WO2021185299A1 - 显示设备 - Google Patents
显示设备 Download PDFInfo
- Publication number
- WO2021185299A1 WO2021185299A1 PCT/CN2021/081407 CN2021081407W WO2021185299A1 WO 2021185299 A1 WO2021185299 A1 WO 2021185299A1 CN 2021081407 W CN2021081407 W CN 2021081407W WO 2021185299 A1 WO2021185299 A1 WO 2021185299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microstructure
- display device
- axis
- microstructure unit
- diffused
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims description 13
- 238000009792 diffusion process Methods 0.000 abstract description 17
- 238000009434 installation Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000003292 glue Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 7
- 239000004926 polymethyl methacrylate Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000005323 electroforming Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0215—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0231—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0257—Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
Definitions
- This application relates to the field of optical devices, and more specifically, to a display device.
- the display device In many fields, text information and image information are presented through display devices. According to the use requirements, such as display mode, installation space and other different requirements, the display device also includes many different structural forms.
- the diffuser is a widely used optical element, such as the screens of liquid crystal displays, LED lighting, head-up display systems, and projectors.
- the main function of the diffuser is to fully diffuse the incident light, thereby achieving a softer and more uniform illumination effect.
- an inorganic or organic light diffuser can be added to the base material; or microstructures, such as ground glass surface and microlens array, can be processed on the surface of the diffuser. When the light passes through the diffuser, it will be refracted, reflected and scattered in different directions, thereby changing the path of light and realizing the effect of optical diffusion.
- the light-emitting surface of the existing diffuser is usually perpendicular to the viewing direction, and when the structure of the display device is restricted or the use scene is limited, so that the light-emitting surface of the diffuser is at a certain angle to the viewing direction, the center of the diffused light field will be greatly shifted, and The uniformity of the diffused light field will decrease, making the display effect worse.
- the industry needs a display device that has a better display effect even when the installation space is limited.
- the embodiment of the present application provides a display device, the display device includes: a diffuser plate, the diffuser plate includes: a substrate, including a first surface and a second surface opposite to each other; and a microstructure unit, the microstructure unit is located on the substrate On the second surface side, the microstructure unit includes a third surface and a fourth surface opposite to each other, the third surface is connected to the second surface, the fourth surface has a face axis, and the face axis is inclined with respect to the first surface; and a light source , Located on the side of the first surface of the substrate, the light source is used to emit the light beam to be diffused to the microstructure unit.
- the light beam to be diffused has a principal ray inclined with respect to the first surface. The center of the light field is on the chief ray.
- the surface shape of the fourth surface is rotationally symmetric with respect to the surface shape axis.
- the second surface has a first direction and a second direction perpendicular to each other, the microstructure units are arranged in the first direction and the second direction respectively, and adjacent microstructure units are attached to each other.
- the height of each microstructure unit in the arranged microstructure unit relative to the first surface of the substrate is equal.
- the height of each microstructure unit in the arranged microstructure unit relative to the first surface of the substrate is not equal.
- the third surface of the microstructure unit is rectangular.
- the distance a between the plane axis of the fourth surface and the intersection of the fourth surface on two adjacent microstructure units satisfies 66 ⁇ m ⁇ a ⁇ 70 ⁇ m; along the second direction, The distance b between the plane axis of the fourth surface and the intersection of the fourth surface on two adjacent microstructure units satisfies 32 ⁇ m ⁇ b ⁇ 36 ⁇ m.
- the surface type of the fourth surface is a quadric surface or a free-form surface.
- the surface shape of the fourth surface is a rotationally symmetric aspheric surface.
- the curvature coefficient of the surface profile of the fourth surface at the surface profile axis of the fourth surface is 0.05 ⁇ m -1
- the conic coefficient of the surface profile of the fourth surface is -1.68
- along the first direction, adjacent adjacent
- the distance a between the surface axis of the fourth surface of the two microstructure units and the intersection of the fourth surface is 68 ⁇ m
- the surface axis of the fourth surface of the two adjacent microstructure units is with The distance b between the intersections of the fourth surface is 33 ⁇ m.
- the curvature coefficient of the surface profile of the fourth surface at the surface profile axis of the fourth surface is 0.0362 ⁇ m -1
- the conic coefficient of the surface profile of the fourth surface is -1.68
- along the first direction, adjacent adjacent
- the distance a between the surface axis of the fourth surface of the two microstructure units and the intersection of the fourth surface is 68 ⁇ m
- the surface axis of the fourth surface of the two adjacent microstructure units is with The distance b between the intersections of the fourth surface is 34.4 ⁇ m.
- the material of the substrate is quartz glass, polymethyl methacrylate or shadowless glue.
- the material of the microstructure unit is quartz glass, polymethyl methacrylate or shadowless glue.
- the uniformity of the diffused light field is greater than 90%.
- the ratio of the sine of the angle ⁇ between the chief ray and the normal of the first surface to the sine of the angle ⁇ between the surface axis and the normal of the first surface is equal to the refractive index of the material of the microstructure.
- the angle ⁇ between the chief ray and the normal of the first surface satisfies ⁇ 40°.
- one microstructure unit in two adjacent microstructure units, one microstructure unit is provided with an overlapping portion that overlaps the fourth surface of the other microstructure unit.
- the angle between the surface axis and the normal to the first surface is between 10° and 20°.
- the angle between the normal line of the first surface of the diffuser plate and the chief ray is 27°, and the angle between the surface axis of the fourth surface and the normal line of the first surface is 17.7°.
- the angle between the normal line of the first surface of the diffuser plate and the chief ray is 15°, and the angle between the surface axis of the fourth surface and the normal line of the first surface is 10°.
- the diffusion plate provided by the present application is suitable for oblique placement and has good optical effects, good uniformity of the diffused light field, and small deviation between the center of the diffused light field and the light beam to be diffused.
- the display device provided by the embodiment of the present application is small in size, can be taught well to adapt to different installation environments and usage scenarios, and has good light diffusion performance.
- the center of the diffused light field after diffusion is the center of the light emitted by the light source Light up.
- Fig. 1 shows a schematic structural diagram of a display device according to an embodiment of the present application
- Fig. 2 shows a schematic gray scale image of the diffuser plate in Fig. 1;
- Fig. 3 shows a diffuse light field diagram according to Fig. 1;
- Fig. 4 shows a schematic top structural view of a diffuser plate according to an embodiment of the present application
- Figure 5 shows a front view according to Figure 4.
- Fig. 6 shows a right side view according to Fig. 5;
- Fig. 7 shows a schematic structural diagram of a micro-architecture unit according to an embodiment of the present application.
- Figure 8 shows a front view according to Figure 7;
- Fig. 9 shows a schematic front view of another diffuser plate according to an embodiment of the present application.
- Fig. 10 shows a top view according to Fig. 9;
- Fig. 11 shows a schematic front view of another diffuser plate according to an embodiment of the present application.
- Fig. 12 shows a schematic front view of another diffuser plate according to an embodiment of the present application.
- FIG. 13 shows a schematic structural diagram of a display device according to an embodiment of the present application.
