Nothing Special   »   [go: up one dir, main page]

WO2021161685A1 - Flying device and parachute device - Google Patents

Flying device and parachute device Download PDF

Info

Publication number
WO2021161685A1
WO2021161685A1 PCT/JP2021/000157 JP2021000157W WO2021161685A1 WO 2021161685 A1 WO2021161685 A1 WO 2021161685A1 JP 2021000157 W JP2021000157 W JP 2021000157W WO 2021161685 A1 WO2021161685 A1 WO 2021161685A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
parachute
flight
injection
control unit
Prior art date
Application number
PCT/JP2021/000157
Other languages
French (fr)
Japanese (ja)
Inventor
譲 酒本
昌司 下久
佳広 持田
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021161685A1 publication Critical patent/WO2021161685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/72Deployment by explosive or inflatable means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • B64U70/83Vertical take-off or landing, e.g. using rockets using parachutes, balloons or the like

Definitions

  • the present invention relates to a flight device and a parachute device, for example, a multi-rotor rotorcraft type flight device capable of remote operation and autonomous flight.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to quickly and surely parachute even when the effect of airflow when the flight device is flying or falling is not immediately obtained. Is to provide a flight device that can open the umbrella.
  • the flight device includes an aircraft unit, a lift generating unit connected to the aircraft unit to generate lift, a flight control unit that controls the lift generating unit, a parachute, and the like.
  • a parachute accommodating portion provided in the aircraft unit and accommodating the parachute, a plurality of flying objects connected to the parachute, and the flight provided for each of the flying objects to hold and hold the corresponding flying object.
  • the drop control unit is characterized in that the flying object of at least one of the plurality of injection units is preferentially ejected.
  • FIG. It is a figure which shows typically the appearance of the flight apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the structure of the parachute apparatus mounted on the flight apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the state which the parachute is open.
  • FIG. It is a flowchart which shows the flow of the fall preparation process by the flight apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of abnormality detection by the flight apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the state in which the parachute of the flight apparatus which concerns on Embodiment 1 is open. It is a functional block diagram of the flight apparatus which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the flow of the parachute opening control (step S5) which concerns on Embodiment 2.
  • step S5 which concerns on Embodiment 2.
  • step S5 shows typically the state of the airframe unit at the time of injection of a flying object.
  • FIG. shows typically the state of the airframe unit at the time of injection of a flying object.
  • the flight device (1,1A, 1B) includes a body unit (2) and a lift generating unit (3) connected to the body unit to generate lift.
  • a parachute (43), a plurality of injection units (41) provided for each parachute to hold the corresponding parachute and eject the held parachute, and an abnormality during flight are detected.
  • An abnormality detection unit (15) and a drop control unit (16, 16A, 16B) for ejecting the flying object from the injection unit in response to the detection of the abnormality by the abnormality detection unit are provided. It is characterized in that the flying object of at least one of the plurality of ejection portions is preferentially ejected.
  • the fall control unit may preferentially inject the flying object of the injection unit located at the most windward position of the airframe unit.
  • the drop control unit identifies a first injection unit group based on the most windward position of the airframe unit and the position of each injection unit, and the first injection unit.
  • the flying object of the group may be preferentially ejected.
  • the fall control unit may preferentially inject the flying object of the injection unit located at the position farthest from the ground of the airframe unit.
  • the drop control unit identifies a first injection unit group based on the position farthest from the ground of the airframe unit and the position of each injection unit, and the first injection unit.
  • the projectiles of the group may be preferentially ejected.
  • the fall control unit may eject the flying object of the remaining ejecting unit after giving priority to the flying object.
  • the fall control unit may eject the flying object with priority given to the flying object, and then eject the flying object of the remaining ejection unit at different times.
  • the flight device further includes sensor units (12, 28) for detecting the wind direction, and the drop control unit is based on the detection result of the sensor unit and the position of each injection unit.
  • the injection unit group may be specified, and the flying object of the first injection unit group may be emitted first.
  • the flight device further includes sensor units (12, 24, 27) for detecting the inclination of the airframe unit, and the drop control unit is based on the detection result of the sensor unit and the position of each injection unit. Therefore, the first injection unit group may be specified, and the flying object of the first injection unit group may be emitted first.
  • the parachute apparatus (4,4A, 4B) according to a typical embodiment of the present invention is provided on the parachute (400) and the airframe unit (2,2A), and is a parachute accommodating portion for accommodating the parachute. (40), a plurality of projectiles (43) connected to the parachute, and a plurality of ejections provided for each projectile to hold the corresponding projectile and eject the held projectile.
  • FIG. 1 is a diagram schematically showing the appearance of a flight device equipped with the parachute device according to the first embodiment.
  • the flight device 1 shown in FIG. 1 is, for example, a multi-rotor rotorcraft type flight device equipped with three or more rotors, and is a so-called drone.
  • the flight device 1 includes an airframe unit 2, lift (propulsion force) generating units 3_1 to 3_n (n is an integer of 3 or more), a parachute device 4, a notification device 5, and an arm unit 6. There is.
  • the airframe unit 2 is the main body of the flight device 1. As will be described later, the airframe unit 2 houses various functional units for controlling the flight of the flight device 1. Although FIG. 1 shows a columnar airframe unit 2 as an example, the shape of the airframe unit 2 is not particularly limited.
  • the lift generating unit 3 has, for example, a structure in which a propeller 30 and a motor 31 for rotating the propeller 30 are housed in a tubular housing 32.
  • a net for example, a resin material, a metal material (stainless steel, etc.), etc.) for preventing contact with the propeller 30 may be provided in the opening of the tubular housing 32.
  • the arm portion 6 is a structure for connecting the airframe unit 2 and each lift generating portion 3.
  • the arm portion 6 is formed so as to project radially from the airframe unit 2, for example, about the central axis O of the airframe unit 2.
  • a lift generating portion 3 is attached to the tip of each arm portion 6.
  • the notification device 5 is a device for notifying the outside of the flight device 1 of danger.
  • the notification device 5 includes, for example, a light source including an LED (Light Emitting Diode) and a sound generator (amplifier, speaker, etc.).
  • the notification device 5 notifies the outside by light or voice that the flight device 1 is in a dangerous state in response to the detection of the abnormality by the abnormality detection unit 15 described later.
  • the notification device 5 may be exposed to the outside of the airframe unit 2, or is housed inside the airframe unit 2 in a form capable of outputting light generated from a light source, voice generated from a speaker, or the like to the outside. You may.
  • the parachute device 4 is a device for safely dropping the flight device 1 by slowing the fall speed of the flight device 1 when an abnormality occurs in the flight device 1 and there is a risk of falling.
  • the parachute device 4 is provided in the airframe unit 2 of the flight device 1.
  • the parachute device 4 is installed on the upper surface of the airframe unit 2, that is, on the surface of the airframe unit 2 in flight opposite to the ground.
  • FIG. 2 is a diagram schematically showing the configuration of the parachute device 4. The figure shows a side cross section of the parachute device 4.
  • FIG. 3 is a diagram schematically showing a state in which the parachute 400 of the parachute device 4 is open.
  • the parachute device 4 includes a parachute 400, a parachute accommodating unit 40, an injection unit 41, an injection control unit 42, and a flying object 43.
  • the parachute 400 has an umbrella body (canopy) 406 and a chordee 407 connecting the umbrella body 406 and the parachute accommodating portion 40 (parachute attachment portion 404).
  • the umbrella body 406 is connected to the flying body 43 by the connecting rope 46.
  • the connecting rope 46 is connected to the umbrella body 406 on the edge (peripheral) side of the apex of the umbrella body 406. More specifically, the connecting ropes 46 are separated from each other and connected to the peripheral edge of the parachute 400.
  • each connecting rope 46 is the circumference of the peripheral portion of the parachute 400. It is connected to the parachute 400 (umbrella body 406) at equal intervals along the direction.
  • the connecting rope 46 may be connected to somewhere on the peripheral edge of the parachute 400.
  • the position on the peripheral edge of the parachute 400 to which the connecting rope 46 is connected is not particularly limited.
  • the connecting rope 46 is made of, for example, a metal material (for example, stainless steel) or a fiber material (for example, a nylon string).
  • the diameter D of the umbrella body 406 required to drop the flight device 1 at a low speed can be calculated based on the following formula (1).
  • m is the total weight of the flight device 1
  • v is the falling speed of the flight device 1
  • is the air density
  • Cd is the drag coefficient.
  • the falling speed v of the flight device 1 is 5 [m / s].
  • the diameter D of the umbrella body 406 required for this is calculated as 14.6 [m] from the equation (1).
  • the parachute 400 is housed in the parachute housing unit 40 in a folded state of the umbrella body 406 before its use.
  • the parachute accommodating unit 40 is a container for accommodating the parachute 400.
  • the parachute accommodating portion 40 is made of, for example, resin.
  • the parachute accommodating portion 40 is set on the upper surface of the airframe unit 2, that is, on the surface opposite to the ground during flight of the flight device 1.
  • the parachute accommodating portion 40 is preferably installed on the upper surface of the airframe unit so that the central axis O of the airframe unit 2 and the central axis P of the parachute accommodating unit 40 overlap.
  • the parachute accommodating portion 40 has, for example, a tubular shape with one end open and the other end bottomed.
  • the parachute accommodating portion 40 has, for example, a cylindrical side wall portion 401 and a bottom portion 402 formed so as to close an opening on one end side of the side wall portion 401.
  • a storage space 403 for accommodating the parachute 400 is defined by the side wall portion 401 and the bottom portion 402.
  • the side wall portion 401 and the bottom portion 402 may be individually formed and joined, or may be integrally formed.
  • the bottom portion 402 is provided with a parachute mounting portion 404 for connecting the parachute accommodating portion 40 and the parachute 400.
  • a parachute mounting portion 404 for connecting the parachute accommodating portion 40 and the parachute 400.
  • the parachute 400 and the parachute accommodating portion 40 are connected.
  • the flying object 43 is a device for discharging the parachute 400 to the outside of the parachute accommodating portion 40 and assisting in opening (deploying) the parachute 400.
  • the projectile 43 obtains thrust, for example, by injecting gas.
  • the projectile 43 is connected to the parachute 400 via the connecting rope 46 as described above.
  • the parachute device 4 includes a plurality of projectiles 43.
  • the parachute device 4 preferably includes three or more projectiles 43.
  • FIG. 1 illustrates a case where the parachute device 4 includes three flying objects. The specific configuration of the flying object 43 will be described later.
  • the injection unit 41 is a device for holding the flying object 43 and ejecting the holding flying object 43.
  • the injection unit 41 is provided for each flying object 43.
  • the parachute device 4 according to the present embodiment includes three injection units 41 for separately accommodating the three flying objects 43.
  • the injection portion 41 is formed in a cylindrical shape (for example, a cylindrical shape) having an opening at one end and a bottom at the other end.
  • the injection portion 41 has, for example, a cylindrical side wall portion 411 and a bottom portion 412 that covers one end of the side wall portion 411.
  • the side wall portion 411 and the bottom portion 412 define a storage space for accommodating the flying object 43.
  • the side wall portion 411 and the bottom portion 412 are made of, for example, resin.
  • Each injection unit 41 is provided in the parachute accommodating unit 40. Specifically, as shown in FIG. 2 and the like, in each injection portion 41, the injection port 413, which is an opening formed at the end of the side wall portion 411 opposite to the bottom portion 412, opens the parachute accommodating portion 40. It is joined to the outer peripheral surface of the parachute accommodating portion 40 so as to face one end side.
  • the flying object 43 has a gas generator 45 and a flying object main body 44. As shown in FIG. 2, in the flying object 43, one end side of the flying object main body portion 44 is inserted inside the injection portion 41, and the gas generator 45 faces the bottom portion 412 of the injection portion 41 inside the injection portion 41. It is placed in the state of being.
  • the gas generator 45 is a device that generates gas that is the basis of thrust for injecting the flying object 43 from the injection port 413 of the injection unit 41 to the outside.
  • the gas generator 45 is arranged in an internal space 440 defined by an injection unit 41 and a flying object main body 44.
  • the gas generator 45 includes, for example, an igniter and a gas generator.
  • the gas generator 45 is electrically connected to the injection control unit 42, which will be described later, via a lead wire (conductor) 47.
  • the gas generator 45 ignites the igniting agent in response to the ignition signal output from the injection control unit 42, and chemically reacts the gas generating agent to generate gas.
  • the flying object main body 44 is a component that holds the gas generator 45 and is connected to the connecting rope 46.
  • the flying object main body 44 is formed in a rod shape, for example. More specifically, the flying object main body 44 is formed in a hollow columnar shape, for example.
  • the projectile body portion 44 is engaged with the injection portion 41.
  • the flying object main body 44 holds the gas generator 45 at one end and is connected to the connecting rope 46 at the other end.
  • the flying object main body 44 is made of, for example, resin.
  • the injection control unit 42 is a functional unit that controls to eject the flying object 43 held by each injection unit 41.
  • the injection control unit 42 is, for example, an electronic circuit that outputs an ignition signal from the drop control unit 16 in response to a control signal instructing the parachute 400 to open the umbrella.
  • the ignition signal is input to the ignition unit (not shown) of the gas generator 45 provided in each flying object 43 via the lead wire 47, and the ignition unit emits an ignition charge according to the input ignition signal. Ignite.
  • FIG. 4 is a functional block diagram of the flight device 1 according to the first embodiment.
  • the airframe unit 2 includes a power supply unit 11, a sensor unit 12, a motor drive unit 13_1 to 13_n (n is an integer of 3 or more), a flight control unit 14, an abnormality detection unit 15, and a drop control unit 16.
  • the communication unit 17 and the storage unit 18 are included.
  • the flight control unit 14, the abnormality detection unit 15, and the drop control unit 16 are program processing devices (for example, a program processing device (for example, a CPU: Central Processing Unit) and a storage device such as a memory) including a processor (for example, a CPU: Central Processing Unit) and a storage device such as a memory. It is realized by the program processing by the (microcontroller) and the cooperation with the peripheral circuit (hardware resource).
  • a program processing device for example, a CPU: Central Processing Unit
  • a storage device such as a memory
  • a processor for example, a CPU: Central Processing Unit
  • storage device such as a memory
  • the power supply unit 11 includes a battery 22 and a power supply circuit 23.
  • the battery 22 is, for example, a secondary battery (for example, a lithium ion secondary battery).
  • the power supply circuit 23 is a circuit that generates a power supply voltage based on the output voltage of the battery 22 and supplies it to each hardware constituting the functional unit.
  • the power supply circuit 23 includes, for example, a plurality of regulator circuits, and supplies a power supply voltage of an appropriate magnitude for each of the above hardware.
  • the sensor unit 12 is a functional unit that detects the state of the flight device 1.
  • the sensor unit 12 detects the inclination of the airframe of the flight device 1, the air volume, the wind direction, and the like in the surrounding environment.
  • the sensor unit 12 includes an angular velocity sensor 24, an acceleration sensor 25, a magnetic sensor 26, an angle calculation unit 27, and an air volume sensor 28.
  • the angular velocity sensor 24 is a sensor that detects the angular velocity (rotational velocity).
  • the angular velocity sensor 24 is a 3-axis gyro sensor that detects an angular velocity based on three reference axes of x-axis, y-axis, and z-axis.
  • the acceleration sensor 25 is a sensor that detects acceleration.
  • the acceleration sensor 25 is a three-axis acceleration sensor that detects acceleration based on three reference axes of x-axis, y-axis, and z-axis.
  • the magnetic sensor 26 is a sensor that detects the geomagnetism.
  • the magnetic sensor 26 is a 3-axis geomagnetic sensor (electronic compass) that detects an orientation (absolute direction) based on three reference axes of x-axis, y-axis, and z-axis.
  • the angle calculation unit 27 calculates the inclination of the airframe of the flight device 1 based on the detection results of at least one of the angular velocity sensor 24 and the acceleration sensor 25.
  • the inclination of the airframe of the flight device 1 is the angle of the airframe (airframe unit 2) with respect to the ground (horizontal direction).
  • the angle calculation unit 27 may calculate the angle of the aircraft with respect to the ground based on the detection result of the angular velocity sensor 24, or the angle of the aircraft with respect to the ground based on the detection results of the angular velocity sensor 24 and the acceleration sensor 25. May be calculated.
  • a known calculation formula may be used as a method of calculating the angle using the detection results of the angular velocity sensor 24 and the acceleration sensor 25 .
  • the angle calculation unit 27 may correct the angle calculated based on the detection result of at least one of the angular velocity sensor 24 and the acceleration sensor 25 based on the detection result of the magnetic sensor 26.
  • the angle calculation unit 27 is realized by program processing by a microcontroller, for example, like the flight control unit 14 and the like.
  • the air volume sensor 28 is a sensor that detects the air volume and the wind direction.
  • the sensor unit 12 may include, for example, a barometric pressure sensor, an ultrasonic sensor, a GPS receiver, a camera, and the like, in addition to the various sensors described above.
  • the communication unit 17 is a functional unit for communicating with the external device 9.
  • the external device 9 is a transmitter, a server, or the like that controls the operation of the flight device 1 and monitors the state of the flight device 1.
  • the communication unit 17 is composed of, for example, an antenna, an RF (Radio Frequency) circuit, and the like. Communication between the communication unit 17 and the external device 9 is realized, for example, by wireless communication in the ISM band (2.4 GHz band).
  • the communication unit 17 receives the operation information of the flight device 1 transmitted from the external device 9 and outputs it to the flight control unit 14, and also transmits various measurement data and the like measured by the sensor unit 12 to the external device 9. Further, when the abnormality detection unit 15 detects an abnormality in the flight device 1, the communication unit 17 transmits information indicating that the abnormality has occurred in the flight device 1 to the external device 9. Further, when the flight device 1 falls to the ground, the communication unit 17 transmits information indicating that the flight device 1 has fallen to the external device 9. Further, the communication unit 17 transmits to the external device 9 information indicating that the control for opening the parachute 400 is executed when the parachute 400 is opened.
  • the motor drive units 13_1 to 13_n are functional units provided for each lift generating unit 3 and driving the motor 31 to be driven in response to an instruction from the flight control unit 14.
  • motor drive unit 13 when each motor drive unit 13_1 to 13_n is not particularly distinguished, it is simply referred to as "motor drive unit 13".
  • the motor drive unit 13 drives the motor 31 so that the motor 31 rotates at the rotation speed instructed by the flight control unit 14.
  • the motor drive unit 13 is an ESC (Electronic Speed Controller).
  • the flight control unit 14 is a functional unit that comprehensively controls each functional unit of the flight device 1.
  • the flight control unit 14 controls the lift generation unit 3 so that the flight device 1 flies stably.
  • the flight control unit 14 has the aircraft based on the operation information (instructions such as ascent / descent, forward / backward, etc.) received from the external device 9 received by the communication unit 17 and the detection result of the sensor unit 12.
  • An appropriate rotation speed of the motor 31 of each lift generating unit 3 is calculated so as to fly in a desired direction in a stable state, and the calculated rotation speed is instructed to each motor driving unit 13.
  • the flight control unit 14 is a motor 31 of each lift generating unit 3 so that the airframe becomes horizontal based on the detection result of the angular velocity sensor 24 when the attitude of the airframe is disturbed by an external influence such as wind. Appropriate rotation speeds are calculated, and the calculated rotation speeds are instructed to each motor drive unit 13.
  • the flight control unit 14 determines the appropriate rotation speed of the motor 31 of each lift generating unit 3 based on the detection result of the acceleration sensor 25. It is calculated, and the calculated rotation speed is instructed to each motor drive unit 13.
  • flight control unit 14 controls the communication unit 17 to realize the transmission and reception of various data described above with the external device 9.
  • the storage unit 18 is a functional unit for storing various programs, parameters, etc. for controlling the operation of the flight device 1.
  • the storage unit 18 is composed of a flash memory, a non-volatile memory such as a ROM, a RAM, and the like.
  • the parameters stored in the storage unit 18 are, for example, a remaining capacity threshold value 180, a tilt threshold value 181, a failure motor number threshold value 182, a fall determination threshold value 183, and an upwind determination threshold value 184, which will be described later.
  • the abnormality detection unit 15 is a functional unit that detects an abnormality during flight. Specifically, the abnormality detection unit 15 monitors the detection result of the sensor unit 12, the state of the battery 22, and the operating state of the lift generating unit 3, and determines whether or not the flight device 1 is in an abnormal state. ..
  • the abnormal state means a state in which autonomous flight of the flight device 1 may become impossible (including a state in which autonomous flight is impossible).
  • the lift generating unit 3 has failed (the number of the failed lift generating units 3 has exceeded the failure motor number threshold value 182), the remaining capacity of the battery 22 has dropped below a predetermined threshold value, and the airframe (airframe unit).
