Nothing Special   »   [go: up one dir, main page]

WO2021172688A1 - 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질 - Google Patents

양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질 Download PDF

Info

Publication number
WO2021172688A1
WO2021172688A1 PCT/KR2020/014253 KR2020014253W WO2021172688A1 WO 2021172688 A1 WO2021172688 A1 WO 2021172688A1 KR 2020014253 W KR2020014253 W KR 2020014253W WO 2021172688 A1 WO2021172688 A1 WO 2021172688A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
salt
positive electrode
secondary battery
Prior art date
Application number
PCT/KR2020/014253
Other languages
English (en)
French (fr)
Inventor
김명진
이지훈
최봉진
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to JP2022551772A priority Critical patent/JP7375218B2/ja
Priority to CN202080097668.6A priority patent/CN115190868B/zh
Priority to US17/801,634 priority patent/US20230106658A1/en
Priority to EP20920834.7A priority patent/EP4112556A4/en
Publication of WO2021172688A1 publication Critical patent/WO2021172688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • C01G51/42Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
    • C01G51/44Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese of the type (MnO2)n-, e.g. Li(CoxMn1-x)O2 or Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • C22B23/0484Separation of nickel from cobalt in acidic type solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0054Treating ocean floor nodules by wet processes leaching processes
    • C22B47/0063Treating ocean floor nodules by wet processes leaching processes with acids or salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0081Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method of manufacturing a cathode active material precursor material using a waste lithium secondary battery, a method of manufacturing a cathode active material for a lithium secondary battery using the cathode active material precursor material prepared thereby, and a cathode active material for a lithium secondary battery manufactured thereby.
  • lithium secondary batteries exhibiting high energy density and operating potential, long cycle life, and low self-discharge rate have been commercialized and widely used.
  • a lithium secondary battery is generally composed of a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, and an electrolyte, and is a secondary battery in which charging and discharging are performed by intercalation/de-intercalation of lithium ions.
  • Lithium secondary batteries have advantages of high energy density, high electromotive force, and high capacity, and thus are being applied to various fields.
  • the positive electrode active material of a lithium secondary battery includes transition metals including cobalt along with lithium, which are relatively expensive metals. Therefore, when the transition metals such as lithium, cobalt, nickel, and manganese are recovered from the waste lithium secondary battery, particularly the positive electrode, and recycled as a raw material, price competitiveness can be secured and additional profit can be created.
  • the cathode active material is separated from the waste battery, and the transition metal is separated from the separated cathode active material, After refining it, an additional step is required to use it again as a raw material for the production of a cathode active material.
  • Korean Patent Laid-Open No. 10-2011-0036628 a method comprising: obtaining a powder of a valuable metal containing lithium, nickel, cobalt and manganese from a waste battery; acid leaching the valuable metal powder in a reducing atmosphere to obtain a leaching solution; and obtaining lithium carbonate (Li 2 CO 3 ) and hydroxides of nickel, cobalt and manganese from the leaching solution.
  • each transition metal component cannot be individually separated, so there are restrictions on the form of application. Even after removal, there is a problem that considerable energy and time are required to remove impurities.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2011-0036628
  • the present invention is to improve the problems of the prior art described above, a method for preparing a cathode active material precursor material for separating Mn, Ni and Co in the form of salts with excellent extraction efficiency, lithium using the cathode active material precursor material produced thereby
  • An object of the present invention is to provide a method of manufacturing a cathode active material for a secondary battery, and a cathode active material for a lithium secondary battery prepared thereby.
  • the present invention provides the steps of: (1) leaching a cathode active material of a waste lithium secondary battery containing Mn, Ni and Co to obtain a leachate; (2) first solvent extraction of the leachate using a first phosphoric acid-based material to obtain a Mn salt; (3) precipitating the solvent-extracted leachate using an oxime-based material to obtain a Ni salt; and (4) using a second phosphoric acid-based material to perform secondary solvent extraction of the precipitated leachate to obtain a Co salt.
  • the present invention provides a cathode active material for a lithium secondary battery manufactured by the method for producing a cathode active material for a lithium secondary battery.
  • the method for producing a cathode active material precursor material of the present invention can separate the valuable metals contained in the cathode active material of a waste lithium secondary battery in the form of sulfate, and separate additional processes are required for the production of the cathode active material by being separated in the form of sulfate. Because it is not required, it provides an effect that can be used immediately as a precursor of a cathode active material.
  • manganese, nickel, and cobalt contained in the positive electrode active material of a lithium secondary battery have different pH ranges for forming chelates depending on each component, and since the proper pH for forming chelates in the order of manganese, cobalt, and nickel increases, conventionally
  • the solvent extraction of the spent cathode active material was carried out in the order of manganese, cobalt, and nickel, but in the case of extraction in the order of manganese, cobalt, and nickel, the pH difference that forms the chelate in each step is not large, so Cyanex 272, known as the conventional solvent extraction material, is used.
  • Cyanex 272 known as the conventional solvent extraction material
  • the extraction efficiency of the metal salt can be improved by increasing the appropriate pH difference during solvent extraction.
  • FIG. 1 is a flow chart of manufacturing a cathode active material precursor material according to an embodiment of the present invention.
  • the present invention a method for producing a cathode active material for a lithium secondary battery, comprising separately obtaining a manganese (Mn) salt, a nickel (Ni) salt, and a cobalt (Co) salt from a cathode active material of a waste lithium secondary battery, and It relates to a cathode active material for a lithium secondary battery manufactured by the method for producing a cathode active material for a lithium secondary battery.
  • the method for producing a cathode active material for a lithium secondary battery of the present invention comprises the steps of: (1) leaching a cathode active material of a spent lithium secondary battery containing Mn, Ni and Co to obtain a leachate; (2) first solvent extraction of the leachate to obtain a Mn salt; (3) precipitating the solvent-extracted residue to obtain a Ni salt; and (4) extracting the precipitated leachate with a secondary solvent to obtain a Co salt.
  • the present invention includes a method for producing a cathode active material for a lithium secondary battery using the cathode active material precursor material produced by the method, and a cathode active material for a lithium secondary battery manufactured by the method for producing a cathode active material for a lithium secondary battery.
  • the method for producing a cathode active material precursor material of the present invention can separate the valuable metals contained in the cathode active material of a waste lithium secondary battery in the form of sulfate, and separate additional processes are required for the production of the cathode active material by being separated in the form of sulfate. Since it is not required, it is possible to provide an effect that can be used immediately as a cathode active material precursor.
  • manganese, nickel and cobalt contained in the positive electrode active material of the lithium secondary battery have different pH ranges for forming chelates depending on each component, and the appropriate pH for forming chelates in the order of manganese, cobalt, and nickel Because of the increase in the conventional waste cathode active material solvent extraction proceeded in the order of manganese, cobalt, nickel. Accordingly, Cyanex 272, known as the conventional solvent extraction material, was used, but the unit price is high, so there is a problem in that the process unit cost is high. In order to solve this problem, in the present invention, each component is separated in the order of manganese, nickel, and cobalt, and nickel is recovered through a precipitation method. can be lowered
  • the extraction efficiency of metal salts can be improved by increasing the appropriate pH difference for solvent extraction between cobalt and other metals.
  • the method for preparing a cathode active material precursor material of the present invention comprises the steps of: (1) leaching a cathode active material of a spent lithium secondary battery containing Mn, Ni and Co to obtain a leachate; (2) first solvent extraction of the leaching solution using a first extractant to obtain a Mn salt; (3) precipitating the solvent-extracted leachate using a precipitating agent to obtain a Ni salt; and (4) using a second extractant to perform secondary solvent extraction of the precipitated leachate to obtain a Co salt.
  • the method for preparing the cathode active material precursor material of the present invention may further include the step of recovering a lithium salt, the first extractant and the second extractant include a phosphoric acid-based material, and the precipitating agent is an oxime-based material. contains substances.
  • the step of obtaining a Ni salt having a relatively large difference in optimum solvent extraction pH compared to the extraction pH of the step of obtaining the Mn salt is immediately included, so that the Ni salt
  • the production efficiency was maximized, and accordingly, the production efficiency of expensive Co salts was also maximized by minimizing the components other than Co in the leachate, which is the subject of solvent extraction, in the subsequent step of obtaining the Co salt.
  • the cathode active material precursor material of the present invention includes manganese sulfate as the Mn salt, nickel sulfate as the Ni salt, and cobalt sulfate as the Co salt.
  • the positive electrode active material of a waste lithium secondary battery containing Mn, Ni and Co of the present invention may include a positive electrode active material represented by the following Chemical Formula 1:
  • the material for leaching the cathode active material may be sulfuric acid or hydrogen peroxide.
  • the method for producing a cathode active material precursor material of the present invention is a pretreatment process for obtaining a cathode active material of a waste lithium secondary battery containing Mn, Ni and Co, and further includes a process of heat-treating after crushing the waste lithium secondary battery immediately can do.
  • the step of discharging the waste lithium secondary battery before crushing may be further included.
  • the discharge is completed, the subsequent valuable metal recovery process can be safely performed in the atmosphere, not in an inert atmosphere.
  • Discharge may be performed in a discharge solution. Distilled water may be used as the discharge solution. The degree of completion of the discharge can be confirmed by decreasing the voltage over time. Most of the electrolyte in the spent lithium secondary battery is removed during the discharging process.
  • the crushing may be made by milling, and the milling may be mechanical milling, specifically, a roll-mill, a ball-mill, a jet-mill, and a planetary mill. -mill) and may be made by at least one selected from the group consisting of an attrition-mill.
  • the crushed material may have a particle diameter of 1 to 15 ⁇ m, preferably 1 to 7 ⁇ m, and more preferably 2 to 5 ⁇ m.
  • the pretreatment process may further include a classification step after the crushing, and the crushed material is a large amount of fine electrode composite powder and other components (positive electrode, negative electrode, separator) by a classification process, preferably by a sieve. Separated into fractions, the electrode composite powder is recovered from the crushed material.
  • the separation membrane in the crushed material is removed by specific gravity separation of the crushed material, preferably using a rinse tank equipped with a water level, after the classification.
  • An electrode composite, a separator, a current collector, etc. can be separated.
  • pretreatment process it may further include a magnetic separation step after the gravity separation, and when stainless steel (SUS) is additionally included in the waste lithium secondary battery, stainless steel (SUS) by magnetic separation from the crushed material This selection is eliminated.
  • SUS stainless steel
  • heat treatment may be performed after the magnetic separation.
  • the heat treatment is to remove impurities other than the positive electrode active material, such as a positive electrode binder, a positive electrode conductive material, a negative electrode active material, a negative electrode binder, a negative electrode conductive material, a pouch, etc. included in the waste lithium secondary battery, the temperature of 600 °C to less than 1000 °C It may be carried out in the range, preferably, it may be carried out in a temperature range of 700 °C to 900 °C, more preferably, it is preferable that the heat treatment is performed in a temperature range of 800 °C to 900 °C. When the heat treatment temperature is 1000° C. or higher, even lithium of the positive electrode active material may be removed.
  • the method of manufacturing a cathode active material precursor material of the present invention may include a step of further removing impurities such as carbon material (cathode active material) and copper remaining after the heat treatment by mixing sulfuric acid with the pretreatment material.
  • the waste lithium secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte, and may further include a pouch.
  • the waste lithium secondary battery includes a separator interposed between the negative electrode and the positive electrode, and an electrolyte including an electrolyte is supplied thereto.
  • the above-described waste lithium secondary battery is, for example, sequentially stacking the negative electrode, the separator, and the positive electrode, and then winding or folding it and putting it in a cylindrical or prismatic battery case or pouch, and then It may be prepared by injecting an organic electrolyte into a battery case or pouch.
  • the positive electrode of the waste lithium secondary battery may include lithium metal or lithium transition metal oxide, and may be manufactured by a conventional method known in the art.
  • the positive electrode active material may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersing agent as necessary to prepare a slurry, which is then applied (coated) to the positive electrode current collector, compressed, and dried.
  • the cathode active material may include a cathode active material represented by the following Chemical Formula 1:
  • the solvent of the positive electrode may be N-methyl-2-pyrrolidone (NMP), acetone, water, or a mixture thereof, and the conductive material of the positive electrode is polyacrylic acid, acetylene black, furnace black, graphite, carbon fiber, Alternatively, a conductive crude material such as fullerene may be used.
  • NMP N-methyl-2-pyrrolidone
  • acetone water
  • water or a mixture thereof
  • the conductive material of the positive electrode is polyacrylic acid, acetylene black, furnace black, graphite, carbon fiber, Alternatively, a conductive crude material such as fullerene may be used.
  • the binder of the positive electrode serves to adhere the positive electrode active material particles well to each other and also to the positive electrode current collector well.
  • the binder includes polyacrylic acid, polyvinylidene fluoride, polyvinyl alcohol, and carboxymethyl.
  • Cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluororubber, or various copolymers may be used.
  • the positive electrode current collector has a thickness of about 3 ⁇ m to about 500 ⁇ m, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, One selected from the group consisting of carbon, nickel, titanium, silver, and combinations thereof on the surface of heat-treated carbon, aluminum or stainless steel may be used.
  • the current collector may increase the adhesion of the positive electrode active material by forming fine concavities and convexities on its surface, and various forms of film, sheet, foil, net, porous body, foam, or nonwoven body are possible.
  • the negative electrode of the waste lithium secondary battery may be manufactured by a conventional method known in the art.
  • the anode active material may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersing agent as needed to prepare a slurry, then applying (coating) it to the anode current collector, compressing it, and drying it.
  • the anode active material may be a carbon material, lithium metal, silicon, or tin in which lithium ions can be occluded and released.
