Nothing Special   »   [go: up one dir, main page]

WO2021179920A1 - 一种电源变换电路和电源变换方法 - Google Patents

一种电源变换电路和电源变换方法 Download PDF

Info

Publication number
WO2021179920A1
WO2021179920A1 PCT/CN2021/078260 CN2021078260W WO2021179920A1 WO 2021179920 A1 WO2021179920 A1 WO 2021179920A1 CN 2021078260 W CN2021078260 W CN 2021078260W WO 2021179920 A1 WO2021179920 A1 WO 2021179920A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion circuit
voltage
circuit
transformer coil
power conversion
Prior art date
Application number
PCT/CN2021/078260
Other languages
English (en)
French (fr)
Inventor
江森龙
邱治维
张加亮
田晨
张俊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21766928.2A priority Critical patent/EP4120538A4/en
Publication of WO2021179920A1 publication Critical patent/WO2021179920A1/zh
Priority to US17/943,020 priority patent/US20230006558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters

Definitions

  • This application relates to the field of power supplies, and in particular to a power conversion circuit and a power conversion method.
  • the power conversion circuit often uses a capacitor on the primary side to raise the minimum voltage on the primary transformer coil of the transformer to reduce or eliminate the dead zone of the transformer, so that the transformer can work stably, so that the power conversion circuit can stabilize the output.
  • the capacitance of the voltage on the primary transformer coil of the transformer is limited. Therefore, it can only achieve the effect of eliminating the dead zone of the transformer for the input voltage within a limited range; that is to say, the effective voltage range of the power conversion circuit is relatively short. small.
  • the embodiment of the application provides a power conversion circuit, which increases the effective voltage interval and improves the output stability.
  • An embodiment of the application provides a power conversion circuit
  • the power conversion circuit includes: a DC conversion circuit, a pulse width control circuit, and a transformer;
  • the transformer includes a primary transformer coil and a secondary transformer coil;
  • the DC conversion circuit is connected with the primary transformer coil, the pulse width control circuit is connected with the primary transformer coil; the primary transformer coil is coupled with the secondary transformer coil; the DC conversion circuit , Used to adjust the initial voltage input to the DC conversion circuit based on the working voltage of the transformer to obtain a target voltage; the pulse width control circuit is used to generate a pulse square wave based on the target voltage, and convert the pulse A square wave is applied to the primary transformer coil; the primary transformer coil is used to couple the electromagnetic field to the secondary transformer coil according to the pulsed square wave induced electromagnetic field; the secondary transformer The coil is used to generate an induced current according to the electromagnetic field, and an output voltage according to the induced current.
  • the embodiment of the present application provides a power conversion method, including:
  • the initial voltage input to the DC conversion circuit is adjusted based on the working voltage of the transformer to obtain the target voltage;
  • the transformer includes a primary transformer coil and a secondary transformer coil;
  • the target voltage generates a pulsed square wave, and the pulsed square wave is applied to the primary transformer coil; through the primary transformer coil, according to the pulse square wave induced electromagnetic field, the electromagnetic field is coupled to the secondary Grade transformer coil; through the secondary transformer coil, an induced current is generated according to the electromagnetic field, and an output voltage is generated according to the induced current.
  • FIG. 1 is a schematic diagram of the structure of a conventional power conversion circuit
  • FIG. 2 is a first structural diagram of a power conversion circuit provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of the topology structure of a boost DC conversion circuit provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of the topological structure of a step-down DC conversion circuit provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of a topological structure of a buck-boost DC conversion circuit provided by an embodiment of the application;
  • FIG. 6 is a second structural diagram of a power conversion circuit provided by an embodiment of the application.
  • FIG. 7 is a first schematic diagram of a waveform provided by an embodiment of this application.
  • FIG. 8 is a second schematic diagram of a waveform provided by an embodiment of this application.
  • FIG. 9 is a third structural schematic diagram of a power conversion circuit provided by an embodiment of the application.
  • FIG. 10 is a schematic flowchart of a power conversion method provided by an application embodiment.
  • the power conversion circuit includes an AC-DC conversion circuit, a DC-DC conversion circuit, and an AC-AC conversion circuit.
  • the AC-DC conversion circuit is needed to convert the AC power to the continuously adjustable DC power.
  • Figure 1 shows a schematic diagram of the structure of a power conversion circuit. As shown in Figure 1, the power supply 10 inputs an AC voltage and passes through the rectifier filter circuit 20 to output a steamed bread wave. The steamed bread wave passes through a pulse width control circuit 80 to output modulated pulses. Square wave, pulse width control circuit 80 includes switching device 80_1 and pulse width control chip 80_2.
  • the pulse square wave is applied to the primary transformer coil of transformer 30 to generate induced voltage on the secondary transformer coil, which is rectified and filtered by the secondary
  • the DC voltage is output to the electric load 50, and the output DC voltage is fed back to the pulse width control circuit 80 through the sampling feedback circuit 60 and the isolation device 70, so that the pulse width control circuit 80 adjusts the pulse square wave based on the feedback DC signal , Realize the control of the induced voltage generated on the secondary transformer coil, and then realize the control of the output DC voltage.
  • a capacitor is often used on the primary side to raise the minimum voltage of the steamed bun wave to eliminate the dead zone of the transformer, so as to ensure the stable output of the power conversion circuit.
  • the voltage raising amplitude of the capacitor is limited. For some steamed bun wave, the capacitor cannot be used Eliminate the dead zone of the transformer.
  • FIG. 2 is a schematic structural diagram of a power conversion circuit provided by an embodiment of the application.
  • the power conversion circuit includes a DC conversion circuit 21, a transformer 22, and a pulse width.
  • the initial voltage is the DC voltage provided by the power supply.
  • the initial voltage is the input voltage of the power conversion circuit.
  • the initial voltage is input to the DC conversion circuit 21, and the initial voltage is the input voltage of the DC conversion circuit 21.
  • the output voltage is the target voltage.
  • the pulse width control circuit 23 generates a pulse square wave according to the target voltage, and applies the pulse square wave to the primary transformer coil 30_1, thereby generating a secondary induced voltage on the secondary transformer coil 30_2.
  • the induced voltage is the output voltage of the power conversion circuit.
  • the voltage of the pulsed square wave is the same as the target voltage. Therefore, the voltage on the primary transformer coil and the target voltage are the same, that is, the output voltage of the DC conversion circuit determines the voltage on the primary transformer coil.
  • the DC conversion circuit adjusts different initial voltages to the target voltage, and uses the target voltage as the voltage on the primary transformer coil to make the transformer work stably at the target voltage, thereby ensuring the stable output of the power conversion circuit.
  • the initial The voltage is the effective initial voltage of the power conversion circuit, that is, the DC conversion circuit can increase the effective initial voltage interval available for the power conversion circuit.
  • the size of the target voltage can be determined by the configuration of the DC conversion circuit, so that the transformer is operated at the target voltage to ensure stable operation of the transformer, thereby realizing the stable output of the power conversion circuit.
  • a power conversion circuit provided by an embodiment of the present application includes a DC conversion circuit, a pulse width control circuit, and a transformer, wherein the transformer includes a primary transformer coil and a secondary transformer coil; the DC conversion circuit is connected to the primary transformer coil, The pulse width control circuit is connected with the primary transformer coil; the primary transformer coil is coupled with the secondary transformer coil; the DC conversion circuit is used to adjust the initial voltage input to the DC conversion circuit based on the working voltage of the transformer to obtain the target voltage; The width control circuit is used to generate a pulse square wave based on the target voltage; the primary transformer coil is used to induce an electromagnetic field based on the pulse square wave and couple the electromagnetic field to the secondary transformer coil; the secondary transformer coil is used to generate a pulse based on the electromagnetic field The induced current generates an output voltage based on the induced current.
  • various initial voltages can be adjusted to the target voltage through the DC conversion circuit, so that the transformer works stably at the target voltage, thereby increasing the effective voltage range of the power supply circuit. Improve the stability of the output.
