Nothing Special   »   [go: up one dir, main page]

WO2021181965A1 - Image processing device, image processing method, and program - Google Patents

Image processing device, image processing method, and program Download PDF

Info

Publication number
WO2021181965A1
WO2021181965A1 PCT/JP2021/004160 JP2021004160W WO2021181965A1 WO 2021181965 A1 WO2021181965 A1 WO 2021181965A1 JP 2021004160 W JP2021004160 W JP 2021004160W WO 2021181965 A1 WO2021181965 A1 WO 2021181965A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaking
image
area
processing
unit
Prior art date
Application number
PCT/JP2021/004160
Other languages
French (fr)
Japanese (ja)
Inventor
洋司 山本
小曽根 卓義
隆一 唯野
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021181965A1 publication Critical patent/WO2021181965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • This technology relates to image processing devices, image processing methods, and programs, and particularly to image processing related to image shake.
  • Patent Document 1 discloses that vibration isolation processing is performed on moving image data related to captured images, and the influence of vibration isolation processing is removed on the moving image data after the vibration isolation processing.
  • adding shaking to an image according to the content of a moving image is a method of producing an effect that expands the image expression.
  • image effects such as when there are subjects in the image that are desired to be shaken and subjects that are not desired to be shaken, or when only a part of the image is to be shaken violently. Therefore, the present disclosure proposes a technique capable of generating an image in which shaking is changed according to the image content when adding or removing shaking in a moving image.
  • the area setting unit for setting a plurality of areas in the image of the input moving image data and the shaking state appearing in the output moving image data are different for each area set by the area setting unit. It is provided with a shaking change unit that performs a shaking change process so as to be.
  • the shaking change process is to change the shaking state by reducing the shaking generated in the moving image or adding the shaking. Then, by dividing one screen of the input video data into a plurality of areas and changing the shaking state for each area, for example, a region without shaking and a region with shaking can be formed in the screen, or the shaking can be formed. It is possible to form a small area and a large shaking area.
  • the shaking changing unit adds shaking for one area set by the area setting unit and reduces shaking for the other area set by the area setting unit. It is conceivable to perform change processing. For example, it is possible to obtain a region that does not shake (or has less shake) and a region that shakes (or has a large shake) in the image.
  • the shaking changing unit adds shaking for one area set by the area setting unit, and the other area set by the area setting unit is more than the one area. It is conceivable to perform a shaking change process that adds a small amount of shaking. For example, a region with less shaking and a region with large shaking can be obtained in the image.
  • the shaking changing unit reduces shaking for one area set by the area setting unit, and is more than the other area set by the area setting unit. It is conceivable to perform a shaking change process that reduces shaking with a large reduction amount. For example, in the image, a region where the shaking is slightly reduced and a region where the shaking is significantly reduced can be obtained.
  • the shaking changing unit performs shaking changing processing for adding or reducing shaking to one of one area and the other area set by the area setting unit. ..
  • the shaking changing unit performs shaking changing processing for adding or reducing shaking to one of one area and the other area set by the area setting unit. ..
  • the image processing device includes a user interface processing unit that detects operation information related to shaking change, and the area setting unit sets a plurality of areas based on the operation information detected by the user interface processing unit. It is possible to set it. For example, the user can specify a boundary or a range for dividing into a plurality of areas in one screen.
  • the area setting unit sets a plurality of areas based on the image analysis of the input moving image data. For example, by subject recognition in an image, an area is set based on a pixel range in which a specific subject is captured.
  • the shaking changing unit attaches each frame of the input moving image data to the celestial sphere model and rotates each frame using the shaking information corresponding to each frame.
  • the shaking information for example, quaternion
  • the shaking changing unit changes the shaking amount for each region by moving the coordinate points on the celestial sphere model in each frame. For example, by moving the coordinate points of the image on the celestial sphere model, the enlargement or reduction of the image fluctuates from frame to frame, thereby realizing partial shaking.
  • the shaking changing unit moves the coordinate points by setting the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit. It is conceivable that it is a process of moving. For example, by expanding and contracting the boundary region of a plurality of regions in the image, the shaking of one region is increased.
  • the image processing apparatus sets an area setting process for setting a plurality of areas in the image of the input moving image data, and the shaking state appearing in the output moving image data is an area set in the area setting process.
  • a shaking change process that makes the state different for each is performed. This makes it possible to add or remove shake in each area of the image.
  • the program according to the present technology is a program that causes an information processing apparatus to execute a process corresponding to such an image processing method. As a result, the image processing of the present disclosure can be executed by various information processing devices.
  • hake refers to the interframe shake of the images that make up a moving image. It broadly refers to vibration components (image fluctuations between frames) that occur between frames, such as shaking caused by camera shake in an image captured by a so-called image pickup device, or shaking intentionally added by image processing. It shall be.
  • Interframe shake modification refers to changing the state of shaking in an image, such as reducing the shaking occurring in the image or adding shaking to the image.
  • This "shake change” shall include the following “interframe shake reduction” and “interframe shake addition”.
  • Hande removal refers to eliminating or reducing the shaking that occurs in the image due to camera shake (total removal of shaking) or reduction (partial removal of shaking). That is, it means adjusting so as to reduce the shaking based on the shaking information at the time of imaging.
  • image stabilization performed in the image pickup apparatus is to remove the shaking.
  • Adding shaking means adding shaking to the image. This includes adding shaking to an image without shaking, and adding shaking to an image with shaking so as to further increase the shaking.
  • sway removal including partial sway removal
  • sway addition are processes for changing the sway state or obtaining an image with sway as a result, and therefore can be said to be a process for adding a sway effect. ..
  • the shaking effect it is assumed that the image is intentionally shaken in order to give power to the moving image scene.
  • Hande information during imaging is information related to shaking when an image is taken by an image pickup device, such as motion detection information of the image pickup device, information that can be calculated from the detection information, and posture information indicating the posture of the image pickup device.
  • Information such as shift and rotation as the movement of the image pickup device is applicable.
  • the quarternion (QD) and the IMU data are given as specific examples of the "shaking information at the time of imaging", but there are other examples such as shift / rotation information, and the present invention is not particularly limited.
  • FIG. 1A shows an example of an image source VS and an image processing device (TDx, TDy) that acquires a moving image file MF from the image source VS.
  • the moving image file MF includes image data (that is, moving image data) and audio data constituting the moving image. However, there may be an audio file separate from the video file so that it can be synchronized.
  • the moving image data also includes a plurality of continuously shot still image data.
  • the image processing device TDx is a device that temporarily performs shaking change processing on the moving image data acquired from the image source VS.
  • the image processing device TDy is a device that secondarily performs the shaking change processing on the moving image data that has already been subjected to the shaking change processing by another image processing device.
  • an image pickup device 1 As the image source VS, an image pickup device 1, a server 4, a recording medium 5, and the like are assumed.
  • a mobile terminal 2 such as a smartphone, a personal computer 3 and the like are assumed.
  • various devices such as an image editing dedicated device, a cloud server, a television device, and a video recording / playback device are assumed as image processing devices TDx and TDy. These devices can function as any of the image processing devices TDx and TDy.
  • the image pickup device 1 as an image source VS is a digital camera or the like capable of performing video imaging, and transfers the video file MF obtained by video imaging to a mobile terminal 2 or a personal computer 3 via wired communication or wireless communication.
  • the server 4 may be a local server, a network server, a cloud server, or the like, but refers to a device capable of providing a moving image file MF captured by the image pickup device 1. It is conceivable that the server 4 transfers the moving image file MF to the mobile terminal 2 or the personal computer 3 via some kind of transmission path.
  • the recording medium 5 may be a solid-state memory such as a memory card, a disk-shaped recording medium such as an optical disk, or a tape-shaped recording medium such as a magnetic tape, but removable recording in which the moving image file MF captured by the imaging device 1 is recorded. Pointing to the medium. It is conceivable that the moving image file MF read from the recording medium 5 is read by the mobile terminal 2 or the personal computer 3.
  • the mobile terminal 2 and the personal computer 3 as the image processing devices TDx and TDy are capable of performing image processing on the moving image file MF acquired from the above image source VS.
  • the image processing referred to here includes shaking change processing (shaking addition and shaking removal).
  • the shaking change processing is performed, for example, for each frame of moving image data, after the processing of pasting to the celestial sphere model, which will be described later, is performed, and then the rotation is performed using the attitude information corresponding to the frame, or the coordinates of the pixels on the celestial sphere model. It can be done by moving points.
  • a certain mobile terminal 2 or personal computer 3 may serve as an image source VS for another mobile terminal 2 or personal computer 3 that functions as an image processing device TDx or TDy.
  • FIG. 1B shows an image pickup device 1 and a mobile terminal 2 as one device that can function as both an image source VS and an image processing device TDx.
  • a microcomputer or the like inside the image pickup apparatus 1 performs the shaking change processing. That is, the image pickup apparatus 1 can output the image as the result of the image processing in which the shaking is removed or the shaking is added by performing the shaking changing process on the moving image file MF generated by the imaging.
  • the mobile terminal 2 since it can be an image source VS by having an imaging function, the image processing result obtained by removing or adding shaking by performing the above-mentioned shaking change processing on the moving image file MF generated by imaging.
  • the image can be output as.
  • various other devices that can serve as an image source and an image processing device can be considered.
  • the image processing device TDx of the embodiment the device functioning as the TDy, and the image source VS are various. And another image processing device TDy will be described as separate devices.
  • FIG. 2 shows a state of information transmission in the image processing device TDy of the image source VS and the image processing device TDx.
  • the moving image data VD1 and the metadata MTD1 are transmitted from the image source VS to the image processing device TDx via wired communication, wireless communication, or a recording medium.
  • the moving image data VD1 and the metadata MTD1 are information transmitted as, for example, a moving image file MF.
  • the metadata MTD1 may include a coordinate conversion parameter HP as information on shaking removal at the time of imaging performed, for example, as image stabilization.
  • the image processing device TDx can perform various processes by receiving the moving image data VD1, the metadata MTD1, and the coordinate conversion parameter HP. For example, the image processing device TDx can perform the shaking change processing on the moving image data VD1 by using the shaking information at the time of imaging included in the metadata MTD1. Further, for example, the image processing device TDx can cancel the shaking removal applied to the moving image data VD1 at the time of imaging by using the coordinate conversion parameter HP included in the metadata MTD1.
  • the image processing device TDx may perform a process of associating the moving image data with the shaking information at the time of imaging and the shaking change information SMI that can specify the processing amount of the shaking change processing.
  • Shake change information SMI includes information on shake change for each region, which will be described later. Then, the associated moving image data, the shaking information at the time of imaging, and the shaking change information SMI are collectively or separately transmitted to the image processing device TDy via wired communication, wireless communication, or a recording medium. Can be done.
  • the term "associate" means, for example, to make the other information available (linkable) when processing one piece of information (data, commands, programs, etc.).
  • the information associated with each other may be collected as one file or the like, or may be individual information.
  • the information B associated with the information A may be transmitted on a transmission path different from that of the information A.
  • the information B associated with the information A may be recorded on a recording medium (or another recording area of the same recording medium) different from the information A.
  • this "association" may be a part of the information, not the entire information.
  • an image and information corresponding to the image may be associated with each other in an arbitrary unit such as a plurality of frames, one frame, or a part within the frame.
  • FIG. 2 shows moving image data transmitted from the image processing device TDx to the image processing device TDy as moving image data VD2.
  • the moving image data VD2 is an image in which the shake removal performed by the image pickup device 1 is canceled, an image in which the shake removal is performed by the image processing device TDx, or a shake change process is performed by the image processing device TDx.
  • FIG. 2 shows the metadata MTD2 transmitted from the image processing device TDx to the image processing device TDy.
  • the metadata MTD2 may have the same information as the metadata MTD1 or may have some different information.
  • the image processing device TDy When the metadata MTD2 includes the shaking information at the time of imaging, the image processing device TDy is in a state where at least the moving image data VD2, the shaking information at the time of imaging included in the metadata MTD2, and the shaking change information SMI are associated with each other. You can get it. It should be noted that a data form in which the shaking change information SMI is also included in the metadata MTD2 can be considered.
  • the image pickup apparatus 1 includes, for example, a lens system 11, an image sensor unit 12, a camera signal processing unit 13, a recording control unit 14, a display unit 15, an output unit 16, an operation unit 17, a camera control unit 18, and a memory. It has a unit 19, a driver unit 22, and a sensor unit 23.
  • the lens system 11 includes a lens such as a cover lens, a zoom lens, and a focus lens, an aperture mechanism, and the like. Light from the subject (incident light) is guided by the lens system 11 and focused on the image sensor unit 12. Although not shown, the lens system 11 may be provided with an optical image stabilization mechanism that corrects image shake (interframe shake) and blur due to camera shake or the like.
  • the image sensor unit 12 includes, for example, an image sensor 12a (imaging element) such as a CMOS (Complementary Metal Oxide Semiconductor) type or a CCD (Charge Coupled Device) type.
  • the image sensor unit 12 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, and the like on the electric signal obtained by photoelectric conversion of the light received by the image sensor 12a, and further performs A / D. (Analog / Digital) Perform conversion processing. Then, the image pickup signal as digital data is output to the camera signal processing unit 13 and the camera control unit 18 in the subsequent stage.
  • the optical image stabilization mechanism (not shown) is a mechanism that corrects image shake by moving the image sensor 12a side instead of the lens system 11 side, or spatial optical image stabilization using a gimbal. In some cases, it may be a balanced optical image stabilization mechanism, and any method may be used. In the optical image stabilization mechanism, in addition to the interframe shake, the blur in the frame is also corrected as described later.
  • the camera signal processing unit 13 is configured as an image processing processor by, for example, a DSP (Digital Signal Processor) or the like.
  • the camera signal processing unit 13 performs various signal processing on the digital signal (image image signal) from the image sensor unit 12. For example, as a camera process, the camera signal processing unit 13 performs preprocessing, simultaneous processing, YC generation processing, resolution conversion processing, codec processing, and the like.
  • the camera signal processing unit 13 also performs various correction processes. However, it is assumed that the image stabilization may or may not be performed in the image pickup apparatus 1.
  • a clamping process for clamping the black level of R, G, B to a predetermined level, a correction process between the color channels of R, G, B, etc. are performed on the captured image signal from the image sensor unit 12. conduct.
  • a color separation processing is performed so that the image data for each pixel has all the color components of R, G, and B.
  • demosaic processing is performed as color separation processing.
  • YC generation process a luminance (Y) signal and a color (C) signal are generated (separated) from the image data of R, G, and B.
  • the resolution conversion process the resolution conversion process is executed on the image data subjected to various signal processing.
  • FIG. 4 shows an example of various correction processes (internal correction of the image pickup apparatus 1) performed by the camera signal processing unit 13.
  • the optical image stabilization performed by the lens system 11 and the correction processing performed by the camera signal processing unit 13 are illustrated by their execution order.
  • the in-lens image stabilization by shifting the yaw direction and pitch direction of the lens system 11 and the in-body image stabilization by shifting the yaw direction and pitch direction of the image sensor 12a are performed to perform image stabilization.
  • the image of the subject is formed on the image sensor 12a in a state where the influence of the above is physically canceled.
  • the in-lens image stabilization and the in-body image stabilization may be only one, or both may be used. When both in-lens image stabilization and in-body image stabilization are used, it is conceivable that the in-body image stabilization does not shift in the yaw direction or pitch direction.
  • neither in-lens image stabilization nor in-body image stabilization is adopted, and for image stabilization, only electronic image stabilization or only optical image stabilization may be performed.
  • processing from processing F2 to processing F7 is performed by spatial coordinate transformation for each pixel.
  • lens distortion correction is performed.
  • focal plane distortion correction is performed as one element of electronic image stabilization. It should be noted that this is to correct the distortion when the rolling shutter type reading is performed by, for example, the CMOS type image sensor 12a.
  • Roll correction is performed in the process F4. That is, the roll component is corrected as one element of the electronic image stabilization.
  • trapezoidal distortion correction is performed for the trapezoidal distortion caused by the electronic image stabilization.
  • the keystone distortion caused by electronic image stabilization is perspective distortion caused by cutting out a place away from the center of the image.
  • the pitch direction and the yaw direction are shifted and cut out as one element of the electronic image stabilization.
  • camera shake correction, lens distortion correction, and trapezoidal distortion correction are performed by the above procedure. It is not essential to carry out all of the processes listed here, and the order of the processes may be changed as appropriate.
  • the image data subjected to the above various processing is subjected to, for example, coding processing for recording or communication, and file generation.
  • a moving image file MF as an MP4 format used for recording MPEG-4 compliant video / audio is generated. It is also conceivable to generate files in formats such as PEG (Joint Photographic Experts Group), TIFF (Tagged Image File Format), GIF (Graphics Interchange Format), and HEIF (High Efficient Image File) as still image files.
  • the camera signal processing unit 13 also generates metadata to be added to the moving image file MF by using the information from the camera control unit 18 and the like.
  • the audio processing system is not shown in FIG. 3, it actually has an audio recording system and an audio processing system, and the moving image file MF may include the audio data as well as the moving image data.
  • the recording control unit 14 records and reproduces, for example, a recording medium using a non-volatile memory.
  • the recording control unit 14 performs a process of recording a moving image file MF such as moving image data or still image data, a thumbnail image, or the like on a recording medium, for example.
  • the actual form of the recording control unit 14 can be considered in various ways.
  • the recording control unit 14 may be configured as a flash memory built in the image pickup device 1 and a write / read circuit thereof, or a recording medium that can be attached to and detached from the image pickup device 1, such as a memory card (portable flash memory, etc.). ) May be in the form of a card recording / playback unit that performs recording / playback access. Further, it may be realized as an HDD (Hard Disk Drive) or the like as a form built in the image pickup apparatus 1.
  • HDD Hard Disk Drive
  • the display unit 15 is a display unit that displays various displays to the imager, and is, for example, a display such as a liquid crystal panel (LCD: Liquid Crystal Display) or an organic EL (Electro-Luminescence) display arranged in the housing of the image pickup device 1. It is used as a display panel or view finder depending on the device.
  • the display unit 15 causes various displays to be executed on the display screen based on the instruction of the camera control unit 18. For example, the display unit 15 displays a reproduced image of the image data read from the recording medium by the recording control unit 14.
  • the display unit 15 is supplied with image data of the captured image whose resolution has been converted by the camera signal processing unit 13 for display, and the display unit 15 is based on the image data of the captured image in response to an instruction from the camera control unit 18. May be displayed. As a result, a so-called through image (subject monitoring image), which is an captured image during composition confirmation, is displayed. Further, the display unit 15 causes various operation menus, icons, messages, etc., that is, display as a GUI (Graphical User Interface) to be executed on the screen based on the instruction of the camera control unit 18.
  • GUI Graphic User Interface
  • the output unit 16 performs data communication and network communication with an external device by wire or wirelessly.
  • the image data for example, a moving image file MF
  • the output unit 16 is a network communication unit, it communicates with various networks such as the Internet, a home network, and a LAN (Local Area Network), and transmits and receives various data to and from servers, terminals, and the like on the network. You may do so.
  • the operation unit 17 collectively shows input devices for the user to perform various operation inputs. Specifically, the operation unit 17 shows various controls (keys, dials, touch panels, touch pads, etc.) provided in the housing of the image pickup apparatus 1. The operation unit 17 detects the user's operation, and the signal corresponding to the input operation is sent to the camera control unit 18.
  • the camera control unit 18 is composed of a microcomputer (arithmetic processing device) provided with a CPU (Central Processing Unit).
  • the memory unit 19 stores information and the like used for processing by the camera control unit 18.
  • a ROM Read Only Memory
  • RAM Random Access Memory
  • flash memory and the like are comprehensively shown.
  • the memory unit 19 may be a memory area built in the microcomputer chip as the camera control unit 18, or may be configured by a separate memory chip.
  • the camera control unit 18 controls the entire image pickup apparatus 1 by executing a program stored in the ROM of the memory unit 19, the flash memory, or the like.
  • the camera control unit 18 controls the shutter speed of the image sensor unit 12, gives instructions for various signal processing in the camera signal processing unit 13, captures and records according to the user's operation, and reproduces the recorded moving image file MF and the like.
  • the operation of each necessary part is controlled with respect to the operation of the lens system 11 such as zoom, focus, and aperture adjustment in the lens barrel, and the operation of the user interface.
  • the RAM in the memory unit 19 is used for temporarily storing data, programs, and the like as a work area for various data processing of the CPU of the camera control unit 18.
  • the ROM and flash memory (nonvolatile memory) in the memory unit 19 include an OS (Operating System) for the CPU to control each unit, content files such as a moving image file MF, application programs for various operations, and a firmware. It is used to store clothing and the like.
  • the driver unit 22 is provided with, for example, a motor driver for the zoom lens drive motor, a motor driver for the focus lens drive motor, a motor driver for the diaphragm mechanism motor, and the like. These motor drivers apply a drive current to the corresponding driver in response to an instruction from the camera control unit 18, to move the focus lens and the zoom lens, open and close the diaphragm blades of the diaphragm mechanism, and the like.
  • the sensor unit 23 comprehensively shows various sensors mounted on the image pickup apparatus.
  • an IMU intial measurement unit
  • an angular velocity is detected by a three-axis angular velocity (gyro) sensor of pitch-, yaw, and roll
  • acceleration is detected by an acceleration sensor. can do.
  • the sensor unit 23 may include a sensor capable of detecting camera shake during imaging, and does not need to include both a gyro sensor and an acceleration sensor. Further, the sensor unit 23 may be equipped with a position information sensor, an illuminance sensor, or the like.
  • the moving image file MF imaged and generated by the above image pickup device 1 can be transferred to the image processing devices TDx and TDy of the mobile terminal 2 and the like for image processing.
  • the mobile terminal 2 and the personal computer 3 serving as the image processing devices TDx and TDy can be realized as, for example, an information processing device having the configuration shown in FIG.
  • the server 4 can be realized by the information processing device having the configuration shown in FIG.
  • the CPU 71 of the information processing apparatus 70 executes various processes according to a program stored in the ROM 72 or a program loaded from the storage unit 79 into the RAM 73.
  • the RAM 73 also appropriately stores data and the like necessary for the CPU 71 to execute various processes.
  • the CPU 71, ROM 72, and RAM 73 are connected to each other via a bus 74.
  • An input / output interface 75 is also connected to the bus 74.
  • An input unit 76 including an operator and an operation device is connected to the input / output interface 75.
  • various controls and operation devices such as a keyboard, mouse, keys, dial, touch panel, touch pad, and remote controller are assumed.
  • the user's operation is detected by the input unit 76, and the signal corresponding to the input operation is interpreted by the CPU 71.
  • a display unit 77 made of an LCD or an organic EL panel and an audio output unit 78 made of a speaker or the like are connected to the input / output interface 75 as one or a separate body.
  • the display unit 77 is a display unit that performs various displays, and is composed of, for example, a display device provided in the housing of the information processing device 70, a separate display device connected to the information processing device 70, and the like.
  • the display unit 77 executes the display of various images for image processing, moving images to be processed, and the like on the display screen based on the instruction of the CPU 71. Further, the display unit 77 displays various operation menus, icons, messages, etc., that is, as a GUI (Graphical User Interface) based on the instruction of the CPU 71.
  • GUI Graphic User Interface
  • a storage unit 79 composed of a hard disk, a solid-state memory, or the like, or a communication unit 80 composed of a modem or the like may be connected to the input / output interface 75.
  • the communication unit 80 performs communication processing via a transmission line such as the Internet, wire / wireless communication with various devices, bus communication, and the like.
  • a drive 82 is also connected to the input / output interface 75, if necessary, and a removable recording medium 81 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately mounted.
  • the drive 82 can read data files such as a moving image file MF and various computer programs from the removable recording medium 81.
  • the read data file is stored in the storage unit 79, and the image and sound included in the data file are output by the display unit 77 and the sound output unit 78. Further, the computer program or the like read from the removable recording medium 81 is installed in the storage unit 79 as needed.
  • this information processing device 70 for example, software for image processing as the image processing device of the present disclosure can be installed via network communication by the communication unit 80 or a removable recording medium 81.
  • the software may be stored in the ROM 72, the storage unit 79, or the like in advance.
  • FIG. 6 shows a function provided as an information processing device 70 that functions as an image processing device TDx. That is, the information processing device 70 (CPU 71) has functions as a shake changing unit 101, a parameter setting unit 102, a user interface processing unit 103, and an area setting unit 104.
  • the "user interface” is also referred to as "UI”
  • the user interface processing unit 103 is also referred to as "UI processing unit 103" below.
  • the shaking changing unit 101 is a function of performing shaking changing processing for changing the shaking state appearing in the output moving image data by using the parameters PRM1 and PRM2 based on the user's input and automatic setting and the adjusted shaking information.
  • the shaking changing unit 101 performs processing for removing shaking and adding shaking to obtain an output image as moving image data in which shaking has been removed or added. Further, the shaking changing unit 101 performs shaking changing processing for each area in the image based on the area information iAR.
  • the UI processing unit 103 is a function of causing the user to present an operator related to the shaking change and performing a process of acquiring operation information by the operator. For example, the UI processing unit 103 performs a process of displaying an operator, a preview image, information about an image, and the like as a UI image on the display unit 77. Further, the UI processing unit 103 detects the user's operation by the input unit 76. For example, a touch operation on a UI image is detected.
  • the parameter setting unit 102 is a function of setting the parameters PRM1 and PRM2 for the shaking change processing based on the operation information acquired by the UI processing unit 103. That is, the user operation content detected by the UI processing unit 103 is converted into the parameters PRM1 and PRM2 for changing the shaking, and the data is supplied to the shaking changing unit 101 to change the shaking of the moving image data according to the user's operation. Allow processing to take place.
  • the parameter PRM1 is a parameter for performing sway removal or sway addition, and can be said to be an indicated value of the overall sway removal amount or sway addition amount.
  • the parameter PRM2 is an instruction value of the shaking change processing that causes different shaking states for each area, such as the amount of difference in shaking for each of a plurality of areas set by the area setting unit 104 in the image.
  • the parameter PRM2 includes the amount of shaking for each region (the difference in the amount of shaking may be used), the period of shaking for each region, the value indicating the direction of shaking for each region, and the like. ..
  • the parameter PRM1 used for changing the shaking due to the rotation of the celestial sphere model which will be described later
  • the parameter PRM2 used for changing the shaking condition of a part area by enlarging / reducing the image by moving the coordinate points on the celestial sphere are distinguished.
  • the use of the parameters PRM1 and PRM2 having such a meaning is only an example.
  • the shaking change process may be performed so that the shaking changing unit 101 is in a different shaking state for each region in the image according to the parameter PRM2.
  • the parameter setting unit 102 does not necessarily have to set the parameters according to the user operation.
  • parameters may be set to add a fixed shaking pattern.
  • the parameters PRM1 and PRM2 may be automatically set according to the image content.
  • the shaking information may be selected according to the image content, and the parameters PRM1 and PRM2 may be set according to the shaking pattern.
  • the user selects a shaking pattern and sets the parameters PRM1 and PRM2 according to the selection.
  • the area setting unit 104 performs a process of setting a plurality of areas in the image of the moving image data according to, for example, an operation of specifying the area detected by the UI processing unit 103. Then, the area information iAR indicating the set area is provided to the shaking change unit 101. For example, the area setting unit 104 performs a touch operation such that the user traces an arbitrary range on the preview image displayed on the display unit 77 by the processing of the UI processing unit 103, an operation of designating or drawing some line, and the like. Depending on what is done, it is conceivable to determine the boundary instructed by the user and divide and set the area in the screen. The shaking changing unit 101 grasps the area in the image by the area information iAR, and performs the shaking changing process so that the shaking is different for each area.
  • FIG. 7 shows another functional configuration example.
  • FIG. 7 shows a configuration example in which the area setting unit 104 sets the area by image analysis instead of user operation.
  • the area setting unit 104 analyzes the input moving image data to perform, for example, determination of the subject person, determination of the main subject, determination of the type of the subject such as a moving object / fixed object / background, composition determination, and the like. Set the area division accordingly. Then, the area information iAR indicating the set area area is provided to the shaking change unit 101.
  • an example of area setting based on user operation is shown in FIG. 6 and an example of automatic area setting based on image analysis is shown in FIG. 7, but both of them may be used.
  • a user performs an operation of designating a subject, it is conceivable to identify the range of the subject or the range of a similar subject by image analysis and generate a boundary of the area.
  • a region candidate may be presented to the user based on image analysis, and the user may be able to select the region division pattern to be adopted by an operation.
  • the UI processing unit 103 and the parameter setting unit 102 are shown in the configuration examples of FIGS. 6 and 7, these configurations are not essential when changing the shaking for each area.
  • the shaking changing unit 101 and the area setting unit 104 By providing at least the shaking changing unit 101 and the area setting unit 104, the shaking change for each area is realized.
  • FIG. 8A is an example divided into a region AR1 in which a person riding a bicycle is shown on the lower side of the image and a region AR2 on the upper side considered to be a background image. note that.
  • the boundary region is shown as the region AR3, which can be considered to have a slight width at the boundaries of the regions AR1 and AR2.
  • the areas AR1 and AR2 are set according to the user performing an operation such as tracing the boundary between the areas AR1 and AR2.
  • the area AR1 is automatically set so as to surround the area in which a person is captured, and the other areas are set as the area AR2.
  • the area AR1 is an area for expressing power by shaking, and since the area AR2 is a background or the like, it is desired to eliminate or reduce the shaking. In the shaking change process according to the area setting in this way, the shaking is relatively large for the area AR1 and the shaking is reduced for the area AR2.
  • Shake change processing such as processing P1 and processing P2 is assumed.
  • -Processing P1 Shaking and adding only to the area AR1 (the area AR2 maintains a state without shaking).
  • -Processing P2 A large amount of shaking is added to the area AR1, and a small amount of shaking is added to the area AR2.
  • shaking changing processing such as the following processing P3, processing P4, processing P5, and processing P6 is assumed.
  • -Processing P3 Shake addition to the area AR1 and shaking removal (including partial removal) to the area AR2.
  • -Processing P4 A large amount of shaking is added to the area AR1, and a small amount of shaking is added to the area AR2.
  • -Processing P5 Shake removal (including partial removal) is performed only in the area AR2 (the area AR1 maintains the shaking state).
  • -Processing P6 Partial sway removal for removing a small amount of sway in the area AR1 and sway removal for almost eliminating the sway in the area AR2 are performed.
  • the area AR3 which is a boundary area
  • FIG. 8B is an example of dividing the area of the course (paved road and dirt) in the image.
  • the following is a specific example of the effect, taking as an example the image after the shaking at the time of the original imaging is removed by the shaking removal.
  • FIG. 9 schematically shows a processing example of shaking change using the celestial sphere model MT.
  • FIG. 9A shows one frame of an image that is shaken due to camera shake or the like at the time of imaging.
  • the frame of this two-dimensional image is converted into a three-dimensional image model attached to the virtual celestial sphere model MT as shown in FIG. 9B.
  • the corresponding points from two dimensions to three dimensions are obtained from the lens distortion characteristic data.
  • this celestial sphere model MT is rotated according to the shaking information at the time of imaging, a three-dimensional image model in which the shaking of FIG. 9C is removed can be obtained.
  • the shaking information at the time of imaging is, for example, IMU data described later or a quarternion QD based on the IMU data.
  • the specific coordinate range AZ shown by the thick line is cut out from the celestial sphere model MT of FIG. 9C, a two-dimensional image in which shaking and lens distortion are removed can be obtained as shown in FIG. 9D.
  • FIGS. 10 and 11 show a state in which a certain frame and another frame are attached to the celestial sphere model MT.
  • the radial line is a line corresponding to the longitude in the celestial sphere model MT
  • the concentric line is a line corresponding to the latitude.
  • the images of FIGS. 10 and 11 are images of different frames that differ in time, and the positions of the images projected onto the celestial sphere model MT as shown in FIGS. 9A to 9B are displaced due to the shaking during imaging. It becomes a thing.
  • FIG. 12A shows a pixel range of a certain moving image data and a cutout range CR as an image to be output.
  • FIG. 12A shows a state in which there is no enlargement / reduction in the moving image data
  • FIG. 12B shows a state in which the shaded area is enlarged
  • FIG. 12C shows a state in which the shaded area is reduced.
  • the area of the cutting range CR does not change.
  • the shaded area can be considered as the area AR3 which is the boundary area in FIG. 8A and the like.
  • FIG. 12B by enlarging the boundary region AR3, the coordinates of each pixel in the lower portion (region AR1 in FIG. 8A) move downward.
  • FIG. 12C the boundary region AR3 is reduced, so that the coordinates of each pixel in the lower portion (region AR1 in FIG. 8A) move upward.
  • FIG. 12B the enlargement processing shown in FIG. 13 is performed in the shaded portion which is the boundary region (AR3).
  • FIG. 13A shows a certain four pixels in the boundary region.
  • “A”, “b”, “c”, and “d” are pixel values (for example, RGB values).
  • FIG. 14A is similar to FIG. 13A.
  • the reduction process is performed as shown in FIGS. 14B and 14C.
  • FIG. 14B "la”, “lb”, “lc”, and “ld” are the distances from “p” to "a", "b", "c", and “d”.
  • the pixel size is "1" and "p”.
  • Performing the above-mentioned enlargement / reduction for each frame means that the intersection coordinates of the mesh of the celestial sphere model MT are moved according to the degree of shaking, and the image cut out as the cutout range CR in FIG. 12 is from the boundary area.
  • shaking is added to one area. Therefore, for example, with respect to the shaking of the region AR2, the rotation of the celestial sphere model MT removes, partially removes, or adds, and then the movement of the coordinate points due to the enlargement / reduction of the boundary region is added to the pixels of the region AR1.
  • AR1 is in a state where a stronger shaking than the region AR2 is added.
  • a boundary area in contact with the area AR1 and a boundary area in contact with the area AR2 may be set, and enlargement / reduction may be performed for each frame according to different shaking amounts / cycles / directions.
  • the above-mentioned processes P1 to P6 may be realized by combining the sway change due to the rotation of the celestial sphere model MT and the sway change of a specific region due to the coordinate change.
  • FIG. 15A shows the data included in the moving image file MF.
  • the moving image file MF includes various data as "header”, “sound”, “movie”, and "metadata”.
  • “header” information such as a file name and a file size as well as information indicating the presence or absence of metadata are described.
  • “Sound” is audio data recorded together with a moving image. For example, 2-channel stereo audio data is stored.
  • the “movie” is moving image data, and is composed of image data as each frame (# 1, # 2, # 3, ...) Constituting the moving image.
  • the "metadata” additional information associated with each frame (# 1, # 2, # 3, ...) Constituting the moving image is described.
  • FIG. 15B An example of the contents of the metadata is shown in FIG. 15B.
  • IMU data, coordinate conversion parameter HP, timing information TM, and camera parameter CP are described for one frame. It should be noted that these are a part of the metadata contents, and here, only the information related to the image processing described later is shown.
  • the IMU data As the IMU data, a gyro (angular velocity data), an accelerator (acceleration data), and a sampling rate are described.
  • the IMU mounted on the image pickup apparatus 1 as the sensor unit 23 outputs angular velocity data and acceleration data at a predetermined sampling rate. Generally, this sampling rate is higher than the frame rate of the captured image, so that many IMU data samples can be obtained in one frame period.
  • n samples are associated with each frame, such as gyro sample # 1, gyro sample # 2, ... Gyro sample # n shown in FIG. 15C.
  • m samples are associated with each frame, such as accelerator sample # 1, accelerator sample # 2, ... accelerator sample # m.
  • n m
  • n ⁇ m the metadata is described here as an example associated with each frame, for example, the IMU data may not be completely synchronized with the frame. In such a case, for example, the time information associated with the time information of each frame is provided as the IMU sample timing offset in the timing information TM.
  • the coordinate conversion parameter HP is a general term for parameters used for correction accompanied by coordinate conversion of each pixel in the image. It also includes non-linear coordinate transformations such as lens distortion.
  • the coordinate conversion parameter HP is a term that can include at least a lens distortion correction parameter, a trapezoidal distortion correction parameter, a focal plane distortion correction parameter, an electronic image stabilization parameter, and an optical image stabilization parameter.
  • the lens distortion correction parameter is information for directly or indirectly grasping how the distortion such as barrel aberration and pincushion aberration is corrected and returning the image to the image before the lens distortion correction.
  • the metadata regarding the lens distortion correction parameter as one of the metadata will be briefly described.
  • FIG. 16A shows the image height Y, the angle ⁇ , the entrance pupil position d1, and the exit pupil position d2 in the schematic diagram of the lens system 11 and the image sensor 12a.
  • the lens distortion correction parameter is used in image processing to know the incident angle of each pixel of the image sensor 12a. Therefore, it is sufficient to know the relationship between the image height Y and the angle ⁇ .
  • FIG. 16B shows the image 110 before the lens distortion correction and the image 111 after the lens distortion correction.
  • the maximum image height H0 is the maximum image height before distortion correction, and is the distance from the center of the optical axis to the farthest point.
  • the maximum image height H1 is the maximum image height after distortion correction.
  • the metadata required to understand the relationship between the image height Y and the angle ⁇ is the maximum image height H0 before distortion correction and the incident angle data d0, d1, ... d (N-) for each of the N image heights. 1). It is assumed that "N" is about 10 as an example.
  • the trapezoidal distortion correction parameter is a correction amount when correcting the trapezoidal distortion caused by shifting the cutout area from the center by electronic image stabilization, and is also a value corresponding to the correction amount of electronic image stabilization.
  • the focal plane distortion correction parameter is a value indicating the amount of correction for each line with respect to the focal plane distortion.
  • the parameters of lens distortion correction, trapezoidal distortion correction, focal plane distortion correction, and electronic image stabilization are collectively referred to as coordinate conversion parameters, but these correction processes are performed by each of the image sensors 12a of the image sensor unit 12. This is because it is a correction process for an image formed on a pixel and is a parameter of a correction process that involves a coordinate conversion of each pixel.
  • Optical image stabilization is also one of the coordinate conversion parameters, but this is because the correction of the fluctuation of the inter-frame component in the optical image stabilization is a process that involves coordinate conversion of each pixel.
  • the image data to which the lens distortion correction, the trapezoidal distortion correction, the focal plane distortion correction, the electronic image stabilization, and the optical image stabilization have been performed can be captured before each correction processing, that is, by imaging. It is possible to return to the state when the image sensor 12a of the element unit 12 is imaged.
  • the lens distortion correction, trapezoidal distortion correction, and focal plane distortion correction parameters are distortion correction processing for the case where the optical image itself from the subject is an image captured in an optically distorted state, and each of them is an optical distortion. Since it is intended for correction, it is collectively referred to as an optical distortion correction parameter. That is, if the reverse correction is performed using these parameters, the image data to which the lens distortion correction, the trapezoidal distortion correction, and the focal plane distortion correction have been performed can be returned to the state before the optical distortion correction.
  • the timing information TM in the metadata includes each information of exposure time (shutter speed), exposure start timing, readout time (curtain speed), number of exposure frames (long exposure information), IMU sample offset, and frame rate. In the image processing of the present embodiment, these are mainly used to associate the line of each frame with the IMU data. However, even if the image sensor 12a is a CCD or a global shutter CMOS, if the exposure center of gravity shifts using an electronic shutter or mechanical shutter, the exposure start timing and curtain speed are also used to match the exposure center of gravity. Correction is possible.
  • the camera parameter CP in the metadata As the camera parameter CP in the metadata, the angle of view (focal length), zoom position, and lens distortion information are described.
  • FIG. 17 shows the procedures of various processes executed in the information processing device 70 as the image processing device TDx, and shows the relationship of the information used in each process.
  • the processes of steps ST13, ST14, ST15, and ST16 enclosed as step ST30 in FIG. 17 are performed.
  • the parameter setting process of step ST41 is performed.
  • the UI processing in step ST40 is performed.
  • the area setting process of step ST42 is performed.
  • step ST30 surrounded by a broken line is referred to as "sway change”, and step ST16 is described as "sway change processing”.
  • Step ST16 is a celestial sphere model MT for actually changing the state of shaking. It is a process such as movement of coordinate points by rotation or enlargement / reduction of the boundary area, and is a "sway change” in a narrow sense.
  • step ST30 is a broadly defined “sway change” including the sway change process of step ST16, the celestial sphere model process as a preparation for the process, and parameter setting.
  • the pre-processing is the processing performed when the moving image file MF is imported.
  • the term "import" as used herein means that the information processing device 70 targets, for example, a moving image file MF that can be accessed by being imported into a storage unit 79 or the like, and performs image processing by performing preprocessing. It means to develop as possible. For example, it does not mean transferring from the image pickup device 1 to the mobile terminal 2 or the like.
  • the CPU 71 imports the moving image file MF designated by the user operation or the like so as to be the image processing target, and also performs processing related to the metadata added to the moving image file MF as preprocessing. For example, a process of extracting and storing metadata corresponding to each frame of a moving image is performed. Specifically, in this preprocessing, metadata extraction (step ST1), all IMU data concatenation (step ST2), metadata retention (step ST3), conversion to quotation (posture information of imaging device 1), and retention. (Step ST4) is performed.
  • step ST1 the CPU 71 reads the target moving image file MF and extracts the metadata included in the moving image file MF as described with reference to FIG. Note that part or all of steps ST1, ST2, ST3, and ST4 may be performed on the image source VS side such as the image pickup apparatus 1. In that case, in the pre-processing, the contents after the processing described below are acquired as metadata.
  • the CPU 71 performs a concatenation process on the IMU data (angular velocity data (gyro sample) and acceleration data (accelerator sample)) in step ST2.
  • This is a process of constructing IMU data corresponding to the entire sequence of moving images by arranging and concatenating all the IMU data associated with all frames in chronological order.
  • integration processing is performed on the connected IMU data to calculate a quarternion QD representing the posture of the imaging device 1 at each time point on the sequence of moving images, and this is stored and retained. It is an example that the quarternion QD is calculated. It is also possible to calculate the quarternion QD using only the angular velocity data.
  • the CPU 71 performs a process of holding the metadata other than the IMU data, that is, the coordinate conversion parameter HP, the timing information TM, and the camera parameter CP in step ST3. That is, the coordinate conversion parameter HP, the timing information TM, and the camera parameter CP are stored in a state corresponding to each frame.
  • the CPU 71 is ready to perform various image processing including the shaking change of the moving image data received as the moving image file MF.
  • the routine processing of FIG. 17 shows image processing performed on the moving image data of the moving image file MF that has been preprocessed as described above.
  • the CPU 71 takes out one frame of the moving image (step ST11), cancels the internal correction of the image pickup device (step ST12), pastes it on the celestial sphere model (step ST13), synchronizes processing (step ST14), adjusts the shaking information (step ST15), and shakes. Change (step ST16), output area designation (step ST17), plane projection and cutout (step ST18).
  • the CPU 71 performs each of the above steps ST11 to ST20 for each frame when reproducing the image of the moving image file MF. Along with these, the CPU 71 performs UI processing (step ST40), parameter setting processing (step ST41), and area setting processing (step ST42) at necessary timings.
  • step ST11 the CPU 71 decodes one frame of the moving image (moving image file MF) along the frame number FN. Then, one frame of moving image data PD (#FN) is output. Note that "(#FN)" indicates a frame number and indicates that the information corresponds to that frame. If the moving image is not encoded by compression or the like, the decoding process in step ST11 is not necessary.
  • step ST12 the CPU 71 performs a process of canceling the internal correction performed by the image pickup apparatus 1 for the moving image data PD (#FN) of one frame.
  • the CPU 71 refers to the coordinate conversion parameter HP (#FN) stored corresponding to the frame number (#FN) at the time of preprocessing, and performs a correction opposite to the correction performed by the image pickup apparatus 1.
  • moving image data iPD (#FN) in a state in which lens distortion correction, trapezoidal distortion correction, focal plane distortion correction, electronic camera shake correction, and optical camera shake correction in the image pickup apparatus 1 are canceled is obtained.
  • step ST12 it is moving image data in which the shaking removal or the like performed by the image pickup apparatus 1 is canceled and the influence of the shaking such as camera shake at the time of imaging appears as it is.
  • the process of canceling the internal correction of the image pickup apparatus as step ST12 may not be performed.
  • the process of step ST12 may be skipped and the moving image data PD (#FN) may be output as it is.
  • step ST13 the CPU 71 attaches the 1-frame video data iPD (#FN) in a state where various corrections have been canceled to the celestial sphere model MT.
  • the camera parameter CP (#FN) stored corresponding to the frame number (#FN), that is, the angle of view, the zoom position, and the lens distortion information are referred to.
  • FIG. 18 shows an outline of attachment to the celestial sphere model MT.
  • FIG. 18A shows the moving image data iPD.
  • the image height h is the distance from the center of the image.
  • Each circle in the figure indicates a position where the image heights h are equal.
  • the "relationship between the image sensor surface and the incident angle ⁇ " in that frame is calculated, and "data0" at each position on the image sensor surface ... Let's say “dataN-1”. Then, from “data0” ... "dataN-1", it is expressed as a one-dimensional graph of the relationship between the image height h and the incident angle ⁇ as shown in FIG. 18B.
  • the incident angle ⁇ is the angle of the light beam (the angle seen from the optical axis).
  • This one-dimensional graph is rotated once around the center of the captured image, and the relationship between each pixel and the incident angle is obtained. Accordingly, mapping from the pixel G1 in FIG. 18C to the celestial sphere model MT is performed for each pixel of the moving image data iPD as in the pixel G2 on the celestial sphere coordinates.
  • an image (data) of the celestial sphere model MT in which the captured image is attached to the ideal celestial sphere with the lens distortion removed can be obtained.
  • this celestial sphere model MT the parameters and distortions peculiar to the image pickup device 1 that originally captured the moving image data iPD are removed, and the range that can be seen by an ideal pinhole camera is pasted on the celestial sphere. Therefore, by rotating the image of the celestial sphere model MT in a predetermined direction in this state, it is possible to realize the overall shaking removal of the image and the shaking change processing as the shaking addition.
  • the attitude information (quarterion QD) of the image pickup apparatus 1 is used for the shaking change processing. Therefore, the CPU 71 performs the synchronization process in step ST14.
  • a process of identifying and acquiring a quaternion QD (#LN) suitable for each line corresponding to the frame number FN is performed. Note that "(#LN)" indicates a line number in the frame and indicates that the information corresponds to that line.
  • the reason why the quarternion QD (#LN) for each line is used is that when the image sensor 12a is a CMOS type and the imaging is performed by the rolling shutter method, the amount of shaking differs for each line.
  • a frame-by-frame quarternion QD (#FN) may be used.
  • the center of gravity shifts when an electronic shutter (similar to a mechanical shutter) is used, so the center of the exposure period of the frame (shifts according to the shutter speed of the electronic shutter). ) Timing quotation should be used.
  • FIG. 19 shows the synchronization signal cV of the image pickup apparatus 1 during the vertical period, the synchronization signal sV of the image sensor 12a generated from the synchronization signal cV, and the sample timing of the IMU data, and also shows the exposure timing range 120.
  • the exposure timing range is a parallelogram schematically showing the exposure period of each line of one frame when the exposure time is t4 by the rolling shutter method.
  • the temporal offset t0 of the synchronization signal cV and the synchronization signal sV, the IMU sample timing offset t1, the read start timing t2, the read time (shutter speed) t3, and the exposure time t4 are shown.
  • the read start timing t2 is the timing after a predetermined time t2of has passed from the synchronization signal sV.
  • Each IMU data obtained at each IMU sample timing is associated with a frame.
  • the IMU data in the period FH1 is the metadata associated with the current frame indicating the exposure period in a parallelogram
  • the IMU data in the period FH1 is the metadata associated with the next frame.
  • the IMU data in the period FH1 is the metadata associated with the next frame.
  • the association between each frame and the IMU data is released, and the IMU data can be managed in chronological order.
  • the IMU data corresponding to the exposure center of gravity (timing of the broken line W) of each line of the current frame is specified. This can be calculated if the temporal relationship between the IMU data and the effective pixel area of the image sensor 12a is known.
  • the IMU data corresponding to the exposure center of gravity (timing of the broken line W) of each line is specified by using the information that can be acquired as the timing information TM corresponding to the frame (#FN). That is, it is information on the exposure time, the exposure start timing, the readout time, the number of exposure frames, the IMU sample offset, and the frame rate. Then, the quaternion QD calculated from the IMU data of the exposure center of gravity is specified and used as the quaternion QD (#LN) which is the attitude information for each line.
  • This quarternion QD (#LN) is provided for the process of adjusting the shaking information in step ST15.
  • the CPU 71 adjusts the quaternion QD according to the input parameter PRM1 for changing the shaking.
  • the parameter PRM1 may be a parameter input according to a user operation or a parameter generated by automatic control.
  • the user can input to set the parameter PRM1 by the operation method provided in the UI processing of step ST40 so as to add an arbitrary degree of shaking to the image. Further, the CPU 71 can generate the parameter PRM1 by automatic control according to an image analysis, an image type, a user's shaking model selection operation, or the like.
  • the user can input an operation to instruct the shaking change. That is, an operation for instructing the shaking as a shaking effect, an operation for instructing the degree of shaking removal, and the like.
  • the CPU 71 sets the parameters in step ST41. That is, the shaking change parameter is set according to the user operation, and is used for the shaking information adjustment process in step ST15.
  • the user can further perform an operation of dividing the area and an operation input for instructing the amount of shaking to be applied to each area. That is, it is an operation for changing the shaking for each area.
  • the parameter PRM2 for changing the shaking for each area is set according to such processing and provided for the shaking changing process of step ST16.
  • the CPU 71 sets the area according to the user operation and provides the area information iAR to the shaking change process of step ST16.
  • an automatic area setting based on the image analysis result may be performed instead of the area setting according to the user operation. Therefore, in the area setting process, there is a case where the image analysis process is performed on the moving image data iPD, the area is automatically set according to the subject recognition, and the area information iAR is provided for the shaking change process in step ST16.
  • the area information iAR may be generated according to both the image analysis and the user input. For example, when a user specifies a certain person on an image, the pixel range of the person is specified by image analysis, and the pixel range is set as one area.
  • the CPU 71 adds shaking to the image or increases or decreases the amount of shaking based on the quaker QD which is the shaking information at the time of imaging and the parameter PRM1 set in step ST41. Generate adjusted quaternion eQD for.
  • FIG. 20 shows an example in which the adjusted quarternion eQD is generated according to the instruction of the gain for each frequency band by the parameter PRM1.
  • the frequency band is a band of fluctuation frequencies.
  • the band is divided into three bands: low band, middle band, and high band.
  • the number of bands may be 2 or more.
  • the low-frequency gain LG, the mid-frequency gain MG, and the high-frequency gain HG are given as the parameters PRM1.
  • the adjustment processing system of FIG. 20 includes a low-pass filter 41, a mid-pass filter 42, a high-pass filter 43, gain calculation units 44, 45, 46, and a synthesis unit 47.
  • “Quaternion QDs for shaking” are input to this adjustment processing system. This is the conjugate of the quarternion QD as shake information during imaging.
  • Each value q for the current frame as the quaternion QDs for shaking and the predetermined frames before and after is input to the low-pass filter 41, and the low-pass component q low is obtained.
  • the gain calculation unit 44 gives the low-frequency gain LG to the low-frequency component q low.
  • Mean (q, n) in the equation indicates the average value of n before and after q. It goes without saying that this mean (q, n) equation is just an example of a low-pass filter, and other calculation methods may be used. Each equation described below is also an example.
  • the value q of the quarternion QDs for shaking is also input to the mid- range passing filter 42, and the mid-range component q mid is obtained.
  • q * low is a conjugate of q low.
  • x is the quaternion product.
  • the gain calculation unit 45 gives the mid-range gain MG to the mid- range component q mid.
  • the value q of the quarternion QDs for shaking is input to the high frequency passing filter 43, and the high frequency component q high is obtained.
  • q * mid is a conjugate of q mid.
  • the gain calculation unit 46 gives a high-frequency gain HG to the high-frequency component q high.
  • Such gain calculating section 44, 45 and 46 respectively the low frequency gain LG, midrange gain MG, high frequency gain HG is low frequency component q 'low, midrange component q' given mid, high-frequency components q 'You get high.
  • the value q mixed obtained by combining this with the synthesis unit 47 is obtained.
  • FIG. 21 shows an example in which the adjusted quarternion eQD is generated according to the instruction of the gain for each direction by the parameter PRM1.
  • the direction is the direction of sway, that is, the direction of yaw, pitch, and roll.
  • Yaw gain YG, pitch gain PG, and roll gain RG are given as parameters PRM1.
  • the adjustment processing system of FIG. 21 includes a yaw component extraction unit 51, a pitch component extraction unit 52, a roll component extraction unit 53, a gain calculation unit 54, 55, 56, and a synthesis unit 57.
  • Information on the yaw axis, the pitch axis, and the roll axis is provided to the yaw component extraction unit 51, the pitch component extraction unit 52, and the roll component extraction unit 53, respectively.
  • Each value q for the current frame as the quarternion QDs for shaking and the predetermined frames before and after is input to the yaw component extraction unit 51, the pitch component extraction unit 52, and the roll component extraction unit 53, respectively, and the yaw component q yaw and the pitch component q are input.
  • Find pitch and roll component q roll In each of these component extraction processes, the input is set to the next “q in ”.
  • u is a unit vector representing the direction of axes such as the yaw axis, the pitch axis, and the roll axis.
  • the yaw component q yaw , the pitch component q pitch , and the roll component q roll obtained by such component extraction are given the yaw gain YG, the pitch gain PG, and the roll gain RG by the gain calculation units 54, 55, and 56, respectively. ..
  • FIG. 22 is an example in which the above frequency bands and directions are combined.
  • the adjustment processing system includes a low-pass filter 41, a mid-pass filter 42, a high-pass filter 43, direction-specific processing units 58, 59, 60, a gain calculation unit 44, 45, 46, and a synthesis unit 61.
  • low-frequency gain LG, mid-frequency gain MG, high-frequency gain HG, and yaw gain YG, pitch gain PG, and roll gain RG (not shown) are given.
  • each value q for the current frame as the quaternion QDs for shaking and the predetermined frames before and after is supplied to the low-pass filter 41, the mid-pass filter 42, and the high-pass filter 43, and the respective bands are supplied. Get the ingredients.
  • Each band component is input to the direction-specific processing units 58, 59, 60.
  • Each of the direction-specific processing units 58, 59, 60 has a yaw component extraction unit 51, a pitch component extraction unit 52, a roll component extraction unit 53, a gain calculation unit 54, 55, 56, and a synthesis unit 57 in FIG. do.
  • the direction-specific processing unit 58 the low-frequency components of the quarternion QDs for shaking are divided into the yaw direction, roll direction, and pitch direction components, and the gain calculation is performed using the yaw gain YG, pitch gain PG, and roll gain RG. After performing the above, synthesize.
  • the direction-specific processing unit 59 divides the mid-range components of the quaternion QDs for shaking into the components in the yaw direction, the roll direction, and the pitch direction, performs the same gain calculation, and then synthesizes the components.
  • the direction-specific processing unit 60 divides the high-frequency components of the quaternion QDs for shaking into components in the yaw direction, roll direction, and pitch direction, performs gain calculation in the same manner, and then synthesizes the components.
  • the gains used in the direction-specific processing units 58, 59, and 60 have different gain values. That is, the direction-specific processing unit 58 uses the low-frequency yaw gain YG, the low-frequency pitch gain PG, and the low-frequency roll gain RG, and the direction-specific processing unit 59 uses the mid-range yaw gain YG and the mid-range.
  • the pitch gain PG and the roll gain RG for the mid range are used, and the direction-specific processing unit 60 uses the yaw gain YG for the high range, the pitch gain PG for the high range, and the roll gain RG for the high range. That is, it is conceivable that the direction-specific processing units 58, 59, and 60 use nine gains.
  • the outputs of these direction-specific processing units 58, 59, and 60 are supplied to the gain calculation units 44, 45, and 46, respectively, and low-frequency gain LG, mid-frequency gain MG, and high-frequency gain HG are given, respectively. Then, it is synthesized by the synthesis unit 61 and output as the value of the adjusted quarternion eQD.
  • processing for each direction is applied for each band component, but the reverse is also possible. That is, after dividing by direction first, processing for each frequency band may be applied for each direction component. In that case, it is conceivable to use nine gains in the processing for each frequency band. For example, in the processing for each frequency band in the yaw direction, the low-frequency gain LG for the yaw direction, the mid-range gain MG for the yaw direction, and the high-frequency gain HG for the yaw direction are used.
  • the low-frequency gain LG for the pitch direction In the processing for each frequency band in the pitch direction, the low-frequency gain LG for the pitch direction, the mid-range gain MG for the pitch direction, and the high-frequency gain HG for the pitch direction are used. In the processing for each frequency band in the roll direction, the low-frequency gain LG for the roll direction, the mid-range gain MG for the roll direction, and the high-frequency gain HG for the roll direction are used.
  • step ST15 of FIG. 17 for example, the adjusted quarternion eQD is generated by the above processing example. Then, the generated adjusted quarternion eQD is provided for the shaking change processing in step ST16.
  • the shaking change processing in step ST16 can be considered to apply, for example, the adjusted quarternion eQD obtained by the processing of FIGS. 20, 21, and 22 to an image to add shaking. If the adjusted quaternion eQD is generated as a value for removing sway or partially removing sway, not for swaying, what is the sway change processing in step ST16? The adjusted quaternion eQD is applied to the image to remove the sway. , Can be considered to be reduced.
  • step ST16 the CPU 71 rotates the image of the celestial sphere model MT to which the frame image is pasted in step ST13 by using the quatertern eQD (#LN) after adjusting for each line, thereby rotating the entire image. Try to change the sway.
  • the CPU 71 changes the shaking for each area according to the area information iAR and the parameter PRM2. That is, first, the boundary region AR3 is specified from the regions AR1 and AR2 grasped from the region information iAR. Alternatively, the area AR3 is specified from the information of the boundary area AR3 set together with the areas AR1 and AR2 in the area setting process of step ST42 and included in the area information iAR. Further, based on the parameter PRM2, the amount of shaking given to the area AR2 (for example, the difference in the amount of shaking from the area AR1), the period of shaking, the direction of shaking, and the like are grasped.
  • the parameter PRM2 the amount of shaking given to the area AR2 (for example, the difference in the amount of shaking from the area AR1), the period of shaking, the direction of shaking, and the like are grasped.
  • the celestial sphere model MT of the pixels in the range of the area AR1 for each frame Allow movement of the coordinate points above.
  • the sway change from the above-mentioned process P1 to the process P6 is executed by the overall sway change due to the rotation of the celestial sphere model MT and the sway change due to the coordinate point movement.
  • the region AR1 is shaken and the region AR2 is not shaken (or slightly shaken).
  • processing P1, processing P3, processing P5 Further, by further shaking the region AR1 after adding the shaking by the rotation of the celestial sphere model MT, the region AR1 is shaken greatly and the region AR2 is shaken slightly.
  • processing P2, processing P4 Further, by removing the shaking by rotating the celestial sphere model MT and then shaking the areas AR1 and AR2 with different amounts of shaking by moving the coordinate points, the area AR1 can generate a large shaking image and the area AR2 can generate a small shaking image. (For example, processing P2, processing P4)
  • step ST18 The image of the celestial sphere model hMT whose shaking has been changed as described above is sent to the processing of step ST18.
  • the CPU 71 projects the image of the celestial sphere model hMT whose shaking has been changed onto a plane and cuts it out to obtain an image (output moving image data oPD) whose shaking has been changed.
  • the sway change is realized by the rotation of the celestial sphere model MT, and by using the celestial sphere model MT, the trapezoidal shape is not formed no matter where it is cut out, and as a result, the trapezoidal distortion is also eliminated.
  • the celestial sphere model MT has no lens distortion because the range that can be seen by an ideal pinhole camera is pasted on the celestial sphere.
  • the focal plane distortion correction is also eliminated by rotating the celestial sphere model MT according to the adjusted quarternion eQD (#LN) based on the quarternion QD (#LN) for each line. Furthermore, since the quarternion QD (#LN) corresponds to the exposure center of gravity of each line, the blur is inconspicuous in the image.
  • FIG. 23A shows an example of the rectangular coordinate plane 131 to be projected in a plane. Let each coordinate of the image projected on the plane be (x, y).
  • the coordinate plane 131 is arranged (normalized) in the three-dimensional space so as to be in contact with the celestial sphere model MT in the center. That is, the center of the coordinate plane 131 is arranged at a position that coincides with the center of the celestial sphere model MT and is in contact with the celestial sphere model MT.
  • the coordinates are normalized based on the zoom magnification and the size of the cutout area. For example, when the horizontal coordinates of the coordinate plane 131 are 0 to outh and the vertical coordinates are 0 to outv as shown in FIG. 23A, outh and outv are the image sizes. Then, for example, the coordinates are normalized by the following equation.
  • min (A, B) is a function that returns the smaller value of A and B.
  • "zoom” is a parameter for controlling enlargement / reduction.
  • xnorm, ynorm, and znorm are normalized x, y, and z coordinates. According to each of the above equations (Equation 12), the coordinates of the coordinate plane 131 are normalized to the coordinates on the spherical surface of the hemisphere having a radius of 1.0.
  • the coordinate plane 131 is rotated by rotation matrix calculation for the rotation for obtaining the orientation of the cutout region. That is, the following rotation matrix (Equation 13) is used to rotate the pan angle, tilt angle, and roll angle.
  • the pan angle is a rotation angle that rotates the coordinates around the z-axis.
  • the tilt angle is a rotation angle for rotating the coordinates around the x-axis, and the roll angle is a rotation angle for rotating the coordinates around the y-axis.
  • These coordinates are used to calculate the celestial sphere corresponding points in perspective projection.
  • the coordinate plane 131 is perspectively projected onto the surface of the celestial sphere (region 132). That is, when a straight line is drawn from the coordinates toward the center of the celestial sphere, the point that intersects the sphere is found.
  • Each coordinate is calculated as follows.
  • xsph, ysph, and zsph are coordinates obtained by projecting the coordinates on the coordinate plane 131 onto the coordinates on the surface of the celestial sphere model MT. Image data projected in a plane can be obtained in this relationship.
  • the cutout area for the image projected on the plane by the above method is set in step ST17 of FIG.
  • the cutout area information CRC in the current frame is set based on the tracking process by image analysis (subject recognition) and the cutout area instruction information CRC according to the user operation.
  • FIGS. 25A and 25B show the cutout area information CRA set for the image of a certain frame in the state of the frame.
  • Such cutout area instruction information CRC is set for each frame.
  • the cutout area information CRA also reflects the instruction of the aspect ratio of the image by the user or automatic control.
  • the cutout area information CRA is reflected in the process of step ST18. That is, as described above, the region corresponding to the cutout region information CRA is projected on the celestial sphere model MT in a plane, and the output moving image data oPD is obtained.
  • the output moving image data oPD obtained in this way is moving image data in which the shaking change processing is performed in step ST16 so that the shaking state is different for each area.
  • an image to which shaking is added is displayed as a shaking effect. Therefore, for example, when the user performs an operation for setting the parameters PRM1 and PRM2 and the area, the image is obtained by adding a shaking effect according to the user's intention for each area.
  • the image may be an image in which the area is automatically set and the degree of shaking according to the subject is added to each area.
  • Such moving image data is displayed or saved as an image with a shaking effect.
  • the area setting unit 104 (ST42) for setting a plurality of areas in the image of the input moving image data and the area set by the area setting unit 104 for the shaking state appearing in the output moving image data. It is provided with a shake changing unit 101 (ST30) that performs a shake changing process so as to be in a different state each time. Therefore, for example, it is possible to form a region without shaking and a region with shaking in the screen, or to form a region with small shaking and a region with large shaking.
  • the shaking changing unit 101 adds shaking for one area (for example, area AR1) set by the area setting unit 104 (ST42) and reduces shaking for the other area (for example, area AR2).
  • An example of performing the shaking change processing is described (for example, processing P3).
  • the shaking changing unit 101 adds shaking to one area (for example, area AR1) set by the area setting unit 104 (ST42), and one area for another area (for example, area AR2).
  • An example of performing a shaking change process for adding smaller shaking has been described (for example, process P2, process P4).
  • process P2, process P4 it is possible to set the magnitude of the shaking according to the subject in the image while increasing the shaking in the entire image, to achieve both visibility and effect, and to realize a new image effect due to the difference in the degree of shaking. ..
  • the shaking changing unit 101 reduces the shaking for one area (for example, area AR1) set by the area setting unit 104 (ST42), and one area for another area (for example, area AR2).
  • An example of performing a shaking change process for reducing shaking with a larger reduction amount has been described (for example, process P6).
  • the shaking changing unit 101 adds or reduces shaking to one of one area (for example, area AR1) and another area (for example, area AR2) set by the area setting unit 104 (ST42).
  • An example of performing the shaking change processing has been described (for example, processing P1, processing P5). This also makes it possible to set the magnitude of the shaking in the image according to the subject and the like, to achieve both visibility and a directing effect, and to realize a new image effect due to the difference in the degree of shaking. It is also possible to utilize the original shaking as a shaking effect in the other area.
  • the UI processing unit 103 (ST40) for detecting the operation information related to the shaking change is provided, and the area setting unit 104 describes an example of setting a plurality of areas based on the operation information detected by the UI processing unit 103. (See FIG. 6).
  • the area setting unit 104 describes an example of setting a plurality of areas based on the operation information detected by the UI processing unit 103. (See FIG. 6).
  • a plurality of areas are set according to the user's intention, and an image effect in which the degree of shaking differs in each area is realized. Therefore, it is possible to produce a shaking effect that reflects the user's image editing intention.
  • the area setting unit 104 has described an example of setting a plurality of areas based on the image analysis of the input moving image data (see FIG. 7). For example, subject recognition, detection of a specific subject, composition determination, determination of a fixed object such as a background, etc. are performed, and an area that should be shaken and an area that is not shaken are separated, and the area is automatically set. As a result, it is possible to set an appropriate area according to the image content and change the shaking for each area, and the user can easily obtain a shaking effect image in which the shaking is changed for each area.
  • the shaking change unit 101 attaches each frame of the input moving image data to be processed to the celestial sphere model MT, and rotates the shaking information (adjusted quaternion eQD) corresponding to each frame to change the shaking.
  • the shaking information adjusted quaternion eQD
  • an example is given in which the amount of shaking for each region is changed by moving the coordinate points on the celestial sphere model MT in each frame of the moving image data iPD (see FIGS. 9 to 14).
  • This makes it possible to partially increase the sway after changing the sway as a whole. Therefore, it is possible to change the shaking state for each region by enlarging / reducing by moving the coordinate points while making use of the shaking change due to the rotation of the celestial sphere model MT.
  • the shaking by enlarging and reducing the continuity of the image is not interrupted at the boundary of the region, so that the image quality can be kept good without performing complicated joint processing.
  • the movement of the coordinate points is a process of moving the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit 104 (FIGS. 9 to 9). 14).
  • the position change (that is, shaking) of a part of the area can be realized by a relatively simple process of changing the coordinates of the pixels only in the boundary area, that is, enlarging / reducing the image of the boundary area by moving the coordinate points.
  • each shaking can be expressed as a natural image.
  • the shaking for each region by rotating the celestial sphere model MT without moving the coordinate points.
  • the image of the area AR1 is attached to the first celestial sphere model
  • the image of the area AR2 is attached to the second celestial sphere model
  • the amount of shaking, the period, and the rotation in the shaking direction indicated by the parameters PRM2 are calculated, respectively. conduct.
  • the images projected from each celestial sphere model are combined. If this is performed for each frame, it is possible to obtain output moving image data oPD having a different shaking state for each area.
  • the program of the embodiment is a program that causes, for example, a CPU, a DSP, or a device including these to execute the process described with reference to FIG. That is, in the program of the embodiment, the area setting process (ST42) for setting a plurality of areas in the image of the input moving image data and the shaking state appearing in the output moving image data are different for each area set in the area setting process.
  • This is a program that causes the information processing apparatus to execute the shaking change processing (ST30) so as to be.
  • the above-mentioned image processing device TDx can be realized in a device such as a mobile terminal 2, a personal computer 3, or an image pickup device 1.
  • a program that realizes such an image processing device TDx can be recorded in advance in an HDD as a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like.
  • a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like.
  • flexible discs CD-ROMs (Compact Disc Read Only Memory), MO (Magneto Optical) discs, DVDs (Digital Versatile Discs), Blu-ray discs (Blu-ray Discs (registered trademarks)), magnetic discs, semiconductor memories, It can be temporarily or permanently stored (recorded) on a removable recording medium such as a memory card.
  • a removable recording medium can be provided as so-called package software.
  • it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • the personal computer or the like can function as the image processing device of the present disclosure. Can be done.
  • the present technology can also adopt the following configurations.
  • An area setting unit that sets multiple areas in the image of the input video data
  • An image processing device including a shaking changing unit that performs shaking changing processing so that the shaking state appearing in the output moving image data is different for each area set by the area setting unit.
  • the shaking change part is The image processing apparatus according to (1) above, wherein shaking is added to one area set by the area setting unit, and shaking change processing is performed to reduce the shaking of another area set by the area setting unit.
  • the shaking change part is Shake change processing is performed to add shaking to one area set by the area setting unit and to add shaking smaller than the one area to the other areas set by the area setting unit (1) or (2). ).
  • the image processing apparatus is
  • the shaking change part is Shake change processing is performed to reduce shaking in one area set by the area setting unit and to reduce shaking in another area set by the area setting unit with a reduction amount larger than that in the one area (1).
  • the image processing apparatus according to any one of (3).
  • the shaking change part is The image processing apparatus according to any one of (1) to (4) above, which performs a shaking change process for adding or reducing shaking to one of one area and the other area set by the area setting unit.
  • (6) Equipped with a user interface processing unit that detects operation information related to shaking changes The image processing device according to any one of (1) to (5) above, wherein the area setting unit sets a plurality of areas based on operation information detected by the user interface processing unit.
  • the image processing apparatus according to any one of (1) to (6) above, wherein the area setting unit sets a plurality of areas based on image analysis of the input moving image data.
  • the shaking changing unit changes the shaking of the entire image by pasting each frame of the input moving image data to the celestial sphere model and rotating each frame using the shaking information corresponding to each frame (1).
  • the image processing apparatus according to any one of (7) to (7).
  • (9) The image processing apparatus according to (8) above, wherein the shaking changing unit changes the amount of shaking for each region by moving coordinate points on the celestial sphere model in each frame.
  • the shaking change part is The image processing apparatus according to (9) above, wherein the movement of the coordinate points is a process of moving the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit.
  • the image processing device Area setting process to set multiple areas in the image of input video data, An image processing method for performing a shaking change process for making the shaking state appearing in the output moving image data different for each area set in the area setting process.
  • Area setting process to set multiple areas in the image of input video data Shake change processing that makes the state of shaking appearing in the output video data different for each area set in the area setting process, and Is a program that causes the information processing device to execute.
  • Imaging device 2
  • Mobile terminal 3
  • Personal computer 4 Server 5
  • Recording medium 70
  • Information processing device 71
  • CPU 101
  • Shake change unit 102
  • Parameter setting unit 103
  • UI processing unit 104
  • Area setting unit 104