  • it may be a carbon material, and examples of the carbon material include low crystalline carbon and high crystalline carbon.
  • Soft carbon and hard carbon are representative as low crystalline carbon, and natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber as high crystalline carbon. (mesophase pitch based carbon fiber), carbon microspheres (meso-carbon microbeads), liquid crystal pitches (mesophase pitches), and high-temperature calcined carbon such as petroleum and coal tar pitch derived cokes are representative.
  • the solvent of the negative electrode may be N-methyl-2-pyrrolidone (NMP), acetone, water, or a mixture thereof, and the conductive material of the negative electrode is polyacrylic acid, acetylene black, furnace black, graphite, carbon fiber, Alternatively, a conductive crude material such as fullerene may be used.
  • NMP N-methyl-2-pyrrolidone
  • acetone water
  • water or a mixture thereof
  • the conductive material of the negative electrode is polyacrylic acid, acetylene black, furnace black, graphite, carbon fiber, Alternatively, a conductive crude material such as fullerene may be used.
  • the binder of the negative electrode serves to adhere the negative active material particles well to each other and also to the negative electrode active material to the current collector.
  • the binder is polyacrylic acid, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl. Cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluororubber, or various copolymers may be used.
  • the negative electrode current collector is generally made to have a thickness of about 3 ⁇ m to about 500 ⁇ m.
  • the negative current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, heat-treated carbon, copper or stainless steel. It may include a surface treated with carbon, nickel, titanium, or silver on the surface, or an aluminum-cadmium alloy.
  • the bonding strength of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms of films, sheets, foils, nets, porous materials, foams, or nonwovens.
  • the separator of the waste lithium secondary battery is not limited in its type, but includes, for example, an ethylene homopolymer, a propylene homopolymer, an ethylene-butene copolymer, an ethylene-hexene copolymer, and an ethylene-methacrylate copolymer.
  • the polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylenesulfone It is preferable to use a separator made of a nonwoven fabric corresponding to a porous substrate made of a polymer selected from the group consisting of pyrite, polyethylene naphthalene, and combinations thereof.
  • the separator has a pore size of about 0.01 ⁇ m to about 10 ⁇ m, and a thickness of generally about 5 ⁇ m to about 300 ⁇ m.
  • a gel-type polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN, or PVAC for example, a gel-type polymer electrolyte using PEO, PVdF, PVdF-HFP, PMMA, PAN, or PVAC;
  • a solid electrolyte using PEO, polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES), or polyvinyl acetate (PVAc) may be used.
  • electrolytes include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) , methyl formate (MF), gamma-butyrolactone ( ⁇ -BL; ⁇ -butyrolactone), sulfolane, methyl acetate (MA; methylacetate), or methyl propionate (MP; methylpropionate) using A non-aqueous electrolyte may also be used.
  • the electrolyte may further include a lithium salt, such as, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO to 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, or tetraphenyl lithium borate, etc.
  • a lithium salt such as, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO to 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium
  • the spent lithium secondary battery may use an organic solid electrolyte and/or an inorganic solid electrolyte in addition to the separator, but is not limited thereto.
  • the solid electrolyte may also serve as a separator in some cases, so that the aforementioned separator may not be used.
  • the organic solid electrolyte may include, for example, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, polyvinyl alcohol, or polyvinylidene fluoride, but is not limited thereto.
  • the inorganic solid electrolyte is, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and a combination thereof may include, but is not limited to.
  • the method for producing a cathode active material precursor material according to the present invention includes the step of first solvent extraction of the leachate using a first phosphoric acid-based material to obtain an Mn salt, and may be carried out under an acidic atmosphere, pH 2 to 4, more preferably at pH 3 to 4, and most preferably at about pH 4.
  • the manganese salt includes manganese sulfate (MnSO 4 ).
  • the first phosphoric acid-based material is a manganese salt extractant, and when the pH of the leachate is 2 to 4, preferably pH 3 to 4, more preferably, pH 4, the Mn salt can be extracted with an efficiency of 80% or more. It may contain substances that can The extraction efficiency of the Mn salt may be 80% or more, preferably, 85% or more, more preferably, 90% or more.
  • the first phosphoric acid-based material may include a saponification, and the first phosphoric acid-based material may be dissolved in an organic solvent.
  • the first phosphoric acid-based material may include one or more compounds selected from compounds represented by Formula 2 or Formula 3 below.
  • R 1 and R 2 are each independently a C1 to C30 straight-chain or branched alkyl group with or without a hetero atom, preferably, C1 with or without a hetero atom.
  • to C23 may be a straight-chain or branched alkyl group, and a C6 to C10 straight-chain or branched alkyl group is more preferable, but is not limited thereto.
  • the hetero atom may be one or more selected from oxygen, sulfur and nitrogen.
  • R 3 and R 4 are each independently a C1 to C30 straight-chain or branched alkyl group with or without a hetero atom, preferably, C1 with or without a hetero atom.
  • to C23 may be a straight-chain or branched alkyl group, and a C6 to C10 straight-chain or branched alkyl group is more preferable, but is not limited thereto.
  • the hetero atom may be one or more selected from oxygen, sulfur and nitrogen.
  • the first phosphoric acid-based material is di-(2-ethylhexyl)phosphoric acid (D2EHPA) and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (2-ethylhexyl). It may include at least one selected from phosphonic acid mono 2-ethylhexyl ester, PC88A), preferably di- (2-ethylhexyl) phosphoric acid.
  • the purity of the manganese salt may be 80% or more, preferably 85% or more, and most preferably 88% or more.
  • the primary solvent extraction may include washing and back extraction after extraction using the first phosphoric acid-based material, wherein the washing and back extraction may be performed using sulfuric acid, and the manganese by using sulfuric acid
  • the salt can be obtained in the form of the sulphate.
  • Washing is a step of removing impurity metals extracted earlier than desired metals by an extractant
  • reverse extraction is a process of inducing a reverse reaction of extraction by rapidly increasing the concentration of hydrogen ions. Extraction and back extraction can be represented by the formula as follows.
  • the method for producing a cathode active material precursor material according to the present invention comprising the step of precipitating the solvent-extracted residue to obtain a Ni salt, may be carried out under an acidic atmosphere, preferably carried out at pH 4 to 6, carried out at pH 5 to 6 more preferably, it is most preferably carried out at about pH 6.
  • the method may further include adding sulfuric acid in the step of precipitating the solvent-extracted residue to obtain a Ni salt.
  • the nickel salt includes nickel sulfate (NiSO 4 ).
  • the oxime-based material is a nickel salt precipitant, and when the pH of the solvent-extracted residue is 4 to 6, preferably, pH 5 to 6, more preferably, pH 6, leaching Ni salt with an efficiency of 80% or more It may contain substances capable of The leaching efficiency of the Ni salt may be 80% or more, preferably, 85% or more, more preferably, 90% or more.
  • the oxime-based material is one selected from the group consisting of dimethylglyoxime (DMG), diethylglyoxime, dipropylglyoxime, and ethylmethylglyoxime. It may be the above, and specifically, it is preferable that it is dimethylglyoxime.
  • DMG dimethylglyoxime
  • the dimethylglyoxime was mainly used as an indicator for checking the presence or absence of nickel in the precipitate, but in the present invention, it serves to separate the nickel salt by precipitating the nickel-containing leachate.
  • the oxime-based material may be added in a molar ratio of 2 to 4 times that of nickel in the solvent-extracted residue, and is preferably added in a molar ratio of 2.2 times.
  • the purity of the nickel salt may be 90% or more, preferably 95% or more, and most preferably 99% or more.
  • the method for preparing a cathode active material precursor material according to the present invention includes the step of obtaining a Co salt by secondary solvent extraction of the precipitated leachate using a second phosphoric acid-based material, and may be carried out under an acidic atmosphere, It is preferably carried out at pH 4 to 5.5, more preferably at pH 4 to 5, and most preferably at about pH 5.
  • the cobalt salt includes cobalt sulfate (CoSO 4 ).
  • the second phosphoric acid-based material is a cobalt leachant, and when the precipitated leachate has a pH of 4 to 5.5, preferably, pH 4 to 5, more preferably, pH 5, it can convert Co salt with an efficiency of 80% or more. Contains extractable substances. The extraction efficiency of the Co salt may be 80% or more, preferably, 85% or more, more preferably, 90% or more.
  • the second phosphoric acid-based material may include a saponification.
  • the second phosphoric acid-based material may include one or more compounds selected from compounds represented by the following Chemical Formula 2 or Chemical Formula 3 below.
  • R 1 and R 2 are each independently a C1 to C30 straight-chain or branched alkyl group with or without a hetero atom, preferably, C1 with or without a hetero atom.
  • to C23 may be a straight-chain or branched alkyl group, and a C6 to C10 straight-chain or branched alkyl group is more preferable, but is not limited thereto.
  • the hetero atom may be one or more selected from oxygen, sulfur and nitrogen.
  • R 3 and R 4 are each independently a C1 to C30 straight-chain or branched alkyl group with or without a hetero atom, preferably, C1 with or without a hetero atom.
  • to C23 may be a straight-chain or branched alkyl group, and a C6 to C10 straight-chain or branched alkyl group is more preferable, but is not limited thereto.
  • the hetero atom may be one or more selected from oxygen, sulfur and nitrogen.
  • the second phosphoric acid-based material is di-(2-ethylhexyl)phosphoric acid (D2EHPA) or 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (2-ethylhexyl). It may include at least one selected from phosphonic acid mono 2-ethylhexyl ester, PC88A), preferably di- (2-ethylhexyl) phosphoric acid. Specifically, di- (2-ethylhexyl) phosphoric acid can lower the process cost as it is cheaper than Cyanex 272, which is known as a conventional cobalt solvent extraction material.
  • the purity of the cobalt salt may be 90% or more, preferably 95% or more, and most preferably 99% or more.
  • the secondary solvent extraction may include washing and back-extraction after extraction using the second phosphoric acid-based material, wherein the washing and back-extraction may be performed using sulfuric acid, and the cobalt by using sulfuric acid
  • the salt can be obtained in the form of the sulphate.
  • the positive electrode active material prepared according to the present invention is not particularly limited as long as it contains a nickel salt, a cobalt salt, or a manganese salt, but a binary positive electrode active material containing two or more of nickel, cobalt, and manganese or nickel, cobalt and manganese It may be a ternary positive electrode active material containing.
  • the positive electrode active material may be manufactured according to a known manufacturing method, except that the positive electrode active material precursor material prepared according to the present invention is used.
  • the present invention provides a cathode active material for a lithium secondary battery manufactured by the method for manufacturing a cathode active material for a lithium secondary battery according to the present invention.
  • the cathode active material for a lithium secondary battery of the present invention may be prepared according to a known manufacturing method, except that the cathode active material precursor material prepared according to the present invention is used.
  • the leachate was adjusted to pH 4 as a feeding liquid, and as an extractant, a 1 M solution of D2EHPA diluted with kerosene (saponification 50) %), 0.25 M sulfuric acid as a washing solution, and 2 M sulfuric acid as a back extraction solution were used.
  • Feed solution 33 mL/min, extractant 66 mL/min, washing solution 13 mL/min, and back-extraction solution 13 mL/min were introduced into the mixer-settler equipment, followed by extraction, washing, and back-extraction in the order of solvent extraction. After the back extraction process, a high-purity manganese sulfate solution was obtained.
  • the residue (Raffinate) obtained after extraction of the Mn solvent was adjusted to pH 6, and then DMG (dimethylglyoxime) was added at a molar ratio of 2.2 times that of Ni.
  • the precipitate was separated by filtration, and the filtrate was used for the following Co solvent extraction.
  • the precipitate was treated with sulfuric acid to obtain high purity nickel sulfate.
  • Example 1 shows the manufacturing process of a cathode active material precursor material using a waste lithium secondary battery according to Example 1, and the extraction efficiency and purity of the materials obtained in each step of this Example are shown in Table 1 below.
  • a leachate containing Li, Mn, Co, and Ni was obtained in the same manner as in Example 1 and Comparative Example 1, and after obtaining a manganese sulfate solution in the same manner as in Example 1, nickel sulfate was obtained.
  • D2EHPA 1 M (saponification 50%), washing solution 0.2 to 0.25 M sulfuric acid solution, and back extract 2 M sulfuric acid solution were used for solvent extraction of Mn salts from the leaching solution containing Li, Mn, Co, and Ni. Mixer-settler Extraction, washing, and back extraction were performed using the equipment. After back extraction, a manganese sulfate solution was obtained.
  • Co solvent extraction operation was performed with the residue (Raffinate) obtained after the Mn extraction.
  • Co solvent extraction operation conditions were Cyanex 272 1 M (saponification 50%), washing solution 0.2 to 0.25 M sulfuric acid solution, and back extract 2 M sulfuric acid solution. did. After back extraction, a cobalt sulfate solution was obtained.
  • Ni solvent extraction operation was performed with the residue (Raffinate) obtained after the Co extraction.
  • Ni solvent extraction operation conditions were D2EHPA 1 M (saponification 60%), washing solution 0.2 to 0.25 M sulfuric acid solution, and back extraction solution 2 M sulfuric acid solution, and extraction, washing, and back extraction were performed using a mixer-settler equipment in order. . After the back extraction, a nickel sulfate solution was obtained.
  • Mn salt, Ni salt, and Co salt were obtained in the following manner.
  • the leachate was adjusted to pH 2.5, maintained at 80° C., and KMnO 4 was added. At this time, KMnO4 used the same number of moles as Mn. After the reaction for about 1 hour, the precipitate was filtered to obtain MnO 2 .
  • Co solvent extraction conditions were Cyanex 272 1 M (saponified 50%) diluted with kerosene, 0.2 to 0.25 M sulfuric acid solution, and 2 M sulfuric acid solution as a back extract. Extraction, washing, and reverse using a mixer-settler equipment It worked in the order of extraction. After back extraction, cobalt sulfate (CoSO 4 ) solution was obtained.
  • Comparative Example 3 was carried out in the same manner as in Example 1, except that the extraction order of the cobalt salt and the nickel salt was different in Example 1, that is, extraction in the order of Mn salt, Co salt, and Ni salt. proceeded.
  • Example 1 Extraction order (1) Mn (2) Ni (3) Co substance used D2EHPA DMG D2EHPA product MnSO 4 NiSO 4 CoSO 4 Extraction efficiency 82% 90% 95% water 88% 99.95% 99.90%
  • Example 2 Extraction order (1) Mn (2) Ni (3) Co substance used D2EHPA DMG PC88A product MnSO 4 NiSO 4 CoSO 4 Extraction efficiency 83% 90% 87% water 88% 99.93% 99.50% Comparative Example 1 Extraction order (1) Mn (2) Co (3) Ni substance used D2EHPA Cyanex 272 D2EHPA product MnSO 4 NiSO 4 CoSO 4 Extraction efficiency 81% 87% 74% water 88.20% 99.40% 93.60% Comparative Example 2 Extraction order (1) Mn (2) Ni (3) Co substance used KMnO 4 DMG Cyanex 272 product MnO 2 Ni-DMG CoSO 4 Extraction efficiency 80% 89% 81% water 99.20% 99.94% 91.55% Comparative Example 3 Extraction order (1) Mn (2) Co (3) Ni substance used D2E
  • Comparative Examples 1 and 3 which are different from the present application in the extraction order, the product can be obtained in the form of sulfate, but the extraction efficiency of the nickel salt or cobalt salt was 80% or less, and extraction was performed in the same order as in the present application, In Comparative Example 2 in which the extractant according to the present invention was not used, the products could not be obtained in the form of sulfates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 폐 리튬 이차전지를 이용한 양극활물질 전구체 재료의 제조방법, 이에 의해 제조되는 양극활물질 전구체 재료를 포함하는 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질을 제공한다.

