Nothing Special   »   [go: up one dir, main page]

WO2021171793A1 - ガス拡散部材、ガス拡散ユニット、燃料電池 - Google Patents

ガス拡散部材、ガス拡散ユニット、燃料電池 Download PDF

Info

Publication number
WO2021171793A1
WO2021171793A1 PCT/JP2021/000352 JP2021000352W WO2021171793A1 WO 2021171793 A1 WO2021171793 A1 WO 2021171793A1 JP 2021000352 W JP2021000352 W JP 2021000352W WO 2021171793 A1 WO2021171793 A1 WO 2021171793A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion member
separator
cathode
anode
Prior art date
Application number
PCT/JP2021/000352
Other languages
English (en)
French (fr)
Inventor
渡辺 政廣
浩 谷内
三紀 那須
洋平 堀内
Original Assignee
国立大学法人山梨大学
株式会社エノモト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学, 株式会社エノモト filed Critical 国立大学法人山梨大学
Priority to US17/795,323 priority Critical patent/US20230147601A1/en
Priority to EP21760887.6A priority patent/EP4113670A4/en
Priority to JP2022503132A priority patent/JP7101393B2/ja
Priority to KR1020227031769A priority patent/KR20220145354A/ko
Priority to CN202180014644.4A priority patent/CN115136363A/zh
Publication of WO2021171793A1 publication Critical patent/WO2021171793A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas diffusion member, a gas diffusion unit, and a fuel cell.
  • a fuel cell can generate electricity by supplying hydrogen to the anode and air (oxygen) to the cathode and performing an electrochemical reaction.
  • the fuel cell has an internal resistance, but the larger the internal resistance, the lower the power generation efficiency, so it is desired to reduce the internal resistance.
  • the present invention has been made in view of such circumstances, and provides a gas diffusion member capable of reducing the internal resistance of a fuel cell.
  • a gas diffusion member arranged between a separator and a catalyst layer of a fuel cell, and includes a porous body layer and a conductive material layer, and the porous body layer is a conductive porous body.
  • the conductive material layer is made of a conductive material, the conductive material layer is arranged on the surface of the porous body layer on the separator side, and the conductive material is formed in the pores of the porous body.
  • a gas diffusing member is provided that is provided to fill the material.
  • the present inventors have noticed that the contact resistance between the porous body layer and the separator is increased because the porous body layer of the gas diffusion member is porous. Then, based on this finding, the contact resistance between the porous body layer and the separator can be reduced by providing the conductive material layer so as to fill the holes provided on the surface on the separator side of the porous body layer with the conductive material. As a result, they have found that the internal resistance of the fuel cell can be reduced, and have reached the completion of the present invention.
  • the gas diffusion member described above is the gas diffusion member described above, and the porous body layer is a gas diffusion member having a groove serving as a gas flow path on the surface on the separator side.
  • the gas diffusion member described above wherein a microporous layer is provided on the surface of the porous body layer on the catalyst layer side.
  • the conductive material is a gas diffusion member in which conductive particles are dispersed in a resin.
  • the conductive material layer is a gas diffusion member having a thickness of 1 to 100 ⁇ m.
  • the gas diffusion member is a gas diffusion unit that is adhered to the separator via the conductive material.
  • the gas diffusion unit is the gas diffusion unit described above, wherein a gasket arranged so as to surround the gas diffusion member is fixed to the separator.
  • the fuel cell includes a cathode side separator, a cathode gas diffusion member, a catalyst coating film, an anode gas diffusion member, and an anode side separator in this order, and the catalyst coating film is on the cathode gas diffusion member side.
  • the cathode gas diffusion member and the anode gas diffusion member include a cathode catalyst layer, an electrolyte membrane, and an anode catalyst layer in this order, and the cathode gas diffusion member and the anode gas diffusion member are fuel cells, which are the gas diffusion members described above.
  • a cathode gasket arranged so as to surround the cathode gas diffusion member is fixed to the cathode side separator, and an anode arranged so as to surround the anode gas diffusion member.
  • a fuel cell in which a gasket is fixed to the anode-side separator.
  • FIG. 3A is a plan view of the catalyst coating film 2 and the support frame 3
  • FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3A
  • FIG. 3C is an enlarged view of a region C in FIG. 3B
  • FIG. 4A is a perspective view of the catalyst coating film 2 and the support frame 3 viewed from diagonally above
  • FIG. 4B is a perspective view of the gasket 11 and the cathode gas diffusion member 31 viewed from diagonally above
  • FIG. 4C is a perspective view.
  • FIG. 6A is a perspective view of the cooling water side of the cooling water / cathode separator 21 viewed from diagonally above
  • FIG. 6B is an enlarged view of a region B in FIG. 6A
  • FIG. 7A is a perspective view of the cathode side of the cooling water / cathode separator 21 viewed from diagonally below
  • FIG. 7B is an enlarged view of a region B in FIG. 7A.
  • FIG. 8A is a perspective view of the anode side of the anode / cooling water separator 22 viewed from diagonally above
  • FIG. 8B is a perspective view of the cooling water side of the anode / cooling water separator 22 viewed from diagonally below
  • 9A is a schematic view showing the cross-sectional shape of the porous body layer 31c
  • FIG. 9B is a schematic view showing the cross-sectional shape of the gas diffusion member 31
  • FIG. 9C shows the cross-sectional shape of the gas diffusion unit 41. It is a schematic diagram.
  • the fuel cell 1 of the first embodiment of the present invention includes a catalyst coating film 2, a support frame 3, a cathode gasket 11, an anode gasket 12, and cooling water.
  • a gasket 13 a cooling water / cathode separator (an example of a "cathode side separator") 21, an anode / cooling water separator (an example of an "anode side separator") 22, a cathode gas diffusion member 31, and an anode gas diffusion member 32.
  • the fuel cell 1 includes a cooling water / cathode separator 21, a cathode gas diffusion member 31, a catalyst coating film 2, an anode gas diffusion member 32, and an anode / cooling water separator. 22 is provided in this order.
  • the single cell 4 is composed of the catalyst coating film 2, the support frame 3, the gaskets 11 and 12, and the gas diffusion members 31 and 32.
  • the cooling layer 5 is composed of the gasket 13 and the diffusion member 33. Cooling layers 5 are arranged above and below the single cell 4, and the single cell 4 and the upper and lower cooling layers 5 are separated by separators 21 and 22.
  • a repeating unit is composed of a single cell 4, a separator 21, a cooling layer 5, and a separator 22. By laminating the required number of these repeating units, a laminated cell having desired performance can be obtained.
  • a current collector, an insulating sheet, and an end plate (not shown) can be arranged on the upper surface and the lower surface of the laminated cell. By pressing each member from both sides with a pair of end plates, the members contained in the electrochemical laminated cell can be brought into close contact with each other and joined.
  • the support frame 3, the gaskets 11, 12, and 13 and the separators 21 and 22, are respectively.
  • Cathode gas inlets 3a, 11a, 12a, 13a, 21a, 22a (hereinafter, “cathode gas inlet 3a, etc.") and cathode gas outlets 3b, which are flow ports (inlet or outlet) for cathode gas (air, oxygen, etc.).
  • cooling water inlets 3e, 11e, 12e, 13e, 21e, 22e (hereinafter, “cooling water inlet 3e, etc.") and cooling water outlets 3f, 11f, 12f, which are distribution ports of cooling water (an example of "fluid”). 13f, 21f, 22f (hereinafter, “cooling water outlet 3f, etc.”) are provided.
  • the cathode gas inlet 3a and the like, the cathode gas outlet 3b and the like, the anode gas inlet 3c and the like, the anode gas outlet 3d and the like, the cooling water inlet 3e and the like, the cooling water outlet 3f and the like communicate with each other.
