WO2021149384A1 - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- WO2021149384A1 WO2021149384A1 PCT/JP2020/045765 JP2020045765W WO2021149384A1 WO 2021149384 A1 WO2021149384 A1 WO 2021149384A1 JP 2020045765 W JP2020045765 W JP 2020045765W WO 2021149384 A1 WO2021149384 A1 WO 2021149384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerator
- mode
- operation mode
- electrode
- refrigerating chamber
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/14—Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
Definitions
- This disclosure relates to a refrigerator equipped with an atomizer in the storage room.
- the present disclosure provides a refrigerator capable of quickly supplying mist by continuing to supply water to the atomizing electrode, which is a discharge electrode.
- the refrigerator in the present disclosure includes a refrigerator compartment and an electrostatic atomizer arranged in the refrigerator compartment to atomize water by applying a high voltage.
- the electrostatic atomizer has an atomizing electrode, a counter electrode facing the atomizing electrode, and a Perche element for cooling the atomizing electrode.
- the operation mode of the electrostatic atomizer is a freezing mode in which the atomizing electrode is cooled by energizing the Perche element to freeze the moisture in the air to the atomizing electrode, and a freezing mode in which the energization of the Perche element is stopped to atomize.
- the electrode has a melting mode in which frozen ice is melted to generate water, and an atomization mode in which a high voltage is applied between the atomizing electrode and the counter electrode and the Perche element is energized.
- FIG. 1 is a front view of the refrigerator according to the first embodiment of the present disclosure.
- FIG. 2 is a vertical sectional view of the refrigerator.
- FIG. 3 is a cross-sectional view of the refrigerator above the refrigerator compartment.
- FIG. 4 is an enlarged view of the electrostatic atomizer portion of the refrigerator.
- FIG. 5 is a perspective view of the atomizing cover member of the refrigerator.
- FIG. 6 is a time chart of the electrostatic atomizer of the refrigerator according to the first embodiment in the first operation mode.
- FIG. 7 is a time chart of the electrostatic atomizer of the refrigerator of the first embodiment in the second operation mode.
- FIG. 1 is a front view of the refrigerator
- FIG. 2 is a vertical sectional view of the refrigerator as viewed from the right side.
- the refrigerator 1 includes a refrigerator main body 2 having an open front (left side in the X direction shown in FIG. 2).
- the refrigerator main body 2 is composed of a metal outer plate 3 constituting an outer shell, an inner plate 4 made of hard resin, and a heat insulating material 5 foam-filled between the outer plate 3 and the inner plate 4. .
- a plurality of storage chambers are formed by heat insulating partition plates 6, 7, and 8.
- each storage room of the refrigerator main body 2 is configured to be openable and closable by a rotary refrigerating room door 9 or drawer type doors 10, 11, 12, 13 which adopts the same heat insulating structure as the refrigerator main body 2. Has been done.
- a refrigerating chamber 14 is arranged at the uppermost part.
- a switching chamber 15 capable of switching the temperature zone
- an ice making chamber 16 arranged side by side in the switching chamber 15, a vegetable chamber 17, and a freezing chamber 18 are provided.
- the switching chamber 15 is vertically partitioned from the refrigerating chamber 14 by the heat insulating partition plate 6 and is arranged below the heat insulating partition plate 6.
- the ice making chamber 16 is arranged in a heat insulating section next to the switching chamber 15.
- the vegetable compartment 17 is vertically partitioned from the switching chamber 15 and the ice making chamber 16 by the heat insulating partition plate 7, and is arranged below the heat insulating partition plate 7.
- the freezing chamber 18 is vertically partitioned from the vegetable compartment 17 by the heat insulating partition plate 8 and is arranged below the heat insulating partition plate 8.
- a plurality of shelf boards 19 are arranged in a plurality of stages in the vertical direction.
- a partial chamber 20 having a cooling temperature zone different from that of the refrigerating chamber 14 is arranged.
- the refrigerating room 14 is a storage room for refrigerating and storing, and specifically, the temperature is set to about 2 to 3 ° C. for cooling. Further, the temperature of the partial chamber 20 provided in the refrigerating chamber 14 is set to about -3 ° C, which is suitable for microfreezing storage. The temperature of the partial chamber 20 can be set even in a chilled temperature zone of around 1 ° C.
- the vegetable compartment 17 is a storage chamber whose temperature is set slightly higher than that of the refrigerator compartment 14, and specifically, the temperature is set to 4 to 7 ° C. for cooling. Since the vegetable compartment 17 becomes highly humid due to the moisture emitted from the stored food such as vegetables, dew condensation may occur if it is locally cooled too much. Therefore, by setting the vegetable compartment 17 to a relatively high temperature, the amount of cooling is reduced to suppress the occurrence of dew condensation due to local overcooling.
- the freezing chamber 18 is a storage chamber whose temperature is set in the freezing temperature zone, and is usually cooled by setting the temperature to about -18 ° C. However, in order to improve the frozen storage state of the stored food, the temperature may be set to a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C. and cooled.
- the switching chamber 15 is a storage chamber in which the temperature inside the refrigerator can be changed, and can be switched from the refrigerating temperature zone to the freezing temperature zone according to the application.
- a cooling chamber 21 is arranged on the back surface of the vegetable compartment 17 (on the right side in the X direction in FIG. 2).
- a cooler 22 for generating cold air and a cooling fan 23 for supplying cold air to each chamber are arranged.
- a defrosting means 24 (hereinafter, referred to as a heater) composed of a glass tube heater or the like is provided.
- the cooler 22 the compressor 25, the heat exchanger (not shown), the dew-proof pipe (not shown) that prevents dew from the openings of each chamber, and the capillary tube (not shown).
- the refrigeration cycle is configured by being connected in an annular shape, and the cooling is performed by the cooler 22 by the circulation of the refrigerant compressed by the compressor 25.
- the cooling fan 23 is provided above the cooler 22.
- a part of the cold air cooled by the cooler 22 is supplied to the refrigerating chamber 14 through the refrigerating chamber cold air passage 26 communicating with the cooling chamber 21 on the downstream side of the cooling fan 23 by forced ventilation by the cooling fan 23. ..
- a part of the cold air cooled by the cooler 22 is supplied to the freezing chamber 18 through the freezing chamber cold air passage 27 by the forced ventilation of the cooling fan 23.
- the cold air circulating in the refrigerating chamber 14 or a part of the cold air cooled by the cooler 22 is supplied to the vegetable chamber 17 through the vegetable chamber cold air passage (not shown). In this way, the refrigerator 1 is configured so that each room is cooled.
- the heat insulating partition plate 6 that separates the refrigerating chamber 14, the switching chamber 15, and the ice making chamber is provided with a refrigerating chamber damper 39 that adjusts the amount of cold air to the refrigerating chamber 14.
- FIG. 3 is a vertical cross-sectional view of the upper part of the refrigerator compartment 14.
- FIG. 4 is an enlarged view of the electrostatic atomizing device portion in FIG. 3
- FIG. 5 is a perspective view of the atomizing cover member.
- An electrostatic atomizer 29 is provided on the top surface portion 28 of the refrigerating chamber 14, which is an inner plate 4 constituting the inner wall of the refrigerating chamber 14.
- the electrostatic atomizer 29 generates nano-sized negative ion mist in the storage chamber.
- the electrostatic atomizing device 29 includes an atomizing unit 30 that condenses moisture in the air in the refrigerating chamber 14, and a circuit unit 31 that applies a high voltage to the atomizing unit 30.
- the atomizing unit 30 includes an atomizing electrode 40 that generates negative ion mist and a counter electrode 41 that is arranged so as to face the atomizing electrode 40.
- a perche element 42 is provided as a supply means for supplying moisture in the air to the atomizing electrode 40.
- the circuit unit 31 energizes the heat exchange unit Pelche element 42. As a result, heat transfer occurs in the Pelche element 42, and the atomizing electrode 40 is cooled via a cooling unit connected to the endothermic side of the Pelche element 42.
- the humidity of the refrigerating chamber 14 is a low humidity environment of about 20 to 30%, the atomizing electrode 40 is less likely to condense dew.
- the moisture in the air is cooled and frozen ice is generated on the atomizing electrode 40.
- the Pelche element 42 by stopping the energization of the Pelche element 42, the frozen ice is melted on the atomizing electrode 40 and water is generated.
- a high voltage is applied between the atomizing electrode 40 and the counter electrode 41 via the transformer of the circuit unit 31, and the Pelche element 42 is energized to atomize the generated water and mist. Is configured to generate.
- a refrigerating chamber cold air passage 26 is provided behind the electrostatic atomizer 29, that is, on the back surface of the refrigerating chamber 14.
- the refrigerating chamber cold air passage 26 extends from the lower end portion of the refrigerating chamber 14 to a position above the uppermost shelf board 19 and below the top surface portion 28.
- the refrigerating chamber cold air passage 26 is provided with a plurality of outlets. Of the outlets provided in the cold air passage 26 of the refrigerating chamber, the outlet 26a provided at the uppermost portion opens toward the top surface 28.
- the top surface portion 28 is provided with a lighting device 32 composed of LEDs (light-emitting diodes) that illuminate the inside of the refrigerating chamber 14.
- the lighting device 32 and the electrostatic atomizing device 29 are arranged in order from the front opening side of the refrigerating chamber 14.
- a space 33 is formed between the electrostatic atomizer 29 and the outlet 26a of the refrigerating chamber cold air passage 26.
- the electrostatic atomizer 29 is arranged closer to the lighting device 32 than the cold air passage 26 in the refrigerator compartment.
- a control board storage unit 35 for storing a control board 34 that controls the operation of the refrigerator 1 is arranged on the outer plate 3 that constitutes the top wall of the refrigerator 1.