Description

양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
본 발명은 폐 리튬 이차전지를 이용한 양극활물질 전구체 재료의 제조방법, 이에 의해 제조되는 양극활물질 전구체 재료를 이용한 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질에 관한 것이다.
모바일 기기, 노트북, 와이어리스 기기, 전기자동차, 전동오토바이 등 초소형부터 중대형까지 다양한 종류의 에너지 저장 장치에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있다. 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 일반적으로 양극활물질을 포함하는 양극, 음극활물질을 포함하는 음극, 분리막 및 전해질로 구성되며 리튬 이온의 삽입-탈리(intercalation/de-intercalation)에 의해 충전 및 방전이 이루어지는 이차전지이다. 리튬 이차전지는 에너지 밀도(energy density)가 높고, 기전력이 크며 고용량을 발휘할 수 있는 장점을 가지므로 다양한 분야에 적용되고 있다.
리튬 이차전지의 양극활물질은 리튬과 함께, 코발트를 비롯한 전이금속들을 포함하는데, 이것들은 비교적 고가의 금속이며, 특히 코발트는 생산국의 수가 한정되어 있어, 세계적으로 그 수급이 불안정한 금속으로 알려져 있다. 따라서, 폐 리튬 이차전지, 특히 양극으로부터 상기 리튬이나, 코발트, 니켈 및 망간 등의 전이금속들을 회수하여 원료로서 재활용할 경우, 가격 경쟁력을 확보할 수 있을 뿐만 아니라 부가 수익의 창출 역시 가능할 것이다.
한편, 상기 폐 리튬 이차전지로부터 망간, 니켈, 코발트 등과 같은 전이금속을 회수하여 이를 재활용 하기 위해서는, 폐 전지로부터 양극활물질을 분리하고, 상기 분리된 양극활물질로부터 상기 전이금속 등을 분리해 낸 후, 이를 정제한 다음, 이를 다시 양극 활물질의 제조를 위한 원료로 사용하기 위해 추가적인 단계를 거쳐야 한다.
예를 들어, 대한민국 공개특허 제10-2011-0036628호에서는 폐배터리로부터 리튬, 니켈, 코발트 및 망간을 포함하는 유가금속 분말을 얻는 단계와; 상기 유가금속 분말을 환원분위기에서 산 침출하여 침출 용액을 얻는 단계와; 상기 침출 용액으로부터 니켈, 코발트 및 망간의 수산화물과 리튬탄산염(Li2CO3)을 얻는 단계를 포함하는 개시하고 있다. 그러나, 상기 방법은 각 전이금속 성분을 개별적으로 분리할 수 없어 활용 형태에 제약이 따르고, 양극활물질로 활용 시 원하는 비율로 조성을 조절하기 위해서는 별도의 전이금속 염을 첨가하여야 하며, 전이금속 성분을 추출해 낸 뒤에도, 불순물을 제거를 위한 상당한 에너지와 시간의 소요가 필요하게 된다는 문제점이 있다.
또한, 리튬 이차전지 금속산화물계 양극활물질의 재처리 방법 중 양극활물질을 침전 및/또는 용매추출에 의해 망간, 니켈 및 코발트를 각각 분리·회수하는 방법이 연구되고 있으나, 니켈과 코발트의 분리·회수 시 니켈을 먼저 분리·회수하는 경우 추출 효율이 좋지 않고, 양극활물질 전구체로 바로 활용할 수 없는 형태(이산화망간, Ni-DMG(dimethylglyoxime) 등)로 회수되어 양극활물질 전구체로 활용하기 위해서는 추가적인 공정이 요구되는 단점이 있다.
따라서, 우수한 추출 효율로 전이금속 성분을 분리회수하여 리튬 이차전지의 활물질 제조에 바로 이용할 수 있는 방법을 개발하게 된다면, 보다 간편하고 효율적인 방법을 통해 폐 리튬 이차전지를 재활용할 수 있을 것으로 기대된다.
[선행기술문헌] (특허문헌 1) 대한민국 공개특허 제10-2011-0036628호
본 발명은 상술한 종래 기술의 문제점을 개선하기 위한 것으로, 우수한 추출 효율로 Mn, Ni 및 Co를 각각 염의 형태로 분리하는 양극활물질 전구체 재료의 제조방법, 이에 의해 제조되는 양극활물질 전구체 재료를 이용한 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 (1) Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질을 침출시켜 침출액을 수득하는 단계; (2) 제1 인산계 물질을 사용하여, 상기 침출액을 1차 용매추출하여 Mn 염을 수득하는 단계; (3) 옥심계 물질을 사용하여, 상기 용매추출된 침출액을 침전시켜 Ni 염을 수득하는 단계; 및 (4) 제2 인산계 물질을 사용하여, 상기 침전된 침출액을 2차 용매추출하여 Co 염을 수득하는 단계를 포함하는, 양극활물질 전구체 재료의 제조방법을 제공한다.
또한, 본 발명은, 상기 양극활물질 전구체 재료의 제조방법에 의해 제조되는 양극활물질 전구체 재료 및 리튬염을 혼합하여 LiNix'Coy'Mnz'O2 (상기 식에서, 0≤x'≤10, 0≤y'≤10, 및 0≤z'≤10 이고, x'+y'+z'=10 임)로 표시되는 양극활물질을 수득하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법을 제공한다.
또한, 본 발명은, 상기 리튬 이차전지용 양극활물질의 제조방법에 의하여 제조된 리튬 이차전지용 양극활물질을 제공한다.
본 발명의 양극활물질 전구체 재료의 제조방법은 폐 리튬 이차전지의 양극활물질에 포함된 유가금속을 황산염의 형태로 각각 분리할 수 있으며, 황산염의 형태로 분리되어 양극활물질 제조를 위해 별도의 추가 공정이 요구되지 않아 양극활물질 전구체로서 바로 활용이 가능한 효과를 제공한다.
또한, 리튬 이차전지의 양극활물질에 포함된 망간, 니켈 및 코발트는 각 성분에 따라 킬레이트를 형성하는 pH 범위가 상이하고, 망간, 코발트, 니켈의 순서로 킬레이트를 형성하는 적정 pH가 높아지기 때문에, 종래의 폐 양극활물질 용매추출은 망간, 코발트, 니켈 순서로 진행하였으나, 망간, 코발트, 니켈 순서로 추출하는 경우, 각 단계에서 킬레이트를 형성하는 pH 차가 크지 않아 기존의 용매추출 물질로 알려진 Cyanex 272를 사용하였지만 단가가 비싸서 공정 단가가 높아지는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 발명에서는 망간, 니켈, 코발트 순서로 각 성분을 분리하고, 니켈은 침전법을 통해 회수하여 용매추출 시 Cyanex 272를 사용하지 않고 인산계 물질을 사용할 수 있어서 공정의 단가 문제를 해결할 수 있다.
아울러, 망간, 니켈, 코발트의 순서로 각 성분을 분리함으로써 용매 추출 시 적정 pH 차이를 늘려 금속 염의 추출 효율을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 양극활물질 전구체 재료의 제조 흐름도이다.
본 발명은, 폐 리튬 이차전지의 양극활물질로부터, 망간(Mn) 염, 니켈(Ni) 염 및 코발트(Co) 염을 개별적으로 수득하는 단계를 포함하는, 리튬 이차전지용 양극활물질의 제조방법, 및 상기 리튬 이차전지용 양극활물질의 제조방법에 의하여 제조된 리튬 이차전지용 양극활물질에 관한 것이다.
구체적으로, 본 발명의 리튬 이차전지용 양극활물질의 제조방법은, (1) Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질을 침출시켜 침출액을 수득하는 단계; (2) 상기 침출액을 1차 용매추출하여 Mn 염을 수득하는 단계; (3) 상기 용매추출된 잔액을 침전시켜 Ni 염을 수득하는 단계; 및 (4) 상기 침전된 침출액을 2차 용매추출하여 Co 염을 수득하는 단계를 포함할 수 있다. 또한 본 발명은, 상기 제조방법에 의해 제조되는 양극활물질 전구체 재료를 이용한 리튬 이차전지용 양극활물질의 제조방법, 및 상기 리튬 이차전지용 양극활물질의 제조방법에 의하여 제조된 리튬 이차전지용 양극활물질을 포함한다.
본 발명의 양극활물질 전구체 재료의 제조방법은 폐 리튬 이차전지의 양극활물질에 포함된 유가금속을 황산염의 형태로 각각 분리할 수 있으며, 황산염의 형태로 분리되어 양극활물질 제조를 위해 별도의 추가 공정이 요구되지 않아 양극활물질 전구체로서 바로 활용이 가능한 효과를 제공할 수 있다.
또한, 본 발명에 있어서, 리튬 이차전지의 양극활물질에 포함된 망간, 니켈 및 코발트는 각 성분에 따라 킬레이트를 형성하는 pH 범위가 상이하며, 망간, 코발트, 니켈의 순서로 킬레이트를 형성하는 적정 pH가 높아지기 때문에, 종래의 폐 양극활물질 용매추출은 망간, 코발트, 니켈 순서로 진행하였으며, 이에 따라 기존의 용매추출 물질로 알려진 Cyanex 272를 사용하였지만 단가가 비싸서 공정 단가가 높아지는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 발명에서는 망간, 니켈, 코발트 순서로 각 성분을 분리하고, 니켈은 침전법을 통해 회수하여 용매추출 시 Cyanex 272를 사용하지 않고 인산계 물질을 사용할 수 있어서 공정 비용을 낮출 수 있다.
아울러, 망간, 니켈, 코발트의 순서로 각 성분을 분리함으로써 코발트와 다른 금속간의 용매추출 적정 pH 차이를 늘려 금속 염의 추출 효율을 향상시킬 수 있다.
이하, 본 발명에 따른 양극활물질 전구체 재료의 제조방법, 이에 따라 제조된 양극활물질 전구체 재료를 이용한 리튬 이차전지용 양극활물질의 제조방법, 및 상기 제조방법에 의하여 제조된 리튬 이차전지용 양극활물질에 대하여 자세히 설명한다. 그러나 본 발명이 이에 의해 한정되는 것은 아니다.
< 양극활물질 전구체 재료의 제조방법 >
본 발명의 양극활물질 전구체 재료의 제조방법은, (1) Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질을 침출시켜 침출액을 수득하는 단계; (2) 제1 추출제를 사용하여, 상기 침출액을 1차 용매추출하여 Mn 염을 수득하는 단계; (3) 침전제를 사용하여, 상기 용매추출된 침출액을 침전시켜 Ni 염을 수득하는 단계; 및 (4) 제2 추출제를 사용하여, 상기 침전된 침출액을 2차 용매추출하여 Co 염을 수득하는 단계를 포함한다. 또한, 본 발명의 양극활물질 전구체 재료의 제조방법은 리튬 염을 회수하는 단계를 추가 포함할 수 있으며, 상기 제1 추출제 및 상기 제2 추출제는 인산계 물질을 포함하고, 상기 침전제는 옥심계 물질을 포함한다.