- Fig. 14 shows a schematic gray scale image of the diffuser plate according to Fig. 13;
- FIG. 15 shows a diffuse light field diagram according to FIG. 13
- FIG. 16 shows a schematic structural diagram of a display device according to an embodiment of the present application.
- FIG. 17 shows a schematic gray scale image of the diffuser plate in FIG. 16
- FIG. 18 shows the diffused light field diagram according to FIG. 16.
- first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first surface discussed below may also be referred to as the second surface. vice versa.
- the present application also provides a display device, including: a light source (not shown) and a diffuser 100.
- the first surface 111 of the diffusion plate 100 is disposed toward the light source.
- the light source is used to emit light to the first surface of the diffuser plate 100, and the light emitted by the light source forms a total diffused light field after passing through the diffuser plate 100.
- the diffusion plate 100 provided by the embodiment of the present application includes: a substrate 110 and a microstructure unit 120.
- the substrate 110 and the microstructure unit 120 are fixedly connected, and the substrate 110 and the microstructure unit 120 may also be integrally formed.
- the substrate 110 includes a first surface 111 and a second surface 112 opposite to each other.
- the substrate 110 is usually a flat plate. Therefore, the first surface 111 and the second surface 112 are usually flat respectively, and the first surface 111 and the second surface 112 are parallel.
- the first surface 111 and the second surface 112 may also be provided in other surface shapes, such as a curved surface, a stepped surface, a corrugated surface, or a crease surface.
- the substrate 110 has a reference surface as a base for extension.
- the microstructure unit 120 is located on the side of the second surface 112 of the substrate 110.
- the microstructure unit 120 includes a third surface 121 and a fourth surface 122 opposite to each other, wherein the third surface 121 is connected to the second surface 112.
- a plurality of microstructure units 120 may be provided on the side of the second surface 112 of the substrate 110, and these microstructure units 120 may cover the second surface of the substrate 110, or may only cover part of the second surface.
- the light source emits a light beam to be diffused to the microstructure unit 120.
- the light beam to be diffused includes the chief ray 200.
- the surface diffuses out to form a diffuse light field.
- the first surface 111 is placed obliquely with respect to the light 200 to be diffused.
- the diffuser plate 100 is inclined counterclockwise, and the inclination direction of the surface axis S of the fourth surface 122 with respect to the normal line L is clockwise.
- the inclination direction of the surface axis S by providing the fourth surface 120 is opposite to the inclination direction of the diffuser plate 100.
- the principal ray 200 incident on the first surface 111 is relatively normal to the first surface 111.
- the line L is inclined upward.
- the center of the diffused light field that causes the microstructure unit 120 to diffuse is in the direction of the chief ray 200.
- the main ray 200 emitted by the light source is inclined between the diffuser plate 100, so that the display device provided by the present application has a smaller volume, and the display device is more flexible in installation.
- the diffuser plate 100 can be adjusted appropriately to better fit the installation space. And can provide better diffusion performance. It can be understood that the top and bottom shown in the figure are not limited to the top and bottom in actual use.
- the horizontal direction in FIG. 5 is taken as the u-axis
- the vertical direction in FIG. 5 is taken as the w-axis.
- the value of the inclination angle ⁇ of S relative to the w axis is 10°-20°, that is, the angle between the surface axis S and the second surface 122 is 70°-80°.
- the diffuser plate 100 provided in the present application has relatively good uniformity of the diffused light field formed after diffusion.
- the diffusion structure of the diffusion plate 100 provided by the present application is relatively compact and occupies a small installation space.
- the second surface 112 has a first direction and a second direction perpendicular to each other, and the microstructure units 120 are densely arranged along the first direction and the second direction perpendicular to each other, that is, adjacent The microstructure unit 120 is attached.
- the first direction may be the u-axis in FIG. 4, and the second direction may be the v-axis in FIG. 4.
- the microstructure unit 120 can also be arranged in other ways, such as honeycomb shape, prismatic shape, and the like. It may also be arranged in a ring shape, and the ring-shaped arrangement of the microstructure units 120 is suitable for matching incident light with a varying angle of incident light such as a point light source or a scanning beam.
- the arrangement along the u-axis and v-axis that are perpendicular to each other allows each microstructure unit 120 to better match the pixel array in the image.
- the third surface 121 of the microstructure unit 120 is rectangular.
- the rectangular third surface 121 is easily arranged densely to cover the second surface 112, so that the light irradiated to the first surface 111 basically enters the microstructure unit 120 from the second surface 112 after passing through the substrate 110, so that the diffused The light is more uniform, avoiding local excessive light and other phenomena. And it can better control the divergence angle to avoid local light gathering or loosening.
- the heights of the microstructure units 120 in the densely arranged microstructure units 120 relative to the first surface 111 of the substrate 110 are equal.
- the height of the microstructure unit 120 generally refers to the distance from the intersection of the surface axis S and the fourth surface 122 to the vertical line of the third surface 121.
- the part of the fourth surface 122 on the left side of the surface axis S may be higher than the height of the intersection of the surface axis S and the fourth surface 122, but when the inclination angle ⁇ of the surface axis S of each microstructure unit 120 At the same time, the distance from the intersection of the axis S and the fourth surface 122 to the vertical line of the third surface 121 is still regarded as the height of the microstructure unit 120.
- the intersection of the surface axis S of one microstructure unit 120 and the fourth surface 122 and the adjacent other microstructure unit 120 The distance a between the intersection of the surface axis S and the fourth surface 122 is a, and the distance a between two adjacent microstructure units 120 in the u-axis direction is the same.
- the distance b between two adjacent microstructure units 120 can be set equal.
- the size of the outermost microstructure unit 120 can be different.
- the surface shape of the fourth surface 122 of each of the densely arranged microstructure units 120 conforms to the same parameter formula.
- the same shape of the surface shape is convenient for uniform processing and manufacturing, and at the same time, it is beneficial to make the light of the diffuser 100 have a similar diffusion state, and avoid the difference between the light and dark states of the entire diffuser 100.
- the surface shapes of the fourth surface 122 of the microstructure units 120 in each array are the same.
- the inclination angle ⁇ of the surface axis S of the fourth surface 122 of each of the densely arranged microstructure units 120 has the same magnitude.
- the size of the inclination angle ⁇ of the surface axis S is the same, which is used to make the shape of the diffused light uniform.
- the inclination direction of the surface axis S of the fourth surface 122 of each microstructure unit 120 is the same, so that the axes of the light beams after the diffusion of the densely arranged microstructure units 120 are consistent, and it is beneficial to make the axes of the light beams It is consistent with the direction of the incident chief ray 200.
- the intersection of the surface axis S of one microstructure unit 120 and the fourth surface 122 and the adjacent satisfies 66 ⁇ m ⁇ a ⁇ 70 ⁇ m.
- the distance b of the intersection of the surface 122 satisfies 32 ⁇ m ⁇ b ⁇ 36 ⁇ m.
- the surface type of the fourth surface 122 is a quadric surface or a free-form surface.
- the surface type of the fourth surface 122 is a rotationally symmetric aspheric surface.