  • a state in which at least one of 2) being abnormally tilted and the aircraft being dropped is called an abnormal state.
  • the abnormality detecting unit 15 detects a failure of the lift generating unit 3 (motor), the abnormality detecting unit 15 determines that the flight device 1 is in an abnormal state.
  • the failure of the lift generating unit 3 means, for example, that the motor 31 does not rotate at the rotation speed specified by the flight control unit 14, the propeller 30 does not rotate, the propeller 30 is damaged, and the like.
  • the abnormality detection unit 15 counts the number of failed lift generating units 3 (motors 31), and when the number of failed motors reaches the faulted motor number threshold value 182 or more, the flight device 1 is in an abnormal state. Is determined.
  • the failed motor number threshold value 182 is a reference value regarding the number of failed lift generating units 3 (motors 31) for determining whether or not the flight device 1 is in an abnormal state.
  • the fault motor number threshold value 182 is stored in the storage unit 18 in advance, for example.
  • the abnormality detection unit 15 detects that the remaining capacity of the battery 22 is lower than a predetermined threshold value (hereinafter, also referred to as “remaining capacity threshold value”) 180, the flight device 1 is in an abnormal state. judge.
  • a predetermined threshold value hereinafter, also referred to as “remaining capacity threshold value”
  • the remaining capacity threshold value 180 may be set to a capacity value such that the motor cannot rotate at the rotation speed specified by the flight control unit 14, for example.
  • the remaining capacity threshold value 180 is stored in the storage unit 18 in advance, for example.
  • the abnormality detection unit 15 detects an abnormal inclination of the flight device 1 (airframe)
  • the abnormality detection unit 15 determines that the flight device 1 is abnormal. For example, in the abnormality detection unit 15, the flight device 1 is abnormal when the angle calculated by the angle calculation unit 27 exceeds a predetermined threshold value (hereinafter, also referred to as “tilt threshold value”) 181 for a predetermined period of time. Determined to be in a state.
  • a predetermined threshold value hereinafter, also referred to as “tilt threshold value”
  • the angle (pitch angle) when the flight device 1 moves in the front-rear direction and the angle (roll angle) when the flight device 1 moves in the left-right direction are acquired in advance by an experiment.
  • the inclination threshold value 181 may be set to a value larger than the angle obtained by the experiment.
  • the inclination threshold value 181 is stored in the storage unit 18 in advance, for example.
  • the abnormality detection unit 15 detects that the aircraft (airframe unit 2) of the flight device 1 is in a falling state, the abnormality detection unit 15 determines that the flight device 1 is abnormal. For example, the abnormality detection unit 15 has determined that the vertical downward acceleration of the airframe unit 2 exceeds a predetermined threshold value (hereinafter, also referred to as “fall determination threshold value”) 183 based on the detection result of the acceleration sensor 25. In this case, it is determined that the flight device 1 is abnormal.
  • a predetermined threshold value hereinafter, also referred to as “fall determination threshold value”
  • the fall control unit (parachute control unit) 16 is a functional unit for controlling the fall of the flight device 1. Specifically, when the abnormality detection unit 15 detects that the flight device 1 is in an abnormal state, the drop control unit 16 executes a fall preparation process for safely dropping the flight device 1.
  • the fall control unit 16 executes the following process as the fall preparation process.
  • the drop control unit 16 controls the notification device 5 in response to the detection of the abnormality by the abnormality detection unit 15 to notify the outside that it is in a dangerous state. Further, the drop control unit 16 controls each motor drive unit 13 in response to the detection of the abnormality by the abnormality detection unit 15, and stops the rotation of each motor 31.
  • the fall control unit 16 outputs a control signal instructing the opening of the parachute to the parachute device 4 (injection control unit 42) in response to the detection of the abnormality by the abnormality detection unit 15, and the parachute. Open the 400.
  • the fall control unit 16 controls the parachute opening to eject the plurality of flying objects 43 at different times.
  • the drop control unit 16 preferentially ejects the flying object 43 of at least one injection unit 41 out of the plurality of injection units 41.
  • the fall control unit 16 preferentially ejects the flying object 43 of the ejection unit 41 arranged at the most windward position of the airframe unit 2 as a parachute opening control.
  • the drop control unit 16 identifies the first injection unit group based on the most upwind position of the airframe unit 2 and the position of each injection unit 41, and the flight of the first injection unit group. Priority is given to the body 43 to eject.
  • the drop control unit 16 preferentially ejects the flying object 43 of the first ejection unit group, and then ejects the flying object 43 of the remaining ejection unit 41. At this time, for example, the drop control unit 16 further prioritizes (shifts the time) among the projectiles 43 of the remaining injection units 41 to inject.
  • FIG. 5 is a flowchart showing the flow of the fall preparation process by the flight device 1 according to the first embodiment.
  • FIG. 6 is a flowchart showing a flow of abnormality detection by the flight device 1 according to the first embodiment.
  • the drop control unit 16 determines whether or not an abnormal state has been detected by the abnormality detection unit 15 (step S1).
  • the abnormality detection unit 15 detects whether or not the flight device 1 is in a state where autonomous flight may become impossible.
  • the abnormality detection unit 15 first receives an instruction signal instructing the opening of the parachute, which is transmitted in response to, for example, an operation of the external device 9 by the user, by the flight device 1. It is determined whether or not it has been done (step S101).
  • the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S106). As a result, when the user visually discovers an abnormality in the flight device 1, the flight device 1 can be instructed to open the parachute 400.
  • the abnormality detection unit 15 determines whether or not the number of the failed lift generating units 3 exceeds the failed motor number threshold value 182. (Step S102). When the number of failed lift generating units 3 exceeds the failed motor number threshold value 182 (step S102: YES), the abnormality detecting unit 15 determines that the flight device 1 is in an abnormal state (step S106).
  • step S102 When the number of failed lift generating units 3 does not exceed the failed motor number threshold value 182 (step S102: NO), the abnormality detecting unit 15 has the inclination of the flight device 1 (airframe unit 2) exceeding the tilt threshold value 181. It is determined whether or not the state of being in the state has continued for a predetermined period (step S103). When the state in which the inclination of the flight device 1 exceeds the inclination threshold value 181 continues for a predetermined period (step S103: YES), the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S106).
  • the abnormality detection unit 15 determines whether the flight device 1 (airframe unit 2) is in the falling state. (Step S104). When it is determined that the flight device 1 is in the falling state (step S104: YES), the abnormality detection unit 15 determines that the flight device 1 is in the abnormal state (step S106).
  • step S104 determines whether or not the remaining capacity of the battery 22 is below the remaining capacity threshold value 180 (step S105).
  • step S105 determines that the flight device 1 is in an abnormal state (step S106).
  • step S105: NO determines that the remaining capacity is not less than the remaining capacity threshold value 180 (step S105: NO).
  • step S1 NO
  • the drop control unit 16 does not start the fall preparation process and continues to fly. While controlling the device 1 to fly stably, the abnormality detection unit 15 monitors the presence or absence of detection of an abnormality.
  • step S1 when the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S1: YES), the fall control unit 16 starts the fall preparation process (step S2). For example, when the airframe (airframe unit 2) of the flight device 1 is tilted beyond the tilt threshold value 181 due to a strong wind for a predetermined period of time, the abnormality detection unit 15 sends a signal to the drop control unit 16 indicating that an abnormality has been detected. Notice. The fall control unit 16 determines that the flight device 1 may fall when it receives the signal, and starts the fall control process.
  • the fall control unit 16 controls the notification device 5 to notify the outside that the flight device 1 is in a dangerous state (step S3).
  • the drop control unit 16 drives a light source constituting the notification device 5 to generate blinking light.
  • the drop control unit 16 drives a voice generator constituting the notification device 5 to output a warning sound and an announcement prompting evacuation.
  • step S4 the drop control unit 16 stops the motor 31 (step S4). Specifically, the drop control unit 16 instructs each motor drive unit 13_1 to 13_n to stop the motor 31. As a result, the motor 31 of the flight device 1 is stopped, and the rotation of the propeller 30 is stopped.
  • the instructions to the motor drive units 13_1 to 13_n may be given directly from the drop control unit 16 to the motor drive units 13_1 to 13_n, or from the drop control unit 16 via the flight control unit 14 to the motor drive units 13_1 to 13_n. You may go indirectly to.
  • FIG. 7 is a flowchart showing the flow of the parachute opening control (step S5).
  • 8A to 8D are diagrams for explaining the injection procedure of the flying object 43 when the parachute device 4 includes a plurality of injection units 41.
  • step S5 first, the drop control unit 16 selects a first injection unit group including at least one injection unit 41 arranged at the most windward position of the airframe unit 2 (S501). For example, the drop control unit 16 first determines the most windward position of the airframe unit 2 based on the coordinate information of each position in the airframe unit 2 stored in the storage unit 18 and the wind direction detected by the air volume sensor 28. Identify. Next, the fall control unit 16 is the most of the aircraft unit 2 based on the coordinate information of the identified windward position of the aircraft unit 2 and the coordinate information of each injection unit 41 stored in the storage unit 18. The distance between the position on the windward side and the position of each injection unit 41 is calculated, and the injection unit 41 whose distance is equal to or less than the windward determination threshold value of 184 is specified as the first injection unit group.
  • the drop control unit 16 when the parachute device 4 includes three injection units 41, when the drop control unit 16 specifies that the position a is the coordinate closest to the windward side in the airframe unit 2.
  • the injection unit group A including the injection unit 41_1 whose distance to the position a is shorter than the windward determination threshold value is defined as the first injection unit group.
  • the injection unit 41_1 and the injection unit 16 whose distance to the position b is shorter than the windward determination threshold value when the drop control unit 16 identifies that the position b is the coordinate closest to the windward side in the airframe unit 2, the injection unit 41_1 and the injection unit 16 whose distance to the position b is shorter than the windward determination threshold value.
  • the injection unit group B including the unit 41_2 is defined as the first injection unit group.
  • the parachute device 4 includes 4 to 6 injection units 41, similarly, from the positions a and b which are the coordinates closest to the windward side in the airframe unit 2.
  • the first group of ejection parts is specified based on the distance of.
  • the drop control unit 16 ejects the projectile 43 from the first ejection unit group specified in step S501 (step S502). Specifically, the drop control unit 16 outputs a control signal instructing the injection control unit 42 to inject the flying object 43 from the specified first injection unit group, and the injection control unit 42 outputs the ignition signal to the injection control unit 42. By outputting to the ejection group of 1, the projectile 43 is ejected.
  • the drop control unit 16 ejects the flying objects of the remaining ejection units 41 (second ejection unit group) that have not ejected the flying objects 43 (step S503).
  • the remaining injection units are ejected as the second injection unit group.
  • the projectiles 41_3 to 41_7 are ejected.
  • the drop control unit 16 may simultaneously inject all the injection units 41_3 to 41_7 of the second injection unit group, or may inject the injection units 41 of the second injection unit group at different times. May be good.
  • the drop control unit 16 may simultaneously inject all the projectiles 43 of the injection units 41_3 to 41_7 as the second injection unit group, or the projectiles 43 of the injection units 41_3 to 41_7 may be staggered. May be provided and injected one by one in order.
  • the drop control unit 16 starts from the first ejection unit group, and the second ejection unit 16 is clockwise or counterclockwise when viewed from the upper surface side of the airframe unit 2.
  • the group of projectiles 43 may be ejected in sequence.
  • the projectile 43 may be ejected in the order closest to the windward position specified in step S501 of the second ejection unit group. For example, in FIG.
  • the projectiles of the ejection sections 41_3 and 41_7 closest to the windward side of the second ejection group are simultaneously ejected, and then Of the remaining ejection portions 41, the projectiles of the ejection portions 41_4 and 41_6 closest to the windward may be ejected at the same time, and finally the projectiles 43 of the ejection portions 41_5 may be ejected.
  • the drop control unit 16 ejects the flying object 43 of the second ejection unit group
  • the drop control unit 16 identifies and identifies the ejection unit 41 closest to the windward side among the ejection units 41 that have not ejected the flying object 43.
  • the process of ejecting the projectile 43 from the ejection unit 41 may be repeatedly executed.
  • FIG. 9 is a diagram schematically showing a state in which the parachute 400 is opened when the flying object 43 is ejected by dividing it into a first ejection unit group and a second ejection unit group.
  • FIG. 10 is a diagram schematically showing a flight device 1 in a state where the parachute 400 is open.
  • the windward peripheral edge of the released parachute 400 is the leeward peripheral edge by ejecting the projectile 43 preferentially from the windward first ejection group. Since the position is higher than the portion, the parachute 400 can easily catch the wind, and the parachute 400 can be opened reliably and quickly. After all the projectiles 43 have been ejected, the parachute 400 opens as shown in FIG. As a result, the flight device 1 slowly falls toward the ground.
  • the fall control unit 16 notifies the external device 9 that the flight device 1 has fallen via the communication unit 17 (step S6).
  • the notification to the external device 9 may be performed at any timing as long as it is after the start of the drop control process (step S2). For example, it may be performed after the flight device 1 has landed, or immediately after the start of the fall control process (step S2).
  • the fall control unit 16 may also notify the external device 9 of the position information of the fall location acquired by the GPS receiver. According to the procedure described above, the fall control process of the flight device 1 is performed.
  • the flight device 1 when the parachute is ejected, preferentially ejects the flying object 43 of at least one of the plurality of ejection units 41. According to this, it is possible to control the parachute to open the umbrella appropriately according to the flight environment.
  • the flying object 43 of the injection unit 41 arranged at the most windward position of the airframe unit 2 is preferentially ejected.
  • the first injection unit group is specified based on the most windward position of the airframe unit 2 and the position of each injection unit 41, and the projectile 43 of the first injection unit group is prioritized. And eject. According to this, the released parachute 400 becomes easy to catch the wind, and the parachute 400 can be opened reliably and quickly.
  • FIG. 11 is a functional block diagram of the flight device 1A according to the second embodiment.
  • the flight device 1A according to the second embodiment preferentially ejects a flying object 43 arranged at the position farthest from the ground of the airframe unit 2A when the flight device 1A falls as a parachute opening control. It is different from the flight device 1 according to the first embodiment, and is the same as the flight device 1 according to the first embodiment in other respects.
  • the overall flow of the fall preparation process by the flight device 1A according to the second embodiment is the same as that of the flight device 1 according to the first embodiment, and the content of the parachute opening control (step S5) is different.
  • the parachute opening control (step S5A) by the flight device 1 according to the second embodiment will be described in detail.
  • FIG. 12 is a flowchart showing the flow of the parachute opening control (step S5A) by the flight device 1A according to the second embodiment.
  • step S5A first, based on the detection result of the sensor unit 12, the drop control unit 16A is arranged at least one of the injection units 41 in which the flying object 43 is not ejected at the position farthest from the ground of the airframe unit 2.
  • a first group of injection units including one injection unit 41 is specified (step S501A).
  • the drop control unit 16A selects the aircraft from all the injection units 41 based on the coordinate information of each injection unit 41 stored in the storage unit 18A and the angle calculated by the angle calculation unit 27.
  • the injection unit 41 located at the position farthest from the ground of the unit 2 is specified and used as the first injection unit group.
  • the drop control unit 16A ejects the projectile 43 from the first ejection unit group specified in step S501A (step S502A). Specifically, the drop control unit 16 outputs a control signal instructing the injection control unit 42 to inject the flying object 43 from the specified first injection unit group, and the injection control unit 42 outputs the ignition signal to the injection control unit 42. By outputting to the ejection group of 1, the projectile 43 is ejected.
  • the drop control unit 16A ejects the flying objects of the remaining ejection units 41 (second ejection unit group) that have not ejected the flying objects 43 (step S503A). At this time, the drop control unit 16A may simultaneously inject all the injection units 41 of the second injection unit group, or may inject the injection units 41 of the second injection unit group at different times. .. When each projectile 43 is ejected with a time lag, the drop control unit 16A starts from the first ejection unit group and ejects the second projectile in the order of clockwise or counterclockwise when viewed from the upper surface side of the airframe unit 2A. The projectiles 43 of the group may be sequentially ejected.
  • the drop control unit 16A is arranged at the position farthest from the ground of the airframe unit 2A among the injection units 41 that have not ejected the flying object 43 when the flying object 43 of the second ejection unit group is ejected.
  • the process of specifying the injection unit 41 and injecting the flying object 43 from the specified injection unit 41 may be repeatedly executed.
  • the flight device 1A preferentially ejects the flying object 43 of the ejection unit 41 arranged at the position farthest from the ground of the airframe unit 2A. According to this, it is possible to bring the aircraft of the flight device 1A closer to the horizontal state before the parachute 400 is completely opened, so that the attitude of the flight device 1A during the fall is stable and the fall speed of the flight device 1A is reduced. It can be made more lenient.
  • the drop control unit 16A is an injection unit arranged at the position farthest from the ground of the airframe unit 2A among the injection units 41 that do not emit the flying object 43 based on the detection result of the sensor unit 12. 41 is selected, and the projectile 43 of the selected injection unit 41 is first ejected.
  • FIG. 13A due to the reaction when the first projectile 43 is launched, a force F in the direction opposite to the injection direction S of the projectile 43 is applied to the farthest side of the airframe unit 2 from the ground. ..
  • FIG. 13B the airframe unit 2 can be brought into a state closer to horizontal.
  • the parachute 400 towed by the projectile 43 can be launched in a direction more perpendicular to the ground, so that the parachute 400 is towed by the second projectile 43.
  • the parachute 400 can easily catch air, and the parachute 400 can be opened faster.
  • the force applied to the airframe unit 2 in the direction toward the ground can be reduced, and the fall time of the flight device 1A can be lengthened, so that the safety of the flight device 1A when it falls can be further improved. It will be possible.
  • the injection control unit 42 is provided in the parachute device 4
  • the present invention is not limited to this.
  • the injection control unit 42 may be provided in the flight device 1.
  • the parachute device 4B may include an abnormality state detection mechanism including a sensor unit 12B, an abnormality detection unit 15B, and a drop control unit 16B.
  • the sensor unit 12B, the abnormality detection unit 15B, and the drop control unit 16B have the same functions as the sensor unit 12, the abnormality detection unit 15, and the drop control unit 16, respectively. According to this, the parachute device 4B itself can detect the abnormal state and eject the projectile 43.
  • the airframe unit 2 may or may not have an abnormal state detection mechanism including a sensor unit 12, an abnormality detecting unit 15, and a drop control unit 16. Since the aircraft unit 2 and the parachute device 4B each have an abnormal state detection mechanism, even if one of the abnormal state detection mechanisms cannot detect the abnormal state for some reason, the other abnormal state detection mechanism can be used. It is possible to detect an abnormal state and open the parachute 400 more reliably.
  • the parachute accommodating portion 40 may have a space for accommodating the parachute 400 inside, and may be, for example, a hollow polygonal column (for example, a square column).
  • the injection unit 41 may have a structure in which the flying object 43 is housed and the flying body 43 can be ejected.
  • the space may be cylindrical.
  • a flight control unit 14 or the like as a functional unit for controlling flight in a normal state and an abnormality detection as a functional unit for performing fall control when an abnormality occurs The case where the unit 15, the drop control unit 16, and the storage unit 18 operate by supplying power from the same battery 22 has been illustrated, but the present invention is not limited to this.
  • a battery for a functional unit for controlling flight in a normal state and a battery for a functional unit for controlling a fall when an abnormality occurs may be prepared separately. According to this, even when an abnormality occurs in the battery for the functional unit for controlling the flight in the normal state and the power supply cannot be performed, the drop control process can be executed.
  • the functional unit for performing drop control when an abnormality occurs may be configured so that power supply from the above-mentioned two batteries can be selected. According to this, even if an abnormality occurs in one battery, power can be supplied from the other battery, so that the drop control process can be reliably executed.
  • a shock absorbing member such as an airbag may be provided on the lower surface of the airframe unit 2. According to this, it is possible to further improve the safety of the flight device 1 when it falls.
  • Parachute accommodating unit 41 ... injection unit, 42 ... injection control unit, 43 ... flying object, 44 ... flying object main body, 45 ... gas generator, 46 ... connecting cord, 47 ... lead wire, 180 ... remaining capacity threshold, 181 ... Tilt threshold, 182 ... Failure motor number threshold, 183 ... Fall judgment threshold, 184 ... Upwind judgment threshold, 400 ... Parachute, 401 ... Side wall, 402 ... Bottom, 403 ... Accommodation space, 404 ... Parachute mounting part, 406 ... Umbrella (canopy), 407 ... hanging rope, 411 ... side wall, 412 ... bottom, 413 ... outlet, 440 ... internal space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