  • the catalyst coating membrane 2 is configured by coating the cathode catalyst layer 2b on one surface of the electrolyte membrane 2a and coating the anode catalyst layer 2c on the other surface of the electrolyte membrane 2a. Therefore, the catalyst coating film 2 includes a cathode catalyst layer 2b, an electrolyte membrane 2a, and an anode catalyst layer 2c in this order from the cathode gas diffusion member 31 side. The peripheral edge portion 2d of the catalyst coating film 2 is supported by the support frame 3.
  • the gaskets 11, 12, and 13 are sheets made of an elastic material such as rubber, and the accommodating portions 11g for accommodating the diffusion members 31, 32, and 33, respectively. 12 g and 13 g are provided. Therefore, the gaskets 11, 12, and 13 are arranged so as to surround the diffusion members 31, 32, 33.
  • the accommodating portion 11g communicates with the cathode gas inlet 11a and the cathode gas outlet 11b.
  • the gas diffusion member 31 is accommodated in the accommodating portion 11g. Thereby, the gas diffusion member 31 can be easily positioned.
  • the gas diffusion member 31 is a member that diffuses the cathode gas supplied from the cathode gas inlet 11a.
  • the gas diffusion member 31 includes a superimposing portion 31a which is a portion overlapping the catalyst layers 2b and 2c in a plan view, and a protruding portion 31b protruding from the superimposing portion 31a toward the cathode gas inlet 11a and the cathode gas outlet 11b.
  • the cathode gas supplied from the cathode gas inlet 11a is smoothly introduced into the gas diffusion member 31.
  • the value (thickness of the gas diffusion member 31 / thickness of the gasket 11) is, for example, 0.8 to 1.2, preferably 0.9 to 1.1.
  • the accommodating portion 12g communicates with the anode gas inlet 12c and the anode gas outlet 12d.
  • the gas diffusion member 32 is accommodated in the accommodating portion 12g.
  • the gas diffusion member 32 is a member that diffuses the anode gas supplied from the anode gas inlet 12c.
  • the gas diffusion member 32 includes a superimposing portion 32a which is a portion overlapping the catalyst layers 2b and 2c in a plan view, and a protruding portion 32b protruding from the superimposing portion 32a toward the anode gas inlet 12c and the anode gas outlet 12d. According to such a configuration, the anode gas supplied from the anode gas inlet 12c is smoothly introduced into the gas diffusion member 32.
  • the accommodating portion 13g communicates with the cooling water inlet 13e and the cooling water outlet 13f.
  • the diffusion member 33 is accommodated in the accommodating portion 13g.
  • the diffusion member 33 is a member that diffuses the cooling water supplied from the cooling water inlet 13e, and is made of, for example, a porous material.
  • the diffusion member 33 includes a superimposing portion 33a which is a portion overlapping the catalyst layers 2b and 2c in a plan view, and a protruding portion 33b protruding from the superimposing portion 33a toward the cooling water inlet 13e and the cooling water outlet 13f. According to such a configuration, the cooling water supplied from the cooling water inlet 13e is smoothly introduced into the diffusion member 33.
  • the cathode gas, anode gas, and cooling water are supplied through the cathode gas inlet 3a, etc., the anode gas inlet 3c, etc., the cooling water inlet 3e, etc., respectively.
  • the cathode gas is supplied to the cathode gas diffusion member 31, and is not supplied to the anode gas diffusion member 32 and the cooling water diffusion member 33.
  • the cathode gas supplied to the cathode gas diffusion member 31 is discharged through the cathode gas outlet 3b and the like.
  • the anode gas is supplied to the anode gas diffusion member 32, and is not supplied to the cathode gas diffusion member 31 and the cooling water diffusion member 33.
  • the anode gas supplied to the anode gas diffusion member 32 is discharged through the anode gas outlet 3d and the like.
  • the cooling water is supplied to the cooling water diffusion member 33, and is not supplied to the cathode gas diffusion member 31 and the anode gas diffusion member 32.
  • the cooling water supplied to the cooling water diffusion member 33 is discharged through the cooling water outlet 3f or the like.
  • Separators 21 and 22 can be formed of a metal such as titanium or stainless steel, or a composite material of carbon material and resin.
  • the separator 21 is a flat plate member having first and second main surfaces 21i and 21j.
  • the main surface 21i is provided with ridges 21g, and the main surface 21j is provided with ridges 21h.
  • the ridge 21g faces the gasket 13, and the ridge 21g is pressed against the gasket 13 to form a seal structure.
  • the ridges 21g are provided so as to form a flow passage 21k for circulating cooling water along the main surface 21i.
  • the ridge 21h faces the gasket 11, and the ridge 21h is pressed against the gasket 11 to form a seal structure.
  • the ridges 21h are provided so as to form a flow passage 21l for circulating the cathode gas along the main surface 21j.
  • the separator 22 is a flat plate member having first and second main surfaces 22i and 22j.
  • the main surface 22i is provided with ridges 22g, and the main surface 22j is provided with ridges 22h.
  • the structure and manufacturing method of the separator 22 are the same as those of the separator 21.
  • the ridges 22g face the gasket 12, and the ridges 22g are pressed against the gasket 12 to form a seal structure.
  • the ridges 22g are provided so as to form a flow passage 22k for circulating the anode gas along the main surface 22i.
  • the ridge 22h faces the gasket 13, and the ridge 22h is pressed against the gasket 13 to form a seal structure.
  • the ridges 22h are provided so as to form a flow passage 22l for circulating cooling water along the main surface 22j.
  • gas diffusion member 31 will be described in more detail.
  • the gas diffusion member 31 includes a porous body layer 31c, a conductive material layer 31d, and a microporous layer 31e.
  • the porous body layer 31c is composed of a conductive porous body.
  • the porous body layer 31c preferably contains a mixture of a conductive filler and a resin.
  • the binding property of the resin facilitates the formation of the groove 31c2 (shown in FIG. 9A), which will be described later.
  • the conductive filler may be in the form of particles or fibers, but is preferably in the form of fibers from the viewpoint of increasing the porosity.
  • the conductive filler is preferably a carbon filler from the viewpoint of conductivity. Therefore, the conductive filler is preferably carbon fiber.
  • the proportion of the conductive filler in the mixture is preferably 70 to 99% by mass, more preferably 80 to 90% by mass.
  • this ratio is 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, It is 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% by mass, and may be within the range between any two of the numerical values exemplified here.
  • the resin is preferably one that does not soften at the operating temperature of the fuel cell, and is preferably a thermoplastic resin.
  • the porous body layer 31c may be made of a base material such as a woven fabric of conductive fibers (eg, carbon fiber), a paper body, felt, a non-woven fabric, or a sheet-like material having conductive and porous properties. .. More specifically, carbon paper, carbon cloth, carbon non-woven fabric and the like are preferably mentioned.
  • the porosity of the porous body layer 31c is preferably 30 to 85%, more preferably 50 to 85%. Porosity is determined by (volume of pores in the porous body layer) / (volume of the porous body layer). Specifically, the porosity is, for example, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85%, and is between any two of the numerical values exemplified here. It may be within the range.
  • the thickness of the porous body layer 31c is, for example, 0.1 to 1 mm, preferably 0.2 to 0.6 mm, and specifically, for example, 0.1, 0.2, 0.3, 0. It is 4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 mm, and may be within the range between any two of the numerical values exemplified here.
  • the surface 31c1 of the porous body layer 31c on the separator 21 side is preferably provided with a groove 31c2 serving as a gas flow path.
  • a groove 31c2 serving as a gas flow path.
  • the value of the depth of the groove 31c2 with respect to the thickness of the porous body layer 31c is, for example, 0.1 to 0.9, preferably 0.1 to 0.7.
  • the value of the width of the groove 31c2 with respect to the thickness of the porous body layer 31c is, for example, 0.1 to 0.9, preferably 0.1 to 0.7. Specifically, these values are, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and here.
  • the depth and / or width of the groove 31c2 may be constant or variable along the direction in which the groove 31c2 extends.