  • the DC conversion circuit includes a step-up DC conversion circuit, and the step-up DC conversion circuit is used to increase the initial voltage to the target voltage based on the working voltage of the transformer.
  • the boost DC conversion circuit may include: a first inductor, a first switch tube, a first diode, and a first capacitor; wherein, the first end of the first inductor is connected to the anode of the power supply; the first inductor The second end of the first diode is connected to the anode of the first diode, and is also connected to the first end of the first switch tube; the cathode of the first diode is connected to the anode of the first capacitor; the second end of the first switch tube, The negative pole of the first capacitor is connected to the negative pole of the power supply.
  • the boost DC conversion circuit includes at least one of the following: BOOST circuit, BUCK/BOOST circuit, charge pump circuit, and CUK circuit.
  • the embodiment of the present application provides a step-up DC conversion circuit, as shown in FIG. 3, including: a first inductor L1, a first switch tube Q1, a first diode D1, and a first capacitor C1.
  • the initial voltage provided by the power supply is V1.
  • the first terminal of L1 is connected to the positive terminal of the power supply, the second terminal is connected to the positive terminal of D1, and the second terminal is also connected to the first terminal of Q1.
  • the negative terminal of D1 is connected to the positive terminal of C1.
  • the second terminal, the negative pole of C1 is connected to the negative pole of the power supply.
  • the initial voltage V1 causes the first inductor L1 to be charged, and the first diode D1 is reversely biased to prevent the first capacitor C1 from discharging to the ground.
  • the first capacitor C1 To provide energy to the load, the voltage across the first capacitor C1 is the voltage Vo across the load; when the first switching tube Q1 is in the off state, the first inductor L1 has a back electromotive force and discharges slowly.
  • the first diode D1 is in forward conduction, the first inductor L1 is discharged through the first diode D1, the first capacitor C1 and the load, the first capacitor C1 is charged during the discharge of the first inductor L1, and the first capacitor C1
  • the voltage at both ends rises, so that the output voltage of the boost DC conversion circuit, that is, the voltage Vo at both ends of the load, is higher than the initial voltage V1 through the repeated on and off process of the first switch tube Q1.
  • the third terminal of the first switching tube Q1 is connected with a pulse signal, and the first switching tube Q1 is controlled to be turned on and off by the pulse signal. Adjusting the duty cycle of the pulse signal can control the increase of the initial voltage by the DC conversion circuit. Therefore, for different initial voltages, different amplitudes can be increased, so that different initial voltages can be increased to the target voltage.
  • the initial voltage of the power conversion circuit is boosted by the step-up DC conversion circuit, and the initial voltage is raised to the target voltage, so that the transformer runs on the target voltage. In this way, stable operation of the transformer can be realized for different initial voltages, and the available effective initial voltage range is increased.
  • the DC conversion circuit includes a step-down DC conversion circuit, and a step-down DC conversion circuit is used to reduce the initial voltage to the target voltage based on the working voltage of the transformer.
  • the step-down DC conversion circuit may include: a second inductor, a second switch tube, a second diode, and a second capacitor; wherein, the first end of the second switch tube is connected to the anode of the power supply; The second end of the switch tube is connected to the first end of the second inductor, and is also connected to the cathode of the second diode; the second end of the second inductor is connected to the anode of the second capacitor; the anode of the second diode, The negative pole of the second capacitor is connected to the negative pole of the power supply.
  • the step-down DC conversion circuit includes at least one of the following: a BUCK circuit, a BUCK/BOOST circuit, a charge pump circuit, and a CUK circuit.
  • the embodiment of the present application provides a step-down DC conversion circuit, as shown in FIG. 4, including: a second inductor L2, a second switch tube Q2, a second diode D2, and a second capacitor C2.
  • the initial voltage provided by the power supply is V2
  • the first terminal of Q2 is connected to the positive terminal of the power supply
  • the second terminal of Q2 is connected to the first terminal of L2, and also to the negative terminal of D2
  • the second terminal of L2 is connected to the positive terminal of C2
  • D2 The positive pole of C2 and the negative pole of C2 are connected to the negative pole of the power supply.
  • the second switching tube Q2 when the second switch tube Q2 is in the on state, the second diode D2 is in the reverse biased off state, the initial voltage V2 causes the second inductor L2 to be charged, and the second capacitor C2 is charged through the second inductor L2;
  • the second switching tube Q2 When the second switching tube Q2 is in the off state, there is a reverse electromotive force in the second inductor L2, which causes the second diode D2 to conduct forward, and the second inductor L2 and the second capacitor C2 discharge to the load.
  • the current gradually decreases during the discharging process, so that the output voltage of the step-down DC conversion circuit, that is, the voltage V O across the load, decreases. Therefore, the second switching tube Q2 continuously repeats the on and off process to reduce
  • the output voltage of the voltage-to-DC conversion circuit that is, the voltage Vo across the load is lower than the initial voltage V2.
  • the third terminal of the second switching tube Q2 is connected with a pulse signal, and the second switching tube Q2 is controlled to be turned on and off by the pulse signal. Adjusting the duty cycle of the pulse signal can control the reduction amplitude of the initial voltage by the DC conversion circuit. Therefore, for different initial voltages, different amplitudes can be reduced, so that different input voltages can be reduced to the target voltage.
  • the initial voltage of the power conversion circuit is reduced by adding a step-down DC conversion circuit to reduce the initial voltage to the working voltage of the transformer.
  • the initial voltage can realize the stable operation of the transformer and increase the available effective initial voltage range.
  • the DC conversion circuit includes a buck-boost DC conversion circuit, and a buck-boost DC conversion circuit for increasing the initial voltage to the target voltage based on the working voltage of the transformer, or reducing the initial voltage to the target voltage Voltage.
  • the step-down DC conversion circuit may include: a third inductor, a third switch tube, a third diode, and a third capacitor; wherein, the first end of the third switch tube is connected to the anode of the power supply; The second end of the switch tube is connected to the first end of the third inductor, and is also connected to the cathode of the third diode; the anode of the third diode is connected to the cathode of the third capacitor; the second end of the third inductor, The positive pole of the third capacitor is connected to the negative pole of the power supply.
  • the buck-boost DC conversion circuit may be a BUCK/BOOST circuit.
  • the embodiment of the present application provides a buck-boost DC conversion circuit, as shown in FIG. 5, including: a third inductor L3, a third switch tube Q3, a third diode D3, and a third capacitor C3.
  • the initial voltage provided by the power supply is V3, the first terminal of Q3 is connected to the positive terminal of the power supply; the second terminal of Q3 is connected to the first terminal of L3 and also to the negative terminal of D3; the positive terminal of D3 is connected to the negative terminal of C3; the second terminal of L3 is connected to the negative terminal of C3.
  • the two terminals and the positive pole of C3 are connected to the negative pole of the power supply.
  • the third switching tube Q3 when the third switching tube Q3 is in the on state, the third diode D3 is in the reverse biased off state, and the initial voltage V3 causes the third inductor L3 to be charged. At this time, the third capacitor C3 supplies power to the load; When the switching tube Q3 is in the off state, if the electromotive force across the third inductor L3 is greater than the voltage across the third capacitor C3, the third diode D3 is in a conducting state, and the third inductor L3 will charge the third capacitor C3. At the same time, power is supplied to the load, and the voltage V O at both ends of the load is the output voltage of the step-down DC conversion circuit.
  • the third terminal of the third switching tube Q3 is connected with a pulse signal, and the turning on and off of the third switching tube Q3 is controlled by the pulse signal.
  • Adjust the duty cycle of the pulse signal and control the buck-boost circuit to be in boost mode or buck mode.
  • the boost mode the buck-boost DC converter circuit can perform boost conversion, and in the boost mode, adjust the pulse signal's duty cycle.
  • the empty ratio can control the boost amplitude; in the buck mode, the buck-boost DC converter circuit can perform the buck conversion, and in the buck mode, the duty cycle of the pulse signal can be adjusted to control the buck amplitude. Therefore, by adjusting The duty cycle of the pulse signal can be adjusted to adjust the initial voltage to the target voltage.