Provided is a flying device in which it is possible to quickly and reliably deploy a parachute even in the case where the efficacy of air current cannot be instantly availed during flight or during plunge. This flight device (1) is provided with: a lift-generating unit (3) which is connected to a fuselage unit (2) and which is for generating lift; a flight control part (14) which controls the lift-generating unit (3); a parachute housing unit (40) which is provided to the fuselage unit (2) and which houses a parachute (400) therein; multiple projectiles (43) that are linked to the parachute (400); multiple ejectors (41) which are provided to the respective projectiles (43) and which are for ejecting the retained projectiles (43); and an abnormality detection part (15) for detecting an abnormality during flight; and a plunge control part (16) which, upon detection of an abnormality by the abnormality detection part (15), causes the projectiles (43) to be ejected from the ejectors (41). The plunge control part (16) preferentially ejects a projectile (43) held in at least one of the multiple ejectors (41).

Description

飛行装置およびパラシュート装置Flight equipment and parachute equipment
 本発明は、飛行装置およびパラシュート装置に関し、例えば、遠隔操作および自律飛行が可能な、マルチロータの回転翼機型の飛行装置に関する。 The present invention relates to a flight device and a parachute device, for example, a multi-rotor rotorcraft type flight device capable of remote operation and autonomous flight.
 近年、遠隔操作および自律飛行が可能な、マルチロータの回転翼機型の飛行装置(以下、単に「回転翼機」とも称する。)の産業分野への実用化が検討されている。例えば、運送業において、回転翼機(所謂ドローン)による荷物の輸送や旅客の輸送等が検討されている。 In recent years, practical application of a multi-rotor rotorcraft type flight device (hereinafter, also simply referred to as "rotorcraft") capable of remote control and autonomous flight to the industrial field has been studied. For example, in the transportation industry, transportation of luggage and passengers by rotary wing aircraft (so-called drones) are being considered.
 輸送用の回転翼機は、GPS(Global Positioning System)信号等によって自己の位置を特定しながら飛行する自律飛行機能を備えている。しかしながら、何らかの原因で回転翼機に異常が発生した場合、自律飛行ができなくなり、回転翼機の落下等の事故が発生するおそれがある。そのため、回転翼機の安全性の向上が望まれている。 The rotary wing aircraft for transportation has an autonomous flight function that flies while specifying its own position by a GPS (Global Positioning System) signal or the like. However, if an abnormality occurs in the rotary wing aircraft for some reason, autonomous flight may not be possible, and an accident such as a fall of the rotary wing aircraft may occur. Therefore, it is desired to improve the safety of the rotary wing aircraft.
 特に、輸送用の回転翼機は、今後、より大きな荷物や、旅客を輸送できるように機体の大型化が進むと予想される。このような大型の回転翼機が何らかの原因で制御不能に陥って落下した場合、これまでの回転翼機に比べて、人や構造物に甚大な被害を与えるおそれがある。そのため、回転翼機の大型化を図る場合には、これまで以上に安全性を重視する必要がある。 In particular, it is expected that the size of rotary wing aircraft for transportation will increase in the future so that larger luggage and passengers can be transported. If such a large rotorcraft falls out of control for some reason, it may cause greater damage to people and structures than conventional rotorcraft aircraft. Therefore, when increasing the size of a rotary wing aircraft, it is necessary to place more importance on safety than ever before.
 そこで、本願発明者らは、回転翼機の安全性を向上させるために、例えば下記特許文献に開示されているような飛翔体用のパラシュートを回転翼機に取り付けることを検討した。 Therefore, in order to improve the safety of the rotorcraft, the inventors of the present application have considered attaching a parachute for a flying object, for example, as disclosed in the following patent document, to the rotorcraft.
特許第4785084号公報Japanese Patent No. 4785084
 しかしながら、従来の飛翔体用のパラシュートは、飛翔時に発生する気流によりパラシュートが開傘しやすいように設計されているため、上空において静止している状態から落下する時などのように、すぐに気流の効果を得られない場合に、パラシュートが直ちに開傘しないおそれがあることが発明者らの検討により明らかとなった。 However, conventional parachutes for flying objects are designed so that the parachute can be easily opened by the airflow generated during flight, so the airflow is immediate, such as when falling from a stationary state in the sky. It has become clear from the examination by the inventors that the parachute may not open immediately if the effect of the above is not obtained.
 本発明は、上述した課題に鑑みてなされたものであり、本発明の目的は、飛行装置の飛行時または落下時における気流の効果がすぐに得られない場合であっても、素早く確実にパラシュートを開傘可能な飛行装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to quickly and surely parachute even when the effect of airflow when the flight device is flying or falling is not immediately obtained. Is to provide a flight device that can open the umbrella.
 本発明の代表的な実施の形態に係る飛行装置は、機体ユニットと、前記機体ユニットに接続され、揚力を発生する揚力発生部と、前記揚力発生部を制御する飛行制御部と、パラシュートと、前記機体ユニットに設けられ、前記パラシュートを収容するパラシュート収容部と、前記パラシュートに連結された複数の飛翔体と、前記飛翔体毎に設けられ、対応する前記飛翔体を保持し、保持した前記飛翔体を射出するための複数の射出部と、飛行時の異常を検出する異常検出部と、前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部と、を備え、前記落下制御部は、前記複数の射出部のうち少なくとも1つの前記射出部の前記飛翔体を優先して射出することを特徴とする。 The flight device according to a typical embodiment of the present invention includes an aircraft unit, a lift generating unit connected to the aircraft unit to generate lift, a flight control unit that controls the lift generating unit, a parachute, and the like. A parachute accommodating portion provided in the aircraft unit and accommodating the parachute, a plurality of flying objects connected to the parachute, and the flight provided for each of the flying objects to hold and hold the corresponding flying object. A plurality of injection units for injecting a body, an abnormality detection unit for detecting an abnormality during flight, and a drop control unit for injecting the flying object from the injection unit in response to detection of an abnormality by the abnormality detection unit. The drop control unit is characterized in that the flying object of at least one of the plurality of injection units is preferentially ejected.
 本発明の一態様によれば、飛行装置の飛行時または落下時における気流の効果がすぐに得られない場合であっても、素早く確実にパラシュートを開傘することが可能となる。 According to one aspect of the present invention, it is possible to open the parachute quickly and surely even when the effect of the airflow when the flight device is flying or falling is not immediately obtained.
実施の形態1に係る飛行装置の外観を模式的に示す図である。It is a figure which shows typically the appearance of the flight apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る飛行装置に搭載されるパラシュート装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the parachute apparatus mounted on the flight apparatus which concerns on Embodiment 1. FIG. パラシュートが開いた状態を模式的に示す図である。It is a figure which shows typically the state which the parachute is open. 実施の形態1に係る飛行装置の機能ブロック図である。It is a functional block diagram of the flight apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る飛行装置による落下準備処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the fall preparation process by the flight apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る飛行装置による異常検知の流れを示すフローチャートである。It is a flowchart which shows the flow of abnormality detection by the flight apparatus which concerns on Embodiment 1. 実施の形態1に係るパラシュート開傘制御(ステップS5)の流れを示すフローチャートである。It is a flowchart which shows the flow of the parachute opening control (step S5) which concerns on Embodiment 1. パラシュート装置が3つの射出部を備えている場合における飛翔体の射出手順を説明するための図である。It is a figure for demonstrating the injection procedure of a flying object in the case where a parachute device includes three injection parts. パラシュート装置が4つの射出部を備えている場合における飛翔体の射出手順を説明するための図である。It is a figure for demonstrating the injection procedure of a flying object in the case where a parachute device includes four injection parts. パラシュート装置が6つの射出部を備えている場合における飛翔体の射出手順を説明するための図である。It is a figure for demonstrating the injection procedure of a flying object in the case where a parachute device includes six injection parts. パラシュート装置が8つの射出部を備えている場合における飛翔体の射出手順を説明するための図である。It is a figure for demonstrating the injection procedure of a flying object in the case where a parachute device includes eight injection parts. 第1の射出部群と第2の射出部群に分けて飛翔体を射出した場合におけるパラシュートの開傘の様子を模式的に示す図である。It is a figure which shows typically the state of the opening of the parachute when the flying object is ejected by dividing into the 1st injection part group and the 2nd injection part group. 実施の形態1に係る飛行装置のパラシュートが開いた状態を模式的に示す図である。It is a figure which shows typically the state in which the parachute of the flight apparatus which concerns on Embodiment 1 is open. 実施の形態2に係る飛行装置の機能ブロック図である。It is a functional block diagram of the flight apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係るパラシュート開傘制御(ステップS5)の流れを示すフローチャートである。It is a flowchart which shows the flow of the parachute opening control (step S5) which concerns on Embodiment 2. 飛翔体の射出時の機体ユニットの状態を模式的に示す図である。It is a figure which shows typically the state of the airframe unit at the time of injection of a flying object. 飛翔体の射出時の機体ユニットの状態を模式的に示す図である。It is a figure which shows typically the state of the airframe unit at the time of injection of a flying object. 別の実施の形態に係るパラシュート装置の機能ブロック図である。It is a functional block diagram of the parachute apparatus which concerns on another embodiment.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. 1. Outline of Embodiment First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.
 〔1〕本発明の代表的な実施の形態に係る飛行装置(1,1A,1B)は、機体ユニット(2)と、前記機体ユニットに接続され、揚力を発生する揚力発生部(3)と、前記揚力発生部を制御する飛行制御部(14)と、パラシュート(400)と、前記機体ユニットに設けられ、前記パラシュートを収容するパラシュート収容部(40)と、前記パラシュートに連結された複数の飛翔体(43)と、前記飛翔体毎に設けられ、対応する前記飛翔体を保持し、保持した前記飛翔体を射出するための複数の射出部(41)と、飛行時の異常を検出する異常検出部(15)と、前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部(16,16A,16B)とを備え、前記落下制御部は、前記複数の射出部のうち少なくとも1つの前記射出部の前記飛翔体を優先して射出することを特徴とする。 [1] The flight device (1,1A, 1B) according to a typical embodiment of the present invention includes a body unit (2) and a lift generating unit (3) connected to the body unit to generate lift. A flight control unit (14) for controlling the lift generating unit, a parachute (400), a parachute accommodating unit (40) provided in the aircraft unit and accommodating the parachute, and a plurality of parachutes connected to the parachute. A parachute (43), a plurality of injection units (41) provided for each parachute to hold the corresponding parachute and eject the held parachute, and an abnormality during flight are detected. An abnormality detection unit (15) and a drop control unit (16, 16A, 16B) for ejecting the flying object from the injection unit in response to the detection of the abnormality by the abnormality detection unit are provided. It is characterized in that the flying object of at least one of the plurality of ejection portions is preferentially ejected.
 〔2〕上記飛行装置において、前記落下制御部は、前記機体ユニットの最も風上の位置に配置された前記射出部の前記飛翔体を優先して射出してもよい。 [2] In the flight device, the fall control unit may preferentially inject the flying object of the injection unit located at the most windward position of the airframe unit.
 〔3〕上記飛行装置において、前記落下制御部は、前記機体ユニットの最も風上の位置と各前記射出部の位置とに基づいて、第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を優先して射出してもよい。 [3] In the flight device, the drop control unit identifies a first injection unit group based on the most windward position of the airframe unit and the position of each injection unit, and the first injection unit. The flying object of the group may be preferentially ejected.
 〔4〕上記飛行装置において、前記落下制御部は、前記機体ユニットの地上から最も遠い位置に配置された前記射出部の前記飛翔体を優先して射出してもよい。 [4] In the flight device, the fall control unit may preferentially inject the flying object of the injection unit located at the position farthest from the ground of the airframe unit.
 〔5〕上記飛行装置において、前記落下制御部は、前記機体ユニットの地上から最も遠い位置と各前記射出部の位置に基づいて、第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を優先して射出してもよい。 [5] In the flight device, the drop control unit identifies a first injection unit group based on the position farthest from the ground of the airframe unit and the position of each injection unit, and the first injection unit. The projectiles of the group may be preferentially ejected.
 〔6〕上記飛行装置において、前記落下制御部は、前記飛翔体を優先して射出した後に、残りの前記射出部の前記飛翔体を射出してもよい。 [6] In the flight device, the fall control unit may eject the flying object of the remaining ejecting unit after giving priority to the flying object.
 〔7〕上記飛行装置において、前記落下制御部は、前記飛翔体を優先して射出した後に、残りの前記射出部の前記飛翔体を時間をずらして射出してもよい。 [7] In the flight device, the fall control unit may eject the flying object with priority given to the flying object, and then eject the flying object of the remaining ejection unit at different times.
 〔8〕上記飛行装置は、風向を検出するセンサ部(12,28)を更に備え、前記落下制御部は、前記センサ部の検出結果と各前記射出部の位置に基づいて、前記第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を最初に射出してもよい。 [8] The flight device further includes sensor units (12, 28) for detecting the wind direction, and the drop control unit is based on the detection result of the sensor unit and the position of each injection unit. The injection unit group may be specified, and the flying object of the first injection unit group may be emitted first.
 〔9〕上記飛行装置において、前記機体ユニットの傾きを検出するセンサ部(12,24,27)を更に備え、前記落下制御部は、前記センサ部の検出結果と各前記射出部の位置に基づいて、前記第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を最初に射出してもよい。 [9] The flight device further includes sensor units (12, 24, 27) for detecting the inclination of the airframe unit, and the drop control unit is based on the detection result of the sensor unit and the position of each injection unit. Therefore, the first injection unit group may be specified, and the flying object of the first injection unit group may be emitted first.
 〔10〕本発明の代表的な実施の形態に係るパラシュート装置(4,4A,4B)は、パラシュート(400)と、機体ユニット(2,2A)に設けられ、前記パラシュートを収容するパラシュート収容部(40)と、前記パラシュートに連結された複数の飛翔体(43)と、前記飛翔体毎に設けられ、対応する前記飛翔体を保持し、保持した前記飛翔体を射出するための複数の射出部(41)と、飛行時の異常を検出する異常検出部(15,15B)と、前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部(16,16A,16B)と、を備え、前記落下制御部は、前記複数の射出部のうち少なくとも1つの前記射出部の前記飛翔体を優先して射出する。 [10] The parachute apparatus (4,4A, 4B) according to a typical embodiment of the present invention is provided on the parachute (400) and the airframe unit (2,2A), and is a parachute accommodating portion for accommodating the parachute. (40), a plurality of projectiles (43) connected to the parachute, and a plurality of ejections provided for each projectile to hold the corresponding projectile and eject the held projectile. A unit (41), an abnormality detection unit (15, 15B) that detects an abnormality during flight, and a drop control unit (16) that ejects the flying object from the injection unit in response to the detection of the abnormality by the abnormality detection unit. , 16A, 16B), and the drop control unit preferentially ejects the flying object of at least one of the plurality of injection portions.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals will be given to the components common to each embodiment, and the repeated description will be omitted. In addition, it should be noted that the drawings are schematic, and the dimensional relationship of each element, the ratio of each element, and the like may differ from the reality. Even between drawings, there may be parts with different dimensional relationships and ratios.
 ≪実施の形態1≫
 図1は、実施の形態1に係るパラシュート装置を搭載した飛行装置の外観を模式的に示す図である。図1に示される飛行装置1は、例えば、3つ以上のロータを搭載したマルチロータの回転翼機型の飛行装置であり、所謂ドローンである。
<< Embodiment 1 >>
FIG. 1 is a diagram schematically showing the appearance of a flight device equipped with the parachute device according to the first embodiment. The flight device 1 shown in FIG. 1 is, for example, a multi-rotor rotorcraft type flight device equipped with three or more rotors, and is a so-called drone.
 図1に示すように、飛行装置1は、機体ユニット2、揚力(推進力)発生部3_1~3_n(nは3以上の整数)、パラシュート装置4、報知装置5、およびアーム部6を備えている。 As shown in FIG. 1, the flight device 1 includes an airframe unit 2, lift (propulsion force) generating units 3_1 to 3_n (n is an integer of 3 or more), a parachute device 4, a notification device 5, and an arm unit 6. There is.
 機体ユニット2は、飛行装置1の本体部分である。機体ユニット2は、後述のように、飛行装置1の飛行を制御するための各種機能部を収容している。なお、図1では、一例として円柱状の機体ユニット2を図示しているが、機体ユニット2の形状は特に制限されない。 The airframe unit 2 is the main body of the flight device 1. As will be described later, the airframe unit 2 houses various functional units for controlling the flight of the flight device 1. Although FIG. 1 shows a columnar airframe unit 2 as an example, the shape of the airframe unit 2 is not particularly limited.
 揚力発生部3_1~3_nは、揚力を発生するロータである。なお、以下の説明において、各揚力発生部3_1~3_nを特に区別しない場合には、単に、「揚力発生部3」と表記する。飛行装置1が備える揚力発生部3の個数nは特に制限されないが、3つ以上であることが好ましい。例えば、飛行装置1は、3つの揚力発生部3を備えたトライコプター、4つの揚力発生部3を備えたクワッドコプター、6つの揚力発生部を備えたヘキサコプター、および8つの揚力発生部3を備えたオクトコプターなどの何れであってもよい。 Lift generating units 3_1 to 3_n are rotors that generate lift. In the following description, when each lift generating unit 3_1 to 3_n is not particularly distinguished, it is simply referred to as “lift generating unit 3”. The number n of the lift generating units 3 included in the flight device 1 is not particularly limited, but is preferably three or more. For example, the flight device 1 includes a tricopter with three lift generators 3, a quadcopter with four lift generators 3, a hexacopter with six lift generators, and eight lift generators 3. It may be any of the provided octocopters.
 なお、図1では、飛行装置1が4つ(n=4)の揚力発生部3_1~3_4を搭載したクワッドコプターである場合を一例として図示している。 Note that FIG. 1 shows a case where the flight device 1 is a quadcopter equipped with four (n = 4) lift generating units 3_1 to 3_4 as an example.
 揚力発生部3は、例えば、プロペラ30と、プロペラ30を回転させるモータ31とが筒状の筐体32に収容された構造を有している。筒状の筐体32の開口部には、プロペラ30との接触を防止するための網(例えば、樹脂材料や金属材料(ステンレス鋼等)等)が設けられていてもよい。 The lift generating unit 3 has, for example, a structure in which a propeller 30 and a motor 31 for rotating the propeller 30 are housed in a tubular housing 32. A net (for example, a resin material, a metal material (stainless steel, etc.), etc.) for preventing contact with the propeller 30 may be provided in the opening of the tubular housing 32.
 アーム部6は、機体ユニット2と各揚力発生部3とを連結するための構造体である。アーム部6は、機体ユニット2から、例えば、機体ユニット2の中心軸Oを中心として放射状に突出して形成されている。各アーム部6の先端には、揚力発生部3がそれぞれ取り付けられている。 The arm portion 6 is a structure for connecting the airframe unit 2 and each lift generating portion 3. The arm portion 6 is formed so as to project radially from the airframe unit 2, for example, about the central axis O of the airframe unit 2. A lift generating portion 3 is attached to the tip of each arm portion 6.
 報知装置5は、飛行装置1の外部に危険を知らせるための装置である。報知装置5は、例えば、LED(Light Emitting Diode)等から成る光源や音声発生装置(アンプおよびスピーカ等)を含んで構成されている。報知装置5は、後述する異常検出部15による異常の検出に応じて、飛行装置1が危険な状態であることを、光や音声によって外部に報知する。 The notification device 5 is a device for notifying the outside of the flight device 1 of danger. The notification device 5 includes, for example, a light source including an LED (Light Emitting Diode) and a sound generator (amplifier, speaker, etc.). The notification device 5 notifies the outside by light or voice that the flight device 1 is in a dangerous state in response to the detection of the abnormality by the abnormality detection unit 15 described later.
 なお、報知装置5は、機体ユニット2の外部に露出していてもよいし、光源から発生した光やスピーカから発生した音声等を外部に出力可能な形態で機体ユニット2の内部に収容されていてもよい。 The notification device 5 may be exposed to the outside of the airframe unit 2, or is housed inside the airframe unit 2 in a form capable of outputting light generated from a light source, voice generated from a speaker, or the like to the outside. You may.
 パラシュート装置4は、飛行装置1に異常が発生し、落下のおそれがある場合に、飛行装置1の落下速度を緩やかにして、飛行装置1を安全に落下させるための装置である。パラシュート装置4は、飛行装置1の機体ユニット2に設けられる。例えば図1に示すように、パラシュート装置4は、機体ユニット2の上面、すなわち飛行中の機体ユニット2において地面と反対側の面上に設置されている。 The parachute device 4 is a device for safely dropping the flight device 1 by slowing the fall speed of the flight device 1 when an abnormality occurs in the flight device 1 and there is a risk of falling. The parachute device 4 is provided in the airframe unit 2 of the flight device 1. For example, as shown in FIG. 1, the parachute device 4 is installed on the upper surface of the airframe unit 2, that is, on the surface of the airframe unit 2 in flight opposite to the ground.
 図2は、パラシュート装置4の構成を模式的に示す図である。同図には、パラシュート装置4の側断面が示されている。
 図3は、パラシュート装置4のパラシュート400が開いた状態を模式的に示す図である。
FIG. 2 is a diagram schematically showing the configuration of the parachute device 4. The figure shows a side cross section of the parachute device 4.
FIG. 3 is a diagram schematically showing a state in which the parachute 400 of the parachute device 4 is open.
 パラシュート装置4は、パラシュート400、パラシュート収容部40、射出部41、射出制御部42、および飛翔体43を備えている。図3に示すように、パラシュート400は、傘体(キャノピー)406、および傘体406とパラシュート収容部40(パラシュート取り付け部404)とを連結する吊索407を有している。 The parachute device 4 includes a parachute 400, a parachute accommodating unit 40, an injection unit 41, an injection control unit 42, and a flying object 43. As shown in FIG. 3, the parachute 400 has an umbrella body (canopy) 406 and a chordee 407 connecting the umbrella body 406 and the parachute accommodating portion 40 (parachute attachment portion 404).
 傘体406は、連結索46によって飛翔体43と連結されている。例えば、図3に示すように、連結索46は、傘体406の頂点よりもエッジ(周縁)側において、傘体406と接続されている。より具体的には、各連結索46は、互いに離間して、パラシュート400の周縁部に接続されている。例えば、図3に示すように、パラシュート400が開いたときの頂点側から見たときのパラシュート400の形状が円形状である場合には、各連結索46は、パラシュート400の周縁部の円周方向に沿って等間隔に、パラシュート400(傘体406)に接続される。 The umbrella body 406 is connected to the flying body 43 by the connecting rope 46. For example, as shown in FIG. 3, the connecting rope 46 is connected to the umbrella body 406 on the edge (peripheral) side of the apex of the umbrella body 406. More specifically, the connecting ropes 46 are separated from each other and connected to the peripheral edge of the parachute 400. For example, as shown in FIG. 3, when the shape of the parachute 400 when viewed from the apex side when the parachute 400 is opened is circular, each connecting rope 46 is the circumference of the peripheral portion of the parachute 400. It is connected to the parachute 400 (umbrella body 406) at equal intervals along the direction.