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

The present invention realises processing that increases the variety of image effects produced through the expression of image shake states. This image processing device is configured such that the following are carried out: region setting processing in which a plurality of regions are set in an image that is from input moving image data; and vibration change processing in which states of shake appearing in output moving image data are made to be different states for each region set by the region setting processing.

Description

画像処理装置、画像処理方法、プログラムImage processing device, image processing method, program
 本技術は画像処理装置、画像処理方法、プログラムに関し、特に画像の揺れについての画像処理に関する。 This technology relates to image processing devices, image processing methods, and programs, and particularly to image processing related to image shake.
 撮像装置で撮像した動画について各種の補正などの画像処理を行う技術が知られている。
 下記特許文献1では撮影画像に係る動画データに対して防振処理を実行するとともに、防振処理後の動画データを対象として防振処理の影響を除去することが開示されている。
There is known a technique for performing image processing such as various corrections on a moving image captured by an imaging device.
Patent Document 1 below discloses that vibration isolation processing is performed on moving image data related to captured images, and the influence of vibration isolation processing is removed on the moving image data after the vibration isolation processing.
特開2015-216510号公報Japanese Unexamined Patent Publication No. 2015-216510
 ところで昨今、ユーザはスマートフォンやタブレットなどの携帯端末、或いはカメラ自体やパーソナルコンピュータなどを用いて画像撮像や画像調整等を手軽に行うことができ、また動画投稿なども盛んである。
 このような環境下では、ユーザが撮像した画像をそのまま出力するのではなく、より品質の高い画像や多様な画像を制作することが望まれている。
 また放送事業者などにおいても画像の多様な演出が可能とされることが望まれている。
By the way, in recent years, users can easily perform image imaging and image adjustment using mobile terminals such as smartphones and tablets, or cameras themselves and personal computers, and video posting is also popular.
In such an environment, it is desired to produce higher quality images and various images instead of outputting the images captured by the user as they are.
It is also desired that broadcasters and the like can produce various images.
 例えば動画の内容に合わせて画像に揺れを加えることは画像表現を広げる演出の一手法である。しかし画像内には揺れさせたい被写体と揺れさせたくない被写体がある場合や、一部のみ激しく揺らせたい場合など、画像効果の要望は多様である。
 そこで本開示では、動画における揺れの付加や除去を行う場合に、画像内容に応じた揺れ変更を与えた画像を生成できるようにする技術を提案する。
For example, adding shaking to an image according to the content of a moving image is a method of producing an effect that expands the image expression. However, there are various requests for image effects, such as when there are subjects in the image that are desired to be shaken and subjects that are not desired to be shaken, or when only a part of the image is to be shaken violently.
Therefore, the present disclosure proposes a technique capable of generating an image in which shaking is changed according to the image content when adding or removing shaking in a moving image.
 本技術に係る画像処理装置は、入力動画データの画像内で複数の領域を設定する領域設定部と、出力動画データに現れる揺れの状態が、前記領域設定部が設定した領域毎に異なる状態となるようにする揺れ変更処理を行う揺れ変更部と、を備える。
 揺れ変更処理は、動画に生じている揺れを低減したり揺れを付加したりするなどして揺れの状態を変化させることである。そして入力動画データにおける一画面内を複数の領域に分割し、その領域毎に揺れの状態を変更することで、例えば画面内で揺れのない領域と揺れのある領域を形成することや、揺れの小さい領域と揺れの大きい領域を形成することなどを可能とする。
In the image processing device according to the present technology, the area setting unit for setting a plurality of areas in the image of the input moving image data and the shaking state appearing in the output moving image data are different for each area set by the area setting unit. It is provided with a shaking change unit that performs a shaking change process so as to be.
The shaking change process is to change the shaking state by reducing the shaking generated in the moving image or adding the shaking. Then, by dividing one screen of the input video data into a plurality of areas and changing the shaking state for each area, for example, a region without shaking and a region with shaking can be formed in the screen, or the shaking can be formed. It is possible to form a small area and a large shaking area.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、前記領域設定部が設定した一の領域について揺れを付加し、前記領域設定部が設定した他の領域について揺れを低減する揺れ変更処理を行うことが考えられる。
 例えば画像内で揺れない(或いは揺れが少ない)領域と、揺れている(或いは揺れが大きい)領域が得られるようにする。
In the image processing apparatus according to the present technology described above, the shaking changing unit adds shaking for one area set by the area setting unit and reduces shaking for the other area set by the area setting unit. It is conceivable to perform change processing.
For example, it is possible to obtain a region that does not shake (or has less shake) and a region that shakes (or has a large shake) in the image.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、前記領域設定部が設定した一の領域について揺れを付加し、前記領域設定部が設定した他の領域について前記一の領域よりも小さい揺れを付加する揺れ変更処理を行うことが考えられる。
 例えば画像内で揺れが少ない領域と、揺れが大きい領域が得られるようにする。
In the image processing apparatus according to the present technology described above, the shaking changing unit adds shaking for one area set by the area setting unit, and the other area set by the area setting unit is more than the one area. It is conceivable to perform a shaking change process that adds a small amount of shaking.
For example, a region with less shaking and a region with large shaking can be obtained in the image.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、前記領域設定部が設定した一の領域について揺れを低減し、前記領域設定部が設定した他の領域について前記一の領域よりも大きい低減量で揺れを低減する揺れ変更処理を行うことが考えられる。
 例えば画像内で揺れが少し低減された領域と、揺れが大幅に低減された領域が得られるようにする。
In the image processing apparatus according to the present technology described above, the shaking changing unit reduces shaking for one area set by the area setting unit, and is more than the other area set by the area setting unit. It is conceivable to perform a shaking change process that reduces shaking with a large reduction amount.
For example, in the image, a region where the shaking is slightly reduced and a region where the shaking is significantly reduced can be obtained.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、前記領域設定部が設定した一の領域と他の領域の一方に揺れを付加又は低減する揺れ変更処理を行うことが考えられる。
 例えば画像内で揺れが付加又は低減された領域と、付加又は低減がされていない領域が得られるようにする。
In the image processing apparatus according to the present technology described above, it is conceivable that the shaking changing unit performs shaking changing processing for adding or reducing shaking to one of one area and the other area set by the area setting unit. ..
For example, it is possible to obtain a region in which shaking is added or reduced and a region in which shaking is not added or reduced in the image.
 上記した本技術に係る画像処理装置においては、揺れ変更に関する操作情報を検知するユーザインタフェース処理部を備え、前記領域設定部は、前記ユーザインタフェース処理部が検知した操作情報に基づいて複数の領域を設定することが考えられる。
 例えば一画面内における複数の領域に分割するための境界や範囲をユーザが指定可能とする。
The image processing device according to the present technology described above includes a user interface processing unit that detects operation information related to shaking change, and the area setting unit sets a plurality of areas based on the operation information detected by the user interface processing unit. It is possible to set it.
For example, the user can specify a boundary or a range for dividing into a plurality of areas in one screen.
 上記した本技術に係る画像処理装置においては、前記領域設定部は、前記入力動画データの画像解析に基づいて複数の領域を設定することが考えられる。
 例えば画像内における被写体認識などにより、特定の被写体が写されている画素範囲に基づいて領域を設定する。
In the image processing apparatus according to the present technology described above, it is conceivable that the area setting unit sets a plurality of areas based on the image analysis of the input moving image data.
For example, by subject recognition in an image, an area is set based on a pixel range in which a specific subject is captured.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、前記入力動画データの各フレームを天球モデルへ貼付し、各フレームに対応する揺れ情報を用いて前記各フレームを回転させることで、画像全体の揺れ変更を行うことが考えられる。
 例えば角速度センサや加速度センサの情報から求める撮像装置の揺れ情報(例えばクオータニオン:Quaternion)に基づいて、天球モデル上で回転処理を行う。
In the image processing device according to the present technology described above, the shaking changing unit attaches each frame of the input moving image data to the celestial sphere model and rotates each frame using the shaking information corresponding to each frame. , It is conceivable to change the shaking of the entire image.
For example, rotation processing is performed on the celestial sphere model based on the shaking information (for example, quaternion) of the imaging device obtained from the information of the angular velocity sensor and the acceleration sensor.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、各フレームにおける前記天球モデル上の座標点の移動により領域毎の揺れ量を変更することが考えられる。
 例えば天球モデル上の画像の座標点を移動させることで、画像の拡大又は縮小がフレーム毎に変動するようにすることで、部分的な揺れを実現する。
In the image processing apparatus according to the present technology described above, it is conceivable that the shaking changing unit changes the shaking amount for each region by moving the coordinate points on the celestial sphere model in each frame.
For example, by moving the coordinate points of the image on the celestial sphere model, the enlargement or reduction of the image fluctuates from frame to frame, thereby realizing partial shaking.
 上記した本技術に係る画像処理装置においては、前記揺れ変更部は、前記座標点の移動は、前記領域設定部が設定した一の領域と他の領域の間の境界領域の画素の座標点を移動させる処理であることが考えられる。
 例えば画像内で複数の領域の境界領域を伸び縮みさせることで、一方の領域の揺れが大きくなるようにする。
In the image processing apparatus according to the present technology described above, the shaking changing unit moves the coordinate points by setting the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit. It is conceivable that it is a process of moving.
For example, by expanding and contracting the boundary region of a plurality of regions in the image, the shaking of one region is increased.
 本技術に係る画像処理方法は、画像処理装置が、入力動画データの画像内で複数の領域を設定する領域設定処理と、出力動画データに現れる揺れの状態が、前記領域設定処理で設定した領域毎に異なる状態となるようにする揺れ変更処理と、を行う。
 これにより画像の領域単位で揺れ付加や揺れ除去が実行できるようにする。
 本技術に係るプログラムは、このような画像処理方法に相当する処理を情報処理装置に実行させるプログラムである。
 これにより本開示の画像処理を各種の情報処理装置で実行可能とする。
In the image processing method according to the present technology, the image processing apparatus sets an area setting process for setting a plurality of areas in the image of the input moving image data, and the shaking state appearing in the output moving image data is an area set in the area setting process. A shaking change process that makes the state different for each is performed.
This makes it possible to add or remove shake in each area of the image.
The program according to the present technology is a program that causes an information processing apparatus to execute a process corresponding to such an image processing method.
As a result, the image processing of the present disclosure can be executed by various information processing devices.
本技術の実施の形態で用いられる機器の説明図である。It is explanatory drawing of the apparatus used in embodiment of this technique. 実施の形態の機器間で伝送される情報の説明図である。It is explanatory drawing of the information transmitted between the devices of embodiment. 実施の形態の撮像装置のブロック図である。It is a block diagram of the image pickup apparatus of an embodiment. 実施の形態の撮像装置における画像の揺れ除去処理の説明図である。It is explanatory drawing of the image shake removal processing in the image pickup apparatus of embodiment. 実施の形態の情報処理装置のブロック図である。It is a block diagram of the information processing apparatus of embodiment. 実施の形態の画像処理装置としての機能構成例の説明図である。It is explanatory drawing of the functional configuration example as an image processing apparatus of embodiment. 実施の形態の画像処理装置としての他の機能構成例の説明図である。It is explanatory drawing of the other functional configuration example as an image processing apparatus of embodiment. 実施の形態の領域毎の揺れ変更の説明図である。It is explanatory drawing of the shaking change for each area of embodiment. 実施の形態の天球モデルによる揺れ変更の説明図である。It is explanatory drawing of the shaking change by the celestial sphere model of embodiment. 実施の形態の揺れ変更における天球モデルの座標変動の説明図である。It is explanatory drawing of the coordinate change of the celestial sphere model in the shaking change of embodiment. 実施の形態の揺れ変更における天球モデルの座標変動の説明図である。It is explanatory drawing of the coordinate change of the celestial sphere model in the shaking change of embodiment. 実施の形態の領域毎の拡大/縮小の説明図である。It is explanatory drawing of enlargement / reduction for each area of embodiment. 実施の形態の拡大のための座標変化の説明図である。It is explanatory drawing of the coordinate change for expansion of embodiment. 実施の形態の縮小のための座標変化の説明図である。It is explanatory drawing of the coordinate change for reduction of embodiment. 実施の形態の動画ファイル及びメタデータの内容の説明図である。It is explanatory drawing of the content of the moving image file and metadata of embodiment. レンズ歪み補正に関するメタデータの説明図である。It is explanatory drawing of metadata about lens distortion correction. 実施の形態の画像処理の説明図である。It is explanatory drawing of the image processing of embodiment. 実施の形態の天球モデルへの貼付の説明図である。It is explanatory drawing of attachment to the celestial sphere model of embodiment. 実施の形態のIMUデータのサンプルタイミングの説明図である。It is explanatory drawing of the sample timing of the IMU data of embodiment. 実施の形態の周波数帯域別の揺れ情報調整の説明図である。It is explanatory drawing of the fluctuation information adjustment for each frequency band of embodiment. 実施の形態の方向別の揺れ情報調整の説明図である。It is explanatory drawing of the shaking information adjustment for each direction of embodiment. 実施の形態の周波数帯域別及び方向別の揺れ情報調整の説明図である。It is explanatory drawing of the swing information adjustment for each frequency band and each direction of the embodiment. 実施の形態の出力画像と天球モデルの対応付けの説明図である。It is explanatory drawing of the correspondence between the output image of an embodiment and a celestial sphere model. 実施の形態の出力座標平面の回転と透視射影の説明図である。It is explanatory drawing of rotation and perspective projection of the output coordinate plane of embodiment. 実施の形態の切り出し領域の説明図である。It is explanatory drawing of the cut-out area of embodiment.
 以下、実施の形態を次の順序で説明する。
<1.画像処理装置として適用できる機器の構成>
<2.装置構成及び処理機能>
<3.動画ファイル及びメタデータ>
<4.実施の形態の画像処理>
<5.まとめ及び変形例>
Hereinafter, embodiments will be described in the following order.
<1. Equipment configuration applicable as an image processing device>
<2. Device configuration and processing function>
<3. Video files and metadata>
<4. Image processing of the embodiment>
<5. Summary and modification>
 なお実施の形態の説明に先だって、説明で用いる一部の用語について説明しておく。
 「揺れ」とは動画を構成する画像のフレーム間の揺れ(interframe shake)を指す。いわゆる撮像装置で撮像された画像における手ぶれ(camera shake)等に起因する揺れや、画像処理により意図的に付加した揺れなど、フレーム間で生じる振動成分(フレーム間での画像の揺らぎ)を広く指すものとする。
Prior to the description of the embodiment, some terms used in the description will be described.
“Shake” refers to the interframe shake of the images that make up a moving image. It broadly refers to vibration components (image fluctuations between frames) that occur between frames, such as shaking caused by camera shake in an image captured by a so-called image pickup device, or shaking intentionally added by image processing. It shall be.
 「揺れ変更(interframe shake modification)」は、画像に生じている揺れの低減や、画像に揺れを付加することなど、画像における揺れの状態を変化させることをいう。
 この「揺れ変更」には次の「揺れ除去(interframe shake reduction)」「揺れ付加(interframe shake addition)」が含まれるものとする。
"Interframe shake modification" refers to changing the state of shaking in an image, such as reducing the shaking occurring in the image or adding shaking to the image.
This "shake change" shall include the following "interframe shake reduction" and "interframe shake addition".
 「揺れ除去」は、手ぶれなどにより画像に生じている揺れを無くすこと(揺れの全部除去)、もしくは低減すること(揺れの一部除去)をいう。即ち撮像時の揺れ情報に基づいて揺れを低減させるように調整することをいう。撮像装置において行われるいわゆる手ぶれ補正は、揺れ除去を行っていることになる。 "Shake removal" refers to eliminating or reducing the shaking that occurs in the image due to camera shake (total removal of shaking) or reduction (partial removal of shaking). That is, it means adjusting so as to reduce the shaking based on the shaking information at the time of imaging. The so-called image stabilization performed in the image pickup apparatus is to remove the shaking.
 「揺れ付加」は、画像に揺れを加えることをいう。揺れの無い画像に揺れを加えること、及び揺れがある画像に更に揺れを大きくするように揺れを加えることが含まれる。 "Adding shaking" means adding shaking to the image. This includes adding shaking to an image without shaking, and adding shaking to an image with shaking so as to further increase the shaking.
 以上の「揺れ除去(揺れ一部除去を含む)」や「揺れ付加」は、結果として揺れ状態を変化させたり揺れのある画像を得るための処理となり、従って揺れ演出を加える処理であるともいえる。
 なお、揺れ演出の目的の一例としては、動画のシーンに迫力を与えるため、わざと画像を揺らすことなどが想定される。
The above-mentioned "sway removal (including partial sway removal)" and "sway addition" are processes for changing the sway state or obtaining an image with sway as a result, and therefore can be said to be a process for adding a sway effect. ..
As an example of the purpose of the shaking effect, it is assumed that the image is intentionally shaken in order to give power to the moving image scene.
 「撮像時揺れ情報」とは、撮像装置で撮像された際の揺れに関する情報であり、撮像装置の動きの検出情報や、該検出情報から算出できる情報や、撮像装置の姿勢を表す姿勢情報や、撮像装置の動きとしてのシフトや回転の情報などが該当する。
 実施の形態では、「撮像時揺れ情報」の具体例として、クオータニオン(QD)、IMUデータを挙げるが、他にも例えばシフト・回転情報などもあり、特には限定されない。
"Shake information during imaging" is information related to shaking when an image is taken by an image pickup device, such as motion detection information of the image pickup device, information that can be calculated from the detection information, and posture information indicating the posture of the image pickup device. , Information such as shift and rotation as the movement of the image pickup device is applicable.
In the embodiment, the quarternion (QD) and the IMU data are given as specific examples of the "shaking information at the time of imaging", but there are other examples such as shift / rotation information, and the present invention is not particularly limited.
<1.画像処理装置として適用できる機器の構成>
 以下の実施の形態では、主にスマートフォンやパーソナルコンピュータなどの情報処理装置により本開示に係る画像処理装置が実現される例で説明していくが、画像処理装置は、各種の機器において実現できる。まずは本開示の技術を適用できる機器について説明しておく。
<1. Equipment configuration applicable as an image processing device>
In the following embodiments, an example in which the image processing device according to the present disclosure is realized mainly by an information processing device such as a smartphone or a personal computer will be described, but the image processing device can be realized in various devices. First, a device to which the technology of the present disclosure can be applied will be described.
 図1Aは画像ソースVSと、画像ソースVSから動画ファイルMFを取得する画像処理装置(TDx,TDy)としての例を示している。なお動画ファイルMFは、動画を構成する画像データ(即ち動画データ)や音声データを含む。但し、動画ファイルと別に音声ファイルがあって同期できるようにされていてもよい。また動画データとしては、連写された複数の静止画データも含まれる。
 なお、画像処理装置TDxは、画像ソースVSから取得された動画データに対して一次的に揺れ変更処理を行う機器とする。
 一方、画像処理装置TDyは、他の画像処理装置で既に揺れ変更処理が行われた動画データについて二次的に揺れ変更処理を行う機器とする。
FIG. 1A shows an example of an image source VS and an image processing device (TDx, TDy) that acquires a moving image file MF from the image source VS. The moving image file MF includes image data (that is, moving image data) and audio data constituting the moving image. However, there may be an audio file separate from the video file so that it can be synchronized. The moving image data also includes a plurality of continuously shot still image data.
The image processing device TDx is a device that temporarily performs shaking change processing on the moving image data acquired from the image source VS.
On the other hand, the image processing device TDy is a device that secondarily performs the shaking change processing on the moving image data that has already been subjected to the shaking change processing by another image processing device.
 画像ソースVSとしては撮像装置1、サーバ4、記録媒体5などが想定される。
 画像処理装置TDx、TDyとしてはスマートフォンなどの携帯端末2やパーソナルコンピュータ3などが想定される。他にも図示していないが、画像編集専用装置、クラウドサーバ、テレビジョン装置、ビデオ記録再生装置など各種の機器が画像処理装置TDx、TDyとして想定される。これらの機器は、画像処理装置TDx、TDyのいずれとしても機能できる。
As the image source VS, an image pickup device 1, a server 4, a recording medium 5, and the like are assumed.
As the image processing devices TDx and TDy, a mobile terminal 2 such as a smartphone, a personal computer 3 and the like are assumed. Although not shown, various devices such as an image editing dedicated device, a cloud server, a television device, and a video recording / playback device are assumed as image processing devices TDx and TDy. These devices can function as any of the image processing devices TDx and TDy.
 画像ソースVSとしての撮像装置1は動画撮像を行うことのできるデジタルカメラ等であり、動画撮像によって得られた動画ファイルMFを有線通信や無線通信を介して携帯端末2やパーソナルコンピュータ3などに転送する。
 サーバ4はローカルサーバ、ネットワークサーバ、クラウドサーバなどのいずれであっても良いが、撮像装置1で撮像された動画ファイルMFを提供できる装置を指す。このサーバ4がなんらかの伝送路を介して動画ファイルMFを携帯端末2やパーソナルコンピュータ3などに転送することが考えられる。
The image pickup device 1 as an image source VS is a digital camera or the like capable of performing video imaging, and transfers the video file MF obtained by video imaging to a mobile terminal 2 or a personal computer 3 via wired communication or wireless communication. do.
The server 4 may be a local server, a network server, a cloud server, or the like, but refers to a device capable of providing a moving image file MF captured by the image pickup device 1. It is conceivable that the server 4 transfers the moving image file MF to the mobile terminal 2 or the personal computer 3 via some kind of transmission path.
 記録媒体5はメモリカード等の固体メモリ、光ディスク等のディスク状記録媒体、磁気テープ等のテープ状記録媒体などのいずれでもよいが、撮像装置1で撮像された動画ファイルMFが記録されたリムーバブル記録媒体を指している。この記録媒体5から読み出された動画ファイルMFが携帯端末2やパーソナルコンピュータ3などに読み取られることが考えられる。 The recording medium 5 may be a solid-state memory such as a memory card, a disk-shaped recording medium such as an optical disk, or a tape-shaped recording medium such as a magnetic tape, but removable recording in which the moving image file MF captured by the imaging device 1 is recorded. Pointing to the medium. It is conceivable that the moving image file MF read from the recording medium 5 is read by the mobile terminal 2 or the personal computer 3.
 画像処理装置TDx、TDyとしての携帯端末2やパーソナルコンピュータ3等は、以上の画像ソースVSから取得した動画ファイルMFに対する画像処理が可能とされている。ここでいう画像処理とは、揺れ変更処理(揺れ付加や揺れ除去)を含む。
 揺れ変更処理は、例えば、動画データのフレーム毎に、後述する天球モデルへの貼付処理が行われた後に、当該フレームに対応する姿勢情報を用いて回転することや、天球モデル上の画素の座標点の移動などにより行うことができる。
The mobile terminal 2 and the personal computer 3 as the image processing devices TDx and TDy are capable of performing image processing on the moving image file MF acquired from the above image source VS. The image processing referred to here includes shaking change processing (shaking addition and shaking removal).
The shaking change processing is performed, for example, for each frame of moving image data, after the processing of pasting to the celestial sphere model, which will be described later, is performed, and then the rotation is performed using the attitude information corresponding to the frame, or the coordinates of the pixels on the celestial sphere model. It can be done by moving points.
 なお、或る携帯端末2やパーソナルコンピュータ3が、画像処理装置TDx,TDyとして機能する他の携帯端末2やパーソナルコンピュータ3に対する画像ソースVSとなることもある。 Note that a certain mobile terminal 2 or personal computer 3 may serve as an image source VS for another mobile terminal 2 or personal computer 3 that functions as an image processing device TDx or TDy.
 図1Bは、画像ソースVSと画像処理装置TDxの両方として機能できる1つの機器としての撮像装置1や携帯端末2を示している。
 例えば撮像装置1の内部のマイクロコンピュータ等が揺れ変更処理を行う。
 つまり撮像装置1は撮像によって生成した動画ファイルMFに対して揺れ変更処理を行うことで、揺れ除去や揺れ付加を施した画像処理結果としての画像出力を行うことができるものとする。
FIG. 1B shows an image pickup device 1 and a mobile terminal 2 as one device that can function as both an image source VS and an image processing device TDx.
For example, a microcomputer or the like inside the image pickup apparatus 1 performs the shaking change processing.
That is, the image pickup apparatus 1 can output the image as the result of the image processing in which the shaking is removed or the shaking is added by performing the shaking changing process on the moving image file MF generated by the imaging.
 携帯端末2も同様であり、撮像機能を備えることで画像ソースVSとなり得るため、撮像によって生成した動画ファイルMFについて上記の揺れ変更処理を行うことで、揺れ除去や揺れ付加を施した画像処理結果としての画像出力を行うことができる。
 もちろん撮像装置1や携帯端末2に限らず、画像ソース兼画像処理装置となりうる機器は他にも各種考えられる。
The same applies to the mobile terminal 2, and since it can be an image source VS by having an imaging function, the image processing result obtained by removing or adding shaking by performing the above-mentioned shaking change processing on the moving image file MF generated by imaging. The image can be output as.
Of course, not limited to the image pickup device 1 and the mobile terminal 2, various other devices that can serve as an image source and an image processing device can be considered.
 以上のように実施の形態の画像処理装置TDx、TDyとして機能する装置及び画像ソースVSは多様であるが、以下では、撮像装置1等の画像ソースVS、携帯端末2等の画像処理装置TDx、及び他の画像処理装置TDyが、それぞれ別体の機器であるとして説明していく。 As described above, the image processing device TDx of the embodiment, the device functioning as the TDy, and the image source VS are various. And another image processing device TDy will be described as separate devices.
 図2は画像ソースVS、画像処理装置TDx、の画像処理装置TDyにおける情報伝送の様子を示している。
 画像ソースVSから画像処理装置TDxに対しては、動画データVD1とメタデータMTD1が、有線通信、無線通信、或いは記録媒体を介して伝送される。
 後述するが動画データVD1とメタデータMTD1は、例えば動画ファイルMFとして伝送される情報である。
 メタデータMTD1には、例えば手ぶれ補正などとして行われた撮像時の揺れ除去の情報として、座標変換パラメータHPが含まれる場合がある。
FIG. 2 shows a state of information transmission in the image processing device TDy of the image source VS and the image processing device TDx.
The moving image data VD1 and the metadata MTD1 are transmitted from the image source VS to the image processing device TDx via wired communication, wireless communication, or a recording medium.
As will be described later, the moving image data VD1 and the metadata MTD1 are information transmitted as, for example, a moving image file MF.
The metadata MTD1 may include a coordinate conversion parameter HP as information on shaking removal at the time of imaging performed, for example, as image stabilization.
 画像処理装置TDxは、動画データVD1とメタデータMTD1、さらには座標変換パラメータHPを受けて各種の処理を行うことができる。
 例えば画像処理装置TDxは、メタデータMTD1に含まれる撮像時揺れ情報を用いて動画データVD1に対する揺れ変更処理を行うことができる。
 また例えば画像処理装置TDxは、メタデータMTD1に含まれる座標変換パラメータHPを用いて撮像時に動画データVD1に施された揺れ除去をキャンセルすることができる。
The image processing device TDx can perform various processes by receiving the moving image data VD1, the metadata MTD1, and the coordinate conversion parameter HP.
For example, the image processing device TDx can perform the shaking change processing on the moving image data VD1 by using the shaking information at the time of imaging included in the metadata MTD1.
Further, for example, the image processing device TDx can cancel the shaking removal applied to the moving image data VD1 at the time of imaging by using the coordinate conversion parameter HP included in the metadata MTD1.
 画像処理装置TDxは、揺れ変更処理を行った場合、動画データと、撮像時揺れ情報と、揺れ変更処理の処理量が特定できる揺れ変更情報SMIとを関連付ける処理を行うようにしてもよい。揺れ変更情報SMIは後述する領域毎の揺れ変更の情報を含む。
 そして関連付けられた動画データと、撮像時揺れ情報と、揺れ変更情報SMIとは、画像処理装置TDyに対して一括して、或いは別々に、有線通信、無線通信、或いは記録媒体を介して伝送されるようにすることができる。
 ここで、「関連付ける」という用語は、例えば、一方の情報(データ、コマンド、プログラム等)を処理する際に他方の情報を利用し得る(リンクさせ得る)ようにすることを意味する。つまり、互いに関連付けられた情報は、1つのファイル等としてまとめられてもよいし、それぞれ個別の情報としてもよい。例えば、情報Aに関連付けられた情報Bは、その情報Aとは別の伝送路上で伝送されるようにしてもよい。また、例えば、情報Aに関連付けられた情報Bは、その情報Aとは別の記録媒体(または同一の記録媒体の別の記録エリア)に記録されるようにしてもよい。なお、この「関連付け」は、情報全体でなく、情報の一部であってもよい。例えば、画像とその画像に対応する情報とが、複数フレーム、1フレーム、またはフレーム内の一部分などの任意の単位で互いに関連付けられるようにしてもよい。
 より具体的には、例えば、複数の情報に同一のID(識別情報)を付与すること、複数の情報を同一の記録媒体に記録すること、複数の情報を同一のフォルダに格納すること、複数の情報を同一のファイルに格納すること(一方を他方にメタデータとして付与すること)、複数の情報を同一のストリームに埋め込むこと、例えば電子透かしのように画像にメタを埋め込むこと等の行為が、「関連付ける」に含まれる。
When the shaking change processing is performed, the image processing device TDx may perform a process of associating the moving image data with the shaking information at the time of imaging and the shaking change information SMI that can specify the processing amount of the shaking change processing. Shake change information SMI includes information on shake change for each region, which will be described later.
Then, the associated moving image data, the shaking information at the time of imaging, and the shaking change information SMI are collectively or separately transmitted to the image processing device TDy via wired communication, wireless communication, or a recording medium. Can be done.
Here, the term "associate" means, for example, to make the other information available (linkable) when processing one piece of information (data, commands, programs, etc.). That is, the information associated with each other may be collected as one file or the like, or may be individual information. For example, the information B associated with the information A may be transmitted on a transmission path different from that of the information A. Further, for example, the information B associated with the information A may be recorded on a recording medium (or another recording area of the same recording medium) different from the information A. Note that this "association" may be a part of the information, not the entire information. For example, an image and information corresponding to the image may be associated with each other in an arbitrary unit such as a plurality of frames, one frame, or a part within the frame.
More specifically, for example, assigning the same ID (identification information) to a plurality of pieces of information, recording a plurality of pieces of information on the same recording medium, storing a plurality of pieces of information in the same folder, and a plurality of cases. The act of storing the information in the same file (giving one to the other as metadata), embedding multiple pieces of information in the same stream, for example, embedding meta in an image like a digital watermark. , Included in "associate".
 図2では動画データVD2として画像処理装置TDxから画像処理装置TDyに伝送される動画データを示している。動画データVD2は、撮像装置1で行われた揺れ除去がキャンセルされた画像であったり、画像処理装置TDxで揺れ除去が施された画像であったり、画像処理装置TDxで揺れ変更処理が行われる前の画像であったり、揺れ変更以外の画像処理が施された画像であったりするなど、各種の例が考えられる。
 また図2では画像処理装置TDxから画像処理装置TDyに伝送されるメタデータMTD2を示している。メタデータMTD2はメタデータMTD1と同じ情報であったり、一部異なる情報であったりする。
 メタデータMTD2には撮像時揺れ情報が含まれるようにすると、画像処理装置TDyは、少なくとも動画データVD2と、メタデータMTD2に含まれる撮像時揺れ情報と、揺れ変更情報SMIが関連付けられた状態で取得できる。
 なお、揺れ変更情報SMIもメタデータMTD2に含まれるようにするデータ形態も考えられる。
FIG. 2 shows moving image data transmitted from the image processing device TDx to the image processing device TDy as moving image data VD2. The moving image data VD2 is an image in which the shake removal performed by the image pickup device 1 is canceled, an image in which the shake removal is performed by the image processing device TDx, or a shake change process is performed by the image processing device TDx. Various examples are conceivable, such as a previous image or an image that has undergone image processing other than shaking change.
Further, FIG. 2 shows the metadata MTD2 transmitted from the image processing device TDx to the image processing device TDy. The metadata MTD2 may have the same information as the metadata MTD1 or may have some different information.
When the metadata MTD2 includes the shaking information at the time of imaging, the image processing device TDy is in a state where at least the moving image data VD2, the shaking information at the time of imaging included in the metadata MTD2, and the shaking change information SMI are associated with each other. You can get it.
It should be noted that a data form in which the shaking change information SMI is also included in the metadata MTD2 can be considered.
 本実施の形態では、特に画像処理装置TDx(或いはTDy)で実行できる画像処理の例について説明していく。
In this embodiment, an example of image processing that can be executed by the image processing apparatus TDx (or TDy) will be described in particular.
<2.装置構成及び処理機能>
 まず画像ソースVSとなる撮像装置1の構成例を図3で説明する。
 なお図1Bで説明したように携帯端末2で撮像した動画ファイルMFについてその携帯端末2で画像処理をすることを想定する場合、撮像機能に関し以下の撮像装置1と同等の構成を携帯端末2が備えればよいことになる。
<2. Device configuration and processing function>
First, a configuration example of the image pickup apparatus 1 serving as the image source VS will be described with reference to FIG.
As described in FIG. 1B, when it is assumed that the moving image file MF captured by the mobile terminal 2 is subjected to image processing by the mobile terminal 2, the mobile terminal 2 has the same configuration as the following image pickup device 1 in terms of the image pickup function. You just have to prepare.
