Nothing Special   »   [go: up one dir, main page]

WO2021186804A1 - Battery capacity recovery quantity diagnosis method - Google Patents

Battery capacity recovery quantity diagnosis method Download PDF

Info

Publication number
WO2021186804A1
WO2021186804A1 PCT/JP2020/045371 JP2020045371W WO2021186804A1 WO 2021186804 A1 WO2021186804 A1 WO 2021186804A1 JP 2020045371 W JP2020045371 W JP 2020045371W WO 2021186804 A1 WO2021186804 A1 WO 2021186804A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
recovery
capacity
potential
negative electrode
Prior art date
Application number
PCT/JP2020/045371
Other languages
French (fr)
Japanese (ja)
Inventor
杉政 昌俊
耕平 本蔵
渉太 伊藤
栄二 關
誠之 廣岡
純 川治
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2021186804A1 publication Critical patent/WO2021186804A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for diagnosing the amount of recovery of the battery capacity of a secondary battery.
  • Lithium-ion batteries are one of the non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and, in recent years, as batteries for electric vehicles. However, it is known that a lithium ion battery deteriorates with use and the battery capacity decreases.
  • a lithium metal oxide is generally used as the active material of the positive electrode
  • a carbon material such as graphite is generally used as the active material of the negative electrode.
  • the positive electrode and the negative electrode of a lithium ion battery are formed by adding a binder (binding agent), a conductive agent, or the like to a group of minute active material particles to form a slurry (mixture), and then applying the mixture to a metal foil.
  • a binder binding agent
  • a conductive agent or the like
  • the mixture to form a metal foil.
  • the lithium ions released from the active material of the positive electrode are occluded in the active material of the negative electrode
  • the lithium ions stored in the active material of the negative electrode are occluded and stored in the active material of the positive electrode. In this way, lithium ions move between the electrodes, causing a current to flow between the electrodes.
  • the capacity is increased by (1) electrical isolation of the positive electrode active material, (2) electrical isolation of the negative electrode active material, and (3) immobilization of lithium ions moving back and forth between the electrodes. Decrease.
  • a lithium ion battery having a third electrode containing lithium inside is manufactured, and lithium ions are replenished from the third electrode to the positive electrode or the negative electrode. By doing so, it is possible to recover the reduced capacity.
  • the third electrode installed for the purpose of capacity recovery is referred to as a capacity recovery electrode.
  • Patent Document 1 and Patent Document 2 are related to these techniques.
  • [Summary] of Patent Document 1 provides "[Problem] A lithium ion secondary battery capacity recovery method for realizing effective capacity recovery using a third electrode. [Solution] Capacity disclosed here.
  • the potential difference (V) between the positive electrode and the third electrode is measured while the capacity recovery treatment is being performed, and the capacity recovery treatment is performed on the condition that the measured potential difference reaches a predetermined stop reference value.
  • a stop reference value the positive electrode and the third electrode are made conductive in advance using a reference lithium ion secondary battery having the same configuration as the lithium ion secondary battery whose capacity is to be restored, and the time from the start of the conduction is reached.
  • the potential difference (V) between the positive electrode and the third electrode, which decreases with the passage of time, is monitored, the fluctuation of the potential difference with the passage of time (hr) is determined from the monitored potential difference, and the potential difference downward fluctuation period is determined from the potential difference fluctuation. , The potential difference fluctuation transition period and the potential difference downward stable period are determined, and the potential difference corresponding to the potential difference fluctuation transition period is adopted. ”, And the technique of the capacity recovery method of the lithium ion secondary battery is disclosed.
  • [Summary] of Patent Document 2 provides a "[problem] a method for managing the state of a lithium ion battery capable of replenishing an appropriate amount of lithium ions that suppress the formation of lithium dendrites and recovering the capacity thereof.
  • a method for managing a state of a lithium ion battery includes a positive electrode containing a first active material and a second active material having a lower electrode potential than the first active material, a negative electrode, and an electrolyte solution. It is a state management method for lithium-ion batteries, and the amount of decrease in lithium ions is used to determine the cause of deterioration of the lithium-ion battery by comparing the initial charge / discharge state of the lithium-ion battery with the charge / discharge state at the time of determination. Is calculated. ”, And the technology of the state management method of the lithium ion battery is disclosed.
  • Patent Document 1 While performing the capacity recovery process, the potential difference (V) between the positive electrode and the third electrode was measured, and the measured potential difference reached a predetermined stop reference value. The capacity recovery process is stopped on the condition that the capacity recovery process is performed. ” While the volume recovery process is being performed, the potential difference (V) between the positive electrode and the third electrode is measured. Further, in Patent Document 2, a method is adopted in which the capacity to be recovered is defined by measuring the positive electrode potential.
  • Patent Document 1 is a method of "measuring the potential difference (V) between the positive electrode and the third electrode while performing the capacity recovery treatment"
  • the capacity recovery electrode itself Since it is a method of performing the capacity recovery process while the state is unknown, it is not possible to know in advance whether the recovery process is possible and the recoverable capacity until the recovery process is performed, and before the capacity recovery process is performed. , There is a problem (problem) that it is difficult to make an operation plan of how to perform capacity recovery processing.
  • Patent Document 2 is a method of "measuring the positive electrode potential", the state of the capacitance recovery electrode is unknown, and an operation plan for how to appropriately perform the capacitance recovery process is made. There is a problem (problem) that it is difficult.
  • An object of the present invention is to provide a method for easily constantly grasping the state of the capacity recovery electrode in a lithium ion battery that recovers capacity by replenishing lithium ions from a third electrode containing lithium inside. do.
  • the present invention was configured as follows. That is, the method for diagnosing the amount of recovery of battery capacity of the present invention is a method for diagnosing the amount of recovery of battery capacity of a secondary battery cell including a positive electrode, a negative electrode, and a capacity recovery electrode, and the electrode potential of the secondary battery cell is the positive electrode. Alternatively, the open circuit potential of the capacitance recovery electrode is measured with the negative electrode as a reference electrode.
  • the state of the capacity recovery electrode can be easily grasped. Therefore, it is possible to easily estimate the remaining capacity recovery amount of the battery and the surface state of the capacity recovery electrode, and it is possible to easily grasp the battery usage plan and the value of the battery.
  • FIG. 1 It is a figure which conceptually shows an example of the cross section of the cell of the lithium ion battery which has a capacity recovery electrode. It is a figure which shows an example of the cross section of the power generation element of the cell of FIG. 1 conceptually. It is a figure which conceptually shows the configuration example of the charge / discharge device connected to the battery pack which has a capacity recovery electrode. It is a figure which shows an example of the relationship between the capacity recovery electrode measurement potential and the Li recovery amount in a lithium ion battery which has a capacity recovery electrode. It is a figure which shows an example of the relationship between the electric potential and the discharge amount of a battery cell, a positive electrode, and a negative electrode in a cell of a lithium ion battery.
  • FIG. 1 It is a figure which shows an example of the potential measurement result of the capacity recovery electrode measured with respect to the positive electrode in the fully charged state in the method of diagnosing the recovery amount of the battery capacity of the secondary battery which concerns on 1st Embodiment of this invention. It is a figure which shows the relationship between the potential of the negative electrode and the discharge capacity. It is a figure which shows the relationship between dV / dQ and the discharge capacity. It is a figure which shows the relationship between the potential of the negative electrode, and the Li recoverable amount in the method of diagnosing the recovery amount of the battery capacity of the secondary battery which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a diagram conceptually showing an example of a cross section of a cell of a lithium ion battery having a capacity recovery electrode. Note that FIG. 1 is a view seen from the left side of the paper surface of FIG. 2, which will be described later.
  • the cell (battery cell, secondary battery) 100 includes an electrode occupying portion 1, a positive electrode terminal (tab) 2, a negative electrode terminal (tab) 3, a capacitance recovery electrode terminal (tab) 4, and a separator 5.
  • the exterior material 6 is made of a laminated film or a similar material. As described above, FIG.
  • the electrode occupying portion 1 is a portion corresponding to the capacitance recovery electrode 15, the negative electrode 12, and the positive electrode 11 in FIG. Areas that appear to overlap are shown.
  • FIG. 2 is a diagram conceptually showing an example of a cross section of a power generation element (component of a power generation mechanism) of the cell of FIG.
  • the power generation element of the cell includes a positive electrode 11, a negative electrode 12, a capacity recovery electrode 15, and a separator 5.
  • the electrolytic solution as a battery is impregnated into micropores such as a positive electrode 11, a negative electrode 12, a capacity recovery electrode 15, and a separator 5. Therefore, the electrolytic solution is not shown in FIGS. 2 and 1.
  • the positive electrode 11 and the negative electrode 12 are alternately arranged with the separator 5 interposed therebetween.
  • the capacitance recovery electrode 15 is arranged on the outermost side as an electrode.
  • a separator 5 is also arranged outside the capacitance recovery electrode 15.
  • the separator 5 for example, polypropylene is used.
  • a microporous film made of polyolefin such as polyethylene, a non-woven fabric, or the like can be used.
  • the positive electrode 11, the negative electrode 12, and the capacity recovery electrode 15 are each produced by applying an appropriate mixture of an electrode active material, a conductive agent, a binder, and the like to an appropriate metal current collector foil. ..
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the collecting foil of the positive electrode 11 and the capacity recovery electrode 15 is an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, and a foamed metal plate. Etc. are used. Further, as the material, stainless steel, titanium and the like can be applied in addition to aluminum.
  • the electrode active material of the positive electrode 11 and the capacity recovery electrode 15 contains a reaction species inside.
  • the reactive species of lithium-ion batteries is lithium-ion.
  • the electrode active material contains a lithium-containing compound capable of reversibly inserting and removing lithium ions.
  • the types of electrode active materials of the positive electrode 11 and the capacity recovery electrode 15 include, for example, lithium cobalt oxide, manganese-substituted lithium cobalt oxide, lithium manganate, lithium nickel oxide, and transition metal lithium phosphate such as olivine-type lithium iron phosphate. li w Ni x Co y Mn z O 2 (wherein, w, x, y, z is 0 or a positive value) and the like.
  • the electrode active material of the positive electrode 11 and the capacity recovery electrode 15 may be contained alone or in combination of two or more.
  • the positive electrode 11 and the capacity recovery electrode 15 may use the same configuration. By using the same configuration for the positive electrode 11 and the capacity recovery electrode 15, the manufacturing cost can be reduced.
  • Negative electrode 12 As the current collecting foil of the negative electrode 12, a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used. In addition to copper, stainless steel, titanium, etc. can also be applied as the material.
  • the electrode active material of the negative electrode 12 contains a substance capable of reversibly inserting and removing lithium ions.
  • the type of electrode active material for the negative electrode 12 is, for example, natural graphite, a composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or petroleum or coal. Artificial graphite produced by firing using the obtained pitch-based material as a raw material, silicon (Si), graphite mixed with silicon, non-graphitized carbon material, lithium titanate Li 4 Ti 5 O 12, and the like can be used.
  • the negative electrode active material the above-mentioned materials may be contained alone or in combination of two or more.
  • the power generation element (component of the power generation mechanism) includes an electrolytic solution in addition to the positive electrode 11, the negative electrode 12, the capacity recovery electrode 15, and the separator 5.
  • the positive electrode 11, the negative electrode 12, the capacity recovery electrode 15, and the separator 5 are made of a porous material and are impregnated with an electrolytic solution. Therefore, the electrolytic solution is not shown in FIG. 2 or FIG.
  • the electrolytic solution is, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl.
  • An aproton organic solvent such as propyl carbonate (MPC) or ethyl propyl carbonate (EPC) can be used.
  • an electrolytic solution in which the above-mentioned two or more kinds of mixed lithium salts are dissolved can be mentioned.
  • the current collecting foils of the positive electrode (11: FIG. 2), the negative electrode (12: FIG. 2), and the capacitance recovery electrode (15: FIG. 2) have metal tabs (2) as terminals for each. , 3, 4: (Fig. 1) is connected.
  • the exterior material 6 is sealed so that only the tab portion is exposed to the outside of the laminated film. With this structure, it is possible to electrically connect the tab portion to the outside of the cell 100 of the lithium ion battery.
  • FIG. 3 is a diagram conceptually showing a configuration example of a charging / discharging device 350 connected to a battery pack 300 having a capacity recovery electrode.
  • the charging / discharging device 350 also serves as a measuring instrument for grasping the state of the battery pack 300.
  • the battery pack 300 has a capacity recovery electrode terminal 4 in addition to the positive electrode terminal 2 and the negative electrode terminal 3.
  • the charging / discharging device 350 includes a current meter 351 (current sensor, current measuring means), a voltmeter 352 (voltage sensor, voltage measuring means), a capacity recovery pole voltmeter 358 (voltage sensor), a resistor 353, and a power supply. It includes 354, a control unit 355, a charge / discharge changeover switch 356, a capacity recovery switch 357, and a positive / negative voltage changeover switch 359.
  • the battery pack 300 may include a plurality of cells. Further, the battery pack 300 may be configured to include a plurality of battery modules including a plurality of cells. As used herein, the term "secondary battery" is a concept that includes a cell, a battery module, or a battery pack of a lithium ion battery.
  • each terminal of the positive electrode terminal 2, the negative electrode terminal 3, and the capacity recovery electrode terminal 4 of the battery pack 300 is connected to the charging / discharging device 350, respectively.
  • the capacity recovery switch 357 is arranged so as to connect any of the negative electrode terminal 3 and the capacity recovery electrode terminal 4 of the battery pack 300 to either the resistor 353 and the power supply 354 via the charge / discharge changeover switch 356.
  • the power supply 354 is for charging, and the resistor 353 is for discharging.
  • the positive / negative electrode changeover switch 359 is arranged so as to connect either the positive electrode terminal 2 or the negative electrode terminal 3 of the battery pack 300 to either the resistor 353 or the power supply 354.
  • the ammeter 351 measures the current flowing between the positive electrode terminal and the negative electrode terminal of the battery pack 300, between the positive electrode terminal and the capacity recovery electrode terminal, or between the negative electrode terminal and the capacity recovery terminal, and outputs the result to the control unit 355.
  • the voltmeter 352 measures the voltage between the positive electrode and the negative electrode, and outputs the result to the control unit 355.
  • the voltmeter 358 measures the voltage of the capacitance recovery electrode with reference to the positive electrode or the negative electrode, and outputs the result to the control unit 355.
  • the control unit 355 appropriately switches and controls the charge / discharge changeover switch 356, the capacity recovery switch 357, and the positive / negative electrode changeover switch 359 based on the information of the voltmeter 352, the voltmeter 358, and the ammeter 351.
  • the charging / discharging device 350 carries out the measurement step and the charging step while switching the charge / discharge changeover switch 356, the capacity recovery switch 357, and the positive / negative electrode changeover switch 359 by the control unit 355.
  • FIG. 3 shows that the voltmeter 358 is connected between the positive electrode terminal and the capacitance recovery electrode terminal by the solid wire wiring. Further, by selecting the wiring of the broken line, the voltmeter 358 measures the voltage between the negative electrode terminal and the capacitance recovery electrode terminal. Alternatively, voltmeters may be installed both between the negative electrode terminal and the capacitance recovery electrode terminal and between the positive electrode terminal and the capacitance recovery electrode terminal. Further, the charging / discharging device 350 (which also serves as a measuring instrument) used in the embodiment of the present invention described later is not limited to the configuration shown in FIG. 3, and includes the positive electrode terminal, the negative electrode terminal, and the capacity recovery extreme of the battery pack 300. Any circuit configuration may be used as long as it can connect the child and any two terminals selected from.
  • FIG. 4 is a diagram showing an example of the relationship between the capacity recovery electrode measurement potential and the Li recoverable amount in a lithium ion battery having a capacity recovery electrode.