 なお、飛翔体43が1つのみ設けられる場合は、連結索46は、パラシュート400の周縁部のどこか一か所に接続されていればよい。この場合、連結索46が接続されるパラシュート400の周縁部上の位置については、特に制限されない。 If only one flying object 43 is provided, the connecting rope 46 may be connected to somewhere on the peripheral edge of the parachute 400. In this case, the position on the peripheral edge of the parachute 400 to which the connecting rope 46 is connected is not particularly limited.
 連結索46は、例えば、金属材料(例えば、ステンレス鋼)、または、繊維材料(例えば、ナイロン紐)から構成されている。 The connecting rope 46 is made of, for example, a metal material (for example, stainless steel) or a fiber material (for example, a nylon string).
 例えば、飛行装置1を低速で落下させるために必要な傘体406の直径Dは、下記式(1)に基づいて算出することができる。式(1)において、mは飛行装置1の総重量、vは飛行装置1の落下速度、ρは空気密度、Cdは抵抗係数である。 For example, the diameter D of the umbrella body 406 required to drop the flight device 1 at a low speed can be calculated based on the following formula (1). In the formula (1), m is the total weight of the flight device 1, v is the falling speed of the flight device 1, ρ is the air density, and Cd is the drag coefficient.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、飛行装置1の総重量m=250〔kg〕、抵抗係数Cd=0.9、空気密度ρ=1.3kg/mとしたとき、飛行装置1の落下速度vを5〔m/s〕とするために必要な傘体406の直径Dは、式(1)より14.6〔m〕と算出される。 For example, when the total weight of the flight device 1 is m = 250 [kg], the drag coefficient Cd = 0.9, and the air density ρ = 1.3 kg / m, the falling speed v of the flight device 1 is 5 [m / s]. The diameter D of the umbrella body 406 required for this is calculated as 14.6 [m] from the equation (1).
 例えば図2に示すように、パラシュート400は、その使用前において、傘体406が折り畳まれた状態でパラシュート収容部40に収容されている。 For example, as shown in FIG. 2, the parachute 400 is housed in the parachute housing unit 40 in a folded state of the umbrella body 406 before its use.
 パラシュート収容部40は、パラシュート400を収容する容器である。パラシュート収容部40は、例えば樹脂から構成されている。図1に示すように、パラシュート収容部40は、機体ユニット2の上面、すなわち飛行装置1の飛行時において地面と反対側の面に設定されている。例えば、パラシュート収容部40は、機体ユニットの上面において、機体ユニット2の中心軸Oとパラシュート収容部40の中心軸Pとが重なるように設置されていることが好ましい。 The parachute accommodating unit 40 is a container for accommodating the parachute 400. The parachute accommodating portion 40 is made of, for example, resin. As shown in FIG. 1, the parachute accommodating portion 40 is set on the upper surface of the airframe unit 2, that is, on the surface opposite to the ground during flight of the flight device 1. For example, the parachute accommodating portion 40 is preferably installed on the upper surface of the airframe unit so that the central axis O of the airframe unit 2 and the central axis P of the parachute accommodating unit 40 overlap.
 図2に示すように、パラシュート収容部40は、例えば、一端が開口し、他端が有底の筒形状を有する。具体的に、パラシュート収容部40は、例えば円筒状の側壁部401と、側壁部401の一端側の開口を塞ぐように形成された底部402とを有する。 As shown in FIG. 2, the parachute accommodating portion 40 has, for example, a tubular shape with one end open and the other end bottomed. Specifically, the parachute accommodating portion 40 has, for example, a cylindrical side wall portion 401 and a bottom portion 402 formed so as to close an opening on one end side of the side wall portion 401.
 側壁部401と底部402とによって、パラシュート400を収容するための収容空間403が画成されている。なお、側壁部401と底部402とは、それぞれ個別に形成されて接合されていてもよいし、一体形成されていてもよい。 A storage space 403 for accommodating the parachute 400 is defined by the side wall portion 401 and the bottom portion 402. The side wall portion 401 and the bottom portion 402 may be individually formed and joined, or may be integrally formed.
 図3に示すように、底部402には、パラシュート収容部40とパラシュート400とを連結するためのパラシュート取り付け部404が設けられている。例えば、パラシュート400の吊索407の一端がパラシュート取り付け部404に連結されることにより、パラシュート400とパラシュート収容部40とが連結される。 As shown in FIG. 3, the bottom portion 402 is provided with a parachute mounting portion 404 for connecting the parachute accommodating portion 40 and the parachute 400. For example, by connecting one end of the suspension rope 407 of the parachute 400 to the parachute attachment portion 404, the parachute 400 and the parachute accommodating portion 40 are connected.
 なお、パラシュート収容部40には、パラシュート400を収容空間403に収容した状態で側壁部401の開口した一端側を覆う蓋が設けられていてもよい。 The parachute accommodating portion 40 may be provided with a lid that covers one end side of the side wall portion 401 with the parachute 400 accommodating in the accommodating space 403.
 飛翔体43は、パラシュート400をパラシュート収容部40の外部に放出し、パラシュート400の開傘(展開)を補助するための装置である。飛翔体43は、例えばガスを噴射することによって推力を得る。飛翔体43は、上述したように連結索46を介して、パラシュート400と連結されている。 The flying object 43 is a device for discharging the parachute 400 to the outside of the parachute accommodating portion 40 and assisting in opening (deploying) the parachute 400. The projectile 43 obtains thrust, for example, by injecting gas. The projectile 43 is connected to the parachute 400 via the connecting rope 46 as described above.
 パラシュート装置4は、複数の飛翔体43を備えている。例えば、パラシュート装置4は、3つ以上の飛翔体43を備えていることが好ましい。図1には、パラシュート装置4が3つの飛翔体を備えている場合が例示されている。なお、飛翔体43の具体的な構成については後述する。 The parachute device 4 includes a plurality of projectiles 43. For example, the parachute device 4 preferably includes three or more projectiles 43. FIG. 1 illustrates a case where the parachute device 4 includes three flying objects. The specific configuration of the flying object 43 will be described later.
 射出部41は、飛翔体43を保持し、保持している飛翔体43を射出するため装置である。射出部41は、飛翔体43毎に設けられている。本実施の形態に係るパラシュート装置4は、3つの飛翔体43を別々に収容するために、3つの射出部41を備えている。
 図1および図2に示すように、射出部41は、一端が開口し、他端が有底の筒状(例えば円筒状)に形成されている。具体的に、射出部41は、例えば円筒状の側壁部411と、側壁部411の一端を覆う底部412とを有する。側壁部411と底部412とは、飛翔体43を収容するための収容空間を画成している。側壁部411および底部412は、例えば樹脂から構成されている。
The injection unit 41 is a device for holding the flying object 43 and ejecting the holding flying object 43. The injection unit 41 is provided for each flying object 43. The parachute device 4 according to the present embodiment includes three injection units 41 for separately accommodating the three flying objects 43.
As shown in FIGS. 1 and 2, the injection portion 41 is formed in a cylindrical shape (for example, a cylindrical shape) having an opening at one end and a bottom at the other end. Specifically, the injection portion 41 has, for example, a cylindrical side wall portion 411 and a bottom portion 412 that covers one end of the side wall portion 411. The side wall portion 411 and the bottom portion 412 define a storage space for accommodating the flying object 43. The side wall portion 411 and the bottom portion 412 are made of, for example, resin.
 各射出部41は、パラシュート収容部40に設けられている。具体的には、図2等に示すように、各射出部41は、側壁部411における底部412と反対側の端部に形成された開口部である射出口413がパラシュート収容部40の開口した一端側を向くようにパラシュート収容部40の外周面にそれぞれ接合されている。 Each injection unit 41 is provided in the parachute accommodating unit 40. Specifically, as shown in FIG. 2 and the like, in each injection portion 41, the injection port 413, which is an opening formed at the end of the side wall portion 411 opposite to the bottom portion 412, opens the parachute accommodating portion 40. It is joined to the outer peripheral surface of the parachute accommodating portion 40 so as to face one end side.
 また、各射出部41は、パラシュート収容部40の中心軸Pを中心とした回転方向において等間隔に配置されている。例えば、本実施の形態のように飛翔体43および射出部41が3つある場合には、各射出部41は、パラシュート収容部40の中心軸Pを中心とした回転方向に120°(=360°/3)間隔で配置される。 Further, the injection portions 41 are arranged at equal intervals in the rotation direction about the central axis P of the parachute accommodating portion 40. For example, when there are three flying objects 43 and three injection portions 41 as in the present embodiment, each injection portion 41 is 120 ° (= 360) in the rotation direction about the central axis P of the parachute accommodating portion 40. ° / 3) Arranged at intervals.
 飛翔体43は、ガス発生装置45と飛翔体本体部44とを有する。図2に示すように、飛翔体43は、飛翔体本体部44の一端側が射出部41の内部に挿入され、且つ、射出部41の内部においてガス発生装置45が射出部41の底部412と対面した状態で、配置されている。 The flying object 43 has a gas generator 45 and a flying object main body 44. As shown in FIG. 2, in the flying object 43, one end side of the flying object main body portion 44 is inserted inside the injection portion 41, and the gas generator 45 faces the bottom portion 412 of the injection portion 41 inside the injection portion 41. It is placed in the state of being.
 ガス発生装置45は、飛翔体43を射出部41の射出口413から外部に射出するための推力の基になるガスを発生する装置である。ガス発生装置45は、射出部41と飛翔体本体部44とによって画成される内部空間440に配置されている。ガス発生装置45は、例えば、点火薬およびガス発生剤を有する。 The gas generator 45 is a device that generates gas that is the basis of thrust for injecting the flying object 43 from the injection port 413 of the injection unit 41 to the outside. The gas generator 45 is arranged in an internal space 440 defined by an injection unit 41 and a flying object main body 44. The gas generator 45 includes, for example, an igniter and a gas generator.
 ガス発生装置45は、リード線(導線)47を介して、後述する射出制御部42と電気的に接続されている。ガス発生装置45は、射出制御部42から出力された点火信号に応じて点火薬に点火して、ガス発生剤を化学的に反応させることにより、ガスを発生させる。 The gas generator 45 is electrically connected to the injection control unit 42, which will be described later, via a lead wire (conductor) 47. The gas generator 45 ignites the igniting agent in response to the ignition signal output from the injection control unit 42, and chemically reacts the gas generating agent to generate gas.
 飛翔体本体部44は、ガス発生装置45を保持するとともに、連結索46と連結される部品である。飛翔体本体部44は、例えば、棒状に形成されている。より具体的には、飛翔体本体部44は、例えば一部が中空の円柱状に形成されている。飛翔体本体部44は、射出部41と係合されている。 The flying object main body 44 is a component that holds the gas generator 45 and is connected to the connecting rope 46. The flying object main body 44 is formed in a rod shape, for example. More specifically, the flying object main body 44 is formed in a hollow columnar shape, for example. The projectile body portion 44 is engaged with the injection portion 41.
 飛翔体本体部44は、一端においてガス発生装置45を保持し、他端において連結索46と連結されている。飛翔体本体部44は、例えば、樹脂から構成されている。 The flying object main body 44 holds the gas generator 45 at one end and is connected to the connecting rope 46 at the other end. The flying object main body 44 is made of, for example, resin.
 射出制御部42は、各射出部41に保持されている飛翔体43を射出するための制御を行う機能部である。射出制御部42は、例えば、落下制御部16からパラシュート400の開傘を指示する制御信号に応じて、点火信号を出力する電子回路である。点火信号は、リード線47を介して各飛翔体43に設けられたガス発生装置45の点火部(図示せず)にそれぞれ入力され、点火部は、入力された点火信号に応じて点火薬を点火する。 The injection control unit 42 is a functional unit that controls to eject the flying object 43 held by each injection unit 41. The injection control unit 42 is, for example, an electronic circuit that outputs an ignition signal from the drop control unit 16 in response to a control signal instructing the parachute 400 to open the umbrella. The ignition signal is input to the ignition unit (not shown) of the gas generator 45 provided in each flying object 43 via the lead wire 47, and the ignition unit emits an ignition charge according to the input ignition signal. Ignite.
 次に、機体ユニット2に収容されている各機能部について説明する。
 図4は、実施の形態1に係る飛行装置1の機能ブロック図である。
Next, each functional unit housed in the airframe unit 2 will be described.
FIG. 4 is a functional block diagram of the flight device 1 according to the first embodiment.
 図4に示すように、機体ユニット2は、電源部11、センサ部12、モータ駆動部13_1~13_n(nは3以上の整数)、飛行制御部14、異常検出部15、落下制御部16、通信部17、および記憶部18を含む。 As shown in FIG. 4, the airframe unit 2 includes a power supply unit 11, a sensor unit 12, a motor drive unit 13_1 to 13_n (n is an integer of 3 or more), a flight control unit 14, an abnormality detection unit 15, and a drop control unit 16. The communication unit 17 and the storage unit 18 are included.
 これらの機能部のうち、飛行制御部14、異常検出部15、および落下制御部16は、例えば、プロセッサ(例えば、CPU:Central Processing Unit)およびメモリ等の記憶装置を含むプログラム処理装置(例えば、マイクロコントローラ)によるプログラム処理と周辺回路(ハードウェア資源)との協働によって実現される。 Among these functional units, the flight control unit 14, the abnormality detection unit 15, and the drop control unit 16 are program processing devices (for example, a program processing device (for example, a CPU: Central Processing Unit) and a storage device such as a memory) including a processor (for example, a CPU: Central Processing Unit) and a storage device such as a memory. It is realized by the program processing by the (microcontroller) and the cooperation with the peripheral circuit (hardware resource).
 電源部11は、バッテリ22と電源回路23とを含む。バッテリ22は、例えば二次電池(例えば、リチウムイオン二次電池)である。電源回路23は、バッテリ22の出力電圧に基づいて電源電圧を生成し、上記機能部を構成する各ハードウェアに供給する回路である。電源回路23は、例えば複数のレギュレータ回路を含み、上記ハードウェア毎に適切な大きさの電源電圧を供給する。 The power supply unit 11 includes a battery 22 and a power supply circuit 23. The battery 22 is, for example, a secondary battery (for example, a lithium ion secondary battery). The power supply circuit 23 is a circuit that generates a power supply voltage based on the output voltage of the battery 22 and supplies it to each hardware constituting the functional unit. The power supply circuit 23 includes, for example, a plurality of regulator circuits, and supplies a power supply voltage of an appropriate magnitude for each of the above hardware.
 センサ部12は、飛行装置1の状態を検知する機能部である。センサ部12は、飛行装置1の機体の傾きや周囲環境における風量や風向き等を検出する。例えば、センサ部12は、角速度センサ24と、加速度センサ25と、磁気センサ26と、角度算出部27と、風量センサ28と含む。 The sensor unit 12 is a functional unit that detects the state of the flight device 1. The sensor unit 12 detects the inclination of the airframe of the flight device 1, the air volume, the wind direction, and the like in the surrounding environment. For example, the sensor unit 12 includes an angular velocity sensor 24, an acceleration sensor 25, a magnetic sensor 26, an angle calculation unit 27, and an air volume sensor 28.
 角速度センサ24は、角速度(回転速度)を検出するセンサである。例えば、角速度センサ24は、x軸、y軸、およびz軸の3つの基準軸に基づいて角速度を検出する3軸ジャイロセンサである。 The angular velocity sensor 24 is a sensor that detects the angular velocity (rotational velocity). For example, the angular velocity sensor 24 is a 3-axis gyro sensor that detects an angular velocity based on three reference axes of x-axis, y-axis, and z-axis.
 加速度センサ25は、加速度を検出するセンサである。例えば、加速度センサ25は、x軸、y軸、およびz軸の3つの基準軸に基づいて加速度を検出する3軸加速度センサである。 The acceleration sensor 25 is a sensor that detects acceleration. For example, the acceleration sensor 25 is a three-axis acceleration sensor that detects acceleration based on three reference axes of x-axis, y-axis, and z-axis.
 磁気センサ26は、地磁気を検出するセンサである。例えば、磁気センサ26は、x軸、y軸、およびz軸の3つの基準軸に基づいて方位(絶対方向)を検出する3軸地磁気センサ(電子コンパス)である。 The magnetic sensor 26 is a sensor that detects the geomagnetism. For example, the magnetic sensor 26 is a 3-axis geomagnetic sensor (electronic compass) that detects an orientation (absolute direction) based on three reference axes of x-axis, y-axis, and z-axis.
 角度算出部27は、角速度センサ24および加速度センサ25の少なくとも一方の検出結果に基づいて、飛行装置1の機体の傾きを算出する。ここで、飛行装置1の機体の傾きとは、地面(水平方向)に対する機体(機体ユニット2)の角度のことである。 The angle calculation unit 27 calculates the inclination of the airframe of the flight device 1 based on the detection results of at least one of the angular velocity sensor 24 and the acceleration sensor 25. Here, the inclination of the airframe of the flight device 1 is the angle of the airframe (airframe unit 2) with respect to the ground (horizontal direction).
 例えば、角度算出部27は、角速度センサ24の検出結果に基づいて、地面に対する機体の角度を算出してもよいし、角速度センサ24および加速度センサ25の検出結果に基づいて、地面に対する機体の角度を算出してもよい。なお、角速度センサ24や加速度センサ25の検出結果を用いた角度の算出方法は、公知の計算式を用いてもよい。 For example, the angle calculation unit 27 may calculate the angle of the aircraft with respect to the ground based on the detection result of the angular velocity sensor 24, or the angle of the aircraft with respect to the ground based on the detection results of the angular velocity sensor 24 and the acceleration sensor 25. May be calculated. As a method of calculating the angle using the detection results of the angular velocity sensor 24 and the acceleration sensor 25, a known calculation formula may be used.
 また、角度算出部27は、角速度センサ24および加速度センサ25の少なくとも一方の検出結果に基づいて算出した角度を、磁気センサ26の検出結果に基づいて補正してもよい。角度算出部27は、例えば、飛行制御部14等と同様に、マイクロコントローラによるプログラム処理によって実現される。 Further, the angle calculation unit 27 may correct the angle calculated based on the detection result of at least one of the angular velocity sensor 24 and the acceleration sensor 25 based on the detection result of the magnetic sensor 26. The angle calculation unit 27 is realized by program processing by a microcontroller, for example, like the flight control unit 14 and the like.
 風量センサ28は、風量および風向きを検出するセンサである。 The air volume sensor 28 is a sensor that detects the air volume and the wind direction.
 なお、センサ部12は、上述した各種センサに加えて、例えば、気圧センサ、超音波センサ、GPS受信機、およびカメラ等を含んでもよい。 Note that the sensor unit 12 may include, for example, a barometric pressure sensor, an ultrasonic sensor, a GPS receiver, a camera, and the like, in addition to the various sensors described above.
 通信部17は、外部装置9と通信を行うための機能部である。ここで、外部装置9は、飛行装置1の動作を制御し、飛行装置1の状態を監視する送信機やサーバ等である。通信部17は、例えば、アンテナおよびRF(Radio Frequency)回路等によって構成されている。通信部17と外部装置9との間の通信は、例えば、ISMバンド(2.4GHz帯)の無線通信によって実現される。 The communication unit 17 is a functional unit for communicating with the external device 9. Here, the external device 9 is a transmitter, a server, or the like that controls the operation of the flight device 1 and monitors the state of the flight device 1. The communication unit 17 is composed of, for example, an antenna, an RF (Radio Frequency) circuit, and the like. Communication between the communication unit 17 and the external device 9 is realized, for example, by wireless communication in the ISM band (2.4 GHz band).
 通信部17は、外部装置9から送信された飛行装置1の操作情報を受信して飛行制御部14に出力するとともに、センサ部12によって計測された各種計測データ等を外部装置9へ送信する。また、通信部17は、異常検出部15によって飛行装置1の異常が検出された場合に、飛行装置1に異常が発生したことを示す情報を外部装置9に送信する。また、通信部17は、飛行装置1が地上に落下した場合に、飛行装置1が落下したことを示す情報を外部装置9に送信する。更に、通信部17は、パラシュート400を開傘させたときにパラシュート400を開傘する制御を実行したことを示す情報を外部装置9に送信する。 The communication unit 17 receives the operation information of the flight device 1 transmitted from the external device 9 and outputs it to the flight control unit 14, and also transmits various measurement data and the like measured by the sensor unit 12 to the external device 9. Further, when the abnormality detection unit 15 detects an abnormality in the flight device 1, the communication unit 17 transmits information indicating that the abnormality has occurred in the flight device 1 to the external device 9. Further, when the flight device 1 falls to the ground, the communication unit 17 transmits information indicating that the flight device 1 has fallen to the external device 9. Further, the communication unit 17 transmits to the external device 9 information indicating that the control for opening the parachute 400 is executed when the parachute 400 is opened.
 モータ駆動部13_1~13_nは、揚力発生部3毎に設けられ、飛行制御部14からの指示に応じて、駆動対象のモータ31を駆動する機能部である。 The motor drive units 13_1 to 13_n are functional units provided for each lift generating unit 3 and driving the motor 31 to be driven in response to an instruction from the flight control unit 14.
 なお、以下の説明において、各モータ駆動部13_1~13_nを特に区別しない場合には、単に、「モータ駆動部13」と表記する。 In the following description, when each motor drive unit 13_1 to 13_n is not particularly distinguished, it is simply referred to as "motor drive unit 13".
 モータ駆動部13は、飛行制御部14から指示された回転数でモータ31が回転するように、モータ31を駆動する。例えば、モータ駆動部13は、ESC(Electronic Speed Controller)である。 The motor drive unit 13 drives the motor 31 so that the motor 31 rotates at the rotation speed instructed by the flight control unit 14. For example, the motor drive unit 13 is an ESC (Electronic Speed Controller).
 飛行制御部14は、飛行装置1の各機能部を統括的に制御する機能部である。
 飛行制御部14は、飛行装置1が安定して飛行するように揚力発生部3を制御する。具体的に、飛行制御部14は、通信部17によって受信した外部装置9からの操作情報(上昇や下降、前進や後退等の指示)と、センサ部12の検出結果とに基づいて、機体が安定した状態で所望の方向に飛行するように、各揚力発生部3のモータ31の適切な回転数を算出し、算出した回転数を各モータ駆動部13にそれぞれ指示する。
The flight control unit 14 is a functional unit that comprehensively controls each functional unit of the flight device 1.
The flight control unit 14 controls the lift generation unit 3 so that the flight device 1 flies stably. Specifically, the flight control unit 14 has the aircraft based on the operation information (instructions such as ascent / descent, forward / backward, etc.) received from the external device 9 received by the communication unit 17 and the detection result of the sensor unit 12. An appropriate rotation speed of the motor 31 of each lift generating unit 3 is calculated so as to fly in a desired direction in a stable state, and the calculated rotation speed is instructed to each motor driving unit 13.
 飛行制御部14は、例えば風等の外部からの影響によって機体の姿勢が乱れた場合に、角速度センサ24の検出結果に基づいて、機体が水平になるように、各揚力発生部3のモータ31の適切な回転数をそれぞれ算出し、算出した回転数を各モータ駆動部13にそれぞれ指示する。 The flight control unit 14 is a motor 31 of each lift generating unit 3 so that the airframe becomes horizontal based on the detection result of the angular velocity sensor 24 when the attitude of the airframe is disturbed by an external influence such as wind. Appropriate rotation speeds are calculated, and the calculated rotation speeds are instructed to each motor drive unit 13.
 また、例えば、飛行制御部14は、飛行装置1のホバリング時に飛行装置1のドリフトを防止するために、加速度センサ25の検出結果に基づいて各揚力発生部3のモータ31の適切な回転数を算出し、算出した回転数を各モータ駆動部13にそれぞれ指示する。 Further, for example, in order to prevent the flight device 1 from drifting when the flight device 1 is hovering, the flight control unit 14 determines the appropriate rotation speed of the motor 31 of each lift generating unit 3 based on the detection result of the acceleration sensor 25. It is calculated, and the calculated rotation speed is instructed to each motor drive unit 13.