 また撮像装置1では、いわゆる手ぶれ補正といわれる、撮像時の撮像装置の動きによる画像の揺れを低減する処理が行われるが、これは撮像装置で行われる「揺れ除去」である。 これに対し、画像処理装置TDx、TDyで行われる「揺れ付加」や「揺れ除去」は、撮像装置1で撮像時に行われる「揺れ除去」とは独立した別個の処理となる。 Further, in the image pickup apparatus 1, so-called image stabilization, which is a process of reducing image shake due to the movement of the image pickup device at the time of imaging, is performed, which is "shaking removal" performed by the image pickup apparatus. On the other hand, the "shaking addition" and "shaking removal" performed by the image processing devices TDx and TDy are separate processes independent of the "shaking removal" performed at the time of imaging by the image pickup device 1.
 図3に示すように撮像装置1は、例えばレンズ系11、撮像素子部12、カメラ信号処理部13、記録制御部14、表示部15、出力部16、操作部17、カメラ制御部18、メモリ部19、ドライバ部22、センサ部23を有する。 As shown in FIG. 3, the image pickup apparatus 1 includes, for example, a lens system 11, an image sensor unit 12, a camera signal processing unit 13, a recording control unit 14, a display unit 15, an output unit 16, an operation unit 17, a camera control unit 18, and a memory. It has a unit 19, a driver unit 22, and a sensor unit 23.
 レンズ系11は、カバーレンズ、ズームレンズ、フォーカスレンズ等のレンズや絞り機構などを備える。このレンズ系11により、被写体からの光(入射光)が導かれ撮像素子部12に集光される。
 なお、図示していないがレンズ系11には手ぶれ等による画像の揺れ(interframe shake)及びブラー(blur)を補正する光学手ぶれ補正機構(optical image stabilization mechanism)が設けられている場合がある。
The lens system 11 includes a lens such as a cover lens, a zoom lens, and a focus lens, an aperture mechanism, and the like. Light from the subject (incident light) is guided by the lens system 11 and focused on the image sensor unit 12.
Although not shown, the lens system 11 may be provided with an optical image stabilization mechanism that corrects image shake (interframe shake) and blur due to camera shake or the like.
 撮像素子部12は、例えば、CMOS(Complementary Metal Oxide Semiconductor)型やCCD(Charge Coupled Device)型などのイメージセンサ12a(撮像素子)を有して構成される。
 この撮像素子部12では、イメージセンサ12aで受光した光を光電変換して得た電気信号について、例えばCDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。そしてデジタルデータとしての撮像信号を、後段のカメラ信号処理部13やカメラ制御部18に出力する。
 なお、図示していない光学手ぶれ補正機構としては、レンズ系11側ではなく、イメージセンサ12a側を移動させることで画像の揺れを補正する機構とされている場合やジンバルを用いた空間光学手ぶれ補正機構(balanced optical image stabilization mechanism)の場合等もあり、どのような方式であっても構わない。
 光学手ぶれ補正機構では、揺れ(interframe shake)に加えて後述するがフレーム内のブラーも合わせて補正される。
The image sensor unit 12 includes, for example, an image sensor 12a (imaging element) such as a CMOS (Complementary Metal Oxide Semiconductor) type or a CCD (Charge Coupled Device) type.
The image sensor unit 12 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, and the like on the electric signal obtained by photoelectric conversion of the light received by the image sensor 12a, and further performs A / D. (Analog / Digital) Perform conversion processing. Then, the image pickup signal as digital data is output to the camera signal processing unit 13 and the camera control unit 18 in the subsequent stage.
Note that the optical image stabilization mechanism (not shown) is a mechanism that corrects image shake by moving the image sensor 12a side instead of the lens system 11 side, or spatial optical image stabilization using a gimbal. In some cases, it may be a balanced optical image stabilization mechanism, and any method may be used.
In the optical image stabilization mechanism, in addition to the interframe shake, the blur in the frame is also corrected as described later.
 カメラ信号処理部13は、例えばDSP(Digital Signal Processor)等により画像処理プロセッサとして構成される。このカメラ信号処理部13は、撮像素子部12からのデジタル信号(撮像画像信号)に対して、各種の信号処理を施す。例えばカメラプロセスとしてカメラ信号処理部13は、前処理、同時化処理、YC生成処理、解像度変換処理、コーデック処理等を行う。
 またカメラ信号処理部13は各種補正処理も行う。但し手ぶれ補正については、撮像装置1内で行う場合もあれば、行わない場合も想定される。
The camera signal processing unit 13 is configured as an image processing processor by, for example, a DSP (Digital Signal Processor) or the like. The camera signal processing unit 13 performs various signal processing on the digital signal (image image signal) from the image sensor unit 12. For example, as a camera process, the camera signal processing unit 13 performs preprocessing, simultaneous processing, YC generation processing, resolution conversion processing, codec processing, and the like.
The camera signal processing unit 13 also performs various correction processes. However, it is assumed that the image stabilization may or may not be performed in the image pickup apparatus 1.
 前処理では、撮像素子部12からの撮像画像信号に対して、R,G,Bの黒レベルを所定のレベルにクランプするクランプ処理や、R,G,Bの色チャンネル間の補正処理等を行う。
 同時化処理では、各画素についての画像データが、R,G,B全ての色成分を有するようにする色分離処理を施す。例えば、ベイヤー配列のカラーフィルタを用いた撮像素子の場合は、色分離処理としてデモザイク処理が行われる。
 YC生成処理では、R,G,Bの画像データから、輝度(Y)信号および色(C)信号を生成(分離)する。
 解像度変換処理では、各種の信号処理が施された画像データに対して、解像度変換処理を実行する。
In the pre-processing, a clamping process for clamping the black level of R, G, B to a predetermined level, a correction process between the color channels of R, G, B, etc. are performed on the captured image signal from the image sensor unit 12. conduct.
In the simultaneous processing, a color separation processing is performed so that the image data for each pixel has all the color components of R, G, and B. For example, in the case of an image sensor using a Bayer array color filter, demosaic processing is performed as color separation processing.
In the YC generation process, a luminance (Y) signal and a color (C) signal are generated (separated) from the image data of R, G, and B.
In the resolution conversion process, the resolution conversion process is executed on the image data subjected to various signal processing.
 カメラ信号処理部13で行われる各種補正処理(撮像装置1の内部補正)については図4に例を挙げる。図4ではレンズ系11で行われる光学手ぶれ補正とともに、カメラ信号処理部13で行われる補正処理を、その実行順序により例示している。 FIG. 4 shows an example of various correction processes (internal correction of the image pickup apparatus 1) performed by the camera signal processing unit 13. In FIG. 4, the optical image stabilization performed by the lens system 11 and the correction processing performed by the camera signal processing unit 13 are illustrated by their execution order.
 処理F1としての光学手ぶれ補正では、レンズ系11のヨー方向、ピッチ方向のシフトによるレンズ内手ぶれ補正や、イメージセンサ12aのヨー方向、ピッチ方向のシフトによるボディ内手ぶれ補正が行われることで、手ぶれの影響を物理的にキャンセルした状態で被写体の像がイメージセンサ12aに結像するようにされる。
 このレンズ内手ぶれ補正と、ボディ内手ぶれ補正は一方のみの場合もあり、双方を用いる場合もある。レンズ内手ぶれ補正とボディ内手ぶれ補正の双方を用いる場合はボディ内手ぶれ補正ではヨー方向、ピッチ方向のシフトは行わないことが考えられる。
 またレンズ内手ぶれ補正とボディ内手ぶれ補正の双方とも採用されず、手ぶれに対しては電子手ぶれ補正(electrical image stabilization)のみ、または、光学手ぶれ補正のみが行われる場合もある。
In the optical image stabilization as processing F1, the in-lens image stabilization by shifting the yaw direction and pitch direction of the lens system 11 and the in-body image stabilization by shifting the yaw direction and pitch direction of the image sensor 12a are performed to perform image stabilization. The image of the subject is formed on the image sensor 12a in a state where the influence of the above is physically canceled.
The in-lens image stabilization and the in-body image stabilization may be only one, or both may be used. When both in-lens image stabilization and in-body image stabilization are used, it is conceivable that the in-body image stabilization does not shift in the yaw direction or pitch direction.
In addition, neither in-lens image stabilization nor in-body image stabilization is adopted, and for image stabilization, only electronic image stabilization or only optical image stabilization may be performed.
 カメラ信号処理部13では処理F2から処理F7までの処理が各画素に対する空間座標変換により行われる。
 処理F2ではレンズ歪み補正が行われる。
 処理F3では電子手ぶれ補正の1つの要素としてのフォーカルプレーン歪み補正が行われる。なお、これは例えばCMOS型のイメージセンサ12aによりローリングシャッター方式の読み出しが行われる場合の歪みを補正するものとなる。
In the camera signal processing unit 13, processing from processing F2 to processing F7 is performed by spatial coordinate transformation for each pixel.
In the process F2, lens distortion correction is performed.
In the process F3, focal plane distortion correction is performed as one element of electronic image stabilization. It should be noted that this is to correct the distortion when the rolling shutter type reading is performed by, for example, the CMOS type image sensor 12a.
 処理F4ではロール補正が行われる。即ち電子手ぶれ補正の1つの要素としてのロール成分の補正が行われる。
 処理F5では電子手ぶれ補正によって生じる台形歪み分に対する台形歪み補正が行われる。電子手ぶれ補正によって生じる台形歪み分とは、画像の中央から離れた場所を切り出すことにより生じるパース歪みである。
 処理F6では、電子手ぶれ補正の1つの要素としてのピッチ方向、ヨー方向のシフトや切り出しが行われる。
 例えば以上の手順で手ぶれ補正、レンズ歪み補正、台形歪み補正が行われることになる。
 なお、ここで挙げた処理の全てを実施することは必須ではなく処理の順番も適宜入れ替えても構わない。
Roll correction is performed in the process F4. That is, the roll component is corrected as one element of the electronic image stabilization.
In the process F5, trapezoidal distortion correction is performed for the trapezoidal distortion caused by the electronic image stabilization. The keystone distortion caused by electronic image stabilization is perspective distortion caused by cutting out a place away from the center of the image.
In the process F6, the pitch direction and the yaw direction are shifted and cut out as one element of the electronic image stabilization.
For example, camera shake correction, lens distortion correction, and trapezoidal distortion correction are performed by the above procedure.
It is not essential to carry out all of the processes listed here, and the order of the processes may be changed as appropriate.
 図3のカメラ信号処理部13におけるコーデック処理では、以上の各種処理が施された画像データについて、例えば記録用や通信用の符号化処理、ファイル生成を行う。例えばMPEG-4準拠の動画・音声の記録に用いられているMP4フォーマットなどとしての動画ファイルMFの生成を行う。また静止画ファイルとしてJPEG(Joint Photographic Experts Group)、TIFF(Tagged Image File Format)、GIF(Graphics Interchange Format)、HEIF(High Efficient Image File )等の形式のファイル生成を行うことも考えられる。
 なおカメラ信号処理部13はカメラ制御部18からの情報等を用いて、動画ファイルMFに付加するメタデータの生成も行う。
In the codec processing in the camera signal processing unit 13 of FIG. 3, the image data subjected to the above various processing is subjected to, for example, coding processing for recording or communication, and file generation. For example, a moving image file MF as an MP4 format used for recording MPEG-4 compliant video / audio is generated. It is also conceivable to generate files in formats such as PEG (Joint Photographic Experts Group), TIFF (Tagged Image File Format), GIF (Graphics Interchange Format), and HEIF (High Efficient Image File) as still image files.
The camera signal processing unit 13 also generates metadata to be added to the moving image file MF by using the information from the camera control unit 18 and the like.
 また図3では音声処理系については図示を省略しているが、実際には音声収録系、音声処理系を有し、動画ファイルMFには動画データとともに音声データも含まれるようにしてもよい。 Although the audio processing system is not shown in FIG. 3, it actually has an audio recording system and an audio processing system, and the moving image file MF may include the audio data as well as the moving image data.
 記録制御部14は、例えば不揮発性メモリによる記録媒体に対して記録再生を行う。記録制御部14は例えば記録媒体に対し動画データや静止画データ等の動画ファイルMFやサムネイル画像等を記録する処理を行う。
 記録制御部14の実際の形態は多様に考えられる。例えば記録制御部14は、撮像装置1に内蔵されるフラッシュメモリとその書込/読出回路として構成されてもよいし、撮像装置1に着脱できる記録媒体、例えばメモリカード(可搬型のフラッシュメモリ等)に対して記録再生アクセスを行うカード記録再生部による形態でもよい。また撮像装置1に内蔵されている形態としてHDD(Hard Disk Drive)などとして実現されることもある。
The recording control unit 14 records and reproduces, for example, a recording medium using a non-volatile memory. The recording control unit 14 performs a process of recording a moving image file MF such as moving image data or still image data, a thumbnail image, or the like on a recording medium, for example.
The actual form of the recording control unit 14 can be considered in various ways. For example, the recording control unit 14 may be configured as a flash memory built in the image pickup device 1 and a write / read circuit thereof, or a recording medium that can be attached to and detached from the image pickup device 1, such as a memory card (portable flash memory, etc.). ) May be in the form of a card recording / playback unit that performs recording / playback access. Further, it may be realized as an HDD (Hard Disk Drive) or the like as a form built in the image pickup apparatus 1.
 表示部15は撮像者に対して各種表示を行う表示部であり、例えば撮像装置1の筐体に配置される液晶パネル(LCD:Liquid Crystal Display)や有機EL(Electro-Luminescence)ディスプレイ等のディスプレイデバイスによる表示パネルやビューファインダーとされる。
 表示部15は、カメラ制御部18の指示に基づいて表示画面上に各種表示を実行させる。
 例えば表示部15は、記録制御部14において記録媒体から読み出された画像データの再生画像を表示させる。
 また表示部15にはカメラ信号処理部13で表示用に解像度変換された撮像画像の画像データが供給され、表示部15はカメラ制御部18の指示に応じて、当該撮像画像の画像データに基づいて表示を行う場合がある。これにより構図確認中の撮像画像である、いわゆるスルー画(被写体のモニタリング画像)が表示される。
 また表示部15はカメラ制御部18の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を画面上に実行させる。
The display unit 15 is a display unit that displays various displays to the imager, and is, for example, a display such as a liquid crystal panel (LCD: Liquid Crystal Display) or an organic EL (Electro-Luminescence) display arranged in the housing of the image pickup device 1. It is used as a display panel or view finder depending on the device.
The display unit 15 causes various displays to be executed on the display screen based on the instruction of the camera control unit 18.
For example, the display unit 15 displays a reproduced image of the image data read from the recording medium by the recording control unit 14.
Further, the display unit 15 is supplied with image data of the captured image whose resolution has been converted by the camera signal processing unit 13 for display, and the display unit 15 is based on the image data of the captured image in response to an instruction from the camera control unit 18. May be displayed. As a result, a so-called through image (subject monitoring image), which is an captured image during composition confirmation, is displayed.
Further, the display unit 15 causes various operation menus, icons, messages, etc., that is, display as a GUI (Graphical User Interface) to be executed on the screen based on the instruction of the camera control unit 18.
 出力部16は、外部機器との間のデータ通信やネットワーク通信を有線又は無線で行う。
 例えば外部の表示装置、記録装置、再生装置等に対して撮像画像データ(例えば動画ファイルMF)の送信出力を行う。
 また出力部16はネットワーク通信部であるとして、例えばインターネット、ホームネットワーク、LAN(Local Area Network)等の各種のネットワークによる通信を行い、ネットワーク上のサーバ、端末等との間で各種データ送受信を行うようにしてもよい。
The output unit 16 performs data communication and network communication with an external device by wire or wirelessly.
For example, the image data (for example, a moving image file MF) is transmitted and output to an external display device, recording device, playback device, or the like.
Further, assuming that the output unit 16 is a network communication unit, it communicates with various networks such as the Internet, a home network, and a LAN (Local Area Network), and transmits and receives various data to and from servers, terminals, and the like on the network. You may do so.
 操作部17は、ユーザが各種操作入力を行うための入力デバイスを総括して示している。具体的には操作部17は撮像装置1の筐体に設けられた各種の操作子(キー、ダイヤル、タッチパネル、タッチパッド等)を示している。
 操作部17によりユーザの操作が検知され、入力された操作に応じた信号はカメラ制御部18へ送られる。
The operation unit 17 collectively shows input devices for the user to perform various operation inputs. Specifically, the operation unit 17 shows various controls (keys, dials, touch panels, touch pads, etc.) provided in the housing of the image pickup apparatus 1.
The operation unit 17 detects the user's operation, and the signal corresponding to the input operation is sent to the camera control unit 18.
 カメラ制御部18はCPU(Central Processing Unit)を備えたマイクロコンピュータ(演算処理装置)により構成される。
 メモリ部19は、カメラ制御部18が処理に用いる情報等を記憶する。図示するメモリ部19としては、例えばROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなど包括的に示している。
 メモリ部19はカメラ制御部18としてのマイクロコンピュータチップに内蔵されるメモリ領域であってもよいし、別体のメモリチップにより構成されてもよい。
 カメラ制御部18はメモリ部19のROMやフラッシュメモリ等に記憶されたプログラムを実行することで、この撮像装置1の全体を制御する。
 例えばカメラ制御部18は、撮像素子部12のシャッタースピードの制御、カメラ信号処理部13における各種信号処理の指示、ユーザの操作に応じた撮像動作や記録動作、記録した動画ファイルMF等の再生動作、レンズ鏡筒におけるズーム、フォーカス、絞り調整等のレンズ系11の動作、ユーザインタフェース動作等について、必要各部の動作を制御する。
The camera control unit 18 is composed of a microcomputer (arithmetic processing device) provided with a CPU (Central Processing Unit).
The memory unit 19 stores information and the like used for processing by the camera control unit 18. As the illustrated memory unit 19, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and the like are comprehensively shown.
The memory unit 19 may be a memory area built in the microcomputer chip as the camera control unit 18, or may be configured by a separate memory chip.
The camera control unit 18 controls the entire image pickup apparatus 1 by executing a program stored in the ROM of the memory unit 19, the flash memory, or the like.
For example, the camera control unit 18 controls the shutter speed of the image sensor unit 12, gives instructions for various signal processing in the camera signal processing unit 13, captures and records according to the user's operation, and reproduces the recorded moving image file MF and the like. , The operation of each necessary part is controlled with respect to the operation of the lens system 11 such as zoom, focus, and aperture adjustment in the lens barrel, and the operation of the user interface.
 メモリ部19におけるRAMは、カメラ制御部18のCPUの各種データ処理の際の作業領域として、データやプログラム等の一時的な格納に用いられる。
 メモリ部19におけるROMやフラッシュメモリ(不揮発性メモリ)は、CPUが各部を制御するためのOS(Operating System)や、動画ファイルMF等のコンテンツファイルの他、各種動作のためのアプリケーションプログラムや、ファームウエア等の記憶に用いられる。
The RAM in the memory unit 19 is used for temporarily storing data, programs, and the like as a work area for various data processing of the CPU of the camera control unit 18.
The ROM and flash memory (nonvolatile memory) in the memory unit 19 include an OS (Operating System) for the CPU to control each unit, content files such as a moving image file MF, application programs for various operations, and a firmware. It is used to store clothing and the like.
 ドライバ部22には、例えばズームレンズ駆動モータに対するモータドライバ、フォーカスレンズ駆動モータに対するモータドライバ、絞り機構のモータに対するモータドライバ等が設けられている。
 これらのモータドライバはカメラ制御部18からの指示に応じて駆動電流を対応するドライバに印加し、フォーカスレンズやズームレンズの移動、絞り機構の絞り羽根の開閉等を実行させることになる。
The driver unit 22 is provided with, for example, a motor driver for the zoom lens drive motor, a motor driver for the focus lens drive motor, a motor driver for the diaphragm mechanism motor, and the like.
These motor drivers apply a drive current to the corresponding driver in response to an instruction from the camera control unit 18, to move the focus lens and the zoom lens, open and close the diaphragm blades of the diaphragm mechanism, and the like.
 センサ部23は、撮像装置に搭載される各種のセンサを包括的に示している。
 センサ部23としては例えばIMU( inertial measurement unit:慣性計測装置)が搭載されており、例えばピッチ-、ヨー、ロールの3軸の角速度(ジャイロ)センサで角速度を検出し、加速度センサで加速度を検出することができる。
 なお、センサ部23は、撮像時の手ぶれを検出することができるセンサを含んでいればよく、ジャイロセンサと加速度センサの双方を備えている必要は無い。
 またセンサ部23としては、位置情報センサ、照度センサ等が搭載されていても良い。
The sensor unit 23 comprehensively shows various sensors mounted on the image pickup apparatus.
As the sensor unit 23, for example, an IMU (inertial measurement unit) is mounted. For example, an angular velocity is detected by a three-axis angular velocity (gyro) sensor of pitch-, yaw, and roll, and acceleration is detected by an acceleration sensor. can do.
The sensor unit 23 may include a sensor capable of detecting camera shake during imaging, and does not need to include both a gyro sensor and an acceleration sensor.
Further, the sensor unit 23 may be equipped with a position information sensor, an illuminance sensor, or the like.
 例えば以上の撮像装置1によって撮像され生成された動画ファイルMFは、携帯端末2等の画像処理装置TDx、TDyに転送されて画像処理を施されることが可能とされる。
 画像処理装置TDx、TDyとなる携帯端末2、パーソナルコンピュータ3は、例えば図5に示す構成を備えた情報処理装置として実現できる。なおサーバ4についても、同様に図5の構成の情報処理装置により実現できる。
For example, the moving image file MF imaged and generated by the above image pickup device 1 can be transferred to the image processing devices TDx and TDy of the mobile terminal 2 and the like for image processing.
The mobile terminal 2 and the personal computer 3 serving as the image processing devices TDx and TDy can be realized as, for example, an information processing device having the configuration shown in FIG. Similarly, the server 4 can be realized by the information processing device having the configuration shown in FIG.
 図5において、情報処理装置70のCPU71は、ROM72に記憶されているプログラム、または記憶部79からRAM73にロードされたプログラムに従って各種の処理を実行する。RAM73にはまた、CPU71が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU71、ROM72、およびRAM73は、バス74を介して相互に接続されている。このバス74にはまた、入出力インタフェース75も接続されている。
In FIG. 5, the CPU 71 of the information processing apparatus 70 executes various processes according to a program stored in the ROM 72 or a program loaded from the storage unit 79 into the RAM 73. The RAM 73 also appropriately stores data and the like necessary for the CPU 71 to execute various processes.
The CPU 71, ROM 72, and RAM 73 are connected to each other via a bus 74. An input / output interface 75 is also connected to the bus 74.
 入出力インタフェース75には、操作子や操作デバイスよりなる入力部76が接続される。
 例えば入力部76としては、キーボード、マウス、キー、ダイヤル、タッチパネル、タッチパッド、リモートコントローラ等の各種の操作子や操作デバイスが想定される。
 入力部76によりユーザの操作が検知され、入力された操作に応じた信号はCPU71によって解釈される。
An input unit 76 including an operator and an operation device is connected to the input / output interface 75.
For example, as the input unit 76, various controls and operation devices such as a keyboard, mouse, keys, dial, touch panel, touch pad, and remote controller are assumed.
The user's operation is detected by the input unit 76, and the signal corresponding to the input operation is interpreted by the CPU 71.
 また入出力インタフェース75には、LCD或いは有機ELパネルなどよりなる表示部77や、スピーカなどよりなる音声出力部78が一体又は別体として接続される。
 表示部77は各種表示を行う表示部であり、例えば情報処理装置70の筐体に設けられるディスプレイデバイスや、情報処理装置70に接続される別体のディスプレイデバイス等により構成される。
 表示部77は、CPU71の指示に基づいて表示画面上に各種の画像処理のための画像や処理対象の動画等の表示を実行する。また表示部77はCPU71の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を行う。
Further, a display unit 77 made of an LCD or an organic EL panel and an audio output unit 78 made of a speaker or the like are connected to the input / output interface 75 as one or a separate body.
The display unit 77 is a display unit that performs various displays, and is composed of, for example, a display device provided in the housing of the information processing device 70, a separate display device connected to the information processing device 70, and the like.
The display unit 77 executes the display of various images for image processing, moving images to be processed, and the like on the display screen based on the instruction of the CPU 71. Further, the display unit 77 displays various operation menus, icons, messages, etc., that is, as a GUI (Graphical User Interface) based on the instruction of the CPU 71.
 入出力インタフェース75には、ハードディスクや固体メモリなどより構成される記憶部79や、モデムなどより構成される通信部80が接続される場合もある。
 通信部80は、インターネット等の伝送路を介しての通信処理や、各種機器との有線/無線通信、バス通信などによる通信を行う。
A storage unit 79 composed of a hard disk, a solid-state memory, or the like, or a communication unit 80 composed of a modem or the like may be connected to the input / output interface 75.
The communication unit 80 performs communication processing via a transmission line such as the Internet, wire / wireless communication with various devices, bus communication, and the like.
 入出力インタフェース75にはまた、必要に応じてドライブ82が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブル記録媒体81が適宜装着される。
 ドライブ82により、リムーバブル記録媒体81からは動画ファイルMF等のデータファイルや、各種のコンピュータプログラムなどを読み出すことができる。読み出されたデータファイルは記憶部79に記憶されたり、データファイルに含まれる画像や音声が表示部77や音声出力部78で出力されたりする。またリムーバブル記録媒体81から読み出されたコンピュータプログラム等は必要に応じて記憶部79にインストールされる。
A drive 82 is also connected to the input / output interface 75, if necessary, and a removable recording medium 81 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately mounted.
The drive 82 can read data files such as a moving image file MF and various computer programs from the removable recording medium 81. The read data file is stored in the storage unit 79, and the image and sound included in the data file are output by the display unit 77 and the sound output unit 78. Further, the computer program or the like read from the removable recording medium 81 is installed in the storage unit 79 as needed.
 この情報処理装置70では、例えば本開示の画像処理装置としての画像処理のためのソフトウエアを、通信部80によるネットワーク通信やリムーバブル記録媒体81を介してインストールすることができる。或いは当該ソフトウエアは予めROM72や記憶部79等に記憶されていてもよい。 In this information processing device 70, for example, software for image processing as the image processing device of the present disclosure can be installed via network communication by the communication unit 80 or a removable recording medium 81. Alternatively, the software may be stored in the ROM 72, the storage unit 79, or the like in advance.
 例えばこのようなソフトウエア(アプリケーションプログラム)によって、図6のような機能構成が情報処理装置70のCPU71において構築される。
 図6は画像処理装置TDxとして機能する情報処理装置70として設けられる機能を示している。即ち情報処理装置70(CPU71)は、揺れ変更部101、パラメータ設定部102、ユーザインタフェース処理部103、領域設定部104としての機能を備える。
 なお、「ユーザインタフェース」は「UI」とも表記し、ユーザインタフェース処理部103は、以下「UI処理部103」とも表記する。
For example, such software (application program) constructs a functional configuration as shown in FIG. 6 in the CPU 71 of the information processing apparatus 70.
FIG. 6 shows a function provided as an information processing device 70 that functions as an image processing device TDx. That is, the information processing device 70 (CPU 71) has functions as a shake changing unit 101, a parameter setting unit 102, a user interface processing unit 103, and an area setting unit 104.
The "user interface" is also referred to as "UI", and the user interface processing unit 103 is also referred to as "UI processing unit 103" below.
 揺れ変更部101は、ユーザの入力や自動設定などに基づくパラメータPRM1,PRM2や調整後揺れ情報を用いて、出力動画データに表れる揺れの状態を変更する揺れ変更処理を行う機能である。
 この揺れ変更部101は、揺れ除去や揺れ付加としての処理を行って、揺れ除去済又は揺れ付加済みの動画データとしての出力画像を得る。
 また揺れ変更部101は、領域情報iARに基づいて、画像内の領域毎に揺れ変更処理を行う。
The shaking changing unit 101 is a function of performing shaking changing processing for changing the shaking state appearing in the output moving image data by using the parameters PRM1 and PRM2 based on the user's input and automatic setting and the adjusted shaking information.
The shaking changing unit 101 performs processing for removing shaking and adding shaking to obtain an output image as moving image data in which shaking has been removed or added.
Further, the shaking changing unit 101 performs shaking changing processing for each area in the image based on the area information iAR.
 UI処理部103は、揺れ変更に関する操作子をユーザに対して提示させるとともに操作子による操作情報を取得する処理を行う機能である。
 例えばUI処理部103は表示部77にUI画像として、操作子や、プレビュー画像や、画像に関する情報などを表示させる処理を行う。またUI処理部103は入力部76によるユーザの操作を検出する。例えばUI画像に対するタッチ操作などを検出する。
The UI processing unit 103 is a function of causing the user to present an operator related to the shaking change and performing a process of acquiring operation information by the operator.
For example, the UI processing unit 103 performs a process of displaying an operator, a preview image, information about an image, and the like as a UI image on the display unit 77. Further, the UI processing unit 103 detects the user's operation by the input unit 76. For example, a touch operation on a UI image is detected.
 パラメータ設定部102は、UI処理部103が取得した操作情報に基づいて、揺れ変更処理のためのパラメータPRM1、PRM2を設定する機能である。つまりUI処理部103が検出したユーザ操作内容を揺れ変更のためのパラメータPRM1,PRM2に変換し、それを揺れ変更部101に供給することで、動画データに対してユーザの操作に応じた揺れ変更処理が行われるようにする。 The parameter setting unit 102 is a function of setting the parameters PRM1 and PRM2 for the shaking change processing based on the operation information acquired by the UI processing unit 103. That is, the user operation content detected by the UI processing unit 103 is converted into the parameters PRM1 and PRM2 for changing the shaking, and the data is supplied to the shaking changing unit 101 to change the shaking of the moving image data according to the user's operation. Allow processing to take place.
 ここでパラメータPRM1は、揺れ除去又は揺れ付加を行うためのパラメータであって全体的な揺れ除去量又は揺れ付加量の指示値といえるものとしている。
 一方、パラメータPRM2は、領域設定部104が画像内で設定する複数の領域毎の揺れの違いの量など、領域毎の異なる揺れの状態となるようにする揺れ変更処理の指示値としている。具体的には、領域毎の揺れの量(揺れの量の差分でもよい)や、領域毎の揺れの周期や、領域毎の揺れの方向を示す値などが、パラメータPRM2に含まれることになる。
 説明上、後述する天球モデルの回転による揺れ変更に用いるパラメータPRM1と、その天球上での座標点移動による画像の拡大/縮小による、一部領域の揺れ具合の変更に用いるパラメータPRM2を区別しているものであるが、このような意味のパラメータPRM1,PRM2を用いるのは一例に過ぎない。少なくともパラメータPRM2に応じて揺れ変更部101が画像内の領域毎に異なる揺れ状態となるようにする揺れ変更処理を行うようにすればよい。
Here, the parameter PRM1 is a parameter for performing sway removal or sway addition, and can be said to be an indicated value of the overall sway removal amount or sway addition amount.
On the other hand, the parameter PRM2 is an instruction value of the shaking change processing that causes different shaking states for each area, such as the amount of difference in shaking for each of a plurality of areas set by the area setting unit 104 in the image. Specifically, the parameter PRM2 includes the amount of shaking for each region (the difference in the amount of shaking may be used), the period of shaking for each region, the value indicating the direction of shaking for each region, and the like. ..
In the explanation, the parameter PRM1 used for changing the shaking due to the rotation of the celestial sphere model, which will be described later, and the parameter PRM2 used for changing the shaking condition of a part area by enlarging / reducing the image by moving the coordinate points on the celestial sphere are distinguished. However, the use of the parameters PRM1 and PRM2 having such a meaning is only an example. At least, the shaking change process may be performed so that the shaking changing unit 101 is in a different shaking state for each region in the image according to the parameter PRM2.
 なおパラメータ設定部102は、必ずしもユーザ操作に応じたパラメータ設定を行わなくてもよい。例えば固定的な揺れパターンを付加するようなパラメータ設定を行うようにしてもよい。また例えば画像内容に応じて自動的にパラメータPRM1、PRM2の設定を行うようにしてもよい。例えば揺れパターンのアーカイブデータとして、「ゆっくり歩く人」「歩く人」「走る人」などに応じた揺れパターンや、「ウサギ」「猫」「馬」などに応じた揺れパターンや、自動車、船、飛行機などに応じた揺れパターンの情報をデータベースから取得できるようにする。画像内容に応じて揺れ情報を選択し、その揺れパターンに応じたパラメータPRM1,PRM2を設定するというようにしてもよい。
 もちろんユーザが揺れパターンを選択し、その選択に応じてパラメータPRM1,PRM2を設定することも考えられる。
The parameter setting unit 102 does not necessarily have to set the parameters according to the user operation. For example, parameters may be set to add a fixed shaking pattern. Further, for example, the parameters PRM1 and PRM2 may be automatically set according to the image content. For example, as archive data of shaking patterns, shaking patterns according to "slow walking person", "walking person", "running person", shaking patterns according to "rabbit", "cat", "horse", etc., automobiles, ships, etc. Make it possible to obtain information on shaking patterns according to airplanes, etc. from the database. The shaking information may be selected according to the image content, and the parameters PRM1 and PRM2 may be set according to the shaking pattern.
Of course, it is also conceivable that the user selects a shaking pattern and sets the parameters PRM1 and PRM2 according to the selection.
 領域設定部104は、例えばUI処理部103が検知した領域指定の操作に応じて、動画データの画像内を複数の領域に設定する処理を行う。そして設定した領域を示す領域情報iARを揺れ変更部101に提供する。
 例えば領域設定部104は、ユーザがUI処理部103の処理により表示部77に表示されたプレビュー画像上で任意の範囲をなぞるようなタッチ操作や、何らかのラインを指定したり描いたりする操作などを行うことに応じて、ユーザが指示する境界を判定し、画面内の領域を分割設定することが考えられる。
 揺れ変更部101は、領域情報iARにより画像内の領域を把握し、領域毎に異なる揺れとなるような揺れ変更処理を行うことになる。
The area setting unit 104 performs a process of setting a plurality of areas in the image of the moving image data according to, for example, an operation of specifying the area detected by the UI processing unit 103. Then, the area information iAR indicating the set area is provided to the shaking change unit 101.
For example, the area setting unit 104 performs a touch operation such that the user traces an arbitrary range on the preview image displayed on the display unit 77 by the processing of the UI processing unit 103, an operation of designating or drawing some line, and the like. Depending on what is done, it is conceivable to determine the boundary instructed by the user and divide and set the area in the screen.
The shaking changing unit 101 grasps the area in the image by the area information iAR, and performs the shaking changing process so that the shaking is different for each area.
 図7は、他の機能構成例を示している。この図7は、領域設定部104がユーザ操作ではなく画像解析により領域設定を行う構成例を示している。
 領域設定部104は入力される動画データを解析して、例えば被写体人物の判定、主要被写体の判定、動体物/固定物/背景等の被写体の種別判定、構図判定などを行い、それらの判定に応じて領域分割設定を行う。そして設定した領域領を示す領域情報iARを揺れ変更部101に提供する。
FIG. 7 shows another functional configuration example. FIG. 7 shows a configuration example in which the area setting unit 104 sets the area by image analysis instead of user operation.
The area setting unit 104 analyzes the input moving image data to perform, for example, determination of the subject person, determination of the main subject, determination of the type of the subject such as a moving object / fixed object / background, composition determination, and the like. Set the area division accordingly. Then, the area information iAR indicating the set area area is provided to the shaking change unit 101.