  • the initial voltage of the power conversion circuit is boosted or reduced by the step-up and down-voltage DC conversion circuit, and the initial voltage is increased or decreased to the working voltage of the transformer. In this way, different initial voltages can be realized.
  • the stable operation of the transformer increases the available effective initial voltage range.
  • first switching tube, the second switching tube, and the third switching tube can be triodes, or field-effect transistors (MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor), etc., which can control their conduction and
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the first diode, the second diode and the third diode can also be replaced by field effect transistors, which can reduce power loss. , Improve the conversion efficiency of the DC conversion circuit.
  • the buck-boost DC conversion circuit may be a charge pump.
  • the charge pump can be a switching regulator boost pump, or a non-adjustable capacitive charge pump, or an adjustable capacitive charge pump, or another form of charge pump circuit.
  • the charge pump it can be based on the actual situation. The selection is not limited in the embodiment of this application.
  • the DC conversion circuit can efficiently adjust the input voltage within a certain range to the target voltage. For any initial voltage, if it needs to be adjusted to the target voltage, the initial voltage can be adjusted to the intermediate voltage through the first-stage DC conversion circuit. The intermediate voltage can be used as the input voltage of the next-stage DC conversion circuit, and finally, the intermediate voltage is converted into the target voltage.
  • the DC conversion circuit may include a step-up DC conversion circuit and/or a step-down DC conversion circuit.
  • the target voltage is 230V. If the initial voltage is 215V, the step-up DC conversion circuit can increase 215V to 230V; Alternatively, the value of 215V is increased to 225V by the first-stage boost DC conversion circuit, and then 225V is increased to 230V by the second-stage boost DC conversion circuit; or 215V is increased to 260V by the boost DC conversion circuit, Then it is reduced to 230V by a step-down DC conversion circuit; here, the step-up DC conversion circuit can be a step-up mode of a buck-boost circuit, and the step-down DC conversion circuit can be a step-down mode of a step-up and step-up DC conversion circuit.
  • the DC conversion circuit in the embodiment of the present application may be any circuit that can convert the input voltage of the DC conversion circuit into an output voltage with variable voltage amplitude and polarity; here, the type and topology of the DC conversion circuit
  • the structure can be set according to actual needs, which is not limited in the embodiment of the present application.
  • the power conversion circuit further includes a feedback circuit; the feedback circuit is used to feed back the output voltage to the pulse width control circuit for the pulse width control circuit to adjust the pulse square wave.
  • the feedback circuit samples the output voltage of the power conversion circuit and feeds the sampled output voltage back to the primary transformer coil through the feedback circuit. Therefore, the pulse width control circuit can obtain the output voltage of the power conversion circuit through the primary transformer coil. , According to the output voltage of the power conversion circuit to control the pulse square wave width, and then control the electromagnetic field induced on the primary transformer coil, thereby controlling the induced current on the secondary transformer coil, thereby controlling the output voltage of the power conversion circuit, The output voltage of the power conversion circuit is converted into the voltage required by the electrical load.
  • the feedback circuit can be isolated and feedback by optocoupler devices.
  • the sampled output voltage can be divided by resistors, and then fed back to the primary transformer coil through a comparator and an optocouple; the feedback circuit can also be passed on to the primary transformer coil.
  • the sampled output voltage is directly fed back to the primary transformer coil, and then transmitted to the pulse width control circuit after the primary circuit uses a resistor divider; here, the feedback mode of the feedback circuit can be set as required. Therefore, the embodiment of the present application does not make a limitation.
  • the power conversion circuit further includes a first input capacitor; the first input capacitor is connected in parallel with the DC conversion circuit to increase the initial voltage so that the initial voltage is not lower than the minimum operating voltage of the DC conversion circuit.
  • the first input capacitor is connected in parallel with the DC conversion circuit before the DC conversion circuit to increase the input voltage of the DC conversion circuit, so that the input voltage of the DC conversion circuit is not lower than the minimum operating voltage of the DC conversion circuit. Effectively support the work of DC conversion circuit.
  • the first input capacitor can also filter the output voltage of the rectifier circuit. Therefore, the size of the first input capacitor is also converted to the power supply.
  • the load of the circuit is related, and the proper first input capacitor is selected to effectively reduce the AC ripple in the circuit.
  • the first input capacitor can also be a variable capacitor or a trimmer capacitor.
  • the size of the first input capacitor can be adjusted according to different loads to achieve optimal filtering and boosting effects; here
  • the type of the first input capacitor can be set as required, which is not limited in the embodiment of the present application.
  • the power conversion circuit when the initial voltage is an AC voltage, the power conversion circuit further includes a primary rectifier circuit; the primary rectifier circuit is connected to the DC conversion circuit; the primary rectifier circuit is used to convert the AC voltage into a DC voltage and output the DC voltage To DC conversion circuit.
  • the primary rectifier circuit can be a half-wave rectifier circuit, a full-wave rectifier circuit, a bridge rectifier circuit, or various types of rectifier circuits such as a voltage doubler rectifier circuit; here, the type of the primary rectifier circuit It can be set according to needs, which is not limited in the embodiment of the present application.
  • the primary rectifier circuit is connected in parallel with the first input capacitor; that is to say, when the input voltage of the power conversion circuit is an AC voltage, it is converted into a DC voltage by the primary rectifier circuit, and is filtered by the first input capacitor. The voltage is boosted to raise the minimum voltage of the DC voltage, and then the boosted DC signal is input to the DC conversion circuit.
  • the rectifier circuit can convert AC voltage to DC voltage. Therefore, if the power conversion circuit includes a primary rectifier circuit, when the power supply provides AC voltage, it can also perform power conversion on the AC voltage to convert the AC voltage to AC. Voltage, or convert AC voltage to DC voltage, so that the output voltage meets the needs of electrical appliances.
  • Figure 6 shows a schematic diagram of the structure of a power conversion circuit. As shown in Figure 6, the rectifier circuit, input capacitor C4, DC conversion circuit Z1, primary transformer coil Y1 and pulse width control circuit U2 are connected in sequence, and the feedback circuit and pulse The width control circuit and the feedback coil Y3 are connected, and the secondary transformer coil Y2 is coupled with the primary transformer coil Y1.
  • the rectifier circuit includes a rectifier bridge U1, a resistor R1, and a varistor R2.
  • the power supply provides AC voltage. After passing through the rectifier bridge U1, the steamed bun wave is output. The lowest voltage makes the voltage amplitude of the steamed bread wave within the working range of the DC conversion circuit Z1, and ensures that the stable output of the DC conversion circuit Z1 is the target voltage.
  • the pulse width control circuit includes a pulse width control chip U2 and a resistor R5.
  • the pulse width control chip U2 receives the feedback signal, outputs a pulse square wave according to the feedback signal, and adds the pulse square wave to the primary transformer coil Y1.
  • the feedback circuit includes feedback coil Y3, diode D4, capacitor C5, resistors R3 and R4.
  • the feedback coil Y3 induces the voltage change of the secondary transformer coil Y2 to obtain the feedback signal of the secondary transformer coil Y2.
  • the feedback signal is input to the FB port of the pulse width control chip U2. Therefore, through adjustment The resistance ratio of R4 and R3 can adjust the feedback signal received by the FB port.
  • U2 outputs a pulse square wave according to the received feedback signal, thereby adjusting the output voltage V+ generated on the secondary transformer coil Y2.
  • the power supply provides 220V AC voltage.
  • the output steamed bread wave is shown in Figure 7.
  • the lowest point of the voltage amplitude is close to 0V.
  • the steamed bread wave passes through the capacitor C4, the lowest voltage is raised.
  • the output waveform is shown in Figure 8. If the input capacitor C4 is 100 ⁇ F when the output peak load power is 120W, it can effectively support the DC conversion circuit. For example, if the minimum voltage of the steamed bun wave is raised to 4V, the lowest operation can be used.
  • resistors R4 and R3 can also be variable resistors, and the resistance ratio of R4 and R3 is controlled by adjusting the resistance of R4 and R3, so as to realize the adjustment of the output voltage on the secondary transformer coil.