- the control board storage portion 35 is formed by a recessed portion provided on the top surface wall, and the control board 34 is housed in the control board storage portion 35.
- the electrostatic atomizer 29 is arranged below the control board 34 in which the wall thickness of the top surface portion 28 is thinner than the position of the front opening of the refrigerating chamber 14.
- the atomizing cover member 37 of the electrostatic atomizing device 29 is formed so as to project from the top surface portion 28 toward the uppermost shelf plate 19 of the refrigerating chamber 14 toward the inside of the refrigerator.
- a mist discharge port 37e formed so as to have a plurality of stages in the vertical direction is arranged on the side surface portion 37d of the atomization cover member 37.
- the atomization cover member 37 is configured so that mist can be discharged into the refrigerating chamber 14 through the mist discharge port 37e.
- the mist discharge port 37e of the atomization cover member 37 is formed in a stepped shape so that the position of the mist discharge port 37e approaches the atomization portion 30 or the circuit portion 31 toward the lower stage.
- mist can be discharged from the mist discharge port 37e.
- Various odorous components are decomposed by OH radicals contained in the mist, and the effects of sterilization and deodorization in the refrigerating chamber 14 can be maintained.
- the bottom surface portion of the atomizing cover member 37 is arranged so as to be inclined upward toward the front opening of the refrigerating chamber 14. Therefore, it is possible to more effectively prevent the mist discharge port 37e from being blocked by food or the like.
- the side surface portion 37d of the atomizing cover member 37 is formed so as to project into the refrigerator. Therefore, the mist discharge port 37e formed on the side surface portion 37d is also arranged at a position protruding in the internal space. Therefore, the air in the refrigerator is easily taken into the atomizing cover member 37.
- the mist discharge port 37e functions as an intake port for taking in the moisture contained in the air together with the air inside the refrigerator. That is, when water is generated in the atomizing section 30, the moisture in the air inside the atomizing cover member 37 decreases, but this mist discharge port 37e serves as an intake hole for taking in the air inside the atomizing cover member 37.
- this mist discharge port 37e serves as an intake hole for taking in the air inside the atomizing cover member 37.
- An opening 37g is formed on the side of the atomizing cover member 37 facing the outlet 26a.
- An opening 37h is formed on the side of the atomizing cover member 37 that does not face the outlet 26a.
- the opening area of the opening 37g is smaller than the opening area of the opening 37h.
- two outlets 26a are formed in the left-right width direction of the refrigerating chamber cold air passage 26.
- the uppermost outlet 26a is distributed and arranged on both the left and right sides so that the atomizing portion 30 is arranged between the extension lines of the two outlets 26a in the front-rear direction. There is. In this way, the low-humidity cold air blown out from the outlet 26a is configured so as not to directly hit the atomizing portion 30.
- FIG. 6 is a time chart showing the operation of the electrostatic atomizer 29, and is a time chart of the electrostatic atomizer 29 when the temperature detected by the outside air temperature sensor (not shown) installed in the refrigerator 1 is 15 ° C. or higher. The first operation mode is shown.
- the operation is performed in the order of a freezing mode in which the moisture in the air is frozen on the atomizing electrode 40, a melting mode in which the frozen ice is thawed to generate water, and an atomization mode in which the generated water is atomized. Will be done. As a result, the mist is sprayed onto the refrigerator compartment 14.
- a freezing mode in which the moisture in the air is frozen on the atomizing electrode 40
- a melting mode in which the frozen ice is thawed to generate water
- an atomization mode in which the generated water is atomized.
- the operation of the freezing mode is performed.
- the perche element 42 is energized and the atomizing electrode 40 is cooled for a predetermined time.
- a high current of 1.5 A is applied to the Pelche element 42 to increase the cooling capacity, and the moisture in the air in the refrigerating chamber 14 is frozen by the atomizing electrode 40.
- the freezing mode is started when the refrigerator damper 39 is closed. Therefore, the low-temperature, low-humidity cold air heat-exchanged by the cooler 22 is not discharged from the outlet 26a, and the relatively high-humidity air that circulates in the refrigerating chamber 14 and exchanges heat is supplied to the electrostatic atomizer 29. Will be done. That is, while suppressing the decrease in water content, the cooling capacity can be increased by energizing the Pelche element 42 with a high current, and the water content can be continuously frozen on the atomizing electrode 40.
- the operation time of the freezing mode is 10 minutes, and the freezing mode is continued for 10 minutes.
- This operating time can be changed.
- the operating time may be changed depending on the load conditions. For example, when there are many stored items in the refrigerating chamber 14, the humidity inside the refrigerator tends to be high, so that the predetermined time, which is the operating time of the freezing mode, may be shortened as compared with the case where there are few stored items.
- the operation of the thawing mode is started next.
- the operating time of the melting mode is 30 seconds in the case of the example of the present embodiment, and the melting mode is continued for 30 seconds.
- the energization of the Pelche element 42 is stopped for a predetermined time, and water is generated by melting the frozen ice on the atomizing electrode 40.
- the melting mode is even more preferably performed with the refrigerator damper 39 closed so that the generated water does not dry out.
- the operation of the atomization mode is started next.
- the operation time of the atomization mode is 15 minutes, and the atomization mode is continued for 15 minutes.
- a high voltage is applied between the atomization electrode 40 and the counter electrode 41, and the perche element 42 is also energized.
- the atomizing electrode 40 is cooled while atomizing to condense moisture in the air. Can be done. Therefore, in the atomization mode, nano-sized negative ion mist can be continuously and quickly sprayed onto the refrigerating chamber 14.
- the Pelche element 42 When the Pelche element 42 is not energized during the atomization mode, the heat on the heat dissipation side of the atomization unit 30 is transferred to the endothermic side and the temperature of the atomization electrode 40 rises. Further, the low humidity environment of the refrigerating chamber 14 promotes the evaporation of the water produced in the melting mode. Therefore, sufficient water cannot be retained in the atomizing electrode 40, and there is a possibility that mist cannot be quickly supplied into the refrigerating chamber 14.
- the refrigerating chamber damper 39 was closed from the start of the operation of the electrostatic atomizer 29 in the freezing mode to the next thaw mode operation and the start of the final atomization mode. It is easier to collect water from the air in the refrigerating chamber 14 than in the case where the refrigerating chamber damper 39 is opened, and mist can be continuously generated more quickly.
- the first operation mode of the electrostatic atomizer 29 is not interrupted. Each mode operation is performed.
- the first operation mode may be performed every cycle in conjunction with the opening / closing cycle of the refrigerator compartment damper 39.
- the first operation mode may be performed every two or more predetermined cycles.
- the operation of the first operation mode is performed every two cycles of the opening operation and the closing operation of the refrigerating chamber damper 39, mist is sprayed into the refrigerating chamber 14, and the refrigerating chamber 14 is removed. Bacteria and deodorization are performed.
- FIG. 7 is a time chart showing the operation of the electrostatic atomizer 29, and is a time chart of the electrostatic atomizer 29 when the temperature detected by the outside air temperature sensor (not shown) installed in the refrigerator 1 is less than 15 ° C. The second operation mode is shown.
- the Pelche element 42 of the electrostatic atomizer 29 is energized starting from the fact that the compressor 25 is turned on from off regardless of the opening / closing operation of the refrigerator damper 39. And execute the freeze mode.
- the Perche element 42 is energized and the atomizing electrode 40 is cooled.
- a high current of 1.5 A as a current value is applied to the Pelche element 42 to enhance the cooling capacity, and the moisture in the air in the refrigerating chamber 14 is frozen in the atomizing electrode 40.
- the air in the refrigerating chamber 14 is the air that circulates and exchanges heat in the refrigerating chamber 14, and has a relatively high humidity. Therefore, in the freezing mode, the cooling capacity can be increased by energizing the Pelche element 42 with a high current, and the moisture in the air having a relatively high humidity can be frozen in the atomizing electrode 40. As a result, freezing can be continuously performed while suppressing the decrease in water content in the refrigerating chamber 14.
- the freezing mode may be continuously operated for a predetermined time as in the first operation mode, and the predetermined time may be changeable.
- the melting mode and the atomization mode are continuously operated for a predetermined time as in the operation in the first operation mode.
- the second operation mode of the electrostatic atomizer 29 is operated in each mode without interruption. Is done.
- the second operation mode may be performed every cycle in conjunction with the off and on operations of the compressor 25.
- the second operation mode may be operated every two or more predetermined cycles.
- the operation of the second operation mode is performed every two cycles of the operation of the compressor 25, mist is sprayed into the refrigerating chamber 14, and the bacteria in the refrigerating chamber 14 are sterilized. And deodorization is done.
- the refrigerating room 14 is provided with a humidity detecting unit 45 that detects the humidity in the room.
- the humidity detection unit 45 detects that the humidity is equal to or higher than the predetermined humidity
- the energization time to the Pelche element 42 in the freezing mode is subtracted to make it shorter than the predetermined time.
- the freezing mode may be stopped so that only the atomization mode is executed. As a result, the mist can be quickly supplied into the refrigerator compartment 14.
- the humidity detection unit 45 may be installed on the outside of the refrigerator main body 2 to subtract or stop the operation time of the freezing mode according to the outside air humidity.
- the electric power to the perche element 42 may be continued and the operation in the freezing mode may be continued.
- the high humidity outside air enters the refrigerator by opening the refrigerating chamber door 9, it becomes easy to collect the moisture in the air on the atomizing electrode 40.