  • the capacitance recovery pole measurement potential is a measurement of the potential in the open circuit state of the capacitance recovery pole (open circuit potential of the capacitance recovery pole). Further, the "relationship between the capacity recovery electrode measurement potential and the Li recoverable amount" differs depending on the lithium ion battery having various characteristics.
  • FIG. 4 is a diagram generally explaining the relationship between the capacity recovery electrode measurement potential and the Li recoverable amount in a lithium ion battery having a capacity recovery electrode.
  • the horizontal axis represents the Li recoverable amount Q (Ah), which is the amount that can recover the capacity of the lithium ion battery.
  • the amount of Li recoverable is defined by the product of the current A and the time h.
  • the vertical axis is the measurement potential of the capacitance recovery electrode.
  • the reference for measuring the potential of the capacitance recovery electrode may be the positive electrode side or the negative electrode side.
  • the characteristic line 401 shows the relationship between the Li recoverable amount Q (Ah) and the capacitance recovery pole measurement potential.
  • FIG. 4 it is assumed that the “relationship between the Li recoverable amount Q (Ah) and the capacity recovery pole measurement potential” of the lithium ion battery having a predetermined capacity recovery pole can be grasped.
  • the “Li recoverable amount” will be described.
  • the capacity recovery electrode has lithium ions inside. By performing the recovery process, lithium ions are supplied from the capacity recovery electrode to the positive electrode or the negative electrode. In the process, lithium ions at the capacity recovery electrode decrease.
  • the "Li recoverable amount” means the amount of lithium ions contained in the capacity recovery electrode. That is, it is an amount capable of recovering lithium in the positive electrode or the negative electrode. Further, when the capacity recovery electrode supplies lithium ions to the positive electrode or the negative electrode, the "Li recoverable amount" of the capacity recovery electrode decreases, but the potential of the capacity recovery electrode changes with this decrease.
  • the potential of the capacity recovery pole (open circuit potential of the capacity recovery pole) is measured for the lithium ion battery having the capacity recovery pole. Then, it is assumed that the capacitance recovery pole measurement potential at the measurement point 402 is obtained. Then, the Li recoverable amount Q (Ah) can be grasped from the relationship between the Li recoverable amount Q (Ah) of the characteristic line 401 obtained in advance and the capacitance recovery pole measurement potential. If the measurement point 403 is the maximum amount of lithium ions accumulated with respect to the capacity recovery electrode, at the measurement point 402, the difference on the horizontal axis between the measurement point 402 and the measurement point 403 is the available amount of lithium at the measurement point 402. Then, it becomes the "Li remaining amount" of the capacity recovery electrode. When charging or discharging a lithium-ion battery having a capacity recovery electrode, the charging implementation plan and the discharge limit can be grasped based on the above obtained data.
  • FIG. 5 is a diagram showing an example of the relationship between the discharge amount of the battery cell, the positive electrode, and the negative electrode and the voltage (potential) in the cell of the lithium ion battery.
  • the capacity recovery pole is not shown.
  • the characteristic 500 shows the relationship between the voltage of the battery cell and the discharge amount Q.
  • the characteristic line 501 shows the relationship between the potential (voltage) of the positive electrode and the discharge amount Q.
  • the characteristic line 502 shows the relationship between the potential (voltage) of the negative electrode and the discharge amount Q.
  • the alternate long and short dash line 503 corresponds to a state in which the discharge amount Q is 0, that is, a state in which the battery cell is fully charged.
  • the vertical axis represents voltage or potential (V)
  • the horizontal axis represents discharge amount (Ah).
  • the method for diagnosing the amount of recovery of the battery capacity of the secondary battery according to the first embodiment of the present invention is a method of measuring the potential of the capacity recovery electrode with the potential of the positive electrode as a reference (referring to the positive electrode). Therefore, when the potential of the positive electrode is used as a reference, it is important to devise a method for accurately and stably measuring the amount of recovery of the battery capacity of the secondary battery by the capacity recovery electrode. Therefore, when the positive electrode is used as a reference, the positive electrode in a fully charged state (predetermined state) is used as a reference. If it is defined as measurement (measurement) in a fully charged state, the stability of measurement is relatively improved.
  • the fully charged state of the positive electrode corresponds to the characteristic point 504 in FIG.
  • FIG. 6 is a diagram showing an example of the potential measurement result of the capacity recovery electrode measured with reference to the positive electrode in the fully charged state in the method for diagnosing the recovery amount of the battery capacity of the secondary battery according to the first embodiment of the present invention. ..
  • the vertical axis represents the potential (V) of the capacitance recovery electrode measured with reference to the positive electrode, that is, the open circuit potential of the capacitance recovery electrode, and the horizontal axis represents the Li recoverable amount Q (Ah) of the capacitance recovery electrode. be.
  • the same material is used for the positive electrode and the capacity recovery electrode. Therefore, in FIG. 6, the potential of the capacitance recovery electrode before the recovery process is 0 (V).
  • the recovery process is performed within a predetermined range by the capacitance recovery electrode from the state where the potential of the capacitance recovery electrode is 0 (V). Then, as shown in FIG. 5, the battery cell (secondary battery) is fully charged by the positive electrode and the negative electrode. The potential of the capacity recovery electrode is measured in this fully charged state. After this measurement, the recovery process is performed again within a predetermined range by the capacity recovery electrode. Then, as described above, the battery cell (secondary battery) is fully charged by the positive electrode and the negative electrode, and the potential of the capacity recovery electrode is measured in this fully charged state. In this way, each time the recovery process is performed, the battery is fully charged and the potential of the capacity recovery electrode is measured. This recovery process and the potential of the capacity recovery electrode after being fully charged are repeated.
  • the decrease in the potential of the positive electrode that is, the deterioration can be measured based on the data when the positive electrode is fully charged.
  • the decrease in the potential of the positive electrode changes depending on the condition of the capacity recovery electrode. That is, the amount of Li recoverable at the capacity recovery electrode can be calculated from the measurement of this deterioration.
  • the point at which the measurement is repeated is the measurement point 601 shown by the plurality of points in FIG.
  • FIG. 6 it is possible to obtain a continuous measurement result of the relationship between the potential of the capacity recovery electrode in the fully charged state and the Li recoverable amount at the capacity recovery electrode.
  • the Li recoverable amount (capacity recoverable amount) can be grasped and the charging implementation plan can be performed. And you can grasp the limit of discharge.
  • the method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the first embodiment is a method of measuring the potential of the capacity recovery electrode with reference to the potential of the positive electrode.
  • the potential of the positive electrode changes greatly. Therefore, when the potential of the positive electrode is used as a reference, it is important to devise a method for accurately and stably measuring the amount of recovery of the battery capacity of the secondary battery by the capacity recovery electrode. Therefore, when the positive electrode is used as a reference, the positive electrode in a fully charged state is used as a reference. If it is defined as measurement (measurement) in a fully charged state, the stability of measurement is relatively improved. Then, the potential of the capacity recovery electrode is constantly measured, and the Li recoverable amount (capacity recoverable amount) is grasped.
  • the method for diagnosing the amount of recovery of the battery capacity of the secondary battery according to the second embodiment of the present invention is a method of measuring the potential of the capacity recovery electrode with the potential of the negative electrode as a reference (referring to the negative electrode).
  • FIG. 7A is a diagram showing the relationship between the potential V of the negative electrode and the discharge capacity (charge / discharge capacity) Q of the negative electrode.
  • FIG. 7B is a diagram showing the relationship between dV / dQ (potential change / discharge charge change of the negative electrode) and the discharge capacity (charge / discharge capacity) Q of the negative electrode.
  • FIG. 8 is a diagram showing the relationship between the potential V of the negative electrode and the Li recoverable amount Q (Ah) in the method for diagnosing the recovery amount of the battery capacity of the secondary battery according to the second embodiment of the present invention.
  • FIG. 7A is a diagram showing the relationship between the potential V of the negative electrode and the discharge capacity (charge / discharge capacity) Q of the negative electrode as described above.
  • the vertical axis represents the potential V (open circuit potential, OCP: Open Circuit Potential) of the negative electrode
  • the horizontal axis represents the discharge capacity (charge / discharge capacity) Q of the negative electrode.
  • this discharge capacity is expressed by the value standardized by the current Ah per unit weight (g) of a negative electrode.
  • the region where the discharge capacity is small is the range of high SOC (State Of Charge), and the region where the discharge capacity (charge / discharge capacity) is large is the range of low SOC.
  • SOC State Of Charge
  • the potential of the negative electrode has many flat portions with respect to the charging state. Therefore, it can be used as a reference even during discharge. It is known that the potential of the negative electrode changes depending on the arrangement of lithium between graphite layers, which is the negative electrode material.
  • stage 1 The flat potential region on the high SOC side shown in FIG. 7A is referred to as stage 1, and the flat potential region on the intermediate SOC side is referred to as stage 2.
  • stage 2 the flat potential region on the intermediate SOC side
  • the stage 1 or stage 2 region (predetermined state) shown in FIG. 7A is preferable to use as a reference for the capacitance recovery electrode.
  • Stage 1 is a two-phase coexistence state called LiC 6 in which all the graphite layers are filled with lithium and every other layer is filled with lithium. Therefore, the potential of the negative electrode is flat as long as this coexistence is maintained. Further, in stage 2, the amount of lithium between the graphite layers decreases, and the two-phase coexistence state in which the lithium is clogged every other sheet and the long-range order in the state where the lithium is clogged every other sheet begins to collapse. Is. These phase changes can be measured as the peak of dV / dQ by the data of dV / dQ obtained by differentiating the potential V of the negative electrode with the discharge capacity Q.
  • FIG. 7B is a diagram showing the relationship between dV / dQ (change in potential of the negative electrode / change in discharge charge) and discharge capacity as described above. Then, in order to detect the peak of the dV / dQ, it is a figure which shows the relationship between the discharge capacity and dV / dQ.
  • the vertical axis is dV / dQ and the horizontal axis is the discharge capacity.
  • this discharge capacity is expressed by the value standardized by the current per unit weight of a negative electrode.
  • the characteristic line 702 in FIG. 7B shows the relationship between dV / dQ and the discharge capacity.
  • the characteristic line 702 shows relatively flat characteristics in the region of stage 1 and the region of stage 2. However, there is a peak 703 in which the characteristic line 702 protrudes between the region of stage 1 and the region of stage 2.
  • the stages 1 and 2 in FIG. 7B correspond to the stages 1 and 2 in FIG. 7A.
  • the region of stage 1 and the region of stage 2 may not be easily discriminated by the characteristic line 701.
  • the peak 703 of the characteristic line 702 can be detected relatively easily. Therefore, the dV / dQ shown in FIG. 7B can be measured first to detect the peak 703, and the area before and after the rise of the peak can be defined as the stage 1 region or the stage 2 region. Since the region of stage 1 or the region of stage 2 could be clearly grasped by the measurement shown in FIG. 7B, the region of stage 1 or the region of stage 1 in which the characteristics of the potential of the negative electrode are flat by the measurement shown in FIG. 7A, or The potential of the negative electrode is measured in the region of stage 2.
  • the capacity of the lithium-ion battery decreases as the lithium-ion battery is immobilized on the surface of the negative electrode as charging and discharging are repeated. Then, in the process of this capacity reduction, the potential of the negative electrode (open circuit potential, OCP) changes. Therefore, when measuring the potential of the capacitance recovery electrode using the negative electrode, it is preferable to periodically measure dV / dQ and always confirm the relationship between the stage 1 and stage 2 regions of the negative electrode and the charge / discharge capacity.
  • FIG. 8 is a diagram showing the relationship between the potential of the capacitance recovery electrode and the Li recoverable amount Q (Ah). More specifically, it is a figure which shows an example of the potential measurement result of the capacitance recovery electrode measured with respect to the potential of the stage 1 of the negative electrode.
  • the method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the second embodiment of the present invention is a method of measuring the potential of the capacity recovery electrode with reference to the potential of the negative electrode.
  • the same material is used for the positive electrode and the capacity recovery electrode as in the first embodiment.
  • Stage 1 measurement procedure >> The capacity of the battery cell (secondary battery) decreases due to repeated charging and discharging, and the potential of the negative electrode (open circuit potential, OCP) may change, but the potential of stage 1 of the negative electrode is always maintained by the capacity recovery process. Is in the same position (stage 1) by measuring dV / dQ. After that, the potential of the capacitance recovery electrode is measured. Then, the capacitance recovery process is performed again, and further, it is confirmed by dV / dQ measurement that the potential of the negative electrode stage 1 is always at the same position (stage 1). After that, the potential of the capacitance recovery electrode is measured. The above measurement is repeated. As a result of the above measurement, as shown in FIG.
  • Stage 2 measurement procedure As described above, a series of potential measurements were performed in the stage 1, but the measurement is not limited to the stage 1. As shown in FIG. 7B, the same procedure can be measured even in the stage 2 region where the potential characteristics of the negative electrode are flat. That is, also in stage 2, it is confirmed by dV / dQ measurement that the potential of stage 2 of the negative electrode is at the same position (stage 2). After that, the potential of the capacitance recovery electrode is measured. Then, the capacitance recovery process is performed again, and further, it is confirmed by dV / dQ measurement that the potential of the negative electrode stage 2 is always at the same position (stage 2). After that, the potential of the capacitance recovery electrode is measured. The above measurement is repeated.
  • stage 2 As a result of measuring the potential of the capacitance recovery electrode, it is possible to obtain the result that the potential of the capacitance recovery electrode changes continuously as in stage 1.
  • the description of the measurement data corresponding to FIG. 8 in stage 2 is omitted. Further, in the measurement of the stage 2, the description overlapping with the stage 1 will be omitted.
  • the method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the second embodiment is a method of measuring the potential of the capacity recovery electrode with reference to the potential of the negative electrode.
  • FIG. 7B the relationship between dV / dQ (potential change / discharge charge change of the negative electrode) and discharge capacity is measured, the peak 703 of dV / dQ is detected, and the regions of stage 1 and stage 2 are grasped. ..
  • the potential of the capacitance recovery electrode is measured, and the potential of the capacitance recovery electrode and the Li recoverable amount Q (shown in FIG.
  • the same material is used for the positive electrode and the capacity recovery electrode. Therefore, the potential of the capacitance recovery electrode before the recovery process is 0 V.
  • the positive electrode and the capacity recovery electrode are not limited to using the same material.
  • the characteristic line shown in FIG. 6 may move, but the relationship between the potential of the capacity recovery electrode (potential reference of the positive electrode) and the Li recoverable amount. Is still obtained, and from its characteristics, a recovery plan can be made by the state of the battery and charging.
  • the electrolytic solution of the lithium ion battery (secondary battery) has been described as being a liquid.
  • the electrolytic solution of the lithium ion battery (secondary battery) targeted by the method for diagnosing the amount of recovery of the battery capacity of the secondary batteries of the first embodiment and the second embodiment of the present invention is not limited to a liquid. That is, a solid electrolyte may be used instead of the electrolytic solution.
  • the solid electrolyte include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, polyhexafluoropropylene, and polyethylene oxide. When these solid polymer electrolytes are used, the separator 5 shown in FIGS. 1 and 2 can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a method for conveniently ascertaining the condition of a capacity recovery electrode at any given time, in a lithium-ion battery in which capacity is recovered by replenishing with lithium ions from a third electrode that includes lithium in the interior thereof. A battery capacity recovery quantity diagnosis method for a secondary battery cell (100) that comprises a positive electrode (11), a negative electrode (12), and a capacity recovery electrode (15), wherein the open circuit potential of the capacity recovery electrode (15) is measured treating the electrode potential of the secondary battery cell (100) as a reference, with the positive electrode (11) or the negative electrode (12) as the reference electrode.