  • Examples of the shape of the groove 31c2 include a zigzag shape, a sinusoidal shape, a rectangular wavy shape, and a grid shape.
  • the number of grooves 31c2 may be one or plural.
  • the groove 31c2 may be provided so as to continuously extend from the end face on the cathode gas inlet 3a side to the end face on the cathode gas outlet 3b side, or may be provided in a part of the region between them.
  • a large number of recesses 31c3 due to the pores of the porous body are present on the surface 31c1 of the porous body layer 31c on the separator 21 side. Therefore, when the porous body layer 31c is brought into direct contact with the separator 21, the contact area is reduced by the amount of the recess 31c3, and the contact resistance between the porous body layer 31c and the separator 21 is increased.
  • the conductive material layer 31d is arranged on the surface 31c1 of the porous body layer 31c on the separator 21 side.
  • the conductive material layer 31d is made of a conductive material so that the pores of the porous body constituting the porous body layer 31c (that is, the recesses 31c3 caused by the pores of the porous body) are filled with the conductive material. It is provided in. As a result, as shown in FIG. 9B, the surface 31c1 is flattened and the contact resistance between the porous body layer 31c and the separator 21 is reduced.
  • the porosity of the conductive material layer 31d is smaller than the porosity of the portion of the porous body layer 31c other than the conductive material layer 31d, for example, 0 to 20%, preferably 0 to 10%.
  • the porosity is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20%, and may be within the range between any two of the numerical values exemplified here.
  • the thickness of the conductive material layer 31d is, for example, 1 to 100 ⁇ m, preferably 1 to 60 ⁇ m, and even more preferably 5 to 30 ⁇ m. If the conductive material layer 31d is too thin, the effect of reducing contact resistance may be insufficient, and if it is too thick, gas diffusion may be hindered. Specifically, the thickness is, for example, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100 ⁇ m, and is exemplified here. It may be within the range between any two of the given numerical values.
  • T2 / T1 is 0.5 or less is preferable, 0.3 or less is further preferable, and 0.1 or less is further preferable. This is because if T2 is large, the internal resistance may increase due to the resistance of the conductive material layer 31d.
  • T2 / T1 is, for example, 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and any of the numerical values exemplified here. It may be within the range between the two.
  • the conductive material layer 31d can be formed by applying a conductive material to the surface 31c1 of the porous body layer 31c and curing it. When the conductive material is cured, it is preferable to press the flat surface of the separator 21 or another member against the surface of the porous body layer 31c. Thereby, the surface of the conductive material layer 31d can be flattened.
  • the separator 21 When the conductive material is an adhesive material, the separator 21 is pressed against the surface 31c1 of the porous body layer 31c after the coating of the conductive material, and the conductive material is cured in that state, as shown in FIG. 9C.
  • a cathode gas diffusion unit 41 is obtained by adhering the gas diffusion member 31 and the separator 21 via a conductive material to form a unit.
  • the contact resistance can be particularly reduced, and the number of parts of the fuel cell is reduced, so that the man-hours for the assembly work can be reduced.
  • a gasket 11 may be fixed to the separator 21 of the gas diffusion unit 41. As a result, the number of parts can be further reduced.
  • the conductive material is a material having conductivity and can be filled in the pores of the porous body constituting the porous body layer 31c.
  • the conductive material is composed of conductive particles dispersed in a resin.
  • the conductive particles preferably have a diameter of 1/2 or less of the pore diameter of the porous body. In this case, the conductive particles are likely to be filled in the pores of the porous body.
  • the resin is preferably one that can be cured after the conductive material is applied to the porous body layer 31c.
  • the curing may be any of heat curing, photocuring, and room temperature curing.
  • the gas diffusion member 31 and the separator 21 are adhered to each other via a conductive material to form a gas diffusion unit, it is preferably cured at 100 ° C. or lower. This is because if the curing temperature is too high, the gas diffusion unit may be warped due to the difference in the linear expansion coefficient between the gas diffusion member 31 and the separator 21.
  • the curing temperature is, for example, 0 to 100 ° C., specifically, for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 ° C., and the numerical values exemplified here are used. It may be within the range between any two.
  • the conductive particles are preferably carbon particles and preferably carbon black from the viewpoint of conductivity and availability.
  • the conductive material may be composed of a conductive polymer. In this case, it is not necessary to add conductive particles.
  • the microporous layer 31e is provided on the surface 31c4 of the porous body layer 31c on the catalyst layer 2b side.
  • the microporous layer 31e is a layer having conductivity and having finer pores than the porous body layer 31c. By providing the microporous layer 31e, the water generated by the reaction in the catalyst layer 2b can be easily removed.
  • the microporous layer 31e has a higher air permeability than the conductive material layer 31d.
  • the air permeability can be measured in accordance with JIS P 8117: 2009.
  • the porosity of the microporous layer 31e is preferably higher than that of the conductive material layer 31d.
  • the microporous layer 31e preferably contains a mixture of a conductive filler and a resin. The air permeability and porosity of the microporous layer 31e can be adjusted by changing the proportion of the resin in the mixture and the size of the conductive filler.
  • the microporous layer 31e can be omitted
  • the gas diffusion member 32 can be configured in the same manner as the gas diffusion member 31. By providing the conductive material layer on the gas diffusion member 32, the contact resistance between the gas diffusion member 32 and the separator 22 can be reduced. Further, the gas diffusion member 32 may be adhered to the separator 22 via a conductive material to form an anode gas diffusion unit. A gasket 12 may be fixed to the separator 22 of the anode gas diffusion unit.
  • the cooling layer 5 is provided for each single cell 4, but the cooling layer 5 may be provided for each of the plurality of single cells 4.
  • an anode / cathode separator is provided between the two single cells 4. Since the gas diffusion members 31 and 32 come into contact with the anode / cathode separator, the contact resistance can be reduced by the same configuration as in the first embodiment.
  • the anode / cathode separator is a cathode side separator when viewed from the gas diffusion member 31 side, and is an anode side separator when viewed from the gas diffusion member 32 side.
  • the seal structure is realized by pressing the ridges provided on the separator against the gasket, but the seal structure may be realized by another method.
  • the sealing structure may be realized by arranging a gasket (sealing material such as packing and O-ring) in the groove provided in the separator.
  • Fuel cell 2 Catalyst coating film, 2a: electrolyte film, 2b: cathode catalyst layer, 2c: anode catalyst layer, 2d: peripheral part, 3: support frame, 3a: cathode gas inlet, 3b: cathode gas outlet, 3c: Anode gas inlet, 3d: Anode gas outlet, 3e: Cooling water inlet, 3f: Cooling water outlet, 4: Single cell, 5: Cooling layer, 11: Cathode gasket, 11a: Cathode gas inlet, 11b: Cathode gas outlet , 11c: Anode gas inlet, 11d: Anode gas outlet, 11e: Cooling water inlet, 11f: Cooling water outlet, 11g: Accommodating part, 12: Anode gasket, 12a: Anode gas inlet, 12b: Anode gas outlet, 12c: Anode Gas inlet, 12d: Anode gas outlet, 12e: Cooling water inlet, 12f: Cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池の内部抵抗を低減可能な、ガス拡散部材を提供する。 本発明によれば、燃料電池のセパレータと触媒層の間に配置されるガス拡散部材であって、多孔質体層と、導電材料層を備え、前記多孔質体層は、導電性を有する多孔質体で構成され、前記導電材料層は、導電材料で構成され、前記導電材料層は、前記多孔質体層の、前記セパレータ側の面に配置され、且つ前記多孔質体の孔に前記導電材料が充填されるように設けられる、ガス拡散部材が提供される。