- the atomization mode operation may be stopped, that is, the energization of the Pelche element 42 and the application of the high voltage may be stopped. Then, when the refrigerating room door 9 is closed, the operation in the atomization mode is restarted, and the operation for the remaining time may be performed. As a result, the mist can be sprayed onto the refrigerating chamber 14 to improve the sterilization and deodorizing performance in the chamber.
- the atomizing electrode of the electrostatic atomizer is cooled even in the atomization mode, water can be continuously supplied to the atomizing electrode.
- the mist can be quickly supplied indoors.
- the atomizing electrode since the atomizing electrode is cooled even in the atomization mode, water can be continuously supplied to the atomizing electrode, and mist can be quickly supplied to the room. Applicable to refrigerators.
- Refrigerator 2 Refrigerator body 3 Outer plate 4 Inner plate 5 Insulation material 6, 7, 8 Insulation partition plate 9 Refrigerator room door 10 Door 14 Refrigerator room 15 Switching room 16 Ice making room 17 Vegetable room 18 Freezer room 19 Shelf board 20 Partial room 21 Cooling room 22 Cooler 23 Cooling fan 25 Compressor 26 Refrigerator room Cold air passage 26a Blowout 27 Freezer room Cold air passage 28 Top surface 29 Electrostatic atomizer 30 Atomizer 31 Circuit 32 Lighting device 33 Space 34 Control board (Control unit) 35 Control board storage part 37 Atomization cover member 37d Side part 37e Mist discharge port 37f Guide rib 37h Opening 39 Refrigerator room damper 40 Atomization electrode 41 Opposite electrode 42 Perche element 45 Humidity detection part
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
This refrigerator comprises: a refrigerator compartment; and an electrostatic atomization device that is disposed in the refrigerator compartment and atomizes water by applying a high voltage. The electrostatic atomization device has an atomizing electrode, a counter electrode that faces the atomizing electrode, and a Peltier element that cools the atomizing electrode. The electrostatic atomization device has, as operation modes, a freezing mode in which the Peltier element is energized to cool the atomizing electrode and freeze moisture in the air on the atomizing electrode, a thawing mode in which the Peltier element is de-energized to thaw the ice frozen on the atomizing electrode and produce water, and an atomization mode in which a high voltage is applied between the atomizing electrode and the counter electrode and the Peltier element is energized.
Description
本開示は、貯蔵室に霧化装置を備えた冷蔵庫に関するものである。
This disclosure relates to a refrigerator equipped with an atomizer in the storage room.
近年、素早くミストを発生させることができるように、放電極に水を供給する供給手段として、放電極の冷却により空気中の水分を放電極に氷結させる氷結手段と、氷結した氷を溶解して水を生成する溶解手段と、を備えた静電霧化装置が提案されている(例えば、特許文献1参照)。
In recent years, as a supply means for supplying water to the release electrode so that mist can be generated quickly, a freezing means for freezing the moisture in the air to the release electrode by cooling the release electrode and a freezing means for melting the frozen ice are melted. An electrostatic atomizer having a dissolving means for producing water has been proposed (see, for example, Patent Document 1).
本開示は、放電極である霧化電極への水の供給を継続することで、素早くミストを供給することができる冷蔵庫を提供する。
The present disclosure provides a refrigerator capable of quickly supplying mist by continuing to supply water to the atomizing electrode, which is a discharge electrode.
本開示における冷蔵庫は、冷蔵室と、冷蔵室に配置され高電圧を印加して水を霧化させる静電霧化装置と、を備える。静電霧化装置は、霧化電極と、霧化電極に対向する対向電極と、霧化電極の冷却を行うペルチェ素子と、を有する。静電霧化装置は動作モードとして、ペルチェ素子への通電により霧化電極を冷却して空気中の水分を霧化電極に凍結させる凍結モードと、ペルチェ素子への通電を停止して、霧化電極に凍結した氷を融解させ水を生成する融解モードと、霧化電極と対向電極との間に高電圧を印加するとともにペルチェ素子への通電を行う霧化モードと、を有する。
The refrigerator in the present disclosure includes a refrigerator compartment and an electrostatic atomizer arranged in the refrigerator compartment to atomize water by applying a high voltage. The electrostatic atomizer has an atomizing electrode, a counter electrode facing the atomizing electrode, and a Perche element for cooling the atomizing electrode. The operation mode of the electrostatic atomizer is a freezing mode in which the atomizing electrode is cooled by energizing the Perche element to freeze the moisture in the air to the atomizing electrode, and a freezing mode in which the energization of the Perche element is stopped to atomize. The electrode has a melting mode in which frozen ice is melted to generate water, and an atomization mode in which a high voltage is applied between the atomizing electrode and the counter electrode and the Perche element is energized.
以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
Hereinafter, the embodiment will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted.
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより請求の範囲に記載の主題を限定することを意図していない。
It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
図1は冷蔵庫の正面図であり、図2は冷蔵庫を右側から視た縦断面図である。まず、図1及び図2を用いて冷蔵庫の全体構成を説明する。 (Embodiment 1)
FIG. 1 is a front view of the refrigerator, and FIG. 2 is a vertical sectional view of the refrigerator as viewed from the right side. First, the overall configuration of the refrigerator will be described with reference to FIGS. 1 and 2.
図1は冷蔵庫の正面図であり、図2は冷蔵庫を右側から視た縦断面図である。まず、図1及び図2を用いて冷蔵庫の全体構成を説明する。 (Embodiment 1)
FIG. 1 is a front view of the refrigerator, and FIG. 2 is a vertical sectional view of the refrigerator as viewed from the right side. First, the overall configuration of the refrigerator will be described with reference to FIGS. 1 and 2.
本実施の形態に係る冷蔵庫1は、図2に示すように、前方(図2に示すX方向の左側)が開口した冷蔵庫本体2を備える。この冷蔵庫本体2は、外郭を構成する金属製の外板3と、硬質樹脂製の内板4と、外板3および内板4の間に発泡充填された断熱材5とで構成されている。冷蔵庫本体2の内部には、断熱仕切板6,7,8によって複数の貯蔵室が形成されている。また、冷蔵庫本体2の各貯蔵室は、冷蔵庫本体2と同様の断熱構成が採用された、回動式の冷蔵室扉9、又は引出し式の扉10,11,12,13によって開閉自在に構成されている。
As shown in FIG. 2, the refrigerator 1 according to the present embodiment includes a refrigerator main body 2 having an open front (left side in the X direction shown in FIG. 2). The refrigerator main body 2 is composed of a metal outer plate 3 constituting an outer shell, an inner plate 4 made of hard resin, and a heat insulating material 5 foam-filled between the outer plate 3 and the inner plate 4. .. Inside the refrigerator body 2, a plurality of storage chambers are formed by heat insulating partition plates 6, 7, and 8. Further, each storage room of the refrigerator main body 2 is configured to be openable and closable by a rotary refrigerating room door 9 or drawer type doors 10, 11, 12, 13 which adopts the same heat insulating structure as the refrigerator main body 2. Has been done.
冷蔵庫本体2内には、図1及び図2に示すように、最上部に冷蔵室14が配置されている。なお、本実施の形態の例では、冷蔵庫本体2内には、温度帯を切り替え可能な切替室15と、切替室15に並設された製氷室16と、野菜室17と、冷凍室18と、が配置されている。切替室15は、断熱仕切板6によって冷蔵室14と上下方向に区画され、断熱仕切板6の下方に配置されている。製氷室16は、切替室15の横に断熱区画されて配置されている。野菜室17は、断熱仕切板7によって切替室15および製氷室16と上下方向に区画され、断熱仕切板7の下方に配置されている。冷凍室18は、断熱仕切板8によって野菜室17と上下方向に区画され、断熱仕切板8の下方に配置されている。
In the refrigerator main body 2, as shown in FIGS. 1 and 2, a refrigerating chamber 14 is arranged at the uppermost part. In the example of the present embodiment, in the refrigerator main body 2, a switching chamber 15 capable of switching the temperature zone, an ice making chamber 16 arranged side by side in the switching chamber 15, a vegetable chamber 17, and a freezing chamber 18 are provided. , Are arranged. The switching chamber 15 is vertically partitioned from the refrigerating chamber 14 by the heat insulating partition plate 6 and is arranged below the heat insulating partition plate 6. The ice making chamber 16 is arranged in a heat insulating section next to the switching chamber 15. The vegetable compartment 17 is vertically partitioned from the switching chamber 15 and the ice making chamber 16 by the heat insulating partition plate 7, and is arranged below the heat insulating partition plate 7. The freezing chamber 18 is vertically partitioned from the vegetable compartment 17 by the heat insulating partition plate 8 and is arranged below the heat insulating partition plate 8.
冷蔵室14には、複数の棚板19が上下方向に複数段となるように配置されている。冷蔵室14の下部には、冷蔵室14とは冷却温度帯の異なるパーシャル室20が配置されている。
In the refrigerator compartment 14, a plurality of shelf boards 19 are arranged in a plurality of stages in the vertical direction. At the lower part of the refrigerating chamber 14, a partial chamber 20 having a cooling temperature zone different from that of the refrigerating chamber 14 is arranged.
冷蔵室14は、冷蔵保存するための貯蔵室であり、具体的には、約2~3℃に温度設定されて冷却が行われる。また、冷蔵室14内に設けられたパーシャル室20は、微凍結保存に適した約-3℃に温度設定される。パーシャル室20は、1℃前後のチルド温度帯にも温度設定することが可能である。
The refrigerating room 14 is a storage room for refrigerating and storing, and specifically, the temperature is set to about 2 to 3 ° C. for cooling. Further, the temperature of the partial chamber 20 provided in the refrigerating chamber 14 is set to about -3 ° C, which is suitable for microfreezing storage. The temperature of the partial chamber 20 can be set even in a chilled temperature zone of around 1 ° C.