Description

電池容量の回復量診断方法Battery capacity recovery diagnostic method
 本発明は、二次電池の電池容量の回復量診断方法に関する。 The present invention relates to a method for diagnosing the amount of recovery of the battery capacity of a secondary battery.
 リチウムイオン電池は、非水電解質二次電池の一つであり、エネルギー密度が高いため、携帯機器のバッテリーや、近年では電気自動車のバッテリーとしても用いられている。ただし、リチウムイオン電池は、使用に伴い劣化し、電池容量が減少することが知られている。
 リチウムイオン電池では、正極の活物質としてリチウム金属酸化物、負極の活物質とし黒鉛などの炭素材が用いられるのが一般的である。リチウムイオン電池の正極および負極は、微小な活物質粒子群にバインダ(結着剤)や導電剤等を加えてスラリー(混合体)化した後、金属箔に塗布して形成する。
 充電時には、正極の活物質から放出されたリチウムイオンが負極の活物質に吸蔵され、放電時には負極の活物質に吸蔵されたリチウムイオンが放出され正極の活物質に吸蔵される。このように、リチウムイオンが電極間を移動することで電極間に電流が流れる。
Lithium-ion batteries are one of the non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and, in recent years, as batteries for electric vehicles. However, it is known that a lithium ion battery deteriorates with use and the battery capacity decreases.
In a lithium ion battery, a lithium metal oxide is generally used as the active material of the positive electrode, and a carbon material such as graphite is generally used as the active material of the negative electrode. The positive electrode and the negative electrode of a lithium ion battery are formed by adding a binder (binding agent), a conductive agent, or the like to a group of minute active material particles to form a slurry (mixture), and then applying the mixture to a metal foil.
At the time of charging, the lithium ions released from the active material of the positive electrode are occluded in the active material of the negative electrode, and at the time of discharging, the lithium ions stored in the active material of the negative electrode are occluded and stored in the active material of the positive electrode. In this way, lithium ions move between the electrodes, causing a current to flow between the electrodes.
 このようなリチウムイオン電池では、(1)正極活物質の電気的な孤立、(2)負極活物質の電気的な孤立、及び(3)電極間を往来するリチウムイオンの固定化、によって容量が減少する。
 これらの要因のうち、上記(3)による容量減少分については、内部にリチウムを含む第3の電極を備えたリチウムイオン電池を作製し、第3の電極から正極または負極にリチウムイオンを補充することによって容量減少分を回復させることが可能である。以後、容量回復を目的の一つとして設置した第3の電極を容量回復極と呼ぶ。
In such a lithium ion battery, the capacity is increased by (1) electrical isolation of the positive electrode active material, (2) electrical isolation of the negative electrode active material, and (3) immobilization of lithium ions moving back and forth between the electrodes. Decrease.
Of these factors, for the capacity reduction due to (3) above, a lithium ion battery having a third electrode containing lithium inside is manufactured, and lithium ions are replenished from the third electrode to the positive electrode or the negative electrode. By doing so, it is possible to recover the reduced capacity. Hereinafter, the third electrode installed for the purpose of capacity recovery is referred to as a capacity recovery electrode.
 一方で、容量回復極を備えたリチウムイオン電池では、容量回復極の状態把握が重要になる。リチウムイオン電池の容量回復量は、容量回復極の容量に制限されるため、容量回復極の状態を把握することなく、過剰に回復処理を行った場合、充放電に用いる正極および負極が破損して、リチウムイオン電池が不安定化したり、もしくは過剰なリチウムイオンの析出によるデンドライト形成に伴う短絡などによって、電池自体が破壊される可能性がある。
 これらの技術に関連して、特許文献1と特許文献2がある。
On the other hand, in a lithium-ion battery equipped with a capacity recovery electrode, it is important to grasp the state of the capacity recovery electrode. Since the capacity recovery amount of the lithium-ion battery is limited to the capacity of the capacity recovery electrode, if the recovery process is excessively performed without grasping the state of the capacity recovery electrode, the positive and negative electrodes used for charging and discharging will be damaged. As a result, the lithium-ion battery may become unstable, or the battery itself may be destroyed due to a short circuit caused by the formation of a dendrite due to excessive precipitation of lithium ions.
Patent Document 1 and Patent Document 2 are related to these techniques.
 特許文献1の[要約]には、「[課題]第3電極を用いて効果的な容量回復を実現するリチウムイオン二次電池容量回復方法を提供する。[解決手段]ここで開示される容量回復方法では、容量回復処理を実施している間、正極と第3電極との間の電位差(V)を測定し、該測定電位差が所定の停止基準値に至ったことを条件に容量回復処理を停止する。ここで停止基準値として、予め容量回復対象のリチウムイオン二次電池と同じ構成の基準リチウムイオン二次電池を用いて正極と第3電極とを導通させ、当該導通開始時から時間経過とともに低下する前記正極と第3電極との間の電位差(V)をモニタリングし、該モニタリングした電位差から時間(hr)の経過に伴う電位差の変動を判定し、その電位差変動から電位差下降変動期、電位差変動過渡期、電位差下降安定期を決定し、その電位差変動過渡期に対応する電位差が採用される。」と記載され、リチウムイオン二次電池の容量回復方法の技術が開示されている。 [Summary] of Patent Document 1 provides "[Problem] A lithium ion secondary battery capacity recovery method for realizing effective capacity recovery using a third electrode. [Solution] Capacity disclosed here. In the recovery method, the potential difference (V) between the positive electrode and the third electrode is measured while the capacity recovery treatment is being performed, and the capacity recovery treatment is performed on the condition that the measured potential difference reaches a predetermined stop reference value. Here, as a stop reference value, the positive electrode and the third electrode are made conductive in advance using a reference lithium ion secondary battery having the same configuration as the lithium ion secondary battery whose capacity is to be restored, and the time from the start of the conduction is reached. The potential difference (V) between the positive electrode and the third electrode, which decreases with the passage of time, is monitored, the fluctuation of the potential difference with the passage of time (hr) is determined from the monitored potential difference, and the potential difference downward fluctuation period is determined from the potential difference fluctuation. , The potential difference fluctuation transition period and the potential difference downward stable period are determined, and the potential difference corresponding to the potential difference fluctuation transition period is adopted. ”, And the technique of the capacity recovery method of the lithium ion secondary battery is disclosed.
 特許文献2の[要約]には、「[課題]リチウムデンドライトの形成を抑制した適切な量のリチウムイオンを補充してその容量を回復させることができるリチウムイオン電池の状態管理方法を提供する。[解決手段]リチウムイオン電池の状態管理方法は、第1活物質及び該第1活物質よりも電極電位が卑である第2活物質を含む正極と、負極と、電解質液と、を備えたリチウムイオン電池の状態管理方法であって、リチウムイオン電池の初期の充・放電状態と判定時の充・放電状態とを比較してリチウムイオン電池の劣化原因を判定するにあたり、リチウムイオンの減少量を算出する。」と記載され、リチウムイオン電池の状態管理方法の技術が開示されている。 [Summary] of Patent Document 2 provides a "[problem] a method for managing the state of a lithium ion battery capable of replenishing an appropriate amount of lithium ions that suppress the formation of lithium dendrites and recovering the capacity thereof. A method for managing a state of a lithium ion battery includes a positive electrode containing a first active material and a second active material having a lower electrode potential than the first active material, a negative electrode, and an electrolyte solution. It is a state management method for lithium-ion batteries, and the amount of decrease in lithium ions is used to determine the cause of deterioration of the lithium-ion battery by comparing the initial charge / discharge state of the lithium-ion battery with the charge / discharge state at the time of determination. Is calculated. ”, And the technology of the state management method of the lithium ion battery is disclosed.
 以上のように、特許文献1では、「容量回復処理を実施している間、正極と第3電極との間の電位差(V)を測定し、該測定電位差が所定の停止基準値に至ったことを条件に容量回復処理を停止する。」と記載されていて、容量回復処理を実施している間、正極と第3電極との間の電位差(V)を測定する方法をとっている。
 また、特許文献2では、正極電位を計測することで、回復する容量を規定する方法をとっている。
As described above, in Patent Document 1, "While performing the capacity recovery process, the potential difference (V) between the positive electrode and the third electrode was measured, and the measured potential difference reached a predetermined stop reference value. The capacity recovery process is stopped on the condition that the capacity recovery process is performed. ”While the volume recovery process is being performed, the potential difference (V) between the positive electrode and the third electrode is measured.
Further, in Patent Document 2, a method is adopted in which the capacity to be recovered is defined by measuring the positive electrode potential.
特開2017-91923号公報JP-A-2017-911923 特開2012-195055号公報Japanese Unexamined Patent Publication No. 2012-195055
 容量回復極を用いた容量回復の一般化によりリチウムイオン電池の寿命は大きく伸びると予測される。それに伴い電池の中古市場の立ち上がりが期待されるが、中古電池の価値を正確に把握するため、簡便に第3の電極の容量を把握する手段の確立が必要となる。
 また同じ用途で長期間利用し続ける場合においても、容量回復時期を決定する場合や、回復効果が見込めなくなって電池の交換時期を見極める場合においても、容量回復極の状態把握が重要となる。
 さらに、容量回復極が電気的に孤立した場合は、容量回復が行えず、また容量回復極の表面状態によって容量回復処理が阻害される可能性がある。容量回復処理の過程で、これらの容量回復極自体に問題が生じていることを把握しても、対応する方法はなく、その後の電池運用計画に大きな支障をきたす。
 容量回復極の電位の常時把握は、容量回復可能量や容量回復極の表面状態の理解に必須であり、残容量に基づいたリチウムイオン電池の正確な運用計画の立案や、二次利用時のリチウムイオン電池の正確な価値の把握にあたって、非常に重要な因子である。
It is expected that the life of lithium-ion batteries will be greatly extended by the generalization of capacity recovery using capacity recovery poles. Along with this, the used battery market is expected to rise, but in order to accurately grasp the value of used batteries, it is necessary to establish a means for easily grasping the capacity of the third electrode.
Further, even when the battery is continuously used for the same purpose for a long period of time, it is important to grasp the state of the capacity recovery electrode even when the capacity recovery time is determined or when the recovery effect cannot be expected and the battery replacement time is determined.
Further, when the capacity recovery electrode is electrically isolated, the capacity recovery cannot be performed, and the surface condition of the capacity recovery electrode may hinder the capacity recovery process. Even if it is understood that a problem has occurred in these capacity recovery poles themselves in the process of capacity recovery processing, there is no way to deal with it, and it will greatly hinder the subsequent battery operation plan.
The constant grasp of the potential of the capacity recovery electrode is indispensable for understanding the recoverable capacity and the surface condition of the capacity recovery electrode. It is a very important factor in grasping the accurate value of lithium-ion batteries.
 しかしながら、特許文献1に記載された方法は、「容量回復処理を実施している間、正極と第3電極との間の電位差(V)を測定」する方法であるので、容量回復極自体の状態が不明のままに容量回復処理を実施する方法であるため、回復処理が可能か否か、および回復処理を行うまで回復可能な容量を事前に把握できず、容量回復処理を実施する前に、どのように容量回復処理を行うかの運用計画を立てることが難しい、という課題(問題)がある。
 また、特許文献2に記載された方法では、「正極電位を計測する」方法であるので容量回復極の状態が不明であって、どのように適切に容量回復処理を行うかの運用計画を立てることが難しいという課題(問題)がある。
However, since the method described in Patent Document 1 is a method of "measuring the potential difference (V) between the positive electrode and the third electrode while performing the capacity recovery treatment", the capacity recovery electrode itself Since it is a method of performing the capacity recovery process while the state is unknown, it is not possible to know in advance whether the recovery process is possible and the recoverable capacity until the recovery process is performed, and before the capacity recovery process is performed. , There is a problem (problem) that it is difficult to make an operation plan of how to perform capacity recovery processing.
Further, since the method described in Patent Document 2 is a method of "measuring the positive electrode potential", the state of the capacitance recovery electrode is unknown, and an operation plan for how to appropriately perform the capacitance recovery process is made. There is a problem (problem) that it is difficult.
 本発明は、内部にリチウムを含む第3の電極からリチウムイオンを補充することで容量を回復するリチウムイオン電池において、簡便に容量回復極の状態を常時把握する手法の提供を課題(目的)とする。 An object of the present invention is to provide a method for easily constantly grasping the state of the capacity recovery electrode in a lithium ion battery that recovers capacity by replenishing lithium ions from a third electrode containing lithium inside. do.
 前記の課題を解決するために、本発明を以下のように構成した。
 すなわち、本発明の電池容量の回復量診断方法は、正極、負極、容量回復極を備える二次電池セルの電池容量の回復量診断方法であって、前記二次電池セルの電極電位が前記正極、もしくは前記負極を参照極として、前記容量回復極の開回路電位を計測する、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention was configured as follows.
That is, the method for diagnosing the amount of recovery of battery capacity of the present invention is a method for diagnosing the amount of recovery of battery capacity of a secondary battery cell including a positive electrode, a negative electrode, and a capacity recovery electrode, and the electrode potential of the secondary battery cell is the positive electrode. Alternatively, the open circuit potential of the capacitance recovery electrode is measured with the negative electrode as a reference electrode.
 また、その他の手段は、発明を実施するための形態のなかで説明する。 In addition, other means will be described in the form for carrying out the invention.
 本発明によれば、内部にリチウムを含む第3の電極からリチウムイオンを補充することで容量を回復するリチウムイオン電池において、簡便に容量回復極の状態を把握することができる。そのため、電池の容量回復残量や容量回復極の表面状態を容易に推定することが可能となり、電池の利用計画や電池の価値把握の簡易にできる。 According to the present invention, in a lithium ion battery that recovers capacity by replenishing lithium ions from a third electrode containing lithium inside, the state of the capacity recovery electrode can be easily grasped. Therefore, it is possible to easily estimate the remaining capacity recovery amount of the battery and the surface state of the capacity recovery electrode, and it is possible to easily grasp the battery usage plan and the value of the battery.
容量回復極を有するリチウムイオン電池のセルの断面の一例を、概念的に示す図である。It is a figure which conceptually shows an example of the cross section of the cell of the lithium ion battery which has a capacity recovery electrode. 図1のセルの発電要素の断面の一例を、概念的に示す図である。It is a figure which shows an example of the cross section of the power generation element of the cell of FIG. 1 conceptually. 容量回復極を有する電池パックに接続された充放電装置の構成例を、概念的に示す図である。It is a figure which conceptually shows the configuration example of the charge / discharge device connected to the battery pack which has a capacity recovery electrode. 容量回復極を有するリチウムイオン電池における容量回復極計測電位とLi回復可能量の関係の一例を示す図である。It is a figure which shows an example of the relationship between the capacity recovery electrode measurement potential and the Li recovery amount in a lithium ion battery which has a capacity recovery electrode. リチウムイオン電池のセルにおける電池セル、正極、負極の放電量と電位との関連性の一例を示す図である。It is a figure which shows an example of the relationship between the electric potential and the discharge amount of a battery cell, a positive electrode, and a negative electrode in a cell of a lithium ion battery. 本発明の第1実施形態に係る二次電池の電池容量の回復量診断方法において、満充電状態における正極を基準として計測した容量回復極の電位計測結果の一例を示す図である。It is a figure which shows an example of the potential measurement result of the capacity recovery electrode measured with respect to the positive electrode in the fully charged state in the method of diagnosing the recovery amount of the battery capacity of the secondary battery which concerns on 1st Embodiment of this invention. 負極の電位と放電容量の関係を示す図である。It is a figure which shows the relationship between the potential of the negative electrode and the discharge capacity. dV/dQと放電容量の関係を示す図である。It is a figure which shows the relationship between dV / dQ and the discharge capacity. 本発明の第2実施形態に係る二次電池の電池容量の回復量診断方法において、負極の電位とLi回復可能量の関係を示す図である。It is a figure which shows the relationship between the potential of the negative electrode, and the Li recoverable amount in the method of diagnosing the recovery amount of the battery capacity of the secondary battery which concerns on 2nd Embodiment of this invention.
 以下、本発明を実施するための形態(以下においては「実施形態」と表記する)を、適宜、図面を参照して説明する。
 ただし、本発明の第1実施形態および第2実施形態の二次電池の電池容量の回復量診断方法を直ちに説明するのは、理解が容易ではない点もある。
 そのため、まず、<リチウムイオン電池のセルの構造>、<充放電装置>、<容量回復極計測電位とLi回復可能量の関係>を先に説明する。
 その後、本発明の第1実施形態および第2実施形態の二次電池の電池容量の回復量診断方法を説明する。
Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings as appropriate.
However, it is not easy to understand immediately the method of diagnosing the recovery amount of the battery capacity of the secondary batteries of the first embodiment and the second embodiment of the present invention.
Therefore, first, <structure of lithium ion battery cell>, <charge / discharge device>, and <relationship between capacity recovery electrode measurement potential and Li recoverable amount> will be described first.
After that, a method of diagnosing the amount of recovery of the battery capacity of the secondary batteries of the first embodiment and the second embodiment of the present invention will be described.
<リチウムイオン電池のセルの構造>
 図1および図2を参照して、リチウムイオン電池のセルの構造について説明する。
 図1は、容量回復極を有するリチウムイオン電池のセルの断面の一例を、概念的に示す図である。なお、図1は、後記する図2の紙面の左側から見た図である。
 図1において、セル(電池セル、二次電池)100は、電極占有部分1と、正極端子(タブ)2と、負極端子(タブ)3と、容量回復極端子(タブ)4と、セパレータ5と、外装材6とを備えている。
 外装材6は、ラミネートフィルム、もしくは、それに類する素材で構成されている。
 前記したように、図1は、後記する図2の紙面の左側から見た図であって、電極占有部分1とは、図2における容量回復極15、負極12、正極11に対応する部分が重なって見える領域を表記している。
<Lithium-ion battery cell structure>
The structure of the cell of the lithium ion battery will be described with reference to FIGS. 1 and 2.