- the surface shape formula of the fourth surface 122 may be as shown in the following formula:
- c is the curvature coefficient of the fourth surface 122 at its intersection with the surface axis S
- r is the vertical distance between a point on the fourth surface 122 and the surface axis S
- k is the conic coefficient
- z is the fourth surface 122 The distance between the upper point and the intersection of the fourth surface 122 and the surface profile axis S in the direction of the surface profile axis S.
- the light diffused from the fourth surface 122 whose surface shape satisfies the parameter formula is relatively uniform.
- the value of the curvature coefficient c of the surface profile of the fourth surface 122 at the surface profile axis S of the fourth surface 122 is 0.05 ⁇ m -1
- the conic coefficient k is -1.68
- along the first direction, that is In the u-axis direction the distance a between the surface axis S of the fourth surface 122 and the intersection of the fourth surface 122 on two adjacent microstructure units 120 is 68 ⁇ m; along the second direction, the v-axis direction, adjacent
- the distance b between the intersection point of the surface axis S of the fourth surface 122 and the fourth surface 122 of the two microstructure units 120 is 33 ⁇ m.
- the value of the curvature coefficient c of the surface profile of the fourth surface 120 at the surface profile axis S of the fourth surface 120 is 0.0362 ⁇ m -1 , and the conic coefficient k is -1.68; along the first direction, that is In the u-axis direction, the value of the distance a between the surface axis S of the fourth surface 122 and the intersection of the fourth surface 122 on two adjacent microstructure units 120 is 68 ⁇ m; along the second direction, that is, the v-axis direction, The value of the distance b between the intersection of the surface axis S of the fourth surface 122 and the fourth surface 122 on two adjacent microstructure units 120 is 34.4 ⁇ m.
- the diffuser plate 100 has better light diffusivity after being diffused.
- the surface shape of the fourth surface 122 of the microstructure unit 120 is a rotationally symmetric aspheric surface
- the surface shape axis S of the fourth surface 122 is inclined in the same direction (u-axis).
- the boundary between two adjacent microstructure units 120 is not equal in height.
- the surface shape of the fourth surface 122 is generally asymmetrical on both sides of the oblique direction.
- the first microstructure unit 120A is provided with an overlapping portion overlapping the fourth surface 122B of the second microstructure unit 120B 123A.
- the adjacent microstructure units 120 are usually integrally formed, so there is usually no physical boundary between the two adjacent microstructure units 120.
- the third surface 121 of each microstructure unit 120 is considered to be a rectangle, it can be considered that the first microstructure unit 120A is provided with an overlapping portion 123A that overlaps the fourth surface 122B of the second microstructure unit 120B.
- the top surface of the overlapping portion 123A matches with the fourth surface 122A of the first microstructure unit 120A, and is connected to the fourth surface 122B of the second microstructure unit 120B without any difference. With this arrangement, the densely arranged microstructure units 120 diffuse light more uniformly as a whole.
- each microstructure unit 120 is a quadrilateral with arc edges.
- a transition unit is provided between two microstructure units, and the end of the transition unit opposite to the substrate 110 has two surfaces, and the two surfaces respectively match the fourth surfaces 122 of the two microstructure units 120 on both sides. There is no gap between the two surfaces.
- the densely arranged microstructure units 120 as a whole have better continuity on the surface facing away from the substrate 110.
- adjacent microstructure units 120 have different heights relative to the first surface 111 of the substrate 110.
- the spaced microstructure units 120 may have the same height.
- the higher microstructure unit 120 may further include an overlapping portion, which covers a part of the fourth surface 122 of the lower microstructure unit 120.
- each microstructure unit 120 has a different height relative to the first surface 111 of the substrate 110.
- the material of the substrate 110 is quartz glass, polymethyl methacrylate (PMMA for short), or shadowless glue (photosensitive glue, UV glue).
- the material of the microstructure unit 120 is quartz glass, polymethyl methacrylate or shadowless glue.
- the material of the substrate 110 may be quartz glass, and the material of the microstructure unit 120 may be shadowless glue.
- the material of the diffuser plate 100 is PMMA.
- the fitting plane of the lowest point of each fourth surface 122 may be used as the interface between the substrate 110 and the microstructure unit 120.
- the diffuser plate 100 of the present application can be manufactured by the following method:
- the microstructure of photoresist material is prepared by grayscale photolithography
- a roll-to-roll imprinting process is used to imprint the raw material of the diffuser plate using a microstructure master, to obtain a diffuser plate made of PMMA material or a diffuser plate made of UV glue.
- the angle between the surface axis S of the fourth surface 122 and the first surface 111 is 17.7°, and the angle between the chief ray 200 and the first surface 111 of the diffuser 100 is 27°.
- the angle between the surface axis S of the fourth surface 122 and the first surface 111 is 10°, and the angle between the chief ray 200 and the first surface 111 of the diffuser 100 is 15°.
- the angle ⁇ between the surface axis S of the fourth surface 122 and the normal L of the first surface 111 is 17.7°.
- the third surface 121 of the microstructure unit 120 is rectangular.
- the microstructure units 120 are densely arranged along a first direction and a second direction perpendicular to each other, respectively. Each of the densely arranged microstructure units 120 has the same height relative to the first surface 111 of the substrate 110.
- each microstructure unit 120 has a fourth surface 122 of the same surface shape.
- the surface shape of the fourth surface 122 may be different.
- the chief ray 200 irradiates the first surface 111 obliquely, the angle ⁇ between the chief ray 200 and the normal L of the first surface 111 is 27°, and is relative to the surface axis S of the fourth surface 122 relative to the normal L in the XZ plane.
- the light emitted by the light source may be parallel rays or may have a certain divergence angle, and the light emitted by the light source may have a chief ray 200 along the propagation direction. After the light emitted by the light source passes through the diffuser plate 100, a total diffused light field is formed. The center of the total diffused light field is in the direction of the chief ray 200 of the light emitted by the light source.
- the uniformity of the diffused light field 300 is greater than 93% (calculated by the nine-point method).
- the solid line in Fig. 3 is the transverse (u-axis) divergence intensity of the diffused light field 300 in Fig. 2, with a divergence angle of 36°, and the dashed line is the longitudinal (v-axis) divergence intensity of the diffused light field 300 in Fig. 2, with a divergence angle of 18 °.
- the display device of this embodiment occupies a small installation space, the uniformity of the diffused light field 300 is good, and the uniformity of the total diffused light field is good.
- the center of the diffused light field 300 is in the direction of the chief ray 200, which better avoids the deflection of the diffused light.
- the diffuser 100 can be placed according to the needs of the use scene, and the direction of the chief ray 200 emitted by the light source can be adjusted at the same time.
- the diffuser plate 100 is inclined with respect to the Z axis, and the value of the inclination angle ⁇ is 17°.
- the angle ⁇ between the surface axis S of the fourth surface 122 and the normal L of the first surface 111 is 10°.
- the third surface 121 of the microstructure unit 120 is rectangular.
- the microstructure units 120 are densely arranged along a first direction and a second direction perpendicular to each other, respectively. Each of the densely arranged microstructure units 120 has the same height relative to the first surface 111 of the substrate 110.
- the surface shape of the fourth surface 122 may be different.
- the chief ray 200 irradiates the first surface 111 obliquely, and the angle ⁇ between the chief ray 200 and the normal line L of the first surface 111 is 15°.