野菜室17は、冷蔵室14より若干高く温度設定される貯蔵室で、具体的には、4~7℃に温度設定されて冷却される。この野菜室17は野菜等の収納食品から発せられる水分により高湿度となるため、局所的に冷えすぎると結露することがある。そのため、野菜室17を比較的高い温度に設定することで冷却量を少なくして、局所的な冷えすぎによる結露発生を抑制している。
The vegetable compartment 17 is a storage chamber whose temperature is set slightly higher than that of the refrigerator compartment 14, and specifically, the temperature is set to 4 to 7 ° C. for cooling. Since the vegetable compartment 17 becomes highly humid due to the moisture emitted from the stored food such as vegetables, dew condensation may occur if it is locally cooled too much. Therefore, by setting the vegetable compartment 17 to a relatively high temperature, the amount of cooling is reduced to suppress the occurrence of dew condensation due to local overcooling.
冷凍室18は、冷凍温度帯に温度設定される貯蔵室で、通常約-18℃に温度設定されて冷却される。しかしながら、収納食品の冷凍保存状態の向上のため、例えば-30℃や-25℃などの低温に温度設定されて冷却されることもある。
The freezing chamber 18 is a storage chamber whose temperature is set in the freezing temperature zone, and is usually cooled by setting the temperature to about -18 ° C. However, in order to improve the frozen storage state of the stored food, the temperature may be set to a low temperature such as −30 ° C. or −25 ° C. and cooled.
切替室15は、庫内の温度を変更可能な貯蔵室であり、用途に応じて冷蔵温度帯から冷凍温度帯まで切り換えることができるようになっている。
The switching chamber 15 is a storage chamber in which the temperature inside the refrigerator can be changed, and can be switched from the refrigerating temperature zone to the freezing temperature zone according to the application.
野菜室17の背面(図2におけるX方向の右側)には冷却室21配置されている。冷却室21には、冷気を生成する冷却器22と、冷気を各室に供給する冷却ファン23と、が配置されている。冷却器22の下方には、ガラス管ヒータ等で構成された除霜手段24(以下、ヒータと称す)が設けられている。
A cooling chamber 21 is arranged on the back surface of the vegetable compartment 17 (on the right side in the X direction in FIG. 2). In the cooling chamber 21, a cooler 22 for generating cold air and a cooling fan 23 for supplying cold air to each chamber are arranged. Below the cooler 22, a defrosting means 24 (hereinafter, referred to as a heater) composed of a glass tube heater or the like is provided.
冷却器22と、圧縮機25と、熱交換器(図示せず)と、各室の開口部の露付きを防止する防露パイプ(図示せず)と、キャピラリーチューブ(図示せず)とが環状に接続されて冷凍サイクルが構成されており、圧縮機25によって圧縮された冷媒の循環によって冷却器22による冷却が行われる。
The cooler 22, the compressor 25, the heat exchanger (not shown), the dew-proof pipe (not shown) that prevents dew from the openings of each chamber, and the capillary tube (not shown). The refrigeration cycle is configured by being connected in an annular shape, and the cooling is performed by the cooler 22 by the circulation of the refrigerant compressed by the compressor 25.
冷却ファン23は冷却器22の上方に設けられている。冷却器22で冷却された冷気の一部は、冷却ファン23による強制通風によって、冷却ファン23の下流側において冷却室21と連通する冷蔵室冷気風路26を通って冷蔵室14に供給される。また、冷却器22で冷却された冷気の一部は、冷却ファン23の強制通風によって冷凍室冷気風路27を通って冷凍室18に供給される。冷蔵室14を循環した冷気または冷却器22で冷却された冷気の一部の冷気が、野菜室冷気風路(図示しない)を通って野菜室17に供給される。このようにして、各室が冷却されるように冷蔵庫1が構成されている。
The cooling fan 23 is provided above the cooler 22. A part of the cold air cooled by the cooler 22 is supplied to the refrigerating chamber 14 through the refrigerating chamber cold air passage 26 communicating with the cooling chamber 21 on the downstream side of the cooling fan 23 by forced ventilation by the cooling fan 23. .. Further, a part of the cold air cooled by the cooler 22 is supplied to the freezing chamber 18 through the freezing chamber cold air passage 27 by the forced ventilation of the cooling fan 23. The cold air circulating in the refrigerating chamber 14 or a part of the cold air cooled by the cooler 22 is supplied to the vegetable chamber 17 through the vegetable chamber cold air passage (not shown). In this way, the refrigerator 1 is configured so that each room is cooled.
冷蔵室14と、切替室15および製氷室とを仕切る断熱仕切板6には、冷蔵室14への冷気量を調節する冷蔵室ダンパ39が備えられている。
The heat insulating partition plate 6 that separates the refrigerating chamber 14, the switching chamber 15, and the ice making chamber is provided with a refrigerating chamber damper 39 that adjusts the amount of cold air to the refrigerating chamber 14.
次に冷蔵室14の構成について具体的に説明する。
Next, the configuration of the refrigerator compartment 14 will be specifically described.
図3は冷蔵室14の上部の縦断面図である。図4は、図3における静電霧化装置部分の拡大図であり、図5は霧化カバー部材の斜視図である。
FIG. 3 is a vertical cross-sectional view of the upper part of the refrigerator compartment 14. FIG. 4 is an enlarged view of the electrostatic atomizing device portion in FIG. 3, and FIG. 5 is a perspective view of the atomizing cover member.
冷蔵室14の内壁を構成する内板4であって、冷蔵室14の天面部28には、静電霧化装置29が設けられている。静電霧化装置29は、貯蔵室内にナノサイズのマイナスイオンミストを発生させる。静電霧化装置29は、冷蔵室14内の空気中の水分を結露させる霧化部30と、霧化部30に高電圧を印加する回路部31とを備えている。
An electrostatic atomizer 29 is provided on the top surface portion 28 of the refrigerating chamber 14, which is an inner plate 4 constituting the inner wall of the refrigerating chamber 14. The electrostatic atomizer 29 generates nano-sized negative ion mist in the storage chamber. The electrostatic atomizing device 29 includes an atomizing unit 30 that condenses moisture in the air in the refrigerating chamber 14, and a circuit unit 31 that applies a high voltage to the atomizing unit 30.
霧化部30は、マイナスイオンミストを発生する霧化電極40と、霧化電極40に対向して配置された対向電極41と、を備えている。霧化電極40へ空気中の水分を供給する供給手段として、ペルチェ素子42が設けられている。回路部31から熱交換部のペルチェ素子42への通電が行われる。これにより、ペルチェ素子42内において熱移動が生じ、ペルチェ素子42の吸熱側に接続されている冷却部を介して霧化電極40が冷却される。冷蔵室14の湿度は具体的には約20~30%の低湿度環境のため、霧化電極40は結露しにくい。
The atomizing unit 30 includes an atomizing electrode 40 that generates negative ion mist and a counter electrode 41 that is arranged so as to face the atomizing electrode 40. A perche element 42 is provided as a supply means for supplying moisture in the air to the atomizing electrode 40. The circuit unit 31 energizes the heat exchange unit Pelche element 42. As a result, heat transfer occurs in the Pelche element 42, and the atomizing electrode 40 is cooled via a cooling unit connected to the endothermic side of the Pelche element 42. Specifically, since the humidity of the refrigerating chamber 14 is a low humidity environment of about 20 to 30%, the atomizing electrode 40 is less likely to condense dew.
このため、ペルチェ素子42を利用して霧化電極40の冷却能力を高めることで、空気中の水分が冷却されて、霧化電極40上に凍結した氷が生成される。次に、ペルチェ素子42への通電を停止することで霧化電極40上に凍結した氷が融解して水が生成される。そして、霧化電極40と対向電極41との間に、回路部31のトランスを介して高電圧を印加するとともに、ペルチェ素子42へ通電を行うことで、生成された水を霧化させてミストを発生するように構成されている。
Therefore, by increasing the cooling capacity of the atomizing electrode 40 by using the Perche element 42, the moisture in the air is cooled and frozen ice is generated on the atomizing electrode 40. Next, by stopping the energization of the Pelche element 42, the frozen ice is melted on the atomizing electrode 40 and water is generated. Then, a high voltage is applied between the atomizing electrode 40 and the counter electrode 41 via the transformer of the circuit unit 31, and the Pelche element 42 is energized to atomize the generated water and mist. Is configured to generate.
静電霧化装置29の後方、すなわち冷蔵室14の背面部には、冷蔵室冷気風路26が設けられている。冷蔵室冷気風路26は、冷蔵室14の下端部から最上部の棚板19よりも上方であって天面部28よりも下方の位置まで延在して設けられている。冷蔵室冷気風路26には、吹出し口が複数個備えられている。冷蔵室冷気風路26に設けられた吹出し口のうち、最上部に設けられた吹出し口26aが、天面部28に向けて開口している。
A refrigerating chamber cold air passage 26 is provided behind the electrostatic atomizer 29, that is, on the back surface of the refrigerating chamber 14. The refrigerating chamber cold air passage 26 extends from the lower end portion of the refrigerating chamber 14 to a position above the uppermost shelf board 19 and below the top surface portion 28. The refrigerating chamber cold air passage 26 is provided with a plurality of outlets. Of the outlets provided in the cold air passage 26 of the refrigerating chamber, the outlet 26a provided at the uppermost portion opens toward the top surface 28.