특히, 본 발명에서는, Mn 염을 수득하는 단계 이후, 상기 Mn 염을 수득하는 단계의 추출 pH 대비 최적 용매 추출 pH가 상대적으로 큰 차이를 보이는 Ni 염을 수득하는 단계를 바로 포함하도록 하여, Ni 염 제조 효율을 극대화하였으며, 이에 따라, 이어지는 Co 염을 수득하는 단계에서 용매추출 대상이 되는 침출액에 Co 이외에 포함되는 성분을 최소화 함으로써, 고가의 Co 염 제조 효율 역시 극대화하였다.
본 발명의 양극활물질 전구체 재료는 상기 Mn 염으로서 황산 망간을 포함하고, 상기 Ni 염으로서 황산 니켈을 포함하며, 상기 Co 염으로서 황산 코발트를 포함한다.
(1) Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질을 침출시켜 침출액을 수득하는 단계
본 발명의 Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질은 하기 화학식 1로 표시되는 양극활물질을 포함하는 것일 수 있다:
[화학식 1]
LiNixCoyMnzO2
상기 화학식 1에서, 0<x<10, 0<y<10, 및 0<z<10 이고, x+y+z=10 이고, 바람직하게는, x=5, y=2, 및 z=3 일 수 있으나 이에 한정되는 것은 아니다.
상기 양극활물질을 침출시키는 물질은 황산 또는 과산화수소일 수 있다.
본 발명의 양극활물질 전구체 재료의 제조방법은, 상기 Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질을 얻기 위한 전처리 공정으로서, 폐 리튬 이차전지를 바로 파쇄한 후 열처리하는 공정을 추가 포함할 수 있다.
전처리 공정에 있어서, 폐 리튬 이차전지를 파쇄하기 전에 방전시키는 단계를 추가 포함할 수 있다. 방전이 완료되면 이후의 유가금속회수 공정은 불활성 분위기가 아닌 대기 중에서도 안전하게 이루어질 수 있다. 방전은 방전용액 내에서 이루어 질 수 있다. 방전용액으로는 증류수를 사용할 수 있다. 방전의 완료 정도는 시간에 따른 전압감소를 통해 확인할 수 있다. 폐 리튬 이차전지 내의 전해질은 방전과정에서 대부분 제거된다.
상기 파쇄는 밀링(milling)에 의해 이루어질 수 있고, 상기 밀링은 기계적 밀링일 수 있으며, 구체적으로 롤밀(roll-mill), 볼밀(ball-mill), 제트 밀(jet-mill), 유성밀(planetary-mill) 및 어트리션밀(attrition-mill)로 이루어지는 군으로부터 선택된 1종 이상에 의해 이루어질 수 있다.
상기 파쇄물은 1 내지 15 μm의 입경을 가질 수 있고, 바람직하게는 1 내지 7 μm의 입경을 가질 수 있으며, 더욱 바람직하게는 2 내지 5 μm의 입경을 가질 수 있다.
전처리 공정에 있어서, 상기 파쇄 후 분급 단계를 추가 포함할 수 있으며, 파쇄물은 분급과정, 바람직하게는 시브(sieve)에 의한 분급에 의해 미세 전극 복합체 분말과 기타 성분(양극, 음극, 분리막)의 큰 분획으로 분리되어, 파쇄물로부터 전극 복합체 분말이 회수된다.
전처리 공정에 있어서, 상기 분급 후 비중분리 단계를 추가 포함할 수 있으며, 파쇄물을 바람직하게는 수위단차(water level)가 설치된 수세탱크(rinse tank)를 이용하여 비중분리함으로써 파쇄물 중의 분리막이 제거되며, 전극 복합체, 분리막, 집전체 등을 분리할 수 있다.
전처리 공정에 있어서, 상기 비중분리 후 자력선별 단계를 추가 포함할 수 있으며, 폐 리튬 이차전지에 스테인레스 스틸(SUS)을 추가로 포함할 경우 파쇄물로부터 자력선별(magnetic separation)에 의해 스테인레스 스틸(SUS)이 선별 제거된다.
전처리 공정에 있어서, 상기 자력선별 후 열처리를 수행할 수 있다. 상기 열처리는 폐 리튬 이차전지에 포함되는 양극 바인더, 양극 도전재, 음극활물질, 음극 바인더, 음극 도전재, 파우치 등의 상기 양극활물질 이외의 불순물을 제거하기 위한 것으로서, 600℃ 내지 1000℃ 미만의 온도 범위에서 수행될 수 있고, 바람직하게는, 700℃ 내지 900℃의 온도 범위에서 수행될 수 있으며, 더욱 바람직하게는 800℃ 내지 900℃의 온도 범위에서 열처리가 수행되는 것이 바람직하다. 상기 열처리 온도가 1000℃ 이상인 경우 상기 양극활물질의 리튬까지 제거될 수 있다.
또한, 본 발명의 양극활물질 전구체 재료의 제조방법은, 상기 열처리 후 상기 전처리 물질에 황산을 혼합하여 잔존하는 탄소재(음극활물질), 구리 등의 불순물을 추가 제거하는 공정을 포함할 수 있다.
상기 폐 리튬 이차전지는 양극, 음극, 분리막, 및 전해질을 포함하며, 파우치를 추가 포함할 수 있다. 구체적으로, 폐 리튬 이차전지는 음극 및 양극 사이에 분리막(separator)을 개재하고 여기에 전해질을 포함하는 전해액이 공급된 것을 포함한다. 더욱 구체적으로, 상술한 폐 리튬 이차전지는, 예를 들어, 상기 음극, 상기 분리막, 및 상기 양극을 차례로 적층한 다음, 이를 와인딩(winding)하거나 접어서 원통형 또는 각형 전지 케이스 또는 파우치에 넣은 다음, 상기 전지 케이스 또는 파우치에 유기 전해액을 주입하여 제조된 것일 수 있다.
상기 폐 리튬 이차전지의 양극은 리튬 금속 또는 리튬 전이금속 산화물을 포함하는 것일 수 있으며, 당 분야에 알려져 있는 통상적인 방법으로 제조된 것일 수 있다. 예를 들면, 양극활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 양극 집전체에 도포(코팅)하고 압축한 뒤 건조하여 제조된 것일 수 있다.
상기 양극활물질은 하기 화학식 1로 표시되는 양극활물질을 포함하는 것일 수 있다:
[화학식 1]
LiNixCoyMnzO2
상기 화학식 1에서, 0<x<10, 0<y<10, 및 0<z<10 이고, x+y+z=10 이고, 바람직하게는, x=5, y=2, 및 z=3 일 수 있으나, 이에 한정되는 것은 아니다.
상기 양극의 용매는 N-메틸-2-피롤리돈(NMP), 아세톤, 물, 또는 이들의 혼합물이 사용될 수 있고, 상기 양극의 도전재는 폴리아크릴산, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 또는 플러렌 등의 전도성 조재료 등을 사용할 수 있다.
상기 양극의 바인더는 양극활물질 입자들을 서로 잘 부착시키고, 또한 양극활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 예를 들어, 상기 바인더는 폴리아크릴산, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 또는 다양한 공중합체 등을 사용할 수 있다.
상기 양극 집전체는 약 3 ㎛ 내지 약 500 ㎛의 두께로서, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 열처리 탄소, 알루미늄 또는 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은, 및 이들의 조합들로 이루어진 군으로부터 선택된 것으로 표면처리한 것이 사용될 수 있다. 상기 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체의 다양한 형태가 가능하다.
상기 폐 리튬 이차전지의 음극은 당 분야에 알려져 있는 통상적인 방법으로 제조된 것일 수 있다. 예를 들면, 음극활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 음극 집전체에 도포(코팅)하고 압축한 뒤 건조하여 제조된 것일 수 있다.
상기 음극활물질은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등일 수 있다. 바람직하게는 탄소재일 수 있고, 탄소재로는 저결정 탄소 및 고결정성 탄소 등을 들 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(kish graphite), 열분해 탄소(pyrolytic carbon), 액정피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극의 용매는 N-메틸-2-피롤리돈(NMP), 아세톤, 물, 또는 이들의 혼합물이 사용될 수 있고, 상기 음극의 도전재는 폴리아크릴산, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 또는 플러렌 등의 전도성 조재료 등을 사용할 수 있다.
상기 음극의 바인더는 음극활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 예를 들어, 상기 바인더는 폴리아크릴산, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 또는 다양한 공중합체 등을 사용할 수 있다.
상기 음극 집전체는 일반적으로 약 3 ㎛ 내지 약 500 ㎛의 두께로 만들어진다. 이러한 상기 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 열처리 탄소, 구리 또는 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 또는 은으로 표면처리한 것, 또는 알루미늄-카드뮴 합금 등을 포함할 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체의 다양한 형태로 사용될 수 있다.
상기 폐 리튬 이차전지의 분리막으로는 그 종류를 한정하는 것은 아니지만, 예를 들어, 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트, 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재; 또는 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재 등을 사용할 수 있다. 특히, 리튬이온 공급 코어부의 리튬이온이 외부전극에도 쉽게 전달되기 위해서는 상기 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트, 폴리에틸렌나프탈렌, 및 이들의 조합들로 이루어진 군으로부터 선택된 고분자로 제조한 다공성 기재에 해당하는 부직포 재질의 분리막을 사용하는 것이 바람직하다.
상기 분리막은 기공 크기가 약 0.01 ㎛ 내지 약 10 ㎛이고, 두께는 일반적으로 약 5 ㎛ 내지 약 300 ㎛인 것이 사용된다.