FIG. 1 is a diagram conceptually showing an example of a cross section of a cell of a lithium ion battery having a capacity recovery electrode. Note that FIG. 1 is a view seen from the left side of the paper surface of FIG. 2, which will be described later.
In FIG. 1, the cell (battery cell, secondary battery) 100 includes an electrode occupying portion 1, a positive electrode terminal (tab) 2, a negative electrode terminal (tab) 3, a capacitance recovery electrode terminal (tab) 4, and a separator 5. And the exterior material 6.
The exterior material 6 is made of a laminated film or a similar material.
As described above, FIG. 1 is a view seen from the left side of the paper surface of FIG. 2, which will be described later, and the electrode occupying portion 1 is a portion corresponding to the capacitance recovery electrode 15, the negative electrode 12, and the positive electrode 11 in FIG. Areas that appear to overlap are shown.
 図2は、図1のセルの発電要素(発電機構の構成要素)の断面の一例を、概念的に示す図である。
 図2において、セルの発電要素は、正極11と負極12と容量回復極15とセパレータ5を備えている。なお、電池としての電解液は、正極11、負極12、容量回復極15、セパレータ5等の微孔に含侵されている。そのため、電解液は、図2、図1には表記されていない。
 また、図2において、発電要素は、正極11と負極12とがセパレータ5を挟んで交互に配置されている。また、容量回復極15は、電極としては最も外側に配置されている。
 なお、容量回復極15の外側にも、セパレータ5が配置されている。セパレータ5は、例えば、ポリプロピレンが用いられる。ただし、セパレータ5としてポリプロピレン以外にも、ポリエチレンなどのポリオレフィン製の微孔性フィルムや不織布などを用いることができる。
FIG. 2 is a diagram conceptually showing an example of a cross section of a power generation element (component of a power generation mechanism) of the cell of FIG.
In FIG. 2, the power generation element of the cell includes a positive electrode 11, a negative electrode 12, a capacity recovery electrode 15, and a separator 5. The electrolytic solution as a battery is impregnated into micropores such as a positive electrode 11, a negative electrode 12, a capacity recovery electrode 15, and a separator 5. Therefore, the electrolytic solution is not shown in FIGS. 2 and 1.
Further, in FIG. 2, in the power generation element, the positive electrode 11 and the negative electrode 12 are alternately arranged with the separator 5 interposed therebetween. Further, the capacitance recovery electrode 15 is arranged on the outermost side as an electrode.
A separator 5 is also arranged outside the capacitance recovery electrode 15. For the separator 5, for example, polypropylene is used. However, as the separator 5, in addition to polypropylene, a microporous film made of polyolefin such as polyethylene, a non-woven fabric, or the like can be used.
 正極11、負極12、および容量回復極15は、それぞれ、適切な金属の集電箔に、適切な電極活物質、導電剤、結着剤などの混合体を塗布して作製されたものである。
 本発明の対象とするリチウムイオン電池のセルでは、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。
The positive electrode 11, the negative electrode 12, and the capacity recovery electrode 15 are each produced by applying an appropriate mixture of an electrode active material, a conductive agent, a binder, and the like to an appropriate metal current collector foil. ..
In the cell of the lithium ion battery which is the subject of the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
《正極11、容量回復極15》
 正極11、および容量回復極15の集電箔には、厚さが10~100μmのアルミニウム箔、厚さが10~100μm、孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などのいずれかが用いられる。また、前記の材質も、アルミニウムの他に、ステンレス鋼、チタンなども適用可能である。
<< Positive electrode 11, capacity recovery electrode 15 >>
The collecting foil of the positive electrode 11 and the capacity recovery electrode 15 is an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, and a foamed metal plate. Etc. are used. Further, as the material, stainless steel, titanium and the like can be applied in addition to aluminum.
 正極11、および容量回復極15の電極活物質は、反応種を内部に含むものが望ましい。リチウムイオン電池の反応種は、リチウムイオンである。この場合、電極活物質は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有化合物を含んでいる。
 正極11、および容量回復極15の電極活物質の種類は、例えば、コバルト酸リチウム、マンガン置換コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、オリビン型リン酸鉄リチウムなどのリン酸遷移金属リチウム、LiwNixCoyMnz2(ここで、w、x、y、zは0または正の値)が挙げられる。
It is desirable that the electrode active material of the positive electrode 11 and the capacity recovery electrode 15 contains a reaction species inside. The reactive species of lithium-ion batteries is lithium-ion. In this case, the electrode active material contains a lithium-containing compound capable of reversibly inserting and removing lithium ions.
The types of electrode active materials of the positive electrode 11 and the capacity recovery electrode 15 include, for example, lithium cobalt oxide, manganese-substituted lithium cobalt oxide, lithium manganate, lithium nickel oxide, and transition metal lithium phosphate such as olivine-type lithium iron phosphate. li w Ni x Co y Mn z O 2 ( wherein, w, x, y, z is 0 or a positive value) and the like.
 また、正極11、および容量回復極15の電極活物質として、前記の材料が一種単独、または、二種以上含まれていてもよい。
 正極11と容量回復極15は、同じ構成を用いてもよい。正極11と容量回復極15とで同じ構成を用いることにより、製造コストを低減できる。
Further, as the electrode active material of the positive electrode 11 and the capacity recovery electrode 15, the above-mentioned materials may be contained alone or in combination of two or more.
The positive electrode 11 and the capacity recovery electrode 15 may use the same configuration. By using the same configuration for the positive electrode 11 and the capacity recovery electrode 15, the manufacturing cost can be reduced.
《負極12》
 負極12の集電箔には、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。
 また、材質も銅の他に、ステンレス鋼、チタンなども適用可能である。
 負極12の電極活物質は、リチウムイオンを可逆的に挿入脱離可能な物質を含んでいる。負極12の電極活物質の種類は、例えば、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレー法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、シリコン(Si)、シリコンを混合した黒鉛、難黒鉛化炭素材、チタン酸リチウムLi4Ti512などを用いることができる。
 負極活物質として前記の材料が、一種単独、または、二種以上含まれていてもよい。
<< Negative electrode 12 >>
As the current collecting foil of the negative electrode 12, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used.
In addition to copper, stainless steel, titanium, etc. can also be applied as the material.
The electrode active material of the negative electrode 12 contains a substance capable of reversibly inserting and removing lithium ions. The type of electrode active material for the negative electrode 12 is, for example, natural graphite, a composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or petroleum or coal. Artificial graphite produced by firing using the obtained pitch-based material as a raw material, silicon (Si), graphite mixed with silicon, non-graphitized carbon material, lithium titanate Li 4 Ti 5 O 12, and the like can be used.
As the negative electrode active material, the above-mentioned materials may be contained alone or in combination of two or more.
《電解液》
 発電要素(発電機構の構成要素)には、正極11、負極12、容量回復極15、セパレータ5のほかに電解液がある。正極11、負極12、容量回復極15、セパレータ5は多孔質の材質で形成され、電解液が含侵されている。そのため、図2あるいは図1には、電解液が表記されていない。
 リチウムイオン電池の場合、電解液は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)等の非プロトン性有機系溶媒などを用いることができる。
《Electrolytic solution》
The power generation element (component of the power generation mechanism) includes an electrolytic solution in addition to the positive electrode 11, the negative electrode 12, the capacity recovery electrode 15, and the separator 5. The positive electrode 11, the negative electrode 12, the capacity recovery electrode 15, and the separator 5 are made of a porous material and are impregnated with an electrolytic solution. Therefore, the electrolytic solution is not shown in FIG. 2 or FIG.
In the case of a lithium ion battery, the electrolytic solution is, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl. An aproton organic solvent such as propyl carbonate (MPC) or ethyl propyl carbonate (EPC) can be used.
 あるいは、前記の2種以上の混合有機化合物の溶媒に、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、ヨウ化リチウム、塩化リチウム、臭化リチウム、LiB[OCOCF34、LiB[OCOCF2CF34、LiPF4(CF32、LiN(SO2CF32、LiN(SO2CF2CF32等のリチウム塩を溶解した電解液が挙げられる。
 あるいは、前記の2種以上の混合リチウム塩を溶解した電解液が挙げられる。
Alternatively, in the solvent of the above two or more mixed organic compounds, lithium hexafluorophosphate, lithium tetrafluorophosphate, lithium perchlorate, lithium iodide, lithium chloride, lithium bromide, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2, etc. ..
Alternatively, an electrolytic solution in which the above-mentioned two or more kinds of mixed lithium salts are dissolved can be mentioned.
 図1に示すように、正極(11:図2)、負極(12:図2)、および容量回復極(15:図2)の集電箔には、それぞれの端子としての金属のタブ(2,3,4:図1)が接続されている。タブ部分だけがラミネートフィルムの外部に露出するように外装材6を封止する。この構造により、タブの部分から、リチウムイオン電池のセル100の外部に電気的な接続が可能となる。 As shown in FIG. 1, the current collecting foils of the positive electrode (11: FIG. 2), the negative electrode (12: FIG. 2), and the capacitance recovery electrode (15: FIG. 2) have metal tabs (2) as terminals for each. , 3, 4: (Fig. 1) is connected. The exterior material 6 is sealed so that only the tab portion is exposed to the outside of the laminated film. With this structure, it is possible to electrically connect the tab portion to the outside of the cell 100 of the lithium ion battery.
<充放電装置>
 図3は、容量回復極を有する電池パック300に接続された充放電装置350の構成例を、概念的に示す図である。なお、充放電装置350は、電池パック300の状態を把握する計測器を兼ねている。
 図3において、電池パック300は、正極端子2、および負極端子3に加え、容量回復極端子4を有している。
 充放電装置350は、電流計351(電流センサ、電流計測手段)と、電圧計352(電圧センサ、電圧計測手段)と、容量回復極用電圧計358(電圧センサ)と、抵抗353と、電源354と、制御部355と、充放電切替スイッチ356と、容量回復スイッチ357と、正負極切替スイッチ359と、を備えている。
<Charging / discharging device>
FIG. 3 is a diagram conceptually showing a configuration example of a charging / discharging device 350 connected to a battery pack 300 having a capacity recovery electrode. The charging / discharging device 350 also serves as a measuring instrument for grasping the state of the battery pack 300.
In FIG. 3, the battery pack 300 has a capacity recovery electrode terminal 4 in addition to the positive electrode terminal 2 and the negative electrode terminal 3.
The charging / discharging device 350 includes a current meter 351 (current sensor, current measuring means), a voltmeter 352 (voltage sensor, voltage measuring means), a capacity recovery pole voltmeter 358 (voltage sensor), a resistor 353, and a power supply. It includes 354, a control unit 355, a charge / discharge changeover switch 356, a capacity recovery switch 357, and a positive / negative voltage changeover switch 359.
 なお、電池パック300は、複数個のセルを含むものであってもよい。また、電池パック300は、複数個のセルを含む電池モジュールを複数個含む構成であってもよい。本明細書において、「二次電池」は、リチウムイオン電池のセル、電池モジュール、または電池パックを含む概念である。 The battery pack 300 may include a plurality of cells. Further, the battery pack 300 may be configured to include a plurality of battery modules including a plurality of cells. As used herein, the term "secondary battery" is a concept that includes a cell, a battery module, or a battery pack of a lithium ion battery.
 図3において、電池パック300の正極端子2、負極端子3、および容量回復極端子4の各端子は、それぞれ充放電装置350に接続されている。
 容量回復スイッチ357は、電池パック300の負極端子3、および容量回復極端子4のいずれかを、充放電切替スイッチ356を介して、抵抗353、および電源354のいずれかと接続するように配置されている。なお、電源354は充電用であり、抵抗353は放電用である。
 正負極切替スイッチ359は、電池パック300の正極端子2、および負極端子3のいずれかを、抵抗353もしくは電源354のいずれかと接続するように配置されている。
In FIG. 3, each terminal of the positive electrode terminal 2, the negative electrode terminal 3, and the capacity recovery electrode terminal 4 of the battery pack 300 is connected to the charging / discharging device 350, respectively.
The capacity recovery switch 357 is arranged so as to connect any of the negative electrode terminal 3 and the capacity recovery electrode terminal 4 of the battery pack 300 to either the resistor 353 and the power supply 354 via the charge / discharge changeover switch 356. There is. The power supply 354 is for charging, and the resistor 353 is for discharging.
The positive / negative electrode changeover switch 359 is arranged so as to connect either the positive electrode terminal 2 or the negative electrode terminal 3 of the battery pack 300 to either the resistor 353 or the power supply 354.
 電流計351は、電池パック300の正極端子・負極端子間、または正極端子・容量回復極端子間、または負極端子・容量回復端子間に流れる電流を測定し、結果を制御部355に出力する。
 電圧計352は、正極・負極間の電圧を測定し、結果を制御部355に出力する。
 電圧計358は、容量回復極の電圧を、正極もしくは負極を基準として測定し、結果を制御部355に出力する。
 制御部355は、電圧計352、電圧計358、電流計351の情報を基に、充放電切替スイッチ356、容量回復スイッチ357、正負極切替スイッチ359を適正に切り替え制御する。
 充放電装置350は、制御部355によって、充放電切替スイッチ356、容量回復スイッチ357、正負極切替スイッチ359を切り替えながら、計測の工程と充電の工程を実施する。
The ammeter 351 measures the current flowing between the positive electrode terminal and the negative electrode terminal of the battery pack 300, between the positive electrode terminal and the capacity recovery electrode terminal, or between the negative electrode terminal and the capacity recovery terminal, and outputs the result to the control unit 355.
The voltmeter 352 measures the voltage between the positive electrode and the negative electrode, and outputs the result to the control unit 355.
The voltmeter 358 measures the voltage of the capacitance recovery electrode with reference to the positive electrode or the negative electrode, and outputs the result to the control unit 355.
The control unit 355 appropriately switches and controls the charge / discharge changeover switch 356, the capacity recovery switch 357, and the positive / negative electrode changeover switch 359 based on the information of the voltmeter 352, the voltmeter 358, and the ammeter 351.
The charging / discharging device 350 carries out the measurement step and the charging step while switching the charge / discharge changeover switch 356, the capacity recovery switch 357, and the positive / negative electrode changeover switch 359 by the control unit 355.
 なお、図3では、実線の配線で電圧計358を正極端子・容量回復極端子間に接続していることを示している。また、破線の配線を選択することで、電圧計358は、負極端子・容量回復極端子間の電圧を測定する。あるいは、また負極端子・容量回復極端子間および正極端子・容量回復極端子間の双方に電圧計を設置してもよい。
 また、後記する本発明の実施形態において用いる充放電装置350(計測器を兼ねる)は、図3の構成に限定されるものではなく、電池パック300の正極端子と、負極端子と、容量回復極端子と、から選択される任意の2つの端子を接続できる回路構成であればよい。
Note that FIG. 3 shows that the voltmeter 358 is connected between the positive electrode terminal and the capacitance recovery electrode terminal by the solid wire wiring. Further, by selecting the wiring of the broken line, the voltmeter 358 measures the voltage between the negative electrode terminal and the capacitance recovery electrode terminal. Alternatively, voltmeters may be installed both between the negative electrode terminal and the capacitance recovery electrode terminal and between the positive electrode terminal and the capacitance recovery electrode terminal.
Further, the charging / discharging device 350 (which also serves as a measuring instrument) used in the embodiment of the present invention described later is not limited to the configuration shown in FIG. 3, and includes the positive electrode terminal, the negative electrode terminal, and the capacity recovery extreme of the battery pack 300. Any circuit configuration may be used as long as it can connect the child and any two terminals selected from.
<容量回復極計測電位とLi回復可能量の関係>
 容量回復極を有するリチウムイオン電池において、容量回復極計測電位とLi回復可能量の関係には、所定の関係がある。
 図4は、容量回復極を有するリチウムイオン電池における容量回復極計測電位とLi回復可能量の関係の一例を示す図である。なお、容量回復極計測電位とは、容量回復極の開回路の状態の電位(容量回復極の開回路電位)を計測したものである。
 また、「容量回復極計測電位とLi回復可能量の関係」は、様々な特性を有するリチウムイオン電池によっても異なる。また、容量回復極計測電位が正極に対してか、あるいは負極に対してか、によっても関係(特性)が異なる。
 図4は、容量回復極を有するリチウムイオン電池における容量回復極計測電位とLi回復可能量の関係を、一般的に説明している図である。
<Relationship between capacitance recovery electrode measurement potential and Li recoverable amount>
In a lithium ion battery having a capacity recovery electrode, there is a predetermined relationship between the capacity recovery electrode measurement potential and the Li recoverable amount.
FIG. 4 is a diagram showing an example of the relationship between the capacity recovery electrode measurement potential and the Li recoverable amount in a lithium ion battery having a capacity recovery electrode. The capacitance recovery pole measurement potential is a measurement of the potential in the open circuit state of the capacitance recovery pole (open circuit potential of the capacitance recovery pole).
Further, the "relationship between the capacity recovery electrode measurement potential and the Li recoverable amount" differs depending on the lithium ion battery having various characteristics. Further, the relationship (characteristic) differs depending on whether the capacitance recovery electrode measurement potential is with respect to the positive electrode or the negative electrode.
FIG. 4 is a diagram generally explaining the relationship between the capacity recovery electrode measurement potential and the Li recoverable amount in a lithium ion battery having a capacity recovery electrode.
 図4において、横軸は、リチウムイオン電池の容量を回復する可能量であるLi回復可能量Q(Ah)を示している。なお、Li回復可能量は、電流Aと時間hの積で規定している。また縦軸は、容量回復極の計測電位である。前記したように、図4は、一般的に特性を説明する図であるので、容量回復極の電位を計測する際の基準は、正極側の場合も、負極の場合もある。
 図4において、特性線401が、Li回復可能量Q(Ah)と容量回復極計測電位の関係を示すものである。
 図4においては、所定の容量回復極を有するリチウムイオン電池の「Li回復可能量Q(Ah)と容量回復極計測電位の関係」が把握できているものとする。