  • a stable working DC conversion circuit can stabilize the voltage applied to the primary transformer coil, thereby stabilizing the output voltage induced by the secondary transformer coil, and will not change with the AC signal from peak to valley. , To avoid the dead zone in the output of the transformer, and to make the power conversion circuit work stably.
  • the power conversion circuit further includes a secondary rectification filter circuit; the secondary rectification filter circuit is connected to the secondary transformer coil; the secondary rectification filter circuit is used to filter the output voltage while reducing the output voltage Converted from AC voltage to DC voltage.
  • the secondary rectifier filter circuit includes a secondary rectifier circuit and a secondary filter circuit.
  • the secondary rectifier circuit is used to convert the output voltage of the secondary transformer coil from an AC voltage to a DC voltage, and the secondary filter circuit is used for The output voltage of the secondary rectifier circuit is filtered to reduce the AC ripple in the output voltage of the secondary rectifier circuit, and the output voltage of the rectifier circuit becomes relatively smooth.
  • the secondary rectifier circuit can be a half-wave rectifier circuit, or a full-wave rectifier circuit, and can also be a bridge rectifier circuit or a voltage doubler rectifier circuit and other types of rectifier circuits; here, the type of the secondary rectifier circuit can be It is set according to needs, which is not limited in the embodiment of the present application.
  • the filter circuit may be a passive filter circuit or an active filter circuit; here, the type of the filter circuit can be set as required, which is not limited in the embodiment of the present application.
  • Figure 9 shows a schematic diagram of the structure of a power conversion circuit.
  • the rectifier circuit, the input capacitor C4, the DC conversion circuit Z1, the primary transformer coil Y1 and the pulse width control circuit are connected in sequence, and the feedback circuit and the pulse width
  • the control circuit and the feedback coil Y3 are connected, and the secondary transformer coil Y2 is connected with the secondary rectifier filter circuit.
  • the rectifier circuit includes a rectifier bridge U1, a resistor R1, and a varistor R2.
  • the power supply provides AC voltage. After passing through the rectifier bridge U1, the steamed bread wave is output. After the steamed bread wave passes through the capacitor C4, the voltage amplitude increases, and the minimum voltage is raised. , Make the voltage amplitude of the steamed bread wave within the working range of the DC conversion circuit Z1, and ensure that the stable output of the DC conversion circuit Z1 is the target voltage.
  • the pulse width control circuit includes a pulse width control chip U2, a diode D6 and a capacitor C6.
  • the feedback coil Y3 supplies power to the pulse width control chip U2 through D6 and C6, and receives a feedback signal, generates a pulse square wave according to the feedback signal, and adds the pulse square wave On the primary transformer coil.
  • the feedback circuit includes resistors R6 and R7, comparator B1 and optocoupler O1. After the output voltage is divided by R7 and R6, it is fed back to U2 through comparator B1 and optocoupler O1. Here, one input of comparator B1 receives the divided voltage The output voltage of the other input terminal receives the reference voltage Verf.
  • the optocoupler also serves as an isolation device and has an isolation effect.
  • the secondary rectifier filter circuit includes a diode D5, a capacitor C7 and a resistor R8.
  • the induced voltage of the secondary transformer coil is AC voltage. If the load requires DC voltage, a secondary rectifier filter circuit can be added to the secondary circuit to filter the AC voltage, and the secondary transformer coil The output AC voltage is converted into DC voltage.
  • the power conversion circuit further includes an isolation device; the isolation device is located between the primary transformer coil and the secondary transformer coil, and is used to isolate the primary transformer coil and the secondary transformer coil so that the primary transformer The coil is insulated from the secondary transformer coil.
  • the isolation device may be an optical isolator, a digital isolator, or a capacitor; here, the type of the isolation device may be set as required, which is not limited in the embodiment of the present application.
  • isolation devices can insulate the primary circuit and the secondary circuit to achieve the effect of anti-electromagnetic interference.
  • the embodiment of the present application provides a power conversion method, which is applied to the above-mentioned power conversion circuit. As shown in FIG. 10, the method includes:
  • the transformer includes a primary transformer coil and a secondary transformer coil;
  • the initial voltage is adjusted by the DC conversion circuit to obtain the target voltage; the pulse width control circuit generates a pulse square wave according to the target voltage. In this way, the pulse square wave is added to On the primary transformer coil, the transformer can work stably.
  • a pulsed square wave is applied to the primary transformer coil to generate an induced electromagnetic field, so that the magnetic pole transformer coil can generate an induced current according to the induced electromagnetic field, thereby generating an output voltage.
  • the initial voltage can be adjusted to the target voltage through the DC conversion circuit, so that the transformer can work stably at the target voltage, which increases the effective voltage range of the power supply circuit and improves the stability of the output.
  • the DC conversion circuit includes a step-up DC conversion circuit; the power conversion circuit may use the step-up DC conversion circuit to increase the initial voltage to the target voltage based on the working voltage of the transformer.
  • the boost DC conversion circuit may be at least one of the following: BOOST circuit, BUCK/BOOST circuit, charge pump circuit, and CUK circuit.
  • the power conversion circuit can increase 210V to 230V through the BOOST circuit.
  • the DC conversion circuit includes a step-down DC conversion circuit; the power conversion circuit can reduce the initial voltage to the target voltage based on the working voltage of the transformer through the step-down DC conversion circuit.
  • the step-down DC conversion circuit may be at least one of the following: a BUCK circuit, a BUCK/BOOST circuit, a charge pump circuit, and a CUK circuit.
  • the power conversion circuit can reduce 210V to 200V through the BUCK circuit.
  • the DC conversion circuit includes a buck-boost DC conversion circuit; the power conversion circuit can increase the initial voltage to the target voltage based on the working voltage of the transformer through the buck-boost DC conversion circuit, or The initial voltage is reduced to the target voltage.
  • the buck-boost DC conversion circuit includes a boost mode and a buck mode; in the boost mode, the buck-boost DC conversion circuit can increase the input voltage of the buck-boost DC conversion circuit to the target voltage ; In the step-down mode, the buck-boost DC conversion circuit can reduce the input voltage of the buck-boost DC conversion circuit to the target voltage.
  • the working mode of the buck-boost DC conversion circuit is the boost mode or the buck mode can be set according to needs, and the embodiment of the present application does not limit it.
  • the buck-boost DC converter circuit can be operated in the step-down mode, and the initial voltage 210V is reduced to 200V through the buck-boost DC converter circuit; if the initial voltage is 180V If the target voltage is 200V, the buck-boost DC converter circuit can be operated in the boost mode, and the initial voltage of 1800V is increased to 200V through the buck-boost DC converter circuit.
  • the initial voltage lower than the target voltage and higher than the target voltage can be adjusted to the target voltage; in this way, stable operation of the transformer can be achieved for different initial voltages. , Which increases the available effective initial voltage range.
  • the power conversion circuit may feed back the output voltage to the pulse width control circuit through the feedback circuit, so that the pulse width control circuit can adjust the pulse square wave.
  • the power conversion circuit may increase the initial voltage through the first input capacitor, so that the initial voltage is not lower than the minimum operating voltage of the DC conversion circuit.
  • the power conversion circuit may rectify the AC voltage through the primary rectifier circuit, convert the AC voltage into a DC voltage, and output the DC voltage to the DC conversion circuit.
  • the power conversion circuit may filter the output voltage through the secondary rectification filter circuit, and at the same time convert the output voltage from an AC voltage to a DC voltage.
  • the power conversion circuit may isolate the primary transformer coil and the secondary transformer coil through an isolation device, so that the primary transformer coil and the secondary transformer coil are insulated.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of hardware embodiments, software embodiments, or embodiments combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • various initial voltages can be adjusted to the target voltage through the DC conversion circuit, so that the transformer operates stably at the target voltage, thereby increasing the effective voltage range of the power conversion circuit and improving the stability of the output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例公开了一种电源变换电路,包括直流变换电路、脉冲宽度控制电路和变压器,变压器包括初级变压线圈和次级变压线圈;直流变换电路与初级变压线圈连接,用于将输入至直流变换电路的初始电压调整为目标电压;脉冲宽度控制电路与初级变压线圈连接,用于基于目标电压产生脉冲方波;初级变压线圈与次级变压线圈耦合,初级变压线圈用于根据脉冲方波产生电磁场,将电磁场耦合至次级变压线圈,使次级变压线圈产生输出电压。