 なお領域設定部104については、図6ではユーザ操作に基づく領域設定、図7では画像解析に基づく自動的な領域設定の例を示したが、これら両方を用いてもよい。例えば、ユーザが被写体を指定する操作を行った場合、その被写体の範囲や、類似の被写体の範囲を画像解析により特定し、領域の境界を生成することが考えられる。また例えば、画像解析に基づいて領域の候補をユーザに提示し、ユーザが操作により、採用する領域分割のパターンを選択できるようにしてもよい。 Regarding the area setting unit 104, an example of area setting based on user operation is shown in FIG. 6 and an example of automatic area setting based on image analysis is shown in FIG. 7, but both of them may be used. For example, when a user performs an operation of designating a subject, it is conceivable to identify the range of the subject or the range of a similar subject by image analysis and generate a boundary of the area. Further, for example, a region candidate may be presented to the user based on image analysis, and the user may be able to select the region division pattern to be adopted by an operation.
 なお、図6,図7の構成例においてUI処理部103、パラメータ設定部102を示したが、これらの構成は領域毎の揺れ変更を行う場合に必須ではない。少なくとも揺れ変更部101と領域設定部104が設けられることで、領域毎の揺れ変更が実現される。 Although the UI processing unit 103 and the parameter setting unit 102 are shown in the configuration examples of FIGS. 6 and 7, these configurations are not essential when changing the shaking for each area. By providing at least the shaking changing unit 101 and the area setting unit 104, the shaking change for each area is realized.
 以下、上記のような機能により実現される、領域毎の揺れ変更について説明する。
 図8A、図8Bは、それぞれ領域設定の例を示している。
 例えば図8Aは、画像の下部側となる自転車に乗っている人が写っている領域AR1と、背景画像と考えられる上部側の領域AR2に分割した例である。なお。図では領域AR3として境界領域を示しているが、これは領域AR1,AR2の境界に若干の幅を持たせたものと考えることができる。
 ユーザが例えば領域AR1、AR2の境界をなぞるような操作を行うことに応じて、領域AR1,AR2が設定される。或いは、画像解析により、例えば人物が写っている範囲を囲うように自動的に領域AR1が設定され、それ以外が領域AR2とされる。
Hereinafter, the shaking change for each region realized by the above functions will be described.
8A and 8B show examples of area setting, respectively.
For example, FIG. 8A is an example divided into a region AR1 in which a person riding a bicycle is shown on the lower side of the image and a region AR2 on the upper side considered to be a background image. note that. In the figure, the boundary region is shown as the region AR3, which can be considered to have a slight width at the boundaries of the regions AR1 and AR2.
The areas AR1 and AR2 are set according to the user performing an operation such as tracing the boundary between the areas AR1 and AR2. Alternatively, by image analysis, for example, the area AR1 is automatically set so as to surround the area in which a person is captured, and the other areas are set as the area AR2.
 ここで、領域AR1は揺らすことで迫力を表現したい領域であり、領域AR2は背景等であるため揺れを無くしたり少なくしたりしたいとする。
 このように領域設定がされることに応じて揺れ変更処理では、領域AR1について揺れが比較的大きくされ、領域AR2は揺れが少なくなるようにする処理を行う。
Here, the area AR1 is an area for expressing power by shaking, and since the area AR2 is a background or the like, it is desired to eliminate or reduce the shaking.
In the shaking change process according to the area setting in this way, the shaking is relatively large for the area AR1 and the shaking is reduced for the area AR2.
 例えば、既に手ぶれ補正がされている画像や、固定したカメラで撮像した画像などで、元々揺れがない画像を想定した場合、揺れ変更部101が実行する領域毎の揺れ変更処理としては、次の処理P1、処理P2のような揺れ変更処理が想定される。
 ・処理P1:領域AR1のみに揺れ付加する(領域AR2は揺れのない状態を維持する)。
 ・処理P2:領域AR1に揺れ量の大きい揺れ付加、領域AR2に揺れ量の小さい揺れ付加をする。
For example, assuming an image that has already been image-stabilized or an image captured by a fixed camera that does not originally shake, the following shaking change processing for each area executed by the shake changing unit 101 is performed. Shake change processing such as processing P1 and processing P2 is assumed.
-Processing P1: Shaking and adding only to the area AR1 (the area AR2 maintains a state without shaking).
-Processing P2: A large amount of shaking is added to the area AR1, and a small amount of shaking is added to the area AR2.
 また揺れがある画像について揺れ変更部101が実行する領域毎の揺れ変更処理としては、次の処理P3,処理P4,処理P5,処理P6のような揺れ変更処理が想定される。
 ・処理P3:領域AR1に揺れ付加、領域AR2に揺れ除去(一部除去を含む)を行う。
 ・処理P4:領域AR1に揺れ量の大きい揺れ付加、領域AR2に揺れ量の小さい揺れ付加をする。
 ・処理P5:領域AR2のみ揺れ除去(一部除去を含む)を行う(領域AR1は揺れ状態を維持する)。
 ・処理P6:領域AR1に若干の揺れ量を除去する揺れ一部除去、領域AR2に揺れを殆どなくす揺れ除去を行う。
Further, as the shaking change processing for each area executed by the shaking changing unit 101 for the image with shaking, shaking changing processing such as the following processing P3, processing P4, processing P5, and processing P6 is assumed.
-Processing P3: Shake addition to the area AR1 and shaking removal (including partial removal) to the area AR2.
-Processing P4: A large amount of shaking is added to the area AR1, and a small amount of shaking is added to the area AR2.
-Processing P5: Shake removal (including partial removal) is performed only in the area AR2 (the area AR1 maintains the shaking state).
-Processing P6: Partial sway removal for removing a small amount of sway in the area AR1 and sway removal for almost eliminating the sway in the area AR2 are performed.
 これらの領域毎の揺れ変更により、図8Aの画像の場合、自転車に乗って走っている人たちの領域は揺れているが、背景の空や建物は揺れていないといった画像が得られることになる。
 このように画像の中に揺らしたい領域と、揺らしたくない領域のように領域設定することで、揺れによる演出効果と揺れを止めて見やすくする効果を両立させることができる。
By changing the shaking for each of these areas, in the case of the image of FIG. 8A, it is possible to obtain an image that the areas of the people running on the bicycle are shaking, but the background sky and buildings are not shaking. ..
By setting the area to be shaken in the image and the area not to be shaken in this way, it is possible to achieve both the effect of the shaking and the effect of stopping the shaking to make it easier to see.
 なお境界領域である領域AR3については、揺れの量が領域AR1,AR2の境界で,急激に変化しないように、それらの中間的な揺れが表現される領域とするとよい。これにより、一部の揺れが強調される画像において境界部分が不自然にならないようにすることができる。 Regarding the area AR3, which is a boundary area, it is preferable to set the area where the intermediate amount of shaking is expressed at the boundary between the areas AR1 and AR2 so that the amount of shaking does not change suddenly. This makes it possible to prevent the boundary portion from becoming unnatural in an image in which a part of the shaking is emphasized.
 図8Bは、画像内のコース(舗装路とダート)の領域を分けた例である。この場合も上記の処理P1から処理P6のような処理を行い、ダート側の領域AR1の揺れを舗装面側の領域AR2より揺れを激しくすることで、路面の違いを表現するようなこともできる。
 つまり画像内の状況の違いに応じて揺れ具合が異なるようにすることで、画像内の状況をより強調して表現するような画像効果が得られる。
FIG. 8B is an example of dividing the area of the course (paved road and dirt) in the image. In this case as well, it is possible to express the difference in the road surface by performing the above-mentioned processes P1 to P6 and making the sway of the dirt side area AR1 more violent than that of the pavement side area AR2. ..
That is, by making the degree of shaking different according to the difference in the situation in the image, an image effect that emphasizes the situation in the image can be obtained.
 例えば揺れ除去によって元々の撮像時の揺れが除去された後の画像を例に挙げて効果の具体例を挙げると次のようになる。 For example, the following is a specific example of the effect, taking as an example the image after the shaking at the time of the original imaging is removed by the shaking removal.
・オフロード走行
 荒れた路面を走行している車やバイクやその周辺の画像に縦揺れを加えることで、遠景やビル等の動かないものは揺れずに止まったままで、動いているもの(車やバイクやその周辺)が揺れているさまを強調できる。
・ Off-road driving By adding pitching to images of cars and motorcycles running on rough roads and their surroundings, stationary objects such as distant views and buildings remain stationary and moving (cars). And the bike and its surroundings) can be emphasized.
・スキー、スノーボード滑走
 雪面を滑走しているスキーヤーやスノーボーダーをその後ろ若しくは前から撮影しているような場合に、そのスキーヤーやスノーボーダーやその周辺の映像に回転(ロール)揺れを加えることで、スラローム感や滑走感を目立たせる演出ができる。
・ Skiing, snowboarding When a skier or snowboarder who is skiing on a snow surface is photographed from behind or in front of the skier or snowboarder, adding rotation (roll) shaking to the image of the skier or snowboarder or its surroundings. Therefore, it is possible to produce a slalom feeling and a gliding feeling.
・大相撲の立ち合い
 立ち合いのその瞬間、力士や土俵やその周辺の映像に横揺れを加えることで、ぶつかった瞬間の衝撃を映像で強調して表現できる。
・ Wrestling of sumo wrestlers At the moment of wrestling, by adding rolling to the images of wrestlers, dohyo and their surroundings, the impact of the moment of collision can be emphasized and expressed in the images.
 以下、揺れ変更の手法について説明する。
 まず画像の全体の揺れを除去したり、全体的な揺れを付加したりするためには天球面での回転処理が有効である。
 図9に天球モデルMTを用いた揺れ変更の処理例を模式的に示している。
Hereinafter, the method of changing the shaking will be described.
First, rotation processing on the celestial sphere is effective for removing the overall shaking of the image and adding the overall shaking.
FIG. 9 schematically shows a processing example of shaking change using the celestial sphere model MT.
 図9Aは撮像時の手ぶれなどにより揺れがある画像の1フレームを示しているとする。
 この二次元の画像のフレームを、図9Bのように仮想的な天球モデルMTに貼り付けた3次元画像モデルに変換する。この場合、レンズ歪み特性データから二次元から三次元の対応点を求めることになる。
 この天球モデルMTを、撮像時揺れ情報に応じて回転させると、図9Cの揺れの除去された3次元画像モデルが得られる。撮像時揺れ情報は例えば後述するIMUデータやIMUデータに基づくクオータニオンQDである。
 そして図9Cの天球モデルMTから太線で示す特定の座標範囲AZを切り出すと、図9Dのように揺れやレンズ歪みなどが除去された二次元画像を得ることができる。
It is assumed that FIG. 9A shows one frame of an image that is shaken due to camera shake or the like at the time of imaging.
The frame of this two-dimensional image is converted into a three-dimensional image model attached to the virtual celestial sphere model MT as shown in FIG. 9B. In this case, the corresponding points from two dimensions to three dimensions are obtained from the lens distortion characteristic data.
When this celestial sphere model MT is rotated according to the shaking information at the time of imaging, a three-dimensional image model in which the shaking of FIG. 9C is removed can be obtained. The shaking information at the time of imaging is, for example, IMU data described later or a quarternion QD based on the IMU data.
Then, when the specific coordinate range AZ shown by the thick line is cut out from the celestial sphere model MT of FIG. 9C, a two-dimensional image in which shaking and lens distortion are removed can be obtained as shown in FIG. 9D.
 このような天球モデルMTを用いた処理は後にも詳述するが、このような処理に加えて、天球モデルMT上での座標点の移動により画像の一部をフレーム毎に拡大/縮小することで、領域毎に異なる揺れ具合を表現できるようになる。 The processing using such a celestial sphere model MT will be described in detail later, but in addition to such processing, a part of the image is enlarged / reduced frame by frame by moving the coordinate points on the celestial sphere model MT. Then, it becomes possible to express different shaking conditions for each area.
 図10,図11は、或るフレームと別のフレームを天球モデルMTに貼り付けた状態を示している。ここで放射状の線は天球モデルMTにおける経度に相当する線で、同心円状の線は緯度に相当する線である。
 図10,図11の画像は時刻的に異なる別のフレームの画像であり、撮像時に揺れがあることで、図9Aから図9Bのように天球モデルMT上に投影されたときの位置がずれたものとなる。
10 and 11 show a state in which a certain frame and another frame are attached to the celestial sphere model MT. Here, the radial line is a line corresponding to the longitude in the celestial sphere model MT, and the concentric line is a line corresponding to the latitude.
The images of FIGS. 10 and 11 are images of different frames that differ in time, and the positions of the images projected onto the celestial sphere model MT as shown in FIGS. 9A to 9B are displaced due to the shaking during imaging. It becomes a thing.
 ここで、画像の上部(図8の領域AR2)と下部(図8の領域AR1)とで揺れが異なるものとするため、画像の下部に揺れを加えるとする。
 図10と図11は下部に揺れを加えたものを示しており、図を比較すると、下部側の緯度・経度のラインが、図10は若干膨張、図11は若干縮小していることがわかる。これはラインの各交点の座標点の動ごかし方(方向)や移動量を揺れ度合いに応じて変えているものである。
 画像としては、その下部が伸び縮みしているような状態となる。この伸び縮みの具合がフレーム毎で異なることによって、動画上で画像の下部の揺れが表現される。
Here, since the shaking is different between the upper part (region AR2 in FIG. 8) and the lower part (region AR1 in FIG. 8) of the image, it is assumed that the shaking is added to the lower part of the image.
10 and 11 show the one with shaking added to the lower part, and when comparing the figures, it can be seen that the latitude / longitude lines on the lower side are slightly expanded in FIG. 10 and slightly reduced in FIG. .. This is to change the moving method (direction) and the amount of movement of the coordinate points at each intersection of the lines according to the degree of shaking.
As an image, the lower part is in a state of expansion and contraction. The degree of expansion and contraction differs from frame to frame, so that the shaking at the bottom of the image is expressed on the moving image.
 このように座標点移動により領域によって揺れ具合を変える処理の考え方を説明する。この座標点移動は一部画素範囲の拡大又は縮小と考えることができる。
 図12Aは、或る動画データの画素範囲と、そのうちで出力する画像としての切り出し範囲CRを示している。
 図12Aは、動画データにおいて拡大/縮小がない状態、図12Bは斜線を付した領域が拡大された状態、図12Cは斜線を付した領域が縮小された状態を示している。図12A、図12B、図12Cのいずれの場合も、切り出し範囲CRの面積は変化しない。
In this way, the concept of the process of changing the degree of shaking depending on the region by moving the coordinate points will be described. This coordinate point movement can be considered as expansion or contraction of a partial pixel range.
FIG. 12A shows a pixel range of a certain moving image data and a cutout range CR as an image to be output.
FIG. 12A shows a state in which there is no enlargement / reduction in the moving image data, FIG. 12B shows a state in which the shaded area is enlarged, and FIG. 12C shows a state in which the shaded area is reduced. In any of FIGS. 12A, 12B, and 12C, the area of the cutting range CR does not change.
 ここで斜線を付した領域とは、図8A等において境界領域とした領域AR3と考えることができる。
 図12Bでは境界の領域AR3が拡大されることで、下部(図8Aの領域AR1)の各画素の座標が下方に移動する。
 図12Cでは境界の領域AR3が縮小されることで、下部(図8Aの領域AR1)の各画素の座標が上方に移動する。
Here, the shaded area can be considered as the area AR3 which is the boundary area in FIG. 8A and the like.
In FIG. 12B, by enlarging the boundary region AR3, the coordinates of each pixel in the lower portion (region AR1 in FIG. 8A) move downward.
In FIG. 12C, the boundary region AR3 is reduced, so that the coordinates of each pixel in the lower portion (region AR1 in FIG. 8A) move upward.
 図12Bの場合、境界領域(AR3)である斜線部において図13に示す拡大処理を行う。図13Aは境界領域における或る4つの画素を示している。「a」「b」「c」「d」はピクセル値(例えばRGB値)である。図13Bのように拡大処理を行う場合に「la」「lb」「lc」「ld」は「p」中心から「a」「b」「c」「d」までの距離であるとき、次のようにする。 In the case of FIG. 12B, the enlargement processing shown in FIG. 13 is performed in the shaded portion which is the boundary region (AR3). FIG. 13A shows a certain four pixels in the boundary region. “A”, “b”, “c”, and “d” are pixel values (for example, RGB values). When the enlargement process is performed as shown in FIG. 13B, when "la", "lb", "lc", and "ld" are the distances from the center of "p" to "a", "b", "c", and "d", the following To do so.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図12Cの場合、境界領域(AR3)である斜線部において図14に示す縮小処理を行う。図14Aは図13Aと同様である。
 図14B、図14Cのように縮小処理を行う。図14Bでも「la」「lb」「lc」「ld」は「p」から「a」「b」「c」「d」までの距離である、図14Cではピクセルサイズを「1」として「p」と「a」のx成分を示している。
 縮小率を「s」、i=pの範囲内の全ピクセル={a,b,c,d}とすると、次のようにする。
In the case of FIG. 12C, the reduction process shown in FIG. 14 is performed in the shaded portion which is the boundary region (AR3). FIG. 14A is similar to FIG. 13A.
The reduction process is performed as shown in FIGS. 14B and 14C. In FIG. 14B, "la", "lb", "lc", and "ld" are the distances from "p" to "a", "b", "c", and "d". In FIG. 14C, the pixel size is "1" and "p". And "a" show the x component.
Assuming that the reduction ratio is "s" and all pixels within the range of i = p = {a, b, c, d}, the following is performed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以上のような拡大、縮小をフレーム毎に行うことは、天球モデルMTのメッシュの交点座標を揺れ具合に応じて移動させることになり、図12の切り出し範囲CRとして切り出される画像は、境界領域から見て一方の領域に揺れが付加された状態となる。
 従って、例えば領域AR2の揺れについては、天球モデルMTの回転により、除去、一部除去、或いは付加したうえで、境界領域の拡大縮小による座標点の移動が領域AR1の画素に加わることで、領域AR1にはより領域AR2より強い揺れが加わった状態となる。
Performing the above-mentioned enlargement / reduction for each frame means that the intersection coordinates of the mesh of the celestial sphere model MT are moved according to the degree of shaking, and the image cut out as the cutout range CR in FIG. 12 is from the boundary area. As you can see, shaking is added to one area.
Therefore, for example, with respect to the shaking of the region AR2, the rotation of the celestial sphere model MT removes, partially removes, or adds, and then the movement of the coordinate points due to the enlargement / reduction of the boundary region is added to the pixels of the region AR1. AR1 is in a state where a stronger shaking than the region AR2 is added.
 なお、以上では領域AR2に対して領域AR1を揺らすという例で説明したが、もちろん座標変更により領域AR1,AR2を、異なる揺れ量や揺れ方向、或いは揺れ周期で揺らすことも可能である。領域AR1に接する境界領域と、領域AR2に接する境界領域を設定し、それぞれ別の揺れ量/周期/方向に応じた拡大/縮小をフレーム毎に行うようにすれば良い。 In the above, the example of shaking the area AR1 with respect to the area AR2 has been described, but of course it is also possible to shake the areas AR1 and AR2 with different shaking amounts, shaking directions, or shaking cycles by changing the coordinates. A boundary area in contact with the area AR1 and a boundary area in contact with the area AR2 may be set, and enlargement / reduction may be performed for each frame according to different shaking amounts / cycles / directions.
 また上述の処理P1から処理P6は、天球モデルMTの回転による揺れ変更と、座標変更による特定の領域の揺れ変更を合わせることで実現してもよい。
Further, the above-mentioned processes P1 to P6 may be realized by combining the sway change due to the rotation of the celestial sphere model MT and the sway change of a specific region due to the coordinate change.
<3.動画ファイル及びメタデータ>
 以下、画像ソースVSである撮像装置1で撮像され、画像処理装置TDxに入力された動画ファイルMFについて、上記のような領域毎の揺れ変更処理を行う例を説明していく。
 まず撮像装置1等の画像ソースVSから画像処理装置TDxに伝送される動画ファイルMFの内容とメタデータの内容を説明する。
 図15Aは動画ファイルMFに含まれるデータを示している。図示のように動画ファイルMFには「ヘッダー」「サウンド」「ムービー」「メタデータ」としての各種のデータが含まれる。
<3. Video files and metadata>
Hereinafter, an example in which the moving image file MF imaged by the image pickup device 1 which is the image source VS and input to the image processing device TDx is subjected to the shaking change processing for each region as described above will be described.
First, the contents of the moving image file MF and the contents of the metadata transmitted from the image source VS of the image pickup device 1 or the like to the image processing device TDx will be described.
FIG. 15A shows the data included in the moving image file MF. As shown in the figure, the moving image file MF includes various data as "header", "sound", "movie", and "metadata".
 「ヘッダー」には、ファイル名、ファイルサイズ等の情報とともにメタデータの有無を示す情報などが記述される。
 「サウンド」は動画とともに収録された音声データである。例えば2チャネルステレオ音声データが格納される。
 「ムービー」は動画データであり、動画を構成する各フレーム(#1、#2、#3・・・)としての画像データで構成される。
 「メタデータ」としては、動画を構成する各フレーム(#1、#2、#3・・・)に対応づけられた付加情報が記述される。
In the "header", information such as a file name and a file size as well as information indicating the presence or absence of metadata are described.
"Sound" is audio data recorded together with a moving image. For example, 2-channel stereo audio data is stored.
The "movie" is moving image data, and is composed of image data as each frame (# 1, # 2, # 3, ...) Constituting the moving image.
As the "metadata", additional information associated with each frame (# 1, # 2, # 3, ...) Constituting the moving image is described.
 メタデータの内容例を図15Bに示す。例えば1つのフレームに対して、IMUデータ、座標変換パラメータHP、タイミング情報TM、カメラパラメータCPが記述される。なお、これらはメタデータ内容の一部であり、ここでは後述する画像処理に関連する情報のみを示しているものである。 An example of the contents of the metadata is shown in FIG. 15B. For example, IMU data, coordinate conversion parameter HP, timing information TM, and camera parameter CP are described for one frame. It should be noted that these are a part of the metadata contents, and here, only the information related to the image processing described later is shown.
 IMUデータとしては、ジャイロ(角速度データ)、アクセル(加速度データ)、サンプリングレートが記述される。
 センサ部23として撮像装置1に搭載されるIMUでは、角速度データと加速度データを所定のサンプリングレートで出力している。一般に、このサンプリングレートは撮像画像のフレームレートより高く、このため1フレーム期間に多くのIMUデータサンプルが得られるものとなっている。
As the IMU data, a gyro (angular velocity data), an accelerator (acceleration data), and a sampling rate are described.
The IMU mounted on the image pickup apparatus 1 as the sensor unit 23 outputs angular velocity data and acceleration data at a predetermined sampling rate. Generally, this sampling rate is higher than the frame rate of the captured image, so that many IMU data samples can be obtained in one frame period.
 そのため角速度データとしては、図15Cに示すジャイロサンプル#1、ジャイロサンプル#2・・・ジャイロサンプル#nというように、1フレームについてn個のサンプルが対応づけられる。
 また加速度データとしても、アクセルサンプル#1、アクセルサンプル#2・・・アクセルサンプル#mというように、1フレームについてm個のサンプルが対応づけられる。
 n=mの場合もあるし、n≠mの場合もある。
 なお、ここではメタデータは各フレームに対応づけられる例で説明しているが、例えばIMUデータはフレームとは完全に同期しない場合もある。そのような場合、例えば各フレームの時間情報と関連する時間情報を、タイミング情報TMにおけるIMUサンプルタイミングオフセットとして持つようにされる。
Therefore, as the angular velocity data, n samples are associated with each frame, such as gyro sample # 1, gyro sample # 2, ... Gyro sample # n shown in FIG. 15C.
As acceleration data, m samples are associated with each frame, such as accelerator sample # 1, accelerator sample # 2, ... accelerator sample # m.
In some cases, n = m, and in other cases, n ≠ m.
Although the metadata is described here as an example associated with each frame, for example, the IMU data may not be completely synchronized with the frame. In such a case, for example, the time information associated with the time information of each frame is provided as the IMU sample timing offset in the timing information TM.
 座標変換パラメータHPは、画像内の各画素の座標変換を伴う補正に用いるパラメータの総称としている。例えばレンズ歪みのような非線形な座標変換も含む。
 そして、座標変換パラメータHPとは、少なくとも、レンズ歪み補正パラメータ、台形歪み補正パラメータ、フォーカルプレーン歪み補正パラメータ、電子手ぶれ補正パラメータ、光学手ぶれ補正パラメータを含みうる用語としている。
The coordinate conversion parameter HP is a general term for parameters used for correction accompanied by coordinate conversion of each pixel in the image. It also includes non-linear coordinate transformations such as lens distortion.
The coordinate conversion parameter HP is a term that can include at least a lens distortion correction parameter, a trapezoidal distortion correction parameter, a focal plane distortion correction parameter, an electronic image stabilization parameter, and an optical image stabilization parameter.
 レンズ歪み補正パラメータは、樽型収差、糸巻き型収差などの歪みをどのように補正したかを直接または間接的に把握しレンズ歪補正前の画像に戻すための情報となる。メタデータの1つとしてのレンズ歪み補正パラメータに関するメタデータについて簡単に説明しておく。
 図16Aにはレンズ系11とイメージセンサ12aの模式図において、像高Y、角度α、入射瞳位置d1、射出瞳位置d2を示している。
 レンズ歪み補正パラメータは、画像処理においては、イメージセンサ12aの各画素についての入射角度を知りたいために用いられる。そのため像高Y、角度αの関係がわかれば良い。
The lens distortion correction parameter is information for directly or indirectly grasping how the distortion such as barrel aberration and pincushion aberration is corrected and returning the image to the image before the lens distortion correction. The metadata regarding the lens distortion correction parameter as one of the metadata will be briefly described.
FIG. 16A shows the image height Y, the angle α, the entrance pupil position d1, and the exit pupil position d2 in the schematic diagram of the lens system 11 and the image sensor 12a.
The lens distortion correction parameter is used in image processing to know the incident angle of each pixel of the image sensor 12a. Therefore, it is sufficient to know the relationship between the image height Y and the angle α.
 図16Bはレンズ歪み補正前の画像110とレンズ歪み補正後の画像111を示している。最大像高H0は歪み補正前の最大像高であり、光軸の中心から最遠までの距離である。最大像高H1は歪み補正後の最大像高である。
 像高Y、角度αの関係がわかるようにメタデータとして必要なのは、歪み補正前の最大像高H0と、N個の各像高に対する入射角度のデータd0、d1、・・・d(N-1)となる。“N”は一例として10程度であることが想定される。
FIG. 16B shows the image 110 before the lens distortion correction and the image 111 after the lens distortion correction. The maximum image height H0 is the maximum image height before distortion correction, and is the distance from the center of the optical axis to the farthest point. The maximum image height H1 is the maximum image height after distortion correction.
The metadata required to understand the relationship between the image height Y and the angle α is the maximum image height H0 before distortion correction and the incident angle data d0, d1, ... d (N-) for each of the N image heights. 1). It is assumed that "N" is about 10 as an example.
 図15Bに戻って、台形歪み補正パラメータは、電子手ぶれ補正によって切り出し領域を中央からずらすことで生じる台形歪みを補正するときの補正量であり、電子手ぶれ補正の補正量に応じた値ともなる。 Returning to FIG. 15B, the trapezoidal distortion correction parameter is a correction amount when correcting the trapezoidal distortion caused by shifting the cutout area from the center by electronic image stabilization, and is also a value corresponding to the correction amount of electronic image stabilization.
 フォーカルプレーン歪み補正パラメータは、フォーカルプレーン歪みに対してライン毎の補正量を示す値となる。 The focal plane distortion correction parameter is a value indicating the amount of correction for each line with respect to the focal plane distortion.
 電子手ぶれ補正及び光学手ぶれ補正に関しては、ヨー、ピッチ、ロールの各軸方向についての補正量を示すパラメータとなる。 Regarding electronic image stabilization and optical image stabilization, it is a parameter that indicates the amount of correction in each axial direction of yaw, pitch, and roll.
 なお、レンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正、電子手ぶれ補正の各パラメータについては、座標変換パラメータと総称しているが、これらの補正処理は、撮像素子部12のイメージセンサ12aの各画素に結像した像に対する補正処理であって、各画素の座標変換を伴う補正処理のパラメータであるためである。光学手ぶれ補正も座標変換パラメータの1つとするが、光学手ぶれ補正においてフレーム間成分の揺れの補正は各画素の座標変換を伴う処理となるためである。
 つまり、これらのパラメータを用いて逆補正を行えば、レンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正、電子手ぶれ補正、光学手ぶれ補正が施された画像データを、各補正処理前、即ち、撮像素子部12のイメージセンサ12aに結像したときの状態に戻すことができる。
The parameters of lens distortion correction, trapezoidal distortion correction, focal plane distortion correction, and electronic image stabilization are collectively referred to as coordinate conversion parameters, but these correction processes are performed by each of the image sensors 12a of the image sensor unit 12. This is because it is a correction process for an image formed on a pixel and is a parameter of a correction process that involves a coordinate conversion of each pixel. Optical image stabilization is also one of the coordinate conversion parameters, but this is because the correction of the fluctuation of the inter-frame component in the optical image stabilization is a process that involves coordinate conversion of each pixel.
That is, if the reverse correction is performed using these parameters, the image data to which the lens distortion correction, the trapezoidal distortion correction, the focal plane distortion correction, the electronic image stabilization, and the optical image stabilization have been performed can be captured before each correction processing, that is, by imaging. It is possible to return to the state when the image sensor 12a of the element unit 12 is imaged.
 またレンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正の各パラメータについては、被写体からの光学像自体が光学的に歪んだ状態で撮像された画像である場合に対する歪み補正処理であり、それぞれ光学歪み補正を目的とするものであるため、光学歪み補正パラメータと総称している。
 つまり、これらのパラメータを用いて逆補正を行えば、レンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正が施された画像データを、光学歪み補正前の状態に戻すことができる。
The lens distortion correction, trapezoidal distortion correction, and focal plane distortion correction parameters are distortion correction processing for the case where the optical image itself from the subject is an image captured in an optically distorted state, and each of them is an optical distortion. Since it is intended for correction, it is collectively referred to as an optical distortion correction parameter.
That is, if the reverse correction is performed using these parameters, the image data to which the lens distortion correction, the trapezoidal distortion correction, and the focal plane distortion correction have been performed can be returned to the state before the optical distortion correction.
 メタデータにおけるタイミング情報TMとしては、露光時間(シャッタースピード)、露光開始タイミング、読み出し時間(幕速)、露光フレーム数(長秒露光情報)、IMUサンプルオフセット、フレームレートの各情報が含まれる。
 本実施の形態の画像処理においては、これらは主に各フレームのラインとIMUデータを対応づけるために用いられる。
 但しイメージセンサ12aがCCDの場合やグローバルシャッター方式のCMOSの場合であっても、 電子シャッターやメカシャッターを用いて露光重心がずれる場合は、露光開始タイミングと幕速も用いて露光重心に合わせた補正が可能となる。
The timing information TM in the metadata includes each information of exposure time (shutter speed), exposure start timing, readout time (curtain speed), number of exposure frames (long exposure information), IMU sample offset, and frame rate.
In the image processing of the present embodiment, these are mainly used to associate the line of each frame with the IMU data.
However, even if the image sensor 12a is a CCD or a global shutter CMOS, if the exposure center of gravity shifts using an electronic shutter or mechanical shutter, the exposure start timing and curtain speed are also used to match the exposure center of gravity. Correction is possible.
 メタデータにおけるカメラパラメータCPとしては、画角(焦点距離)、ズーム位置、レンズ歪み情報が記述される。
As the camera parameter CP in the metadata, the angle of view (focal length), zoom position, and lens distortion information are described.
<4.実施の形態の画像処理>
 実施の形態としての画像処理装置TDxとなる情報処理装置70の処理例を説明する。
 図17は、画像処理装置TDxとしての情報処理装置70において実行される各種処理の手順を示すとともに、各処理で用いる情報の関係性を示している。
 なお、図6、図7の揺れ変更部101の機能によっては、図17においてステップST30として囲った、ステップST13,ST14,ST15,ST16の処理が行われる。
 パラメータ設定部102の機能によってはステップST41のパラメータ設定処理が行われる。
 UI処理部103の機能によってはステップST40のUI処理が行われる。
 領域設定部104の機能によってはステップST42の領域設定処理が行われる。
<4. Image processing of the embodiment>
A processing example of the information processing device 70, which is the image processing device TDx as an embodiment, will be described.
FIG. 17 shows the procedures of various processes executed in the information processing device 70 as the image processing device TDx, and shows the relationship of the information used in each process.
Depending on the function of the shaking changing unit 101 of FIGS. 6 and 7, the processes of steps ST13, ST14, ST15, and ST16 enclosed as step ST30 in FIG. 17 are performed.
Depending on the function of the parameter setting unit 102, the parameter setting process of step ST41 is performed.
Depending on the function of the UI processing unit 103, the UI processing in step ST40 is performed.
Depending on the function of the area setting unit 104, the area setting process of step ST42 is performed.
 図17では破線で囲ったステップST30を「揺れ変更」とし、またステップST16を「揺れ変更処理」と表記しているが、ステップST16は、揺れの状態を実際に変更するための天球モデルMTの回転や境界領域の拡大縮小による座標点の移動などの処理のことであり、狭義の「揺れ変更」である。
 一方ステップST30は、そのステップST16の揺れ変更処理と、その処理にいたる準備としての天球モデル処理やパラメータ設定なども含む広義の「揺れ変更」である。
In FIG. 17, step ST30 surrounded by a broken line is referred to as "sway change", and step ST16 is described as "sway change processing". Step ST16 is a celestial sphere model MT for actually changing the state of shaking. It is a process such as movement of coordinate points by rotation or enlargement / reduction of the boundary area, and is a "sway change" in a narrow sense.
On the other hand, step ST30 is a broadly defined "sway change" including the sway change process of step ST16, the celestial sphere model process as a preparation for the process, and parameter setting.
 図17の処理として、まず前処理としてのステップST1,ST2,ST3,ST4について説明する。
 前処理は動画ファイルMFのインポート時に行われる処理とする。
 ここでいう「インポート」とは、情報処理装置70が例えば記憶部79などに取り込んでいることでアクセス可能な動画ファイルMFなどを画像処理の対象とすることを指し、前処理を行って画像処理可能に展開することをいう。例えば撮像装置1から携帯端末2等に転送することを指すものではない。
As the processing of FIG. 17, first, steps ST1, ST2, ST3, and ST4 as preprocessing will be described.
The pre-processing is the processing performed when the moving image file MF is imported.
The term "import" as used herein means that the information processing device 70 targets, for example, a moving image file MF that can be accessed by being imported into a storage unit 79 or the like, and performs image processing by performing preprocessing. It means to develop as possible. For example, it does not mean transferring from the image pickup device 1 to the mobile terminal 2 or the like.
 CPU71は、ユーザ操作等により指定された動画ファイルMFを画像処理対象となるようにインポートするとともに、前処理として動画ファイルMFに付加されたメタデータに関する処理を行う。例えば動画の各フレームに対応するメタデータを抽出して記憶する処理を行う。
 具体的には、この前処理では、メタデータ抽出(ステップST1)、全IMUデータ連結(ステップST2)、メタデータの保持(ステップST3)、クオータニオン(撮像装置1の姿勢情報)への変換、保持(ステップST4)が行われる。
The CPU 71 imports the moving image file MF designated by the user operation or the like so as to be the image processing target, and also performs processing related to the metadata added to the moving image file MF as preprocessing. For example, a process of extracting and storing metadata corresponding to each frame of a moving image is performed.
Specifically, in this preprocessing, metadata extraction (step ST1), all IMU data concatenation (step ST2), metadata retention (step ST3), conversion to quotation (posture information of imaging device 1), and retention. (Step ST4) is performed.