- a diffused light field 300 is formed, and the diffused light field 300 is formed The center of is located in the direction of the chief ray 200.
- the uniformity of the diffused light field 300 is greater than 90% (calculated by the nine-point method).
- the solid line in Fig. 15 is the transverse (u-axis) divergence intensity of the diffused light field 300 in Fig. 14 with a divergence angle of 56°, and the dashed line is the longitudinal (v-axis) divergence intensity of the diffused light field 300 in Fig. 14 with a divergence angle of 28 °.
- the display device of this embodiment occupies a small installation space, and the diffusivity of the total diffused light field is better.
- the center of the total diffused light field is in the direction of the central ray of the light emitted by the light source, which better avoids the deflection of the diffused light. .
- the diffuser plate 100 can be placed according to the needs of the use scene, and the light emitted by the light source can be adjusted at the same time.
- the diffuser plate 100 is inclined with respect to the Z axis, and the value of the inclination angle ⁇ is 17°.
- the angle ⁇ between the surface axis S of the fourth surface 122 and the normal L of the first surface 111 is 10°.
- the third surface 121 of the microstructure unit 120 is rectangular.
- the microstructure units 120 are densely arranged along a first direction and a second direction perpendicular to each other, respectively.
- the heights of the microstructure units 120 in the densely arranged microstructure units 120 relative to the first surface 111 of the substrate 110 are not equal.
- the height of the bottom of each microstructure is randomly generated by the rand function.
- the light beam to be diffused irradiates the first surface 111 obliquely, and the angle ⁇ between the chief ray 200 and the normal line L of the first surface 111 is 15°. After the light beam to be diffused passes through the diffuser plate 100, a diffuse light field 300 is formed.
- the uniformity of the diffused light field 300 is greater than 90% (calculated by the nine-point method).
- the solid line in Fig. 18 is the transverse (u-axis) divergence intensity of the diffused light field 300 in Fig. 17, with a divergence angle of 56°, and the dashed line is the longitudinal (v-axis) divergence intensity of the diffused light field 300 in Fig. 17, with a divergence angle of 28 °.
- the display device of this embodiment occupies a small installation space, the diffused light field 300 has good diffusivity, and the diffusivity of the total diffused light field is good.
- the center of the diffused light field 300 is in the direction of the chief ray 200 of the light beam to be diffused. The deflection of the light after diffusion is well avoided.
- the diffuser plate 100 can be placed according to the needs of the use scene, and the direction of the chief ray 200 emitted by the light source can be adjusted at the same time.
- the diffuser plate 100 is inclined with respect to the Z axis, and the value of the inclination angle ⁇ is 17°.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
Abstract
一种显示设备,包括:扩散板(100),扩散板(100)包括:基板(110),包括彼此背对的第一表面(111)和第二表面(112);以及微结构单元(120),微结构单元(120)位于基板(110)的第二表面(112)一侧,微结构单元(120)包括彼此背对的第三表面(121)和第四表面(122),第三表面(121)与第二表面(112)连接,第四表面(122)具有面型轴线(S),面型轴线(S)相对第一表面(111)倾斜;以及光源,位于基板(110)的第一表面(111)一侧,光源用于向微结构单元(120)发出待扩散光束,待扩散光束具有相对第一表面(111)倾斜的主光线(200),待扩散光束经过微结构单元(120)后扩散成扩散光场,扩散光场的中心位于主光线(200)上。
Description
相关申请的交叉引用
本申请要求于2020年03月19日递交于中国国家知识产权局(CNIPA)的、申请号为202010195488.3、发明名称为“显示设备”的中国发明专利申请的优先权和权益,这项申请通过引用整体并入本文。
本申请涉及光学设备领域,更具体的,涉及一种显示设备。
在许多领域中通过显示设备来呈现文字信息、图像信息。根据使用需求,例如显示方式、安装空间等不同的需求,显示设备也包括许多种不同的结构形式。