Description

一种电源变换电路和电源变换方法
相关申请的交叉引用
本申请基于申请号为202010172196.8、申请日为2020年3月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电源领域,尤其涉及一种电源变换电路和电源变换方法。
背景技术
目前,电源变换电路常常是在初级侧采用电容抬高变压器初级变压线圈上的最低电压,以减小或消除变压器工作的死区,使变压器能够稳定工作,从而使电源变换电路能够稳定输出,但电容对变压器初级变压线圈上的电压的抬高幅度有限,因此,只能对有限范围内的输入电压,达到消除变压器工作死区的效果;也就是说,电源变换电路的有效电压区间较小。
发明内容
本申请实施例提供一种电源变换电路,增加了有效电压区间,提高了输出稳定性。
本申请的技术方案是这样实现的:
本申请实施例提供了一种电源变换电路,所述电源变换电路包括:直流变换电路、脉冲宽度控制电路和变压器;所述变压器包括初级变压线圈及次级变压线圈;
所述直流变换电路与所述初级变压线圈连接,所述脉冲宽度控制电路与所述初级变压线圈连接;所述初级变压线圈与所述次级变压线圈耦合;所述直流变换电路,用于基于所述变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压;所述脉冲宽度控制电路,用于基于所述目标电压产生脉冲方波,将所述脉冲方波加在所述初级变压线圈上;所述初级变压线圈,用于根据所述脉冲方波感应电磁场,将所述电磁场耦合至所述次级变压线圈;所述次级变压线圈,用于根据所述电磁场产生感应电流,根据所述感应电流产生输出电压。
本申请实施例提供了一种电源变换方法,包括:
通过直流变换电路,基于变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压;所述变压器包括初级变压线圈及次级变压线圈;通过脉冲宽度控制电 路,基于所述目标电压产生脉冲方波,将所述脉冲方波加在所述初级变压线圈上;通过所述初级变压线圈,根据所述脉冲方波感应电磁场,将所述电磁场耦合至所述次级变压线圈;通过所述次级变压线圈,根据所述电磁场产生感应电流,根据所述感应电流产生输出电压。
附图说明
图1为现有的一种电源变换电路的结构示意图;
图2为本申请实施例提供的一种电源变换电路的结构示意图一;
图3为本申请实施例提供的一种升压直流变换电路的拓扑结构示意图;
图4为本申请实施例提供的一种降压直流变换电路的拓扑结构示意图;
图5为本申请实施例提供的一种升降压直流变换电路的拓扑结构示意图;
图6为本申请实施例提供的一种电源变换电路的结构示意图二;
图7为本申请实施例提供的一种波形示意图一;
图8为本申请实施例提供的一种波形示意图二;
图9为本申请实施例提供的一种电源变换电路的结构示意图三;
图10为申请实施例提供的一种电源变换方法的流程示意图。
具体实施方式
电源变换电路包括交流-直流变换电路、直流-直流变换电路以及交流-交流变换电路,例如,对一个支持USB快充(USB-PD,USB-PowerDelivery)协议的手机进行充电时,需要将电源提供的交流电转换为连续可调的直流电,则需要交流-直流变换电路。图1给出了一种电源变换电路的结构示意图,如图1所示,电源10输入交流电压,通过整流滤波电路20后,输出馒头波,馒头波通过脉冲宽度控制电路80,输出调制的脉冲方波,脉冲宽度控制电路80包括开关器件80_1和脉冲宽度控制芯片80_2,将脉冲方波加在变压器30的初级变压线圈上,使次级变压线圈上产生感应电压,经过次级整流滤波电路40后,向用电负载50输出直流电压,将输出的直流电压通过采样反馈电路60和隔离器件70反馈给脉冲宽度控制电路80,使脉冲宽度控制电路80基于反馈的直流信号调整脉冲方波,实现对次级变压线圈上产生的感应电压的控制,进而实现对输出的直流电压的控制。其中,常在初级侧使用电容来抬高馒头波的最低电压,消除变压器工作死区,从而保证电源变换电路输出稳定,但电容对电压的抬高幅度有限,对于部分馒头波,无法通过电容来消除变压器工作死区。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供一种电源变换电路,图2为本申请实施例提供的一种电源变换电路 的结构示意图,如图2所示,该电源变换电路包括直流变换电路21、变压器22和脉冲宽度控制电路23,其中,变压器包括初级变压线圈22_1和次级变压线圈22_2;直流变换电路21与初级变压线圈22_1连接,脉冲宽度控制电路23与初级变压线圈22_1连接;初级变压线圈22_1与次级变压线圈22_2耦合;直流变换电路21,用于基于变压器的工作电压,调整输入至直流变换电路21的初始电压,得到目标电压;脉冲宽度控制电路23,用于基于目标电压,产生脉冲方波;初级变压线圈22_1,用于根据脉冲方波感应电磁场,将电磁场耦合至次级变压线圈;次级变压线圈22_2,用于根据电磁场产生感应电流,根据感应电流产生输出电压。
其中,初始电压为电源提供的直流电压,同时,初始电压为电源变换电路的输入电压,将初始电压输入至直流变换电路21,初始电压即为直流变换电路21的输入电压,直流变换电路21的输出电压为目标电压,脉冲宽度控制电路23根据目标电压产生脉冲方波,将脉冲方波加在初级变压线圈30_1上,由此在次级变压线圈30_2上产生次级感应电压,次级感应电压即为电源变换电路的输出电压。
可以理解,脉冲方波的电压和目标电压的大小相同,因此,初级变压线圈上的电压和目标电压的大小相同,也就是说,直流变换电路输出电压决定了初级变压线圈上的电压。
这里,直流变换电路将不同的初始电压调整至为目标电压,将目标电压作为初级变压线圈上的电压,使变压器在目标电压上稳定工作,从而保证电源变换电路的稳定输出,这时,初始电压即为电源变换电路的有效初始电压,也就是说,直流变换电路可以增加电源变换电路可用的有效初始电压区间。
需要说明的是,目标电压的大小可以通过直流变换电路的配置来确定,由此,使变压器在目标电压上运行,保证变压器稳定工作,从而实现电源变换电路的稳定输出。
本申请实施例所提供的一种电源变换电路,包括直流变换电路、脉冲宽度控制电路和变压器,其中,变压器包括初级变压线圈和次级变压线圈;直流变换电路与初级变压线圈连接,脉冲宽度控制电路与初级变压线圈连接;初级变压线圈与次级变压线圈耦合;直流变换电路,用于基于变压器的工作电压,调整输入至直流变换电路的初始电压,得到目标电压;脉冲宽度控制电路,用于基于目标电压,产生脉冲方波;初级变压线圈,用于根据脉冲方波感应电磁场,将电磁场耦合至次级变压线圈;次级变压线圈,用于根据电磁场产生感应电流,根据感应电流产生输出电压,也就是说,通过直流变换电路可以将各种初始电压调整至目标电压,使变压器在目标电压上稳定工作,由此,增加了电源电路的有效电压区间,提高了输出的稳定性。
在本申请实施例中,直流变换电路包括升压直流变换电路,升压直流变换电路,用于基于变压器的工作电压,将初始电压升高至目标电压。
基于上述实施例,升压直流变换电路可以包括:第一电感、第一开关管、第一二极管和第一电容;其中,第一电感的第一端与电源的正极连接;第一电感的第二端与第一二极管的正极连接,还与第一开关管的第一端连接;第一二极管的负极与第一电容的正极连接;第一开关管的第二端、第一电容的负极与电源的负极连接。
在本申请实施例中,升压直流变换电路包括以下至少一种:BOOST电路、BUCK/BOOST电路、电荷泵电路和CUK电路。
本申请的实施例提供一种升压直流变换电路,如图3所示,包括:第一电感L1、第一开关管Q1、第一二极管D1和第一电容C1。电源提供的初始电压为V1,L1的第一端与电源正极连接,第二端与D1的正极连接,第二端还与Q1的第一端连接,D1的负极与C1的正极连接,Q1的第二端、C1的负极与电源的负极连接。
其中,第一开关管Q1处于导通状态时,初始电压V1使第一电感L1被充电,第一二极管D1反偏截止,防止第一电容C1对地放电,此时,第一电容C1给负载提供能量,第一电容C1两端的电压即为负载两端的电压Vo;在第一开关管Q1处于断开状态时,第一电感L1有反向电动势的作用,会缓慢放电,此时,第一二极管D1正向导通,第一电感L1通过第一二极管D1、第一电容C1和负载放电,第一电容C1在第一电感L1放电的过程中被充电,第一电容C1两端电压升高,从而通过第一开关管Q1不断重复导通和断开的过程,使升压直流变换电路的输出电压,即负载两端的电压Vo高于初始电压V1。
需要说明的是,第一开关管Q1的第三端接入脉冲信号,通过脉冲信号控制第一开关管Q1的导通和断开。调整脉冲信号的占空比,可以控制直流变换电路对初始电压的升高幅度,因此,对于不同的初始电压,可以升高不同的幅度,从而使不同的初始电压升高至目标电压。
可以理解的是,当初始电压低于变压器的工作电压时,通过升压直流变换电路对电源变换电路的初始电压进行升压处理,将初始电压抬高至目标电压,使变压器在目标电压上运行,这样,对不同的初始电压都能够实现变压器的稳定工作,增大可用的有效初始电压区间。