天面部28には、冷蔵室14内を照明するLED(light-emitting diode)で構成された照明装置32が設けられている。冷蔵室14の前面開口部側から順に、照明装置32及び静電霧化装置29が配置されている。
The top surface portion 28 is provided with a lighting device 32 composed of LEDs (light-emitting diodes) that illuminate the inside of the refrigerating chamber 14. The lighting device 32 and the electrostatic atomizing device 29 are arranged in order from the front opening side of the refrigerating chamber 14.
静電霧化装置29と冷蔵室冷気風路26の吹出し口26aとの間には、スペース33が形成されている。静電霧化装置29は、冷蔵室冷気風路26よりも照明装置32に近づけて配置されている。
A space 33 is formed between the electrostatic atomizer 29 and the outlet 26a of the refrigerating chamber cold air passage 26. The electrostatic atomizer 29 is arranged closer to the lighting device 32 than the cold air passage 26 in the refrigerator compartment.
冷蔵庫1の天面壁を構成する外板3には、冷蔵庫1の運転を制御する制御基板34を収納する制御基板収納部35が配置されている。本実施の形態の例では、制御基板収納部35は、天面壁に設けられた凹み部により形成されており、当該制御基板収納部35に制御基板34が収納されている。
A control board storage unit 35 for storing a control board 34 that controls the operation of the refrigerator 1 is arranged on the outer plate 3 that constitutes the top wall of the refrigerator 1. In the example of the present embodiment, the control board storage portion 35 is formed by a recessed portion provided on the top surface wall, and the control board 34 is housed in the control board storage portion 35.
静電霧化装置29は、冷蔵室14の前面開口部の位置よりも天面部28の壁厚が薄い、制御基板34の下方に配置されている。
The electrostatic atomizer 29 is arranged below the control board 34 in which the wall thickness of the top surface portion 28 is thinner than the position of the front opening of the refrigerating chamber 14.
図4に示すように、静電霧化装置29の霧化カバー部材37は、天面部28から冷蔵室14の最上部の棚板19に向かって庫内側へ突出するように形成されている。図5に示すように、霧化カバー部材37の側面部37dには、上下方向に複数段となるように形成されたミスト放出口37eが配置されている。霧化カバー部材37は、ミスト放出口37eを介して冷蔵室14内にミストを放出できるように構成されている。霧化カバー部材37のミスト放出口37eは、下段へ行くほどミスト放出口37eの位置が霧化部30または回路部31に近づくように段差状に形成されている。上下方向に隣り合うミスト放出口37e同士の間には、水平方向に延在するガイドリブ37fが形成されている。これにより、霧化カバー部材37の前に食品等が置かれてもミスト放出口37eが塞がれないようにしている。
As shown in FIG. 4, the atomizing cover member 37 of the electrostatic atomizing device 29 is formed so as to project from the top surface portion 28 toward the uppermost shelf plate 19 of the refrigerating chamber 14 toward the inside of the refrigerator. As shown in FIG. 5, a mist discharge port 37e formed so as to have a plurality of stages in the vertical direction is arranged on the side surface portion 37d of the atomization cover member 37. The atomization cover member 37 is configured so that mist can be discharged into the refrigerating chamber 14 through the mist discharge port 37e. The mist discharge port 37e of the atomization cover member 37 is formed in a stepped shape so that the position of the mist discharge port 37e approaches the atomization portion 30 or the circuit portion 31 toward the lower stage. Guide ribs 37f extending in the horizontal direction are formed between the mist discharge ports 37e adjacent to each other in the vertical direction. As a result, the mist discharge port 37e is prevented from being blocked even if food or the like is placed in front of the atomization cover member 37.
したがって、冷蔵室14に食品等が詰め込まれた場合であっても、ミスト放出口37eからミストを放出することができる。ミスト中に含まれるOHラジカルによって各種の臭い成分が分解され、冷蔵室14内の除菌および脱臭の効果を維持することができる。
Therefore, even when food or the like is packed in the refrigerator compartment 14, mist can be discharged from the mist discharge port 37e. Various odorous components are decomposed by OH radicals contained in the mist, and the effects of sterilization and deodorization in the refrigerating chamber 14 can be maintained.
図4に示すように、霧化カバー部材37の底面部は冷蔵室14の前面開口部に向かって上方に傾斜して配置されている。このため、ミスト放出口37eが食品等で塞がれるのをさらに効果的に防止することができる。
As shown in FIG. 4, the bottom surface portion of the atomizing cover member 37 is arranged so as to be inclined upward toward the front opening of the refrigerating chamber 14. Therefore, it is possible to more effectively prevent the mist discharge port 37e from being blocked by food or the like.
霧化カバー部材37の側面部37dは、庫内へ突出して形成されている。このため、当該側面部37dに形成されたミスト放出口37eも庫内空間内に突出した位置に配置されることになる。従って、庫内の空気が霧化カバー部材37内に取り込まれやすい。
The side surface portion 37d of the atomizing cover member 37 is formed so as to project into the refrigerator. Therefore, the mist discharge port 37e formed on the side surface portion 37d is also arranged at a position protruding in the internal space. Therefore, the air in the refrigerator is easily taken into the atomizing cover member 37.
このため、ミスト放出口37eは、庫内空気と一緒に空気に含まれる水分を取り込む取込み口として機能する。すなわち、霧化部30で水が生成された時に霧化カバー部材37内の空気中の水分が減少するが、このミスト放出口37eが霧化カバー部材37内に庫内空気を取り込む取込み孔として機能することで、継続的に霧化カバー部材37内に庫内空気を送り込んで空気を入れ替えることができる。従って、霧化部30において継続的に適度なミストを発生させることができる。このため、ミスト中に含まれるOHラジカルによって各種の臭い成分が分解されて除菌および脱臭の効果が高められる。
Therefore, the mist discharge port 37e functions as an intake port for taking in the moisture contained in the air together with the air inside the refrigerator. That is, when water is generated in the atomizing section 30, the moisture in the air inside the atomizing cover member 37 decreases, but this mist discharge port 37e serves as an intake hole for taking in the air inside the atomizing cover member 37. By functioning, it is possible to continuously send the air inside the chamber into the atomizing cover member 37 to replace the air. Therefore, an appropriate mist can be continuously generated in the atomizing unit 30. Therefore, various odorous components are decomposed by OH radicals contained in the mist, and the effects of sterilization and deodorization are enhanced.
霧化カバー部材37における吹出し口26aに対向する側には、開口部37gが形成されている。霧化カバー部材37における吹出し口26aに対向しない側には、開口部37hが形成されている。開口部37gの開口面積は、開口部37hの開口面積よりも小さく構成されている。これにより、吹出し口26a近傍の低湿度の冷気が、積極的には霧化カバー部材37内に入らないようになっている。
An opening 37g is formed on the side of the atomizing cover member 37 facing the outlet 26a. An opening 37h is formed on the side of the atomizing cover member 37 that does not face the outlet 26a. The opening area of the opening 37g is smaller than the opening area of the opening 37h. As a result, the low-humidity cold air in the vicinity of the outlet 26a is prevented from positively entering the atomizing cover member 37.
なお、本実施の形態における例では、吹出し口26aは冷蔵室冷気風路26の左右幅方向に2つ形成されている。冷蔵庫1の平面視において、霧化部30が2つの吹出し口26aそれぞれの前後方向における延長線の間に配置されるように、最上部の吹出し口26aは左右両サイドに振り分けられて配置されている。このようにして、吹出し口26aから吹出される低湿度の冷気が霧化部30に直接当たらないように構成されている。
In the example of the present embodiment, two outlets 26a are formed in the left-right width direction of the refrigerating chamber cold air passage 26. In the plan view of the refrigerator 1, the uppermost outlet 26a is distributed and arranged on both the left and right sides so that the atomizing portion 30 is arranged between the extension lines of the two outlets 26a in the front-rear direction. There is. In this way, the low-humidity cold air blown out from the outlet 26a is configured so as not to directly hit the atomizing portion 30.
上記のように冷蔵室14に配置された静電霧化装置29について動作を説明する。
The operation of the electrostatic atomizer 29 arranged in the refrigerator compartment 14 as described above will be described.
図6は、静電霧化装置29の動作を示すタイムチャートであり、冷蔵庫1に設置された外気温センサ(図示しない)による検知温度が15℃以上の場合における、静電霧化装置29の第1動作モードを示している。
FIG. 6 is a time chart showing the operation of the electrostatic atomizer 29, and is a time chart of the electrostatic atomizer 29 when the temperature detected by the outside air temperature sensor (not shown) installed in the refrigerator 1 is 15 ° C. or higher. The first operation mode is shown.
第1動作モードでは、空気中の水分を霧化電極40に凍結させる凍結モード、凍結した氷を融解して水を生成する融解モード、そして生成した水を霧化させる霧化モードの順に動作が行われる。これにより、冷蔵室14にミストが噴霧される。各動作モードについて具体的に説明する。
In the first operation mode, the operation is performed in the order of a freezing mode in which the moisture in the air is frozen on the atomizing electrode 40, a melting mode in which the frozen ice is thawed to generate water, and an atomization mode in which the generated water is atomized. Will be done. As a result, the mist is sprayed onto the refrigerator compartment 14. Each operation mode will be specifically described.
図6に示すように、圧縮機25が運転中、すなわち圧縮機がON(オン)状態において、冷蔵室ダンパ39が開放されて(開状態)、冷蔵室冷気風路26を通って吹出し口26aから冷蔵室14に冷気が吹出される。
As shown in FIG. 6, when the compressor 25 is in operation, that is, when the compressor is ON (ON), the refrigerating chamber damper 39 is opened (open state), and the outlet 26a passes through the refrigerating chamber cold air passage 26. Cold air is blown into the refrigerator compartment 14.