扩散板是一种应用较广泛的光学元件,例如应用在液晶显示、LED照明、抬头显示系统及投影仪等设备的屏幕中。扩散板的主要功能是使入射光充分散射,进而实现更柔和、更均匀的照射效果。为了实现扩散板的功能,可以在制造扩散板时,在其基材内添加无机或者有机的光扩散剂;或者在其表面加工出微结构,例如毛玻璃表面、微透镜阵列。使得光线经过扩散板时,发生不同方向的折射、反射及散射,从而改变光的行进路线,并实现光学扩散的效果。
现有的扩散板的出光面通常与观察方向垂直,而当显示设备结构限制或者使用场景限制,使得扩散板的出光面与观察方向呈一定角度时,扩散光场的中心会大幅偏移,且扩散光场的均匀性会降低,使显示效果变差。业内需要一种安装空间受限时仍具有较好显示效果的显示设备。
发明内容
本申请的实施例提供了一种显示设备,该显示设备包括:扩散板,扩散板包括:基板,包括彼此背对的第一表面和第二表面;以及微结构单元,微结构单元位于基板的第二表面一侧,微结构单元包括彼此背对的第三表面和第四表面,第三表面与第二表面连接,第四表面具有面型轴线,面型轴线相对第一表面倾斜;以及光源,位于基板的第一表面一 侧,光源用于向微结构单元发出待扩散光束,待扩散光束具有相对第一表面倾斜的主光线,待扩散光束经过微结构单元后扩散成扩散光场,扩散光场的中心位于主光线上。
在一个实施方式中,第四表面的面型相对所述面型轴线旋转对称。
在一个实施方式中,在第二表面处,具有相互垂直的第一方向和第二方向,微结构单元在第一方向上和第二方向上分别排列,且相邻的微结构单元贴合。
在一个实施方式中,排列的微结构单元中各个微结构单元相对基板的第一表面的高度相等。
在一个实施方式中,排列的微结构单元中各个微结构单元相对基板的第一表面的高度不相等。
在一个实施方式中,微结构单元的第三表面为矩形。
在一个实施方式中,沿第一方向,相邻的两个微结构单元上第四表面的面型轴线与第四表面的交点之间的距离a满足66μm<a<70μm;沿第二方向,相邻的两个微结构单元上第四表面的面型轴线与第四表面的交点之间的距离b满足32μm<b<36μm。
在一个实施方式中,第四表面的面型为二次曲面或自由曲面。
在一个实施方式中,第四表面的面型为旋转对称的非球面。
在一个实施方式中,第四表面的面型在第四表面的面型轴线处的曲率系数为0.05μm
-1,第四表面的面型的圆锥系数是-1.68;沿第一方向,相邻的两个微结构单元上第四表面的面型轴线与第四表面的交点之间的距离a是68μm;沿第二方向,相邻的两个微结构单元上第四表面的面型轴线与第四表面的交点之间的距离b是33μm。
在一个实施方式中,第四表面的面型在第四表面的面型轴线处的曲率系数为0.0362μm
-1,第四表面的面型的圆锥系数是-1.68;沿第一方向,相邻的两个微结构单元上第四表面的面型轴线与第四表面的交点之间的距离a是68μm;沿第二方向,相邻的两个微结构单元上第四表面的面型轴线与第四表面的交点之间的距离b是34.4μm。
在一个实施方式中,基板的材料是石英玻璃、聚甲基丙烯酸甲酯或无影胶。
在一个实施方式中,微结构单元的材料是石英玻璃、聚甲基丙烯酸甲酯或无影胶。
在一个实施方式中,扩散光场的均匀性大于90%。
在一个实施方式中,主光线和第一表面的法线的夹角θ的正弦值与面型轴线和第一表面的法线的夹角α的正弦值之比等于微结构的材质的折射率n的值。
在一个实施方式中,主光线与第一表面的法线的夹角θ满足θ≤40°。
在一个实施方式中,相邻两个微结构单元中,一个微结构单元设置有交叠于另一个微结构单元的第四表面的交叠部。
在一个实施方式中,面型轴线与第一表面的法线的夹角在10°至20°之间。
在一个实施方式中,扩散板的第一表面的法线相对主光线的夹角为27°,第四表面的面型轴线相对第一表面的法线的夹角为17.7°。
在一个实施方式中,扩散板的第一表面的法线相对主光线的夹角为15°,第四表面的面型轴线相对第一表面的法线的夹角为10°。
本申请提供的扩散板适用于倾斜放置且光学效果好,扩散光场均匀性好,扩散光场的中心与待扩散光束之间的偏离小。本申请的实施例提供的显示设备体积较小,能教好的适应不同的安装环境和使用场景,并且对光线的扩散性能好,扩散后的总扩散光场的中心在光源发出的光的中心光线上。
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出了根据本申请实施例的显示设备示意性结构图;
图2示出了根据图1中的扩散板的示意性灰度图;
图3示出了根据图1的扩散光场图;
图4示出了根据本申请实施例的扩散板示意性俯视结构图;
图5示出了根据图4的主视图;
图6示出了根据图5的右视图;
图7示出了根据本申请实施例的微架构单元示意性结构图;
图8示出了根据图7的主视图;
图9示出了根据本申请实施例的另一种扩散板示意性主视图;
图10示出了根据图9的俯视图;
图11示出了根据本申请实施例的另一种扩散板示意性主视图;
图12示出了根据本申请实施例的另一种扩散板示意性主视图;
图13示出了根据本申请实施例的显示设备示意性结构图;
图14示出了根据图13中的扩散板示意性灰度图;
图15示出了根据图13的扩散光场图;
图16示出了根据本申请实施例的显示设备示意性结构图;
图17示出了根据图16中的扩散板示意性灰度图;
图18示出了根据图16的扩散光场图。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一表面也可被称作第二表面。反之亦然。
在附图中,为了便于说明,已稍微调整了部件的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。例如,基板的厚度和微结构单元的厚度并非按照实际生产中的比例。如在本文中使用的,用语“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件, 但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
参考图1至图5,本申请还提供一种显示设备,包括:光源(未示出)和扩散板100。扩散板100的第一表面111朝向光源设置。光源用于向扩散板100的第一表面发出光,光源发出的光经扩散板100后形成一个总的扩散光场。
参考图4至8,本申请实施例提供的扩散板100包括:基板110和微结构单元120。基板110和微结构单元120固定连接,基板110和微结构单元120也可以是一体成型。
基板110包括彼此背对的第一表面111和第二表面112,基板110通常为一个平板,因此第一表面111和第二表面112通常分别是平面,且第一表面111和第二表面112平行。可选地,第一表面111和第二表面112也可以设置为其他面型,例如弧面、阶梯面、波纹面或者折痕面。示例性地,基板110具有一基准面作为延展基础。
微结构单元120位于基板110的第二表面112一侧,微结构单元120包括彼此背对的第三表面121和第四表面122,其中,第三表面121与第二表面112连接。基板110的第二表面112一侧可设置有多个微结构单元 120,这些微结构单元120可以覆盖基板110的第二表面,也可以只覆盖一部分。
对应每个微结构单元120,光源向微结构单元120发出待扩散光束,待扩散光束中包括主光线200,待扩散光束经过扩散板100的第一表面111进入微结构单元120,进而从第四表面扩散出去形成一个扩散光场。
其中,第一表面111相对待扩散光线200倾斜放置,第一表面111的法线L与主光线200之间具有夹角θ,可以理解的,第一表面111与主线200的垂面之间的角度也是θ。图1中,扩散板100逆时针倾斜,而第四表面122的面型轴线S相对法线L的倾斜方向为顺时针。
通过设置第四表面120的面型轴线S的倾斜方向与扩散板100的倾斜方向相反。或者说如图10所示,通过设置第四表面120的面型轴线S向第一表面111的法线L的下方倾斜,而入射到第一表面111的主光线200相对第一表面111的法线L向上方倾斜。使得微结构单元120扩散的扩散光场的中心在主光线200的方向上。
光源发出的主光线200与扩散板100之间倾斜,使得本申请提供的显示设备具有更小的体积,显示设备在安装时更灵活,扩散板100可以适当地调整以更好地适用于安装空间且能提供较好的扩散性能。可以理解的,图示的上下并不限定为实际使用时的上下。
参考图5、图7和图8,示例性地,以基板110的第二表面112为参照,例如以图5中的横向作为u轴,图5中的竖向作为w轴,则面型轴线S相对w轴的倾斜角度α的值是10°~20°,即该面型轴线S与第二表面122的夹角为70°~80°。
本申请提供的扩散板100,扩散后形成的扩散光场的均匀性还比较好。此外本申请提供的扩散板100的扩散结构较紧凑,占用安装空间较小。
在示例性实施方式中,在第二表面112处,具有相互垂直的第一方向和第二方向,微结构单元120沿相互垂直的第一方向和第二方向分别密布地排列,即相邻的微结构单元120贴合。第一方向可以是图4中的u轴,第二方向可以是图4中的v轴。微结构单元120也可以按其他的方式排布,例如蜂窝形、棱形等。还可以是环形排布,环形排布的微结构单元120,适于匹配点光源或扫描束等入射光线角度变化的入射光线。而 沿相互垂直的u轴和v轴排布,使得每个微结构单元120可以较好地匹配图像中的像素阵列。