在本申请实施例中,直流变换电路包括降压直流变换电路,降压直流变换电路,用于基于变压器的工作电压,将初始电压降低至目标电压。
基于上述实施例,降压直流变换电路可以包括:第二电感、第二开关管、第二二极管 和第二电容;其中,第二开关管的第一端与电源的正极连接;第二开关管的第二端与第二电感的第一端连接,还与第二二极管的负极连接;第二电感的第二端与第二电容的正极连接;第二二极管的正极、第二电容的负极与电源的负极连接。
在本申请实施例中,降压直流变换电路包括以下至少一种:BUCK电路、BUCK/BOOST电路、电荷泵电路和CUK电路。
本申请的实施例提供一种降压直流变换电路,如图4所示,包括:第二电感L2、第二开关管Q2、第二二极管D2和第二电容C2。电源提供的初始电压为V2,Q2的第一端与电源正极连接,Q2的第二端与L2的第一端连接,还与D2的负极连接;L2的第二端与C2的正极连接;D2的正极、C2的负极与电源的负极连接。
其中,第二开关管Q2处于导通状态时,第二二极管D2处于反偏截止状态,初始电压V2使第二电感L2被充电,并通过第二电感L2向第二电容C2充电;在第二开关管Q2处于断开状态时,第二电感L2中有反向电动势作用,使第二二极管D2正向导通,第二电感L2和第二电容C2向负载放电,由于第二电感的电流在放电过程中逐渐减小,使得降压直流变换电路的输出电压,即负载两端的电压V O减小,因此,通过第二开关管Q2不断重复导通和断开的过程,使降压直流变换电路的输出电压,即负载两端的电压Vo低于初始电压V2。
需要说明的是,第二开关管Q2的第三端接入脉冲信号,通过脉冲信号的控制第二开关管Q2的导通和断开。调整脉冲信号的占空比,可以控制直流变换电路对初始电压的降低幅度,因此,对于不同的初始电压,可以降低不同的幅度,从而使不同的输入电压降低至目标电压。
可以理解的是,当初始电压高于变压器的工作电压时,通过增加降压直流变换电路对电源变换电路的初始电压进行降压处理,将初始电压降低至变压器的工作电压,这样,对不同的初始电压都能够实现变压器的稳定工作,增大可用的有效初始电压区间。
在本申请实施例中,直流变换电路包括升降压直流变换电路,升降压直流变换电路,用于基于变压器的工作电压,将初始电压升高至目标电压,或者,将初始电压降低至目标电压。
基于上述实施例,降压直流变换电路可以包括:第三电感、第三开关管、第三二极管和第三电容;其中,第三开关管的第一端与电源的正极连接;第三开关管的第二端与第三电感的第一端连接,还与第三二极管的负极连接;第三二极管的正极与第三电容的负极连接;第三电感的第二端、第三电容的正极与电源的负极连接。
在一些实施例中,升降压直流变换电路可以是BUCK/BOOST电路。
本申请的实施例提供一种升降压直流变换电路,如图5所示,包括:第三电感L3、第三开关管Q3、第三二极管D3和第三电容C3。电源提供的初始电压为V3,Q3的第一端与电源正极连接;Q3的第二端与L3的第一端连接,还与D3的负极连接;D3的正极与C3的负极连接;L3的第二端、C3的正极与电源负极连接。
其中,第三开关管Q3处于导通状态时,第三二极管D3处于反偏截止状态,初始电压V3使第三电感L3被充电,此时,第三电容C3向负载供电;在第三开关管Q3处于断开状态时,如果第三电感L3两端电动势大于第三电容C3两端的电压,则第三二极管D3处于导通状态,第三电感L3将向第三电容C3充电,同时向负载供电,负载两端的电压V O为降压直流变换电路的输出电压。
需要说明的是,升降压直流变换电路的输出电压与升降压直流变换电路的输入电压极性相反。
其中,第三开关管Q3的第三端接入脉冲信号,通过脉冲信号控制第三开关管Q3的导通和断开。调整脉冲信号的占空比,控制升降压电路处于升压模式或者降压模式,在升压模式下,升降压直流变换电路可以进行升压变换,在升压模式下调整脉冲信号的占空比,可以控制升压幅度;在降压模式下,升降压直流变换电路可以进行降压变换,在降压模式调整脉冲信号的占空比,可以控制降压幅度,因此,通过对调整脉冲信号的占空比的调整,可以将初始电压调整至目标电压。
可以理解的是,通过升降压直流变换电路对电源变换电路的初始电压进行升压或降压处理,将初始电压升高或降低至变压器的工作电压,这样,对不同的初始电压都能够实现变压器的稳定工作,增大可用的有效初始电压区间。
需要说明的是,第一开关管、第二开关管和第三开关管可以是三极管,还可以是场效应晶体管(MOSFET,Metal-Oxide-Semiconductor Field-Effect Transistor)等任何能够控制其导通和断开的器件,对此,本申请实施例不做限定。
另外,由于场效应晶体管导通时的电压小于二极管导通时的电压,第一二极管、第二二极管和第三二极管还可以采用场效应晶体管来代替,这样能够减少功率损耗,提高直流变换电路的变换效率。
在一些实施例中,升降压直流变换电路可以是电荷泵。
这里,电荷泵可以是开关式调整器升压泵,或者无调整电容式电荷泵,或者可调整电容式电荷泵,也可以是其他形式的电荷泵电路,这里,对于电荷泵,可以根据实际情况进 行选择,本申请实施例不做限定。
可以理解,直流变换电路能够将一定范围内的输入电压高效地调整为目标电压,对于任意初始电压,如果需要调整至目标电压,可以先通过一级直流变换电路将初始电压调整至中间电压,使中间电压能够作为下一级直流变换电路的输入电压,最终,将中间电压变换为目标电压。
举例来说,直流变换电路可以包括升压直流变换电路和/或降压直流变换电路,例如,目标电压为230V,如果初始电压为215V,可以通过升压直流变换电路将215V升高至230V;或者,通过第一级升压直流变换电路将215V升高值225V,再通过第二级升压直流变换电路将225V升高至230V;或者,通过升压直流变换电路将215V升高至260V,再通过降压直流变换电路降低至230V;这里,升压直流变换电路可以是升降压电路的升压模式,降压直流变换电路可以为升降压直流变换电路的降压模式。
需要说明的是,本申请实施例中的直流变换电路可以是能够将直流变换电路的输入电压变换为电压幅值和极性可变的输出电压的任何电路;这里,直流变换电路的类型和拓扑结构可以根据实际需要设置,对此,本申请实施例不做限定。
在本申请实施例中,电源变换电路还包括反馈电路;反馈电路,用于将输出电压反馈至脉冲宽度控制电路,以供脉冲宽度控制电路调整脉冲方波。
可以理解,反馈电路对电源变换电路的输出电压进行采样,将采样的输出电压通过反馈电路反馈至初级变压线圈上,因此,脉冲宽度控制电路可以通过初级变压线圈获取电源变换电路的输出电压,根据电源变换电路的输出电压控制脉冲方波的宽度,进而控制初级变压线圈上感应的电磁场,从而控制次级变压线圈上的感应电流,由此,控制电源变换电路的输出电压,将电源变换电路的输出电压变换为用电器负载所需要的电压。
其中,反馈电路可以通过光耦器件来隔离反馈,例如,可以将采样的输出电压用电阻分压,再通过比较器与光偶反馈回初级变压线圈;反馈电路还可以通过初级变压线圈上的反馈线圈进行反馈,例如,将采样的输出电压直接反馈至初级变压线圈,再在初级电路使用电阻分压后传输至脉冲宽度控制电路;这里,反馈电路的反馈方式可以根据需要设置,对此,本申请实施例不做限定。
在本申请实施例中,电源变换电路还包括第一输入电容;第一输入电容与直流变换电路并联,用于升高初始电压,使初始电压不低于直流变换电路的最低工作电压。
可以理解,第一输入电容在直流变换电路之前,与直流变换电路并联,对直流变换电路的输入电压进行了升高,使直流变换电路的输入电压不低于直流变换电路的最低工作电 压,从而有效支持直流变换电路工作。
需要说明的是,若第一输入电容是在整流电路之后,与整流电路连接,则第一输入电容还能对整流电路的输出电压进行滤波处理,因此,第一输入电容的大小还与电源变换电路的负载相关,选择合适的第一输入电容,才能有效降低电路中的交流波纹。
这里,第一输入电容除了采用固定电容器外,还可以是可变电容器或微调电容器,这样,可以根据负载的不同来调整第一输入电容的大小,以达到最优的滤波和升压作用;这里,第一输入电容的类型可以根据需要设置,对此,本申请实施例不做限定。
在本申请实施例中,当初始电压为交流电压时,电源变换电路还包括初级整流电路;初级整流电路与直流变换电路连接;初级整流电路,用于将交流电压转换为直流电压,输出直流电压至直流变换电路。
其中,初级整流电路可以是半波整流电路,也可以是全波整流电路,还可以是桥式整流电路,还可以是倍压整流电路等各种类型的整流电路;这里,初级整流电路的类型可以根据需要设置,对此,本申请实施例不作限定。
这里,初级整流电路与第一输入电容并联连接;也就是说,当电源变换电路的输入电压为交流电压时,经初级整流电路转换为直流电压,通过第一输入电容的滤波处理,同时对直流电压进行升压,抬高直流电压的最低电压,再将升压后的直流信号输入至直流变换电路。
可以理解的是,整流电路能够将交流电压转换为直流电压,因此,电源变换电路中如果包括初级整流电路,在电源提供交流电压时,还可以对交流电压进行电源变换,将交流电压转换为交流电压,或者将交流电压转换为直流电压,使输出电压满足用电器工作需要。
