好ましいため、その下限は0ppmが好ましい。なお、意図せずに製造工程で数ppmのバナジウムが検出される場合がある。超硬合金中のバナジウムの含有量は、0ppm以上100ppm以下、0ppm以上10ppm以下とすることができる。
超硬合金中のバナジウムの含有量は、ICP発光分光分析法により測定される。
<超硬合金の製造方法>
本実施形態の超硬合金は、代表的には、原料粉末の準備工程、混合工程、成形工程、焼結工程、冷却工程を前記の順で行うことにより製造することができる。以下、各工程について説明する。
本実施形態の超硬合金は、代表的には、原料粉末の準備工程、混合工程、成形工程、焼結工程、冷却工程を前記の順で行うことにより製造することができる。以下、各工程について説明する。
≪準備工程≫
準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。原料粉末としては、第1相の原料である炭化タングステン粉末、第2相の原料であるコバルト(Co)粉末が必須の原料粉末として挙げられる。また、必要に応じて、粒成長抑制剤として、炭化クロム(Cr3C2)粉末を準備することができる。また、本開示の効果を奏する限り、炭化バナジウム(VC)粉末も準備することができる。炭化タングステン粉末、コバルト粉末、炭化クロム粉末、炭化バナジウム粉末は、市販のものを用いることができる。
準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。原料粉末としては、第1相の原料である炭化タングステン粉末、第2相の原料であるコバルト(Co)粉末が必須の原料粉末として挙げられる。また、必要に応じて、粒成長抑制剤として、炭化クロム(Cr3C2)粉末を準備することができる。また、本開示の効果を奏する限り、炭化バナジウム(VC)粉末も準備することができる。炭化タングステン粉末、コバルト粉末、炭化クロム粉末、炭化バナジウム粉末は、市販のものを用いることができる。
炭化タングステン粉末は、(a)平均粒径が0.4μm以上1.2μm以下の炭化タングステン粉末(以下、「第1炭化タングステン粉末とも記す。」)、及び、(b)平均粒径が0.8μm以上1.2μm以下の炭化タングステン粉末(以下、「第2炭化タングステン粉末」とも記す。)を準備する。第1炭化タングステン粉末は、その平均粒径が、第2炭化タングステン粉末の平均粒径よりも小さいものを準備する。本明細書において、原料粉末の平均粒径とは、円相当径のメジアン径d50を意味する。該平均粒径は、マイクロトラック社製の粒度分布測定装置(商品名:MT3300EX)を用いて測定される。
コバルト粉末の平均粒径は、0.8μm以上1.2μm以下とすることができる。炭化クロム粉末の平均粒径は、1.0μm以上2.0μm以下とすることができる。炭化バナジウム粉末の平均粒径は、0.5μm以上1.0μm以下とすることができる。
≪混合工程≫
混合行程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。
混合行程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。
混合粉末中の第1炭化タングステン粉末の割合は、例えば、30質量%以上94.6質量%以下とすることができる。
混合粉末中の第2炭化タングステン粉末の割合は、例えば、30質量%以上64.6質量%以下とすることができる。
第1炭化タングステン粉末と第2炭化タングステン粉末との混合比は、例えば、質量基準で第1炭化タングステン粉末:第2炭化タングステン粉末=2:1~1:2とすることができる。
混合粉末中のコバルト粉末の割合は、例えば、2.8質量%以上10質量%以下とすることができる。
混合粉末中の炭化クロム粉末の割合は、例えば、0.2質量%以上1.2質量%以下とすることができる。
混合粉末中の炭化バナジウム粉末の割合は、例えば、0質量%以上0.2質量%以下とすることができる。
混合粉末をボールミルを用いて混合する。混合時間は20時間以上48時間以下とすることができる。
混合工程の後、必要に応じて混合粉末を造粒してもよい。混合粉末を造粒することで、後述する成形工程の際にダイ又は金型へ混合粉末を充填し易い。造粒には、公知の造粒方法が適用でき、例えば、スプレードライヤー等の市販の造粒機を用いることができる。
≪成形工程≫
成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法及び成形条件は、一般的な方法及び条件を採用すればよく、特に問わない。所定の形状としては、例えば、切削工具形状(例えば、小径ドリルの形状)とすることが挙げられる。