在示例性实施方式中,微结构单元120的第三表面121为矩形。矩形的第三表面121易于密布地排列以覆盖第二表面112,使得照射到第一表面111的光线,在穿过基板110后从第二表面112基本进入微结构单元120,可以使扩散后的光线更均匀,避免局部光线过强等现象。且能更好地控制发散角,避免局部光线聚集或疏松。
在示例性实施方式中,密布地排列后的微结构单元120中各个微结构单元120相对基板110的第一表面111的高度相等。参考图5至8,微结构单元120的高度通常指面型轴线S与第四表面122的交点至第三表面121的垂线的距离。参考图8,第四表面122在面型轴线S左侧的部分可能高于面型轴线S与第四表面122的交点的高度,但当各个微结构单元120的面型轴线S的倾斜角α相同时,仍将轴线S与第四表面122的交点至第三表面121的垂线的距离视为微结构单元120的高度。
在示例性实施方式中,在第二表面112处的一个方向上,例如u轴方向,一个微结构单元120的面型轴线S与第四表面122的交点与相邻的另一个微结构单元120的面型轴线S与第四表面122的交点的距离为a,则在u轴方向上相邻的两个微结构单元120之间的距离a相等。在v轴方向上,同理可设置相邻的两个微结构单元120之间的距离b相等示例性地,最外围的微结构单元120的尺寸可以不同。
在示例性实施方式中,密布排列的每个微结构单元120的第四表面122的面型符合相同的参数公式。相同形态的面型便于统一的加工制造,同时有利于使扩散板100各处的光线具有相近的扩散状态,避免整个扩散板100明暗状态有差别。示例性地,扩散板100的第二表面112一侧设置了多个微结构单元120的阵列时,每个阵列内的微结构单元120的第四表面122的面型相同。
在示例性实施方式中,密布排列的每个微结构单元120的第四表面122的面型轴线S的倾斜角α的大小相同。面型轴线S的倾斜角α的大小相同,用于使扩散后的光线形态一致。示例性地,每个微结构单元120的第四表面122的面型轴线S的倾斜方向相同,使得,密布排列的微结 构单元120扩散后的光束的轴线一致,并且有利于使这些光束的轴线与入射的主光线200的方向一致。
在示例性实施方式中,沿第一方向,也即u轴方向,相邻的两个微结构单元120中,一个微结构单元120的面型轴线S与第四表面122的交点与相邻的另一个微结构单元120的面型轴线S与第四表面122的交点的距离a满足66μm<a<70μm。
示例性地,沿第二方向,也即v轴方向,一个微结构单元120的面型轴线S与第四表面122的交点与相邻的另一个微结构单元120的面型轴线S与第四表面122的交点的距离b满足32μm<b<36μm。通过限定微结构单元120的距离,有利于约束微结构单元120的大小以及排列后的密集程度,有利于使每个微结构单元120对应的光线充分的扩散,同时使第二表面112传递的光线分布的足够均匀。进而使扩散板100具有较好的扩散性能。
在示例性实施方式中,第四表面122的面型为二次曲面或自由曲面。
在示例性实施方式中,第四表面122的面型为旋转对称的非球面。第四表面122的面型公式可以如下式所示:
其中,c是第四表面122在其与面型轴线S的交点处的曲率系数,r是第四表面122上一点相对面型轴线S的垂直距离,k是圆锥系数,z是第四表面122上一点与第四表面122和面型轴线S的交点在面型轴线S的方向上的距离。面型满足该参数式的第四表面122处扩散出的光线比较均匀。
在示例性实施方式中,第四表面122的面型在第四表面122的面型轴线S处的曲率系数c的值是0.05μm
-1,圆锥系数k是-1.68;沿第一方向,即u轴方向,相邻的两个微结构单元120上第四表面122的面型轴线S与第四表面122的交点之间的距离a是68μm;沿第二方向,即v轴方向,相邻的两个微结构单元120上第四表面122的面型轴线S与第四表面122的交点之间的距离b是33μm。微结构单元120的第四表面122满足该面型时,扩散板100扩散后的光线更为均匀。
在示例性实施方式中,第四表面120的面型在第四表面120的面型轴线S处的曲率系数c的值是0.0362μm
-1,圆锥系数k是-1.68;沿第一方向,即u轴方向,相邻的两个微结构单元120上第四表面122的面型轴线S与第四表面122的交点之间的距离a的值是68μm;沿第二方向,即v轴方向,相邻的两个微结构单元120上第四表面122的面型轴线S与第四表面122的交点之间的距离b的值是34.4μm。微结构单元120的第四表面122满足该面型时,扩散板100扩散后的光线扩散性更好。
在示例性实施方式中,参考图5,当微结构单元120的第四表面122的面型为旋转对称的非球面,第四表面122的面型轴线S沿同一个方向(u轴)倾斜同样的角度,且各个微结构单元120的第四表面122相对基板110的高度相同时,相邻两个微结构单元120的边界处并不是等高齐平的。因为第四表面122的面型在倾斜方向的两侧通常是不对称的。相邻的两个微结构单元120的四角处的最低点齐平时,相邻的两个微结构单元120的边界中心处具有阶梯差。可理解的,相邻的两个微结构单元120的边界中心处齐平时,相邻的两个微结构单元120的四角处的最低点具有阶梯差。其中,两个微结构单元120的四角处的最低点齐平而边界中心处高出时,更便于加工。
在示例性实施方式中,参考图9和图10,相邻两个微结构单元120中,第一微结构单元120A设置有交叠于第二微结构单元120B的第四表面122B的交叠部123A。事实上,当微结构单元120密布排列时,相邻的微结构单元120通常是一体成型地,因此通常相邻的两个微结构单元120之间并无实体边界。示例性地,认为每个微结构单元120的第三表面121为矩形,可以认为第一微结构单元120A设置有交叠于第二微结构单元120B的第四表面122B的交叠部123A。交叠部123A的顶面与第一微结构单元120A的第四表面122A匹配,并与第二微结构单元120B的第四表面122B无断差的相接。如此设置,密布地排列的微结构单元120整体扩散出的光线更均匀。
其实可以认为每个微结构单元120的第三表面121为具有圆弧边的四边形。或者认为两个微结构单元之间设置有过渡单元,过渡单元的背对基板110的一端具有两块表面,这两块表面分别与两侧的两个微结构 单元120的第四表面122匹配。这两块表面之间无断差地相接。密布地排列的微结构单元120作为一个整体,其背对基板110的表面连贯性更好。
在示例性实施方式中,参考图11,密布排列的微结构单元120中,相邻的微结构单元120相对基板110的第一表面111具有不同的高度。例如,间隔的微结构单元120可具有相同的高度。示例性地,较高的微结构单元120还可包括交叠部,交叠部覆盖较低的微结构单元120的第四表面122的一部分。
在示例性实施方式中,各个微结构单元120相对基板110的第一表面111具有不相同的高度。
在示例性实施方式中,基板110的材质是石英玻璃、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,简称PMMA)或无影胶(光敏胶、UV胶)。
在示例性实施方式中,微结构单元120的材质是石英玻璃、聚甲基丙烯酸甲酯或无影胶。
示例性地,参考图11,基板110的材质可以是石英玻璃,微结构单元120的材质可以是无影胶。
示例性地,参考图12,扩散板100的材质是PMMA。示例性地,可以将各个第四表面122的最低点的拟合平面作为基板110和微结构单元120的分界面。
示例性地,本申请的扩散板100可用如下方法制造:
首先在基底的表面旋涂一定厚度的光刻胶;
然后根据微结构单元120的灰度图,利用灰度光刻制备光刻胶材质的微结构;
利用电铸工艺对光刻胶材质的微结构进行电铸得到可以进行压印的微结构母版;
最后使用卷对卷压印工艺使用微结构母版对扩散板原材料进行压印,得到PMMA材质的扩散板或者UV胶材质的扩散板。
在示例性实施方式中,第四表面122的面型轴线S相对第一表面111 的夹角为17.7°,同时主光线200相对扩散板100的第一表面111的夹角为27°。
在示例性实施方式中,第四表面122的面型轴线S相对第一表面111的夹角为10°,同时主光线200相对扩散板100的第一表面111的夹角为15°。
本申请提供了一些具体实施例。
实施例1
参考图1至图3,图示中X为横向,Z为竖向。在XZ平面内,第四表面122的面型轴线S与第一表面111的法线L的夹角α为17.7°。具体地,微结构单元120的第三表面121为矩形。微结构单元120沿相互垂直的第一方向和第二方向分别密布地排列。密布地排列的微结构单元120中各个微结构单元120相对基板110的第一表面111的高度相等。