图6给出了一种电源变换电路的结构示意图,如图6所示,整流电路、输入电容C4、直流变换电路Z1、初级变压线圈Y1和脉冲宽度控制电路U2依次连接,反馈电路和脉冲宽度控制电路、反馈线圈Y3连接,次级变压线圈Y2与初级变压线圈Y1耦合。
其中,整流电路包括整流桥U1、电阻R1和压敏电阻R2,电源提供交流电压,经过整流桥U1后输出馒头波,馒头波经过输入电容C4后电压幅度升高,同时抬高了馒头波的最低电压,使馒头波的电压幅度在直流变换电路Z1的工作范围内,保证直流变换电路Z1的稳定输出为目标电压。
脉冲宽度控制电路包括脉冲宽度控制芯片U2和电阻R5,脉冲宽度控制芯片U2接收反馈信号,根据反馈信号输出脉冲方波,将脉冲方波加在初级变压线圈上Y1。
反馈电路包括反馈线圈Y3、二极管D4、电容C5、电阻R3和R4。反馈线圈Y3感应 次级变压线圈Y2的电压变化,得到次级变压线圈Y2的反馈信号,通过R4、R3分压后,向脉冲宽度控制芯片U2的FB端口输入反馈信号,因此,通过调整R4和R3的阻值比可以调整FB端口接收的反馈信号,U2根据接收的反馈信号输出脉冲方波,从而调整次级变压线圈Y2上产生的输出电压V+。
举例来说,电源提供220V交流电压,交流电压的正弦波经过整流电路后输出馒头波如图7所示,电压幅度最低点趋近于0V,馒头波经过电容C4后,最低电压被抬高,输出波形如图8所示,如果在输出峰值120W负载功率时,输入电容C4为100μF时,能够有效支持直流变换电路工作,例如,馒头波的最低电压被抬高至4V,则可以采用最低工作电压不低于4V的直流变换电路。
需要说明的是,电阻R4、R3还可以是可变电阻,通过调整R4和R3的阻止来控制R4和R3的阻值比,从而实现对次级变压线圈上的输出电压的调整。
可以理解的是,稳定工作的直流变换电路能够使加在初级变压线圈上的电压稳定,从而使次级变压线圈感应的输出电压稳定,而不会随着交流电信号从波峰到波谷变化,避免变压器输出存在死区,使电源变换电路稳定工作。
在本申请实施例中,电源变换电路还包括次级整流滤波电路;次级整流滤波电路与次级变压线圈连接;次级整流滤波电路,用于对输出电压进行滤波处理,同时将输出电压由交流电压转换为直流电压。
需要说明的是,次级整流滤波电路包括次级整流电路和次级滤波电路,次级整流电路用于将次级变压线圈的输出电压由交流电压转换为直流电压,次级滤波电路用于对次级整流电路的输出电压进行滤波处理,减少次级整流电路的输出电压中的交流波纹,使整流电路的输出电压变得比较平滑。
其中,次级整流电路可以是半波整流电路,也可以是全波整流电路,还可以是桥式整流电路或者倍压整流电路等各种类型的整流电路;这里,次级整流电路的类型可以根据需要设置,对此,本申请实施例不作限定。
这里,滤波电路可以是无源滤波电路,也可以是有源滤波电路;这里,滤波电路的类型可以根据需要设置,对此,本申请实施例不作限定。
图9给出了一种电源变换电路的结构示意图,如图9所示,整流电路、输入电容C4、直流变换电路Z1、初级变压线圈Y1和脉冲宽度控制电路依次连接,反馈电路和脉冲宽度控制电路、反馈线圈Y3连接,次级变压线圈Y2与次级整流滤波电路连接。
其中,整流电路包括整流桥U1、电阻R1和压敏电阻R2,其中,电源提供交流电压, 经过整流桥U1后输出馒头波,馒头波经过电容C4后电压幅度升高,同时最低电压被抬高,使馒头波的电压幅度在直流变换电路Z1的工作范围内,保证直流变换电路Z1的稳定输出为目标电压。
脉冲宽度控制电路包括脉冲宽度控制芯片U2、二极管D6和电容C6,反馈线圈Y3通过D6和C6向脉冲宽度控制芯片U2供电,并接收反馈信号,根据反馈信号产生脉冲方波,将脉冲方波加在初级变压线圈上。
反馈电路包括电阻R6和R7、比较器B1和光耦O1,输出电压通过R7、R6分压后,通过比较器B1和光耦O1反馈给U2,这里,比较器B1一个输入端接收的是分压后的输出电压,另一个输入端接收的是参考电压Verf。
需要说明的是,光耦同时也作为隔离器件,具有隔离作用。
次级整流滤波电路包括二极管D5、电容C7和电阻R8。
可以理解的是,次级变压线圈的感应电压为交流电压,若负载需要直流电压,则可以在次级电路增加次级整流滤波电路,对交流电压进行滤波处理,同时将次级变压线圈输出的交流电压转换为直流电压。
在本申请实施例中,电源变换电路还包括隔离器件;隔离器件,位于初级变压线圈和次级变压线圈之间,用于隔离初级变压线圈和次级变压线圈,使初级变压线圈和次级变压线圈绝缘。
这里,隔离器件可以是光学隔离器,也可以是数字隔离器,还可以是电容;这里,隔离器件的类型可以根据需要设置,对此,本申请实施例不做限定。
可以理解的是,采用隔离器件可以使初级电路和次级电路绝缘,以达到抗电磁干扰的效果。
本申请实施例提供一种电源变换方法,应用于上述电源变换电路,如图10所示,该方法包括:
S101、通过直流变换电路,基于变压器的工作电压,调整输入至直流变换电路的初始电压,得到目标电压;变压器包括初级变压线圈和次级变压线圈;
S102、通过脉冲宽度控制电路,基于目标电压产生脉冲方波,将脉冲方波加在初级变压线圈上;
S103、通过初级变压线圈,根据脉冲方波感应电磁场,将电磁场耦合至次级变压线圈;
S104、通过次级变压线圈,根据电磁场产生感应电流,根据感应电流产生输出电压。
在本申请实施例中,为了保证变压器的工作电压,通过直流变换电路对初始电压进行 调整,得到目标电压;通过脉冲宽度控制电路,根据目标电压产生脉冲方波,如此,将脉冲方波加在初级变压线圈上,能够使变压器稳定工作。
在本申请实施例中,脉冲方波加在初级变压线圈上,可以产生感应电磁场,从而使磁极变压线圈能够根据感应电磁场产生感应电流,进而产生输出电压。
可以理解的是,通过直流变换电路,能够将初始电压调整至目标电压,进而使变压器在目标电压上稳定工作,增加了电源电路的有效电压区间,提高了输出的稳定性。
在本申请的一些实施例中,直流变换电路包括升压直流变换电路;电源变换电路可以通过升压直流变换电路,基于变压器的工作电压,将初始电压升高到目标电压。
在本申请实施例中,升压直流变换电路可以为以下至少一种:BOOST电路、BUCK/BOOST电路、电荷泵电路和CUK电路。
示例性的,初始电压为210V,目标电压为230V,则电源变换电路可以通过BOOST电路将210V升高至230V。
在本申请的一些实施例中,直流变换电路包括降压直流变换电路;电源变换电路可以通过降压直流变换电路,基于变压器的工作电压,将初始电压降低到目标电压。
在本申请实施例中,降压直流变换电路可以为以下至少一种:BUCK电路、BUCK/BOOST电路、电荷泵电路和CUK电路。
示例性的,初始电压为210V,目标电压为200V,则电源变换电路可以通过BUCK电路将210V降低至200V。
在本申请的一些实施例中,直流变换电路包括升降压直流变换电路;电源变换电路可以通过升降压直流变换电路,基于变压器的工作电压,将初始电压升高到目标电压,或者,将初始电压降低到目标电压。
在本申请实施例中,升降压直流变换电路包括升压模式和降压模式;在升压模式下,升降压直流变换电路可以将升降压直流变换电路的输入电压升高至目标电压;在降压模式下,升降压直流变换电路可以将升降压直流变换电路的输入电压降低至目标电压。
需要说明的是,升降压直流变换电路的工作模式为升压模式还是降压模式,可以根据需要设置,本申请实施例不作限制。
示例性的,若初始电压为210V,目标电压为200V,则可以使升降压直流变换电路工作在降压模式,通过升降压直流变换电路将初始电压210V降低至200V;若初始电压为180V,目标电压为200V,则可以使升降压直流变换电路工作在升压模式,通过升降压直流变换电路将初始电压1800V升高至200V。
可以理解的是,通过设置升降压直流变换电路的工作模式,能够将低于目标电压以及高于目标电压的初始电压调整至目标电压;如此,对不同的初始电压都能够实现变压器的稳定工作,增大了可用的有效初始电压区间。
在本申请的一些实施例中,电源变换电路可以通过反馈电路,将输出电压反馈至脉冲宽度控制电路,以供脉冲宽度控制电路调整脉冲方波。
在本申请的一些实施例中,电源变换电路可以通过第一输入电容升高初始电压,使初始电压不低于直流变换电路的最低工作电压。
在本申请的一些实施例中,电源变换电路可以通过初级整流电路,对交流电压进行整流处理,将交流电压换为直流电压,输出直流电压至直流变换电路。
在本申请的一些实施例中,电源变换电路可以通过次级整流滤波电路,对输出电压进行滤波处理,同时将输出电压由交流电压转换为直流电压。
在本申请的一些实施例中,电源变换电路可以通过隔离器件,隔离初级变压线圈和次级变压线圈,使初级变压线圈和次级变压线圈绝缘。
需要说明的是,关于反馈电路、第一输入电容、初级整流电路、次级整流滤波电路和隔离器件,在电源变换电路侧已做详细描述,在此不在赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例中,通过直流变换电路可以将各种初始电压调整至目标电压,使变压器在目标电压上稳定工作,从而增加了电源变换电路的有效电压区间,提高了输出的稳定性。