成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法及び成形条件は、一般的な方法及び条件を採用すればよく、特に問わない。所定の形状としては、例えば、切削工具形状(例えば、小径ドリルの形状)とすることが挙げられる。
≪焼結工程≫
焼結工程は、成形工程で得られた成形体を焼結して、超硬合金を得る工程である。本開示の超硬合金の製造方法においては、焼結温度は一般的な超硬合金の焼結温度(1350~1500℃)とすることができる。
焼結工程は、成形工程で得られた成形体を焼結して、超硬合金を得る工程である。本開示の超硬合金の製造方法においては、焼結温度は一般的な超硬合金の焼結温度(1350~1500℃)とすることができる。
超硬合金は一般的に1350~1500℃で焼結されるが、微粒炭化タングステン粒子は表面積が大きく、コバルトに溶解しやすいため、溶解再析出により異常組織が発生しやすい。このため、微粒炭化タングステン粒子の焼結では、溶解再析出を抑制するために、コバルトに対する炭化タングステンの固溶限が低い1350~1380℃の低温度領域で焼結が行われている。しかし、低温度領域で焼結して得られた超硬合金においては、炭化タングステン粒子が粒成長をしていないため、炭化タングステン粒子表面は前工程での粉砕や混合により破砕されたままの状態となっている。よって、炭化タングステン粒子とコバルトとの界面や、炭化タングステン粒子同士の界面の結合力が低い状態となっており、耐摩耗性及び耐折損性が低下する傾向がある。
一方、本開示の超硬合金の製造方法では、原料の粉砕や混合で発生する超微細な炭化タングステン粒子の破片の発生を抑制するとともに、クロムによる粒成長抑制効果を最大限に発揮させる。更に、微細組織の中に粒度の近いピークを持つ粗粒子と微粒子の分布を持たせることにより、通常では粒成長が起こるような温度域においても、異常粒成長を抑制することができることを見出した。このため、本開示の超硬合金の製造方法では、炭化タングステン粒子を従来よりも高温で焼結しても、異常組織の発生を抑制することが可能であり、炭化タングステン粒子とコバルトとの界面や、炭化タングステン粒子同士の界面の結合力が向上することで、超硬合金の耐摩耗性及び耐折損性を向上させることができる。これは、本発明者らが鋭意検討の結果、新たに見いだしたものである。
≪冷却工程≫
冷却工程は、焼結完了後の超硬合金を冷却する工程である。冷却条件は、一般的な条件を採用すればよく、特に問わない。
冷却工程は、焼結完了後の超硬合金を冷却する工程である。冷却条件は、一般的な条件を採用すればよく、特に問わない。
[実施形態2:切削工具]
本開示の切削工具は、上記超硬合金からなる刃先を含む。本明細書において、刃先とは、切削に関与する部分を意味し、超硬合金において、その刃先稜線と、該刃先稜線から超硬合金側へ、該刃先稜線の接線の垂線に沿う距離が2mmである仮想の面と、に囲まれる領域を意味する。
本開示の切削工具は、上記超硬合金からなる刃先を含む。本明細書において、刃先とは、切削に関与する部分を意味し、超硬合金において、その刃先稜線と、該刃先稜線から超硬合金側へ、該刃先稜線の接線の垂線に沿う距離が2mmである仮想の面と、に囲まれる領域を意味する。
切削工具としては、例えば、切削バイト、ドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切り工具、リーマ又はタップ等を例示できる。特に、本開示の切削工具は、プリント回路基板加工用の小径ドリルの場合に、優れた効果を発揮することができる。
本実施形態の超硬合金は、これらの工具の全体を構成していてもよいし、一部を構成するものであってもよい。ここで「一部を構成する」とは、任意の基材の所定位置に本実施形態の超硬合金をロウ付けして刃先部とする態様等を示している。
≪硬質膜≫
本実施形態に係る切削工具は、超硬合金からなる基材の表面の少なくとも一部を被覆する硬質膜を更に備えてもよい。硬質膜としては、例えば、ダイヤモンドライクカーボンやダイヤモンドを用いることができる。
本実施形態に係る切削工具は、超硬合金からなる基材の表面の少なくとも一部を被覆する硬質膜を更に備えてもよい。硬質膜としては、例えば、ダイヤモンドライクカーボンやダイヤモンドを用いることができる。
本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