第四表面122的面型满足条件式(1),其中,曲率系数c=0.05μm
-1,圆锥系数k=-1.68;相邻微结构单元120重叠后的间距a和b分别为68μm和33μm,则r=75.58μm。本实施例中各个微结构单元120具有相同面型的第四表面122。当然可选地,第四表面122的面型可以不同。
主光线200倾斜照射第一表面111,主光线200与第一表面111的法线L的夹角θ为27°,且与第四表面122的面型轴线S相对法线L在XZ面内的两侧。光源发出的光可以是平行光线也可以是具有一定的发散角,光源发出的光具有沿传播方向的主光线200。光源发出的光穿过扩散板100后,形成总扩散光场。总扩散光场的中心在光源发出的光的主光线200方向上。
参考图3可知,扩散光场300的均匀性大于93%(九点法计算得到)。图3中实线为图2中扩散光场300的横向(u轴)发散强度,发散角为36°,虚线为图2中扩散光场300的纵向(v轴)发散强度,发散角为18°。
本实施例的显示设备占用安装空间较小,扩散光场300的均匀性较好,总扩散光场的均匀性好。扩散光场300的中心在主光线200的方向上,较好地避免了扩散后光线的偏转。
在示例性实施方式中,扩散板100可以根据使用场景的需要而摆放, 同时调整光源发出的主光线200的方向即可。例如,图1所示,扩散板100相对Z轴倾斜,该倾斜角β的值为17°。
实施例2
参考图13至图15,图示中X为横向,Z为竖向。在XZ平面内,第四表面122的面型轴线S与第一表面111的法线L的夹角α为10°。具体地,微结构单元120的第三表面121为矩形。微结构单元120沿相互垂直的第一方向和第二方向分别密布地排列。密布地排列的微结构单元120中各个微结构单元120相对基板110的第一表面111的高度相等。
第四表面122的面型满足条件式(1),其中,曲率系数c=0.0362μm
-1,圆锥系数k=-1.68;相邻微透镜部分重叠后的间距a和b分别为68μm和34.4μm,则r=76.2μm。当然可选地,第四表面122的面型可以不同。
主光线200倾斜照射第一表面111,主光线200与第一表面111的法线L的夹角θ为15°,待扩散光束穿过扩散板100后,形成扩散光场300,扩散光场300的中心位于主光线200的方向上。
参考图15可知,扩散光场300的均匀性大于90%(九点法计算得到)。图15中实线为图14中扩散光场300的横向(u轴)发散强度,发散角为56°,虚线为图14中扩散光场300的纵向(v轴)发散强度,发散角为28°。
本实施例的显示设备占用安装空间较小,总扩散光场的扩散性较好,总扩散光场的中心在光源发出的光的中心光线的方向上,较好地避免了扩散后光线的偏转。
在示例性实施方式中,扩散板100可以根据使用场景的需要而摆放,同时调整光源发出的光即可。例如,图13所示,扩散板100相对Z轴倾斜,该倾斜角β的值为17°。
实施例3
参考图16至图18,图示中X为横向,Z为竖向。在XZ平面内,第四表面122的面型轴线S与第一表面111的法线L的夹角α为10°。具体地,微结构单元120的第三表面121为矩形。微结构单元120沿相互垂直的第一方向和第二方向分别密布地排列。密布地排列的微结构单元120中各个微结构单元120相对基板110的第一表面111的高度不相等。 例如在第一方向和第二方向上间隔地具有一个高出周围的微结构单元120。示例性地,各个微结构底部的高度由rand函数随机产生。
第四表面122的面型满足条件式(1),其中,曲率系数c=0.0362μm
-1,圆锥系数k=-1.68;相邻微透镜部分重叠后的间距a和b分别为68μm和34.4μm,则r=76.2μm。
待扩散光束倾斜照射第一表面111,其主光线200与第一表面111的法线L的夹角θ为15°,待扩散光束穿过扩散板100后,形成扩散光场300。
参考图18可知,扩散光场300的均匀性大于90%(九点法计算得到)。图18中实线为图17中扩散光场300的横向(u轴)发散强度,发散角为56°,虚线为图17中扩散光场300的纵向(v轴)发散强度,发散角为28°。
本实施例的显示设备占用安装空间较小,扩散光场300的扩散性较好,总扩散光场的扩散性好,扩散光场300的中心在待扩散光束的主光线200的方向上,较好地避免了扩散后光线的偏转。
在示例性实施方式中,扩散板100可以根据使用场景的需要而摆放,同时调整光源发出的主光线200的方向即可。例如,图16所示,扩散板100相对Z轴倾斜,该倾斜角β的值为17°。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (13)
- 显示设备,其特征在于,包括:扩散板,所述扩散板包括:基板,包括彼此背对的第一表面和第二表面;以及微结构单元,所述微结构单元位于所述基板的所述第二表面一侧,所述微结构单元包括彼此背对的第三表面和第四表面,所述第三表面与所述第二表面连接,所述第四表面具有面型轴线,所述面型轴线相对所述第一表面倾斜;以及光源,位于所述基板的第一表面一侧,所述光源用于向所述微结构单元发出待扩散光束,所述待扩散光束具有相对所述第一表面倾斜的主光线,所述待扩散光束经过所述微结构单元后扩散成扩散光场,所述扩散光场的中心位于所述主光线上。
- 根据权利要求1所述的显示设备,其特征在于,所述第四表面的面型相对所述面型轴线旋转对称。
- 根据权利要求1所述的显示设备,其特征在于,在所述第二表面处,具有相互垂直的第一方向和第二方向,所述微结构单元在所述第一方向上和所述第二方向上分别排列,且相邻的所述微结构单元贴合。
- 根据权利要求3所述的显示设备,其特征在于,排列的所述微结构单元中的各个微结构单元相对于所述基板的第一表面的高度相等。
- 根据权利要求3所述的显示设备,其特征在于,排列的所述微结构单元中的各个微结构单元相对于所述基板的第一表面的高度不相等。
- 根据权利要求3所述的显示设备,其特征在于,所述微结构单元的所述第三表面为矩形。
- 根据权利要求1至6中任一项所述的显示设备,其特征在于,所述第四表面的面型为旋转对称的非球面。
- 根据权利要求1至6中任一项所述的显示设备,其特征在于,所述扩散光场的均匀性大于90%。
- 根据权利要求1至6中任一项所述的显示设备,其特征在于,所述主光线和所述第一表面的法线的夹角θ的正弦值与所述面型轴线和所述第一表面的法线的夹角α的正弦值之比等于所述微结构的材质的折射率n的值。
- 根据权利要求9所述的显示设备,其特征在于,所述主光线与所述第一表面的法线的夹角θ满足θ≤40°。
- 根据权利要求9所述的显示设备,其特征在于,相邻的两个所述微结构单元中,一个微结构单元设置有交叠于另一个微结构单元的第四表面的交叠部。
- 根据权利要求9所述的显示设备,其特征在于,所述扩散板的第一表面的法线相对所述主光线的夹角为27°,所述第四表面的面型轴线相对所述第一表面的法线的夹角为17.7°。
- 根据权利要求9所述的显示设备,其特征在于,所述扩散板的第一表面的法线相对所述主光线的夹角为15°,所述第四表面的面型轴线相对所述第一表面的法线的夹角为10°。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/947,572 US20230113671A1 (en) | 2020-03-19 | 2022-09-19 | Display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010195488.3A CN111221062B (zh) | 2020-03-19 | 2020-03-19 | 显示设备 |
CN202010195488.3 | 2020-03-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/947,572 Continuation US20230113671A1 (en) | 2020-03-19 | 2022-09-19 | Display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021185299A1 true WO2021185299A1 (zh) | 2021-09-23 |
Family
ID=70813120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/081407 WO2021185299A1 (zh) | 2020-03-19 | 2021-03-18 | 显示设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230113671A1 (zh) |
CN (1) | CN111221062B (zh) |