 ステップST1のメタデータ抽出としては、CPU71は、対象の動画ファイルMFを読み込んで、図15で説明したように動画ファイルMFに含まれているメタデータを抽出する。
 なおステップST1,ST2,ST3,ST4の一部又は全部を撮像装置1などの画像ソースVS側で行ってもよい。その場合は、前処理においては、以下説明するそれらの処理後の内容がメタデータとして取得される。
As the metadata extraction in step ST1, the CPU 71 reads the target moving image file MF and extracts the metadata included in the moving image file MF as described with reference to FIG.
Note that part or all of steps ST1, ST2, ST3, and ST4 may be performed on the image source VS side such as the image pickup apparatus 1. In that case, in the pre-processing, the contents after the processing described below are acquired as metadata.
 CPU71は、抽出されたメタデータのうち、IMUデータ(角速度データ(ジャイロサンプル)と加速度データ(アクセルサンプル))については、ステップST2で連結処理を行う。
 これは、全フレームについて対応づけられているIMUデータについて、全てを時系列順に並べて連結し、動画のシーケンス全体に対応するIMUデータを構築する処理となる。
 そして連結したIMUデータに対して積分処理を行って、動画のシーケンス上の各時点での撮像装置1の姿勢を表すクオータニオンQDを算出し、これを記憶保持する。クオータニオンQDを算出するとしているのは一例である。
 なお角速度データのみでクオータニオンQDを計算することもできる。
Of the extracted metadata, the CPU 71 performs a concatenation process on the IMU data (angular velocity data (gyro sample) and acceleration data (accelerator sample)) in step ST2.
This is a process of constructing IMU data corresponding to the entire sequence of moving images by arranging and concatenating all the IMU data associated with all frames in chronological order.
Then, integration processing is performed on the connected IMU data to calculate a quarternion QD representing the posture of the imaging device 1 at each time point on the sequence of moving images, and this is stored and retained. It is an example that the quarternion QD is calculated.
It is also possible to calculate the quarternion QD using only the angular velocity data.
 CPU71は、抽出されたメタデータのうち、IMUデータ以外のメタデータ、即ち座標変換パラメータHP、タイミング情報TM、カメラパラメータCPについては、ステップST3で保持する処理を行う。即ち各フレームに対応した状態で座標変換パラメータHP、タイミング情報TM、カメラパラメータCPを記憶する。 Among the extracted metadata, the CPU 71 performs a process of holding the metadata other than the IMU data, that is, the coordinate conversion parameter HP, the timing information TM, and the camera parameter CP in step ST3. That is, the coordinate conversion parameter HP, the timing information TM, and the camera parameter CP are stored in a state corresponding to each frame.
 以上の前処理が行われることで、CPU71にとっては、動画ファイルMFとして受け取った動画データに対する揺れ変更を含めた各種の画像処理を行う準備がなされたことになる。
 図17の定常処理は、以上のように前処理が施された動画ファイルMFの動画データを対象として行う画像処理を示している。
By performing the above preprocessing, the CPU 71 is ready to perform various image processing including the shaking change of the moving image data received as the moving image file MF.
The routine processing of FIG. 17 shows image processing performed on the moving image data of the moving image file MF that has been preprocessed as described above.
 CPU71は、動画の1フレーム取り出し(ステップST11)、撮像装置内部補正キャンセル(ステップST12)、天球モデルへの貼り付け(ステップST13)、同期処理(ステップST14)、揺れ情報調整(ステップST15)、揺れ変更(ステップST16)、出力領域指定(ステップST17)、平面投影及び切り出し(ステップST18)を行う。 The CPU 71 takes out one frame of the moving image (step ST11), cancels the internal correction of the image pickup device (step ST12), pastes it on the celestial sphere model (step ST13), synchronizes processing (step ST14), adjusts the shaking information (step ST15), and shakes. Change (step ST16), output area designation (step ST17), plane projection and cutout (step ST18).
 CPU71は、以上のステップST11からステップST20の各処理は、動画ファイルMFの画像再生の際に毎フレームについて行うことになる。
 またこれらに付随してCPU71は必要なタイミングで、UI処理(ステップST40)、パラメータ設定処理(ステップST41)、領域設定処理(ステップST42)を行う。
The CPU 71 performs each of the above steps ST11 to ST20 for each frame when reproducing the image of the moving image file MF.
Along with these, the CPU 71 performs UI processing (step ST40), parameter setting processing (step ST41), and area setting processing (step ST42) at necessary timings.
 ステップST11でCPU71は、フレーム番号FNに沿って動画(動画ファイルMF)の1フレームをデコードする。そして1フレームの動画データPD(#FN)を出力する。なお『(#FN)』はフレーム番号を示し、そのフレームに対応する情報であることを表すものとする。
 なお、動画が圧縮などのエンコード処理をされたものでない場合は、このステップST11でのデコード処理は不要である。
In step ST11, the CPU 71 decodes one frame of the moving image (moving image file MF) along the frame number FN. Then, one frame of moving image data PD (#FN) is output. Note that "(#FN)" indicates a frame number and indicates that the information corresponds to that frame.
If the moving image is not encoded by compression or the like, the decoding process in step ST11 is not necessary.
 ステップST12でCPU71は、1フレームの動画データPD(#FN)について撮像装置1で行われた内部補正をキャンセルする処理を行う。
 このためにCPU71は、前処理時に当該フレーム番号(#FN)に対応して記憶された座標変換パラメータHP(#FN)を参照し、撮像装置1で行われた補正とは逆補正を行う。これにより撮像装置1におけるレンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正、電子手ぶれ補正、光学手ぶれ補正がキャンセルされた状態の動画データiPD(#FN)を得る。つまり撮像装置1で行われた揺れ除去等がキャンセルされて、撮像時の手ぶれ等の揺れの影響がそのまま現れている動画データである。これは、撮像時の補正処理をキャンセルして補正前の状態としたうえで、撮像時揺れ情報(例えばクオータニオンQD)を用いたより高精度の揺れ除去や、揺れ付加を行うためである。
 但し、このステップST12としての撮像装置内部補正キャンセルの処理は行われなくてもよい。例えばステップST12の処理をスキップして、動画データPD(#FN)をそのまま出力してもよい。
In step ST12, the CPU 71 performs a process of canceling the internal correction performed by the image pickup apparatus 1 for the moving image data PD (#FN) of one frame.
For this purpose, the CPU 71 refers to the coordinate conversion parameter HP (#FN) stored corresponding to the frame number (#FN) at the time of preprocessing, and performs a correction opposite to the correction performed by the image pickup apparatus 1. As a result, moving image data iPD (#FN) in a state in which lens distortion correction, trapezoidal distortion correction, focal plane distortion correction, electronic camera shake correction, and optical camera shake correction in the image pickup apparatus 1 are canceled is obtained. That is, it is moving image data in which the shaking removal or the like performed by the image pickup apparatus 1 is canceled and the influence of the shaking such as camera shake at the time of imaging appears as it is. This is because, after canceling the correction process at the time of imaging to the state before the correction, more accurate shaking removal and shaking addition using the shaking information at the time of imaging (for example, quaternion QD) are performed.
However, the process of canceling the internal correction of the image pickup apparatus as step ST12 may not be performed. For example, the process of step ST12 may be skipped and the moving image data PD (#FN) may be output as it is.
 ステップST13でCPU71は、各種補正がキャンセルされた状態の1フレームの動画データiPD(#FN)について天球モデルMTへの貼付を行う。このとき、当該フレーム番号(#FN)に対応して記憶されたカメラパラメータCP(#FN)、即ち画角、ズーム位置、レンズ歪み情報を参照する。 In step ST13, the CPU 71 attaches the 1-frame video data iPD (#FN) in a state where various corrections have been canceled to the celestial sphere model MT. At this time, the camera parameter CP (#FN) stored corresponding to the frame number (#FN), that is, the angle of view, the zoom position, and the lens distortion information are referred to.
 図18に天球モデルMTへの貼付の概要を示す。
 図18Aは動画データiPDを示している。像高hは画像中心からの距離である。図中の各円は像高hが等しくなる位置を示している。
 この動画データiPDのフレームについての画角、ズーム位置、レンズ歪み情報から、そのフレームにおける「イメージセンサ面と入射角φの関係」を計算し、イメージセンサ面の各位置の「data0」・・・「dataN-1」とする。そして「data0」・・・「dataN-1」から図18Bのような像高hと入射角φの関係の1次元のグラフとして表現する。入射角φは光線の角度(光軸から見た角度)である。
 この1次元のグラフを撮像画像の真ん中を中心に1回転させて、各ピクセルと入射角の関係を求める。
 それに従って図18Cの画素G1から天球座標上の画素G2のように、動画データiPDの各画素について天球モデルMTへのマッピングを行うことになる。
FIG. 18 shows an outline of attachment to the celestial sphere model MT.
FIG. 18A shows the moving image data iPD. The image height h is the distance from the center of the image. Each circle in the figure indicates a position where the image heights h are equal.
From the angle of view, zoom position, and lens distortion information of this moving image data iPD frame, the "relationship between the image sensor surface and the incident angle φ" in that frame is calculated, and "data0" at each position on the image sensor surface ... Let's say "dataN-1". Then, from "data0" ... "dataN-1", it is expressed as a one-dimensional graph of the relationship between the image height h and the incident angle φ as shown in FIG. 18B. The incident angle φ is the angle of the light beam (the angle seen from the optical axis).
This one-dimensional graph is rotated once around the center of the captured image, and the relationship between each pixel and the incident angle is obtained.
Accordingly, mapping from the pixel G1 in FIG. 18C to the celestial sphere model MT is performed for each pixel of the moving image data iPD as in the pixel G2 on the celestial sphere coordinates.
 以上によりレンズ歪みが除去された状態で撮像画像を理想天球面に貼り付けた天球モデルMTの画像(データ)が得られる。この天球モデルMTは、その動画データiPDを元々撮像した撮像装置1の固有のパラメータや歪みが除去され、理想的なピンホールカメラで見える範囲が、天球面に貼ってあるものとなっている。
 従ってこの状態で天球モデルMTの画像を所定方向に回転させることで、画像の全体的な揺れ除去や揺れ付加としての揺れ変更処理が実現できることになる。
As described above, an image (data) of the celestial sphere model MT in which the captured image is attached to the ideal celestial sphere with the lens distortion removed can be obtained. In this celestial sphere model MT, the parameters and distortions peculiar to the image pickup device 1 that originally captured the moving image data iPD are removed, and the range that can be seen by an ideal pinhole camera is pasted on the celestial sphere.
Therefore, by rotating the image of the celestial sphere model MT in a predetermined direction in this state, it is possible to realize the overall shaking removal of the image and the shaking change processing as the shaking addition.
 ここで揺れ変更処理には撮像装置1の姿勢情報(クオータニオンQD)を用いることになる。このためにCPU71はステップST14で同期処理を行うようにしている。
 同期処理では、フレーム番号FNに対応して、ライン毎に適したクオータニオンQD(#LN)を特定し取得する処理を行う。なお『(#LN)』はフレーム内のライン番号を示し、そのラインに対応する情報であることを表すものとする。
Here, the attitude information (quarterion QD) of the image pickup apparatus 1 is used for the shaking change processing. Therefore, the CPU 71 performs the synchronization process in step ST14.
In the synchronous process, a process of identifying and acquiring a quaternion QD (#LN) suitable for each line corresponding to the frame number FN is performed. Note that "(#LN)" indicates a line number in the frame and indicates that the information corresponds to that line.
 なお、ライン毎のクオータニオンQD(#LN)を用いるのは、イメージセンサ12aがCMOS型でローリングシャッター方式の撮像が行われる場合、ライン毎に揺れの量が異なるためである。
 例えばイメージセンサ12aがCCD型でグローバルシャッター方式の撮像が行われる場合は、フレーム単位のクオータニオンQD(#FN)を用いれば良い。
 なお、イメージセンサ12aとしてのCCDやCMOSのグローバルシャッターの時でも電子シャッター(メカシャッターでも同様)を用いていると重心がずれるので、フレームの露光期間の中心(電子シャッターのシャッター速度に応じてずれる)のタイミングのクオータニオンを用いると良い。
The reason why the quarternion QD (#LN) for each line is used is that when the image sensor 12a is a CMOS type and the imaging is performed by the rolling shutter method, the amount of shaking differs for each line.
For example, when the image sensor 12a is a CCD type and the image is taken by the global shutter method, a frame-by-frame quarternion QD (#FN) may be used.
Even when using a CCD or CMOS global shutter as the image sensor 12a, the center of gravity shifts when an electronic shutter (similar to a mechanical shutter) is used, so the center of the exposure period of the frame (shifts according to the shutter speed of the electronic shutter). ) Timing quotation should be used.
 ここで画像に現れるブラーについて考慮する。
 ブラーとは、同一フレーム内の撮像装置と被写体の間の相対的な動きによる、画像のにじみのことである。即ち露光時間内の揺れによる画像のにじみである。露光時間が長くなる程、ブラーとしてのにじみの影響は強くなる。
 電子手ぶれ補正は、フレーム毎に切り出す画像範囲を制御する方式を用いる場合、フレーム間に生じる「揺れ」を軽減/解消できるものであるが、露光時間内の相対的な揺れは、このような電子手ぶれ補正では低減できない。
 また手ぶれ補正で切り出し領域を変化させるときは、各フレームの姿勢情報を用いるが、その姿勢情報が、露光期間の開始又は終了のタイミング等の露光期間の中心とずれたものであると、その姿勢を基準とした露光時間内の揺れの方向が偏ることになり、にじみが目立ちやすい。さらに、CMOSのローリングシャッターではラインごとに露光期間が異なる。
Now consider the blur that appears in the image.
Blur is image bleeding due to relative movement between the image pickup device and the subject in the same frame. That is, image bleeding due to shaking within the exposure time. The longer the exposure time, the stronger the effect of blurring.
Electronic image stabilization can reduce / eliminate "shake" that occurs between frames when a method that controls the image range to be cut out for each frame is used, but relative shake within the exposure time is such an electron. It cannot be reduced by image stabilization.
When changing the cutout area by image stabilization, the posture information of each frame is used, but if the posture information deviates from the center of the exposure period such as the start or end timing of the exposure period, the posture. The direction of shaking within the exposure time based on the above is biased, and bleeding is easily noticeable. Further, in the CMOS rolling shutter, the exposure period is different for each line.
 そこでステップST14の同期処理では、動画データの各フレームについて、ライン毎の露光重心のタイミングを基準としてクオータニオンQDを取得するようにする。
 図19には、撮像装置1の垂直期間の同期信号cVと、この同期信号cVから生成されるイメージセンサ12aの同期信号sV、及びIMUデータのサンプルタイミングを示すとともに、露光タイミング範囲120を示している。
 露光タイミング範囲は、ローリングシャッター方式で露光時間t4としたときの1フレームの各ラインの露光期間を平行四辺形で模式的に示したものである。さらに同期信号cVと同期信号sVの時間的なオフセットt0、IMUサンプルタイミングオフセットt1、読み出し開始タイミングt2、読み出し時間(幕速)t3、露光時間t4を示している。なお読み出し開始タイミングt2は同期信号sVから所定時間t2ofを経たタイミングとなる。
 各IMUサンプルタイミングで得られる各IMUデータについてはフレームに紐づけられる。例えば期間FH1におけるIMUデータは平行四辺形で露光期間を示した現フレームに紐付いたメタデータとされ、期間FH1におけるIMUデータは次のフレームに紐付いたメタデータとされる。但し図17のステップST2で全IMUデータを連結することで、各フレームとIMUデータの紐付けを解除し時系列でIMUデータを管理できる状態になっている。
 この場合に、現フレームの各ラインの露光重心(破線Wのタイミング)に相当するIMUデータを特定する。これはIMUデータとイメージセンサ12aの有効画素領域との時間的な関係がわかれば計算できる。
Therefore, in the synchronization process of step ST14, the quarternion QD is acquired for each frame of the moving image data based on the timing of the exposure center of gravity for each line.
FIG. 19 shows the synchronization signal cV of the image pickup apparatus 1 during the vertical period, the synchronization signal sV of the image sensor 12a generated from the synchronization signal cV, and the sample timing of the IMU data, and also shows the exposure timing range 120. There is.
The exposure timing range is a parallelogram schematically showing the exposure period of each line of one frame when the exposure time is t4 by the rolling shutter method. Further, the temporal offset t0 of the synchronization signal cV and the synchronization signal sV, the IMU sample timing offset t1, the read start timing t2, the read time (shutter speed) t3, and the exposure time t4 are shown. The read start timing t2 is the timing after a predetermined time t2of has passed from the synchronization signal sV.
Each IMU data obtained at each IMU sample timing is associated with a frame. For example, the IMU data in the period FH1 is the metadata associated with the current frame indicating the exposure period in a parallelogram, and the IMU data in the period FH1 is the metadata associated with the next frame. However, by concatenating all the IMU data in step ST2 of FIG. 17, the association between each frame and the IMU data is released, and the IMU data can be managed in chronological order.
In this case, the IMU data corresponding to the exposure center of gravity (timing of the broken line W) of each line of the current frame is specified. This can be calculated if the temporal relationship between the IMU data and the effective pixel area of the image sensor 12a is known.
 そこで当該フレーム(#FN)に対応するタイミング情報TMとして取得できる情報を用いて、各ラインの露光重心(破線Wのタイミング)に相当するIMUデータを特定する。
 即ち露光時間、露光開始タイミング、読み出し時間、露光フレーム数、IMUサンプルオフセット、フレームレートの情報である。
 そして露光重心のIMUデータから計算されたクオータニオンQDを特定し、ライン毎の姿勢情報であるクオータニオンQD(#LN)とする。
Therefore, the IMU data corresponding to the exposure center of gravity (timing of the broken line W) of each line is specified by using the information that can be acquired as the timing information TM corresponding to the frame (#FN).
That is, it is information on the exposure time, the exposure start timing, the readout time, the number of exposure frames, the IMU sample offset, and the frame rate.
Then, the quaternion QD calculated from the IMU data of the exposure center of gravity is specified and used as the quaternion QD (#LN) which is the attitude information for each line.
 このクオータニオンQD(#LN)はステップST15の揺れ情報調整の処理に提供される。
 揺れ情報調整では、CPU71は入力された揺れ変更のためのパラメータPRM1に従ってクオータニオンQDを調整する。
 パラメータPRM1は、ユーザ操作に応じて入力されるパラメータであったり、自動制御によって発生されるパラメータであったりする。
This quarternion QD (#LN) is provided for the process of adjusting the shaking information in step ST15.
In the shaking information adjustment, the CPU 71 adjusts the quaternion QD according to the input parameter PRM1 for changing the shaking.
The parameter PRM1 may be a parameter input according to a user operation or a parameter generated by automatic control.
 ユーザは、画像に任意の揺れ具合を付加するようにステップST40のUI処理で提供される操作手法によりパラメータPRM1を設定するための入力を行うことができる。またCPU71は、画像解析や画像種別、或いはユーザの揺れのモデルの選択操作などに応じて自動制御によりパラメータPRM1を発生することができる。 The user can input to set the parameter PRM1 by the operation method provided in the UI processing of step ST40 so as to add an arbitrary degree of shaking to the image. Further, the CPU 71 can generate the parameter PRM1 by automatic control according to an image analysis, an image type, a user's shaking model selection operation, or the like.
 例えばステップST40のUI処理では、ユーザは揺れ変更を指示する操作入力を行うことができる。即ち揺れ演出としての揺れを指示する操作や、揺れ除去の程度を指示するような操作などである。 For example, in the UI processing of step ST40, the user can input an operation to instruct the shaking change. That is, an operation for instructing the shaking as a shaking effect, an operation for instructing the degree of shaking removal, and the like.
 ステップST40のUI処理に基づいて、CPU71はステップST41でパラメータ設定を行う。つまりユーザ操作に応じた揺れ変更パラメータが設定され、ステップST15の揺れ情報調整処理に供される。 Based on the UI processing in step ST40, the CPU 71 sets the parameters in step ST41. That is, the shaking change parameter is set according to the user operation, and is used for the shaking information adjustment process in step ST15.
 またステップST40のUI処理では、ユーザはさらに領域分割の操作や、各領域に加える揺れ量などを指示する操作入力を行うことができる。即ち領域毎の揺れ変更のための操作である。
 ステップST41のパラメータ設定処理では、このような処理に応じて領域毎の揺れ変更のためのパラメータPRM2を設定し、ステップST16の揺れ変更処理に提供する。
Further, in the UI processing of step ST40, the user can further perform an operation of dividing the area and an operation input for instructing the amount of shaking to be applied to each area. That is, it is an operation for changing the shaking for each area.
In the parameter setting process of step ST41, the parameter PRM2 for changing the shaking for each area is set according to such processing and provided for the shaking changing process of step ST16.
 またステップST42の領域設定処理では、CPU71は、ユーザ操作に応じて領域設定を行い、領域情報iARをステップST16の揺れ変更処理に提供する。
 なお、ステップST42の領域設定処理としては、ユーザ操作に応じた領域設定ではなく、画像解析結果に基づく自動的な領域設定が行われる場合もある。そのため領域設定処理では動画データiPDを対象として画像解析処理を行って、被写体認識などに応じた領域自動設定を行って、領域情報iARをステップST16の揺れ変更処理に提供する場合もある。
 さらには、領域設定処理では、画像解析とユーザ入力の双方に応じて領域情報iARを生成する場合もある。例えばユーザが画像上で或る人物を指定した場合に、画像解析によりその人物の画素範囲を特定し、当該画素範囲を1つの領域とするなどである。
Further, in the area setting process of step ST42, the CPU 71 sets the area according to the user operation and provides the area information iAR to the shaking change process of step ST16.
As the area setting process in step ST42, an automatic area setting based on the image analysis result may be performed instead of the area setting according to the user operation. Therefore, in the area setting process, there is a case where the image analysis process is performed on the moving image data iPD, the area is automatically set according to the subject recognition, and the area information iAR is provided for the shaking change process in step ST16.
Further, in the area setting process, the area information iAR may be generated according to both the image analysis and the user input. For example, when a user specifies a certain person on an image, the pixel range of the person is specified by image analysis, and the pixel range is set as one area.
 ステップST15の揺れ情報調整の処理では、CPU71は、撮像時揺れ情報であるクオータニオンQDやステップST41で設定されたパラメータPRM1に基づいて、画像に揺れを付加したり、揺れの量を増減させたりするための調整後クオータニオンeQDを生成する。 In the process of adjusting the shaking information in step ST15, the CPU 71 adds shaking to the image or increases or decreases the amount of shaking based on the quaker QD which is the shaking information at the time of imaging and the parameter PRM1 set in step ST41. Generate adjusted quaternion eQD for.
 具体的な調整後クオータニオンeQDの生成例を図20,図21,図22で説明する。
 図20はパラメータPRM1による周波数帯域別ゲインの指示に応じて調整後クオータニオンeQDを生成する例である。
 周波数帯域とは揺れの周波数の帯域である。説明上、ローバンド、ミドルバンド、ハイバンドの3つの帯域に分けるとする。もちろんこれは一例にすぎず帯域数は2以上であればよい。
 低域ゲインLG、中域ゲインMG、高域ゲインHGが、パラメータPRM1として与えられる。
A specific example of generating the adjusted quaternion eQD will be described with reference to FIGS. 20, 21, and 22.
FIG. 20 shows an example in which the adjusted quarternion eQD is generated according to the instruction of the gain for each frequency band by the parameter PRM1.
The frequency band is a band of fluctuation frequencies. For the sake of explanation, it is assumed that the band is divided into three bands: low band, middle band, and high band. Of course, this is only an example, and the number of bands may be 2 or more.
The low-frequency gain LG, the mid-frequency gain MG, and the high-frequency gain HG are given as the parameters PRM1.
 図20の調整処理系としては、低域通過フィルタ41,中域通過フィルタ42,高域通過フィルタ43、ゲイン演算部44,45,46、合成部47を有する。
 この調整処理系には「揺らすためのクオータニオンQDs」を入力する。これは撮像時揺れ情報としてのクオータニオンQDの共役である。
The adjustment processing system of FIG. 20 includes a low-pass filter 41, a mid-pass filter 42, a high-pass filter 43, gain calculation units 44, 45, 46, and a synthesis unit 47.
"Quaternion QDs for shaking" are input to this adjustment processing system. This is the conjugate of the quarternion QD as shake information during imaging.
 揺らすためのクオータニオンQDsとしての現在フレーム及び前後の所定フレームについての各値qを低域通過フィルタ41に入力し、低域成分qlowを求める。 Each value q for the current frame as the quaternion QDs for shaking and the predetermined frames before and after is input to the low-pass filter 41, and the low-pass component q low is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この低域成分qlowに対してゲイン演算部44で低域ゲインLGを与える。
 式中のmean(q,n)は、qの前後n個の平均値を示す。
 なお、このmean(q,n)の式はあくまでも低域通過フィルタの一例であり、他の計算方法でもよいことは言うまでもない。以降説明する各式も一例である。
The gain calculation unit 44 gives the low-frequency gain LG to the low-frequency component q low.
Mean (q, n) in the equation indicates the average value of n before and after q.
It goes without saying that this mean (q, n) equation is just an example of a low-pass filter, and other calculation methods may be used. Each equation described below is also an example.
 揺らすためのクオータニオンQDsの値qは中域通過フィルタ42にも入力し、中域成分qmidを求める。 The value q of the quarternion QDs for shaking is also input to the mid- range passing filter 42, and the mid-range component q mid is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、q* lowはqlowの共役である。
 また“×”はクオータニオン積である。
 この中域成分qmidに対してゲイン演算部45で中域ゲインMGを与える。
Note that q * low is a conjugate of q low.
Also, "x" is the quaternion product.
The gain calculation unit 45 gives the mid-range gain MG to the mid- range component q mid.
 また揺らすためのクオータニオンQDsの値qを高域通過フィルタ43に入力し、高域成分qhighを求める。 Further, the value q of the quarternion QDs for shaking is input to the high frequency passing filter 43, and the high frequency component q high is obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、q* midはqmidの共役である。
 この高域成分qhighに対してゲイン演算部46で高域ゲインHGを与える。
Note that q * mid is a conjugate of q mid.
The gain calculation unit 46 gives a high-frequency gain HG to the high-frequency component q high.
 これらのゲイン演算部44,45,46は、入力を“qin”とする。 These gain calculation units 44, 45, 46 set the input to “q in ”.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この場合にθ’=θ*gainとして、次の“qout”を出力する。
(但しgainは、低域ゲインLG、中域ゲインMG、高域ゲインHG) 
In this case, the following "q out " is output with θ'= θ * gain.
(However, gain is low frequency gain LG, mid frequency gain MG, high frequency gain HG)
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このようなゲイン演算部44,45,46により、それぞれ低域ゲインLG、中域ゲインMG、高域ゲインHGが与えられた低域成分q'low、中域成分q'mid、高域成分q'highが得られる。これを合成部47で合成した値qmixedを得る。 Such gain calculating section 44, 45 and 46, respectively the low frequency gain LG, midrange gain MG, high frequency gain HG is low frequency component q 'low, midrange component q' given mid, high-frequency components q 'You get high. The value q mixed obtained by combining this with the synthesis unit 47 is obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお“×”はクオータニオン積である。
 このように求められた値qmixedが調整後クオータニオンeQDの値となる。
 なお以上は帯域分割した例であるが、帯域分割せずにパラメータPRM1に応じたゲインを与えるという調整後クオータニオンeQDの生成手法も考えられる。
Note that "x" is the quaternion product.
The value q mixed thus obtained becomes the value of the adjusted quarternion eQD.
Although the above is an example of band division, an adjusted quarternion eQD generation method in which a gain corresponding to the parameter PRM1 is given without band division is also conceivable.
 次に図21はパラメータPRM1による方向別ゲインの指示に応じて調整後クオータニオンeQDを生成する例である。
 方向とは揺れの方向であり、即ち、ヨー、ピッチ、ロールの方向である。
 ヨーゲインYG、ピッチゲインPG、ロールゲインRGが、パラメータPRM1として与えられる。
Next, FIG. 21 shows an example in which the adjusted quarternion eQD is generated according to the instruction of the gain for each direction by the parameter PRM1.
The direction is the direction of sway, that is, the direction of yaw, pitch, and roll.
Yaw gain YG, pitch gain PG, and roll gain RG are given as parameters PRM1.
 図21の調整処理系としては、ヨー成分抽出部51,ピッチ成分抽出部52,ロール成分抽出部53、ゲイン演算部54,55,56、合成部57を有する。
 ヨー成分抽出部51,ピッチ成分抽出部52,ロール成分抽出部53には、それぞれヨー軸(Yaw axis)、ピッチ軸(Pitch axis)、ロール軸(Roll axis)の情報が提供される。
The adjustment processing system of FIG. 21 includes a yaw component extraction unit 51, a pitch component extraction unit 52, a roll component extraction unit 53, a gain calculation unit 54, 55, 56, and a synthesis unit 57.
Information on the yaw axis, the pitch axis, and the roll axis is provided to the yaw component extraction unit 51, the pitch component extraction unit 52, and the roll component extraction unit 53, respectively.
 揺らすためのクオータニオンQDsとしての現在フレーム及び前後の所定フレームについての各値qをヨー成分抽出部51,ピッチ成分抽出部52,ロール成分抽出部53にそれぞれ入力し、ヨー成分qyaw、ピッチ成分qpitch、ロール成分qrollを求める。
 これら各成分抽出処理は、入力を次の“qin”とする。
Each value q for the current frame as the quarternion QDs for shaking and the predetermined frames before and after is input to the yaw component extraction unit 51, the pitch component extraction unit 52, and the roll component extraction unit 53, respectively, and the yaw component q yaw and the pitch component q are input. Find pitch and roll component q roll .
In each of these component extraction processes, the input is set to the next “q in ”.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 uは、ヨー軸、ピッチ軸、ロール軸等の軸の方向を表す単位ベクトルである。
 この場合にθ’=θ*(a・u)として、次の“qout”を出力する。
u is a unit vector representing the direction of axes such as the yaw axis, the pitch axis, and the roll axis.
In this case, the following "q out " is output with θ'= θ * (a · u).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 そしてこのような成分抽出により得られたヨー成分qyaw、ピッチ成分qpitch、ロール成分qrollについては、ゲイン演算部54,55,56により、それぞれヨーゲインYG、ピッチゲインPG、ロールゲインRGを与える。
 そしてゲイン演算を施したヨー成分q'yaw、ピッチ成分q'pitch、ロール成分q'rollを合成部47で合成した値qmixedを得る。
Then, the yaw component q yaw , the pitch component q pitch , and the roll component q roll obtained by such component extraction are given the yaw gain YG, the pitch gain PG, and the roll gain RG by the gain calculation units 54, 55, and 56, respectively. ..
The obtained yaw component q 'yaw, pitch component q' which has been subjected to gain calculation pitch, the value q mixed synthesized in roll component q 'roll synthesis unit 47.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 なお、この場合の“×”もクオータニオン積である。
 このように求められた値qmixedが調整後クオータニオンeQDの値となる。
In this case, "x" is also a quarter product.
The value q mixed thus obtained becomes the value of the adjusted quarternion eQD.
 図22は以上の周波数帯域別と方向別を組み合わせた例である。
 調整処理系としては、低域通過フィルタ41,中域通過フィルタ42,高域通過フィルタ43、方向別処理部58,59,60、ゲイン演算部44,45,46、合成部61を有する。
 パラメータPRM1によっては、低域ゲインLG、中域ゲインMG、高域ゲインHG、及び図示していないヨーゲインYG、ピッチゲインPG、ロールゲインRGが与えられる。
FIG. 22 is an example in which the above frequency bands and directions are combined.
The adjustment processing system includes a low-pass filter 41, a mid-pass filter 42, a high-pass filter 43, direction- specific processing units 58, 59, 60, a gain calculation unit 44, 45, 46, and a synthesis unit 61.
Depending on the parameter PRM1, low-frequency gain LG, mid-frequency gain MG, high-frequency gain HG, and yaw gain YG, pitch gain PG, and roll gain RG (not shown) are given.
 この調整処理系では、揺らすためのクオータニオンQDsとしての現在フレーム及び前後の所定フレームについての各値qを低域通過フィルタ41,中域通過フィルタ42,高域通過フィルタ43に供給してそれぞれの帯域成分を得る。各帯域成分は、方向別処理部58,59,60に入力される。
 方向別処理部58,59,60は、それぞれが図21のヨー成分抽出部51,ピッチ成分抽出部52,ロール成分抽出部53、ゲイン演算部54,55,56、合成部57を有するものとする。
 即ち、方向別処理部58では、揺らすためのクオータニオンQDsの低域成分に対して、ヨー方向、ロール方向、ピッチ方向の成分に分け、ヨーゲインYG、ピッチゲインPG、ロールゲインRGを用いてゲイン演算を行った後、合成する。
 方向別処理部59では、揺らすためのクオータニオンQDsの中域成分に対して、ヨー方向、ロール方向、ピッチ方向の成分に分けて同様にゲイン演算を行った後、合成する。
 方向別処理部60では、揺らすためのクオータニオンQDsの高域成分に対して、ヨー方向、ロール方向、ピッチ方向の成分に分けて同様にゲイン演算を行った後、合成する。
In this adjustment processing system, each value q for the current frame as the quaternion QDs for shaking and the predetermined frames before and after is supplied to the low-pass filter 41, the mid-pass filter 42, and the high-pass filter 43, and the respective bands are supplied. Get the ingredients. Each band component is input to the direction- specific processing units 58, 59, 60.
Each of the direction- specific processing units 58, 59, 60 has a yaw component extraction unit 51, a pitch component extraction unit 52, a roll component extraction unit 53, a gain calculation unit 54, 55, 56, and a synthesis unit 57 in FIG. do.
That is, in the direction-specific processing unit 58, the low-frequency components of the quarternion QDs for shaking are divided into the yaw direction, roll direction, and pitch direction components, and the gain calculation is performed using the yaw gain YG, pitch gain PG, and roll gain RG. After performing the above, synthesize.
The direction-specific processing unit 59 divides the mid-range components of the quaternion QDs for shaking into the components in the yaw direction, the roll direction, and the pitch direction, performs the same gain calculation, and then synthesizes the components.
The direction-specific processing unit 60 divides the high-frequency components of the quaternion QDs for shaking into components in the yaw direction, roll direction, and pitch direction, performs gain calculation in the same manner, and then synthesizes the components.
 なお、方向別処理部58,59,60で用いるゲインは、それぞれ異なるゲイン値とすることが想定される。即ち、方向別処理部58では低域用のヨーゲインYG、低域用のピッチゲインPG、低域用のロールゲインRGを用い、方向別処理部59では中域用のヨーゲインYG、中域用のピッチゲインPG、中域用のロールゲインRGを用い、方向別処理部60では高域用のヨーゲインYG、高域用のピッチゲインPG、高域用のロールゲインRGを用いる。即ち方向別処理部58,59,60では9個のゲインを用いることが考えられる。 It is assumed that the gains used in the direction- specific processing units 58, 59, and 60 have different gain values. That is, the direction-specific processing unit 58 uses the low-frequency yaw gain YG, the low-frequency pitch gain PG, and the low-frequency roll gain RG, and the direction-specific processing unit 59 uses the mid-range yaw gain YG and the mid-range. The pitch gain PG and the roll gain RG for the mid range are used, and the direction-specific processing unit 60 uses the yaw gain YG for the high range, the pitch gain PG for the high range, and the roll gain RG for the high range. That is, it is conceivable that the direction- specific processing units 58, 59, and 60 use nine gains.
 これらの方向別処理部58,59,60の出力はそれぞれゲイン演算部44,45,46に供給され、それぞれ低域ゲインLG、中域ゲインMG、高域ゲインHGが与えられる。そして合成部61で合成され、調整後クオータニオンeQDの値として出力される。 The outputs of these direction- specific processing units 58, 59, and 60 are supplied to the gain calculation units 44, 45, and 46, respectively, and low-frequency gain LG, mid-frequency gain MG, and high-frequency gain HG are given, respectively. Then, it is synthesized by the synthesis unit 61 and output as the value of the adjusted quarternion eQD.
 以上の図22の例では、先に周波数帯域別に分けた後、それぞれの帯域成分毎に方向別の処理を適用したが、逆でもよい。即ち先に方向別に分けた後、それぞれの方向成分毎に周波数帯域別の処理を適用するようにしてもよい。
 その場合、周波数帯域別の処理では9個のゲインを用いることが考えられる。例えばヨー方向についての周波数帯域別の処理では、ヨー方向用の低域ゲインLG、ヨー方向用の中域ゲインMG、ヨー方向用の高域ゲインHGを用いる。ピッチ方向についての周波数帯域別の処理では、ピッチ方向用の低域ゲインLG、ピッチ方向用の中域ゲインMG、ピッチ方向用の高域ゲインHGを用いる。ロール方向についての周波数帯域別の処理では、ロール方向用の低域ゲインLG、ロール方向用の中域ゲインMG、ロール方向用の高域ゲインHGを用いる。