[実施例1]
実施例1では、原料粉末の種類及び配合比を変更して試料1~試料24の超硬合金を作製した。該超硬合金からなる刃先を備える小径ドリルを作製し、その評価を行った。
実施例1では、原料粉末の種類及び配合比を変更して試料1~試料24の超硬合金を作製した。該超硬合金からなる刃先を備える小径ドリルを作製し、その評価を行った。
≪試料の作製≫
(準備工程)
原料粉末として、表1の「原料」欄に示す組成の粉末を準備した。炭化タングステン(WC)粉末は、平均粒径の異なるものを複数準備した。炭化WC粉末の平均粒径は表1の「第1WC粉末」の「平均粒径(μm)」欄に示される通りである。
(準備工程)
原料粉末として、表1の「原料」欄に示す組成の粉末を準備した。炭化タングステン(WC)粉末は、平均粒径の異なるものを複数準備した。炭化WC粉末の平均粒径は表1の「第1WC粉末」の「平均粒径(μm)」欄に示される通りである。
コバルト(Co)粉末の平均粒径は1μmであり、炭化バナジウム(VC)粉末の平均粒径は0.8μmであり、炭化クロム(Cr3C2)粉末の平均粒径は1μmである。Co粉末、VC粉末及びCr3C2粉末は市販品である。原料粉末の平均粒径は、マイクロトラック社製の粒度分布測定装置(商品名:MT3300EX)を用いて測定した値である。
(混合工程)
各原料粉末を表1に示される配合量で混合し、混合粉末を作製した。表1の「原料」欄の「質量%」とは、原料粉末の合計質量に対する、各原料粉末の割合を示す。混合はボールミルで20時間行った。得られた混合粉末をスプレードライ乾燥して造粒粉末とした。
各原料粉末を表1に示される配合量で混合し、混合粉末を作製した。表1の「原料」欄の「質量%」とは、原料粉末の合計質量に対する、各原料粉末の割合を示す。混合はボールミルで20時間行った。得られた混合粉末をスプレードライ乾燥して造粒粉末とした。
(成形工程)
得られた造粒粉末をプレス成形して、φ3.4mmの丸棒形状の成形体を作製した。
得られた造粒粉末をプレス成形して、φ3.4mmの丸棒形状の成形体を作製した。
(焼結工程)
成形体を焼結炉に入れ、真空中、1400℃で1時間維持して焼結した。
成形体を焼結炉に入れ、真空中、1400℃で1時間維持して焼結した。
(冷却工程)
焼結完了後、アルゴン(Ar)ガス雰囲気中、徐冷して、超硬合金を得た。
焼結完了後、アルゴン(Ar)ガス雰囲気中、徐冷して、超硬合金を得た。
<評価>
各試料の超硬合金について、炭化タングステン粒子の円相当径の分布、第1相及び第2相の面積割合、コバルトに対するクロムの質量基準の割合、バナジウムの質量基準の含有量を測定した。
各試料の超硬合金について、炭化タングステン粒子の円相当径の分布、第1相及び第2相の面積割合、コバルトに対するクロムの質量基準の割合、バナジウムの質量基準の含有量を測定した。
(炭化タングステン粒子の円相当径の分布)
各試料の超硬合金について、炭化タングステン粒子の円相当径の分布を測定し、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合、第1極大度数の存在する階級、第1極大度数の炭化タングステン粒子の総数に対する割合、第2極大度数の存在する階級、第2極大度数の炭化タングステン粒子の総数に対する割合、第1極大度数に対する第2極大度数の割合を算出した。具体的な測定方法及び算出方法は、実施の形態1に記載されているため、その説明は繰り返さない。
各試料の超硬合金について、炭化タングステン粒子の円相当径の分布を測定し、円相当径が0.3μm以上1.0μm以下である炭化タングステン粒子の個数基準の割合、第1極大度数の存在する階級、第1極大度数の炭化タングステン粒子の総数に対する割合、第2極大度数の存在する階級、第2極大度数の炭化タングステン粒子の総数に対する割合、第1極大度数に対する第2極大度数の割合を算出した。具体的な測定方法及び算出方法は、実施の形態1に記載されているため、その説明は繰り返さない。
結果をそれぞれ表1の「円相当径0.3-1.0μm割合(%)」、「第1極大度数」の「階級(μm)」及び「割合(%)」、「第2極大度数」の「階級(μm)」及び「割合(%)」、「第2極大度数/第1極大度数」欄に示す。
極大度数が、第1範囲(0.3μm超0.6μm以下)内、又は、第2範囲(0.6μm超1.0μm以下)内に存在しない場合は、「-」と表記する。また、極大度数が、第1範囲(0.3μm超0.6μm以下)外、又は、第2範囲(0.6μm超1.0μm以下)外に存在する場合は、該極大度数の階級を括弧()内に示す。