상기 폐 리튬 이차전지의 전해질로는, 예를 들어, PEO, PVdF, PVdF-HFP, PMMA, PAN, 또는 PVAC를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide), 또는 PVAc(polyvinyl acetate)를 사용한 고체 전해질 등을 사용할 수 있다. 또한, 전해질로는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 비닐렌카보네이트(VC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸포르메이트(MF), 감마-부티로락톤(γ-BL; γ-butyrolactone), 설포레인(sulfolane), 메틸아세테이트(MA; methylacetate), 또는 메틸프로피오네이트(MP; methylpropionate)를 사용한 비수전해액을 사용할 수도 있다. 또한, 전해질은 리튬염을 더 포함할 수 있는데, 이러한 리튬염으로는, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬, 또는 테트라페닐붕산리튬 등을 사용할 수 있다.
본원의 일 구현예에 있어서, 상기 폐 리튬 이차전지는 상기 분리막 이외에 유기 고체 전해질 및/또는 무기 고체 전해질이 함께 사용될 수 있으나, 이에 제한되는 것은 아니다. 이 때, 상기 유기 고체 전해질 및/또는 무기 고체 전해질이 사용되는 경우, 경우에 따라서는 고체 전해질이 분리막을 겸할 수도 있어 상술한 분리막을 사용하지 않아도 무방하다.
상기 유기 고체 전해질은, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리비닐 알코올, 또는 폴리 불화 비닐리덴을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 무기 고체 전해질은, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2, 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.
(2) 상기 침출액을 1차 용매추출하여 망간(Mn) 염을 수득하는 단계
본 발명에 따른 양극활물질 전구체 재료의 제조방법은, 제1 인산계 물질을 사용하여, 상기 침출액을 1차 용매추출하여 Mn 염을 수득하는 단계를 포함하며, 산성 분위기 하에서 수행될 수 있고, pH 2 내지 4에서 수행되는 것이 바람직하고, pH 3 내지 4에서 수행되는 것이 더욱 바람직하며, 약 pH 4에서 수행되는 것이 가장 바람직하다.
본 발명에서, 상기 망간 염은 황산 망간(MnSO4)인 것을 포함한다.
상기 제1 인산계 물질은 망간 염 추출제로서, 상기 침출액의 pH가 2 내지 4, 바람직하게는 pH 3 내지 4, 더욱 바람직하게는, pH 4일 때, Mn 염을 80% 이상의 효율로 추출할 수 있는 물질을 포함할 수 있다. 상기 Mn 염의 추출 효율은 80% 이상일 수 있고, 바람직하게는, 85% 이상, 더욱 바람직하게는, 90% 이상일 수 있다.
또한, 상기 제 1 인산계 물질이 비누화된 것을 포함할 수 있고, 상기 제1 인산계 물질은 유기용매에 용해된 상태일 수 있다.
본 발명에서, 상기 제1 인산계 물질은 하기 화학식 2 또는 하기 화학식 3으로 표시되는 화합물로부터 선택되는 1종 이상의 화합물을 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2020014253-appb-I000001
상기 화학식 2에 있어서, 상기 R1 및 R2는, 각각 독립적으로, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기이고, 바람직하게는, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C23의 직쇄 또는 분지쇄 알킬기일 수 있고, C6 내지 C10의 직쇄 또는 분지쇄 알킬기가 더욱 바람직하나, 이에 제한되는 것은 아니다. 상기 헤테로 원자는 산소, 황 및 질소로부터 선택되는 하나 이상일 수 있다.
[화학식 3]
Figure PCTKR2020014253-appb-I000002
상기 화학식 3에 있어서, 상기 R3 및 R4는, 각각 독립적으로, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기이고, 바람직하게는, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C23의 직쇄 또는 분지쇄 알킬기일 수 있고, C6 내지 C10의 직쇄 또는 분지쇄 알킬기가 더욱 바람직하나, 이에 제한되는 것은 아니다. 상기 헤테로 원자는 산소, 황 및 질소로부터 선택되는 하나 이상일 수 있다.
예를 들어, 상기 제1 인산계 물질은 디-(2-에틸헥실)인산 (Di-(2-ethylhexyl)phosphoric acid, D2EHPA) 및 2-에틸헥실 포스폰산 모노 2-에틸헥실 에스테르 (2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester, PC88A)로부터 선택되는 1종 이상의 것을 포함하는 것일 수 있고, 디-(2-에틸헥실)인산인 것이 바람직하다.
또한, 상기 망간 염의 순도는 80% 이상일 수 있고, 85% 이상인 것이 바람직하고, 88% 이상인 것이 가장 바람직하다.
상기 1차 용매추출은, 상기 제1 인산계 물질을 이용한 추출 후 세정 및 역추출하는 단계를 포함할 수 있으며, 상기 세정 및 역추출은 황산을 이용하여 수행할 수 있고, 황산을 이용함으로써 상기 망간 염을 황산염 형태로 수득할 수 있다.
추출제에 의해 킬레이션(chelation) 되어 원하는 금속이 추출되며, 추출될 때 수소이온이 방출되므로 반응 평형을 조절하기 위해서는 pH 조절이 불가피하다.
세정은 추출제에 의해 원하는 금속보다 먼저 추출된 불순물 금속을 제거하는 단계이며, 역추출은 수소이온 농도를 급격히 상승시켜 추출의 역반응을 유도하는 과정이다. 추출 및 역추출은 다음과 같이 화학식으로 나타낼 수 있다.
추출: M2+ + 2RH → MR2 + 2H+
역추출: MR2 + 2H+ → M2+ + 2RH
(3) 상기 용매추출된 잔액을 침전시켜 니켈(Ni) 염을 수득하는 단계
본 발명에 따른 양극활물질 전구체 재료의 제조방법은, 옥심계 물질을 사용하여, 상기 용매추출된 잔액을 침전시켜 Ni 염을 수득하는 단계를 포함하며, 산성 분위기 하에서 수행될 수 있고, pH 4 내지 6에서 수행되는 것이 바람직하고, pH 5 내지 6에서 수행되는 것이 더욱 바람직하며, 약 pH 6에서 수행되는 것이 가장 바람직하다.
니켈과 코발트는 적정 용매추출 pH 차이가 적어서 둘 다 용매추출하는 경우 추출효율 및 순도가 저하되지만, 본 발명에 따른 침전 방식을 통해 니켈을 먼저 분리한 후 코발트를 용매 추출함으로써 코발트의 추출 효율 및 순도를 향상시킬 수 있다.
또한, 상기 용매추출된 잔액을 침전시켜 Ni 염을 수득하는 단계에서 황산을 첨가하는 것을 추가 포함할 수 있다.
본 발명에서, 상기 니켈 염은 황산 니켈(NiSO4)인 것을 포함한다.
상기 옥심계 물질은 니켈 염 침전제로서, 상기 용매추출된 잔액의 pH가 4 내지 6, 바람직하게는, pH 5 내지 6, 더욱 바람직하게는, pH 6일 때, Ni 염을 80% 이상의 효율로 침출할 수 있는 물질을 포함할 수 있다. 상기 Ni 염의 침출 효율은 80% 이상일 수 있고, 바람직하게는, 85% 이상, 더욱 바람직하게는, 90% 이상일 수 있다.
예를 들어, 상기 옥심계 물질은 디메틸글리옥심 (dimethylglyoxime, DMG), 디에틸글리옥심(diethylglyoxime), 디프로필글리옥심(dipropylglyoxime), 및 에틸메틸글리옥심(ethylmethylglyoxime)으로 이루어진 군으로부터 선택되는 1종 이상의 것일 수 있고, 구체적으로, 디메틸글리옥심인 것이 바람직하다. 종래 기술에서 상기 디메틸글리옥심은 침전물의 니켈 유무를 확인하는 지시약으로서 주로 사용되었으나, 본 발명에서는 니켈 함유 침출액을 침전시켜 니켈 염을 분리시키는 역할을 한다.
상기 옥심계 물질은 상기 용매추출된 잔액의 니켈에 대하여 2 내지 4 배배의 몰 비율로 첨가될 수 있고, 2.2 배의 몰 비율로 첨가되는 것이 바람직하다.
또한, 상기 니켈 염의 순도는 90% 이상일 수 있고, 95% 이상인 것이 바람직하며, 99% 이상인 것이 가장 바람직하다.
(4) 상기 침전된 침출액을 2차 용매추출하여 코발트(Co) 염을 수득하는 단계
본 발명에 따른 양극활물질 전구체 재료의 제조방법은, 제2 인산계 물질을 사용하여, 상기 침전된 침출액을 2차 용매추출하여 Co 염을 수득하는 단계를 포함하며, 산성 분위기 하에서 수행될 수 있고, pH 4 내지 5.5에서 수행되는 것이 바람직하고, pH 4 내지 5에서 수행되는 것이 더욱 바람직하며, 약 pH 5에서 수행되는 것이 가장 바람직하다.
본 발명에서, 상기 코발트 염은 황산 코발트(CoSO4)인 것을 포함한다.
상기 제2 인산계 물질은 코발트 침출제로서, 상기 침전된 침출액의 pH가 4 내지 5.5, 바람직하게는, pH 4 내지 5, 더욱 바람직하게는, pH 5일 때, Co 염을 80% 이상의 효율로 추출할 수 있는 물질을 포함한다. 상기 Co 염의 추출 효율은 80% 이상일 수 있고, 바람직하게는, 85% 이상, 더욱 바람직하게는, 90% 이상일 수 있다. 또한, 상기 제2 인산계 물질이 비누화된 것을 포함할 수 있다.
본 발명에서, 상기 제2 인산계 물질은 하기 화학식 2 또는 하기 화학식 3으로 표시되는 화합물로부터 선택되는 1종 이상의 화합물을 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2020014253-appb-I000003
상기 화학식 2에 있어서, 상기 R1 및 R2는, 각각 독립적으로, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기이고, 바람직하게는, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C23의 직쇄 또는 분지쇄 알킬기일 수 있고, C6 내지 C10의 직쇄 또는 분지쇄 알킬기가 더욱 바람직하나, 이에 제한되는 것은 아니다. 상기 헤테로 원자는 산소, 황 및 질소로부터 선택되는 하나 이상일 수 있다.
[화학식 3]
Figure PCTKR2020014253-appb-I000004
상기 화학식 3에 있어서, 상기 R3 및 R4는, 각각 독립적으로, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기이고, 바람직하게는, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C23의 직쇄 또는 분지쇄 알킬기일 수 있고, C6 내지 C10의 직쇄 또는 분지쇄 알킬기가 더욱 바람직하나, 이에 제한되는 것은 아니다. 상기 헤테로 원자는 산소, 황 및 질소로부터 선택되는 하나 이상일 수 있다.