In FIG. 4, the horizontal axis represents the Li recoverable amount Q (Ah), which is the amount that can recover the capacity of the lithium ion battery. The amount of Li recoverable is defined by the product of the current A and the time h. The vertical axis is the measurement potential of the capacitance recovery electrode. As described above, since FIG. 4 is a diagram for explaining the characteristics in general, the reference for measuring the potential of the capacitance recovery electrode may be the positive electrode side or the negative electrode side.
In FIG. 4, the characteristic line 401 shows the relationship between the Li recoverable amount Q (Ah) and the capacitance recovery pole measurement potential.
In FIG. 4, it is assumed that the “relationship between the Li recoverable amount Q (Ah) and the capacity recovery pole measurement potential” of the lithium ion battery having a predetermined capacity recovery pole can be grasped.
 なお、「Li回復可能量」について説明する。容量回復極は内部にリチウムイオンを有している。回復処理を行うことによって、容量回復極から正極または負極にリチウムイオンを供給する。その過程では、容量回復極におけるリチウムイオンは減少する。
 リチウムイオンの減少した容量回復極において、「Li回復可能量」とは、容量回復極に含有するリチウムイオンの量を意味している。すなわち、正極または負極のリチウムを回復させることが可能な量である。
 また、容量回復極が、正極または負極にリチウムイオンを供給すると、容量回復極の「Li回復可能量」は減少するが、この減少にともない容量回復極の電位は変化する。
The "Li recoverable amount" will be described. The capacity recovery electrode has lithium ions inside. By performing the recovery process, lithium ions are supplied from the capacity recovery electrode to the positive electrode or the negative electrode. In the process, lithium ions at the capacity recovery electrode decrease.
In the capacity recovery electrode with reduced lithium ions, the "Li recoverable amount" means the amount of lithium ions contained in the capacity recovery electrode. That is, it is an amount capable of recovering lithium in the positive electrode or the negative electrode.
Further, when the capacity recovery electrode supplies lithium ions to the positive electrode or the negative electrode, the "Li recoverable amount" of the capacity recovery electrode decreases, but the potential of the capacity recovery electrode changes with this decrease.
 この容量回復極を有するリチウムイオン電池に対して、容量回復極の電位(容量回復極の開回路電位)を計測する。そして、測定点402の容量回復極計測電位が得られたとする。すると、事前に得られていた特性線401のLi回復可能量Q(Ah)と容量回復極計測電位の関係から、Li回復可能量Q(Ah)が把握できる。
 また、測定点403が容量回復極に関するリチウムイオンの最大蓄積量とすれば、測定点402においては、測定点402と測定点403の横軸の差異が測定点402におけるリチウムの利用可能量であって、容量回復極の「Li残量」となる。
 容量回復極を有するリチウムイオン電池を充電や放電の際には、以上の得られたデータに基づき、充電の実施計画や、放電の限界を把握できる。
The potential of the capacity recovery pole (open circuit potential of the capacity recovery pole) is measured for the lithium ion battery having the capacity recovery pole. Then, it is assumed that the capacitance recovery pole measurement potential at the measurement point 402 is obtained. Then, the Li recoverable amount Q (Ah) can be grasped from the relationship between the Li recoverable amount Q (Ah) of the characteristic line 401 obtained in advance and the capacitance recovery pole measurement potential.
If the measurement point 403 is the maximum amount of lithium ions accumulated with respect to the capacity recovery electrode, at the measurement point 402, the difference on the horizontal axis between the measurement point 402 and the measurement point 403 is the available amount of lithium at the measurement point 402. Then, it becomes the "Li remaining amount" of the capacity recovery electrode.
When charging or discharging a lithium-ion battery having a capacity recovery electrode, the charging implementation plan and the discharge limit can be grasped based on the above obtained data.
<実施形態について>
 以上、容量回復極を有するリチウムイオン電池の構造や特性、また充放電装置について説明した。
 次に、以上の説明を基にして、順に、本発明の第1実施形態および第2実施形態の二次電池の電池容量の回復量診断方法を説明する
<About the embodiment>
The structure and characteristics of the lithium-ion battery having the capacity recovery electrode and the charging / discharging device have been described above.
Next, based on the above description, a method for diagnosing the amount of recovery of the battery capacity of the secondary batteries of the first embodiment and the second embodiment of the present invention will be described in order.
≪第1実施形態:二次電池の電池容量の回復量診断方法≫
 本発明の第1実施形態に係る二次電池の電池容量の回復量診断方法について、図5と図6を参照して説明する。
 図5は、リチウムイオン電池のセルにおける電池セル、正極、負極の放電量と電圧(電位)との関連性の一例を示す図である。なお、容量回復極については、表記していない。
 図5において、特性性500は、電池セルの電圧と放電量Qの関係を示すものである。また、特性線501は、正極の電位(電圧)と放電量Qの関係を示すものである。また、特性線502は、負極の電位(電圧)と放電量Qの関係を示すものである。
 また、一点鎖線503は、放電量Qが0の状態、すなわち電池セルの満充電の状態に対応している。
 なお、図5において、縦軸は電圧もしくは電位(V)を示し、横軸は放電量(Ah)を表している。
<< First Embodiment: Method for diagnosing the amount of recovery of the battery capacity of the secondary battery >>
The method for diagnosing the amount of recovery of the battery capacity of the secondary battery according to the first embodiment of the present invention will be described with reference to FIGS. 5 and 6.
FIG. 5 is a diagram showing an example of the relationship between the discharge amount of the battery cell, the positive electrode, and the negative electrode and the voltage (potential) in the cell of the lithium ion battery. The capacity recovery pole is not shown.
In FIG. 5, the characteristic 500 shows the relationship between the voltage of the battery cell and the discharge amount Q. The characteristic line 501 shows the relationship between the potential (voltage) of the positive electrode and the discharge amount Q. The characteristic line 502 shows the relationship between the potential (voltage) of the negative electrode and the discharge amount Q.
Further, the alternate long and short dash line 503 corresponds to a state in which the discharge amount Q is 0, that is, a state in which the battery cell is fully charged.
In FIG. 5, the vertical axis represents voltage or potential (V), and the horizontal axis represents discharge amount (Ah).
 図5において、電池セル(セル)が、満充電の状態から放電をすると、特性線500に示すように、放電にともない電圧が低下する。また、正極の電位は、特性線501にしたがって低下する。また、負極の電位は、特性線502にしたがって増加する。
 以上の電池セルの放電の際に、正極の電位、および負極の電位は、共に変化しているが、負極の電位(特性線502)の変化に対して、正極の電位(特性線501)は、比較的に大きく変化していることが分かる。
In FIG. 5, when the battery cell (cell) is discharged from a fully charged state, the voltage decreases with the discharge, as shown in the characteristic line 500. Further, the potential of the positive electrode decreases according to the characteristic line 501. Further, the potential of the negative electrode increases according to the characteristic line 502.
When the battery cells are discharged as described above, both the positive electrode potential and the negative electrode potential change, but the positive electrode potential (characteristic line 501) changes with respect to the change in the negative electrode potential (characteristic line 502). , It can be seen that the change is relatively large.
 本発明の第1実施形態の二次電池の電池容量の回復量診断方法は、正極の電位を基準(正極を参照極)として、容量回復極の電位を計測する方法である。
 そのため、正極の電位を基準とする場合には、容量回復極による二次電池の電池容量の回復量を、精度よく安定して計測する工夫が重要になる。
 そこで正極を基準に用いる場合は、満充電状態(所定の状態)における正極を基準とする。満充電状態における測定(計測)と規定すれば、測定の安定度が相対的に向上する。
 なお、正極の満充電状態とは、図5における特性点504に対応する。
The method for diagnosing the amount of recovery of the battery capacity of the secondary battery according to the first embodiment of the present invention is a method of measuring the potential of the capacity recovery electrode with the potential of the positive electrode as a reference (referring to the positive electrode).
Therefore, when the potential of the positive electrode is used as a reference, it is important to devise a method for accurately and stably measuring the amount of recovery of the battery capacity of the secondary battery by the capacity recovery electrode.
Therefore, when the positive electrode is used as a reference, the positive electrode in a fully charged state (predetermined state) is used as a reference. If it is defined as measurement (measurement) in a fully charged state, the stability of measurement is relatively improved.
The fully charged state of the positive electrode corresponds to the characteristic point 504 in FIG.
 図6は、本発明の第1実施形態に係る二次電池の電池容量の回復量診断方法において、満充電状態における正極を基準として計測した容量回復極の電位計測結果の一例を示す図である。
 図6において、縦軸は正極を基準として計測した容量回復極の電位(V)、すなわち、容量回復極の開回路電位であり、横軸は容量回復極のLi回復可能量Q(Ah)である。
 第1実施形態の二次電池の電池容量の回復量診断方法においては、正極と容量回復極は同じ材料を用いている。そのため図6においては、回復処理を行う前の容量回復極の電位は、0(V)となっている。
FIG. 6 is a diagram showing an example of the potential measurement result of the capacity recovery electrode measured with reference to the positive electrode in the fully charged state in the method for diagnosing the recovery amount of the battery capacity of the secondary battery according to the first embodiment of the present invention. ..
In FIG. 6, the vertical axis represents the potential (V) of the capacitance recovery electrode measured with reference to the positive electrode, that is, the open circuit potential of the capacitance recovery electrode, and the horizontal axis represents the Li recoverable amount Q (Ah) of the capacitance recovery electrode. be.
In the method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the first embodiment, the same material is used for the positive electrode and the capacity recovery electrode. Therefore, in FIG. 6, the potential of the capacitance recovery electrode before the recovery process is 0 (V).
 まず、容量回復極の電位が0(V)の状態から容量回復極によって、所定の範囲で回復処理を行う。
 そして、図5に示したように、正極と負極とで電池セル(二次電池)を満充電する。この満充電された状態で容量回復極の電位を計測する。
 この計測後、再度、容量回復極によって、所定の範囲で回復処理を行う。そして前記のように、正極と負極とで電池セル(二次電池)を満充電して、この満充電された状態で容量回復極の電位を計測する。
 このように、回復処理を行うごとに、満充電して容量回復極の電位を計測していく。
 この回復処理と、満充電して容量回復極の電位を計測することを繰り返す。
First, the recovery process is performed within a predetermined range by the capacitance recovery electrode from the state where the potential of the capacitance recovery electrode is 0 (V).
Then, as shown in FIG. 5, the battery cell (secondary battery) is fully charged by the positive electrode and the negative electrode. The potential of the capacity recovery electrode is measured in this fully charged state.
After this measurement, the recovery process is performed again within a predetermined range by the capacity recovery electrode. Then, as described above, the battery cell (secondary battery) is fully charged by the positive electrode and the negative electrode, and the potential of the capacity recovery electrode is measured in this fully charged state.
In this way, each time the recovery process is performed, the battery is fully charged and the potential of the capacity recovery electrode is measured.
This recovery process and the potential of the capacity recovery electrode after being fully charged are repeated.
 このように、正極を満充電したデータを基に、正極の電位の低下すなわち劣化が計測できる。また、この正極の電位の低下は、容量回復極の状況に応じて変化する。すなわち、この劣化分の計測から、容量回復極におけるLi回復可能量が算出できる。
 なお、計測を繰り返すポイントは、図6の複数のポイントで示す計測点601である。
 図6に示すように、満充電状態の容量回復極の電位と、容量回復極におけるLi回復可能量の関係の連続的な計測結果が得ることができる。
 容量回復極の電位を計測し、図6で得られたデータに基づいて、二つのデータを対比、参照することによって、Li回復可能量(容量回復可能量)を把握して、充電の実施計画や、放電の限界を把握できる。
In this way, the decrease in the potential of the positive electrode, that is, the deterioration can be measured based on the data when the positive electrode is fully charged. Further, the decrease in the potential of the positive electrode changes depending on the condition of the capacity recovery electrode. That is, the amount of Li recoverable at the capacity recovery electrode can be calculated from the measurement of this deterioration.
The point at which the measurement is repeated is the measurement point 601 shown by the plurality of points in FIG.
As shown in FIG. 6, it is possible to obtain a continuous measurement result of the relationship between the potential of the capacity recovery electrode in the fully charged state and the Li recoverable amount at the capacity recovery electrode.
By measuring the potential of the capacity recovery electrode and comparing and referring to the two data based on the data obtained in FIG. 6, the Li recoverable amount (capacity recoverable amount) can be grasped and the charging implementation plan can be performed. And you can grasp the limit of discharge.
<第1実施形態の総括>
 第1実施形態の二次電池の電池容量の回復量診断方法は、正極の電位を基準として、容量回復極の電位を計測する方法である。ただし、図5に示すように、正極の電位は変化が大きい。そのため、正極の電位を基準とする場合には、容量回復極による二次電池の電池容量の回復量を精度よく安定して計測する工夫が重要になる。
 そこで正極を基準に用いる場合は、満充電状態における正極を基準とする。満充電状態における測定(計測)と規定すれば、測定の安定度が相対的に向上する。
 そして、容量回復極の電位を常に計測し、Li回復可能量(容量回復可能量)を把握する。
<Summary of the first embodiment>
The method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the first embodiment is a method of measuring the potential of the capacity recovery electrode with reference to the potential of the positive electrode. However, as shown in FIG. 5, the potential of the positive electrode changes greatly. Therefore, when the potential of the positive electrode is used as a reference, it is important to devise a method for accurately and stably measuring the amount of recovery of the battery capacity of the secondary battery by the capacity recovery electrode.
Therefore, when the positive electrode is used as a reference, the positive electrode in a fully charged state is used as a reference. If it is defined as measurement (measurement) in a fully charged state, the stability of measurement is relatively improved.
Then, the potential of the capacity recovery electrode is constantly measured, and the Li recoverable amount (capacity recoverable amount) is grasped.
<第1実施形態の効果>
 容量回復極の電位とLi回復可能量の関係が得られたデータに基づき、容量回復極の電位を計測することによって、残容量に基づいたリチウムイオン電池の正確な運用計画の立案や二次利用などにおけるリチウムイオン電池の正確な価値の把握が簡便に実現できる。
<Effect of the first embodiment>
By measuring the potential of the capacity recovery electrode based on the data obtained from the relationship between the potential of the capacity recovery electrode and the amount of Li recoverable, an accurate operation plan for the lithium-ion battery based on the remaining capacity and secondary use It is possible to easily grasp the accurate value of the lithium-ion battery in such cases.
≪第2実施形態:二次電池の電池容量の回復量診断方法≫
 本発明の第2実施形態に係る二次電池の電池容量の回復量診断方法について、図7Aと図7B、および図8を参照して説明する。
 本発明の第2実施形態の二次電池の電池容量の回復量診断方法は、負極の電位を基準(負極を参照極)として、容量回復極の電位を計測する方法である。
<< Second Embodiment: Method for diagnosing the amount of recovery of the battery capacity of the secondary battery >>
The method for diagnosing the amount of recovery of the battery capacity of the secondary battery according to the second embodiment of the present invention will be described with reference to FIGS. 7A, 7B, and 8.
The method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the second embodiment of the present invention is a method of measuring the potential of the capacity recovery electrode with the potential of the negative electrode as a reference (referring to the negative electrode).
 図7Aは、負極の電位Vと負極の放電容量(充放電容量)Qの関係を示す図である。
 図7Bは、dV/dQ(負極の電位変化/放電電荷変化)と負極の放電容量(充放電容量)Qの関係を示す図である。
 図8は、本発明の第2実施形態に係る二次電池の電池容量の回復量診断方法において、負極の電位VとLi回復可能量Q(Ah)の関係を示す図である。
FIG. 7A is a diagram showing the relationship between the potential V of the negative electrode and the discharge capacity (charge / discharge capacity) Q of the negative electrode.
FIG. 7B is a diagram showing the relationship between dV / dQ (potential change / discharge charge change of the negative electrode) and the discharge capacity (charge / discharge capacity) Q of the negative electrode.
FIG. 8 is a diagram showing the relationship between the potential V of the negative electrode and the Li recoverable amount Q (Ah) in the method for diagnosing the recovery amount of the battery capacity of the secondary battery according to the second embodiment of the present invention.
 図7Aは、前記したように、負極の電位Vと負極の放電容量(充放電容量)Qの関係を示す図である。
 図7Aにおいて、縦軸は、負極の電位V(開回路電位、OCP:Open Circuit Potential)であり、横軸は、負極の放電容量(充放電容量)Qである。なお、この放電容量は、負極の単位重量(g)当たりの電流Ahで規格化された値で表記している。また、放電容量の小さい領域が高SOC(State Of Charge)の範囲であり、放電容量(充放電容量)の大きい領域が低SOCの範囲である。
 図7Aにおいて、特性線701で示されているように、負極の電位は、充電状況に対して平坦な部分が多い。そのため、放電途中でも基準とすることが可能となる。
 負極の電位は負極材料である黒鉛層間のリチウムの配置によって変化することが知られている。
FIG. 7A is a diagram showing the relationship between the potential V of the negative electrode and the discharge capacity (charge / discharge capacity) Q of the negative electrode as described above.
In FIG. 7A, the vertical axis represents the potential V (open circuit potential, OCP: Open Circuit Potential) of the negative electrode, and the horizontal axis represents the discharge capacity (charge / discharge capacity) Q of the negative electrode. In addition, this discharge capacity is expressed by the value standardized by the current Ah per unit weight (g) of a negative electrode. Further, the region where the discharge capacity is small is the range of high SOC (State Of Charge), and the region where the discharge capacity (charge / discharge capacity) is large is the range of low SOC.
In FIG. 7A, as shown by the characteristic line 701, the potential of the negative electrode has many flat portions with respect to the charging state. Therefore, it can be used as a reference even during discharge.