(第1相及び第2相の体積割合)
各試料の超硬合金について、走査型電子顕微鏡で撮影した画像における第1相及び第2相の面積割合を測定した。具体的な測定方法は、実施の形態1に記載されているため、その説明は繰り返さない。結果を表1の「第1相(面積%)」及び「第2相(面積%)」欄に示す。
各試料の超硬合金について、走査型電子顕微鏡で撮影した画像における第1相及び第2相の面積割合を測定した。具体的な測定方法は、実施の形態1に記載されているため、その説明は繰り返さない。結果を表1の「第1相(面積%)」及び「第2相(面積%)」欄に示す。
(コバルトに対するクロムの質量基準の割合、バナジウムの質量基準の含有量)
各試料の超硬合金について、コバルトに対するクロムの質量基準の割合及びバナジウムの質量基準の含有量を測定した。具体的な測定方法は、実施の形態1に記載されているため、その説明は繰り返さない。結果を表1の「Cr/Co(%)」及び「V(ppm)」欄に示す。
各試料の超硬合金について、コバルトに対するクロムの質量基準の割合及びバナジウムの質量基準の含有量を測定した。具体的な測定方法は、実施の形態1に記載されているため、その説明は繰り返さない。結果を表1の「Cr/Co(%)」及び「V(ppm)」欄に示す。
<切削試験>
各試料の丸棒を加工し、刃径φ0.35mmの小径ドリルを作製した。現在、刃部のみをステンレスシャンクに圧入してドリルを成形することが主流であるが、評価のためにφ3.4mmの丸棒の先端を刃付け加工することでドリルの作製を行った。該ドリルを用いて市販の車載用プリント回線基板の穴開け加工を行った。穴開け加工の条件は、回転数155krpm、送り速度2.5m/minとした。10000個の穴あけを行った後のドリルの摩耗量を、ドリル径の減少量により算出した。3本のドリルで穴開け加工を行った。3本の摩耗量の平均値を表1の「摩耗量(μm)」欄に示す。また、穴開け加工後の刃先状態の観察を行った。その結果を表1の「刃先状態」欄に示す。
各試料の丸棒を加工し、刃径φ0.35mmの小径ドリルを作製した。現在、刃部のみをステンレスシャンクに圧入してドリルを成形することが主流であるが、評価のためにφ3.4mmの丸棒の先端を刃付け加工することでドリルの作製を行った。該ドリルを用いて市販の車載用プリント回線基板の穴開け加工を行った。穴開け加工の条件は、回転数155krpm、送り速度2.5m/minとした。10000個の穴あけを行った後のドリルの摩耗量を、ドリル径の減少量により算出した。3本のドリルで穴開け加工を行った。3本の摩耗量の平均値を表1の「摩耗量(μm)」欄に示す。また、穴開け加工後の刃先状態の観察を行った。その結果を表1の「刃先状態」欄に示す。
摩耗量が小さいほどドリルの工具寿命が長いことを示す。「摩耗量(μm)」欄に「-」と記載されている場合は、3本のドリル全てにおいて加工開始直後に折損が生じ、摩耗量を測定できなかったことを示す。また、「刃先状態」欄に「1本折損」と記載されている場合は、折損しなかった2本の摩耗量の平均値を表1の「摩耗量(μm)」欄に示す。「刃先状態」欄に「微小チッピング」と記載されている場合は、刃先に微小なチッピングが生じていることを示す。
<考察>
試料3,5~9,13~24は実施例に該当する。
試料3,5~9,13~24は実施例に該当する。
試料1,4,12は、第2範囲内に極大度数(第2極大度数)が存在せず、比較例に該当する。なお、試料12には階級1.0μm超1.1μm以下に極大度数が存在していた。
試料2,10,11は、第1範囲内に極大度数(第1極大度数)が存在せず、比較例に該当する。試料2は階級0.2μm超0.3μm以下に極大度数が存在しており、この極大度数の個数基準の割合は10.1%であった。
試料3,5~9,13~24(実施例)は、試料1,2,4,10,12(比較例)に比べて摩耗量が小さく、工具寿命が長いことが確認された。なお、試料11(比較例)は、3本とも開始直後に折損が生じ、摩耗量を測定できなかった。
以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
Claims (10)
- 複数の炭化タングステン粒子からなる第1相と、コバルトを含む第2相と、を備える超硬合金であって、
前記超硬合金を走査型電子顕微鏡で撮影した画像に対して画像処理を行うことにより、前記炭化タングステン粒子のそれぞれの円相当径を算出した場合、前記円相当径が0.3μm以上1.0μm以下である前記炭化タングステン粒子の個数基準の割合は50%以上であり、