Description

ガス拡散部材、ガス拡散ユニット、燃料電池
 本発明は、ガス拡散部材、ガス拡散ユニット、及び燃料電池に関する。
 特許文献1~2に示すような、燃料電池は、アノードに水素、カソードに空気(酸素)を供給し、電気化学反応によって発電することができる。
WO2019/239605 WO2019/239605
 燃料電池には内部抵抗が存在しているが、内部抵抗が大きいほど発電効率が下がるので、内部抵抗を低減することが望まれている。
 本発明はこのような事情に鑑みてなされたものであり、燃料電池の内部抵抗を低減可能な、ガス拡散部材を提供するものである。
 本発明によれば、燃料電池のセパレータと触媒層の間に配置されるガス拡散部材であって、多孔質体層と、導電材料層を備え、前記多孔質体層は、導電性を有する多孔質体で構成され、前記導電材料層は、導電材料で構成され、前記導電材料層は、前記多孔質体層の、前記セパレータ側の面に配置され、且つ前記多孔質体の孔に前記導電材料が充填されるように設けられる、ガス拡散部材が提供される。
 本発明者らは、ガス拡散部材の多孔質体層が多孔質であるために多孔質体層とセパレータの接触抵抗が大きくなっていることに気がついた。そして、この知見に基づき、多孔質体層の、セパレータ側の面に設けられた孔に導電材料を充填するように導電材料層を設けることによって多孔質体層とセパレータの接触抵抗を低減でき、その結果、燃料電池の内部抵抗を低減できることを見出し、本発明の完成に到った。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記記載のガス拡散部材であって、前記多孔質体層は、前記セパレータ側の面にガス流路となる溝を備える、ガス拡散部材である。
 好ましくは、前記記載のガス拡散部材であって、前記多孔質体層の、前記触媒層側の面に、マイクロポーラス層が設けられている、ガス拡散部材である。
 好ましくは、前記記載のガス拡散部材であって、前記導電材料は、樹脂中に導電性粒子が分散されて構成されている、ガス拡散部材である。
 好ましくは、前記記載のガス拡散部材であって、前記導電材料層は、厚さが1~100μmである、ガス拡散部材である。
 好ましくは、前記記載のガス拡散部材と、セパレータを備えるガス拡散ユニットであって、前記ガス拡散部材は、前記導電材料を介して前記セパレータに接着されている、ガス拡散ユニットである。
 好ましくは、前記記載のガス拡散ユニットであって、前記ガス拡散部材を取り囲むように配置されたガスケットが前記セパレータに固定されている、ガス拡散ユニットである。
 好ましくは、カソード側セパレータと、カソードガス拡散部材と、触媒塗布膜と、アノードガス拡散部材と、アノード側セパレータをこの順に備える燃料電池であって、前記触媒塗布膜は、前記カソードガス拡散部材側から順に、カソード触媒層と、電解質膜と、アノード触媒層を備え、前記カソードガス拡散部材及び前記アノードガス拡散部材は、前記記載のガス拡散部材である、燃料電池である。
 好ましくは、前記記載の燃料電池であって、前記カソードガス拡散部材が前記カソード側セパレータに接着されており、前記アノードガス拡散部材が前記アノード側セパレータに接着されている、燃料電池である。
 好ましくは、前記記載の燃料電池であって、前記カソードガス拡散部材を取り囲むように配置されたカソードガスケットが前記カソード側セパレータに固定されており、前記アノードガス拡散部材を取り囲むように配置されたアノードガスケットが前記アノード側セパレータに固定されている、燃料電池である。
本発明の第1実施形態の燃料電池1を斜め上から見た分解斜視図である。 図1の燃料電池1を斜め下から見た分解斜視図である。 図3Aは、触媒塗布膜2と支持フレーム3の平面図であり、図3Bは、図3A中のB-B断面図であり、図3Cは、図3B中の領域Cの拡大図である。 図4Aは、触媒塗布膜2と支持フレーム3を斜め上から見た斜視図であり、図4Bは、ガスケット11及びカソードガス拡散部材31を斜め上から見た斜視図であり、図4Cは、ガスケット12及びアノードガス拡散部材32を斜め上から見た斜視図である。 ガスケット13及び冷却水拡散部材33を斜め上から見た斜視図である。 図6Aは、冷却水・カソードセパレータ21の冷却水側を斜め上から見た斜視図であり、図6Bは、図6A中の領域Bの拡大図である。 図7Aは、冷却水・カソードセパレータ21のカソード側を斜め下から見た斜視図であり、図7Bは、図7A中の領域Bの拡大図である。 図8Aは、アノード・冷却水セパレータ22のアノード側を斜め上から見た斜視図であり、図8Bは、アノード・冷却水セパレータ22の冷却水側を斜め下から見た斜視図である。 図9Aは、多孔質体層31cの断面形状を示す模式図であり、図9Bは、ガス拡散部材31の断面形状を示す模式図であり、図9Cは、ガス拡散ユニット41の断面形状を示す模式図である。
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。
1.第1実施形態
 図1~図2に示すように、本発明の第1実施形態の燃料電池1は、触媒塗布膜2と、支持フレーム3と、カソードガスケット11と、アノードガスケット12と、冷却水ガスケット13と、冷却水・カソードセパレータ(「カソード側セパレータ」の一例)21と、アノード・冷却水セパレータ(「アノード側セパレータ)の一例)22と、カソードガス拡散部材31と、アノードガス拡散部材32と、冷却水拡散部材33を備える。従って、燃料電池1は、冷却水・カソードセパレータ21と、カソードガス拡散部材31と、触媒塗布膜2と、アノードガス拡散部材32と、アノード・冷却水セパレータ22をこの順に備える。
 触媒塗布膜2と、支持フレーム3と、ガスケット11,12と、ガス拡散部材31,32によって単セル4が構成される。ガスケット13及び拡散部材33によって冷却層5が構成される。単セル4の上下に冷却層5が配置されており、単セル4と上下の冷却層5がセパレータ21,22によって分離されている。単セル4、セパレータ21、冷却層5、セパレータ22によって繰り返し単位が構成される。この繰り返し単位を必要数積層することにより、所望の性能を有する積層セルが得られる。積層セルの上面及び下面には不図示の集電体、絶縁シート、及びエンドプレートを配置することができる。一対のエンドプレートによって各部材を両側から押圧することによって、電気化学積層セルに含まれる部材を互いに密着させて接合させることができる。