예를 들어, 상기 제2 인산계 물질은 디-(2-에틸헥실)인산 (Di-(2-ethylhexyl)phosphoric acid, D2EHPA) 또는 2-에틸헥실 포스폰산 모노 2-에틸헥실 에스테르 (2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester, PC88A)로부터 선택되는 1종 이상의 것을 포함하는 것일 수 있고, 디-(2-에틸헥실)인산인 것이 바람직하다. 구체적으로, 디-(2-에틸헥실)인산은 기존의 코발트 용매추출 물질로 알려진 Cyanex 272에 비해 저렴하여 공정 비용을 낮출 수 있다.
상기 코발트 염의 순도는 90% 이상일 수 있고, 95% 이상인 것이 바람직하며, 99% 이상인 것이 가장 바람직하다.
상기 2차 용매추출은, 상기 제2 인산계 물질을 이용한 추출 후 세정 및 역추출하는 단계를 포함할 수 있으며, 상기 세정 및 역추출은 황산을 이용하여 수행할 수 있고, 황산을 이용함으로써 상기 코발트 염을 황산염 형태로 수득할 수 있다.
< 리튬 이차전지용 양극활물질의 제조방법 >
또한, 본 발명은, 본 발명에 따른 양극활물질 전구체 재료의 제조 방법에 의해 제조되는 포함하는 양극활물질 전구체 재료 및 리튬염을 혼합하여 LiNix'Coy'Mnz'O2 (상기 식에서, 0≤x'≤10, 0≤y'≤10, 및 0≤z'≤10 이고, x'+y'+z'=10 임)로 표시되는 양극활물질을 수득하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법을 제공한다.
본 발명에 따라 제조되는 양극활물질은 니켈 염, 코발트 염, 또는 망간 염을 포함하는 것이면 별도로 한정되지 않으나, 니켈, 코발트, 및 망간 중 둘 이상을 포함하는 이성분계 양극활물질 또는 니켈, 코발트 및 망간을 포함하는 삼성분계 양극활물질일 수 있다.
본 발명의 리튬 이차전지용 양극활물질의 제조방법은, 본 발명에 따라 제조된 양극활물질 전구체 재료를 사용하는 점을 제외하고는, 공지의 제조 방법에 따라 양극활물질을 제조할 수 있다.
< 리튬 이차전지용 양극활물질 >
또한, 본 발명은, 본 발명에 따른 리튬 이차전지용 양극활물질의 제조방법에 의하여 제조된 리튬 이차전지용 양극활물질을 제공한다. 본 발명의 리튬 이차전지용 양극활물질은, 본 발명에 따라 제조된 양극활물질 전구체 재료를 사용하는 점을 제외하고는, 공지의 제조 방법에 따라 제조될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다.
< 실시예 1 >
폐리튬이차전지로부터 분리한 NCM 523 양극재 900 kg을 파쇄하고, 밀링으로 입자크기 2 μm 내지 5 μm로 분쇄처리하였다. 상기 수득된 분말을 황산용액으로 6 시간 이상 반응시킨 후 Li, Mn, Co, Ni이 포함된 침출액을 얻었다. 본 실시예에서는 Mn 염, Ni 염, 및 Co 염 순서로 추출을 진행하였다.
먼저, 상기 Li, Mn, Co, Ni이 포함된 침출액으로부터 Mn을 용매 추출하기 위해 공급(Feeding)액으로서 상기 침출액을 pH 4로 조정하였고, 추출제로는 kerosene으로 희석한 D2EHPA 1 M 용액(비누화 50%), 세정액으로 0.25 M 황산, 역추출액으로 2 M 황산을 사용하였다. 공급액 33 mL/min, 추출제 66 mL/min, 세정액 13 mL/min, 역추출액 13 mL/min의 유속으로 Mixer-settler 장비에 투입하여 추출, 세정, 역추출 순으로 용매추출하였다. 역추출 공정 후에는 고순도 황산망간 용액을 수득하였다.
이어서, Mn 용매추출 후 얻어진 잔액(Raffinate)을 pH 6으로 조정한 후 Ni 대비 2.2배 몰비율로 DMG(dimethylglyoxime)을 첨가하였다. 침전물은 필터하여 분리하고 여액은 하기 Co 용매 추출에 사용하였다. 침전물은 황산처리하여 고순도 황산니켈을 수득하였다.
이어서, Ni을 분리한 여액으로 Co 용매 추출을 진행하였다. 여액을 pH 5.0으로 조정하여 공급액으로 사용하였고, 추출제로는 kerosene으로 희석한 D2EHPA 1 M 용액(비누화 50%), 세정액으로 0.25 M 황산, 역추출액으로 2 M 황산을 사용하였다. 공급액(Feeding)액 50 mL/min, 세정액 7 mL/min, 역추출액 7 mL/min 유속으로 Mixer-settler에 투입하여 추출, 세정, 역추출 순으로 용매 추출하였다. 역추출 공정 후에는 고순도 황산코발트 용액을 수득하였다.
도 1은, 본 실시예 1에 따른 폐 리튬 이차전지를 이용한 양극활물질 전구제 재료의 제조 과정을 나타낸 것이고, 본 실시예의 각 단계에서 수득한 물질들의 추출효율 및 순도를 하기 표 1에 나타내었다.
< 실시예 2 >
상기 실시예 1 및 비교예 1과 동일한 방법으로 Li, Mn, Co, Ni이 포함된 침출액을 수득하였고, 상기 실시예 1과 동일한 방법으로 황산망간 용액 수득 후 황산니켈을 수득하였다.
코발트 염 추출은, 추출제로 PC88A를 사용한 것 이외에는 상기 실시예 1과 동일한 방법으로 용매추출을 진행하여 황산코발트 용액을 수득하였다.
본 실시예 2의 각 단계에서 수득한 양극활물질 전구체 재료들의 추출효율 및 순도를 하기 표 1에 나타내었다.
< 비교예 1 >
폐리튬이차전지로부터 분리한 NCM 523 양극재 900 kg을 파쇄하고, 밀링으로 분쇄처리하였다. 상기 양극활물질 분말을 황산용액으로 6 시간 이상 반응시킨 후 Li, Mn, Co, Ni이 포함된 침출액을 얻었다. 본 비교예에서는 Mn 염, Co 염, 및 Ni 염 순서로 추출을 진행하였다.
상기 Li, Mn, Co, Ni이 포함된 침출액으로부터 Mn 염을 용매 추출하기 위해 D2EHPA 1 M(비누화 50%), 세정액 0.2 내지 0.25 M 황산 용액, 역추출액 2 M 황산용액을 사용하였고, Mixer-settler 장비를 이용하여 추출, 세정, 역추출 순으로 작업하였다. 역추출 후에는 황산망간 용액을 얻었다.
상기 Mn 추출 후 나온 잔액(Raffinate)으로 다음 Co 용매 추출 작업을 진행하였다. Co 용매 추출 작업 조건은 Cyanex 272 1 M(비누화 50%), 세정액 0.2 내지 0.25 M 황산 용액, 역추출액 2 M 황산용액을 사용하였고, Mixer-settler 장비를 이용하여 추출, 세정, 역추출 순으로 작업하였다. 역추출 후에 황산코발트 용액을 얻었다.
상기 Co 추출 후 나온 잔액(Raffinate)으로 Ni 용매 추출 작업을 진행하였다. Ni 용매 추출 작업 조건은 D2EHPA 1 M(비누화 60%), 세정액 0.2 내지 0.25 M 황산 용액, 역추출액 2 M 황산용액을 사용하였고, Mixer-settler 장비를 이용하여 추출, 세정, 역추출 순으로 작업하였다. 역추출 후에는 황산니켈 용액을 수득하였다.
본 비교예 1의 각 단계에서 수득한 양극활물질 전구체 재료들의 추출효율 및 순도를 하기 표 1에 나타내었다.
< 비교예 2 >
상기 실시예 1 및 비교예 1과 동일한 방법으로 Li, Mn, Co, Ni이 포함된 침출액을 수득한 후 하기와 같은 방법으로 Mn 염, Ni 염, 및 Co 염을 수득하였다.
상기 침출액을 pH 2.5로 조정하고, 80℃로 유지하며 KMnO4를 첨가하였다. 이 때 KMnO4는 Mn과 동일한 몰 수를 사용했다. 약 1시간 정도 반응 후 침전물을 필터하여 MnO2를 얻었다.
Mn 침전 후 잔액을 pH 5.0으로 조정한 후 80℃를 유지하며 DMG를 첨가하였다. 이 때 DMG는 Ni 대비 2배를 사용했다. 1시간 반응 후 침전물을 필터하여 Ni-DMG를 수득했다.
상기 Ni 추출 후 잔액(Raffinate)으로 다음 Co 용매 추출 작업을 진행하였다. Co 용매 추출 작업 조건은 kerosene으로 희석한 Cyanex 272 1 M(비누화 50%), 세정액 0.2 내지 0.25 M 황산 용액, 역추출액 2 M 황산용액을 사용하였고, Mixer-settler 장비를 이용하여 추출, 세정, 역추출 순으로 작업하였다. 역추출 후에 황산코발트(CoSO4) 용액을 얻었다.
본 비교예 2의 각 단계에서 수득한 양극활물질 전구체 재료들의 추출효율 및 순도를 하기 표 1에 나타내었다.
< 비교예 3 >
본 비교예 3은, 상기 실시예 1에서 코발트 염 추출과 니켈 염 추출 순서를 달리한 것을 제외하고 상기 실시예 1과 동일한 방법으로 진행하였으며, 즉, Mn 염, Co 염, 및 Ni 염의 순서로 추출을 진행하였다.
본 비교예 3의 각 단계에서 수득한 양극활물질 전구체 재료들의 추출효율 및 순도를 하기 표 1에 나타내었다.
실시예 1
추출순서 (1) Mn (2) Ni (3) Co
사용물질 D2EHPA DMG D2EHPA
생성물 MnSO4 NiSO4 CoSO4
추출효율 82% 90% 95%
순도 88% 99.95% 99.60%
실시예 2
추출순서 (1) Mn (2) Ni (3) Co
사용물질 D2EHPA DMG PC88A
생성물 MnSO4 NiSO4 CoSO4
추출효율 83% 90% 87%
순도 88% 99.93% 99.50%
비교예 1
추출순서 (1) Mn (2) Co (3) Ni
사용물질 D2EHPA Cyanex 272 D2EHPA
생성물 MnSO4 NiSO4 CoSO4
추출효율 81% 87% 74%
순도 88.20% 99.40% 93.60%
비교예 2
추출순서 (1) Mn (2) Ni (3) Co
사용물질 KMnO4 DMG Cyanex 272
생성물 MnO2 Ni-DMG CoSO4
추출효율 80% 89% 81%
순도 99.20% 99.94% 91.55%
비교예 3
추출순서 (1) Mn (2) Co (3) Ni
사용물질 D2EHPA D2EHPA DMG
생성물 MnSO4 CoSO4 NiSO4
추출효율 82% 72% 68%
순도 88% 74% 99.93%
상기 표 1을 참조하면, 본 발명에 따른 실시예의 순서 및 방법으로 처리하는 경우 양극활물질 전구체 재료로 바로 활용가능한 Mn, Ni, 및 Co의 황산염 형태로 수득할 수 있었고, 생성물의 추출효율 및 순도가 모두 80% 이상으로 우수한 것을 확인할 수 있었다.
반면, 본원과 추출 순서가 상이한 비교예 1 및 3의 경우 생성물을 황산염의 형태로는 수득할 수 있으나, 니켈 염 또는 코발트 염의 추출효율이 80% 이하로 나타났고, 본원과 동일한 순서로 추출하였으나, 본 발명에 따른 추출제를 사용하지 않은 비교예 2의 경우 생성물들을 황산염의 형태로 수득할 수 없었다.