前記炭化タングステン粒子の円相当径の分布を、度数を縦軸とし、階級を横軸とするヒストグラムで表した場合、
前記度数は、前記炭化タングステン粒子の個数であり、
前記階級は、前記円相当径が昇順に0.1μm間隔で区切られており、
前記横軸において、0.3μm超0.6μm以下の範囲を第1範囲と規定し、0.6μm超1.0μm以下の範囲を第2範囲と規定し、
前記第1範囲及び前記第2範囲は、それぞれ少なくとも一つの極大度数を有し、
前記第1範囲内に存在する極大度数のうち、最も大きい第1極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上であり、
前記第2範囲内に存在する極大度数のうち、最も大きい第2極大度数の前記炭化タングステン粒子の総数に対する割合は10%以上である、超硬合金。 - 前記超硬合金は、走査型電子顕微鏡で撮影した画像において、前記第1相を75面積%以上100面積%未満、かつ、前記第2相を0面積%超20面積%以下含む、請求項1に記載の超硬合金。
- 前記超硬合金は、走査型電子顕微鏡で撮影した画像において、前記第2相を5面積%以上12面積%以下含む、請求項1又は請求項2に記載の超硬合金。
- 前記超硬合金は、クロムを含み、
前記コバルトに対する前記クロムの質量基準の割合は、5%以上10%以下である、請求項1から請求項3のいずれか1項に記載の超硬合金。 - 前記超硬合金がバナジウムを含む場合、前記超硬合金の前記バナジウムの質量基準の含有率は、100ppm未満である、請求項1から請求項4のいずれか1項に記載の超硬合金。
- 前記円相当径が0.3μm以下である前記炭化タングステン粒子の個数基準の割合は7%以下である、請求項1から請求項5のいずれか1項に記載の超硬合金。
- 前記第1極大度数に対する、前記第2極大度数の割合は、0.8以上1.2以下である、請求項1から請求項6のいずれか1項に記載の超硬合金。
- 前記横軸において、0.4μm超0.6μm以下の範囲を第3範囲と規定し、0.6μm超0.8μm以下の範囲を第4範囲と規定した場合、
前記第3範囲は、前記第1極大度数を有し、
前記第4範囲は、前記第2極大度数を有する、請求項1から請求項7のいずれか1項に記載の超硬合金。 - 請求項1から請求項8のいずれか1項に記載の超硬合金からなる刃先を備える、切削工具。
- 前記切削工具は、プリント回路基板加工用回転工具である、請求項9に記載の切削工具。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014778 WO2021199260A1 (ja) | 2020-03-31 | 2020-03-31 | 超硬合金及びそれを備える切削工具 |
CN202080002969.6A CN113748222A (zh) | 2020-03-31 | 2020-03-31 | 硬质合金以及具备该硬质合金的切削工具 |
JP2020548827A JP6912033B1 (ja) | 2020-03-31 | 2020-03-31 | 超硬合金及びそれを備える切削工具 |
TW109134615A TWI748676B (zh) | 2020-03-31 | 2020-10-06 | 超硬合金及具備其之切削工具 |
JP2021044526A JP2021161539A (ja) | 2020-03-31 | 2021-03-18 | 超硬合金及びそれを備える切削工具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014778 WO2021199260A1 (ja) | 2020-03-31 | 2020-03-31 | 超硬合金及びそれを備える切削工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021199260A1 true WO2021199260A1 (ja) | 2021-10-07 |
Family
ID=76968040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014778 WO2021199260A1 (ja) | 2020-03-31 | 2020-03-31 | 超硬合金及びそれを備える切削工具 |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP6912033B1 (ja) |