WO (1) | WO2021185299A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111221062B (zh) * | 2020-03-19 | 2022-02-08 | 宁波舜宇车载光学技术有限公司 | 显示设备 |
CN113777680A (zh) * | 2021-09-10 | 2021-12-10 | 浙江水晶光电科技股份有限公司 | 一种光学扩散片及光发射模组 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1734290A (zh) * | 2004-06-08 | 2006-02-15 | 索尼株式会社 | 光扩散膜及其制造方法以及屏幕 |
CN1892260A (zh) * | 2005-06-28 | 2007-01-10 | 精工爱普生株式会社 | 光学薄板及其制造方法、背光照明单元和显示装置 |
US20160178913A1 (en) * | 2014-12-15 | 2016-06-23 | c/o DEXERIALS CORPORATION | Optical element, display device, master, and method for manufacturing optical element |
CN106716185A (zh) * | 2014-09-30 | 2017-05-24 | 株式会社可乐丽 | 扩散板及扩散板的设计方法 |
CN109154681A (zh) * | 2016-04-27 | 2019-01-04 | 株式会社可乐丽 | 扩散板以及投影式放映装置 |
CN109791232A (zh) * | 2016-10-03 | 2019-05-21 | 株式会社可乐丽 | 扩散板及投射式图像显示装置 |
CN111221062A (zh) * | 2020-03-19 | 2020-06-02 | 宁波舜宇车载光学技术有限公司 | 显示设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101457901B (zh) * | 2007-12-14 | 2010-09-29 | 富士迈半导体精密工业(上海)有限公司 | 光场调节装置及采用该光场调节装置的照明装置 |
KR100954476B1 (ko) * | 2009-08-12 | 2010-04-22 | 도레이새한 주식회사 | 광선 지향 제어 광학시트 |
US20130127922A1 (en) * | 2011-11-18 | 2013-05-23 | Qualcomm Mems Technologies, Inc | Structures for directing incident light onto the active areas of display elements |
KR20140047412A (ko) * | 2012-10-12 | 2014-04-22 | 에스케이씨하스디스플레이필름(유) | 탠덤 배열 렌즈 시트 |
US10371350B2 (en) * | 2014-04-01 | 2019-08-06 | 3M Innovative Properties Company | Asymmetric turning film with multiple light sources |
-
2020
- 2020-03-19 CN CN202010195488.3A patent/CN111221062B/zh active Active
-
2021
- 2021-03-18 WO PCT/CN2021/081407 patent/WO2021185299A1/zh active Application Filing
-
2022
- 2022-09-19 US US17/947,572 patent/US20230113671A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1734290A (zh) * | 2004-06-08 | 2006-02-15 | 索尼株式会社 | 光扩散膜及其制造方法以及屏幕 |
CN1892260A (zh) * | 2005-06-28 | 2007-01-10 | 精工爱普生株式会社 | 光学薄板及其制造方法、背光照明单元和显示装置 |
CN106716185A (zh) * | 2014-09-30 | 2017-05-24 | 株式会社可乐丽 | 扩散板及扩散板的设计方法 |
US20160178913A1 (en) * | 2014-12-15 | 2016-06-23 | c/o DEXERIALS CORPORATION | Optical element, display device, master, and method for manufacturing optical element |
CN109154681A (zh) * | 2016-04-27 | 2019-01-04 | 株式会社可乐丽 | 扩散板以及投影式放映装置 |
CN109791232A (zh) * | 2016-10-03 | 2019-05-21 | 株式会社可乐丽 | 扩散板及投射式图像显示装置 |
CN111221062A (zh) * | 2020-03-19 | 2020-06-02 | 宁波舜宇车载光学技术有限公司 | 显示设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111221062A (zh) | 2020-06-02 |
US20230113671A1 (en) | 2023-04-13 |
CN111221062B (zh) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103430056B (zh) | 微透镜阵列片以及包括所述微透镜阵列片的背光单元 | |
CN110161602B (zh) | 漫射板、漫射板的设计方法、显示装置、投影装置和照明装置 | |
CN100547462C (zh) | 液晶显示器的棱镜片及使用其的背光单元 | |
JPWO2003040784A1 (ja) | プリズムシート、該プリズムシートを使用したバックライト・ユニットおよび透過型液晶表示装置 | |
JP2008268607A (ja) | ディスプレイ用光学シート及びバックライト・ユニット並びに表示装置 | |
JPWO2009054446A1 (ja) | 拡散シート | |
WO2021185299A1 (zh) | 显示设备 | |
JP2010108795A (ja) | 照明装置および表示装置 | |
JP2007294411A (ja) | 直下型バックライト装置及び光学レンズシート | |
WO2017215397A1 (zh) | 虚拟曲面显示面板及显示装置 | |
WO2023125103A1 (zh) | 微光学透镜、制备方法及显示系统 | |
CN116068678A (zh) | 一种匀光膜、一种新型复合匀光膜及其制备方法 | |
JP5295721B2 (ja) | バックライトユニット | |
CN101389897A (zh) | 照明装置以及液晶显示装置 | |
JP5272508B2 (ja) | 光学シート、バックライトユニット及びディスプレイ装置 | |
JP6679465B2 (ja) | 面光源素子 | |
CN101963678B (zh) | 增亮扩散膜 | |
CN114624799A (zh) | 扩散板及具扩散板的背光模块 | |
JP2009157074A (ja) | 光線制御ユニット | |
US10551549B2 (en) | Condensing sheet, backlight unit and liquid crystal display device using the same | |
WO2022009615A1 (ja) | 照明装置 | |
CN101469828A (zh) | 面光源装置和液晶显示器 | |
US20080106899A1 (en) | Direct backlight module | |
TWI752894B (zh) | 具傾斜結構之光學膜片的背光模組 | |
KR101090572B1 (ko) | 미구조 확산판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21770628 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21770628 Country of ref document: EP Kind code of ref document: A1 |