 また、飛行制御部14は、通信部17を制御して、外部装置9との間で上述した各種データの送受信を実現する。 Further, the flight control unit 14 controls the communication unit 17 to realize the transmission and reception of various data described above with the external device 9.
 記憶部18は、飛行装置1の動作を制御するための各種プログラムやパラメータ等を記憶するための機能部である。例えば、記憶部18は、フラッシュメモリおよびROM等の不揮発性メモリやRAM等から構成されている。 The storage unit 18 is a functional unit for storing various programs, parameters, etc. for controlling the operation of the flight device 1. For example, the storage unit 18 is composed of a flash memory, a non-volatile memory such as a ROM, a RAM, and the like.
 記憶部18に記憶される上記パラメータは、例えば、後述する残容量閾値180、傾き閾値181、故障モータ数閾値182、落下判定閾値183、および風上判定閾値184である。 The parameters stored in the storage unit 18 are, for example, a remaining capacity threshold value 180, a tilt threshold value 181, a failure motor number threshold value 182, a fall determination threshold value 183, and an upwind determination threshold value 184, which will be described later.
 異常検出部15は、飛行時の異常を検出する機能部である。具体的に、異常検出部15は、センサ部12の検出結果と、バッテリ22の状態と、揚力発生部3の動作状態とを監視し、飛行装置1が異常状態であるか否かを判定する。 The abnormality detection unit 15 is a functional unit that detects an abnormality during flight. Specifically, the abnormality detection unit 15 monitors the detection result of the sensor unit 12, the state of the battery 22, and the operating state of the lift generating unit 3, and determines whether or not the flight device 1 is in an abnormal state. ..
 ここで、異常状態とは、飛行装置1の自律飛行が不可能になるおそれがある状態(自律飛行が不可能な状態も含む)を言う。例えば、揚力発生部3が故障したこと(故障した揚力発生部3の個数が故障モータ数閾値182を超えたこと)、バッテリ22の残容量が所定の閾値よりも低下したこと、機体(機体ユニット2)が異常に傾いたこと、および機体が落下していることの少なくとも一つが発生した状態を異常状態と言う。 Here, the abnormal state means a state in which autonomous flight of the flight device 1 may become impossible (including a state in which autonomous flight is impossible). For example, the lift generating unit 3 has failed (the number of the failed lift generating units 3 has exceeded the failure motor number threshold value 182), the remaining capacity of the battery 22 has dropped below a predetermined threshold value, and the airframe (airframe unit). A state in which at least one of 2) being abnormally tilted and the aircraft being dropped is called an abnormal state.
 異常検出部15は、揚力発生部3(モータ)の故障を検出した場合に、飛行装置1が異常状態であると判定する。ここで、揚力発生部3の故障とは、例えば、飛行制御部14が指定した回転数でモータ31が回転しないこと、プロペラ30が回転しないこと、およびプロペラ30が破損したこと等を言う。 When the abnormality detecting unit 15 detects a failure of the lift generating unit 3 (motor), the abnormality detecting unit 15 determines that the flight device 1 is in an abnormal state. Here, the failure of the lift generating unit 3 means, for example, that the motor 31 does not rotate at the rotation speed specified by the flight control unit 14, the propeller 30 does not rotate, the propeller 30 is damaged, and the like.
 具体的に、異常検出部15は、故障した揚力発生部3(モータ31)の数をカウントし、故障モータ数が故障モータ数閾値182以上になった場合に、飛行装置1が異常状態であると判定する。故障モータ数閾値182は、飛行装置1が異常状態であるか否かを判定するための、故障した揚力発生部3(モータ31)の数に関する基準値である。故障モータ数閾値182は、例えば、予め記憶部18に記憶されている。 Specifically, the abnormality detection unit 15 counts the number of failed lift generating units 3 (motors 31), and when the number of failed motors reaches the faulted motor number threshold value 182 or more, the flight device 1 is in an abnormal state. Is determined. The failed motor number threshold value 182 is a reference value regarding the number of failed lift generating units 3 (motors 31) for determining whether or not the flight device 1 is in an abnormal state. The fault motor number threshold value 182 is stored in the storage unit 18 in advance, for example.
 また、異常検出部15は、バッテリ22の残容量が所定の閾値(以下、「残容量閾値」とも称する。)180よりも低下したことを検出した場合に、飛行装置1が異常状態であると判定する。 Further, when the abnormality detection unit 15 detects that the remaining capacity of the battery 22 is lower than a predetermined threshold value (hereinafter, also referred to as “remaining capacity threshold value”) 180, the flight device 1 is in an abnormal state. judge.
 ここで、残容量閾値180は、例えば、飛行制御部14が指示した回転数でモータが回転できなくなる程度の容量値とすればよい。残容量閾値180は、例えば、予め記憶部18に記憶されている。 Here, the remaining capacity threshold value 180 may be set to a capacity value such that the motor cannot rotate at the rotation speed specified by the flight control unit 14, for example. The remaining capacity threshold value 180 is stored in the storage unit 18 in advance, for example.
 また、異常検出部15は、飛行装置1(機体)の異常な傾きを検出した場合に、飛行装置1が異常であると判定する。例えば、異常検出部15は、角度算出部27によって算出した角度が所定の閾値(以下、「傾き閾値」とも称する。)181を超えている状態が所定期間継続した場合に、飛行装置1が異常状態であると判定する。 Further, when the abnormality detection unit 15 detects an abnormal inclination of the flight device 1 (airframe), the abnormality detection unit 15 determines that the flight device 1 is abnormal. For example, in the abnormality detection unit 15, the flight device 1 is abnormal when the angle calculated by the angle calculation unit 27 exceeds a predetermined threshold value (hereinafter, also referred to as “tilt threshold value”) 181 for a predetermined period of time. Determined to be in a state.
 例えば、飛行装置1が前後方向に移動するときの角度(ピッチ角)や飛行装置1が左右方向に移動するときの角度(ロール角)を予め実験により取得する。傾き閾値181は、その実験によって得られた角度よりも大きい値に設定すればよい。傾き閾値181は、例えば、予め記憶部18に記憶されている。 For example, the angle (pitch angle) when the flight device 1 moves in the front-rear direction and the angle (roll angle) when the flight device 1 moves in the left-right direction are acquired in advance by an experiment. The inclination threshold value 181 may be set to a value larger than the angle obtained by the experiment. The inclination threshold value 181 is stored in the storage unit 18 in advance, for example.
 また、異常検出部15は、飛行装置1の機体(機体ユニット2)が落下状態であることを検出した場合に、飛行装置1が異常であると判定する。例えば、異常検出部15は、加速度センサ25の検出結果に基づいて、機体ユニット2の鉛直下向きの加速度が所定の閾値(以下、「落下判定閾値」とも称する。)183を超えていると判定した場合に、飛行装置1が異常であると判定する。 Further, when the abnormality detection unit 15 detects that the aircraft (airframe unit 2) of the flight device 1 is in a falling state, the abnormality detection unit 15 determines that the flight device 1 is abnormal. For example, the abnormality detection unit 15 has determined that the vertical downward acceleration of the airframe unit 2 exceeds a predetermined threshold value (hereinafter, also referred to as “fall determination threshold value”) 183 based on the detection result of the acceleration sensor 25. In this case, it is determined that the flight device 1 is abnormal.
 落下制御部(パラシュート制御部)16は、飛行装置1の落下を制御するための機能部である。具体的に、落下制御部16は、異常検出部15によって飛行装置1が異常状態であることが検出された場合に、飛行装置1を安全に落下させるための落下準備処理を実行する。 The fall control unit (parachute control unit) 16 is a functional unit for controlling the fall of the flight device 1. Specifically, when the abnormality detection unit 15 detects that the flight device 1 is in an abnormal state, the drop control unit 16 executes a fall preparation process for safely dropping the flight device 1.
 具体的に、落下制御部16は、落下準備処理として以下に示す処理を実行する。落下制御部16は、異常検出部15による異常の検出に応じて報知装置5を制御して、危険な状態であることを外部に報知する。また、落下制御部16は、異常検出部15による異常の検出に応じて各モータ駆動部13を制御して、各モータ31の回転を停止させる。 Specifically, the fall control unit 16 executes the following process as the fall preparation process. The drop control unit 16 controls the notification device 5 in response to the detection of the abnormality by the abnormality detection unit 15 to notify the outside that it is in a dangerous state. Further, the drop control unit 16 controls each motor drive unit 13 in response to the detection of the abnormality by the abnormality detection unit 15, and stops the rotation of each motor 31.
 更に、落下制御部16は、落下準備処理として、異常検出部15による異常の検出に応じて、パラシュートの開傘を指示する制御信号をパラシュート装置4(射出制御部42)に出力して、パラシュート400を開傘させる。 Further, as a fall preparation process, the fall control unit 16 outputs a control signal instructing the opening of the parachute to the parachute device 4 (injection control unit 42) in response to the detection of the abnormality by the abnormality detection unit 15, and the parachute. Open the 400.
 このとき、落下制御部16は、複数の飛翔体43を時間をずらして射出するパラシュート開傘制御を行う。パラシュート開傘制御において、落下制御部16は、複数の射出部41のうち少なくとも1つの射出部41の飛翔体43を優先して射出する。具体的に、落下制御部16は、パラシュート開傘制御として、機体ユニット2の最も風上の位置に配置された射出部41の飛翔体43を優先して射出する。 At this time, the fall control unit 16 controls the parachute opening to eject the plurality of flying objects 43 at different times. In the parachute opening control, the drop control unit 16 preferentially ejects the flying object 43 of at least one injection unit 41 out of the plurality of injection units 41. Specifically, the fall control unit 16 preferentially ejects the flying object 43 of the ejection unit 41 arranged at the most windward position of the airframe unit 2 as a parachute opening control.
 より具体的には、落下制御部16は、機体ユニット2の最も風上の位置と各射出部41の位置とに基づいて第1の射出部群を特定し、第1の射出部群の飛翔体43を優先して射出する。落下制御部16は、第1の射出部群の飛翔体43を優先して射出した後に、残りの射出部41の飛翔体43を射出する。このとき、落下制御部16は、例えば、残りの射出部41の飛翔体43の中で更に優先順位をつけて(時間をずらして)射出する。 More specifically, the drop control unit 16 identifies the first injection unit group based on the most upwind position of the airframe unit 2 and the position of each injection unit 41, and the flight of the first injection unit group. Priority is given to the body 43 to eject. The drop control unit 16 preferentially ejects the flying object 43 of the first ejection unit group, and then ejects the flying object 43 of the remaining ejection unit 41. At this time, for example, the drop control unit 16 further prioritizes (shifts the time) among the projectiles 43 of the remaining injection units 41 to inject.
 次に、実施の形態1に係る飛行装置1による落下準備処理の流れについて詳細に説明する。
 図5は、実施の形態1に係る飛行装置1による落下準備処理の流れを示すフローチャートである。
 図6は、実施の形態1に係る飛行装置1による異常検知の流れを示すフローチャートである。
Next, the flow of the fall preparation process by the flight device 1 according to the first embodiment will be described in detail.
FIG. 5 is a flowchart showing the flow of the fall preparation process by the flight device 1 according to the first embodiment.
FIG. 6 is a flowchart showing a flow of abnormality detection by the flight device 1 according to the first embodiment.
 飛行装置1が飛行している状態において、落下制御部16は、異常検出部15によって異常状態が検出されたか否かを判定する(ステップS1)。図5のステップS1において、異常検出部15は、飛行装置1の自律飛行が不可能になる虞がある状態であるか否か検出する。 While the flight device 1 is in flight, the drop control unit 16 determines whether or not an abnormal state has been detected by the abnormality detection unit 15 (step S1). In step S1 of FIG. 5, the abnormality detection unit 15 detects whether or not the flight device 1 is in a state where autonomous flight may become impossible.
 具体的には、図6に示すように、異常検出部15は、先ず、例えばユーザーによる外部装置9の操作等に応じて送信されたパラシュートの開傘を指示する指示信号を飛行装置1が受信したか否かを判断する(ステップS101)。 Specifically, as shown in FIG. 6, the abnormality detection unit 15 first receives an instruction signal instructing the opening of the parachute, which is transmitted in response to, for example, an operation of the external device 9 by the user, by the flight device 1. It is determined whether or not it has been done (step S101).
 飛行装置1が指示信号を受信した場合(ステップS101:YES)、異常検出部15は、飛行装置1が異常状態であると判定する(ステップS106)。これにより、ユーザーが目視等によって飛行装置1の異常を発見した場合に、飛行装置1に対してパラシュート400の開傘を指示することができる。 When the flight device 1 receives the instruction signal (step S101: YES), the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S106). As a result, when the user visually discovers an abnormality in the flight device 1, the flight device 1 can be instructed to open the parachute 400.
 飛行装置1が指示信号を受信していない場合(ステップS101:NO)、異常検出部15は、故障している揚力発生部3の数が故障モータ数閾値182を超えているか否かを判定する(ステップS102)。故障している揚力発生部3の数が故障モータ数閾値182を超えている場合(ステップS102:YES)、異常検出部15は、飛行装置1が異常状態であると判定する(ステップS106)。 When the flight device 1 has not received the instruction signal (step S101: NO), the abnormality detection unit 15 determines whether or not the number of the failed lift generating units 3 exceeds the failed motor number threshold value 182. (Step S102). When the number of failed lift generating units 3 exceeds the failed motor number threshold value 182 (step S102: YES), the abnormality detecting unit 15 determines that the flight device 1 is in an abnormal state (step S106).
 故障している揚力発生部3の数が故障モータ数閾値182を超えていない場合(ステップS102:NO)、異常検出部15は、飛行装置1(機体ユニット2)の傾きが傾き閾値181を超えている状態が所定期間継続したか否かを判定する(ステップS103)。
 飛行装置1の傾きが傾き閾値181を超えている状態が所定期間継続した場合(ステップS103:YES)、異常検出部15は、飛行装置1が異常状態であると判定する(ステップS106)。
When the number of failed lift generating units 3 does not exceed the failed motor number threshold value 182 (step S102: NO), the abnormality detecting unit 15 has the inclination of the flight device 1 (airframe unit 2) exceeding the tilt threshold value 181. It is determined whether or not the state of being in the state has continued for a predetermined period (step S103).
When the state in which the inclination of the flight device 1 exceeds the inclination threshold value 181 continues for a predetermined period (step S103: YES), the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S106).
 飛行装置1の傾きが傾き閾値181を超えている状態が所定期間継続していない場合(ステップS103:NO)、異常検出部15は、飛行装置1(機体ユニット2)が落下状態であるか否かを判定する(ステップS104)。飛行装置1が落下状態であると判定した場合(ステップS104:YES)、異常検出部15は、飛行装置1が異常状態であると判定する(ステップS106)。 When the state in which the inclination of the flight device 1 exceeds the inclination threshold value 181 has not continued for a predetermined period (step S103: NO), the abnormality detection unit 15 determines whether the flight device 1 (airframe unit 2) is in the falling state. (Step S104). When it is determined that the flight device 1 is in the falling state (step S104: YES), the abnormality detection unit 15 determines that the flight device 1 is in the abnormal state (step S106).
 飛行装置1が落下状態でないと判定した場合(ステップS104:NO)、異常検出部15は、バッテリ22の残容量が残容量閾値180を下回ったか否かを判定する(ステップS105)。残容量が残容量閾値180を下回ったと判定した場合(ステップS105:YES),異常検出部15は、飛行装置1が異常状態であると判定する(ステップS106)。一方、残容量が残容量閾値180を下回っていないと判定した場合(ステップS105:NO)、異常検出部15は、再び、ステップS101~S105の処理を実行する。 When it is determined that the flight device 1 is not in the falling state (step S104: NO), the abnormality detection unit 15 determines whether or not the remaining capacity of the battery 22 is below the remaining capacity threshold value 180 (step S105). When it is determined that the remaining capacity is below the remaining capacity threshold value 180 (step S105: YES), the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S106). On the other hand, when it is determined that the remaining capacity is not less than the remaining capacity threshold value 180 (step S105: NO), the abnormality detection unit 15 again executes the processes of steps S101 to S105.
 上述したステップS1の処理において、異常検出部15によって飛行装置1が異常状態であると判定されなかった場合(ステップS1:NO)、落下制御部16は、落下準備処理を開始せず、引き続き飛行装置1が安定して飛行するように制御を行いつつ、異常検出部15による異常の検出の有無を監視する。 If the flight device 1 is not determined to be in an abnormal state by the abnormality detection unit 15 in the process of step S1 described above (step S1: NO), the drop control unit 16 does not start the fall preparation process and continues to fly. While controlling the device 1 to fly stably, the abnormality detection unit 15 monitors the presence or absence of detection of an abnormality.
 一方、ステップS1において、異常検出部15によって飛行装置1が異常状態であると判定された場合(ステップS1:YES)、落下制御部16は、落下準備処理を開始する(ステップS2)。例えば、強風によって飛行装置1の機体(機体ユニット2)が傾き閾値181を超えて傾いた状態が所定期間継続した場合、異常検出部15は異常を検出したことを示す信号を落下制御部16に通知する。落下制御部16は、その信号を受信した場合に飛行装置1が落下するおそれがあると判定し、落下制御処理を開始する。 On the other hand, in step S1, when the abnormality detection unit 15 determines that the flight device 1 is in an abnormal state (step S1: YES), the fall control unit 16 starts the fall preparation process (step S2). For example, when the airframe (airframe unit 2) of the flight device 1 is tilted beyond the tilt threshold value 181 due to a strong wind for a predetermined period of time, the abnormality detection unit 15 sends a signal to the drop control unit 16 indicating that an abnormality has been detected. Notice. The fall control unit 16 determines that the flight device 1 may fall when it receives the signal, and starts the fall control process.
 落下制御処理において、先ず、落下制御部16は、報知装置5を制御して、飛行装置1が危険な状態であることを外部に報知する(ステップS3)。例えば、落下制御部16は、報知装置5を構成する光源を駆動して点滅する光を発生させる。また、落下制御部16は、報知装置5を構成する音声発生装置を駆動して警告音や退避を促すアナウンスを出力する。 In the fall control process, first, the fall control unit 16 controls the notification device 5 to notify the outside that the flight device 1 is in a dangerous state (step S3). For example, the drop control unit 16 drives a light source constituting the notification device 5 to generate blinking light. Further, the drop control unit 16 drives a voice generator constituting the notification device 5 to output a warning sound and an announcement prompting evacuation.
 次に、落下制御部16は、モータ31を停止する(ステップS4)。具体的に、落下制御部16は、各モータ駆動部13_1~13_nに対してモータ31の停止を指示する。これにより、飛行装置1のモータ31が停止し、プロペラ30の回転が停止する。 Next, the drop control unit 16 stops the motor 31 (step S4). Specifically, the drop control unit 16 instructs each motor drive unit 13_1 to 13_n to stop the motor 31. As a result, the motor 31 of the flight device 1 is stopped, and the rotation of the propeller 30 is stopped.
 なお、モータ駆動部13_1~13_nへの指示は、落下制御部16からモータ駆動部13_1~13_nへ直接行ってもよいし、落下制御部16から飛行制御部14を介してモータ駆動部13_1~13_nへ間接的に行ってもよい。 The instructions to the motor drive units 13_1 to 13_n may be given directly from the drop control unit 16 to the motor drive units 13_1 to 13_n, or from the drop control unit 16 via the flight control unit 14 to the motor drive units 13_1 to 13_n. You may go indirectly to.
 次に、落下制御部16は、パラシュート開傘制御を行う(ステップS5)。
 図7は、パラシュート開傘制御(ステップS5)の流れを示すフローチャートである。
 図8A~図8Dは、パラシュート装置4が複数の射出部41を備えている場合における飛翔体43の射出手順を説明するための図である。
Next, the fall control unit 16 controls the parachute opening (step S5).
FIG. 7 is a flowchart showing the flow of the parachute opening control (step S5).
8A to 8D are diagrams for explaining the injection procedure of the flying object 43 when the parachute device 4 includes a plurality of injection units 41.
 ステップS5において、先ず、落下制御部16は、機体ユニット2の最も風上の位置に配置された少なくとも1つの射出部41を含む第1の射出部群を選択する(S501)。例えば、落下制御部16は、先ず、記憶部18に記憶された機体ユニット2における各位置の座標情報と風量センサ28によって検出された風向とに基づいて、機体ユニット2の最も風上の位置を特定する。次に、落下制御部16は、特定した機体ユニット2の最も風上の位置の座標情報と、記憶部18に記憶されている各射出部41の座標情報とに基づいて、機体ユニット2の最も風上の位置と各射出部41の位置との間の距離を算出し、その距離が風上判定閾値184以下の射出部41を第1の射出部群として特定する。 In step S5, first, the drop control unit 16 selects a first injection unit group including at least one injection unit 41 arranged at the most windward position of the airframe unit 2 (S501). For example, the drop control unit 16 first determines the most windward position of the airframe unit 2 based on the coordinate information of each position in the airframe unit 2 stored in the storage unit 18 and the wind direction detected by the air volume sensor 28. Identify. Next, the fall control unit 16 is the most of the aircraft unit 2 based on the coordinate information of the identified windward position of the aircraft unit 2 and the coordinate information of each injection unit 41 stored in the storage unit 18. The distance between the position on the windward side and the position of each injection unit 41 is calculated, and the injection unit 41 whose distance is equal to or less than the windward determination threshold value of 184 is specified as the first injection unit group.
 例えば、図8Aに示すように、パラシュート装置4が3つの射出部41を備えている場合において、落下制御部16は、位置aが機体ユニット2において最も風上に近い座標であると特定したとき、位置aまでの距離が風上判定閾値よりも短い射出部41_1を含む射出部群Aを第1の射出部群とする。あるいは、図8Aにおいて、落下制御部16は、位置bが機体ユニット2において最も風上に近い座標であると特定したとき、位置bまでの距離が風上判定閾値よりも短い射出部41_1および射出部41_2を含む射出部群Bを第1の射出部群とする。 For example, as shown in FIG. 8A, when the parachute device 4 includes three injection units 41, when the drop control unit 16 specifies that the position a is the coordinate closest to the windward side in the airframe unit 2. The injection unit group A including the injection unit 41_1 whose distance to the position a is shorter than the windward determination threshold value is defined as the first injection unit group. Alternatively, in FIG. 8A, when the drop control unit 16 identifies that the position b is the coordinate closest to the windward side in the airframe unit 2, the injection unit 41_1 and the injection unit 16 whose distance to the position b is shorter than the windward determination threshold value. The injection unit group B including the unit 41_2 is defined as the first injection unit group.
 図8B、図8C、図8Dに示すように、パラシュート装置4が4乃至6つの射出部41を備えている場合も同様に、機体ユニット2において最も風上に近い座標である位置a,bからの距離に基づいて第1の射出部群を特定する。 As shown in FIGS. 8B, 8C, and 8D, when the parachute device 4 includes 4 to 6 injection units 41, similarly, from the positions a and b which are the coordinates closest to the windward side in the airframe unit 2. The first group of ejection parts is specified based on the distance of.
 次に、落下制御部16は、ステップS501で特定した第1の射出部群から飛翔体43を射出させる(ステップS502)。具体的には、落下制御部16は、特定した第1の射出部群から飛翔体43を射出することを指示する制御信号を射出制御部42に出力し、射出制御部42が点火信号を第1の射出部群に出力することにより、飛翔体43を射出させる。 Next, the drop control unit 16 ejects the projectile 43 from the first ejection unit group specified in step S501 (step S502). Specifically, the drop control unit 16 outputs a control signal instructing the injection control unit 42 to inject the flying object 43 from the specified first injection unit group, and the injection control unit 42 outputs the ignition signal to the injection control unit 42. By outputting to the ejection group of 1, the projectile 43 is ejected.