CN (1) | CN113748222A (ja) |
TW (1) | TWI748676B (ja) |
WO (1) | WO2021199260A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115053004A (zh) * | 2021-10-15 | 2022-09-13 | 住友电工硬质合金株式会社 | 硬质合金及使用该硬质合金的切削工具 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252579A (ja) * | 1994-03-11 | 1995-10-03 | Sumitomo Electric Ind Ltd | 切削工具用の被覆超硬合金 |
JPH09227981A (ja) * | 1996-02-20 | 1997-09-02 | Tokyo Tungsten Co Ltd | 超硬合金 |
JP2009007623A (ja) * | 2007-06-27 | 2009-01-15 | Kyocera Corp | 小径棒状超硬合金および切削工具ならびにミニチュアドリル |
CN101845579A (zh) * | 2010-06-28 | 2010-09-29 | 株洲钻石切削刀具股份有限公司 | 非均匀硬质合金及其制备方法 |
WO2018180911A1 (ja) * | 2017-03-30 | 2018-10-04 | 京セラ株式会社 | 切削インサート及び切削工具 |
JP2018154917A (ja) * | 2017-03-17 | 2018-10-04 | 三菱日立ツール株式会社 | 超硬合金及びその製造方法、並びにそれを用いた切削工具 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3353522B2 (ja) * | 1995-02-09 | 2002-12-03 | 住友電気工業株式会社 | 木質系硬質材料を加工する工具のための超硬合金 |
WO2006104004A1 (ja) * | 2005-03-28 | 2006-10-05 | Kyocera Corporation | 超硬合金および切削工具 |
TW200909592A (en) * | 2007-06-27 | 2009-03-01 | Kyocera Corp | Cemented carbide, cutting tool, and cutting device |
CN102808096B (zh) * | 2012-08-13 | 2014-04-30 | 厦门钨业股份有限公司 | 一种超粗晶WC-Co硬质合金的制备方法 |
JP5835306B2 (ja) * | 2013-11-22 | 2015-12-24 | 住友電気工業株式会社 | 超硬合金およびこれを用いた表面被覆切削工具 |
EP3309268B1 (en) * | 2015-06-15 | 2020-07-29 | Sumitomo Electric Industries, Ltd. | Cemented carbide and cutting tool |
-
2020
- 2020-03-31 WO PCT/JP2020/014778 patent/WO2021199260A1/ja active Application Filing
- 2020-03-31 JP JP2020548827A patent/JP6912033B1/ja active Active
- 2020-03-31 CN CN202080002969.6A patent/CN113748222A/zh active Pending
- 2020-10-06 TW TW109134615A patent/TWI748676B/zh active
-
2021
- 2021-03-18 JP JP2021044526A patent/JP2021161539A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252579A (ja) * | 1994-03-11 | 1995-10-03 | Sumitomo Electric Ind Ltd | 切削工具用の被覆超硬合金 |
JPH09227981A (ja) * | 1996-02-20 | 1997-09-02 | Tokyo Tungsten Co Ltd | 超硬合金 |