It is known that the potential of the negative electrode changes depending on the arrangement of lithium between graphite layers, which is the negative electrode material.
 図7Aに示した高SOC側の平坦電位領域をステージ1、中間SOCの平坦電位領域をステージ2と呼ぶことにする。ステージ2より低SOC側でも平坦な電位領域は存在するが、平坦な領域が狭く、放電状態によって電位が大きく変動するため、参照極(基準電位)としては不向きである。
 よって、図7Aに示すステージ1、もしくはステージ2の領域(所定の状態)を容量回復極の基準とすることが好ましい。
The flat potential region on the high SOC side shown in FIG. 7A is referred to as stage 1, and the flat potential region on the intermediate SOC side is referred to as stage 2. Although a flat potential region exists even on the SOC side lower than the stage 2, the flat region is narrow and the potential fluctuates greatly depending on the discharge state, so that it is not suitable as a reference electrode (reference potential).
Therefore, it is preferable to use the stage 1 or stage 2 region (predetermined state) shown in FIG. 7A as a reference for the capacitance recovery electrode.
 ステージ1は、LiC6と呼ばれる黒鉛層間にすべてにリチウムの詰まった状態と1枚置きにリチウムの詰まった状態の二相共存状態である。そのため、この共存が維持される限り負極の電位は平坦である。
 また、ステージ2は、黒鉛層間におけるリチウムの量が減少していき、1枚置きにリチウムが詰まった状態と、1枚おきに詰まった状態の長距離秩序が崩れ始めた状態の二相共存状態である。
 これらの相変化は、負極の電位Vを放電容量Qで微分したdV/dQのデータによって、dV/dQのピークとして計測できる。
Stage 1 is a two-phase coexistence state called LiC 6 in which all the graphite layers are filled with lithium and every other layer is filled with lithium. Therefore, the potential of the negative electrode is flat as long as this coexistence is maintained.
Further, in stage 2, the amount of lithium between the graphite layers decreases, and the two-phase coexistence state in which the lithium is clogged every other sheet and the long-range order in the state where the lithium is clogged every other sheet begins to collapse. Is.
These phase changes can be measured as the peak of dV / dQ by the data of dV / dQ obtained by differentiating the potential V of the negative electrode with the discharge capacity Q.
 図7Bは、前記したように、dV/dQ(負極の電位変化/放電電荷変化)と放電容量の関係を示す図である。そして、前記のdV/dQのピークを検出するために、放電容量とdV/dQの関係を示す図である。
 図7Bにおいて、縦軸は、dV/dQであり、横軸は、放電容量である。なお、この放電容量は、負極の単位重量当たりの電流で規格化された値で表記している。
 図7Bにおける特性線702は、dV/dQと放電容量との関係を示している。
 特性線702は、ステージ1の領域とステージ2の領域では、比較的に平坦な特性を示している。ただし、ステージ1の領域とステージ2の領域の間において、特性線702が突出しているピーク703が存在する。
 なお、図7Bにおけるステージ1とステージ2は、図7Aにおけるステージ1とステージ2に対応している。
FIG. 7B is a diagram showing the relationship between dV / dQ (change in potential of the negative electrode / change in discharge charge) and discharge capacity as described above. Then, in order to detect the peak of the dV / dQ, it is a figure which shows the relationship between the discharge capacity and dV / dQ.
In FIG. 7B, the vertical axis is dV / dQ and the horizontal axis is the discharge capacity. In addition, this discharge capacity is expressed by the value standardized by the current per unit weight of a negative electrode.
The characteristic line 702 in FIG. 7B shows the relationship between dV / dQ and the discharge capacity.
The characteristic line 702 shows relatively flat characteristics in the region of stage 1 and the region of stage 2. However, there is a peak 703 in which the characteristic line 702 protrudes between the region of stage 1 and the region of stage 2.
The stages 1 and 2 in FIG. 7B correspond to the stages 1 and 2 in FIG. 7A.
 図7Aにおいては、ステージ1の領域とステージ2の領域を特性線701によって、簡単に判別できないことがある。しかしながら、図7Bにおいては、特性線702のピーク703は、比較的、容易に検出できる。
 そのため、まず図7Bに示すdV/dQの計測を実施して、ピーク703を検出し、ピークの立ち上がり前後をステージ1の領域、もしくは、ステージ2の領域として規定することができる。
 図7Bに示した計測によって、ステージ1の領域、もしくは、ステージ2の領域を明確に把握できたので、図7Aに示した計測によって、負極の電位の特性が平坦であるステージ1の領域、もしくはステージ2の領域で負極の電位を計測する。
In FIG. 7A, the region of stage 1 and the region of stage 2 may not be easily discriminated by the characteristic line 701. However, in FIG. 7B, the peak 703 of the characteristic line 702 can be detected relatively easily.
Therefore, the dV / dQ shown in FIG. 7B can be measured first to detect the peak 703, and the area before and after the rise of the peak can be defined as the stage 1 region or the stage 2 region.
Since the region of stage 1 or the region of stage 2 could be clearly grasped by the measurement shown in FIG. 7B, the region of stage 1 or the region of stage 1 in which the characteristics of the potential of the negative electrode are flat by the measurement shown in FIG. 7A, or The potential of the negative electrode is measured in the region of stage 2.
 リチウムイオン電池は、充放電の繰り返しに伴い、負極表面にリチウムイオン電池が固定化されることで容量が減少する。そして、この容量減少の過程において、負極の電位(開回路電位、OCP)は変化する。
 そのため、負極を用いた容量回復極の電位計測に当たっては、定期的にdV/dQを計測し、常に負極のステージ1とステージ2の領域と充放電容量の関連性を確認することが好ましい。
The capacity of the lithium-ion battery decreases as the lithium-ion battery is immobilized on the surface of the negative electrode as charging and discharging are repeated. Then, in the process of this capacity reduction, the potential of the negative electrode (open circuit potential, OCP) changes.
Therefore, when measuring the potential of the capacitance recovery electrode using the negative electrode, it is preferable to periodically measure dV / dQ and always confirm the relationship between the stage 1 and stage 2 regions of the negative electrode and the charge / discharge capacity.
 図8は、前記したように、容量回復極の電位とLi回復可能量Q(Ah)の関係を示す図である。より詳しくは、負極のステージ1の電位を基準として計測した容量回復極の電位計測結果の一例を示す図である。
 前記したように、本発明の第2実施形態の二次電池の電池容量の回復量診断方法は、負極の電位を基準として、容量回復極の電位を計測する方法である。
 なお、第2実施形態では、第1実施形態と同様に正極と容量回復極は、同じ材料を用いている。
As described above, FIG. 8 is a diagram showing the relationship between the potential of the capacitance recovery electrode and the Li recoverable amount Q (Ah). More specifically, it is a figure which shows an example of the potential measurement result of the capacitance recovery electrode measured with respect to the potential of the stage 1 of the negative electrode.
As described above, the method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the second embodiment of the present invention is a method of measuring the potential of the capacity recovery electrode with reference to the potential of the negative electrode.
In the second embodiment, the same material is used for the positive electrode and the capacity recovery electrode as in the first embodiment.
《ステージ1の計測手順》
 電池セル(二次電池)は、充放電の繰り返しによって容量が減少し、負極の電位(開回路電位、OCP)は変化していることがあるが、容量回復処理によって常に負極のステージ1の電位が同様の位置(ステージ1)にあることをdV/dQの計測で確認する。
 その後、容量回復極の電位計測を行う。
 そして、再度、容量回復処理を行い、さらに、常に負極のステージ1の電位が同様の位置(ステージ1)にあることをdV/dQの計測で確認する。
 その後、容量回復極の電位計測を行う。
 以上の計測を繰り返し実施する。
 以上の測定の結果、図8に示すように、第1実施形態で得られた図6と同じように、容量回復極の電位が連続的に変化する結果を得ることができた。
 なお、図6における容量回復極の電位計測の基準は正極であるのに対し、図8における容量回復極の電位計測の基準は負極であるという相違はある。
<< Stage 1 measurement procedure >>
The capacity of the battery cell (secondary battery) decreases due to repeated charging and discharging, and the potential of the negative electrode (open circuit potential, OCP) may change, but the potential of stage 1 of the negative electrode is always maintained by the capacity recovery process. Is in the same position (stage 1) by measuring dV / dQ.
After that, the potential of the capacitance recovery electrode is measured.
Then, the capacitance recovery process is performed again, and further, it is confirmed by dV / dQ measurement that the potential of the negative electrode stage 1 is always at the same position (stage 1).
After that, the potential of the capacitance recovery electrode is measured.
The above measurement is repeated.
As a result of the above measurement, as shown in FIG. 8, it was possible to obtain the result that the potential of the capacitance recovery electrode continuously changes as in FIG. 6 obtained in the first embodiment.
There is a difference that the reference for measuring the potential of the capacitance recovery electrode in FIG. 6 is the positive electrode, whereas the reference for measuring the potential of the capacitance recovery electrode in FIG. 8 is the negative electrode.
《ステージ2の計測手順》
 前記のように、ステージ1において、一連の電位計測を行ったが、計測はステージ1に限定されない。
 図7Bに示すように、負極の電位の特性が平坦であるステージ2の領域でも同様の手順の計測が可能である。
 すなわち、ステージ2においても、負極のステージ2の電位が同様の位置(ステージ2)にあることをdV/dQの計測で確認する。その後、容量回復極の電位計測を行う。そして、再度、容量回復処理を行い、さらに、常に負極のステージ2の電位が同様の位置(ステージ2)にあることをdV/dQの計測で確認する。
 その後、容量回復極の電位計測を行う。以上の計測を繰り返し実施する。容量回復極の電位計測を行った結果、ステージ1と同じく容量回復極の電位が連続的に変化する結果を得ることができる。
 なお、ステージ2における図8に相当する計測データの記載は省略する。
 また、ステージ2の計測において、さらなるステージ1と重複する説明は省略する。
<< Stage 2 measurement procedure >>
As described above, a series of potential measurements were performed in the stage 1, but the measurement is not limited to the stage 1.
As shown in FIG. 7B, the same procedure can be measured even in the stage 2 region where the potential characteristics of the negative electrode are flat.
That is, also in stage 2, it is confirmed by dV / dQ measurement that the potential of stage 2 of the negative electrode is at the same position (stage 2). After that, the potential of the capacitance recovery electrode is measured. Then, the capacitance recovery process is performed again, and further, it is confirmed by dV / dQ measurement that the potential of the negative electrode stage 2 is always at the same position (stage 2).
After that, the potential of the capacitance recovery electrode is measured. The above measurement is repeated. As a result of measuring the potential of the capacitance recovery electrode, it is possible to obtain the result that the potential of the capacitance recovery electrode changes continuously as in stage 1.
The description of the measurement data corresponding to FIG. 8 in stage 2 is omitted.
Further, in the measurement of the stage 2, the description overlapping with the stage 1 will be omitted.
<第2実施形態の総括>
 第2実施形態の二次電池の電池容量の回復量診断方法は、負極の電位を基準として、容量回復極の電位を計測する方法である。
 図7Bに示すように、dV/dQ(負極の電位変化/放電電荷変化)と放電容量の関係を測定し、dV/dQのピーク703を検出して、ステージ1とステージ2の領域を把握する。
 そして、図7Aに示すステージ1、または、ステージ2の領域を容量回復極の基準として、容量回復極の電位を計測して、図8に示す、容量回復極の電位とLi回復可能量Q(Ah)の関係を得る。
 そして、容量回復極の電位を常に計測し、図8で得られたデータに基づいて、二つのデータを対比、参照する。この手法によって、Li回復可能量(容量回復可能量)を把握して、充電の実施計画や、放電の限界を把握できる。
<Summary of the second embodiment>
The method for diagnosing the amount of recovery of the battery capacity of the secondary battery of the second embodiment is a method of measuring the potential of the capacity recovery electrode with reference to the potential of the negative electrode.
As shown in FIG. 7B, the relationship between dV / dQ (potential change / discharge charge change of the negative electrode) and discharge capacity is measured, the peak 703 of dV / dQ is detected, and the regions of stage 1 and stage 2 are grasped. ..
Then, using the stage 1 or stage 2 region shown in FIG. 7A as a reference for the capacitance recovery electrode, the potential of the capacitance recovery electrode is measured, and the potential of the capacitance recovery electrode and the Li recoverable amount Q (shown in FIG. 8). Ah) relationship is obtained.
Then, the potential of the capacitance recovery electrode is constantly measured, and the two data are compared and referred to based on the data obtained in FIG. By this method, the Li recoverable amount (capacity recoverable amount) can be grasped, and the charging implementation plan and the discharge limit can be grasped.
<第2実施形態の効果>
 以上より、本発明により容量回復極の電位を常に把握することで、容量回復可能量(Li回復可能量)を理解することが可能となり、残容量に基づいたリチウムイオン電池の正確な運用計画の立案や二次利用などにおけるリチウムイオン電池の正確な価値の把握が簡便に実現できる。
<Effect of the second embodiment>
From the above, according to the present invention, it is possible to understand the capacity recoverable amount (Li recoverable amount) by constantly grasping the potential of the capacity recovery electrode, and it is possible to accurately operate the lithium ion battery based on the remaining capacity. Accurate grasp of the value of lithium-ion batteries in planning and secondary use can be easily realized.
≪その他の実施形態≫
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を追加・削除・置換をすることも可能である。
 以下に、その他の実施形態や変形例について、さらに説明する。
<< Other Embodiments >>
The present invention is not limited to the embodiments described above, and further includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with a part of the configuration of another embodiment, and further, add a part or all of the configuration of another embodiment to the configuration of one embodiment. It is also possible to delete / replace.
Hereinafter, other embodiments and modifications will be further described.
《容量回復極の材料》
 第1実施形態、および第2実施形態では、正極と容量回復極は同じ材料を用いることで説明した。このため回復処理を行う前の容量回復極の電位は0Vとなっている。
 しかし、正極と容量回復極は、同じ材料を用いることに限定されない。正極と容量回復極とで異なる同じ材料を用いる場合に、図6に示した特性線は、移動することがあるが、容量回復極の電位(正極の電位基準)とLi回復可能量との関係が得られることに変わりはなく、その特性から電池の状態と充電による回復計画が立てられる。
《Material for capacity recovery pole》
In the first embodiment and the second embodiment, the same material is used for the positive electrode and the capacity recovery electrode. Therefore, the potential of the capacitance recovery electrode before the recovery process is 0 V.
However, the positive electrode and the capacity recovery electrode are not limited to using the same material. When the same material different for the positive electrode and the capacity recovery electrode is used, the characteristic line shown in FIG. 6 may move, but the relationship between the potential of the capacity recovery electrode (potential reference of the positive electrode) and the Li recoverable amount. Is still obtained, and from its characteristics, a recovery plan can be made by the state of the battery and charging.
《正極の満充電状態》
 第1実施形態においては、正極の電位を基準とする場合には、満充電状態における正極を基準にすると説明した。しかし、厳密に満充電状態であることに拘束されない。満充電状態に近い状態であれば、計測の所望の精度が確保される場合もある。また、計測が短時間で実施できる場合もある。
<< Fully charged state of positive electrode >>
In the first embodiment, it has been described that when the potential of the positive electrode is used as a reference, the positive electrode in a fully charged state is used as a reference. However, it is not strictly restricted to being fully charged. If the state is close to a fully charged state, the desired accuracy of measurement may be ensured. In some cases, the measurement can be performed in a short time.
《他の二次電池》
 第1実施形態と第2実施形態の説明においては、リチウムイオン電池(二次電池)を対象として説明した。しかし、リチウムイオン電池ではなくとも、正極、負極、容量回復極を有して、図6等で説明した特性に類似する他の金属の二次電池が開発された場合には、第1実施形態あるいは第2実施形態における二次電池セルの電池容量の回復量診断方法を準用できる。
<< Other secondary batteries >>
In the description of the first embodiment and the second embodiment, a lithium ion battery (secondary battery) has been described as a target. However, if a secondary battery of another metal having a positive electrode, a negative electrode, and a capacity recovery electrode and having characteristics similar to those described in FIG. 6 and the like is developed, even if it is not a lithium ion battery, the first embodiment Alternatively, the method for diagnosing the amount of recovery of the battery capacity of the secondary battery cell in the second embodiment can be applied mutatis mutandis.
<その他の補足> <Other supplements>
《固体電解質》
 図1および図2において、リチウムイオン電池(二次電池)の電解液は、液体であるとして説明した。ただし、本発明の第1実施形態および第2実施形態の二次電池の電池容量の回復量診断方法が対象とするリチウムイオン電池(二次電池)の電解液は、液体に限定されない。すなわち、電解液の代わりに固体電解質を用いてもよい。
 固体電解質は、例えば、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーがあげられる。
 なお、これらの固体高分子電解質を用いた場合、図1と図2に示したセパレータ5を省略できる。
《Solid electrolyte》
In FIGS. 1 and 2, the electrolytic solution of the lithium ion battery (secondary battery) has been described as being a liquid. However, the electrolytic solution of the lithium ion battery (secondary battery) targeted by the method for diagnosing the amount of recovery of the battery capacity of the secondary batteries of the first embodiment and the second embodiment of the present invention is not limited to a liquid. That is, a solid electrolyte may be used instead of the electrolytic solution.
Examples of the solid electrolyte include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, polyhexafluoropropylene, and polyethylene oxide.
When these solid polymer electrolytes are used, the separator 5 shown in FIGS. 1 and 2 can be omitted.
 1  電極占有部分
 11  正極
 12  負極
 15  容量回復極
 100  セル(電池セル、二次電池セル、二次電池)
 2  正極端子(タブ)
 3  負極端子(タブ)
 300  電池パック
 350  充放電装置
 351  電流計
 352,358  電圧計
 353  抵抗
 354  電源
 355  制御部
 356  充放電切替スイッチ(スイッチ)
 357  容量回復スイッチ(スイッチ)
 359  正負極切替スイッチ(スイッチ)
 4  容量回復極端子(タブ)
 5  セパレータ
 6  外装材
1 Electrode occupied part 11 Positive electrode 12 Negative electrode 15 Capacity recovery electrode 100 cells (battery cell, secondary battery cell, secondary battery)
2 Positive electrode terminal (tab)
3 Negative electrode terminal (tab)
300 Battery pack 350 Charge / discharge device 351 Ammeter 352,358 Voltmeter 353 Resistance 354 Power supply 355 Control unit 356 Charge / discharge changeover switch (switch)
357 Capacity recovery switch (switch)
359 Positive / negative electrode changeover switch (switch)
4 Capacity recovery pole terminal (tab)
5 Separator 6 Exterior material