 次に、落下制御部16は、飛翔体43を射出していない残りの射出部41(第2の射出部群)の飛翔体を射出させる(ステップS503)。例えば、図8Dにおいて、ステップS502で第1の射出部群として選択された射出部41_1、41_2、41_8の飛翔体43を射出した場合、ステップS503では、第2の射出部群として残りの射出部41_3~41_7の飛翔体を射出する。 Next, the drop control unit 16 ejects the flying objects of the remaining ejection units 41 (second ejection unit group) that have not ejected the flying objects 43 (step S503). For example, in FIG. 8D, when the projectiles 43 of the injection units 41_1, 41_2, 41_8 selected as the first injection unit group in step S502 are ejected, in step S503, the remaining injection units are ejected as the second injection unit group. The projectiles 41_3 to 41_7 are ejected.
 このとき、落下制御部16は、第2の射出部群の全ての射出部41_3~41_7を同時に射出させてもよいし、第2の射出部群の射出部41を時間をずらして射出させてもよい。例えば、落下制御部16は、図8Dにおいて、第2の射出部群としての射出部41_3~41_7の飛翔体43を全て同時に射出してもよいし、射出部41_3~41_7の飛翔体43を時間差を設けて一つずつ順番に射出させてもよい。 At this time, the drop control unit 16 may simultaneously inject all the injection units 41_3 to 41_7 of the second injection unit group, or may inject the injection units 41 of the second injection unit group at different times. May be good. For example, in FIG. 8D, the drop control unit 16 may simultaneously inject all the projectiles 43 of the injection units 41_3 to 41_7 as the second injection unit group, or the projectiles 43 of the injection units 41_3 to 41_7 may be staggered. May be provided and injected one by one in order.
 時間差を設けて飛翔体43を射出する場合、落下制御部16は、第1の射出部群を起点として、機体ユニット2の上面側から見て右回りまたは左回りの順に、第2の射出部群の飛翔体43を順次射出させてもよい。あるいは、第2の射出部群のうちステップS501で特定された最も風上の位置から近い順に、飛翔体43を射出してもよい。例えば、図8Dにおいて、第1の射出部群Aの飛翔体43を射出した後、第2の射出部群のうち最も風上に近い射出部41_3、41_7の飛翔体を同時に射出し、その次に残りの射出部41うち最も風上に近い射出部41_4、41_6の飛翔体を同時に射出し、最後に射出部41_5の飛翔体43を射出させてもよい。 When the flying object 43 is ejected with a time lag, the drop control unit 16 starts from the first ejection unit group, and the second ejection unit 16 is clockwise or counterclockwise when viewed from the upper surface side of the airframe unit 2. The group of projectiles 43 may be ejected in sequence. Alternatively, the projectile 43 may be ejected in the order closest to the windward position specified in step S501 of the second ejection unit group. For example, in FIG. 8D, after ejecting the projectile 43 of the first ejection group A, the projectiles of the ejection sections 41_3 and 41_7 closest to the windward side of the second ejection group are simultaneously ejected, and then Of the remaining ejection portions 41, the projectiles of the ejection portions 41_4 and 41_6 closest to the windward may be ejected at the same time, and finally the projectiles 43 of the ejection portions 41_5 may be ejected.
 また、落下制御部16は、第2の射出部群の飛翔体43を射出するとき、飛翔体43を射出していない射出部41のうち最も風上に近い射出部41を特定し、特定した射出部41から飛翔体43を射出させる処理を繰り返し実行してもよい。 Further, when the drop control unit 16 ejects the flying object 43 of the second ejection unit group, the drop control unit 16 identifies and identifies the ejection unit 41 closest to the windward side among the ejection units 41 that have not ejected the flying object 43. The process of ejecting the projectile 43 from the ejection unit 41 may be repeatedly executed.
 図9は、第1の射出部群と第2の射出部群に分けて飛翔体43を射出した場合におけるパラシュート400の開傘の様子を模式的に示す図である。
 図10は、パラシュート400が開いた状態の飛行装置1を模式的に示す図である。
FIG. 9 is a diagram schematically showing a state in which the parachute 400 is opened when the flying object 43 is ejected by dividing it into a first ejection unit group and a second ejection unit group.
FIG. 10 is a diagram schematically showing a flight device 1 in a state where the parachute 400 is open.
 図9に示すように、風上側の第1の射出部群から優先して飛翔体43を射出することにより、放出されたパラシュート400(傘体406)の風上側の周縁部が風下側の周縁部よりも高い位置になるので、パラシュート400が風をはらみ易くなり、パラシュート400を確実かつ速やかに開傘させることができる。
 全ての飛翔体43が射出された後、図10に示すようにパラシュート400が開く。これにより、飛行装置1が地上へ向かってゆっくりと落下する。
As shown in FIG. 9, the windward peripheral edge of the released parachute 400 (umbrella body 406) is the leeward peripheral edge by ejecting the projectile 43 preferentially from the windward first ejection group. Since the position is higher than the portion, the parachute 400 can easily catch the wind, and the parachute 400 can be opened reliably and quickly.
After all the projectiles 43 have been ejected, the parachute 400 opens as shown in FIG. As a result, the flight device 1 slowly falls toward the ground.
 図5において、パラシュート開傘制御(ステップS5)の後、落下制御部16は、通信部17を介して飛行装置1が落下したことを外部装置9に通知する(ステップS6)。
 なお、外部装置9への通知は、落下制御処理の開始(ステップS2)の後であれば、どのタイミングで行ってもよい。例えば、飛行装置1が着陸した後に行ってもよいし、落下制御処理(ステップS2)の開始直後であってもよい。
In FIG. 5, after the parachute opening control (step S5), the fall control unit 16 notifies the external device 9 that the flight device 1 has fallen via the communication unit 17 (step S6).
The notification to the external device 9 may be performed at any timing as long as it is after the start of the drop control process (step S2). For example, it may be performed after the flight device 1 has landed, or immediately after the start of the fall control process (step S2).
 また、落下制御部16は、飛行装置1が落下したことを外部装置9に通知するとき、GPS受信機によって取得した落下場所の位置情報も一緒に、外部装置9に通知してもよい。上述した手順により、飛行装置1の落下制御処理が行われる。 Further, when the fall control unit 16 notifies the external device 9 that the flight device 1 has fallen, the fall control unit 16 may also notify the external device 9 of the position information of the fall location acquired by the GPS receiver. According to the procedure described above, the fall control process of the flight device 1 is performed.
 以上、実施の形態1に係る飛行装置1は、パラシュートを射出するとき、複数の射出部41のうち少なくとも1つの射出部41の飛翔体43を優先して射出する。
 これによれば、飛行環境に応じてパラシュートが適切に開傘するように制御することができる。具体的には、上述したように、機体ユニット2の最も風上の位置に配置された射出部41の飛翔体43を優先して射出する。より具体的には、機体ユニット2の最も風上の位置と各射出部41の位置とに基づいて、第1の射出部群を特定し、第1の射出部群の飛翔体43を優先して射出する。これによれば、放出されたパラシュート400が風をはらみ易くなり、パラシュート400を確実かつ速やかに開傘させることができる。
As described above, when the parachute is ejected, the flight device 1 according to the first embodiment preferentially ejects the flying object 43 of at least one of the plurality of ejection units 41.
According to this, it is possible to control the parachute to open the umbrella appropriately according to the flight environment. Specifically, as described above, the flying object 43 of the injection unit 41 arranged at the most windward position of the airframe unit 2 is preferentially ejected. More specifically, the first injection unit group is specified based on the most windward position of the airframe unit 2 and the position of each injection unit 41, and the projectile 43 of the first injection unit group is prioritized. And eject. According to this, the released parachute 400 becomes easy to catch the wind, and the parachute 400 can be opened reliably and quickly.
 ≪実施の形態2≫
 図11は、実施の形態2に係る飛行装置1Aの機能ブロック図である。
 実施の形態2に係る飛行装置1Aは、パラシュート開傘制御として飛行装置1Aの落下時に機体ユニット2Aの地上から最も遠い位置に配置された飛翔体43を優先して射出する点において、実施の形態1に係る飛行装置1と相違し、その他の点においては実施の形態1に係る飛行装置1と同様である。
<< Embodiment 2 >>
FIG. 11 is a functional block diagram of the flight device 1A according to the second embodiment.
The flight device 1A according to the second embodiment preferentially ejects a flying object 43 arranged at the position farthest from the ground of the airframe unit 2A when the flight device 1A falls as a parachute opening control. It is different from the flight device 1 according to the first embodiment, and is the same as the flight device 1 according to the first embodiment in other respects.
 実施の形態2に係る飛行装置1Aによる落下準備処理の全体的な流れは、実施の形態1に係る飛行装置1と同様であり、パラシュート開傘制御(ステップS5)の内容が相違する。以下、実施の形態2に係る飛行装置1によるパラシュート開傘制御(ステップS5A)について、詳細に説明する。 The overall flow of the fall preparation process by the flight device 1A according to the second embodiment is the same as that of the flight device 1 according to the first embodiment, and the content of the parachute opening control (step S5) is different. Hereinafter, the parachute opening control (step S5A) by the flight device 1 according to the second embodiment will be described in detail.
 図12は、実施の形態2に係る飛行装置1Aによるパラシュート開傘制御(ステップS5A)の流れを示すフローチャートである。 FIG. 12 is a flowchart showing the flow of the parachute opening control (step S5A) by the flight device 1A according to the second embodiment.
 ステップS5Aにおいて、先ず、落下制御部16Aは、センサ部12の検出結果に基づいて、飛翔体43が射出されていない射出部41のうち機体ユニット2の地上から最も遠い位置に配置された少なくとも1つの射出部41を含む第1の射出部群を特定する(ステップS501A)。 In step S5A, first, based on the detection result of the sensor unit 12, the drop control unit 16A is arranged at least one of the injection units 41 in which the flying object 43 is not ejected at the position farthest from the ground of the airframe unit 2. A first group of injection units including one injection unit 41 is specified (step S501A).
 具体的には、落下制御部16Aは、記憶部18Aに記憶された各射出部41の座標情報と、角度算出部27によって算出された角度とに基づいて、全ての射出部41の中から機体ユニット2の地上から最も遠い位置に配置されている射出部41を特定し、第1の射出部群とする。 Specifically, the drop control unit 16A selects the aircraft from all the injection units 41 based on the coordinate information of each injection unit 41 stored in the storage unit 18A and the angle calculated by the angle calculation unit 27. The injection unit 41 located at the position farthest from the ground of the unit 2 is specified and used as the first injection unit group.
 次に、落下制御部16Aは、ステップS501Aで特定した第1の射出部群から飛翔体43を射出させる(ステップS502A)。具体的には、落下制御部16は、特定した第1の射出部群から飛翔体43を射出することを指示する制御信号を射出制御部42に出力し、射出制御部42が点火信号を第1の射出部群に出力することにより、飛翔体43を射出させる。 Next, the drop control unit 16A ejects the projectile 43 from the first ejection unit group specified in step S501A (step S502A). Specifically, the drop control unit 16 outputs a control signal instructing the injection control unit 42 to inject the flying object 43 from the specified first injection unit group, and the injection control unit 42 outputs the ignition signal to the injection control unit 42. By outputting to the ejection group of 1, the projectile 43 is ejected.
 次に、落下制御部16Aは、飛翔体43を射出していない残りの射出部41(第2の射出部群)の飛翔体を射出させる(ステップS503A)。
 このとき、落下制御部16Aは、第2の射出部群の全ての射出部41を同時に射出させてもよいし、第2の射出部群の射出部41を時間をずらして射出させてもよい。時間差を設けて各飛翔体43を射出する場合、落下制御部16Aは、第1の射出部群を起点として、機体ユニット2Aの上面側から見て右回りまたは左回りの順に、第2の射出部群の飛翔体43を順次射出させてもよい。あるいは、落下制御部16Aは、第2の射出部群の飛翔体43を射出するとき、飛翔体43を射出していない射出部41のうち機体ユニット2Aの地上から最も遠い位置に配置されている射出部41を特定し、特定した射出部41から飛翔体43を射出させる処理を繰り返し実行してもよい。
Next, the drop control unit 16A ejects the flying objects of the remaining ejection units 41 (second ejection unit group) that have not ejected the flying objects 43 (step S503A).
At this time, the drop control unit 16A may simultaneously inject all the injection units 41 of the second injection unit group, or may inject the injection units 41 of the second injection unit group at different times. .. When each projectile 43 is ejected with a time lag, the drop control unit 16A starts from the first ejection unit group and ejects the second projectile in the order of clockwise or counterclockwise when viewed from the upper surface side of the airframe unit 2A. The projectiles 43 of the group may be sequentially ejected. Alternatively, the drop control unit 16A is arranged at the position farthest from the ground of the airframe unit 2A among the injection units 41 that have not ejected the flying object 43 when the flying object 43 of the second ejection unit group is ejected. The process of specifying the injection unit 41 and injecting the flying object 43 from the specified injection unit 41 may be repeatedly executed.
 以上、実施の形態2に係る飛行装置1Aは、機体ユニット2Aの地上から最も遠い位置に配置された射出部41の飛翔体43を優先して射出する。これによれば、パラシュート400が完全に開く前に飛行装置1Aの機体を水平な状態に近づけることが可能となるので、落下中の飛行装置1Aの姿勢が安定し、飛行装置1Aの落下速度をより緩やかにすることが可能となる。 As described above, the flight device 1A according to the second embodiment preferentially ejects the flying object 43 of the ejection unit 41 arranged at the position farthest from the ground of the airframe unit 2A. According to this, it is possible to bring the aircraft of the flight device 1A closer to the horizontal state before the parachute 400 is completely opened, so that the attitude of the flight device 1A during the fall is stable and the fall speed of the flight device 1A is reduced. It can be made more lenient.
 より具体的には、落下制御部16Aは、センサ部12の検出結果に基づいて、飛翔体43を射出していない射出部41のうち機体ユニット2Aの地上から最も遠い位置に配置された射出部41を選択し、選択した射出部41の飛翔体43を最初に射出する。 More specifically, the drop control unit 16A is an injection unit arranged at the position farthest from the ground of the airframe unit 2A among the injection units 41 that do not emit the flying object 43 based on the detection result of the sensor unit 12. 41 is selected, and the projectile 43 of the selected injection unit 41 is first ejected.
 これによれば、図13Aに示すように、最初の飛翔体43を発射したときの反動により、飛翔体43の射出方向Sと反対方向の力Fが機体ユニット2の地上から最も遠い側に加わる。その結果、図13Bに示すように、機体ユニット2をより水平に近い状態にすることが可能となる。この状態において、次の飛翔体43を射出した場合、その飛翔体43によって牽引されるパラシュート400を地上に対してより垂直な方向に打ち上げることができるので、二つ目の飛翔体43によって牽引されるパラシュート400が空気をはらみ易くなり、そのパラシュート400をより早く開かせることが可能となる。その結果、機体ユニット2に加わっている地上に向かう方向の力を軽減し、飛行装置1Aの落下時間をより長くすることができるので、飛行装置1Aの落下時の安全性を更に向上させることが可能となる。 According to this, as shown in FIG. 13A, due to the reaction when the first projectile 43 is launched, a force F in the direction opposite to the injection direction S of the projectile 43 is applied to the farthest side of the airframe unit 2 from the ground. .. As a result, as shown in FIG. 13B, the airframe unit 2 can be brought into a state closer to horizontal. In this state, when the next projectile 43 is ejected, the parachute 400 towed by the projectile 43 can be launched in a direction more perpendicular to the ground, so that the parachute 400 is towed by the second projectile 43. The parachute 400 can easily catch air, and the parachute 400 can be opened faster. As a result, the force applied to the airframe unit 2 in the direction toward the ground can be reduced, and the fall time of the flight device 1A can be lengthened, so that the safety of the flight device 1A when it falls can be further improved. It will be possible.
 ≪実施の形態の拡張≫
 以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<< Expansion of embodiment >>
The inventions made by the present inventors have been specifically described above based on the embodiments, but it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. stomach.
 例えば、上記実施の形態において、射出制御部42がパラシュート装置4に設けられる場合を例示したが、これに限られない。例えば、射出制御部42は、飛行装置1に設けられていてもよい。 For example, in the above embodiment, the case where the injection control unit 42 is provided in the parachute device 4 has been illustrated, but the present invention is not limited to this. For example, the injection control unit 42 may be provided in the flight device 1.
 また、上記実施の形態では、機体ユニット2,2A側に設けられた落下制御部16,16Aからの信号に応じてパラシュート装置4が飛翔体43を射出する場合を例示したが、これに限られない。例えば、図14に示すように、パラシュート装置4Bが、センサ部12B、異常検出部15B、および落下制御部16Bを含む異常状態検知機構を備えていてもよい。センサ部12B、異常検出部15B、および落下制御部16Bは、それぞれセンサ部12、異常検出部15、および落下制御部16と同様の機能を有している。これによれば、パラシュート装置4B自らが異常状態を検出して飛翔体43を射出することが可能となる。 Further, in the above embodiment, the case where the parachute device 4 ejects the projectile 43 in response to the signals from the drop control units 16 and 16A provided on the airframe units 2 and 2A is illustrated, but the present invention is limited to this. No. For example, as shown in FIG. 14, the parachute device 4B may include an abnormality state detection mechanism including a sensor unit 12B, an abnormality detection unit 15B, and a drop control unit 16B. The sensor unit 12B, the abnormality detection unit 15B, and the drop control unit 16B have the same functions as the sensor unit 12, the abnormality detection unit 15, and the drop control unit 16, respectively. According to this, the parachute device 4B itself can detect the abnormal state and eject the projectile 43.
 この場合、機体ユニット2は、センサ部12、異常検出部15、および落下制御部16を含む異常状態検知機構を有していてもよいし、有していなくてもよい。機体ユニット2とパラシュート装置4Bがそれぞれ異常状態検知機構を有することにより、何等かの原因で一方の異常状態検知機構が異常状態を検知できなかった場合であっても、他方の異常状態検知機構によって異常状態を検知して、より確実にパラシュート400を開傘することが可能となる。 In this case, the airframe unit 2 may or may not have an abnormal state detection mechanism including a sensor unit 12, an abnormality detecting unit 15, and a drop control unit 16. Since the aircraft unit 2 and the parachute device 4B each have an abnormal state detection mechanism, even if one of the abnormal state detection mechanisms cannot detect the abnormal state for some reason, the other abnormal state detection mechanism can be used. It is possible to detect an abnormal state and open the parachute 400 more reliably.
 また、上記実施の形態では、パラシュート収容部40が円筒状である場合を例示したが、これに限られない。すなわち、パラシュート収容部40は、内部にパラシュート400を収容するための空間を有していればよく、例えば、中空の多角柱(例えば四角柱)状であってもよい。 Further, in the above embodiment, the case where the parachute accommodating portion 40 has a cylindrical shape is illustrated, but the present invention is not limited to this. That is, the parachute accommodating portion 40 may have a space for accommodating the parachute 400 inside, and may be, for example, a hollow polygonal column (for example, a square column).
 また、上記実施の形態において、射出部41の外形が円筒状である場合を例示したが、これに限られない。すなわち、射出部41は、内部に飛翔体43を収容し、飛翔体43を射出可能な構造であればよく、例えば、外形が多角柱(例えば四角柱)状で、飛翔体43を収容する内部空間が円筒状であってもよい。但し、その場合は、飛翔体43の内部形状を射出部41に合わせる必要がある。 Further, in the above embodiment, the case where the outer shape of the injection portion 41 is cylindrical has been illustrated, but the present invention is not limited to this. That is, the injection unit 41 may have a structure in which the flying object 43 is housed and the flying body 43 can be ejected. The space may be cylindrical. However, in that case, it is necessary to match the internal shape of the flying object 43 with the injection portion 41.
 また、上記実施の形態に係る飛行装置1において、通常状態での飛行を制御するための機能部としての飛行制御部14等と、異常発生時の落下制御を行うための機能部としての異常検出部15、落下制御部16、および記憶部18とが同一のバッテリ22からの電源供給によって動作する場合を例示したが、これに限られない。
 例えば、通常状態での飛行を制御するための機能部用のバッテリと、異常発生時の落下制御を行うための機能部用のバッテリとをそれぞれ別個に用意してもよい。これによれば、通常状態での飛行を制御するための機能部用のバッテリに異常が発生して電源供給が行えなくなった場合であっても、落下制御処理を実行することが可能となる。
Further, in the flight device 1 according to the above embodiment, a flight control unit 14 or the like as a functional unit for controlling flight in a normal state and an abnormality detection as a functional unit for performing fall control when an abnormality occurs. The case where the unit 15, the drop control unit 16, and the storage unit 18 operate by supplying power from the same battery 22 has been illustrated, but the present invention is not limited to this.
For example, a battery for a functional unit for controlling flight in a normal state and a battery for a functional unit for controlling a fall when an abnormality occurs may be prepared separately. According to this, even when an abnormality occurs in the battery for the functional unit for controlling the flight in the normal state and the power supply cannot be performed, the drop control process can be executed.
 また、異常発生時の落下制御を行うための機能部は、上述した2つのバッテリからの電源供給が選択できるように構成されていてもよい。これによれば、一方のバッテリに異常が発生した場合でも他方のバッテリから電源供給を受けることができるので、落下制御処理を確実に実行することが可能となる。 Further, the functional unit for performing drop control when an abnormality occurs may be configured so that power supply from the above-mentioned two batteries can be selected. According to this, even if an abnormality occurs in one battery, power can be supplied from the other battery, so that the drop control process can be reliably executed.
 また、上記実施の形態において、機体ユニット2の下面にエアバッグなどの衝撃緩衝部材を設けてもよい。これによれば、飛行装置1の落下時の安全性を更に向上させることができる。 Further, in the above embodiment, a shock absorbing member such as an airbag may be provided on the lower surface of the airframe unit 2. According to this, it is possible to further improve the safety of the flight device 1 when it falls.
 1,1A,1B…飛行装置、2,2A…機体ユニット、3…揚力発生部、4,4A,4B…パラシュート装置、5…報知装置、6…アーム部、9…外部装置、11…電源部、12,12B…センサ部、13…モータ駆動部、14…飛行制御部、15,15B…異常検出部、16,16A,16B…落下制御部、17…通信部、18,18A…記憶部、22…バッテリ、23…電源回路、24…角速度センサ、25…加速度センサ、26…磁気センサ、27…角度算出部、28…風量センサ、30…プロペラ、31…モータ、32…筐体、40…パラシュート収容部、41…射出部、42…射出制御部、43…飛翔体、44…飛翔体本体部、45…ガス発生装置、46…連結索、47…リード線、180…残容量閾値、181…傾き閾値、182…故障モータ数閾値、183…落下判定閾値、184…風上判定閾値、400…パラシュート、401…側壁部、402…底部、403…収容空間、404…パラシュート取り付け部、406…傘体(キャノピー)、407…吊索、411…側壁部、412…底部、413…射出口、440…内部空間。 1,1A, 1B ... Flight device, 2,2A ... Aircraft unit, 3 ... Lift generator, 4,4A, 4B ... Parachute device, 5 ... Notification device, 6 ... Arm section, 9 ... External device, 11 ... Power supply section , 12, 12B ... Sensor unit, 13 ... Motor drive unit, 14 ... Flight control unit, 15, 15B ... Abnormality detection unit, 16, 16A, 16B ... Drop control unit, 17 ... Communication unit, 18, 18A ... Storage unit, 22 ... Battery, 23 ... Power circuit, 24 ... Angle speed sensor, 25 ... Acceleration sensor, 26 ... Magnetic sensor, 27 ... Angle calculation unit, 28 ... Air volume sensor, 30 ... Propeller, 31 ... Motor, 32 ... Housing, 40 ... Parachute accommodating unit, 41 ... injection unit, 42 ... injection control unit, 43 ... flying object, 44 ... flying object main body, 45 ... gas generator, 46 ... connecting cord, 47 ... lead wire, 180 ... remaining capacity threshold, 181 ... Tilt threshold, 182 ... Failure motor number threshold, 183 ... Fall judgment threshold, 184 ... Upwind judgment threshold, 400 ... Parachute, 401 ... Side wall, 402 ... Bottom, 403 ... Accommodation space, 404 ... Parachute mounting part, 406 ... Umbrella (canopy), 407 ... hanging rope, 411 ... side wall, 412 ... bottom, 413 ... outlet, 440 ... internal space.