JP2009007623A (ja) * | 2007-06-27 | 2009-01-15 | Kyocera Corp | 小径棒状超硬合金および切削工具ならびにミニチュアドリル |
CN101845579A (zh) * | 2010-06-28 | 2010-09-29 | 株洲钻石切削刀具股份有限公司 | 非均匀硬质合金及其制备方法 |
JP2018154917A (ja) * | 2017-03-17 | 2018-10-04 | 三菱日立ツール株式会社 | 超硬合金及びその製造方法、並びにそれを用いた切削工具 |
WO2018180911A1 (ja) * | 2017-03-30 | 2018-10-04 | 京セラ株式会社 | 切削インサート及び切削工具 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115053004A (zh) * | 2021-10-15 | 2022-09-13 | 住友电工硬质合金株式会社 | 硬质合金及使用该硬质合金的切削工具 |
EP4194576A4 (en) * | 2021-10-15 | 2023-06-14 | Sumitomo Electric Hardmetal Corp. | CEMENTED CARBIDE AND CUTTING TOOL COMPRISING THE SAME |
Also Published As
Publication number | Publication date |
---|---|
TW202138580A (zh) | 2021-10-16 |
CN113748222A (zh) | 2021-12-03 |
JP2021161539A (ja) | 2021-10-11 |
TWI748676B (zh) | 2021-12-01 |
JPWO2021199260A1 (ja) | 2021-10-07 |
JP6912033B1 (ja) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100098506A1 (en) | Cemented carbide, cutting tool, and cutting device | |
WO2019138599A1 (ja) | 超硬合金及び切削工具 | |
WO2019116614A1 (ja) | 超硬合金及び切削工具 | |
JP2017088917A (ja) | 超硬合金及び切削工具 | |
JP6607470B2 (ja) | 焼結体およびそれを含む切削工具 | |
JP6912033B1 (ja) | 超硬合金及びそれを備える切削工具 | |
CN117677724A (zh) | 硬质合金以及包含该硬质合金的工具 | |
US20240352561A1 (en) | Cemented carbide and cutting tool using the same | |
JP7173426B1 (ja) | 超硬合金及び切削工具 | |
JP2012162753A (ja) | 超硬合金およびその製造方法、並びにマイクロドリル | |
WO2023139726A1 (ja) | 超硬合金およびそれを含む工具 | |
JP6957828B1 (ja) | 超硬合金及びそれを備える切削工具 | |
CN114698373B (zh) | 硬质合金及具备该硬质合金的切削工具 | |
JP7215806B1 (ja) | 超硬合金及びそれを用いた切削工具 | |
JP7574719B2 (ja) | 超硬合金及び切削工具 | |
JP7544292B1 (ja) | 超硬合金およびそれを含む工具 | |
CN117677723A (zh) | 硬质合金 | |
JPWO2019116614A1 (ja) | 超硬合金及び切削工具 | |
JP2005068514A (ja) | 微粒超硬合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020548827 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20929141 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20929141 Country of ref document: EP Kind code of ref document: A1 |