 図3~図8に示すように、支持フレーム3と、ガスケット11,12,13と、セパレータ21,22には、それぞれ、
カソードガス(空気、酸素など)の流通口(入口又は出口)である、カソードガス入口3a,11a,12a,13a,21a,22a(以下、「カソードガス入口3a等」)及びカソードガス出口3b,11b,12b,13b,21b,22b(以下、「カソードガス出口3b等」)と、
アノードガス(水素など)の流通口である、アノードガス入口3c,11c,12c,13c,21c,22c(以下、「アノードガス入口3c等」)及びアノードガス出口3d,11d,12d,13d,21d,22d(以下、「アノードガス出口3d等」)と、
冷却水(「流体」の一例)の流通口である、冷却水入口3e,11e,12e,13e,21e,22e(以下、「冷却水入口3e等」)及び冷却水出口3f,11f,12f,13f,21f,22f(以下、「冷却水出口3f等」)が設けられている。カソードガス入口3a等、カソードガス出口3b等、アノードガス入口3c等、アノードガス出口3d等、冷却水入口3e等、冷却水出口3f等は、それぞれ、互いに連通する。
 以下、各構成について詳細に説明する。
 図3に示すように、触媒塗布膜2は、電解質膜2aの一方の面にカソード触媒層2bが塗布され、電解質膜2aの他方の面にアノード触媒層2cが塗布されて構成される。従って、触媒塗布膜2は、カソードガス拡散部材31側から順に、カソード触媒層2bと、電解質膜2aと、アノード触媒層2cを備える。触媒塗布膜2の周縁部2dが支持フレーム3によって支持されている。
 図4~図5に示すように、ガスケット11,12,13は、一例では、ゴムなどの弾性材料で形成されたシートであり、それぞれ、拡散部材31,32,33を収容する収容部11g,12g,13gを備える。このため、ガスケット11,12,13は、拡散部材31,32,33を取り囲むように配置される。
 図4Bに示すように、収容部11gは、カソードガス入口11a及びカソードガス出口11bと連通している。収容部11gにはガス拡散部材31が収容される。これによって、ガス拡散部材31を容易に位置決めすることができる。ガス拡散部材31は、カソードガス入口11aから供給されたカソードガスを拡散させる部材である。ガス拡散部材31は、触媒層2b,2cに平面視で重なる部位である重畳部31aと、重畳部31aからカソードガス入口11a及びカソードガス出口11bに向かって突出する突出部31bを備える。このような構成によれば、カソードガス入口11aから供給されたカソードガスがスムーズにガス拡散部材31内に導入される。(ガス拡散部材31の厚さ/ガスケット11の厚さ)の値は、例えば0.8~1.2であり、好ましくは、0.9~1.1である。
 図4Cに示すように、収容部12gは、アノードガス入口12c及びアノードガス出口12dと連通している。収容部12gにはガス拡散部材32が収容される。ガス拡散部材32は、アノードガス入口12cから供給されたアノードガスを拡散させる部材である。ガス拡散部材32は、触媒層2b,2cに平面視で重なる部位である重畳部32aと、重畳部32aからアノードガス入口12c及びアノードガス出口12dに向かって突出する突出部32bを備える。このような構成によれば、アノードガス入口12cから供給されたアノードガスがスムーズにガス拡散部材32内に導入される。
 図5に示すように、収容部13gは、冷却水入口13e及び冷却水出口13fと連通している。収容部13gには拡散部材33が収容される。拡散部材33は、冷却水入口13eから供給された冷却水を拡散させる部材であり、例えば多孔質材料で構成される。拡散部材33は、触媒層2b,2cに平面視で重なる部位である重畳部33aと、重畳部33aから冷却水入口13e及び冷却水出口13fに向かって突出する突出部33bを備える。このような構成によれば、冷却水入口13eから供給された冷却水がスムーズに拡散部材33内に導入される。
 カソードガス、アノードガス、冷却水は、それぞれ、カソードガス入口3a等、アノードガス入口3c等、冷却水入口3e等を通じて供給される。カソードガスは、カソードガス拡散部材31に供給され、アノードガス拡散部材32と冷却水拡散部材33には供給されない。カソードガス拡散部材31に供給されたカソードガスは、カソードガス出口3b等を通じて排出される。アノードガスは、アノードガス拡散部材32に供給され、カソードガス拡散部材31と冷却水拡散部材33には供給されない。アノードガス拡散部材32に供給されたアノードガスは、アノードガス出口3d等を通じて排出される。冷却水は、冷却水拡散部材33に供給され、カソードガス拡散部材31とアノードガス拡散部材32には供給されない。冷却水拡散部材33に供給された冷却水は、冷却水出口3f等を通じて排出される。
 セパレータ21,22は、チタン、ステンレス等の金属や、炭素材と樹脂の複合材などで形成可能である。
 図6~図7に示すように、セパレータ21は、第1及び第2主面21i,21jを有する平板部材である。主面21iには、凸条21gが設けられており、主面21jには、凸条21hが設けられている。
 図1に示すように、凸条21gは、ガスケット13に対向しており、凸条21gがガスケット13に押し付けられることによってシール構造が形成される。凸条21gは、冷却水を主面21iに沿って流通させる流通路21kを形成するように設けられている。
 図2に示すように、凸条21hは、ガスケット11に対向しており、凸条21hがガスケット11に押し付けられることによってシール構造が形成される。凸条21hは、カソードガスを主面21jに沿って流通させる流通路21lを形成するように設けられている。
 図8に示すように、セパレータ22は、第1及び第2主面22i,22jを有する平板部材である。主面22iには、凸条22gが設けられており、主面22jには、凸条22hが設けられている。セパレータ22の構成及び製造方法等は、セパレータ21と同様である。