Claims (10)

  1.  機体ユニットと、
     前記機体ユニットに接続され、揚力を発生する揚力発生部と、
     前記揚力発生部を制御する飛行制御部と、
     パラシュートと、
     前記機体ユニットに設けられ、前記パラシュートを収容するパラシュート収容部と、
     前記パラシュートに連結された複数の飛翔体と、
     前記飛翔体毎に設けられ、対応する前記飛翔体を保持し、保持した前記飛翔体を射出するための複数の射出部と、
     飛行時の異常を検出する異常検出部と、
     前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部と、を備え、
     前記落下制御部は、前記複数の射出部のうち少なくとも1つの前記射出部の前記飛翔体を優先して射出することを特徴とする飛行装置。
    Airframe unit and
    A lift generating unit that is connected to the airframe unit and generates lift,
    A flight control unit that controls the lift generation unit and
    With a parachute
    A parachute accommodating portion provided in the airframe unit and accommodating the parachute,
    A plurality of flying objects connected to the parachute,
    A plurality of injection portions provided for each of the projectiles, for holding the corresponding projectiles and ejecting the held projectiles, and
    Anomaly detection unit that detects abnormalities during flight,
    A drop control unit that ejects the flying object from the injection unit in response to the detection of the abnormality by the abnormality detection unit is provided.
    The drop control unit is a flight device that preferentially ejects the flying object of at least one of the plurality of injection units.
  2.  請求項1に記載の飛行装置において、
     前記落下制御部は、前記機体ユニットの最も風上の位置に配置された前記射出部の前記飛翔体を優先して射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to claim 1,
    The drop control unit is a flight device that preferentially ejects the flying object of the injection unit arranged at the most windward position of the airframe unit.
  3.  請求項2に記載の飛行装置において、
     前記落下制御部は、前記機体ユニットの最も風上の位置と各前記射出部の位置とに基づいて、第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を優先して射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to claim 2.
    The drop control unit identifies the first injection unit group based on the most windward position of the airframe unit and the position of each injection unit, and gives priority to the flying object of the first injection unit group. A flight device characterized by firing.
  4.  請求項1に記載の飛行装置において、
     前記落下制御部は、前記機体ユニットの地上から最も遠い位置に配置された前記射出部の前記飛翔体を優先して射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to claim 1,
    The fall control unit is a flight device that preferentially ejects the flying object of the injection unit located at the position farthest from the ground of the airframe unit.
  5.  請求項4に記載の飛行装置において、
     前記落下制御部は、前記機体ユニットの地上から最も遠い位置と各前記射出部の位置に基づいて、第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を優先して射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to claim 4,
    The drop control unit identifies the first injection unit group based on the position farthest from the ground of the airframe unit and the position of each injection unit, and gives priority to the flying object of the first injection unit group. A flight device characterized by ejecting.
  6.  請求項1乃至5の何れか一項に記載の飛行装置において、
     前記落下制御部は、前記飛翔体を優先して射出した後に、残りの前記射出部の前記飛翔体を射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to any one of claims 1 to 5.
    The fall control unit is a flight device characterized in that after preferentially ejecting the flying object, the flying object of the remaining ejection unit is ejected.
  7.  請求項1乃至5の何れか一項に記載の飛行装置において、
     前記落下制御部は、前記飛翔体を優先して射出した後に、残りの前記射出部の前記飛翔体を時間をずらして射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to any one of claims 1 to 5.
    The fall control unit is a flight device characterized in that after preferentially ejecting the flying object, the remaining projectile of the injection unit is ejected at different times.
  8.  請求項3に記載の飛行装置において、
     風向を検出するセンサ部を更に備え、
     前記落下制御部は、
     前記センサ部の検出結果と各前記射出部の位置に基づいて、前記第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を最初に射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to claim 3,
    Further equipped with a sensor unit that detects the wind direction,
    The drop control unit
    A flight characterized in that the first injection unit group is specified based on the detection result of the sensor unit and the position of each injection unit, and the flying object of the first injection unit group is first emitted. Device.
  9.  請求項5に記載の飛行装置において、
     前記機体ユニットの傾きを検出するセンサ部を更に備え、
     前記落下制御部は、
     前記センサ部の検出結果と各前記射出部の位置に基づいて、前記第1の射出部群を特定し、前記第1の射出部群の前記飛翔体を最初に射出する
     ことを特徴とする飛行装置。
    In the flight apparatus according to claim 5.
    Further equipped with a sensor unit for detecting the inclination of the airframe unit,
    The drop control unit
    A flight characterized in that the first injection unit group is specified based on the detection result of the sensor unit and the position of each injection unit, and the flying object of the first injection unit group is first emitted. Device.
  10.  パラシュートと、
     機体ユニットに設けられ、前記パラシュートを収容するパラシュート収容部と、
     前記パラシュートに連結された複数の飛翔体と、
     前記飛翔体毎に設けられ、対応する前記飛翔体を保持し、保持した前記飛翔体を射出するための複数の射出部と、
     飛行時の異常を検出する異常検出部と、
     前記異常検出部による異常の検出に応じて、前記飛翔体を前記射出部から射出させる落下制御部と、を備え、
     前記落下制御部は、前記複数の射出部のうち少なくとも1つの前記射出部の前記飛翔体を優先して射出する
     ことを特徴とするパラシュート装置。
    With a parachute
    A parachute accommodating unit provided in the airframe unit and accommodating the parachute,
    A plurality of flying objects connected to the parachute,
    A plurality of injection portions provided for each of the projectiles, for holding the corresponding projectiles and ejecting the held projectiles, and
    Anomaly detection unit that detects abnormalities during flight,
    A drop control unit that ejects the flying object from the injection unit in response to the detection of the abnormality by the abnormality detection unit is provided.
    The parachute device is characterized in that the drop control unit preferentially ejects the flying object of at least one of the plurality of injection portions.
PCT/JP2021/000157 2020-02-10 2021-01-06 Flying device and parachute device WO2021161685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-020714 2020-02-10
JP2020020714A JP7237028B2 (en) 2020-02-10 2020-02-10 flight device and ballast device