Claims (4)

  1.  正極、負極、容量回復極を備える二次電池セルの電池容量の回復量診断方法であって、
     前記二次電池セルの電極電位が前記正極、もしくは前記負極を参照極として、前記容量回復極の開回路電位を計測する、
    ことを特徴とする電池容量の回復量診断方法。
    A method for diagnosing the amount of recovery of battery capacity of a secondary battery cell having a positive electrode, a negative electrode, and a capacity recovery electrode.
    The open circuit potential of the capacity recovery electrode is measured with the electrode potential of the secondary battery cell as the positive electrode or the negative electrode as a reference electrode.
    A method for diagnosing the amount of recovery of battery capacity.
  2.  請求項1において、
     前記正極を参照極として前記容量回復極の開回路電位を計測する工程において、前記容量回復極の開回路電位を計測する前に、前記二次電池セルを満充電にする工程を含む、
    ことを特徴とする電池容量の回復量診断方法。
    In claim 1,
    The step of measuring the open circuit potential of the capacitance recovery electrode with the positive electrode as a reference electrode includes a step of fully charging the secondary battery cell before measuring the open circuit potential of the capacitance recovery electrode.
    A method for diagnosing the amount of recovery of battery capacity.
  3.  請求項1において、
     前記負極を参照極として前記容量回復極の開回路電位を計測する工程において、前記容量回復極の開回路電位を計測する前に、前記二次電池セルの放電過程から負極の電位をV、放電容量をQとしてdV/dQを計測し、前記負極の二相共存領域にあることを確認する工程を含む、
    ことを特徴とする電池容量の回復量診断方法。
    In claim 1,
    In the step of measuring the open circuit potential of the capacitance recovery electrode with the negative electrode as a reference electrode, the potential of the negative electrode is discharged by V from the discharge process of the secondary battery cell before measuring the open circuit potential of the capacitance recovery electrode. Including a step of measuring dV / dQ with the capacitance as Q and confirming that it is in the two-phase coexistence region of the negative electrode.
    A method for diagnosing the amount of recovery of battery capacity.
  4.  請求項1において、
     前記容量回復極の開回路電位を計測する工程において、前記容量回復極の開回路電位を計測するための電圧計測手段を備える、
    ことを特徴とする電池容量の回復量診断方法。
    In claim 1,
    In the step of measuring the open circuit potential of the capacitance recovery electrode, a voltage measuring means for measuring the open circuit potential of the capacitance recovery electrode is provided.
    A method for diagnosing the amount of recovery of battery capacity.
PCT/JP2020/045371 2020-03-16 2020-12-07 Battery capacity recovery quantity diagnosis method WO2021186804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020044906A JP2021150008A (en) 2020-03-16 2020-03-16 Diagnostic method of battery capacity recovery amount
JP2020-044906 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186804A1 true WO2021186804A1 (en) 2021-09-23