Claims (12)

  1. (1) Mn, Ni 및 Co를 포함하는 폐 리튬 이차전지의 양극활물질을 침출시켜 침출액을 수득하는 단계;
    (2) 제1 인산계 물질을 사용하여, 상기 침출액을 1차 용매추출하여 Mn 염을 수득하는 단계;
    (3) 옥심계 물질을 사용하여, 상기 용매추출된 잔액을 침전시켜 Ni 염을 수득하는 단계; 및
    (4) 제2 인산계 물질을 사용하여, 상기 침전된 침출액을 2차 용매추출하여 Co 염을 수득하는 단계
    를 포함하는, 양극활물질 전구체 재료의 제조방법.
  2. 청구항 1에 있어서,
    상기 폐 리튬 이자전지의 양극활물질은 하기 화학식 1로 표시되는 양극활물질을 포함하는 것인, 양극활물질 전구체 재료의 제조방법.
    [화학식 1]
    LiNixCoyMnzO2
    (상기 화학식 1에서,
    0<x<10, 0<y<10, 및 0<z<10 이고,
    x+y+z=10 임.)
  3. 청구항 1에 있어서,
    상기 제1 인산계 물질 및 상기 제2 인산계 물질은, 각각 독립적으로, 하기 화학식 2 또는 하기 화학식 3으로 표시되는 화합물로부터 선택되는 1종 이상의 화합물을 포함하는 것인, 양극활물질 전구체 재료의 제조방법.
    [화학식 2]
    Figure PCTKR2020014253-appb-I000005
    (상기 화학식 2에 있어서,
    상기 R1 및 R2는, 각각 독립적으로, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기임.)
    [화학식 3]
    Figure PCTKR2020014253-appb-I000006
    (상기 화학식 3에 있어서,
    상기 R3 및 R4는, 각각 독립적으로, 헤테로 원자를 포함하거나 포함하지 않는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기임.)
  4. 청구항 3에 있어서,
    상기 제1 인산계 물질 및 상기 제2 인산계 물질은, 각각 독립적으로, 디-(2-에틸헥실)인산 (Di-(2-ethylhexyl)phosphoric acid) 및 2-에틸헥실 포스폰산 모노 2-에틸헥실 에스테르 (2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester)로부터 선택되는 1종 이상의 것을 포함하는, 양극활물질 전구체 재료의 제조방법.
  5. 청구항 1에 있어서,
    상기 옥심계 물질은 디메틸글리옥심, 디에틸글리옥심, 디프로필글리옥심, 및 에틸메틸글리옥심으로 이루어진 군으로부터 선택되는 1종 이상의 것을 포함하는, 양극활물질 전구체 재료의 제조방법.
  6. 청구항 1에 있어서,
    상기 (1) 내지 (3) 단계는 산성 분위기에서 수행되는 것을 특징으로 하는, 양극활물질 전구체 재료의 제조방법.
  7. 청구항 6에 있어서,
    상기 (1)단계는 pH 2 내지 4에서 수행되고,
    상기 (2)단계는 pH 4 내지 6에서 수행되고,
    상기 (3)단계는 pH 4 내지 5.5에서 수행되는 것을 특징으로 하는, 양극활물질 전구체 재료의 제조방법.
  8. 청구항 1에 있어서,
    상기 (3) 단계에서 수득한 Ni 염에 황산을 첨가하는 단계를 더 포함하는 양극활물질 전구체 재료의 제조방법.
  9. 청구항 1에 있어서,
    상기 Mn 염은 황산 망간을 포함하고, 상기 Ni 염은 황산 니켈을 포함하며, 상기 Co 염은 황산 코발트를 포함하는 것을 특징으로 하는 양극활물질 전구체 재료의 제조방법.
  10. 청구항 1에 있어서,
    상기 폐 리튬 이차전지의 양극활물질은 폐 리튬 이차전지를 파쇄한 후 열처리하여 수득되는 것을 포함하는 양극활물질 전구체 재료의 제조 방법.
  11. 청구항 1 내지 10 중 어느 한 항에 따른 제조 방법에 의해 제조되는 양극활물질 전구체 재료 및 리튬염을 혼합하여 LiNix'Coy'Mnz'O2 (상기 식에서, 0≤x'≤10, 0≤y'≤10, 및 0≤z'≤10 이고, x'+y'+z'=10 임)로 표시되는 양극활물질을 수득하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법.
  12. 청구항 11의 제조방법에 의하여 제조된 리튬 이차전지용 양극활물질.
PCT/KR2020/014253 2020-02-28 2020-10-19 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질 WO2021172688A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022551772A JP7375218B2 (ja) 2020-02-28 2020-10-19 正極活物質前駆体材料およびリチウム二次電池用正極活物質の製造方法、およびこれによって製造されたリチウム二次電池用正極活物質
CN202080097668.6A CN115190868B (zh) 2020-02-28 2020-10-19 制造正极活性材料的前体材料和用于二次锂电池的正极活性材料的方法及由此制造的用于二次锂电池的正极活性材料
US17/801,634 US20230106658A1 (en) 2020-02-28 2020-10-19 Methods for manufacturing positive electrode active material precursor material and positive electrode active material for secondary lithium battery, and positive electrode active material for secondary lithium battery manufactured thereby
EP20920834.7A EP4112556A4 (en) 2020-02-28 2020-10-19 METHOD FOR PRODUCING POSITIVE ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES AND POSITIVE ELECTRODE ACTIVE MATERIAL PRODUCED THEREFROM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0025135 2020-02-28
KR1020200025135A KR102245002B1 (ko) 2020-02-28 2020-02-28 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질