そしてある時点で、冷蔵室14の室内温度センサ(図示しない)が所定温度になると、冷蔵室ダンパ39が開状態から閉状態になるように、冷蔵室ダンパ39に閉信号が入力される。
Then, at a certain point in time, when the indoor temperature sensor (not shown) of the refrigerating chamber 14 reaches a predetermined temperature, a closing signal is input to the refrigerating chamber damper 39 so that the refrigerating chamber damper 39 changes from the open state to the closed state.
冷蔵室ダンパ39が開状態から閉状態になったことを起点として、静電霧化装置29のペルチェ素子42への通電が開始されて、凍結モードの動作が行われる。凍結モードでは、所定時間の間、ペルチェ素子42が通電されて霧化電極40が冷却される。この時、電流値としては1.5Aの高電流がペルチェ素子42に通電されることで冷却能力が高められ、冷蔵室14内の空気中の水分が霧化電極40に凍結される。
Starting from the opening state to the closed state of the refrigerating chamber damper 39, energization of the Pelche element 42 of the electrostatic atomizer 29 is started, and the operation of the freezing mode is performed. In the freezing mode, the perche element 42 is energized and the atomizing electrode 40 is cooled for a predetermined time. At this time, a high current of 1.5 A is applied to the Pelche element 42 to increase the cooling capacity, and the moisture in the air in the refrigerating chamber 14 is frozen by the atomizing electrode 40.
凍結モードは、冷蔵室ダンパ39を閉じた際に開始される。従って、冷却器22で熱交換された低温で低湿度の冷気が吹出し口26aから吐出されず、冷蔵室14内で循環し熱交換した比較的湿度の高い空気が静電霧化装置29に供給される。すなわち、水分の減少を抑制しながら、且つ、ペルチェ素子42に高電流で通電することで冷却能力を高めて、霧化電極40上に継続的に水分を凍結させることができる。
The freezing mode is started when the refrigerator damper 39 is closed. Therefore, the low-temperature, low-humidity cold air heat-exchanged by the cooler 22 is not discharged from the outlet 26a, and the relatively high-humidity air that circulates in the refrigerating chamber 14 and exchanges heat is supplied to the electrostatic atomizer 29. Will be done. That is, while suppressing the decrease in water content, the cooling capacity can be increased by energizing the Pelche element 42 with a high current, and the water content can be continuously frozen on the atomizing electrode 40.
凍結モードの動作時間は、本実施の形態の例の場合、10分間であり、凍結モードが10分間継続される。この動作時間は変更可能である。動作時間は、負荷条件によって変えてもよい。例えば、冷蔵室14内に収納物が多い場合、庫内は高湿度になり易いので、凍結モードの動作時間である所定時間を、収納物が少ない場合等と比較して短くしてもよい。
In the case of the example of this embodiment, the operation time of the freezing mode is 10 minutes, and the freezing mode is continued for 10 minutes. This operating time can be changed. The operating time may be changed depending on the load conditions. For example, when there are many stored items in the refrigerating chamber 14, the humidity inside the refrigerator tends to be high, so that the predetermined time, which is the operating time of the freezing mode, may be shortened as compared with the case where there are few stored items.
凍結モードが所定時間の間行われた後、次に融解モードの動作が開始される。融解モードの動作時間は、本実施の形態の例の場合、30秒間であり、融解モードが30秒間継続される。融解モードでは、ペルチェ素子42への通電が所定時間の間停止され、霧化電極40に凍結した氷を融解させることで水が生成される。融解モードは、生成された水が乾燥しないように、冷蔵室ダンパ39が閉じた状態で行われるとなおよい。
After the freezing mode is performed for a predetermined time, the operation of the thawing mode is started next. The operating time of the melting mode is 30 seconds in the case of the example of the present embodiment, and the melting mode is continued for 30 seconds. In the melting mode, the energization of the Pelche element 42 is stopped for a predetermined time, and water is generated by melting the frozen ice on the atomizing electrode 40. The melting mode is even more preferably performed with the refrigerator damper 39 closed so that the generated water does not dry out.
融解モードが開始されて所定時間が経過した後、次に霧化モードの動作が開始される。霧化モードの動作時間は、本実施の形態の例の場合、15分間であり、霧化モードが15分間継続される。霧化モードでは、霧化電極40と対向電極41との間に高電圧が印加されるとともに、ペルチェ素子42への通電も行われる。この時、凍結モード時よりも電流値が低い、0.5Aの低電流でペルチェ素子42に通電することで、霧化を行いながら霧化電極40を冷却して空気中の水分を結露させることができる。このため、霧化モード中において、継続して素早くナノサイズのマイナスイオンミストを冷蔵室14へ噴霧することができる。
After a predetermined time has passed since the melting mode was started, the operation of the atomization mode is started next. In the case of the example of this embodiment, the operation time of the atomization mode is 15 minutes, and the atomization mode is continued for 15 minutes. In the atomization mode, a high voltage is applied between the atomization electrode 40 and the counter electrode 41, and the perche element 42 is also energized. At this time, by energizing the Perche element 42 with a low current of 0.5 A, which is lower than that in the freezing mode, the atomizing electrode 40 is cooled while atomizing to condense moisture in the air. Can be done. Therefore, in the atomization mode, nano-sized negative ion mist can be continuously and quickly sprayed onto the refrigerating chamber 14.
霧化モード中にペルチェ素子42へ通電しない場合には、霧化部30の放熱側の熱が吸熱側に熱移動して霧化電極40の温度が上昇する。さらに、低湿度である冷蔵室14の環境下によって、融解モードで生成された水の蒸発が促進される。従って霧化電極40に十分な水を保持することができず、冷蔵室14内に素早くミストを供給できないおそれがある。
When the Pelche element 42 is not energized during the atomization mode, the heat on the heat dissipation side of the atomization unit 30 is transferred to the endothermic side and the temperature of the atomization electrode 40 rises. Further, the low humidity environment of the refrigerating chamber 14 promotes the evaporation of the water produced in the melting mode. Therefore, sufficient water cannot be retained in the atomizing electrode 40, and there is a possibility that mist cannot be quickly supplied into the refrigerating chamber 14.
図6のように、静電霧化装置29の凍結モードでの動作が開始されてから、次の融解モード動作、及び、最後の霧化モードの開始時までは、冷蔵室ダンパ39が閉じた状態で行われる方が、冷蔵室ダンパ39が開いた状態で行われる場合よりも冷蔵室14内の空気から水分を集めやすくなり、継続してより素早くミストを発生することができる。なお、利用者による冷蔵庫1の使用状況により、これらの各モードでの運転の途中で冷蔵室ダンパ39が開放された場合でも、静電霧化装置29の第1動作モードは中断することなく、各モード運転が行われる。
As shown in FIG. 6, the refrigerating chamber damper 39 was closed from the start of the operation of the electrostatic atomizer 29 in the freezing mode to the next thaw mode operation and the start of the final atomization mode. It is easier to collect water from the air in the refrigerating chamber 14 than in the case where the refrigerating chamber damper 39 is opened, and mist can be continuously generated more quickly. Depending on the usage status of the refrigerator 1 by the user, even if the refrigerator compartment damper 39 is opened during the operation in each of these modes, the first operation mode of the electrostatic atomizer 29 is not interrupted. Each mode operation is performed.
冷蔵室ダンパ39の開閉サイクルに連動して、1サイクル毎に第1動作モードが行われもよい。あるいは、2以上の所定サイクル毎に第1動作モードが行われてもよい。本実施の形態の例の場合、冷蔵室ダンパ39の開動作及び閉動作の2サイクル毎に第1動作モードの運転を行って、冷蔵室14内にミストを噴霧し、冷蔵室14内の除菌および脱臭を行っている。
The first operation mode may be performed every cycle in conjunction with the opening / closing cycle of the refrigerator compartment damper 39. Alternatively, the first operation mode may be performed every two or more predetermined cycles. In the case of the example of the present embodiment, the operation of the first operation mode is performed every two cycles of the opening operation and the closing operation of the refrigerating chamber damper 39, mist is sprayed into the refrigerating chamber 14, and the refrigerating chamber 14 is removed. Bacteria and deodorization are performed.
図7は、静電霧化装置29の動作を示すタイムチャートであり、冷蔵庫1に設置された外気温センサ(図示しない)による検知温度が15℃未満の場合における、静電霧化装置29の第2動作モードを示している。
FIG. 7 is a time chart showing the operation of the electrostatic atomizer 29, and is a time chart of the electrostatic atomizer 29 when the temperature detected by the outside air temperature sensor (not shown) installed in the refrigerator 1 is less than 15 ° C. The second operation mode is shown.
図7に示すように、外気温度が15℃未満の低外気温時では、圧縮機25の運転率が低く、低負荷である。このため、冷蔵室ダンパ39の開度率も低下する。これにより、圧縮機25の運転がON状態であっても冷蔵室ダンパ39が開放されず閉状態が継続されることで、冷蔵室ダンパ39の開閉動作が圧縮機25の運転サイクルに連動しない場合がある。
As shown in FIG. 7, when the outside air temperature is lower than 15 ° C., the operating rate of the compressor 25 is low and the load is low. Therefore, the opening rate of the refrigerator damper 39 also decreases. As a result, even if the operation of the compressor 25 is ON, the refrigerator compartment damper 39 is not opened and the closed state is continued, so that the opening / closing operation of the refrigerator compartment damper 39 is not linked to the operation cycle of the compressor 25. There is.