 図1に示すように、凸条22gは、ガスケット12に対向しており、凸条22gがガスケット12に押し付けられることによってシール構造が形成される。凸条22gは、アノードガスを主面22iに沿って流通させる流通路22kを形成するように設けられている。
 図2に示すように、凸条22hは、ガスケット13に対向しており、凸条22hがガスケット13に押し付けられることによってシール構造が形成される。凸条22hは、冷却水を主面22jに沿って流通させる流通路22lを形成するように設けられている。
 ここで、ガス拡散部材31について、より詳細に説明する。
 図9Bに示すように、ガス拡散部材31は、多孔質体層31cと、導電材料層31dと、マイクロポーラス層31eを備える。
 多孔質体層31cは、導電性を有する多孔質体で構成されている。多孔質体層31cは、導電性フィラーと樹脂の混合物を含むことが好ましい。樹脂の結着性によって後述する溝31c2(図9Aに図示)の形成が容易になる。導電性フィラーは粒子状であっても、繊維状であってもよいが、気孔率を高くする観点では、繊維状であることが好ましい。導電性フィラーは、導電率の観点では、炭素フィラーであることが好ましい。このため、導電性フィラーは、炭素繊維であることが好ましい。混合物中の導電性フィラーの割合は、70~99質量%が好ましく、80~90質量%がさらに好ましい。この割合は、具体的には例えば、70、71、72,73,74,75,76,77,78,79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。樹脂は、燃料電池の動作温度で軟化しないものが好ましく、熱可塑性樹脂が好ましい。
 また、多孔質体層31cは、導電性繊維(例:炭素繊維)の織物、紙体、フェルト、不織布といった導電性及び多孔質性を有するシート状材料などの基材からなるであってもよい。より具体的には、カーボンペーパー、カーボンクロス、カーボン不織布などが好ましく挙げられる。
 多孔質体層31c気孔率は、30~85%が好ましく、50~85%がさらに好ましい。気孔率は、(多孔質体層中の気孔の体積)/(多孔質体層の体積)で定められる。この気孔率は、具体的には例えば、30、35、40、45、50、55、60、65、70、75、80、85%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 多孔質体層31cの厚さは、例えば、0.1~1mmであり、0.2~0.6mmが好ましく、具体的には例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 図9Aに示すように、多孔質体層31cの、セパレータ21側の面31c1には、好ましくは、ガス流路となる溝31c2が設けられていることが好ましい。溝31c2を設けることによって、ガス拡散の均一性を高めることができる。多孔質体層31cの厚さに対する溝31c2の深さの値は、例えば、0.1~0.9であり、0.1~0.7が好ましい。多孔質体層31cの厚さに対する溝31c2の幅の値は、例えば、0.1~0.9であり、0.1~0.7が好ましい。これらの値は、具体的には例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。溝31c2の深さ及び/又は幅は、溝31c2が延びる方向に沿って一定であってもよく、変化してもよい。溝31c2の形状としては、例えば、ジグザグ状、正弦波状、矩形波状、格子状などが挙げられる。溝31c2の数は、1つであっても複数であってもよい。溝31c2は、カソードガス入口3a側の端面からカソードガス出口3b側の端面まで連続的に延びるように設けてもよく、この間の一部の領域に設けてもよい。
 多孔質体層31cの、セパレータ21側の面31c1には、多孔質体の孔に起因する多数の凹部31c3が存在している。このため、多孔質体層31cをセパレータ21に直接接触させると、凹部31c3の分だけ接触面積が小さくなり、多孔質体層31cとセパレータ21の間の接触抵抗が大きくなってしまう。
 そこで、本実施形態では、多孔質体層31cの、セパレータ21側の面31c1に導電材料層31dを配置している。導電材料層31dは、導電材料で構成されており、多孔質体層31cを構成する多孔質体の孔に(つまり、多孔質体の孔に起因する凹部31c3に)導電材料が充填されるように設けられる。これによって、図9Bに示すように、面31c1が平坦化されて、多孔質体層31cとセパレータ21の間の接触抵抗が低減される。
 導電材料層31dの気孔率は、多孔質体層31cの、導電材料層31d以外の部位の気孔率よりも小さく、例えば0~20%であり、0~10%が好ましい。この気孔率は、具体的には例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 導電材料層31dの厚さは、例えば、1~100μmであり、1~60μmが好ましく、5~30μmがさらに好ましい。導電材料層31dが薄すぎると接触抵抗低減効果が不十分な場合があり、厚すぎるとガス拡散を阻害する虞がある。この厚さは、具体的には例えば、1、5、10、15、20、25、30、35、40、45、50、55、60、70、80、90,100μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 導電材料層31dのうち、多孔質体層31c内に形成されている部位の厚さをT1、多孔質体層31c外に形成されている部位の厚さをT2とすると、T2/T1は、0.5以下が好ましく、0.3以下がさらに好ましく、0.1以下がさらに好ましい。T2が大きいと、導電材料層31dの抵抗によって内部抵抗が大きくなる場合があるからである。T2/T1は、具体的には例えば、0、0.01、0.05、0.1、0.2、0.3、0.4、0.5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 導電材料層31dは、多孔質体層31cの面31c1に導電材料を塗布して硬化させることによって形成することができる。導電材料を硬化させる際に多孔質体層31cの表面に、セパレータ21又は別の部材の平坦面を押し付けることが好ましい。これによって、導電材料層31dの表面を平坦にすることができる。