Publications (1)

Publication Number Publication Date
WO2021172688A1 true WO2021172688A1 (ko) 2021-09-02

Family

ID=75725883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014253 WO2021172688A1 (ko) 2020-02-28 2020-10-19 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질

Country Status (6)

Country Link
US (1) US20230106658A1 (ko)
EP (1) EP4112556A4 (ko)
JP (1) JP7375218B2 (ko)
KR (1) KR102245002B1 (ko)
CN (1) CN115190868B (ko)
WO (1) WO2021172688A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230087197A (ko) * 2021-12-09 2023-06-16 현대자동차주식회사 연료 전지 차량
KR102471399B1 (ko) * 2022-02-17 2022-11-28 (주)에코프로머티리얼즈 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
KR20230144827A (ko) * 2022-04-08 2023-10-17 (주)에코프로머티리얼즈 니켈, 코발트 및 망간의 분리 회수를 위한 용매추출방법
KR20240115462A (ko) 2023-01-19 2024-07-26 울산대학교 산학협력단 하이브리드 코팅막을 포함하는 올리빈 양극 활물질 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110036628A (ko) 2008-07-24 2011-04-07 씨알에스 홀딩즈 인코포레이티드 고강도 고인성 강 합금
JP2013001916A (ja) * 2011-06-13 2013-01-07 Sumitomo Metal Mining Co Ltd ニッケルの浸出方法
KR101392616B1 (ko) * 2012-10-30 2014-05-07 (주)이엠티 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지
CN108193050A (zh) * 2017-11-27 2018-06-22 中国人民解放军陆军防化学院 一种废旧三元动力电池中金属材料回收方法
KR20190066351A (ko) * 2017-12-05 2019-06-13 타운마이닝리소스주식회사 용매추출 공정을 적용하여 리튬이차전지 폐 양극재를 니켈-코발트-망간 복합 황산염 용액으로 재생하는 방법
KR20190123524A (ko) * 2018-04-24 2019-11-01 (주)이엠티 리튬이온이차전지의 폐 양극재로부터 양극활물질 전구체용 원료를 재생하는 방법, 이에 의하여 재생된 양극활물질 전구체용 원료, 양극활물질 전구체, 양극활물질, 양극 및 리튬이온이차전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865745B2 (ja) 2008-02-13 2012-02-01 Jx日鉱日石金属株式会社 Co,Ni,Mn含有リチウム電池滓からの有価金属回収方法
CN101580317A (zh) * 2009-06-01 2009-11-18 邱致忠 一种含镍废水处理工艺
US10193135B2 (en) * 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
CN105789726A (zh) * 2016-04-21 2016-07-20 苏州聚智同创环保科技有限公司 一种以废旧锂离子电池为原料制备镍钴锰三元材料前驱体的方法
CN110475879B (zh) 2017-03-31 2022-03-22 捷客斯金属株式会社 锂离子电池废料的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110036628A (ko) 2008-07-24 2011-04-07 씨알에스 홀딩즈 인코포레이티드 고강도 고인성 강 합금
JP2013001916A (ja) * 2011-06-13 2013-01-07 Sumitomo Metal Mining Co Ltd ニッケルの浸出方法
KR101392616B1 (ko) * 2012-10-30 2014-05-07 (주)이엠티 리튬 이온 전지의 폐 양극재를 이용한 전구체 원료의 재생 방법, 그 방법에 의해 재생된 원료를 사용하여 제조한 전구체, 양극재 및 리튬 이온 전지
CN108193050A (zh) * 2017-11-27 2018-06-22 中国人民解放军陆军防化学院 一种废旧三元动力电池中金属材料回收方法
KR20190066351A (ko) * 2017-12-05 2019-06-13 타운마이닝리소스주식회사 용매추출 공정을 적용하여 리튬이차전지 폐 양극재를 니켈-코발트-망간 복합 황산염 용액으로 재생하는 방법
KR20190123524A (ko) * 2018-04-24 2019-11-01 (주)이엠티 리튬이온이차전지의 폐 양극재로부터 양극활물질 전구체용 원료를 재생하는 방법, 이에 의하여 재생된 양극활물질 전구체용 원료, 양극활물질 전구체, 양극활물질, 양극 및 리튬이온이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112556A4

Also Published As

Publication number Publication date
JP2023516191A (ja) 2023-04-18
EP4112556A1 (en) 2023-01-04
JP7375218B2 (ja) 2023-11-07
CN115190868B (zh) 2024-08-16
KR102245002B1 (ko) 2021-04-27
EP4112556A4 (en) 2023-09-06
CN115190868A (zh) 2022-10-14
US20230106658A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2021172688A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2021177537A1 (ko) 수산화리튬의 제조 방법
WO2021246606A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2016204563A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2011132961A2 (ko) 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2011132959A2 (ko) 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2019103522A2 (ko) 양극 활물질의 제조방법
WO2021241817A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2011132965A2 (ko) 설파이드 결합의 황 화합물을 포함하고 있는 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2022080710A1 (ko) 양극 활물질용 복합 전이금속 전구체 및 그로부터 제조된 이차전지용 양극 활물질
WO2022080657A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2023063677A1 (ko) 리튬 이차 전지로부터 리튬 전구체의 회수 방법
WO2021172689A1 (ko) 양극활물질 전구체 재료 및 리튬 이차전지용 양극활물질의 제조방법, 및 이에 따라 제조된 리튬 이차전지용 양극활물질
WO2021241835A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2022114868A1 (ko) 폐 이차전지를 이용한 재생 양극 활물질의 제조방법
WO2018038509A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2021177733A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2022080874A1 (ko) 고-니켈 양극 활물질의 제조 방법
WO2021066362A1 (ko) 리튬 전구체의 회수 방법
WO2024058481A1 (ko) 양극 활물질 전구체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020920834

Country of ref document: EP

Effective date: 20220928