In the above example of FIG. 22, after dividing by frequency band first, processing for each direction is applied for each band component, but the reverse is also possible. That is, after dividing by direction first, processing for each frequency band may be applied for each direction component.
In that case, it is conceivable to use nine gains in the processing for each frequency band. For example, in the processing for each frequency band in the yaw direction, the low-frequency gain LG for the yaw direction, the mid-range gain MG for the yaw direction, and the high-frequency gain HG for the yaw direction are used. In the processing for each frequency band in the pitch direction, the low-frequency gain LG for the pitch direction, the mid-range gain MG for the pitch direction, and the high-frequency gain HG for the pitch direction are used. In the processing for each frequency band in the roll direction, the low-frequency gain LG for the roll direction, the mid-range gain MG for the roll direction, and the high-frequency gain HG for the roll direction are used.
 図17のステップST15では、例えば以上のような処理例によって調整後クオータニオンeQDが生成される。
 そして生成された調整後クオータニオンeQDはステップST16の揺れ変更処理に提供される。
 ステップST16の揺れ変更処理とは、例えば図20,図21,図22の処理で得られる調整後クオータニオンeQDを、画像に適用して揺れを付加するものと考えることができる。
 また調整後クオータニオンeQDを、揺らすためではなく、揺れ除去や揺れ一部除去のための値として生成した場合は、ステップST16の揺れ変更処理とは調整後クオータニオンeQDを画像に適用して揺れを除去,低減するものと考えることができる。
In step ST15 of FIG. 17, for example, the adjusted quarternion eQD is generated by the above processing example.
Then, the generated adjusted quarternion eQD is provided for the shaking change processing in step ST16.
The shaking change processing in step ST16 can be considered to apply, for example, the adjusted quarternion eQD obtained by the processing of FIGS. 20, 21, and 22 to an image to add shaking.
If the adjusted quaternion eQD is generated as a value for removing sway or partially removing sway, not for swaying, what is the sway change processing in step ST16? The adjusted quaternion eQD is applied to the image to remove the sway. , Can be considered to be reduced.
 CPU71はステップST16の揺れ変更処理では、ステップST13でフレームの画像が貼り付けられた天球モデルMTの画像を、ライン毎に調整後クオータニオンeQD(#LN)を用いて回転させることで、画像の全体的な揺れを変更するようにする。 In the shaking change processing of step ST16, the CPU 71 rotates the image of the celestial sphere model MT to which the frame image is pasted in step ST13 by using the quatertern eQD (#LN) after adjusting for each line, thereby rotating the entire image. Try to change the sway.
 さらにCPU71はステップST16の揺れ変更処理では、領域情報iARとパラメータPRM2に応じて、領域毎の揺れ変更を行う。即ちまず、領域情報iARから把握される領域AR1,AR2から境界の領域AR3を特定する。もしくはステップST42の領域設定処理で領域AR1,AR2とともに設定され領域情報iARに含まれる境界の領域AR3の情報から領域AR3を特定する。
 またパラメータPRM2に基づいて、領域AR2に与える揺れの量(例えば領域AR1との揺れの量の差分)や揺れの周期、揺れの方向などを把握する。
 そして揺れの量、周期、方向などの値と、境界の領域AR3の特定に応じて、領域AR3の拡大/縮小をフレーム毎に行うことで、フレーム毎に領域AR1の範囲の画素の天球モデルMT上での座標点の移動が生ずるようにする。
Further, in the shaking change processing in step ST16, the CPU 71 changes the shaking for each area according to the area information iAR and the parameter PRM2. That is, first, the boundary region AR3 is specified from the regions AR1 and AR2 grasped from the region information iAR. Alternatively, the area AR3 is specified from the information of the boundary area AR3 set together with the areas AR1 and AR2 in the area setting process of step ST42 and included in the area information iAR.
Further, based on the parameter PRM2, the amount of shaking given to the area AR2 (for example, the difference in the amount of shaking from the area AR1), the period of shaking, the direction of shaking, and the like are grasped.
Then, by enlarging / reducing the area AR3 for each frame according to the values such as the amount of shaking, the period, and the direction and the identification of the boundary area AR3, the celestial sphere model MT of the pixels in the range of the area AR1 for each frame. Allow movement of the coordinate points above.
 このようなステップST16の揺れ変更処理では、天球モデルMTの回転による全体の揺れ変更と、座標点移動による揺れ変更により、上述した処理P1から処理P6などのいの揺れ変更が実行される。
 例えば天球モデルMTの回転により揺れ除去(或いは揺れ一部除去)したうえで領域AR1を揺らすことで、領域AR1は揺れ、領域AR2は揺れていない(或いは若干揺れた)画像となる。(例えば処理P1、処理P3、処理P5)
 また天球モデルMTの回転により揺れ付加したうえで領域AR1をさらに揺らすことで、領域AR1は大きく揺れ、領域AR2は小さく揺れた画像となる。(例えば処理P2、処理P4)
 また天球モデルMTの回転により揺れ除去したうえで領域AR1,AR2をそれぞれ座標点移動により異なる揺れ量で揺らすことで、領域AR1は大きく揺れ、領域AR2は小さく揺れた画像などを生成できる。(例えば処理P2、処理P4)
In such a sway change process in step ST16, the sway change from the above-mentioned process P1 to the process P6 is executed by the overall sway change due to the rotation of the celestial sphere model MT and the sway change due to the coordinate point movement.
For example, by shaking the region AR1 after removing the shaking (or removing a part of the shaking) by rotating the celestial sphere model MT, the region AR1 is shaken and the region AR2 is not shaken (or slightly shaken). (For example, processing P1, processing P3, processing P5)
Further, by further shaking the region AR1 after adding the shaking by the rotation of the celestial sphere model MT, the region AR1 is shaken greatly and the region AR2 is shaken slightly. (For example, processing P2, processing P4)
Further, by removing the shaking by rotating the celestial sphere model MT and then shaking the areas AR1 and AR2 with different amounts of shaking by moving the coordinate points, the area AR1 can generate a large shaking image and the area AR2 can generate a small shaking image. (For example, processing P2, processing P4)
 以上のように処理された揺れ変更済天球モデルhMTの画像は、ステップST18の処理に送られる。
 ステップST18でCPU71は、揺れ変更済天球モデルhMTの画像を平面に投影し、切り出すことで、揺れ変更がなされた画像(出力動画データoPD)が得られる。
The image of the celestial sphere model hMT whose shaking has been changed as described above is sent to the processing of step ST18.
In step ST18, the CPU 71 projects the image of the celestial sphere model hMT whose shaking has been changed onto a plane and cuts it out to obtain an image (output moving image data oPD) whose shaking has been changed.
 この場合、天球モデルMTの回転により揺れ変更が実現されているとともに、天球モデルMTを用いることで、どこを切り出しても台形状にならないため結果として台形歪みも解消されていることになる。また上述のように天球モデルMTは理想的なピンホールカメラで見える範囲が天球面に貼ってあるものとなっているためレンズ歪みもない。天球モデルMTの回転がライン毎のクオータニオンQD(#LN)に基づく調整後クオータニオンeQD(#LN)に応じて行われることで、フォーカルプレーン歪み補正も解消されている。
 さらにクオータニオンQD(#LN)が各ラインの露光重心に対応するものであることで、ブラーが目立たない画像となっている。
In this case, the sway change is realized by the rotation of the celestial sphere model MT, and by using the celestial sphere model MT, the trapezoidal shape is not formed no matter where it is cut out, and as a result, the trapezoidal distortion is also eliminated. Further, as described above, the celestial sphere model MT has no lens distortion because the range that can be seen by an ideal pinhole camera is pasted on the celestial sphere. The focal plane distortion correction is also eliminated by rotating the celestial sphere model MT according to the adjusted quarternion eQD (#LN) based on the quarternion QD (#LN) for each line.
Furthermore, since the quarternion QD (#LN) corresponds to the exposure center of gravity of each line, the blur is inconspicuous in the image.
 ステップST18で平面投影された後の画像と天球モデルMTの対応付けは次のようになる。
 図23Aは、平面投影する矩形の座標平面131の一例を示している。平面投影される画像の各座標を(x,y)とする。
 図23Bに示すように座標平面131を、天球モデルMTの真上に真ん中で接するように3次元空間上に配置(正規化)する。即ち、その座標平面131の中心が天球モデルMTの中心と一致し、かつ天球モデルMTと接する位置に配置されるようにする。
The correspondence between the image after the plane projection in step ST18 and the celestial sphere model MT is as follows.
FIG. 23A shows an example of the rectangular coordinate plane 131 to be projected in a plane. Let each coordinate of the image projected on the plane be (x, y).
As shown in FIG. 23B, the coordinate plane 131 is arranged (normalized) in the three-dimensional space so as to be in contact with the celestial sphere model MT in the center. That is, the center of the coordinate plane 131 is arranged at a position that coincides with the center of the celestial sphere model MT and is in contact with the celestial sphere model MT.
 この場合、ズーム倍率や切り出し領域のサイズに基づいて座標を正規化する。例えば図23Aのように座標平面131の水平座標を0乃至outhとし、垂直座標を0乃至outvとする場合、outhおよびoutvが画像サイズとされる。そして例えば、次の式により座標を正規化する。 In this case, the coordinates are normalized based on the zoom magnification and the size of the cutout area. For example, when the horizontal coordinates of the coordinate plane 131 are 0 to outh and the vertical coordinates are 0 to outv as shown in FIG. 23A, outh and outv are the image sizes. Then, for example, the coordinates are normalized by the following equation.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上記(数12)において、min(A、B)は、AおよびBのうち値が小さい方を返す関数である。また、「zoom」は、拡大縮小を制御するためのパラメータである。
 またxnorm、ynorm、znormは、正規化したx、y、z座標である。
 上記(数12)の各式により、座標平面131の座標は、半径1.0の半球の球面上の座標に正規化される。
In the above (Equation 12), min (A, B) is a function that returns the smaller value of A and B. Further, "zoom" is a parameter for controlling enlargement / reduction.
Further, xnorm, ynorm, and znorm are normalized x, y, and z coordinates.
According to each of the above equations (Equation 12), the coordinates of the coordinate plane 131 are normalized to the coordinates on the spherical surface of the hemisphere having a radius of 1.0.
 切り出し領域の向きを求めるための回転は図24Aのように、座標平面131を回転行列演算により回転させる。即ち下記(数13)の回転行列を使用し、パン角、チルト角およびロール角で回転させる。ここではパン角は、座標をz軸周りに回転させる回転角度である。また、チルト角は、座標をx軸周りに回転させる回転角度であり、ロール角は、y軸周りに回転させる回転角度である。 As shown in FIG. 24A, the coordinate plane 131 is rotated by rotation matrix calculation for the rotation for obtaining the orientation of the cutout region. That is, the following rotation matrix (Equation 13) is used to rotate the pan angle, tilt angle, and roll angle. Here, the pan angle is a rotation angle that rotates the coordinates around the z-axis. The tilt angle is a rotation angle for rotating the coordinates around the x-axis, and the roll angle is a rotation angle for rotating the coordinates around the y-axis.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上記(数13)において、「Rt」はチルト角、「Rr」はロール角、「Rp」はパン角である。また、(xrot、yrot、zrot)は回転後の座標である。 In the above (Equation 13), "Rt" is a tilt angle, "Rr" is a roll angle, and "Rp" is a pan angle. Further, (xrot, yrot, zrot) are the coordinates after rotation.
 この座標(xrot、yrot、zrot)を透視射影での天球対応点算出に用いる。
 図24Bのように、座標平面131を、天球表面に透視射影する(領域132)。即ち座標から天球の中心に向かって直線を引いた時に球面と交差する点を求めることになる。各座標は、以下のように計算される。
These coordinates (xrot, yrot, zrot) are used to calculate the celestial sphere corresponding points in perspective projection.
As shown in FIG. 24B, the coordinate plane 131 is perspectively projected onto the surface of the celestial sphere (region 132). That is, when a straight line is drawn from the coordinates toward the center of the celestial sphere, the point that intersects the sphere is found. Each coordinate is calculated as follows.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 (数14)において、xsph、ysph、zsphは座標平面131上の座標を天球モデルMTの表面上の座標に射影した座標である。
 この関係で平面投影された画像データが得られる。
In (Equation 14), xsph, ysph, and zsph are coordinates obtained by projecting the coordinates on the coordinate plane 131 onto the coordinates on the surface of the celestial sphere model MT.
Image data projected in a plane can be obtained in this relationship.
 例えば以上のような手法で平面に投影された画像についての切り出し領域が、図17のステップST17で設定されることになる。 For example, the cutout area for the image projected on the plane by the above method is set in step ST17 of FIG.
 ステップST17では、画像解析(被写体認識)によるトラッキング処理や、ユーザ操作に応じた切り出し領域指示情報CRCに基づいて、現在のフレームにおける切り出し領域情報CRAが設定される。
 例えば図25A、図25Bに、或るフレームの画像について設定された切り出し領域情報CRAを、枠の状態で示している。
 このような切り出し領域指示情報CRCがフレーム毎に設定される。
 なお、切り出し領域情報CRAは、ユーザや自動制御による画像のアスペクト比の指示も反映される。
In step ST17, the cutout area information CRC in the current frame is set based on the tracking process by image analysis (subject recognition) and the cutout area instruction information CRC according to the user operation.
For example, FIGS. 25A and 25B show the cutout area information CRA set for the image of a certain frame in the state of the frame.
Such cutout area instruction information CRC is set for each frame.
The cutout area information CRA also reflects the instruction of the aspect ratio of the image by the user or automatic control.
 切り出し領域情報CRAはステップST18の処理に反映される。即ち上記のように天球モデルMT上で切り出し領域情報CRAに応じた領域が平面投影されて出力動画データoPDが得られる。 The cutout area information CRA is reflected in the process of step ST18. That is, as described above, the region corresponding to the cutout region information CRA is projected on the celestial sphere model MT in a plane, and the output moving image data oPD is obtained.
 このように得られた出力動画データoPDは、ステップST16で、領域毎に揺れの状態が異なるように揺れ変更処理が施された動画データである。
 図17の処理が毎フレーム行われることで、出力動画データoPDを再生表示すると、揺れ演出として揺れが付加された画像が表示されることになる。
 従って例えばユーザがパラメータPRM1,PRM2や領域設定のための操作を行った場合、ユーザの意思に応じた揺れ演出が領域毎に加えられた画像となる。また自動的に領域設定がされて領域毎に被写体に応じた揺れ具合の揺れが付加された画像ともなり得る。
 このような動画データが、揺れ演出された画像として表示されたり保存されたりする。
The output moving image data oPD obtained in this way is moving image data in which the shaking change processing is performed in step ST16 so that the shaking state is different for each area.
By performing the processing of FIG. 17 every frame, when the output moving image data oPD is reproduced and displayed, an image to which shaking is added is displayed as a shaking effect.
Therefore, for example, when the user performs an operation for setting the parameters PRM1 and PRM2 and the area, the image is obtained by adding a shaking effect according to the user's intention for each area. In addition, the image may be an image in which the area is automatically set and the degree of shaking according to the subject is added to each area.
Such moving image data is displayed or saved as an image with a shaking effect.
<5.まとめ及び変形例>
 以上の実施の形態では次のような効果が得られる。
 実施の形態の画像処理装置TDxは、入力動画データの画像内で複数の領域を設定する領域設定部104(ST42)と、出力動画データに現れる揺れの状態が、領域設定部104が設定した領域毎に異なる状態となるようにする揺れ変更処理を行う揺れ変更部101(ST30)を備える。
 従って例えば画面内で揺れのない領域と揺れのある領域を形成することや、揺れの小さい領域と揺れの大きい領域を形成することなどが可能となる。
 これにより揺れによる演出効果と揺れを止めて見やすくする効果を両立させることができたり、或いは揺れ具合を領域毎に変えて演出効果を高めたりすること等が可能になり、画像演出効果の多様性を広げることができる。
 つまり単に揺れによる画像効果を画面内に一様に生じさせるのではなく、画像内における揺れさせたい被写体と揺れさせたくない被写体がある場合に、それぞれに応じた揺れを与えたり、一部のみ激しく揺らせたい場合に特定被写体のみ揺らせたりするなど、各種要望に応じた画像効果を実現できる。
 なお、境界領域を除いて3以上の領域を設定してそれぞれの揺れ具合が異なるように領域毎に異なる揺れ変更が行われるようにしてもよい。
<5. Summary and modification>
The following effects can be obtained in the above embodiments.
In the image processing device TDx of the embodiment, the area setting unit 104 (ST42) for setting a plurality of areas in the image of the input moving image data and the area set by the area setting unit 104 for the shaking state appearing in the output moving image data. It is provided with a shake changing unit 101 (ST30) that performs a shake changing process so as to be in a different state each time.
Therefore, for example, it is possible to form a region without shaking and a region with shaking in the screen, or to form a region with small shaking and a region with large shaking.
This makes it possible to achieve both the effect of shaking and the effect of stopping shaking to make it easier to see, or it is possible to enhance the effect of shaking by changing the degree of shaking for each area, resulting in a variety of image effects. Can be expanded.
In other words, instead of simply creating an image effect due to shaking on the screen, if there are subjects in the image that you want to shake and subjects that you do not want to shake, you can give shaking according to each, or only part of it is violent. It is possible to realize image effects that meet various needs, such as shaking only a specific subject when you want to shake it.
In addition, 3 or more regions may be set excluding the boundary region so that different vibration changes are performed for each region so that the degree of each shaking is different.
 実施の形態では、揺れ変更部101(ST30)は、領域設定部104(ST42)が設定した一の領域(例えば領域AR1)について揺れを付加し、他の領域(例えば領域AR2)について揺れを低減する揺れ変更処理を行う例を述べた(例えば処理P3)。
 これにより、画像内で被写体などに応じて揺れたり揺れなかったりするような画像を生成し、見やすさと演出効果を両立したり、揺れにより特定部分を強調するなどの新たな画像効果を実現できる。
In the embodiment, the shaking changing unit 101 (ST30) adds shaking for one area (for example, area AR1) set by the area setting unit 104 (ST42) and reduces shaking for the other area (for example, area AR2). An example of performing the shaking change processing is described (for example, processing P3).
As a result, it is possible to generate an image that shakes or does not shake depending on the subject or the like in the image, achieves both visibility and a directing effect, and realizes a new image effect such as emphasizing a specific part by shaking.
 実施の形態では、揺れ変更部101(ST30)は、領域設定部104(ST42)が設定した一の領域(例えば領域AR1)について揺れを付加し、他の領域(例えば領域AR2)について一の領域よりも小さい揺れを付加する揺れ変更処理を行う例を述べた(例えば処理P2、処理P4)。
 これにより画像全体で揺れを増加させる方向としながら、画像内で被写体などに応じて揺れの大小を設定し、見やすさと演出効果を両立することや、揺れ具合の差による新たな画像効果を実現できる。
In the embodiment, the shaking changing unit 101 (ST30) adds shaking to one area (for example, area AR1) set by the area setting unit 104 (ST42), and one area for another area (for example, area AR2). An example of performing a shaking change process for adding smaller shaking has been described (for example, process P2, process P4).
As a result, it is possible to set the magnitude of the shaking according to the subject in the image while increasing the shaking in the entire image, to achieve both visibility and effect, and to realize a new image effect due to the difference in the degree of shaking. ..
 実施の形態では、揺れ変更部101(ST30)は、領域設定部104(ST42)が設定した一の領域(例えば領域AR1)について揺れを低減し、他の領域(例えば領域AR2)について一の領域よりも大きい低減量で揺れを低減する揺れ変更処理を行う例を述べた(例えば処理P6)。
 これによって、画像全体で揺れを低減させる方向に調整しながら、画像内で被写体などに応じて揺れの大小を設定し、見やすさと演出効果の両立や、揺れ具合の差による新たな画像効果を実現できる。
In the embodiment, the shaking changing unit 101 (ST30) reduces the shaking for one area (for example, area AR1) set by the area setting unit 104 (ST42), and one area for another area (for example, area AR2). An example of performing a shaking change process for reducing shaking with a larger reduction amount has been described (for example, process P6).
As a result, while adjusting the direction to reduce the shaking in the entire image, the magnitude of the shaking can be set according to the subject in the image, achieving both visibility and directing effect, and a new image effect due to the difference in the degree of shaking. can.
 実施の形態では、揺れ変更部101(ST30)は、領域設定部104(ST42)が設定した一の領域(例えば領域AR1)と他の領域(例えば領域AR2)の一方に揺れを付加又は低減する揺れ変更処理を行う例を述べた(例えば処理P1、処理P5)。
 これによっても、画像内で被写体などに応じて揺れの大小を設定し、見やすさと演出効果の両立や、揺れ具合の差による新たな画像効果を実現できる。また元の揺れを他方の領域の揺れ演出として生かすこともできる。
In the embodiment, the shaking changing unit 101 (ST30) adds or reduces shaking to one of one area (for example, area AR1) and another area (for example, area AR2) set by the area setting unit 104 (ST42). An example of performing the shaking change processing has been described (for example, processing P1, processing P5).
This also makes it possible to set the magnitude of the shaking in the image according to the subject and the like, to achieve both visibility and a directing effect, and to realize a new image effect due to the difference in the degree of shaking. It is also possible to utilize the original shaking as a shaking effect in the other area.
 実施の形態では、揺れ変更に関する操作情報を検知するUI処理部103(ST40)を備え、領域設定部104は、UI処理部103が検知した操作情報に基づいて複数の領域を設定する例を述べた(図6参照)。
 これにより、ユーザの意図に応じて複数の領域が設定され、それぞれの領域で揺れ具合が異なるような画像効果が実現される。従ってユーザの画像編集意図を反映した揺れ演出が可能となる。
In the embodiment, the UI processing unit 103 (ST40) for detecting the operation information related to the shaking change is provided, and the area setting unit 104 describes an example of setting a plurality of areas based on the operation information detected by the UI processing unit 103. (See FIG. 6).
As a result, a plurality of areas are set according to the user's intention, and an image effect in which the degree of shaking differs in each area is realized. Therefore, it is possible to produce a shaking effect that reflects the user's image editing intention.
 実施の形態では、領域設定部104は、入力動画データの画像解析に基づいて複数の領域を設定する例を述べた(図7参照)。
 例えば被写体認識、特定被写体の検出、構図判定、背景などの固定物判定などを行って、揺れるべき領域と揺れのない領域を切り分けるなどして、自動的に領域設定を行う。これにより、画像内容に応じて適切な領域設定、及び領域毎の揺れ変更が可能となり、ユーザにとっては簡易に領域毎に揺れの変更がされた揺れ演出画像を得ることができる。
In the embodiment, the area setting unit 104 has described an example of setting a plurality of areas based on the image analysis of the input moving image data (see FIG. 7).
For example, subject recognition, detection of a specific subject, composition determination, determination of a fixed object such as a background, etc. are performed, and an area that should be shaken and an area that is not shaken are separated, and the area is automatically set. As a result, it is possible to set an appropriate area according to the image content and change the shaking for each area, and the user can easily obtain a shaking effect image in which the shaking is changed for each area.
 実施の形態では、揺れ変更部101は、処理対象の入力動画データの各フレームを天球モデルMTへ貼付し、各フレームに対応する揺れ情報(調整後クオータニオンeQD)を用いて回転させることで揺れ変更を行う例を挙げた。
 天球モデルMT上でフレーム毎に揺れを増減させるような回転を行って全体的な揺れ変更を行うことで、台形歪みが生じない揺れ変更(揺れ除去や揺れ付加)が可能となる。従って揺れ演出が施された画像として、歪みの少ない高品位な画像が得られることになる。
In the embodiment, the shaking change unit 101 attaches each frame of the input moving image data to be processed to the celestial sphere model MT, and rotates the shaking information (adjusted quaternion eQD) corresponding to each frame to change the shaking. I gave an example of doing.
By rotating the celestial sphere model MT to increase or decrease the sway for each frame to change the sway as a whole, it is possible to change the sway without causing trapezoidal distortion (sway removal or sway addition). Therefore, as an image with a shaking effect, a high-quality image with little distortion can be obtained.
 実施の形態では、動画データiPDの各フレームにおける天球モデルMT上の座標点の移動により領域毎の揺れ量を変更する例をあげた(図9から図14参照)。
 これにより全体の揺れ変更を加えた上で部分的に揺れを大きくすることが可能となる。従って天球モデルMTの回転による揺れ変更を生かしながら、座標点移動による拡大/縮小により領域毎の揺れ状態を変化させることができる。また、拡大と縮小により揺れを表現することにより、領域の境界で画像の連続性が途切れることもないため、複雑なつなぎの処理を行わなくとも、画像品質を良好に保つことができる。
In the embodiment, an example is given in which the amount of shaking for each region is changed by moving the coordinate points on the celestial sphere model MT in each frame of the moving image data iPD (see FIGS. 9 to 14).
This makes it possible to partially increase the sway after changing the sway as a whole. Therefore, it is possible to change the shaking state for each region by enlarging / reducing by moving the coordinate points while making use of the shaking change due to the rotation of the celestial sphere model MT. Further, by expressing the shaking by enlarging and reducing, the continuity of the image is not interrupted at the boundary of the region, so that the image quality can be kept good without performing complicated joint processing.
 実施の形態では、座標点の移動は、領域設定部104が設定した一の領域と他の領域の間の境界領域の画素の座標点を移動させる処理である例を述べた(図9から図14参照)。
 これによって境界領域のみの画素の座標変化、つまり座標点移動による境界領域の画像の拡大/縮小という比較的簡易な処理で一部の領域の位置変動(つまり揺れ)を実現できる。また領域は拡大縮小を伴わないことで、自然な画像のままそれぞれの揺れを表現できる。
In the embodiment, an example is described in which the movement of the coordinate points is a process of moving the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit 104 (FIGS. 9 to 9). 14).
As a result, the position change (that is, shaking) of a part of the area can be realized by a relatively simple process of changing the coordinates of the pixels only in the boundary area, that is, enlarging / reducing the image of the boundary area by moving the coordinate points. In addition, since the area is not enlarged or reduced, each shaking can be expressed as a natural image.
 なお、座標点移動を行わずに、天球モデルMTの回転によって領域毎の揺れ変更を実現することもできる。
 例えば動画データiPDにおいて、領域AR1の画像を第1の天球モデルに貼付し、領域AR2の画像を第2の天球モデルに貼付し、それぞれパラメータPRM2で示される揺れ量、周期、揺れ方向の回転を行う。そして、各天球モデルから投影した画像を合成する。これをフレーム毎に行うと、領域毎に揺れ状態が異なる出力動画データoPDを得ることができる。
It is also possible to change the shaking for each region by rotating the celestial sphere model MT without moving the coordinate points.
For example, in the moving image data iPD, the image of the area AR1 is attached to the first celestial sphere model, the image of the area AR2 is attached to the second celestial sphere model, and the amount of shaking, the period, and the rotation in the shaking direction indicated by the parameters PRM2 are calculated, respectively. conduct. Then, the images projected from each celestial sphere model are combined. If this is performed for each frame, it is possible to obtain output moving image data oPD having a different shaking state for each area.
 実施の形態のプログラムは、図17で説明した処理を例えばCPU、DSP等、或いはこれらを含むデバイスに実行させるプログラムである。
 即ち実施の形態のプログラムは、入力動画データの画像内で複数の領域を設定する領域設定処理(ST42)と、出力動画データに現れる揺れの状態が、領域設定処理で設定した領域毎に異なる状態となるようにする揺れ変更処理(ST30)とを情報処理装置に実行させるプログラムである。
The program of the embodiment is a program that causes, for example, a CPU, a DSP, or a device including these to execute the process described with reference to FIG.
That is, in the program of the embodiment, the area setting process (ST42) for setting a plurality of areas in the image of the input moving image data and the shaking state appearing in the output moving image data are different for each area set in the area setting process. This is a program that causes the information processing apparatus to execute the shaking change processing (ST30) so as to be.
 このようなプログラムにより、上述した画像処理装置TDxを、例えば携帯端末2,パーソナルコンピュータ3、或いは撮像装置1などの機器において実現できる。 With such a program, the above-mentioned image processing device TDx can be realized in a device such as a mobile terminal 2, a personal computer 3, or an image pickup device 1.
 このような画像処理装置TDxを実現するプログラムはコンピュータ装置等の機器に内蔵されている記録媒体としてのHDDや、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。
 あるいはまた、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、MO(Magneto Optical)ディスク、DVD(Digital Versatile Disc)、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
A program that realizes such an image processing device TDx can be recorded in advance in an HDD as a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like.
Alternatively, flexible discs, CD-ROMs (Compact Disc Read Only Memory), MO (Magneto Optical) discs, DVDs (Digital Versatile Discs), Blu-ray discs (Blu-ray Discs (registered trademarks)), magnetic discs, semiconductor memories, It can be temporarily or permanently stored (recorded) on a removable recording medium such as a memory card. Such a removable recording medium can be provided as so-called package software.
In addition to installing such a program from a removable recording medium on a personal computer or the like, it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
 またこのようなプログラムによれば、実施の形態の画像処理装置TDxの広範な提供に適している。例えばパーソナルコンピュータ、携帯型情報処理装置、携帯電話機、ゲーム機器、ビデオ機器、PDA(Personal Digital Assistant)等にプログラムをダウンロードすることで、当該パーソナルコンピュータ等を、本開示の画像処理装置として機能させることができる。 Further, according to such a program, it is suitable for a wide range of provision of the image processing apparatus TDx of the embodiment. For example, by downloading a program to a personal computer, a portable information processing device, a mobile phone, a game device, a video device, a PDA (Personal Digital Assistant), or the like, the personal computer or the like can function as the image processing device of the present disclosure. Can be done.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained.
 なお本技術は以下のような構成も採ることができる。
 (1)
 入力動画データの画像内で複数の領域を設定する領域設定部と、
 出力動画データに現れる揺れの状態が、前記領域設定部が設定した領域毎に異なる状態となるようにする揺れ変更処理を行う揺れ変更部と、を備えた
 画像処理装置。
 (2)
 前記揺れ変更部は、
 前記領域設定部が設定した一の領域について揺れを付加し、前記領域設定部が設定した他の領域について揺れを低減する揺れ変更処理を行う
 上記(1)に記載の画像処理装置。
 (3)
 前記揺れ変更部は、
 前記領域設定部が設定した一の領域について揺れを付加し、前記領域設定部が設定した他の領域について前記一の領域よりも小さい揺れを付加する揺れ変更処理を行う
 上記(1)又は(2)に記載の画像処理装置。
 (4)
 前記揺れ変更部は、
 前記領域設定部が設定した一の領域について揺れを低減し、前記領域設定部が設定した他の領域について前記一の領域よりも大きい低減量で揺れを低減する揺れ変更処理を行う
 上記(1)から(3)のいずれかに記載の画像処理装置。
 (5)
 前記揺れ変更部は、
 前記領域設定部が設定した一の領域と他の領域の一方に揺れを付加又は低減する揺れ変更処理を行う
 上記(1)から(4)のいずれかに記載の画像処理装置。
 (6)
 揺れ変更に関する操作情報を検知するユーザインタフェース処理部を備え、
 前記領域設定部は、前記ユーザインタフェース処理部が検知した操作情報に基づいて複数の領域を設定する
 上記(1)から(5)のいずれかに記載の画像処理装置。
 (7)
 前記領域設定部は、前記入力動画データの画像解析に基づいて複数の領域を設定する
 上記(1)から(6)のいずれかに記載の画像処理装置。
 (8)
 前記揺れ変更部は、前記入力動画データの各フレームを天球モデルへ貼付し、各フレームに対応する揺れ情報を用いて前記各フレームを回転させることで、画像全体の揺れ変更を行う
 上記(1)から(7)のいずれかに記載の画像処理装置。
 (9)
 前記揺れ変更部は、各フレームにおける前記天球モデル上の座標点の移動により領域毎の揺れ量を変更する
 上記(8)に記載の画像処理装置。
 (10)
 前記揺れ変更部は、
 前記座標点の移動は、前記領域設定部が設定した一の領域と他の領域の間の境界領域の画素の座標点を移動させる処理である
 上記(9)に記載の画像処理装置。
 (11)
 画像処理装置が、
 入力動画データの画像内で複数の領域を設定する領域設定処理と、
 出力動画データに現れる揺れの状態が、前記領域設定処理で設定した領域毎に異なる状態となるようにする揺れ変更処理と、を行う
 画像処理方法。
 (12)
 入力動画データの画像内で複数の領域を設定する領域設定処理と、
 出力動画データに現れる揺れの状態が、前記領域設定処理で設定した領域毎に異なる状態となるようにする揺れ変更処理と、
 を情報処理装置に実行させるプログラム。
The present technology can also adopt the following configurations.
(1)
An area setting unit that sets multiple areas in the image of the input video data,
An image processing device including a shaking changing unit that performs shaking changing processing so that the shaking state appearing in the output moving image data is different for each area set by the area setting unit.
(2)
The shaking change part is
The image processing apparatus according to (1) above, wherein shaking is added to one area set by the area setting unit, and shaking change processing is performed to reduce the shaking of another area set by the area setting unit.
(3)
The shaking change part is
Shake change processing is performed to add shaking to one area set by the area setting unit and to add shaking smaller than the one area to the other areas set by the area setting unit (1) or (2). ). The image processing apparatus.
(4)
The shaking change part is
Shake change processing is performed to reduce shaking in one area set by the area setting unit and to reduce shaking in another area set by the area setting unit with a reduction amount larger than that in the one area (1). The image processing apparatus according to any one of (3).
(5)
The shaking change part is
The image processing apparatus according to any one of (1) to (4) above, which performs a shaking change process for adding or reducing shaking to one of one area and the other area set by the area setting unit.
(6)
Equipped with a user interface processing unit that detects operation information related to shaking changes
The image processing device according to any one of (1) to (5) above, wherein the area setting unit sets a plurality of areas based on operation information detected by the user interface processing unit.
(7)
The image processing apparatus according to any one of (1) to (6) above, wherein the area setting unit sets a plurality of areas based on image analysis of the input moving image data.
(8)
The shaking changing unit changes the shaking of the entire image by pasting each frame of the input moving image data to the celestial sphere model and rotating each frame using the shaking information corresponding to each frame (1). The image processing apparatus according to any one of (7) to (7).
(9)
The image processing apparatus according to (8) above, wherein the shaking changing unit changes the amount of shaking for each region by moving coordinate points on the celestial sphere model in each frame.
(10)
The shaking change part is
The image processing apparatus according to (9) above, wherein the movement of the coordinate points is a process of moving the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit.
(11)
The image processing device
Area setting process to set multiple areas in the image of input video data,
An image processing method for performing a shaking change process for making the shaking state appearing in the output moving image data different for each area set in the area setting process.
(12)
Area setting process to set multiple areas in the image of input video data,
Shake change processing that makes the state of shaking appearing in the output video data different for each area set in the area setting process, and
Is a program that causes the information processing device to execute.
1 撮像装置
2 携帯端末
3 パーソナルコンピュータ
4 サーバ
5 記録媒体
70 情報処理装置、
71 CPU、
101 揺れ変更部
102 パラメータ設定部
103 UI処理部
104 領域設定部
1 Imaging device 2 Mobile terminal 3 Personal computer 4 Server 5 Recording medium 70 Information processing device,
71 CPU,
101 Shake change unit 102 Parameter setting unit 103 UI processing unit 104 Area setting unit