Claims (20)

  1. 一种电源变换电路,所述电源变换电路包括直流变换电路、脉冲宽度控制电路和变压器;所述变压器包括初级变压线圈及次级变压线圈;
    所述直流变换电路与所述初级变压线圈连接,所述脉冲宽度控制电路与所述初级变压线圈连接;所述初级变压线圈与所述次级变压线圈耦合;
    所述直流变换电路,用于基于所述变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压;
    所述脉冲宽度控制电路,用于基于所述目标电压产生脉冲方波,将所述脉冲方波加在所述初级变压线圈上;
    所述初级变压线圈,用于根据所述脉冲方波感应电磁场,将所述电磁场耦合至所述次级变压线圈;
    所述次级变压线圈,用于根据所述电磁场产生感应电流,根据所述感应电流产生输出电压。
  2. 根据权利要求1所述的电源变换电路,其中,所述直流变换电路包括升压直流变换电路;
    所述升压直流变换电路,用于基于所述变压器的工作电压,将所述初始电压升高至所述目标电压。
  3. 根据权利要求2所述的电源变换电路,其中,所述升压直流变换电路包括:第一电感、第一开关管、第一二极管和第一电容;
    其中,所述第一电感的第一端与所述电源的正极连接;所述第一电感的第二端与所述第一二极管的正极连接,以及与第一开关管的第一端连接;
    所述第一二极管的负极与所述第一电容的正极连接;
    所述第一开关管的第二端、所述第一电容的负极与所述电源的负极连接。
  4. 根据权利要求1所述的电源变换电路,其中,所述直流变换电路包括:降压直流变换电路;
    所述降压直流变换电路,用于基于所述变压器的工作电压,将所述初始电压降低至所述目标电压。
  5. 根据权利要求4所述的电源变换电路,其中,所述降压直流变换电路包括:第二电感、第二开关管、第二二极管和第二电容;
    其中,所述第二开关管的第一端与所述电源的正极连接;所述第二开关管的第二端与 所述第二电感的第一端连接,以及与所述第二二极管的负极连接;
    所述第二电感的第二端与所述第二电容的正极连接;
    所述第二二极管的正极、所述第二电容的负极与所述电源的负极连接。
  6. 根据权利要求1所述的电源变换电路,其中,所述直流变换电路包括:升降压直流变换电路;
    所述升降压直流变换电路,用于基于变压器的工作电压,将所述初始电压升高至所述目标电压,或者,将所述初始电压降低至所述目标电压。
  7. 根据权利要求6所述的电源变换电路,其中,所述升降压直流变换电路包括:第三电感、第三开关管、第三二极管和第三电容;
    其中,所述第三开关管的第一端与所述电源的正极连接;所述第三开关管的第二端与所述第三电感的第一端连接,以及与所述第三二极管的负极连接;
    所述第三二极管的正极与所述第三电容的负极连接;
    所述第三电感的第二端、所述第三电容的正极与所述电源的负极连接。
  8. 根据权利要求1所述的电源变换电路,其中,所述电源变换电路还包括:反馈电路;
    所述反馈电路,用于将所述输出电压反馈至脉冲宽度控制电路,以供所述脉冲宽度控制电路调整所述脉冲方波。
  9. 根据权利要求1所述的电源变换电路,其中,所述电源变换电路还包括:第一输入电容;
    所述第一输入电容与所述直流变换电路并联;
    所述第一输入电容,用于升高所述初始电压,使所述初始电压不低于所述直流变换电路的最低工作电压。
  10. 根据权利要求1所述的电源变换电路,其中,当初始电压为交流电压时,所述电源变换电路还包括:初级整流电路;
    所述初级整流电路与所述直流变换电路连接;
    所述初级整流电路,用于将所述交流电压进行整流处理,将所述交流电压换为直流电压,输出所述直流电压至所述直流变换电路。
  11. 根据权利要求1所述的电源变换电路,其中,所述电源变换电路还包括:次级整流滤波电路;
    所述次级整流滤波电路与所述次级变压线圈连接;
    所述次级整流滤波电路,用于对输出电压进行滤波处理,同时将所述输出电压由交流电压转换为直流电压。
  12. 根据权利要求1所述的电源变换电路,其中,所述电源变换电路还包括:隔离器件;
    所述隔离器件,位于所述初级变压线圈和所述次级变压线圈之间,用于隔离所述初级变压线圈和所述次级变压线圈,使所述初级变压线圈和所述次级变压线圈绝缘。
  13. 根据权利要求2所述的电源变换电路,其中,所述升压直流变换电路包括以下至少一种:BOOST电路、BUCK/BOOST电路、电荷泵电路和CUK电路。
  14. 根据权利要求4所述的电源变换电路,其中,所述降压直流变换电路包括以下至少一种:BUCK电路、BUCK/BOOST电路、电荷泵电路和CUK电路。
  15. 一种电源变换方法,应用于如权利要求1至14任一项所述的电源变换电路,所述方法包括:
    通过直流变换电路,基于变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压;所述变压器包括初级变压线圈及次级变压线圈;
    通过脉冲宽度控制电路,基于所述目标电压产生脉冲方波,将所述脉冲方波加在所述初级变压线圈上;
    通过所述初级变压线圈,根据所述脉冲方波感应电磁场,将所述电磁场耦合至所述次级变压线圈;
    通过所述次级变压线圈,根据所述电磁场产生感应电流,根据所述感应电流产生输出电压。
  16. 根据权利要求15所述的方法,其中,所述直流变换电路包括升压直流变换电路;所述通过直流变换电路,基于变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压,包括:
    通过所述升压直流变换电路,基于变压器的工作电压,将所述初始电压升高至所述目标电压。
  17. 根据权利要求15所述的方法,其中,所述直流变换电路包括降压直流变换电路;所述通过直流变换电路,基于变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压,包括:
    通过所述降压直流变换电路,基于变压器的工作电压,将所述初始电压降低至所述目标电压。
  18. 根据权利要求15所述的方法,其中,所述直流变换电路包括升降压直流变换电路;所述通过直流变换电路,基于变压器的工作电压,调整输入至所述直流变换电路的初始电压,得到目标电压,包括:
    通过所述升降压直流变换电路,基于所述变压器的工作电压,将所述初始电压升高至所述目标电压,或者,将所述初始电压降低至所述目标电压。
  19. 根据权利要求15所述的方法,其中,所述方法还包括:
    通过反馈电路,将所述输出电压反馈至脉冲宽度控制电路,以供所述脉冲宽度控制电路调整所述脉冲方波。
  20. 根据权利要求15所述的方法,其中,所述方法还包括:
    通过第一输入电容升高所述初始电压,使所述初始电压不低于所述直流变换电路的最低工作电压。
PCT/CN2021/078260 2020-03-12 2021-02-26 一种电源变换电路和电源变换方法 WO2021179920A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21766928.2A EP4120538A4 (en) 2020-03-12 2021-02-26 POWER CONVERSION CIRCUIT AND POWER CONVERSION METHOD
US17/943,020 US20230006558A1 (en) 2020-03-12 2022-09-12 Power supply conversion circuit and power supply conversion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010172196.8A CN113394972A (zh) 2020-03-12 2020-03-12 一种电源变换电路
CN202010172196.8 2020-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/943,020 Continuation US20230006558A1 (en) 2020-03-12 2022-09-12 Power supply conversion circuit and power supply conversion method

Publications (1)

Publication Number Publication Date
WO2021179920A1 true WO2021179920A1 (zh) 2021-09-16

Family

ID=77616656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078260 WO2021179920A1 (zh) 2020-03-12 2021-02-26 一种电源变换电路和电源变换方法

Country Status (4)

Country Link
US (1) US20230006558A1 (zh)
EP (1) EP4120538A4 (zh)
CN (1) CN113394972A (zh)
WO (1) WO2021179920A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110216560A1 (en) * 2010-03-04 2011-09-08 Sheng Ye Two stage isolated switch-mode ac/dc converter
CN104022661A (zh) * 2014-06-11 2014-09-03 合肥工业大学 超宽电压输入范围ac/dc-dc自适应仪用开关电源
CN204721234U (zh) * 2015-06-05 2015-10-21 中兴通讯股份有限公司 反向供电的传输电路
CN110212748A (zh) * 2019-06-06 2019-09-06 宁波三星医疗电气股份有限公司 一种宽电压电源输入电路
CN210297565U (zh) * 2019-07-26 2020-04-10 厦门理工学院 一种交直流宽输入调压电路及驱动器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785816B2 (en) * 2004-07-13 2014-07-22 Lincoln Global, Inc. Three stage power source for electric arc welding
US8581147B2 (en) * 2005-03-24 2013-11-12 Lincoln Global, Inc. Three stage power source for electric ARC welding
CN101447760B (zh) * 2008-10-06 2012-10-03 河南科技大学 一种风力发电机组的电压控制器
TWI382640B (zh) * 2009-04-15 2013-01-11 Acbel Polytech Inc Global switched power supply and its serial - to - parallel DC - to - DC power conversion circuit
ITMI20110546A1 (it) * 2011-04-04 2012-10-05 St Microelectronics Srl Dispositivo di controllo della frequenza di commutazione di un converter quasi risonante e relativo metodo di controllo.
US9866122B2 (en) * 2015-09-15 2018-01-09 Power Integrations, Inc. Hybrid boost-bypass function in two-stage converter
CN107346940B (zh) * 2016-05-05 2021-02-26 中车株洲电力机车研究所有限公司 一种功率变换电路
CN207733021U (zh) * 2017-12-22 2018-08-14 深圳晶辰电子科技股份有限公司 激式驱动电源电磁兼容控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110216560A1 (en) * 2010-03-04 2011-09-08 Sheng Ye Two stage isolated switch-mode ac/dc converter
CN104022661A (zh) * 2014-06-11 2014-09-03 合肥工业大学 超宽电压输入范围ac/dc-dc自适应仪用开关电源
CN204721234U (zh) * 2015-06-05 2015-10-21 中兴通讯股份有限公司 反向供电的传输电路
CN110212748A (zh) * 2019-06-06 2019-09-06 宁波三星医疗电气股份有限公司 一种宽电压电源输入电路
CN210297565U (zh) * 2019-07-26 2020-04-10 厦门理工学院 一种交直流宽输入调压电路及驱动器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120538A4 *

Also Published As

Publication number Publication date
EP4120538A4 (en) 2023-08-02
US20230006558A1 (en) 2023-01-05
CN113394972A (zh) 2021-09-14
EP4120538A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
CN103219901B (zh) Ac/dc变换器控制电路以及应用其的ac/dc变换器
US8488346B2 (en) Power conversion apparatus and method
US20200328668A1 (en) Pfwm control system for switching-mode power supply circuit
CN110739861B (zh) 高频串联交流调压器
CN102638169A (zh) 一种反激式变换器的控制电路、控制方法以及应用其的交流-直流功率变换电路
WO2020011095A1 (zh) 应用于电源适配器的控制电路和电源适配器
JP6134479B2 (ja) アクティブ降圧型パワーファクター修正装置
AU2016372793B2 (en) Welding power supply with extended voltage characteristic
US4138715A (en) Resonant switching converter
US11245338B2 (en) Alternating current-direct current conversion circuit, alternating current-direct current conversion method and charger
WO2021179920A1 (zh) 一种电源变换电路和电源变换方法
WO2021179930A1 (zh) 一种电源变换电路和电源变换方法
KR101456654B1 (ko) 공용코어 역률보정 공진 컨버터
KR100816842B1 (ko) 동기화 전원장치
JP2006529078A (ja) 多重安定化出力及び単一帰還ループを有するスイッチモード電源装置
Sooksatra et al. Near Unity Power Factor Using Non-inverting Boost-Buck Converter with Programmed PWM
Cheng et al. An Overview of Stability Improvement Methods for Wide-Operation-Range Flyback Converter with Variable Frequency Peak-Current-Mode Control
RU2729882C2 (ru) Преобразователь напряжения источника питания постоянного тока
SubbaRao et al. LPCM Controlled Single Phase AC-DC Converter For High Power Factor & Tight Voltage Regulation
EP1224726B1 (en) Switched power supply converter for broad range of input voltages
CN114900057A (zh) 高效率升降压整流器拓扑及其控制方法
Sivasankar et al. Design and simulation of open and closed loop control for transformerless DC-DC buck-boost converter using switched-capacitor structure
CN203387425U (zh) 一种可平滑处理整流性负载电流切换时阻抗的控制系统
Kasar et al. Design and Implementation of Isolated Multi-Output DC-DC Power Supply with Fixed and Programmable Voltage Levels
EP3316464A1 (en) A switched-mode power supply with power factor correction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021766928

Country of ref document: EP

Effective date: 20221010