Family

ID=77768292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045371 WO2021186804A1 (en) 2020-03-16 2020-12-07 Battery capacity recovery quantity diagnosis method

Country Status (2)

Country Link
JP (1) JP2021150008A (en)
WO (1) WO2021186804A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166853A1 (en) * 2022-03-03 2023-09-07 株式会社日立製作所 Battery capacity restoring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
JP2016051570A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Lithium ion battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
JP2016051570A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Lithium ion battery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166853A1 (en) * 2022-03-03 2023-09-07 株式会社日立製作所 Battery capacity restoring system

Also Published As

Publication number Publication date
JP2021150008A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
KR101337153B1 (en) Device for detecting abnormality of state of charge in a lithium secondary battery and method for testing the same
KR101951067B1 (en) Secondary battery control device and soc detection method
EP3056917B1 (en) Apparatus for estimating state of secondary battery including blended positive electrode material and method thereof
US9379418B2 (en) Battery with reference electrode for voltage monitoring
EP3071983B1 (en) Voltage monitoring for health monitoring of batteries with reference electrodes
JP6072268B2 (en) Secondary battery state determination method, secondary battery state determination device, secondary battery system, and charge / discharge control device having state determination device
JP6021087B2 (en) System for secondary battery including mixed positive electrode material, management apparatus and method for secondary battery including mixed positive electrode material
KR101454828B1 (en) Apparatus for estimating voltage of secondary battery including blended cathode material and Method thereof
US8586222B2 (en) Lithium-ion cell with an array of reference electrodes
JP5904039B2 (en) Secondary battery control device
JP2016119249A (en) Lithium ion secondary battery system
AU2005213420A1 (en) Lithium secondary cell with high charge and discharge rate capability
US20150188327A1 (en) Charging control method for secondary cell and charging control device for secondary cell
WO2016178147A1 (en) Lithium battery assembly capable of providing high discharge pulse within wide temperature range, and forming method
WO2021186804A1 (en) Battery capacity recovery quantity diagnosis method
WO2021186781A1 (en) Capacity recovery device, capacity recovery method, and secondary battery system
WO2015075785A1 (en) Lithium-ion secondary battery system and method for diagnosing deterioration of lithium-ion secondary battery
WO2021186777A1 (en) Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
JP2004311308A (en) Secondary battery comprising unit cell battery for detecting capacity, battery pack and battery pack unit, and electric vehicle mounting battery pack and battery pack unit
JP2000195558A (en) Charging/discharging control device for nonaqueous electrolyte secondary battery
WO2022034717A1 (en) Capacity restoration device and program
WO2022176527A1 (en) Capacity restoration device of secondary battery, capacity restoration method of secondary battery, and secondary battery system
WO2023032544A1 (en) Secondary battery control device, secondary battery system, and secondary battery capacity recovery method
WO2023157506A1 (en) Secondary battery control device and secondary battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925222

Country of ref document: EP

Kind code of ref document: A1