このため、低外気温時は、冷蔵室ダンパ39の開閉動作に関係なく、圧縮機25がオフからオンになったことを起点として、静電霧化装置29のペルチェ素子42へ通電を開始して、凍結モードを実行する。凍結モードでは、ペルチェ素子42へ通電され、霧化電極40が冷却される。この時、電流値として1.5Aの高電流がペルチェ素子42に通電されることで冷却能力が高められ、冷蔵室14内の空気中の水分が霧化電極40に凍結される。
Therefore, when the outside temperature is low, the Pelche element 42 of the electrostatic atomizer 29 is energized starting from the fact that the compressor 25 is turned on from off regardless of the opening / closing operation of the refrigerator damper 39. And execute the freeze mode. In the freezing mode, the Perche element 42 is energized and the atomizing electrode 40 is cooled. At this time, a high current of 1.5 A as a current value is applied to the Pelche element 42 to enhance the cooling capacity, and the moisture in the air in the refrigerating chamber 14 is frozen in the atomizing electrode 40.
上述のように、低外気温時は、冷蔵室ダンパ39の開度率が低下して冷蔵室ダンパ39が閉じた状態が継続する場合が多い。従って、冷蔵室14内の空気は、冷蔵室14内で循環して熱交換された空気であり、比較的高湿度である。このため、凍結モードでは、ペルチェ素子42に高電流を通電することで冷却能力を高めて、比較的高湿度の空気中の水分を霧化電極40に凍結させることができる。これによって冷蔵室14内の水分の減少を抑制しながら継続的に凍結を行うことができる。
As described above, when the outside air temperature is low, the opening rate of the refrigerating chamber damper 39 decreases, and the refrigerating chamber damper 39 often continues to be closed. Therefore, the air in the refrigerating chamber 14 is the air that circulates and exchanges heat in the refrigerating chamber 14, and has a relatively high humidity. Therefore, in the freezing mode, the cooling capacity can be increased by energizing the Pelche element 42 with a high current, and the moisture in the air having a relatively high humidity can be frozen in the atomizing electrode 40. As a result, freezing can be continuously performed while suppressing the decrease in water content in the refrigerating chamber 14.
凍結モードは、第1動作モード時と同様に、所定時間継続して運転され、当該所定時間は変更可能としてもよい。
The freezing mode may be continuously operated for a predetermined time as in the first operation mode, and the predetermined time may be changeable.
融解モードおよび霧化モードは、第1動作モードでの運転時と同様に所定時間継続して運転される。使用条件により、第2動作モードの途中で圧縮機25がオフ、または冷蔵室ダンパ39が開放された場合でも、静電霧化装置29の第2動作モードは中断することなく各モードでの運転が行われる。
The melting mode and the atomization mode are continuously operated for a predetermined time as in the operation in the first operation mode. Depending on the usage conditions, even if the compressor 25 is turned off or the refrigerator damper 39 is opened in the middle of the second operation mode, the second operation mode of the electrostatic atomizer 29 is operated in each mode without interruption. Is done.
圧縮機25のオフ及びオン動作に連動して、1サイクル毎に第2動作モードを行ってもよい。あるいは、2以上の所定サイクル毎に第2動作モードを動作させてもよい。図7に示す第2動作モードの例では、圧縮機25の運転の2サイクル毎に第2動作モードの運転が行われて、冷蔵室14内にミストが噴霧され、冷蔵室14内の除菌および脱臭が行われる。
The second operation mode may be performed every cycle in conjunction with the off and on operations of the compressor 25. Alternatively, the second operation mode may be operated every two or more predetermined cycles. In the example of the second operation mode shown in FIG. 7, the operation of the second operation mode is performed every two cycles of the operation of the compressor 25, mist is sprayed into the refrigerating chamber 14, and the bacteria in the refrigerating chamber 14 are sterilized. And deodorization is done.
冷蔵室14内には、室内の湿度を検知する湿度検知部45が備えられている。湿度検知部45によって所定の湿度以上であることが検知された場合は、凍結モード時のペルチェ素子42への通電時間を減算して所定時間よりも短くする。これにより、霧化電極40に空気中の水分が付着しすぎた状態で凍結して、融解した時に霧化電極40から水滴となって落下するのを抑制することができる。
The refrigerating room 14 is provided with a humidity detecting unit 45 that detects the humidity in the room. When the humidity detection unit 45 detects that the humidity is equal to or higher than the predetermined humidity, the energization time to the Pelche element 42 in the freezing mode is subtracted to make it shorter than the predetermined time. As a result, it is possible to prevent the atomizing electrode 40 from being frozen in a state where too much moisture in the air is attached to the atomizing electrode 40 and falling from the atomizing electrode 40 as water droplets when thawed.
湿度検知部45による検知湿度が高湿度の場合は、凍結モードを停止して、霧化モードのみが実行されようにしてもよい。これにより、ミストを素早く冷蔵室14の室内に供給することができる。
When the humidity detected by the humidity detection unit 45 is high humidity, the freezing mode may be stopped so that only the atomization mode is executed. As a result, the mist can be quickly supplied into the refrigerator compartment 14.
なお、本実施の形態では、湿度検知部45が冷蔵室14内に設置された例について説明した。しかしながら、湿度検知部45が冷蔵庫本体2の庫外側に設置されて、外気湿度に応じて凍結モードの動作時間の減算または停止が行われてもよい。
In the present embodiment, an example in which the humidity detection unit 45 is installed in the refrigerator compartment 14 has been described. However, the humidity detection unit 45 may be installed on the outside of the refrigerator main body 2 to subtract or stop the operation time of the freezing mode according to the outside air humidity.
なお、凍結モード時に冷蔵室扉9が開放された場合であっても、ペルチェ素子42への通電が継続されて凍結モード動作での運転が継続されてもよい。この場合、冷蔵室扉9の開放によって湿度の高い外気が庫内に入るので、空気中の水分を霧化電極40に集めやすくなる。
Even when the refrigerating chamber door 9 is opened in the freezing mode, the electric power to the perche element 42 may be continued and the operation in the freezing mode may be continued. In this case, since the high humidity outside air enters the refrigerator by opening the refrigerating chamber door 9, it becomes easy to collect the moisture in the air on the atomizing electrode 40.
なお、霧化モード時に冷蔵室扉9が開放されると、霧化モード動作が停止、すなわちペルチェ素子42への通電および高電圧の印加が停止されてもよい。そして冷蔵室扉9が閉じられると、霧化モードでの動作が再度開始され、残時間分の運転が行われてもよい。これにより、ミストを冷蔵室14へ噴霧して、室内の除菌および脱臭の性能を高めることができる。
When the refrigerating chamber door 9 is opened in the atomization mode, the atomization mode operation may be stopped, that is, the energization of the Pelche element 42 and the application of the high voltage may be stopped. Then, when the refrigerating room door 9 is closed, the operation in the atomization mode is restarted, and the operation for the remaining time may be performed. As a result, the mist can be sprayed onto the refrigerating chamber 14 to improve the sterilization and deodorizing performance in the chamber.
以上述べたように、本開示の冷蔵庫においては、霧化モード時においても静電霧化装置の霧化電極を冷却するので、霧化電極への水の供給を継続して行うことができ、素早くミストを室内に供給することができる。
As described above, in the refrigerator of the present disclosure, since the atomizing electrode of the electrostatic atomizer is cooled even in the atomization mode, water can be continuously supplied to the atomizing electrode. The mist can be quickly supplied indoors.
本開示は、霧化モード時においても霧化電極が冷却されるので、霧化電極への水の供給を継続して行うことができ、素早くミストを室内に供給することができるため、種々の冷蔵庫に適用可能である。
In the present disclosure, since the atomizing electrode is cooled even in the atomization mode, water can be continuously supplied to the atomizing electrode, and mist can be quickly supplied to the room. Applicable to refrigerators.
1 冷蔵庫
2 冷蔵庫本体
3 外板
4 内板
5 断熱材
6,7,8 断熱仕切板
9 冷蔵室扉
10 扉
14 冷蔵室
15 切替室
16 製氷室
17 野菜室
18 冷凍室
19 棚板
20 パーシャル室
21 冷却室
22 冷却器
23 冷却ファン
25 圧縮機
26 冷蔵室冷気風路
26a 吹出し口
27 冷凍室冷気風路
28 天面部
29 静電霧化装置
30 霧化部
31 回路部
32 照明装置
33 スペース
34 制御基板(制御部)
35 制御基板収納部
37 霧化カバー部材
37d 側面部
37e ミスト放出口
37f ガイドリブ
37h 開口部
39 冷蔵室ダンパ
40 霧化電極
41 対向電極
42 ペルチェ素子
45 湿度検知部 1Refrigerator 2 Refrigerator body 3 Outer plate 4 Inner plate 5 Insulation material 6, 7, 8 Insulation partition plate 9 Refrigerator room door 10 Door 14 Refrigerator room 15 Switching room 16 Ice making room 17 Vegetable room 18 Freezer room 19 Shelf board 20 Partial room 21 Cooling room 22 Cooler 23 Cooling fan 25 Compressor 26 Refrigerator room Cold air passage 26a Blowout 27 Freezer room Cold air passage 28 Top surface 29 Electrostatic atomizer 30 Atomizer 31 Circuit 32 Lighting device 33 Space 34 Control board (Control unit)
35 Controlboard storage part 37 Atomization cover member 37d Side part 37e Mist discharge port 37f Guide rib 37h Opening 39 Refrigerator room damper 40 Atomization electrode 41 Opposite electrode 42 Perche element 45 Humidity detection part
2 冷蔵庫本体
3 外板
4 内板
5 断熱材
6,7,8 断熱仕切板
9 冷蔵室扉
10 扉
14 冷蔵室
15 切替室
16 製氷室
17 野菜室
18 冷凍室
19 棚板
20 パーシャル室
21 冷却室
22 冷却器
23 冷却ファン
25 圧縮機
26 冷蔵室冷気風路
26a 吹出し口
27 冷凍室冷気風路
28 天面部
29 静電霧化装置
30 霧化部
31 回路部
32 照明装置
33 スペース
34 制御基板(制御部)
35 制御基板収納部
37 霧化カバー部材
37d 側面部
37e ミスト放出口
37f ガイドリブ
37h 開口部
39 冷蔵室ダンパ
40 霧化電極
41 対向電極
42 ペルチェ素子
45 湿度検知部 1
35 Control
Claims (8)
- 冷蔵室と、
前記冷蔵室に配置され、高電圧を印加して水を霧化させる静電霧化装置と、
を備えた冷蔵庫であって、
前記静電霧化装置は、
霧化電極と、
前記霧化電極に対向する対向電極と、
前記霧化電極の冷却を行うペルチェ素子と、を有し、
前記静電霧化装置は動作モードとして、
前記ペルチェ素子への通電により前記霧化電極を冷却して、空気中の水分を前記霧化電極に凍結させる凍結モードと、
前記ペルチェ素子への通電を停止して、前記霧化電極に凍結した氷を融解させて水を生成する融解モードと、
前記霧化電極と前記対向電極との間に高電圧を印加するとともに前記ペルチェ素子への通電を行う霧化モードと、を有する、
冷蔵庫。 Refrigerator room and
An electrostatic atomizer arranged in the refrigerator compartment and applying a high voltage to atomize water.