Publications (1)

Publication Number Publication Date
WO2021161685A1 true WO2021161685A1 (en) 2021-08-19

Family

ID=77291513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000157 WO2021161685A1 (en) 2020-02-10 2021-01-06 Flying device and parachute device

Country Status (2)

Country Link
JP (1) JP7237028B2 (en)
WO (1) WO2021161685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220348337A1 (en) * 2019-07-24 2022-11-03 Minebea Mitsumi Inc. Parachute device, flight device, and flying body ejection mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571871B1 (en) * 2021-11-15 2023-08-29 노서은 Multi rotor drone capable of emergency landing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193055A (en) * 2017-05-16 2018-12-06 日本化薬株式会社 Expand device of parachute or paraglider, and flying object therewith
US20190016468A1 (en) * 2016-08-26 2019-01-17 Kitty Hawk Corporation Rocket-based inverted parachute deployment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190016468A1 (en) * 2016-08-26 2019-01-17 Kitty Hawk Corporation Rocket-based inverted parachute deployment system
JP2018193055A (en) * 2017-05-16 2018-12-06 日本化薬株式会社 Expand device of parachute or paraglider, and flying object therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220348337A1 (en) * 2019-07-24 2022-11-03 Minebea Mitsumi Inc. Parachute device, flight device, and flying body ejection mechanism
US11772803B2 (en) * 2019-07-24 2023-10-03 Minebea Mitsumi Inc. Parachute device, flight device, and flying body ejection mechanism

Also Published As

Publication number Publication date
JP2021126910A (en) 2021-09-02
JP7237028B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
JP7046923B2 (en) Aircraft and how to control the aircraft
US11745873B2 (en) Flying apparatus
JP7224271B2 (en) Parachute device, flight device, and projectile ejection mechanism
WO2021161685A1 (en) Flying device and parachute device
JP7128131B2 (en) Parachute device, flight device, projectile ejection mechanism
WO2020230614A1 (en) Parachute device, flight device, and injection molding mechanism for flying body
JP7104662B2 (en) Parachute and flight equipment
JP7360921B2 (en) Parachute equipment and flight equipment
WO2021014712A1 (en) Parachute device, flight device, and flying body ejection mechanism
CN113453983B (en) Parachute device, flight device and flight body launching mechanism
CN114126967B (en) Parachute device, flight device and flight body launching mechanism
JP2023003136A (en) Parachute device, ejection device, and flight device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754587

Country of ref document: EP

Kind code of ref document: A1