 導電材料が接着性を有する材料である場合、導電材料の塗布後の多孔質体層31cの面31c1にセパレータ21を押し付け、その状態で導電材料を硬化させることにより、図9Cに示すように、導電材料を介してガス拡散部材31とセパレータ21を接着してユニット化したカソードガス拡散ユニット41が得られる。ガス拡散部材31とセパレータ21を接着させると、接触抵抗を特に低減できることに加えて、燃料電池の部品点数が減るので、組み立て作業の工数を低減することができる。ガス拡散ユニット41のセパレータ21には、ガスケット11を固定してもよい。これによって、部品点数をさらに減らすことができる。
 導電材料は、導電性を有する材料であり、且つ多孔質体層31cを構成する多孔質体の孔に充填可能な材料である。導電材料は、一例では、樹脂中に導電性粒子が分散されて構成される。導電性粒子は、多孔質体の孔径の1/2以下の直径を有することが好ましい。この場合に、導電性粒子が多孔質体の孔内に充填されやすいからである。樹脂は、導電材料を多孔質体層31cの塗布した後に硬化させることができるものが好ましい。硬化は、加熱硬化、光硬化、常温硬化の何れであってもよい。導電材料を介してガス拡散部材31とセパレータ21を接着させてガス拡散ユニットにする場合は、100℃以下で硬化させることが好ましい。硬化温度が高すぎると、ガス拡散部材31とセパレータ21の線膨張係数の差異によってガス拡散ユニットに反りが生じる場合があるからである。硬化温度は、例えば、0~100℃であり、具体的には例えば、0、10、20、30、40、50、60、70、80、90、100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。導電性粒子は、導電率や入手容易性の観点から、炭素粒子であることが好ましく、カーボンブラックであることが好ましい。
 また、導電材料は、導電性高分子で構成してもよい。この場合、導電性粒子の添加が不要である。
 マイクロポーラス層31eは、多孔質体層31cの、触媒層2b側の面31c4に設けられている。マイクロポーラス層31eは、導電性を有し、かつ多孔質体層31cよりも微細な孔を有する層である。マイクロポーラス層31eを設けることによって、触媒層2bでの反応によって生じた水が除去されやすくなる。マイクロポーラス層31eは、導電材料層31dよりも透気度が高い。透気度は、JIS P 8117:2009に準拠して測定することができる。マイクロポーラス層31eの気孔率は、導電材料層31dよりも高いことが好ましい。マイクロポーラス層31eは、導電性フィラーと樹脂の混合物を含むことが好ましい。混合物中の樹脂の割合や導電性フィラーのサイズを変化させることによって、マイクロポーラス層31eの透気度や気孔率を調整することができる。マイクロポーラス層31eは不要な場合には省略可能である。
 ガス拡散部材32は、ガス拡散部材31と同様に構成可能である。ガス拡散部材32に導電材料層を設けることによって、ガス拡散部材32とセパレータ22の間の接触抵抗を低減することができる。また、導電材料を介してガス拡散部材32をセパレータ22に接着してアノードガス拡散ユニットとしてもよい。アノードガス拡散ユニットのセパレータ22には、ガスケット12を固定してもよい。
2.その他の実施形態
・第1実施形態では、1つの単セル4ごとに冷却層5を設けているが、複数の単セル4ごとに冷却層5を設けてもよい。この場合、2つの単セル4の間には、アノード・カソードセパレータが設けられる。アノード・カソードセパレータには、ガス拡散部材31,32が接触するので、第1実施形態と同様の構成によって、接触抵抗が低減可能である。アノード・カソードセパレータは、ガス拡散部材31側から見ると、カソード側セパレータであり、ガス拡散部材32側から見ると、アノード側セパレータである。
・上記実施形態では、セパレータに設けた凸条をガスケットに押し付けることによってシール構造を実現したが、シール構造は、別の方法で実現してもよい。例えば、セパレータに設けた溝内にガスケット(パッキン、Oリングなどのシール材)を配置することによってシール構造を実現してもよい。
1:燃料電池、2:触媒塗布膜、2a:電解質膜、2b:カソード触媒層、2c:アノード触媒層、2d:周縁部、3:支持フレーム、3a:カソードガス入口、3b:カソードガス出口、3c:アノードガス入口、3d:アノードガス出口、3e:冷却水入口、3f:冷却水出口、4:単セル、5:冷却層、11:カソードガスケット、11a:カソードガス入口、11b:カソードガス出口、11c:アノードガス入口、11d:アノードガス出口、11e:冷却水入口、11f:冷却水出口、11g:収容部、12:アノードガスケット、12a:カソードガス入口、12b:カソードガス出口、12c:アノードガス入口、12d:アノードガス出口、12e:冷却水入口、12f:冷却水出口、12g:収容部、13:冷却水ガスケット、13a:カソードガス入口、13b:カソードガス出口、13c:アノードガス入口、13d:アノードガス出口、13e:冷却水入口、13f:冷却水出口、13g:収容部、21:カソードセパレータ、21a:カソードガス入口、21b:カソードガス出口、21c:アノードガス入口、21d:アノードガス出口、21e:冷却水入口、21f:冷却水出口、21g:凸条、21h:凸条、21i:第1主面、21j:第2主面、21k:流通路、21l:流通路、22:冷却水セパレータ、22a:カソードガス入口、22b:カソードガス出口、22c:アノードガス入口、22d:アノードガス出口、22e:冷却水入口、22f:冷却水出口、22g:凸条、22h:凸条、22i:第1主面、22j:第2主面、22k:流通路、22l:流通路、31:カソードガス拡散部材、31a:重畳部、31b:突出部、31c:多孔質体層、31c1:面、31c2:溝、31c3:凹部、31c4:面、31d:導電材料層、31e:マイクロポーラス層、32:アノードガス拡散部材、32a:重畳部、32b:突出部、33:冷却水拡散部材、33a:重畳部、33b:突出部、41:カソードガス拡散ユニット、B:領域、C:領域