It is a refrigerator equipped with
The electrostatic atomizer is
Atomized electrode and
The counter electrode facing the atomizing electrode and the counter electrode
It has a Perche element that cools the atomizing electrode, and
The electrostatic atomizer is set as an operation mode.
A freezing mode in which the atomizing electrode is cooled by energizing the Perche element to freeze the moisture in the air to the atomizing electrode.
A melting mode in which the energization of the Perche element is stopped and frozen ice is melted in the atomizing electrode to generate water.
It has an atomization mode in which a high voltage is applied between the atomization electrode and the counter electrode and the Perche element is energized.
refrigerator. - 前記霧化モードにおける前記ペルチェ素子への通電電流は、前記凍結モードにおける前記ペルチェ素子への通電電流よりも電流値が低い、
請求項1に記載の冷蔵庫。 The energizing current to the perche element in the atomization mode has a lower current value than the energizing current to the perche element in the freezing mode.
The refrigerator according to claim 1. - 前記冷蔵庫は、前記冷蔵室への冷気量を調整する冷蔵室ダンパを備え、
前記静電霧化装置は、前記冷蔵室ダンパの開閉動作に基づいて動作する第1動作モード、及び、前記冷蔵室ダンパの開閉動作以外の条件に基づいて動作する第2動作モードのいずれかの運転モードにより動作する、
請求項1または請求項2に記載の冷蔵庫。 The refrigerator includes a refrigerator compartment damper that adjusts the amount of cold air to the refrigerator compartment.
The electrostatic atomizer has either a first operation mode that operates based on the opening / closing operation of the refrigerating chamber damper and a second operation mode that operates based on conditions other than the opening / closing operation of the refrigerating chamber damper. Operates according to the operation mode,
The refrigerator according to claim 1 or 2. - 前記冷蔵庫は外気温度検知部を備え、
前記静電霧化装置は、前記外気温度検知部で検知された外気温度に基づいて、前記第1動作モードと前記第2動作モードとの間で運転モードを切り替える、
請求項3に記載の冷蔵庫。 The refrigerator is provided with an outside air temperature detector.
The electrostatic atomizer switches the operation mode between the first operation mode and the second operation mode based on the outside air temperature detected by the outside air temperature detection unit.
The refrigerator according to claim 3. - 運転モードが前記第1動作モードである場合の前記凍結モードは、前記冷蔵室ダンパが開状態から閉状態になったことを条件として、所定時間の間実行される、
請求項3または4のいずれかに記載の冷蔵庫。 The freezing mode when the operation mode is the first operation mode is executed for a predetermined time on condition that the refrigerating chamber damper is changed from the open state to the closed state.
The refrigerator according to any one of claims 3 or 4. - 前記冷蔵庫は、冷媒を圧縮する圧縮機を備え、
運転モードが前記第2動作モードである場合の前記凍結モードは、前記圧縮機がオフ状態からオン状態になったことを条件として、所定時間の間実行される、
請求項3から5のいずれかに記載の冷蔵庫。 The refrigerator includes a compressor that compresses the refrigerant.
The freezing mode when the operation mode is the second operation mode is executed for a predetermined time on condition that the compressor is changed from the off state to the on state.
The refrigerator according to any one of claims 3 to 5. - 前記動作モードは、前記凍結モード、前記融解モード、及び前記霧化モードの順に実行され、それぞれ前記動作モードが各々の所定時間の間実行される、
請求項1から6のいずれかに記載の冷蔵庫。 The operation mode is executed in the order of the freezing mode, the thawing mode, and the atomization mode, and the operation mode is executed for each predetermined time.
The refrigerator according to any one of claims 1 to 6. - 前記冷蔵庫は、前記冷蔵庫の湿度を検知する湿度検知部を備え、
前記静電霧化装置は、前記湿度検知部で検知された湿度に基づいて、前記凍結モードの実行される所定時間を減算し、または前記凍結モードを停止することが可能である、
請求項1から7のいずれかに記載の冷蔵庫。 The refrigerator includes a humidity detection unit that detects the humidity of the refrigerator.
The electrostatic atomizer can subtract a predetermined time during which the freezing mode is executed or stop the freezing mode based on the humidity detected by the humidity detecting unit.
The refrigerator according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080093659.XA CN114981599A (en) | 2020-01-22 | 2020-12-09 | Refrigerator with a door |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-008067 | 2020-01-22 | ||
JP2020008067A JP7522955B2 (en) | 2020-01-22 | 2020-01-22 | refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149384A1 true WO2021149384A1 (en) | 2021-07-29 |
Family
ID=76991688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045765 WO2021149384A1 (en) | 2020-01-22 | 2020-12-09 | Refrigerator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7522955B2 (en) |
CN (1) | CN114981599A (en) |
WO (1) | WO2021149384A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1073303A (en) * | 1996-08-28 | 1998-03-17 | Corona Corp | Integration type air conditioner |
JP2007137282A (en) * | 2005-11-18 | 2007-06-07 | Japan Climate Systems Corp | Air conditioner |
JP2008190813A (en) * | 2007-02-07 | 2008-08-21 | Hitachi Appliances Inc | Air conditioner with electrostatic atomizer |
JP2009264666A (en) * | 2007-04-26 | 2009-11-12 | Panasonic Corp | Refrigerator |
JP4625267B2 (en) * | 2004-04-08 | 2011-02-02 | パナソニック電工株式会社 | Electrostatic atomizer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2488049C1 (en) * | 2009-08-26 | 2013-07-20 | Панасоник Корпорэйшн | Refrigerator |
JP5609457B2 (en) * | 2010-03-29 | 2014-10-22 | パナソニック株式会社 | refrigerator |
JP6782403B2 (en) * | 2018-12-03 | 2020-11-11 | パナソニックIpマネジメント株式会社 | refrigerator |
-
2020
- 2020-01-22 JP JP2020008067A patent/JP7522955B2/en active Active
- 2020-12-09 WO PCT/JP2020/045765 patent/WO2021149384A1/en active Application Filing
- 2020-12-09 CN CN202080093659.XA patent/CN114981599A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1073303A (en) * | 1996-08-28 | 1998-03-17 | Corona Corp | Integration type air conditioner |
JP4625267B2 (en) * | 2004-04-08 | 2011-02-02 | パナソニック電工株式会社 | Electrostatic atomizer |
JP2007137282A (en) * | 2005-11-18 | 2007-06-07 | Japan Climate Systems Corp | Air conditioner |
JP2008190813A (en) * | 2007-02-07 | 2008-08-21 | Hitachi Appliances Inc | Air conditioner with electrostatic atomizer |
JP2009264666A (en) * | 2007-04-26 | 2009-11-12 | Panasonic Corp | Refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP2021116933A (en) | 2021-08-10 |
CN114981599A (en) | 2022-08-30 |
JP7522955B2 (en) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101659622B1 (en) | Method for controlling of refrigerator | |
KR101809971B1 (en) | Refrigerator and control method thereof | |
US20080000242A1 (en) | Refrigerator having a temperature controlled compartment | |
KR20160091106A (en) | Refrigerator | |
WO2021149384A1 (en) | Refrigerator | |
KR20140058164A (en) | Refrigerator and method for controlling the same | |
JP6782403B2 (en) | refrigerator | |
WO2022045038A1 (en) | Refrigerator | |
WO2021149385A1 (en) | Refrigerator | |
JP2008292140A (en) | Refrigerator | |
KR20030021943A (en) | Apparatus for supply the cool air of retrigerator | |
JP2015004477A (en) | Refrigerator | |
WO2021149383A1 (en) | Refrigerator | |
JP2003287331A (en) | Refrigerator | |
KR100469781B1 (en) | Kim-ch refrigerator installed a evaporating-tube at door | |
JP7572880B2 (en) | refrigerator | |
JP2011002227A (en) | Refrigerator | |
JP5320794B2 (en) | refrigerator | |
JP2002168560A (en) | Refrigerator | |
JP5332179B2 (en) | refrigerator | |
KR200296385Y1 (en) | Refrigerator | |
JP5056439B2 (en) | refrigerator | |
JP4151736B1 (en) | refrigerator | |
JP2004340449A (en) | Refrigerator | |
KR101483591B1 (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915097 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915097 Country of ref document: EP Kind code of ref document: A1 |