Claims (12)

  1.  入力動画データの画像内で複数の領域を設定する領域設定部と、
     出力動画データに現れる揺れの状態が、前記領域設定部が設定した領域毎に異なる状態となるようにする揺れ変更処理を行う揺れ変更部と、を備えた
     画像処理装置。
    An area setting unit that sets multiple areas in the image of the input video data,
    An image processing device including a shaking changing unit that performs shaking changing processing so that the shaking state appearing in the output moving image data is different for each area set by the area setting unit.
  2.  前記揺れ変更部は、
     前記領域設定部が設定した一の領域について揺れを付加し、前記領域設定部が設定した他の領域について揺れを低減する揺れ変更処理を行う
     請求項1に記載の画像処理装置。
    The shaking change part is
    The image processing apparatus according to claim 1, wherein shaking is added to one area set by the area setting unit, and shaking change processing is performed to reduce the shaking of another area set by the area setting unit.
  3.  前記揺れ変更部は、
     前記領域設定部が設定した一の領域について揺れを付加し、前記領域設定部が設定した他の領域について前記一の領域よりも小さい揺れを付加する揺れ変更処理を行う
     請求項1に記載の画像処理装置。
    The shaking change part is
    The image according to claim 1, wherein a shake is added to one area set by the area setting unit, and a shake change process is performed to add a shake smaller than that of the one area to another area set by the area setting unit. Processing equipment.
  4.  前記揺れ変更部は、
     前記領域設定部が設定した一の領域について揺れを低減し、前記領域設定部が設定した他の領域について前記一の領域よりも大きい低減量で揺れを低減する揺れ変更処理を行う
     請求項1に記載の画像処理装置。
    The shaking change part is
    2. The image processing apparatus described.
  5.  前記揺れ変更部は、
     前記領域設定部が設定した一の領域と他の領域の一方に揺れを付加又は低減する揺れ変更処理を行う
     請求項1に記載の画像処理装置。
    The shaking change part is
    The image processing apparatus according to claim 1, wherein a shaking changing process for adding or reducing shaking to one of one area and the other area set by the area setting unit is performed.
  6.  揺れ変更に関する操作情報を検知するユーザインタフェース処理部を備え、
     前記領域設定部は、前記ユーザインタフェース処理部が検知した操作情報に基づいて複数の領域を設定する
     請求項1に記載の画像処理装置。
    Equipped with a user interface processing unit that detects operation information related to shaking changes
    The image processing device according to claim 1, wherein the area setting unit sets a plurality of areas based on operation information detected by the user interface processing unit.
  7.  前記領域設定部は、前記入力動画データの画像解析に基づいて複数の領域を設定する
     請求項1に記載の画像処理装置。
    The image processing device according to claim 1, wherein the area setting unit sets a plurality of areas based on image analysis of the input moving image data.
  8.  前記揺れ変更部は、前記入力動画データの各フレームを天球モデルへ貼付し、各フレームに対応する揺れ情報を用いて前記各フレームを回転させることで、画像全体の揺れ変更を行う
     請求項1に記載の画像処理装置。
    The shaking changing unit changes the shaking of the entire image by attaching each frame of the input moving image data to the celestial sphere model and rotating each frame using the shaking information corresponding to each frame. The image processing apparatus described.
  9.  前記揺れ変更部は、各フレームにおける前記天球モデル上の座標点の移動により領域毎の揺れ量を変更する
     請求項8に記載の画像処理装置。
    The image processing apparatus according to claim 8, wherein the shaking changing unit changes the amount of shaking for each region by moving coordinate points on the celestial sphere model in each frame.
  10.  前記揺れ変更部は、
     前記座標点の移動は、前記領域設定部が設定した一の領域と他の領域の間の境界領域の画素の座標点を移動させる処理である
     請求項9に記載の画像処理装置。
    The shaking change part is
    The image processing apparatus according to claim 9, wherein the movement of the coordinate points is a process of moving the coordinate points of the pixels of the boundary region between one region and the other region set by the region setting unit.
  11.  画像処理装置が、
     入力動画データの画像内で複数の領域を設定する領域設定処理と、
     出力動画データに現れる揺れの状態が、前記領域設定処理で設定した領域毎に異なる状態となるようにする揺れ変更処理と、を行う
     画像処理方法。
    The image processing device
    Area setting process to set multiple areas in the image of input video data,
    An image processing method for performing a shaking change process for making the shaking state appearing in the output moving image data different for each area set in the area setting process.
  12.  入力動画データの画像内で複数の領域を設定する領域設定処理と、
     出力動画データに現れる揺れの状態が、前記領域設定処理で設定した領域毎に異なる状態となるようにする揺れ変更処理と、
     を情報処理装置に実行させるプログラム。
    Area setting process to set multiple areas in the image of input video data,
    Shake change processing that makes the state of shaking appearing in the output video data different for each area set in the area setting process, and
    Is a program that causes the information processing device to execute.
PCT/JP2021/004160 2020-03-09 2021-02-04 Image processing device, image processing method, and program WO2021181965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039701 2020-03-09
JP2020039701 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021181965A1 true WO2021181965A1 (en) 2021-09-16