Claims (10)

  1.  燃料電池のセパレータと触媒層の間に配置されるガス拡散部材であって、
     多孔質体層と、導電材料層を備え、
     前記多孔質体層は、導電性を有する多孔質体で構成され、
     前記導電材料層は、導電材料で構成され、
     前記導電材料層は、前記多孔質体層の、前記セパレータ側の面に配置され、且つ前記多孔質体の孔に前記導電材料が充填されるように設けられる、ガス拡散部材。
  2.  請求項1に記載のガス拡散部材であって、
     前記多孔質体層は、前記セパレータ側の面にガス流路となる溝を備える、ガス拡散部材。
  3.  請求項1又は請求項2に記載のガス拡散部材であって、
     前記多孔質体層の、前記触媒層側の面に、マイクロポーラス層が設けられている、ガス拡散部材。
  4.  請求項1~請求項3の何れか1つに記載のガス拡散部材であって、
     前記導電材料は、樹脂中に導電性粒子が分散されて構成されている、ガス拡散部材。
  5.  請求項1~請求項4の何れか1つに記載のガス拡散部材であって、
     前記導電材料層は、厚さが1~100μmである、ガス拡散部材。
  6.  請求項1~請求項5の何れか1つに記載のガス拡散部材と、セパレータを備えるガス拡散ユニットであって、
     前記ガス拡散部材は、前記導電材料を介して前記セパレータに接着されている、ガス拡散ユニット。
  7.  請求項6に記載のガス拡散ユニットであって、
     前記ガス拡散部材を取り囲むように配置されたガスケットが前記セパレータに固定されている、ガス拡散ユニット。
  8.  カソード側セパレータと、カソードガス拡散部材と、触媒塗布膜と、アノードガス拡散部材と、アノード側セパレータをこの順に備える燃料電池であって、
     前記触媒塗布膜は、前記カソードガス拡散部材側から順に、カソード触媒層と、電解質膜と、アノード触媒層を備え、
     前記カソードガス拡散部材及び前記アノードガス拡散部材は、請求項1~請求項5の何れか1つに記載のガス拡散部材である、燃料電池。
  9.  請求項8に記載の燃料電池であって、
     前記カソードガス拡散部材が前記カソード側セパレータに接着されており、
     前記アノードガス拡散部材が前記アノード側セパレータに接着されている、燃料電池。
  10.  請求項9に記載の燃料電池であって、
     前記カソードガス拡散部材を取り囲むように配置されたカソードガスケットが前記カソード側セパレータに固定されており、
     前記アノードガス拡散部材を取り囲むように配置されたアノードガスケットが前記アノード側セパレータに固定されている、燃料電池。
PCT/JP2021/000352 2020-02-25 2021-01-07 ガス拡散部材、ガス拡散ユニット、燃料電池 WO2021171793A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/795,323 US20230147601A1 (en) 2020-02-25 2021-01-07 Gas diffusion member, gas diffusion unit, and fuel cell
EP21760887.6A EP4113670A4 (en) 2020-02-25 2021-01-07 GAS DIFFUSION ELEMENT, GAS DIFFUSION UNIT AND FUEL CELL
JP2022503132A JP7101393B2 (ja) 2020-02-25 2021-01-07 ガス拡散ユニット、燃料電池
KR1020227031769A KR20220145354A (ko) 2020-02-25 2021-01-07 가스 확산 부재, 가스 확산 유닛, 연료전지
CN202180014644.4A CN115136363A (zh) 2020-02-25 2021-01-07 气体扩散部件、气体扩散单元以及燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-029063 2020-02-25
JP2020029063 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021171793A1 true WO2021171793A1 (ja) 2021-09-02

Family

ID=77491370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000352 WO2021171793A1 (ja) 2020-02-25 2021-01-07 ガス拡散部材、ガス拡散ユニット、燃料電池

Country Status (6)

Country Link
US (1) US20230147601A1 (ja)
EP (1) EP4113670A4 (ja)
JP (1) JP7101393B2 (ja)
KR (1) KR20220145354A (ja)
CN (1) CN115136363A (ja)
WO (1) WO2021171793A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100372A (ja) * 2000-09-22 2002-04-05 Japan Storage Battery Co Ltd 燃料電池用ガス拡散電極およびその製造方法
JP2006134640A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 固体高分子型燃料電池及びその製造方法
JP2011233537A (ja) * 2009-09-10 2011-11-17 Panasonic Corp ガス拡散層及びその製造方法、並びに燃料電池
JP2015195111A (ja) * 2014-03-31 2015-11-05 東レ株式会社 ガス拡散層およびその製造方法
WO2019239605A1 (ja) 2018-06-15 2019-12-19 株式会社エノモト 燃料電池用ガス供給拡散層、燃料電池用セパレータ及び燃料電池セルスタック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717160B2 (ja) * 2009-10-13 2011-07-06 パナソニック株式会社 燃料電池及びその製造方法
CN106797035B (zh) * 2014-09-29 2020-04-07 松下知识产权经营株式会社 燃料电池用气体扩散层、燃料电池以及燃料电池用气体扩散层的形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100372A (ja) * 2000-09-22 2002-04-05 Japan Storage Battery Co Ltd 燃料電池用ガス拡散電極およびその製造方法
JP2006134640A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 固体高分子型燃料電池及びその製造方法
JP2011233537A (ja) * 2009-09-10 2011-11-17 Panasonic Corp ガス拡散層及びその製造方法、並びに燃料電池
JP2015195111A (ja) * 2014-03-31 2015-11-05 東レ株式会社 ガス拡散層およびその製造方法
WO2019239605A1 (ja) 2018-06-15 2019-12-19 株式会社エノモト 燃料電池用ガス供給拡散層、燃料電池用セパレータ及び燃料電池セルスタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113670A4

Also Published As

Publication number Publication date
KR20220145354A (ko) 2022-10-28
EP4113670A4 (en) 2024-01-10
US20230147601A1 (en) 2023-05-11
JP7101393B2 (ja) 2022-07-15
EP4113670A1 (en) 2023-01-04
CN115136363A (zh) 2022-09-30
JPWO2021171793A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5438918B2 (ja) 燃料電池用電解質・電極構造体及び燃料電池
TWI411155B (zh) 燃料電池流體分配板
US6689504B1 (en) Fuel cell stack with separator of a laminate structure
JP5960366B2 (ja) 燃料電池スタック
CA2644787C (en) Fuel cell having porous body and reaction gas leakage prevention section, and method for producing the same
JP2010540776A (ja) 電気化学システム
JP2011525693A (ja) 物質移動の限界を低減させた燃料電池
JP2003142127A (ja) 固体高分子型燃料電池用電極とそのセパレータ及びそれを用いた固体高分子型燃料電池並びに発電システム
WO2005074062A1 (ja) 高分子電解質型燃料電池
JP2019153585A (ja) 枠付き電解質膜・電極構造体及びその製造方法並びに燃料電池
JP2009199888A (ja) 燃料電池
CA2630984C (en) Fuel cell and gasket comprising a serpentine or wavy expansion element
JPH0349184B2 (ja)
JP2008171613A (ja) 燃料電池
JP2009199877A (ja) 燃料電池および燃料電池の製造方法
JP4189345B2 (ja) 燃料電池
JP2024138309A (ja) 燃料セルプレートおよび流れ構造設計
JP7101393B2 (ja) ガス拡散ユニット、燃料電池
JP5838570B2 (ja) 固体高分子形燃料電池における膜電極接合体
JP5491231B2 (ja) 燃料電池
JP2018097977A (ja) 燃料電池用セパレータ及び燃料電池
JP2020136218A (ja) 燃料電池セル及び燃料電池セルスタック
JP2010225484A (ja) 燃料電池、および、燃料電池の製造方法
JP6519490B2 (ja) 燃料電池
JP2010049920A (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503132

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031769

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760887

Country of ref document: EP

Effective date: 20220926