Family

ID=77671404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004160 WO2021181965A1 (en) 2020-03-09 2021-02-04 Image processing device, image processing method, and program

Country Status (1)

Country Link
WO (1) WO2021181965A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259119A (en) * 2010-06-08 2011-12-22 Nippon Signal Co Ltd:The Image processing device
JP2012165338A (en) * 2011-02-09 2012-08-30 Canon Inc Image processing apparatus, image processing method, and program
JP2016105534A (en) * 2014-12-01 2016-06-09 株式会社ザクティ Imaging apparatus and imaging apparatus system
WO2018211781A1 (en) * 2017-05-18 2018-11-22 ソニー株式会社 Image capture device and image capture method
JP2018201123A (en) * 2017-05-26 2018-12-20 株式会社リコー Image processing device, image processing method, and program
JP2019114143A (en) * 2017-12-25 2019-07-11 キヤノン株式会社 Image processing device, image processing method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259119A (en) * 2010-06-08 2011-12-22 Nippon Signal Co Ltd:The Image processing device
JP2012165338A (en) * 2011-02-09 2012-08-30 Canon Inc Image processing apparatus, image processing method, and program
JP2016105534A (en) * 2014-12-01 2016-06-09 株式会社ザクティ Imaging apparatus and imaging apparatus system
WO2018211781A1 (en) * 2017-05-18 2018-11-22 ソニー株式会社 Image capture device and image capture method
JP2018201123A (en) * 2017-05-26 2018-12-20 株式会社リコー Image processing device, image processing method, and program
JP2019114143A (en) * 2017-12-25 2019-07-11 キヤノン株式会社 Image processing device, image processing method, and program

Similar Documents

Publication Publication Date Title
JP7444162B2 (en) Image processing device, image processing method, program
US10789676B2 (en) Image processing device, image processing method, and program
CN102739955B (en) Image capturing apparatus for enabling generation of data of panoramic image with wide dynamic range
JP5428210B2 (en) Information processing apparatus, imaging system, recording control method, and program
JP5133816B2 (en) Camera, image composition method, and program
CN108445705B (en) Image processing apparatus, image processing method, and program
JP7405131B2 (en) Image processing device, image processing method, program
WO2012046371A1 (en) Image display device, and image display method
JP2015156523A (en) Image processing device, image processing method, and program
JP6304293B2 (en) Image processing apparatus, image processing method, and program
JP2012119804A (en) Image recorder
US8736664B1 (en) Moving frame display
WO2021181965A1 (en) Image processing device, image processing method, and program
WO2021014716A1 (en) Image processing device, image processing method, and program
JP2020096349A (en) Image processing device, imaging device, moving image reproduction system, method, and program
WO2021171848A1 (en) Image processing device, image processing method, and program
WO2021181966A1 (en) Image processing device, image processing method, and program
JP5602818B2 (en) Camera, image reproduction apparatus, image composition method, and program
JP2021002803A (en) Image processing apparatus, control method therefor, and program
JP5646033B2 (en) Image display device and image display method
JP2010183254A (en) Imaging device and subject detection program
JP2023042257A (en) Image processing device, image processing method and program
JP2014003715A (en) Imaging apparatus, imaging method and program
JP2012165247A (en) Image processing device, imaging device, and image processing program
JP2013078039A (en) Electronic apparatus capable of acquiring three-dimensional image, method for controlling the same, and program for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP