Nothing Special   »   [go: up one dir, main page]

WO2021149117A1 - Charged particle beam image analysis device, inspection system, and program - Google Patents

Charged particle beam image analysis device, inspection system, and program Download PDF

Info

Publication number
WO2021149117A1
WO2021149117A1 PCT/JP2020/001764 JP2020001764W WO2021149117A1 WO 2021149117 A1 WO2021149117 A1 WO 2021149117A1 JP 2020001764 W JP2020001764 W JP 2020001764W WO 2021149117 A1 WO2021149117 A1 WO 2021149117A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
charged particle
particle beam
sample
posture
Prior art date
Application number
PCT/JP2020/001764
Other languages
French (fr)
Japanese (ja)
Inventor
信裕 岡井
山口 敦子
直正 鈴木
堤 貴志
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/001764 priority Critical patent/WO2021149117A1/en
Publication of WO2021149117A1 publication Critical patent/WO2021149117A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to an analyzer for charged particle beam images, an inspection system, and a program.
  • Patent Document 1 describes a manufacturing process of a MOS gate power device having a trench MOS gate structure. Further, in Non-Patent Document 1 below, an atomic force microscope (AFM; Atomic Force Microscope) is described in order to evaluate the recess amount, which is a shape index that affects the characteristics of the device, in the inspection process in the middle of the manufacturing process of the trench MOSFET device. ) Is used.
  • AFM Atomic Force Microscope
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an analyzer, an inspection system, and a program for a charged particle beam image capable of accurately measuring the shape of a sample.
  • the charged particle beam image analyzer of the present invention is an image of a grooved sample taken by the charged particle beam device in the first posture, and is formed on a pair of bottom edges on the bottom surface of the groove.
  • a first image including the corresponding portion and an image of the sample taken by the charged particle beam device in a second posture tilted from the first posture and having an energy equal to or higher than a predetermined energy.
  • An image storage unit that stores a second image based on particles, a depth calculation unit that calculates the depth of the groove based on the first image and the second image, and a depth calculation unit. It is characterized by having.
  • the shape of the sample can be accurately measured.
  • FIG. 1 is a block diagram showing an example of a semiconductor inspection system 1 (inspection system) according to a preferred first embodiment.
  • the semiconductor inspection system 1 includes an electron microscope 100 (charged particle beam device), an analyzer 200 (charged particle beam image analyzer, computer), a display 260, and an input device 262. .
  • the electron microscope 100 is a SEM (Scanning Electron Microscope).
  • the electron microscope 100 includes an electric field emitting cathode 101, an extraction electrode 102, an anode 104, a focusing lens 105, a focusing unit 106 for a primary electron beam, an adjustment knob 107, an upper scanning deflector 108, and a lower scanning deflector. 109, electron detectors 110, 124, Wien filter 114, pull-up electrode 115, objective lens 118, electric field correction electrode 119, stage 121, electron gun control device 141, focusing lens control device 142.
  • Scan deflector control device 143 Scan deflector control device 143, Wien filter control device 144, pull-up electrode control device 145, objective lens control device 146, electric field correction electrode control device 147, stage control device 148, control device 150, and the like. It includes a storage device 152, a control table 154, a display 156, an input device 158, and an image memory 160.
  • the electrons are emitted by applying an extraction voltage between the field emission cathode 101 and the extraction electrode 102.
  • the emitted electrons are further accelerated between the extraction electrode 102 and the anode 104 at ground potential with respect to the extraction electrode 102.
  • the emitted electrons are referred to as a primary electron beam B1 (charged particle beam).
  • the energy of the primary electron beam B1 that has passed through the anode 104 coincides with the acceleration voltage of the electron gun (including the field emission cathode 101 and the extraction electrode 102).
  • the energy of the primary electron beam B1 may be, for example, about 200 eV to 50 keV.
  • the primary electron beam B1 that has passed through the anode 104 is focused by the focusing lens 105. Then, the primary electron beam B1 is subjected to scanning deflection by the upper scanning deflector 108 and the lower scanning deflector 109, and then is finely focused on the sample 330 by the objective lens 118.
  • the storage device 152 stores a control table 154 that defines control conditions such as voltage and current of each part of the electron microscope 100.
  • the control device 150 reads out the control table 154 and controls the electron microscope 100 via the devices 141 to 148 according to the control conditions specified here.
  • the user can input the measurement conditions via the input device 158.
  • the control device 150 reads out the control table 154 stored in the storage device 152 and sets the control parameters.
  • the objective lens 118 includes a magnetic pole 116 and an objective lens coil 117.
  • the objective lens 118 converges the primary electron beam B1 by leaking the magnetic field generated by the objective lens coil 117 from the gap of the magnetic pole 116 and concentrating it on the optical axis.
  • the strength of the objective lens 118 is adjusted by changing the amount of current of the objective lens coil 117.
  • a negative voltage is applied to the stage 121.
  • the primary electron beam B1 that has passed through the objective lens 118 is decelerated by the deceleration electric field generated between the objective lens 118 and the sample 330, and reaches the sample 330.
  • the opening angle of the primary electron beam B1 in the objective lens 118 is determined by the primary electron beam diaphragm portion 106 installed below the focusing lens 105.
  • the user can adjust the centering of the primary electron beam diaphragm unit 106 with the adjustment knob 107.
  • the primary electron beam B1 finely focused by the objective lens 118 is scanned on the sample 330 by the upper scanning deflector 108 and the lower scanning deflector 109. At this time, the deflection directions and intensities of the upper scanning deflector 108 and the lower scanning deflector 109 are adjusted so that the scanned primary electron beam B1 always passes through the center of the objective lens 118.
  • secondary electrons C charged particles
  • backscattered electrons D charged particles
  • the secondary electron C is, for example, an electron having an energy of less than 50 eV
  • the backscattered electron D is, for example, an electron having an energy of 50 eV or more.
  • the reflected electrons D have a distribution centered on the specular reflection direction with respect to the primary electron beam B1. Since the reflected electrons D have high energy, they reach the electron detector 124 for reflected electrons with almost no influence of the electric field generated between the objective lens 118 and the sample 330.
  • the control device 150 constitutes the reflected electron image GD by using the intensity of the reflected electron D that has reached the electron detector 124 as a luminance modulation input signal.
  • the reflected electron image GD is displayed on the display 156 and is also stored in the image memory 160.
  • the electric field generated between the objective lens 118 and the sample 330 acts as an accelerating electric field for the secondary electrons C. Since the secondary electrons C have low energy, they are attracted into the passage of the objective lens 118. Then, the secondary electrons C rise inside the objective lens 118 while being affected by the lens action by the accelerating electric field formed between the sample 330 and the magnetic pole 116 and the magnetic field of the objective lens 118.
  • the pull-up electrode 115 is arranged on the optical axis side with respect to the objective lens 118. A voltage higher than that of the magnetic pole 116 is applied to the pull-up electrode 115, whereby the secondary electrons C are pulled further upward. Further, an electrostatic lens is formed by the potential difference generated between the pull-up electrode 115 and the magnetic pole 116, and the secondary electrons C are subjected to a converging action by this electrostatic lens. As a result, it is possible to reduce the components of the secondary electrons C that collide with the inner wall of the pull-up electrode 115.
  • the accelerated and pulled secondary electron C is deflected off-axis by the Wien filter 114. Then, the secondary electrons C are detected by the electron detector 110 for the secondary electrons.
  • the Vienna filter 114 in the illustrated example is referred to as an "ExB filter” and includes two electrodes 131 and 132 and a coil 133.
  • the electrode 132 arranged on the electron detector 110 side is formed in a mesh shape so that the secondary electrons C can pass through. When a voltage higher than that of the electrode 131 is applied to the electrode 132, an electric field 134 from the electrode 132 to the electrode 131 is generated.
  • the coil 133 generates a magnetic field 135 in a direction orthogonal to the electric field 134. Both the electric field 134 and the magnetic field 135 have an action of deflecting the primary electron beam B1. Therefore, the Wien filter control device 144 adjusts the current supplied to the coil 133 and the voltage between the electrodes 131 and 132 in order to cancel the two. That is, in the Wien filter control device 144, the direction in which the primary electron beam B1 is deflected by the electric field 134 and the direction in which the primary electron beam B1 is deflected by the magnetic field 135 are opposite to each other, and the absolute values of the deflection amounts of both are opposite. The Wien filter 114 is controlled to be equal. As a result, the Vienna filter 114 does not affect the orbit of the primary electron beam B1.
  • the control device 150 constitutes the secondary electron image GC by using the intensity of the secondary electrons C reaching the electron detector 110 as a luminance modulation input signal.
  • the secondary electronic image GC is displayed on the display 156 and is also stored in the image memory 160.
  • the secondary electron image GC and the backscattered electron image GD may be collectively referred to as “electron image G (image)”.
  • Sample 330 is placed on the stage 121.
  • the stage control device 148 controls the position and orientation of the sample 330 by driving the stage 121. That is, the stage control device 148 has a function of moving the sample 330 in the horizontal and vertical directions and a function of tilting and rotating the sample 330.
  • the tilt angle of the stage 121 that is, the tilt angle of the sample 330 is called ⁇ .
  • the electric field between the magnetic pole 116 and the sample 330 is axisymmetric, so that the primary electron beam B1 is not deflected and is vertically oriented to the sample 330. Is irradiated to.
  • the secondary electrons C are efficiently guided above the objective lens 118 without being deflected by the action of this electric field and the action of the magnetic field of the objective lens 118.
  • the electric field between the magnetic pole 116 and the sample 330 is tilted, so that the secondary electrons C are deflected in a direction orthogonal to the optical axis.
  • the secondary electrons C generated from the sample 330 often collide with the inner wall while passing through the objective lens 118 and the pull-up electrode 115, and the number of secondary electrons C that can reach the detector 110 decreases. .. Further, this asymmetric electric field causes aberration to occur, which causes a decrease in the resolution of the primary electron beam B1.
  • the electric field correction electrode 119 formed symmetrically is provided. Then, the electric field correction electrode control device 147 applies a negative voltage of an appropriate magnitude to the electric field correction electrode 119 in order to suppress the inclination of the electric field between the objective lens 118 and the sample 330.
  • the deflection action of the primary electron beam B1 and the secondary electron C generated when the sample 330 is tilted depends on the voltage applied to the magnetic pole 116 and the stage 121 and the tilt angle. Therefore, the control device 150 sets the control conditions stored in the control table 154 to each part via the devices 141 to 148 of the electron microscope 100, thereby suppressing the deflection action of the primary electron beam B1 and the secondary electron C. do.
  • the analyzer 200 is equipped with hardware as a general computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an SSD (Solid State Drive). , OS (Operating System), application programs, various data, etc. are stored. The OS and application programs are expanded in RAM and executed by the CPU.
  • the inside of the analysis device 200 shows a function realized by an application program or the like as a block.
  • the analysis device 200 includes an image storage unit 210 (image storage means), an image acquisition unit 212 (depth calculation means), a UI control unit 214, and a depth calculation unit 220.
  • the image storage unit 210 stores an electronic image G, an image to be displayed on the display 260, and the like.
  • the image acquisition unit 212 acquires the electronic image G from the image memory 160 of the electron microscope 100 and stores it in the image storage unit 210.
  • the UI control unit 214 outputs the display image stored in the image storage unit 210 to the display 260, and receives input information from the input device 262 (for example, a keyboard, a mouse, etc.).
  • a groove called a trench 312 is formed in the sample 330, and the depth of the trench 312 (groove) is called a recess amount H.
  • the depth calculation unit 220 calculates the recess amount H.
  • the depth calculation unit 220 includes a bottom width calculation unit 222, a top edge position detection unit 224, a top center position calculation unit 226, a bottom edge position detection unit 228, a bottom center position calculation unit 230, and a depth. It is provided with a calculation unit 232. Details of each element in the depth calculation unit 220 will be described later together with the operation.
  • FIG. 2 is a diagram showing an example of the manufacturing process of the sample 330 shown in FIG.
  • the sample 330 is a semiconductor device having a trench MOS gate structure.
  • a hard mask 320 is formed on the surface of the single crystal silicon substrate 310 by using a lithography process.
  • the substrate 310 is etched.
  • a trench 312, which is a groove-shaped recess, is formed on the upper surface of the substrate 310.
  • the hard mask 320 is removed.
  • step S3 a rounding process is performed on the trench 312. That is, the vicinity of the top edge of the trench 312 is chamfered by heat treatment or the like.
  • step S4 an oxide film 314 of SiO 2 is formed on the surface of the substrate 310.
  • step S5 the gate electrode material 316 (for example, polysilicon containing high concentration phosphorus) is embedded in the trench 312.
  • step S6 the gate electrode material 316 is etched to a position lower than the height of the upper surface of the oxide film 314.
  • the difference between the height of the upper surface of the oxide film 314 and the height of the gate electrode material 316 is referred to as "recess amount H".
  • the recess amount H is measured by the electron microscope 100 using the structure in step S6 as the sample 330.
  • FIG. 3 is a schematic diagram showing the measurement principle of the recess amount H.
  • the surface 340 shown by the solid line is the surface of the sample 330 when the sample 330 is not tilted, that is, when the tilt angle ⁇ is 0 °.
  • the points where the surface 340 becomes horizontal near both ends of the trench 312 when not inclined are called top edges PT1 and PT2, and the intermediate point between the two is called the top center point P1.
  • both ends of the bottom surface 346 of the trench 312 are referred to as bottom edges PB1 and PB2, and the intermediate point between the two is referred to as a bottom center point P2.
  • the width of the bottom surface 346 is referred to as a bottom width Lb.
  • the x-axis, y-axis, and z-axis directions are defined as shown in the figure.
  • the recess amount H which is the depth of the trench 312, is equal to the distance between the top center point P1 and the bottom center point P2.
  • the surface 360 indicated by the alternate long and short dash line is the surface of the sample 330 when the inclination angle ⁇ of the sample 330 is ⁇ 1 larger than 0 °.
  • the top center point of the surface 360 shall be equal to the top center point P1 of the surface 340.
  • ⁇ x be the difference value between the x-coordinate value of the top center point P1 and the x-coordinate value of the bottom center point P3 at the time of inclination.
  • FIG. 4 is a schematic view showing the measurement principle of the bottom width Lb.
  • the reference numerals starting with “GC” such as “GC2” are a part of the secondary electron image GC.
  • a code starting with "GD” such as “GD2” is a part of the reflected electron image GD.
  • Both the secondary electron image and the backscattered electron image are two-dimensional images, and the result of integrating the pixel values along the y-axis (see FIG. 3) is called the secondary electron intensity and the backscattered electron intensity.
  • the secondary electron intensity IC2 and the backscattered electron intensity ID2 are attached to the secondary electron image GC2 (first image) and the backscattered electron image GD2 (first image) acquired by setting the inclination angle ⁇ to ⁇ 0.
  • ⁇ 0 is, for example, “0 °”.
  • the x-coordinate values x1 and x4 are the x-coordinate values of the top edges PT1 and PT2, and the x-coordinate values x2 and x3 (first bottom edge positions) are the x-coordinate values of the bottom edges PB1 and PB2.
  • the x-coordinate values x2 and x3 can be specified from the secondary electron intensity IC2 or the backscattered electron intensity ID2 by using a well-known edge detection algorithm.
  • the bottom width Lb can be obtained as the difference between the x coordinate values x2 and x3.
  • the surface of the sample 330 is flat, whereas the secondary electron intensity IC2 is not flat but slightly inclined.
  • the reason is that when the oxide film 314 covering the surface of the sample 330 is an insulator and is charged by the primary electron beam B1 (see FIG. 1), the secondary electrons are deflected by the charging and the number of electrons reaching the detector changes. To do.
  • the secondary electron intensity IC2 in the interval of x ⁇ x1 and x4 ⁇ x changes depending on the environmental conditions and measurement conditions at that time.
  • the reflected electron intensity ID2 in the section of x ⁇ x1 and x4 ⁇ x is almost constant. The reason is that the reflected electrons have high energy and are hardly subjected to the deflection action due to the charging of the oxide film 314. As described above, if the edge of the secondary electron intensity IC2 or the backscattered electron intensity ID2 can be detected at the x coordinate values x2 and x3, the bottom width Lb can be measured. Therefore, the inclination angle ⁇ 0 is not limited to “0 °” as long as these edges can be detected.
  • FIG. 5 is a schematic diagram showing the measurement principle of the x-coordinate value P1 (x) of the top center point P1.
  • the reflected electron intensity ID 4 is an example of the intensity based on the reflected electron image GD4 (second image) acquired by setting the inclination angle ⁇ to ⁇ 1 (however, ⁇ 1> ⁇ 0).
  • the x-coordinate values x11 and x14 (top edge positions) are the x-coordinate values of the top edges PT1 and PT2.
  • the reflected electron intensity ID4 has a substantially constant value ID40 regardless of the charged state of the oxide film 314. Is equal to.
  • the tilt angle of the surface of the sample 330 is different from the tilt angle ⁇ 1, so that the backscattered electron intensity ID4 deviates from the constant value ID40. Therefore, the x-coordinate values x11 and x14 can be specified by using a well-known edge detection algorithm.
  • the x-coordinate value P1 (x) of the top center point P1 can be obtained as the average value of the x-coordinate values x11 and x14.
  • FIG. 6 is a schematic diagram showing the measurement principle of the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination based on the secondary electron intensity.
  • the secondary electron intensity IC 5 is an example of the intensity based on the secondary electron image GC5 (third image) acquired by setting the inclination angle ⁇ to ⁇ 1 as in FIG. 5 described above.
  • the x-coordinate value x13 (second bottom edge position) is the x-coordinate value of the bottom edge PB2.
  • the surface of the sample 330 is a gate electrode material 316 which is a conductor.
  • the surface of the sample 330 is an oxide film 314 which is an insulator.
  • the x-coordinate value x13 a clear edge appears in the secondary electron intensity IC5, and the x-coordinate value x13 can be specified.
  • FIG. 7 is a schematic diagram showing another measurement principle of the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination based on the intensity of backscattered electrons.
  • the reflected electron intensity ID 6 is an example of the intensity based on the reflected electron image GD6 (second image) acquired by setting the inclination angle ⁇ to ⁇ 1 as in FIG. 5 described above.
  • the x-coordinate value x13 is the x-coordinate value of the bottom edge PB2
  • the x-coordinate value x14 is the x-coordinate value of the top edge PT2.
  • the inclination angle of the surface of the sample 330 is changed at the bottom edge PB2. Then, this change in the inclination angle appears as an edge at the x-coordinate value x13 of the reflected electron intensity ID6. Therefore, the x-coordinate value x13 can be specified by using a well-known edge detection algorithm.
  • the reflected electron intensity ID6 deviates from the constant value ID60, so that the x-coordinate values x11 and x14 can also be detected. Whether or not the edge of the x-coordinate value x13 appears in the reflected electron intensity ID 6 depends on the shape of the sample 330, the position of the electron detector 124 (see FIG. 1), and the inclination angle ⁇ 1. Then, as shown in the figure, when the x-coordinate values x11, x13, and x14 can be detected based on the backscattered electron intensity ID6, the recess amount is determined by the backscattered electron intensity ID2 (see FIG. 4) and ID6 without using the secondary electron image. H can be calculated.
  • the image acquisition unit 212 (see FIG. 1) acquires an electronic image G for calculating the bottom width Lb (see FIG. 4) from the image memory 160, and the analysis device 200 It is stored in the image storage unit 210 inside.
  • the bottom width calculation unit 222 calculates the bottom width Lb (see FIG. 4) based on the image acquired in step S22. That is, the bottom width calculation unit 222 calculates the bottom width Lb based on the x-coordinate values x2 and x3 of the bottom edges PB1 and PB2 shown in FIG.
  • the image acquisition unit 212 acquires an electronic image G for detecting the x-coordinate value P1 (x) of the top center point P1 (see FIG. 5) from the image memory 160. , Stored in the image storage unit 210 in the analyzer 200.
  • the top edge position detection unit 224 and the top center position calculation unit 226 increase the x-coordinate value P1 of the top center point P1 based on the image acquired in step S26.
  • (X) (see FIG. 5) is calculated. More specifically, the top edge position detection unit 224 detects the x-coordinate values x11 and x14 of the top edges PT1 and PT2 based on the electronic image G, and calculates the average value of these values to calculate the top center point P1.
  • the x-coordinate value P1 (x) of is calculated.
  • the image acquisition unit 212 when the process proceeds to step S30, the image acquisition unit 212 generates an electronic image G for detecting the x-coordinate value P3 (x) of the bottom center point P3 (see FIG. 6) when tilted from the image memory 160. It is acquired and stored in the image storage unit 210 in the analyzer 200.
  • the image previously acquired in step S26 may be applicable to the detection of the x-coordinate value P3 (x) as in the reflected electron image GD6 (see FIG. 7). In such a case, in step S30, the image acquired in step S26 may be diverted.
  • the bottom edge position detection unit 228 and the bottom center position calculation unit 230 use the x-coordinate value P3 (x) of the tilted bottom center point P3 based on the image acquired in step S30. (See FIG. 6) is calculated. More specifically, the bottom edge position detection unit 228 detects the x-coordinate value x13 of the bottom edge PB2 based on the electronic image G (for example, GC5 in FIG. 6 or GD6 in FIG. 7).
  • the tilt angle ⁇ is set to ⁇ 0
  • the electron microscope 100 is operated to acquire an electronic image G
  • the above steps S22 and S24 are executed
  • the tilt angle ⁇ is changed to ⁇ 1 to obtain an electron microscope.
  • the electron image G may be acquired by operating 100, and then steps S26 to S34 described above may be executed.
  • FIG. 9 is an operation explanatory view in which the analysis device 200 (see FIG. 1) performs edge detection.
  • the electron images G1 to G4 shown in FIG. 9 are secondary electron image GC or backscattered electron image GD.
  • the electronic images G1 and G2 are images when the inclination angle ⁇ (see FIG. 3) is 0 °, and the top edges PT1 and PT2 are not shown.
  • the analyzer 200 sets one length measuring box B10 wider than the bottom width Lb.
  • the analysis device 200 adds pixel values from the minimum value to the maximum value of the y coordinate value for each x coordinate value within the range of the length measurement box B10.
  • the result of the addition is the electron strength (secondary electron strength or backscattered electron strength).
  • the analysis device 200 detects the edge with respect to the electron intensity from the center position (not shown) in the x-axis direction of the length measuring box B10 toward the outside, thereby detecting the x-coordinate values of the bottom edges PB1 and PB2. ..
  • the analysis device 200 sets two length measuring boxes B21 and B22 narrower than the bottom width Lb.
  • the analysis device 200 adds the pixel values from the minimum value to the maximum value of the y coordinate value for each x coordinate value within the range of the length measurement boxes B21 and B22 to acquire the electron strength.
  • the analysis device 200 detects the edge with respect to the electron intensity from the x-coordinate values x41 and x42 of the opposite sides of the length measuring boxes B21 and B22 toward the outside, thereby detecting the x-coordinate values of the bottom edges PB1 and PB2. do.
  • the electronic images G3 and G4 are images when the inclination angle ⁇ is ⁇ 1 (see FIG. 3).
  • the analyzer 200 sets one length measuring box B30 wider than the top width Lt. Then, the analysis device 200 detects the x-coordinate values of the top edges PT1 and PT2 by the same procedure as the detection of the x-coordinate values of the bottom edges PB1 and PB2 in the electronic image G1 described above, and if possible, the bottom. The x-coordinate values of the edges PB1 and PB2 are also detected.
  • the analysis device 200 sets two length measuring boxes B41 and B42 narrower than the top width Lt. Then, the analysis device 200 detects the x-coordinate values of the top edges PT1 and PT2 by the same procedure as the detection of the x-coordinate values of the bottom edges PB1 and PB2 in the above-mentioned electronic image G2, and if possible, the bottom. The x-coordinate values of the edges PB1 and PB2 are also detected.
  • FIG. 10 to 14 are diagrams illustrating display screens 502 to 520 displayed on the display 260.
  • the UI control unit 214 causes the display 260 to display, for example, the display screen 502 shown in FIG.
  • the display screen 502 includes a progress status display field 410, an image display field 412, a read button 414, a clear button 416, and an image acquisition condition display unit 418.
  • the progress status display column 410 is a column for displaying the progress status of the measurement process.
  • the image display field 412 is a field for displaying the electronic image G10 to be processed.
  • the image display field 412 is blank.
  • the read button 414 is a button for instructing the read of the electronic image G10 to be processed.
  • a file selection dialog (not shown) is displayed on the display 260 (see FIG. 1), in which the electronic image stored in the image memory 160 is displayed. For example, it is displayed in a list format of image data files. Then, when the user selects a desired electronic image, the electronic image is read into the image storage unit 210 as the electronic image G10 to be processed. Further, when the user presses the clear button 416, the electronic image G10 is erased from the image storage unit 210.
  • the image acquisition condition display unit 418 displays the image acquisition conditions of the electronic image G10, that is, various parameters in the electron microscope 100 when the electronic image G10 is acquired.
  • the content of the image acquisition condition display unit 418 is based on the content embedded in the electronic image G10 in, for example, an XMP (Extensible Metadata Platform) format. Therefore, before the electronic image G10 is selected, the image acquisition condition display unit 418 is blank.
  • the UI control unit 214 causes the display 260 to display, for example, the display screen 504 shown in FIG.
  • the display screen 504 instead of the read button 414, the clear button 416, and the image acquisition condition display unit 418 on the display screen 502, a length measurement box adjustment button 422, a length measurement button 424, and a length measurement condition designation field 430 are used.
  • the bottom width display field 426 and the like are included.
  • the length measuring box B50 is displayed by superimposing on the electronic image G10.
  • the length measurement condition designation field 430 includes a length measurement box number designation field 432, a length measurement algorithm designation field 434, and a threshold value designation field 436. Each time the user presses the length measurement box adjustment button 422, the on / off state is toggled. Then, when the length measuring box adjustment button 422 is on, the user can adjust the position and dimensions of the length measuring box B50.
  • the user can specify the number of the length measuring boxes B50 from “1" or "2" in the length measuring box number designation field 432. Further, the user can specify the edge detection algorithm of the electronic image G10 in the length measurement algorithm designation field 434. In addition, the user can specify a threshold value applied to edge detection in the threshold value designation field 436. In the illustrated example, “Threshold” is specified as the algorithm and "10%” is specified as the threshold. This is, for example, in the secondary electron intensity IC2 shown in FIG. 4, the position at which the threshold value is "10%” or more away from the level of the flat section (between x coordinate values x2 and x3). Is determined to be an edge. "
  • the threshold value the higher the possibility that the bottom width Lb can be detected accurately.
  • noise may be determined as the edge position.
  • Various algorithms for determining edges in image data are known, not limited to the threshold method.
  • the user can select the most preferable algorithm according to the electronic image G and the waveform of the electronic intensity. In this way, when the user presses the length measurement button 424 after determining the position and dimensions of the length measurement box B50 and setting the length measurement conditions, the process proceeds to step S24 in the measurement processing routine (FIG. 8), and the bottom The width calculation unit 222 (see FIG. 1) calculates the bottom width Lb (see FIG. 4).
  • the UI control unit 214 causes the display 260 to display the display screen 506 shown in FIG. 11, for example.
  • the signal profile P10 is displayed by superimposing on the electronic image G10.
  • the signal profile P10 is a graph of the intensity (for example, IC2 or ID2 shown in FIG. 4) corresponding to the electronic image G10.
  • the calculated bottom width Lb value is displayed in the bottom width display column 426.
  • step S26 the UI control unit 214 (see FIG. 1) causes the display 260 to display, for example, the display screen 508 shown in FIG.
  • the display screen 508 includes a progress status display field 410, an image display field 412, a read button 414, a clear button 416, an image acquisition condition display unit 418, and the like. Includes. However, immediately after the display screen 508 is displayed, the image display field 412 and the image acquisition condition display unit 418 are blank.
  • the electronic image G20 to be processed is read from the image memory 160 (see FIG. 1) into the image storage unit 210.
  • the UI control unit 214 (see FIG. 1) causes the electronic image G20 to be displayed in the image display field 412. Further, the UI control unit 214 causes the image acquisition condition display unit 418 to display the image acquisition conditions of the electronic image G20.
  • the display screen 510 includes a left edge coordinate display field 442, a right edge coordinate display field 444, and a top center coordinate display field 446 instead of the bottom width display field 426 (see FIG. 10). These are for displaying the left edge coordinate, that is, the x coordinate value x11, the right edge coordinate, that is, the x coordinate value x14, and the top center coordinate, that is, the x coordinate value P1 (x) of the top center point P1 in FIG. It is a column.
  • step S28 the top edge position detection unit 224 (see FIG. 1) detects the x-coordinate values x11 and x14, and the top center position calculation unit 226 detects the x-coordinate value P1 (x) of the top center point P1. ) (See FIG. 5).
  • the UI control unit 214 causes the display 260 to display the display screen 512 shown in FIG. 12, for example.
  • the signal profile P20 is displayed by superimposing on the electronic image G20 in the image display field 412.
  • the signal profile P20 is a graph of the intensities (for example, ID4 and ID6 shown in FIGS. 5 and 7) corresponding to the electronic image G20.
  • the left edge coordinates, the right edge coordinates, and the top center coordinates are displayed in the display columns 442,444,446, respectively.
  • Display screen 5114 Next, when the user performs a predetermined operation, the process proceeds to step S30 in the measurement processing routine (FIG. 8).
  • the UI control unit 214 causes the display 260 to display, for example, the display screen 514 shown in FIG.
  • the display screen 514 includes a progress status display field 410, an image display field 412, a read button 414, a clear button 416, and an image acquisition condition display unit. 418 and.
  • the functions of these elements are the same as those of the display screens 502 and 508.
  • the image display field 412 and the image acquisition condition display unit 418 are blank.
  • the display screen 514 includes an image diversion button 415.
  • the image diversion button 415 specifies that the already read electronic image G20 (see FIG. 12) is diverted as the electronic image G30 to be processed this time. That is, the user may operate the read button 414 or the like to read the new electronic image G30 from the image memory 160 (see FIG. 1) into the image storage unit 210, or operate the image diversion button 415 to read the electronic image. G20 may be diverted as the electronic image G30.
  • the UI control unit 214 (see FIG. 1) causes the electronic image G30 to be displayed in the image display field 412. Further, the UI control unit 214 causes the image acquisition condition display unit 418 to display the image acquisition condition of the electronic image G30.
  • the UI control unit 214 causes the display 260 to display, for example, the display screen 516 shown in FIG. Similar to the display screens 504 and 510 (see FIGS. 10 and 12), the display screen 516 measures the progress status display field 410, the image display field 412, the length measurement box adjustment button 422, and the length measurement button 424.
  • the long condition designation field 430 and the like are included. The functions of these elements are similar to those of the display screens 504 and 510. However, in the image display field 412, an electronic image G30 and a length measuring box B70 having dimensions corresponding to the electronic image G30 are displayed.
  • the display screen 516 includes a bottom edge coordinate display field 450 and a bottom center coordinate display field 452 instead of the bottom width display field 426 (see FIG. 10). These are columns for displaying the bottom edge coordinates, that is, the x-coordinate value x13 in FIG. 6, and the bottom center coordinates, that is, the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination.
  • step S32 the bottom edge position detection unit 228 (see FIG. 1) detects the x-coordinate value x13 of the bottom edge PB2 (see FIG. 6), and the bottom center position calculation unit 230 is the bottom center when tilted.
  • the x-coordinate value P3 (x) of the point P3 is calculated.
  • the UI control unit 214 causes the display 260 to display, for example, the display screen 518 shown in FIG.
  • the signal profile P30 is displayed by superimposing on the electronic image G30 in the image display field 412.
  • the signal profile P30 is a graph of the intensities (for example, GC5 and ID6 shown in FIGS. 6 and 7) corresponding to the electronic image G30.
  • the bottom edge coordinates and the bottom center coordinates are displayed in the display columns 450 and 452, respectively.
  • the UI control unit 214 causes the display 260 to display, for example, the display screen 520 shown in FIG.
  • the display screen 520 includes a progress status display field 410, a bottom width display field 426, a top center coordinate display field 446, and a bottom center coordinate display field 452.
  • the functions of these elements are the same as those of the display screens 506, 512, 518, with the functions of the display columns 426, 446, 452 described above.
  • the display screen 520 includes a recess amount calculation button 460 and a recess amount display field 462.
  • FIG. 15 is a schematic diagram showing a measurement principle for measuring the recess amount H of the sample 700 in the comparative example.
  • the sample 700 is entirely a conductor, and a recess 702 recessed in a substantially trapezoidal shape is formed on the upper surface thereof.
  • the top edges 704 and 706 of the recess 702 are not rounded.
  • the angle formed by the bottom surface and the side surface of the recess 702 is defined as the side surface inclination angle ⁇ , and the inclination angle of the sample 700 is defined as ⁇ .
  • the secondary electron intensity IC10 is the intensity based on the secondary electron image GC10 acquired for this sample 700. Let the x-coordinate values of the top edges 704 and 706 be x52 and x56, and the x-coordinate values of the bottom edge 710 be x54. Further, the interval between the x-coordinate values x54 and x56 is called ⁇ xs.
  • ⁇ xs (H / sin ⁇ ) cos ( ⁇ )
  • FIG. 16 is a diagram showing an example of measurement results of the interval ⁇ xs with respect to various inclination angles ⁇ .
  • the measurement points Q11 to Q15 are measurement points in which the interval ⁇ xs is measured while changing the inclination angle ⁇
  • the approximate curve QC is a curve approximation of these measurement points Q11 to Q15 by the least squares method or the like. .. Since the shape of the approximate curve QC is determined by the recess amount H and the side inclination angle ⁇ , if the approximate curve QC is obtained, the recess amount H and the side inclination angle ⁇ can be obtained by fitting. However, in order to obtain an accurate approximate curve QC, it is necessary to acquire a relatively large number of measurement points (for example, "5" or more), which causes a problem that the number of measurement times increases.
  • FIG. 17 is a schematic diagram showing a measurement principle for measuring the recess amount H of another sample 740 in the comparative example.
  • the sample 740 is composed of a conductor
  • the overall shape is the same as that of the sample 330 (see FIG. 4) in the above embodiment. That is, a recess 752 recessed in a substantially trapezoidal shape is formed on the upper surface of the sample 740, and rounding is provided near the top edges 744 and 746 of the recess 752.
  • the line connecting the bottom edge 750 and the top edge 746 is called an inclined line 754, and the angle formed by the bottom surface of the recess 752 and the inclined line 754 is called a side inclined angle ⁇ .
  • the secondary electron intensity IC12 is the intensity based on the secondary electron image GC12 acquired for the sample 740.
  • the x-coordinate value of the bottom edge 750 is x64
  • the x-coordinate value of the top edge 746 is x66
  • the distance between the two is called ⁇ xs.
  • the secondary electron intensity IC 12 becomes flat on the left side of the x-coordinate value x64 and on the right side of the x-coordinate value x66.
  • the x-coordinate values x64 and x66 can be detected by detecting the rising and falling points of the secondary electron intensity IC 12, and the interval ⁇ xs can be obtained.
  • the recess amount H of the sample 740 can be obtained in the same manner as the recess amount H of the sample 700 (see FIG. 15) described above. However, since an error is likely to be mixed in the measurement of the x-coordinate value x66 of the top edge 746, it is necessary to acquire more measurement points in order to obtain an accurate recess amount H.
  • the x-coordinate values x11 and x14 of the top edges PT1 and PT2 are detected based on the backscattered electron images GD4 and GD6 (see FIGS. 5 and 7), but in the comparative example, the secondary electron image GC5
  • the x-coordinate values x11 and x14 are detected based on the above.
  • the error becomes large.
  • the reason for the large error is that the oxide film 314 on the surface of the sample 330 is an insulator and is charged by the primary electron beam B1 (see FIG. 1).
  • the state of charge is difficult to predict in advance and varies from time to time. Since the waveform of the secondary electron intensity IC5 fluctuates greatly depending on the state of charging, it becomes difficult to accurately identify the positions corresponding to the x-coordinate values x11 and x14. In order to suppress the influence of the error, the number of measurement points must be further increased, which further lengthens the total measurement time.
  • the measurement time becomes long and the measurement error of the recess amount H also becomes large.
  • Image acquisition to acquire a second image (GD4, GD6) based on a charged particle having an energy of a predetermined energy (100 eV) or more, which is an image taken by a charged particle beam device (100) at ⁇ ⁇ 1).
  • a depth calculation unit 220 that calculates the depth (H) of the groove (312) based on the unit 212, the first image (GC2, GD2), and the second image (GD4, GD6). To be equipped.
  • the third image (GC5) based on the above is acquired, and the depth calculation unit 220 acquires the first image (GC2, GD2), the second image (GD4, GD6), and the third image. It is preferable to calculate the depth (H) based on (GC5). In this way, by using the first image (GC2, GD2), the second image (GD4, GD6), and the third image (GC5), which have different measurement conditions, the depth (H) is increased. ) Can be calculated accurately.
  • the depth calculation unit 220 detects a pair of first bottom edge positions (x2, x3) corresponding to the positions of the pair of bottom edges PB1 and PB2 based on the first image (GC2, GD2).
  • a bottom width calculation unit 222 that calculates the bottom width (Lb), which is the width of the bottom surface 346, based on the pair of first bottom edge positions (x2, x3).
  • the bottom width (Lb) can be accurately calculated based on the first image (GC2, GD2) having a small inclination.
  • Top edge position detection unit 224 that detects the position (x11, x14)
  • top center position calculation unit 226 that calculates the top center position (P1 (x)) that is the midpoint between the pair of top edge positions (x11, x14). It is preferable to further prepare.
  • the top edge position (x11, x14) and the top center position (P1 (x)) while suppressing the influence of the charge on the sample 330. Can be calculated.
  • the depth calculation unit 220 has a second bottom edge corresponding to one of the positions of the pair of bottom edges PB1 and PB2 based on the second image (GD4, GD6) or the third image (GC5).
  • the bottom center position (x)) is calculated. be able to.
  • the angle between the direction orthogonal to the path of (B1) and the line connecting the pair of top edges PT1 and PT2 of the groove (312) is ⁇ 1
  • the top center position (P1 (x)) and the bottom center It is preferable to further include a depth calculation unit 232 for calculating the depth (H) by dividing the difference from the position (P3 (x)) by sin ⁇ 1.
  • the depth (H) can be calculated accurately by calculating the depth (H) based on the top center position (P1 (x)) and the bottom center position (P3 (x)). can.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the above-described embodiments are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • another configuration may be added to the configuration of the above embodiment, and a part of the configuration may be replaced with another configuration.
  • the control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications to the above embodiment are, for example, as follows.
  • the charged particle beam device is not limited to the electron microscope 100. That is, the electron microscope 100 applies electrons as "charged particles”, but the charged particles are not limited to electrons and may be ion particles or the like.
  • Each of the above-mentioned processes has been described as a software-like process using a program in the above embodiment, but a part or all of them may be an ASIC (Application Specific Integrated Circuit; IC for a specific application) or an FPGA (Field). It may be replaced with hardware-like processing using Programmable Gate Array) or the like. Further, the image storage unit 210 shown in FIG. 1 may be provided in a cloud on a network (not shown).
  • the method of measuring the recess amount for the structure in which the top edge is rounded which is described in step S6 of FIG. 2 as the sample 330, has been described.
  • the present invention may also be applied to a sample 700 (see FIG. 15) having a structure in which the top edge is not rounded, which is described as a comparative example.
  • the x-coordinate values (x52 and x56) of the top edge can be calculated from the secondary electron intensity IC10. That is, by setting these x52 and x56 as PT1 and PT2, respectively, the recess amount can be measured in the same manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The present invention makes it possible to accurately measure the shape of a sample. To that end, a charged particle beam image analysis device (200) comprises an image acquisition unit (212) for acquiring a first image that is of a sample (330) having a groove formed therein, has been captured using a charged particle beam device (100) with the sample (330) in a first orientation (φ = φ0), and includes portions corresponding to a pair of bottom edges on the bottom surface of the groove, and a second image that is of the sample (330), has been captured using a charged particle beam device (100) with the sample (330) in a second orientation (φ = φ1) more inclined than the first orientation (φ = φ0), and is based on charged particles having energies greater than or equal to a prescribed energy, and a depth calculation unit (220) for calculating the depth of the groove on the basis of the first image and second image.

Description

荷電粒子線画像用解析装置、検査システムおよびプログラムCharged particle beam image analyzers, inspection systems and programs
 本発明は、荷電粒子線画像用解析装置、検査システムおよびプログラムに関する。 The present invention relates to an analyzer for charged particle beam images, an inspection system, and a program.
 本技術分野の背景技術として、下記特許文献1には、トレンチMOSゲート構造を有するMOSゲートパワーデバイスの製造プロセスが記載されている。また、下記非特許文献1には、トレンチMOSFETデバイスの製造プロセスの途中の検査工程において、デバイスの特性に影響する形状指標であるリセス量を評価するために原子間力顕微鏡(AFM;Atomic Force Microscope)を用いる点が記載されている。 As a background technology in this technical field, the following Patent Document 1 describes a manufacturing process of a MOS gate power device having a trench MOS gate structure. Further, in Non-Patent Document 1 below, an atomic force microscope (AFM; Atomic Force Microscope) is described in order to evaluate the recess amount, which is a shape index that affects the characteristics of the device, in the inspection process in the middle of the manufacturing process of the trench MOSFET device. ) Is used.
特開2007‐49204号公報Japanese Unexamined Patent Publication No. 2007-49204
 しかし、従来から知られている技術では、トレンチMOSFETデバイスの検査工程での形状計測において、リセス量を高スループットかつ正確に計測することが困難であった。
 この発明は上述した事情に鑑みてなされたものであり、試料の形状を正確に計測できる荷電粒子線画像用解析装置、検査システムおよびプログラムを提供することを目的とする。
However, with conventionally known techniques, it has been difficult to accurately measure the recess amount with high throughput in shape measurement in the inspection process of a trench MOSFET device.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an analyzer, an inspection system, and a program for a charged particle beam image capable of accurately measuring the shape of a sample.
 上記課題を解決するため本発明の荷電粒子線画像用解析装置は、溝を形成した試料を第1の姿勢において荷電粒子線装置で撮影した画像であって前記溝の底面における一対のボトムエッジに対応する部分を含む第1の画像と、前記試料を、前記第1の姿勢よりも傾斜させた第2の姿勢において前記荷電粒子線装置で撮影した画像であって所定エネルギ以上のエネルギを有する荷電粒子に基づいた第2の画像と、を記憶する画像記憶部と、前記第1の画像と、前記第2の画像と、に基づいて、前記溝の深さを算出する深さ算出部と、を備えることを特徴とする。 In order to solve the above problems, the charged particle beam image analyzer of the present invention is an image of a grooved sample taken by the charged particle beam device in the first posture, and is formed on a pair of bottom edges on the bottom surface of the groove. A first image including the corresponding portion and an image of the sample taken by the charged particle beam device in a second posture tilted from the first posture and having an energy equal to or higher than a predetermined energy. An image storage unit that stores a second image based on particles, a depth calculation unit that calculates the depth of the groove based on the first image and the second image, and a depth calculation unit. It is characterized by having.
 本発明によれば、試料の形状を正確に計測できる。 According to the present invention, the shape of the sample can be accurately measured.
好適な第1実施形態による半導体検査システム1の一例を示すブロック図である。It is a block diagram which shows an example of the semiconductor inspection system 1 by a preferable 1st Embodiment. 試料の製造プロセスの一例を示す図である。It is a figure which shows an example of the manufacturing process of a sample. リセス量の計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle of a recess amount. ボトム幅の計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle of the bottom width. トップ中心点のx座標値の計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle of the x-coordinate value of a top center point. 二次電子強度に基づく、傾斜時ボトム中心点のx座標値の計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle of the x-coordinate value of the bottom center point at the time of inclination based on the secondary electron intensity. 反射電子強度に基づく、傾斜時ボトム中心点のx座標値の計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle of the x-coordinate value of the bottom center point at the time of inclination based on the reflected electron intensity. 解析装置において実行される計測処理ルーチンのフローチャートである。It is a flowchart of the measurement processing routine executed in the analysis apparatus. 解析装置がエッジ検出を行う動作説明図である。It is an operation explanatory figure which the analyzer performs edge detection. ディスプレイに表示される表示画面を例示する図である。It is a figure which illustrates the display screen displayed on the display. ディスプレイに表示される他の表示画面を例示する図である。It is a figure which illustrates other display screens displayed on a display. ディスプレイに表示される他の表示画面を例示する図である。It is a figure which illustrates other display screens displayed on a display. ディスプレイに表示される他の表示画面を例示する図である。It is a figure which illustrates other display screens displayed on a display. ディスプレイに表示される他の表示画面を例示する図である。It is a figure which illustrates other display screens displayed on a display. 比較例において試料のリセス量を計測する計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle which measures the recess amount of a sample in a comparative example. 様々な傾斜角に対する間隔の計測結果の一例を示す図である。It is a figure which shows an example of the measurement result of the interval with respect to various inclination angles. 比較例において他の試料のリセス量を計測する計測原理を示す模式図である。It is a schematic diagram which shows the measurement principle which measures the recess amount of another sample in a comparative example.
[第1実施形態]
〈第1実施形態の構成〉
 図1は、好適な第1実施形態による半導体検査システム1(検査システム)の一例を示すブロック図である。
 図1において、半導体検査システム1は、電子顕微鏡100(荷電粒子線装置)と、解析装置200(荷電粒子線画像用解析装置、コンピュータ)と、ディスプレイ260と、入力装置262と、を備えている。図示の例において電子顕微鏡100は、SEM(Scanning Electron Microscope;走査型電子顕微鏡)である。
[First Embodiment]
<Structure of the first embodiment>
FIG. 1 is a block diagram showing an example of a semiconductor inspection system 1 (inspection system) according to a preferred first embodiment.
In FIG. 1, the semiconductor inspection system 1 includes an electron microscope 100 (charged particle beam device), an analyzer 200 (charged particle beam image analyzer, computer), a display 260, and an input device 262. .. In the illustrated example, the electron microscope 100 is a SEM (Scanning Electron Microscope).
(電子顕微鏡100)
 電子顕微鏡100は、電界放出陰極101と、引出電極102と、陽極104と、集束レンズ105と、一次電子ビーム用絞り部106と、調整ノブ107と、上走査偏向器108と、下走査偏向器109と、電子検出器110,124と、ウィーンフィルタ114と、引上電極115と、対物レンズ118と、電界補正電極119と、ステージ121と、電子銃制御装置141と、集束レンズ制御装置142と、走査偏向器制御装置143と、ウィーンフィルタ制御装置144と、引上電極制御装置145と、対物レンズ制御装置146と、電界補正電極制御装置147と、ステージ制御装置148と、制御装置150と、記憶装置152と、制御テーブル154と、ディスプレイ156と、入力装置158と、画像メモリ160と、を備えている。
(Electron microscope 100)
The electron microscope 100 includes an electric field emitting cathode 101, an extraction electrode 102, an anode 104, a focusing lens 105, a focusing unit 106 for a primary electron beam, an adjustment knob 107, an upper scanning deflector 108, and a lower scanning deflector. 109, electron detectors 110, 124, Wien filter 114, pull-up electrode 115, objective lens 118, electric field correction electrode 119, stage 121, electron gun control device 141, focusing lens control device 142. , Scan deflector control device 143, Wien filter control device 144, pull-up electrode control device 145, objective lens control device 146, electric field correction electrode control device 147, stage control device 148, control device 150, and the like. It includes a storage device 152, a control table 154, a display 156, an input device 158, and an image memory 160.
 電子顕微鏡100では、電界放出陰極101と引出電極102の間に引出電圧が印加されることで、電子が放出される。放出された電子は、引出電極102と、引出電極102に対して接地電位にある陽極104と、の間でさらに加速される。放出された電子を、一次電子ビームB1(荷電粒子線)と称する。陽極104を通過した一次電子ビームB1のエネルギは電子銃(電界放出陰極101と引出電極102とを含む)の加速電圧と一致する。一次電子ビームB1のエネルギは、例えば200eV~50keV程度にするとよい。陽極104を通過した一次電子ビームB1は集束レンズ105で集束される。そして、一次電子ビームB1は上走査偏向器108と、下走査偏向器109とによって走査偏向を受けた後、対物レンズ118によって試料330上に細く絞られる。 In the electron microscope 100, electrons are emitted by applying an extraction voltage between the field emission cathode 101 and the extraction electrode 102. The emitted electrons are further accelerated between the extraction electrode 102 and the anode 104 at ground potential with respect to the extraction electrode 102. The emitted electrons are referred to as a primary electron beam B1 (charged particle beam). The energy of the primary electron beam B1 that has passed through the anode 104 coincides with the acceleration voltage of the electron gun (including the field emission cathode 101 and the extraction electrode 102). The energy of the primary electron beam B1 may be, for example, about 200 eV to 50 keV. The primary electron beam B1 that has passed through the anode 104 is focused by the focusing lens 105. Then, the primary electron beam B1 is subjected to scanning deflection by the upper scanning deflector 108 and the lower scanning deflector 109, and then is finely focused on the sample 330 by the objective lens 118.
 記憶装置152は、電子顕微鏡100の各部の電圧、電流等の制御条件を定めた制御テーブル154を記憶している。制御装置150は、制御テーブル154を読み出し、ここに指定されている制御条件に従って、各装置141~148を介して、電子顕微鏡100を制御する。ユーザは、入力装置158を介して測定条件を入力することができる。ユーザが測定条件を入力すると、制御装置150は記憶装置152に格納されている制御テーブル154を読み出し、制御パラメータを設定する。 The storage device 152 stores a control table 154 that defines control conditions such as voltage and current of each part of the electron microscope 100. The control device 150 reads out the control table 154 and controls the electron microscope 100 via the devices 141 to 148 according to the control conditions specified here. The user can input the measurement conditions via the input device 158. When the user inputs the measurement conditions, the control device 150 reads out the control table 154 stored in the storage device 152 and sets the control parameters.
 対物レンズ118は磁極116と、対物レンズコイル117と、を備えている。対物レンズ118は、対物レンズコイル117で発生した磁界を磁極116のギャップから漏洩させて光軸上に集中させることで一次電子ビームB1を収束させる。対物レンズ118の強度は、対物レンズコイル117の電流量を変化させることで調整される。ここで、ステージ121には負の電圧が印加されている。対物レンズ118を通過した一次電子ビームB1は、対物レンズ118と試料330との間に生成される減速電界で減速され、試料330に到達する。 The objective lens 118 includes a magnetic pole 116 and an objective lens coil 117. The objective lens 118 converges the primary electron beam B1 by leaking the magnetic field generated by the objective lens coil 117 from the gap of the magnetic pole 116 and concentrating it on the optical axis. The strength of the objective lens 118 is adjusted by changing the amount of current of the objective lens coil 117. Here, a negative voltage is applied to the stage 121. The primary electron beam B1 that has passed through the objective lens 118 is decelerated by the deceleration electric field generated between the objective lens 118 and the sample 330, and reaches the sample 330.
 対物レンズ118における一次電子ビームB1の開き角は集束レンズ105の下方に設置されている一次電子ビーム用絞り部106で決められる。ユーザは、一次電子ビーム用絞り部106のセンタリングを調整ノブ107で調整することができる。対物レンズ118で細く絞られた一次電子ビームB1は、上走査偏向器108と下走査偏向器109によって試料330上を走査される。この時、上走査偏向器108と下走査偏向器109の偏向方向と強度は、走査した一次電子ビームB1が常に対物レンズ118の中央を通るように調整されている。 The opening angle of the primary electron beam B1 in the objective lens 118 is determined by the primary electron beam diaphragm portion 106 installed below the focusing lens 105. The user can adjust the centering of the primary electron beam diaphragm unit 106 with the adjustment knob 107. The primary electron beam B1 finely focused by the objective lens 118 is scanned on the sample 330 by the upper scanning deflector 108 and the lower scanning deflector 109. At this time, the deflection directions and intensities of the upper scanning deflector 108 and the lower scanning deflector 109 are adjusted so that the scanned primary electron beam B1 always passes through the center of the objective lens 118.
 一次電子ビームB1が試料330に照射されると、二次電子C(荷電粒子)と、反射電子D(荷電粒子)と、が発生する。二次電子Cは、例えばエネルギが50eV未満の電子であり、反射電子Dは、例えばエネルギが50eV以上の電子である。反射電子Dは、一次電子ビームB1に対する鏡面反射方向を中心とする分布を有する。反射電子Dはエネルギが高いため、対物レンズ118と試料330との間に生成された電界の影響をほとんど受けることなく、反射電子用の電子検出器124に到達する。制御装置150は、電子検出器124に到達した反射電子Dの強度を輝度変調入力信号として、反射電子画像GDを構成する。反射電子画像GDは、ディスプレイ156に表示され、画像メモリ160にも格納される。 When the primary electron beam B1 irradiates the sample 330, secondary electrons C (charged particles) and backscattered electrons D (charged particles) are generated. The secondary electron C is, for example, an electron having an energy of less than 50 eV, and the backscattered electron D is, for example, an electron having an energy of 50 eV or more. The reflected electrons D have a distribution centered on the specular reflection direction with respect to the primary electron beam B1. Since the reflected electrons D have high energy, they reach the electron detector 124 for reflected electrons with almost no influence of the electric field generated between the objective lens 118 and the sample 330. The control device 150 constitutes the reflected electron image GD by using the intensity of the reflected electron D that has reached the electron detector 124 as a luminance modulation input signal. The reflected electron image GD is displayed on the display 156 and is also stored in the image memory 160.
 一方、対物レンズ118と試料330との間に生成された電界は、二次電子Cに対しては加速電界として作用する。二次電子Cはエネルギが低いため、対物レンズ118の通路内に吸引される。そして、二次電子Cは、試料330と磁極116の間に形成された加速電界と対物レンズ118の磁界とによってレンズ作用を受けながら対物レンズ118の内部で上昇する。 On the other hand, the electric field generated between the objective lens 118 and the sample 330 acts as an accelerating electric field for the secondary electrons C. Since the secondary electrons C have low energy, they are attracted into the passage of the objective lens 118. Then, the secondary electrons C rise inside the objective lens 118 while being affected by the lens action by the accelerating electric field formed between the sample 330 and the magnetic pole 116 and the magnetic field of the objective lens 118.
 ここで、磁極116に高い電圧が印加され、加速電界が強くなると、より多くの二次電子Cを引き上げることができる。引上電極115は、対物レンズ118に対して光軸側に配置されている。引上電極115には、磁極116よりも高い電圧が印加されており、これによって二次電子Cはさらに上方に引き上げられる。また、引上電極115と磁極116との間に生じた電位差によって静電レンズが形成されており、この静電レンズによって二次電子Cは収束作用を受ける。これにより、二次電子Cのうち引上電極115の内壁に衝突する成分を減らすことができる。 Here, when a high voltage is applied to the magnetic pole 116 and the accelerating electric field becomes stronger, more secondary electrons C can be pulled up. The pull-up electrode 115 is arranged on the optical axis side with respect to the objective lens 118. A voltage higher than that of the magnetic pole 116 is applied to the pull-up electrode 115, whereby the secondary electrons C are pulled further upward. Further, an electrostatic lens is formed by the potential difference generated between the pull-up electrode 115 and the magnetic pole 116, and the secondary electrons C are subjected to a converging action by this electrostatic lens. As a result, it is possible to reduce the components of the secondary electrons C that collide with the inner wall of the pull-up electrode 115.
 加速され、引き上げられた二次電子Cは、ウィーンフィルタ114により軸外に偏向される。そして、二次電子Cは、二次電子用の電子検出器110によって検出される。図示の例におけるウィーンフィルタ114は、「ExBフィルタ」と称されるものであり、2枚の電極131,132と、コイル133と、を備えている。そして、電子検出器110側に配置されている電極132は、二次電子Cが通過できるようにメッシュ状に形成されている。電極132に対して電極131よりも高い電圧が印加されると、電極132から電極131に向かう電界134が発生する。 The accelerated and pulled secondary electron C is deflected off-axis by the Wien filter 114. Then, the secondary electrons C are detected by the electron detector 110 for the secondary electrons. The Vienna filter 114 in the illustrated example is referred to as an "ExB filter" and includes two electrodes 131 and 132 and a coil 133. The electrode 132 arranged on the electron detector 110 side is formed in a mesh shape so that the secondary electrons C can pass through. When a voltage higher than that of the electrode 131 is applied to the electrode 132, an electric field 134 from the electrode 132 to the electrode 131 is generated.
 また、コイル133は、電界134に直交する方向に磁界135を発生させる。電界134および磁界135は、何れも一次電子ビームB1を偏向する作用を有する。そこで、ウィーンフィルタ制御装置144は、両者を相殺させるために、コイル133に供給される電流と、電極131,132間の電圧と、を調整する。すなわち、ウィーンフィルタ制御装置144は、電界134によって一次電子ビームB1が偏向される方向と、磁界135によって一次電子ビームB1が偏向される方向と、が逆になり、両者の偏向量の絶対値が等しくなるようにウィーンフィルタ114を制御する。これにより、ウィーンフィルタ114は、一次電子ビームB1の軌道に影響を及ぼさなくなる。 Further, the coil 133 generates a magnetic field 135 in a direction orthogonal to the electric field 134. Both the electric field 134 and the magnetic field 135 have an action of deflecting the primary electron beam B1. Therefore, the Wien filter control device 144 adjusts the current supplied to the coil 133 and the voltage between the electrodes 131 and 132 in order to cancel the two. That is, in the Wien filter control device 144, the direction in which the primary electron beam B1 is deflected by the electric field 134 and the direction in which the primary electron beam B1 is deflected by the magnetic field 135 are opposite to each other, and the absolute values of the deflection amounts of both are opposite. The Wien filter 114 is controlled to be equal. As a result, the Vienna filter 114 does not affect the orbit of the primary electron beam B1.
 一方、二次電子Cは、一次電子ビームB1とは逆方向に進行するため、電界134および磁界135は、二次電子Cを同一方向に偏向させるように作用する。これにより、一次電子ビームB1の光軸から偏向された二次電子Cは、電極132を通過し、検出器110に到達する。制御装置150は、電子検出器110に到達した二次電子Cの強度を輝度変調入力信号として、二次電子画像GCを構成する。二次電子画像GCは、ディスプレイ156に表示され、画像メモリ160にも格納される。以下、二次電子画像GCおよび反射電子画像GDを総称して「電子画像G(画像)」と呼ぶことがある。 On the other hand, since the secondary electrons C travel in the opposite direction to the primary electron beam B1, the electric field 134 and the magnetic field 135 act to deflect the secondary electrons C in the same direction. As a result, the secondary electrons C deflected from the optical axis of the primary electron beam B1 pass through the electrode 132 and reach the detector 110. The control device 150 constitutes the secondary electron image GC by using the intensity of the secondary electrons C reaching the electron detector 110 as a luminance modulation input signal. The secondary electronic image GC is displayed on the display 156 and is also stored in the image memory 160. Hereinafter, the secondary electron image GC and the backscattered electron image GD may be collectively referred to as “electron image G (image)”.
 ステージ121には、試料330が載置される。ステージ制御装置148は、ステージ121を駆動することによって試料330の位置や姿勢を制御する。すなわち、ステージ制御装置148は、試料330を水平・垂直方向に移動する機能と、試料330を傾斜および回転させる機能と、を備えている。ステージ121の傾斜角すなわち試料330の傾斜角をφと呼ぶ。試料330を傾斜していないとき、すなわち傾斜角φ=0°の時は、磁極116と試料330との間の電界が軸対称となるため、一次電子ビームB1は偏向されずに垂直に試料330に照射される。二次電子Cは、この電界の作用と、対物レンズ118磁界の作用とによって偏向されることなく、効率的に対物レンズ118の上方まで導かれる。 Sample 330 is placed on the stage 121. The stage control device 148 controls the position and orientation of the sample 330 by driving the stage 121. That is, the stage control device 148 has a function of moving the sample 330 in the horizontal and vertical directions and a function of tilting and rotating the sample 330. The tilt angle of the stage 121, that is, the tilt angle of the sample 330 is called φ. When the sample 330 is not tilted, that is, when the tilt angle φ = 0 °, the electric field between the magnetic pole 116 and the sample 330 is axisymmetric, so that the primary electron beam B1 is not deflected and is vertically oriented to the sample 330. Is irradiated to. The secondary electrons C are efficiently guided above the objective lens 118 without being deflected by the action of this electric field and the action of the magnetic field of the objective lens 118.
 一方、試料330が傾斜されると、磁極116と試料330との間の電界が傾くために、二次電子Cは光軸に対して直交する方向に偏向される。その結果、試料330から発生した二次電子Cは対物レンズ118や引上電極115を通過する途中で内壁に衝突することが多くなり、検出器110に到達できる二次電子Cの数が減少する。さらに、この非対称な電界は収差発生の原因となり、一次電子ビームB1の分解能低下を招く。 On the other hand, when the sample 330 is tilted, the electric field between the magnetic pole 116 and the sample 330 is tilted, so that the secondary electrons C are deflected in a direction orthogonal to the optical axis. As a result, the secondary electrons C generated from the sample 330 often collide with the inner wall while passing through the objective lens 118 and the pull-up electrode 115, and the number of secondary electrons C that can reach the detector 110 decreases. .. Further, this asymmetric electric field causes aberration to occur, which causes a decrease in the resolution of the primary electron beam B1.
 そこで、試料330を傾斜したときの電界の傾きを抑制するため、軸対称に形成された電界補正電極119が設けられている。そして、電界補正電極制御装置147は、対物レンズ118と試料330との間の電界の傾きを抑制するため、電界補正電極119に対して適切な大きさの負電圧を印加する。なお、試料330を傾斜したときに生じる一次電子ビームB1や二次電子Cの偏向作用は、磁極116やステージ121に印加した電圧、傾斜角に依存する。そこで、制御装置150は、制御テーブル154に保存された制御条件を電子顕微鏡100の各装置141~148を介して各部に設定し、これによって一次電子ビームB1や二次電子Cの偏向作用を抑制する。 Therefore, in order to suppress the inclination of the electric field when the sample 330 is inclined, the electric field correction electrode 119 formed symmetrically is provided. Then, the electric field correction electrode control device 147 applies a negative voltage of an appropriate magnitude to the electric field correction electrode 119 in order to suppress the inclination of the electric field between the objective lens 118 and the sample 330. The deflection action of the primary electron beam B1 and the secondary electron C generated when the sample 330 is tilted depends on the voltage applied to the magnetic pole 116 and the stage 121 and the tilt angle. Therefore, the control device 150 sets the control conditions stored in the control table 154 to each part via the devices 141 to 148 of the electron microscope 100, thereby suppressing the deflection action of the primary electron beam B1 and the secondary electron C. do.
(解析装置200)
 解析装置200は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)等、一般的なコンピュータとしてのハードウエアを備えており、SSDには、OS(Operating System)、アプリケーションプログラム、各種データ等が格納されている。OSおよびアプリケーションプログラムは、RAMに展開され、CPUによって実行される。図1において、解析装置200の内部は、アプリケーションプログラム等によって実現される機能を、ブロックとして示している。
(Analyzer 200)
The analyzer 200 is equipped with hardware as a general computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an SSD (Solid State Drive). , OS (Operating System), application programs, various data, etc. are stored. The OS and application programs are expanded in RAM and executed by the CPU. In FIG. 1, the inside of the analysis device 200 shows a function realized by an application program or the like as a block.
 すなわち、解析装置200は、画像記憶部210(画像記憶手段)と、画像取得部212(深さ算出手段)と、UI制御部214と、深さ算出部220と、を備えている。画像記憶部210は、電子画像Gや、ディスプレイ260に表示する画像等を記憶する。画像取得部212は、電子顕微鏡100の画像メモリ160から電子画像Gを取得し画像記憶部210に記憶させる。 That is, the analysis device 200 includes an image storage unit 210 (image storage means), an image acquisition unit 212 (depth calculation means), a UI control unit 214, and a depth calculation unit 220. The image storage unit 210 stores an electronic image G, an image to be displayed on the display 260, and the like. The image acquisition unit 212 acquires the electronic image G from the image memory 160 of the electron microscope 100 and stores it in the image storage unit 210.
 UI制御部214は、画像記憶部210に記憶された表示用画像をディスプレイ260に出力し、入力装置262(例えばキーボード、マウス等)から入力情報を受信する。ところで、試料330には、トレンチ312(図2のS6参照)と称する溝が形成されており、そのトレンチ312(溝)の深さをリセス量Hと呼ぶ。図1において、深さ算出部220は、このリセス量Hを算出するものである。そして、深さ算出部220は、ボトム幅算出部222と、トップエッジ位置検出部224と、トップ中心位置算出部226と、ボトムエッジ位置検出部228と、ボトム中心位置算出部230と、深さ計算部232と、を備えている。これら深さ算出部220における各要素の詳細は、動作とともに後述する。 The UI control unit 214 outputs the display image stored in the image storage unit 210 to the display 260, and receives input information from the input device 262 (for example, a keyboard, a mouse, etc.). By the way, a groove called a trench 312 (see S6 in FIG. 2) is formed in the sample 330, and the depth of the trench 312 (groove) is called a recess amount H. In FIG. 1, the depth calculation unit 220 calculates the recess amount H. The depth calculation unit 220 includes a bottom width calculation unit 222, a top edge position detection unit 224, a top center position calculation unit 226, a bottom edge position detection unit 228, a bottom center position calculation unit 230, and a depth. It is provided with a calculation unit 232. Details of each element in the depth calculation unit 220 will be described later together with the operation.
〈試料330の製造プロセス〉
 図2は、図1に示した試料330の製造プロセスの一例を示す図である。なお、図2の例において、試料330はトレンチMOSゲート構造を有する半導体デバイスである。
 図示のステップS1において、単結晶シリコンの基板310の表面に、リソグラフィ工程を用いてハードマスク320を形成する。次に、ステップS2において、基板310をエッチングする。すると、基板310の上面に、溝状の凹部であるトレンチ312が形成される。トレンチ312を形成した後に、ハードマスク320を除去する。
<Manufacturing process of sample 330>
FIG. 2 is a diagram showing an example of the manufacturing process of the sample 330 shown in FIG. In the example of FIG. 2, the sample 330 is a semiconductor device having a trench MOS gate structure.
In step S1 of the illustration, a hard mask 320 is formed on the surface of the single crystal silicon substrate 310 by using a lithography process. Next, in step S2, the substrate 310 is etched. Then, a trench 312, which is a groove-shaped recess, is formed on the upper surface of the substrate 310. After forming the trench 312, the hard mask 320 is removed.
 次に、ステップS3において、トレンチ312に対してラウンディング処理を行う。すなわち、熱処理等によって、トレンチ312のトップエッジ付近を面取りする。次に、ステップS4において、基板310の表面にSiO2の酸化膜314を形成する。次に、ステップS5において、トレンチ312に、ゲート電極材料316(例えば、高濃度リンを含むポリシリコン)を埋設する。 Next, in step S3, a rounding process is performed on the trench 312. That is, the vicinity of the top edge of the trench 312 is chamfered by heat treatment or the like. Next, in step S4, an oxide film 314 of SiO 2 is formed on the surface of the substrate 310. Next, in step S5, the gate electrode material 316 (for example, polysilicon containing high concentration phosphorus) is embedded in the trench 312.
 次に、ステップS6において、酸化膜314の上面高さよりも低い位置までゲート電極材料316をエッチングする。酸化膜314の上面高さとゲート電極材料316の高さとの差を「リセス量H」と呼ぶ。そして、本実施形態においては、このステップS6における構造を試料330として、電子顕微鏡100によってリセス量Hを計測する。 Next, in step S6, the gate electrode material 316 is etched to a position lower than the height of the upper surface of the oxide film 314. The difference between the height of the upper surface of the oxide film 314 and the height of the gate electrode material 316 is referred to as "recess amount H". Then, in the present embodiment, the recess amount H is measured by the electron microscope 100 using the structure in step S6 as the sample 330.
〈リセス量Hの計測原理〉
 図3は、リセス量Hの計測原理を示す模式図である。
 実線で示す表面340は、試料330の非傾斜時、すなわち傾斜角φが0°であるときの試料330の表面である。非傾斜時のトレンチ312の両端付近において表面340が水平になる点をトップエッジPT1,PT2と呼び、両者の中間点をトップ中心点P1と呼ぶ。また、トレンチ312の底面346の両端をボトムエッジPB1,PB2と呼び、両者の中間点をボトム中心点P2と呼ぶ。また、底面346の幅をボトム幅Lbと呼ぶ。また、x軸、y軸、z軸方向を図示のように定める。
<Measurement principle of recess amount H>
FIG. 3 is a schematic diagram showing the measurement principle of the recess amount H.
The surface 340 shown by the solid line is the surface of the sample 330 when the sample 330 is not tilted, that is, when the tilt angle φ is 0 °. The points where the surface 340 becomes horizontal near both ends of the trench 312 when not inclined are called top edges PT1 and PT2, and the intermediate point between the two is called the top center point P1. Further, both ends of the bottom surface 346 of the trench 312 are referred to as bottom edges PB1 and PB2, and the intermediate point between the two is referred to as a bottom center point P2. Further, the width of the bottom surface 346 is referred to as a bottom width Lb. Further, the x-axis, y-axis, and z-axis directions are defined as shown in the figure.
 トレンチ312は対称形であると考えて差し支えないため、トレンチ312の深さであるリセス量Hは、トップ中心点P1とボトム中心点P2の距離に等しい。また、一点鎖線で示す表面360は、試料330の傾斜角φが0°よりも大きいφ1であるときの試料330の表面である。 Since the trench 312 can be considered to be symmetrical, the recess amount H, which is the depth of the trench 312, is equal to the distance between the top center point P1 and the bottom center point P2. The surface 360 indicated by the alternate long and short dash line is the surface of the sample 330 when the inclination angle φ of the sample 330 is φ1 larger than 0 °.
 但し、表面360のトップ中心点は、表面340のトップ中心点P1に等しいものとする。傾斜角φ=φ1であるときのボトム中心点をP3とする。ここで、トップ中心点P1のx座標値と、傾斜時ボトム中心点P3のx座標値との差分値をΔxとする。すると、リセス量Hに対して、差分値Δx=Hsinφ1が成立する。傾斜角φ1は既知であるため、差分値Δxを測定すると、H=Δx/sinφ1によってリセス量Hを求めることができる。 However, the top center point of the surface 360 shall be equal to the top center point P1 of the surface 340. Let P3 be the bottom center point when the inclination angle φ = φ1. Here, let Δx be the difference value between the x-coordinate value of the top center point P1 and the x-coordinate value of the bottom center point P3 at the time of inclination. Then, the difference value Δx = Hsinφ1 is established with respect to the recess amount H. Since the inclination angle φ1 is known, the recess amount H can be obtained by H = Δx / sinφ1 when the difference value Δx is measured.
 図4は、ボトム幅Lbの計測原理を示す模式図である。
 以下の説明において、「GC2」のように「GC」から始まる符号は、二次電子画像GCの一部である。また、「GD2」のように「GD」から始まる符号は、反射電子画像GDの一部である。二次電子画像および反射電子画像は何れも二次元の画像であるが、画素値をy軸(図3参照)に沿って積算した結果を二次電子強度、反射電子強度と呼ぶ。
FIG. 4 is a schematic view showing the measurement principle of the bottom width Lb.
In the following description, the reference numerals starting with "GC" such as "GC2" are a part of the secondary electron image GC. Further, a code starting with "GD" such as "GD2" is a part of the reflected electron image GD. Both the secondary electron image and the backscattered electron image are two-dimensional images, and the result of integrating the pixel values along the y-axis (see FIG. 3) is called the secondary electron intensity and the backscattered electron intensity.
 図4において、二次電子強度IC2および反射電子強度ID2は、傾斜角φをφ0に設定して取得した二次電子画像GC2(第1の画像)および反射電子画像GD2(第1の画像)に基づく強度の一例である。ここでφ0は、例えば「0°」である。x座標値x1,x4は、トップエッジPT1,PT2のx座標値であり、x座標値x2,x3(第1のボトムエッジ位置)は、ボトムエッジPB1,PB2のx座標値である。二次電子強度IC2および反射電子強度ID2の何れにおいても、x座標値x2,x3において顕著なエッジが現れている。従って、周知のエッジ検出アルゴリズムを用いて、二次電子強度IC2または反射電子強度ID2からx座標値x2,x3を特定できる。 In FIG. 4, the secondary electron intensity IC2 and the backscattered electron intensity ID2 are attached to the secondary electron image GC2 (first image) and the backscattered electron image GD2 (first image) acquired by setting the inclination angle φ to φ0. This is an example of the underlying strength. Here, φ0 is, for example, “0 °”. The x-coordinate values x1 and x4 are the x-coordinate values of the top edges PT1 and PT2, and the x-coordinate values x2 and x3 (first bottom edge positions) are the x-coordinate values of the bottom edges PB1 and PB2. In both the secondary electron intensity IC2 and the backscattered electron intensity ID2, remarkable edges appear at the x-coordinate values x2 and x3. Therefore, the x-coordinate values x2 and x3 can be specified from the secondary electron intensity IC2 or the backscattered electron intensity ID2 by using a well-known edge detection algorithm.
 そして、ボトム幅Lbは、x座標値x2,x3の差分として求めることができる。なお、x<x1およびx4<xの領域において、試料330の表面は平坦であるのに対して、二次電子強度IC2は平坦ではなく若干傾斜している。その理由は、試料330の表面を覆う酸化膜314が絶縁体であって一次電子ビームB1(図1参照)によって帯電すると、帯電によって二次電子が偏向されて検出器に到達する電子数が変化するためである。x<x1およびx4<xの区間における二次電子強度IC2は、その時々の環境条件や測定条件によって変化する。 Then, the bottom width Lb can be obtained as the difference between the x coordinate values x2 and x3. In the regions of x <x1 and x4 <x, the surface of the sample 330 is flat, whereas the secondary electron intensity IC2 is not flat but slightly inclined. The reason is that when the oxide film 314 covering the surface of the sample 330 is an insulator and is charged by the primary electron beam B1 (see FIG. 1), the secondary electrons are deflected by the charging and the number of electrons reaching the detector changes. To do. The secondary electron intensity IC2 in the interval of x <x1 and x4 <x changes depending on the environmental conditions and measurement conditions at that time.
 一方、x<x1およびx4<xの区間における反射電子強度ID2はほぼ一定である。その理由は、反射電子はエネルギが高いため、酸化膜314の帯電による偏向作用をほとんど受けないためである。以上のように、x座標値x2,x3において二次電子強度IC2または反射電子強度ID2のエッジが検出できれば、ボトム幅Lbを計測できる。従って、傾斜角φ0は、これらエッジが検出できる範囲であればよく、「0°」に限定されるわけではない。 On the other hand, the reflected electron intensity ID2 in the section of x <x1 and x4 <x is almost constant. The reason is that the reflected electrons have high energy and are hardly subjected to the deflection action due to the charging of the oxide film 314. As described above, if the edge of the secondary electron intensity IC2 or the backscattered electron intensity ID2 can be detected at the x coordinate values x2 and x3, the bottom width Lb can be measured. Therefore, the inclination angle φ0 is not limited to “0 °” as long as these edges can be detected.
 図5は、トップ中心点P1のx座標値P1(x)の計測原理を示す模式図である。
 図5において、反射電子強度ID4は、傾斜角φをφ1(但しφ1>φ0)に設定して取得した反射電子画像GD4(第2の画像)に基づく強度の一例である。x座標値x11,x14(トップエッジ位置)は、トップエッジPT1,PT2のx座標値である。上述したように、反射電子はエネルギが高いため、x<x11,x14<xの区間において試料330が平坦であれば、酸化膜314の帯電状態にかかわらず、反射電子強度ID4はほぼ一定値ID40に等しくなる。
FIG. 5 is a schematic diagram showing the measurement principle of the x-coordinate value P1 (x) of the top center point P1.
In FIG. 5, the reflected electron intensity ID 4 is an example of the intensity based on the reflected electron image GD4 (second image) acquired by setting the inclination angle φ to φ1 (however, φ1> φ0). The x-coordinate values x11 and x14 (top edge positions) are the x-coordinate values of the top edges PT1 and PT2. As described above, since the reflected electrons have high energy, if the sample 330 is flat in the section of x <x11, x14 <x, the reflected electron intensity ID4 has a substantially constant value ID40 regardless of the charged state of the oxide film 314. Is equal to.
 一方、x11<x<x14の範囲では、試料330の表面の傾斜角が傾斜角φ1とは異なるため、反射電子強度ID4は一定値ID40から外れる。従って、周知のエッジ検出アルゴリズムを用いてx座標値x11,x14を特定できる。トップ中心点P1のx座標値P1(x)は、x座標値x11,x14の平均値として求めることができる。 On the other hand, in the range of x11 <x <x14, the tilt angle of the surface of the sample 330 is different from the tilt angle φ1, so that the backscattered electron intensity ID4 deviates from the constant value ID40. Therefore, the x-coordinate values x11 and x14 can be specified by using a well-known edge detection algorithm. The x-coordinate value P1 (x) of the top center point P1 can be obtained as the average value of the x-coordinate values x11 and x14.
 図6は、二次電子強度に基づく、傾斜時ボトム中心点P3のx座標値P3(x)の計測原理を示す模式図である。
 図6において、二次電子強度IC5は、上述の図5と同様に傾斜角φをφ1に設定して取得した二次電子画像GC5(第3の画像)に基づく強度の一例である。x座標値x13(第2のボトムエッジ位置)は、ボトムエッジPB2のx座標値である。ボトムエッジPB2の左側において試料330の表面は導体であるゲート電極材料316である。また、ボトムエッジPB2の右側において試料330の表面は、絶縁体である酸化膜314である。これにより、x座標値x13において、二次電子強度IC5には明らかなエッジが現れ、x座標値x13を特定することができる。
FIG. 6 is a schematic diagram showing the measurement principle of the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination based on the secondary electron intensity.
In FIG. 6, the secondary electron intensity IC 5 is an example of the intensity based on the secondary electron image GC5 (third image) acquired by setting the inclination angle φ to φ1 as in FIG. 5 described above. The x-coordinate value x13 (second bottom edge position) is the x-coordinate value of the bottom edge PB2. On the left side of the bottom edge PB2, the surface of the sample 330 is a gate electrode material 316 which is a conductor. Further, on the right side of the bottom edge PB2, the surface of the sample 330 is an oxide film 314 which is an insulator. As a result, at the x-coordinate value x13, a clear edge appears in the secondary electron intensity IC5, and the x-coordinate value x13 can be specified.
 そして、上述したようにボトム幅Lb(図4参照)が求まると、傾斜時ボトム中心点P3のx座標値P3(x)は、x座標値x13から距離Lx=(Lb・cosφ1)/2を減算した値として求めることができる。そして、上述したようにトップ中心点P1のx座標値P1(x)(図5参照)が求まると、x座標値P1(x)とx座標値P3(x)との差が差分値Δx(図3参照)であり、H=Δx/sinφ1によってリセス量Hを算出することができる。 Then, when the bottom width Lb (see FIG. 4) is obtained as described above, the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination sets the distance Lx = (Lb · cos φ1) / 2 from the x-coordinate value x13. It can be obtained as a subtracted value. Then, when the x-coordinate value P1 (x) (see FIG. 5) of the top center point P1 is obtained as described above, the difference between the x-coordinate value P1 (x) and the x-coordinate value P3 (x) is the difference value Δx ( (See FIG. 3), and the recess amount H can be calculated by H = Δx / sinφ1.
 図7は、反射電子強度に基づく、傾斜時ボトム中心点P3のx座標値P3(x)の他の計測原理を示す模式図である。
 図7において、反射電子強度ID6は、上述の図5と同様に傾斜角φをφ1に設定して取得した反射電子画像GD6(第2の画像)に基づく強度の一例である。そして、x座標値x13は、ボトムエッジPB2のx座標値であり、x座標値x14は、トップエッジPT2のx座標値である。図7の例において、ボトムエッジPB2において、試料330の表面の傾斜角が変化している。そして、この傾斜角の変化が、反射電子強度ID6のx座標値x13におけるエッジとして現れている。従って、周知のエッジ検出アルゴリズムを用いてx座標値x13を特定できる。
FIG. 7 is a schematic diagram showing another measurement principle of the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination based on the intensity of backscattered electrons.
In FIG. 7, the reflected electron intensity ID 6 is an example of the intensity based on the reflected electron image GD6 (second image) acquired by setting the inclination angle φ to φ1 as in FIG. 5 described above. The x-coordinate value x13 is the x-coordinate value of the bottom edge PB2, and the x-coordinate value x14 is the x-coordinate value of the top edge PT2. In the example of FIG. 7, the inclination angle of the surface of the sample 330 is changed at the bottom edge PB2. Then, this change in the inclination angle appears as an edge at the x-coordinate value x13 of the reflected electron intensity ID6. Therefore, the x-coordinate value x13 can be specified by using a well-known edge detection algorithm.
 また、図5の場合と同様に、x11<x<x14の範囲では、反射電子強度ID6は一定値ID60から外れており、これによってx座標値x11,x14も検出することができる。反射電子強度ID6においてx座標値x13のエッジが現れるか否かは、試料330の形状、電子検出器124(図1参照)の位置、傾斜角φ1によって異なる。そして、図示のように、反射電子強度ID6に基づいてx座標値x11,x13,x14が検出できると、二次電子画像を用いることなく、反射電子強度ID2(図4参照)およびID6によってリセス量Hを算出することができる。 Further, as in the case of FIG. 5, in the range of x11 <x <x14, the reflected electron intensity ID6 deviates from the constant value ID60, so that the x-coordinate values x11 and x14 can also be detected. Whether or not the edge of the x-coordinate value x13 appears in the reflected electron intensity ID 6 depends on the shape of the sample 330, the position of the electron detector 124 (see FIG. 1), and the inclination angle φ1. Then, as shown in the figure, when the x-coordinate values x11, x13, and x14 can be detected based on the backscattered electron intensity ID6, the recess amount is determined by the backscattered electron intensity ID2 (see FIG. 4) and ID6 without using the secondary electron image. H can be calculated.
〈第1実施形態の動作〉
(動作の概要)
 図8は、解析装置200において実行される計測処理ルーチンのフローチャートである。
 本ルーチンが実行される前に、電子顕微鏡100の画像メモリ160(図1参照)には、傾斜角φ=φ0およびφ1において取得した各種の電子画像Gが記憶されていることとする。
 図8において処理がステップS22に進むと、画像取得部212(図1参照)は、画像メモリ160から、ボトム幅Lb(図4参照)を算出するための電子画像Gを取得し、解析装置200内の画像記憶部210に記憶させる。この電子画像Gは傾斜角φ=φ0における画像であり、例えば、図4に示した二次電子画像GC2または反射電子画像GD2である。
<Operation of the first embodiment>
(Outline of operation)
FIG. 8 is a flowchart of a measurement processing routine executed by the analysis device 200.
Before this routine is executed, it is assumed that various electronic images G acquired at tilt angles φ = φ0 and φ1 are stored in the image memory 160 (see FIG. 1) of the electron microscope 100.
When the process proceeds to step S22 in FIG. 8, the image acquisition unit 212 (see FIG. 1) acquires an electronic image G for calculating the bottom width Lb (see FIG. 4) from the image memory 160, and the analysis device 200 It is stored in the image storage unit 210 inside. This electronic image G is an image at an inclination angle of φ = φ0, and is, for example, the secondary electron image GC2 or the backscattered electron image GD2 shown in FIG.
 次に、処理がステップS24に進むと、ボトム幅算出部222(図1参照)は、ステップS22で取得した画像に基づいて、ボトム幅Lb(図4参照)を算出する。すなわち、ボトム幅算出部222は、図4に示したボトムエッジPB1,PB2のx座標値x2,x3に基づいてボトム幅Lbを算出する。次に、処理がステップS26に進むと、画像取得部212は、画像メモリ160から、トップ中心点P1(図5参照)のx座標値P1(x)を検出するための電子画像Gを取得し、解析装置200内の画像記憶部210に記憶させる。この電子画像Gは傾斜角φ=φ1における画像であり、例えば、図5、図7に示した反射電子画像GD4,GD6である。 Next, when the process proceeds to step S24, the bottom width calculation unit 222 (see FIG. 1) calculates the bottom width Lb (see FIG. 4) based on the image acquired in step S22. That is, the bottom width calculation unit 222 calculates the bottom width Lb based on the x-coordinate values x2 and x3 of the bottom edges PB1 and PB2 shown in FIG. Next, when the process proceeds to step S26, the image acquisition unit 212 acquires an electronic image G for detecting the x-coordinate value P1 (x) of the top center point P1 (see FIG. 5) from the image memory 160. , Stored in the image storage unit 210 in the analyzer 200. This electronic image G is an image at an inclination angle φ = φ1, and is, for example, the reflected electronic images GD4 and GD6 shown in FIGS. 5 and 7.
 次に、処理がステップS28に進むと、トップエッジ位置検出部224およびトップ中心位置算出部226(図1参照)は、ステップS26で取得した画像に基づいて、トップ中心点P1のx座標値P1(x)(図5参照)を算出する。より詳細には、トップエッジ位置検出部224は、電子画像Gに基づいて、トップエッジPT1,PT2のx座標値x11,x14を検出し、これらの平均値を演算することによって、トップ中心点P1のx座標値P1(x)を算出する。 Next, when the process proceeds to step S28, the top edge position detection unit 224 and the top center position calculation unit 226 (see FIG. 1) increase the x-coordinate value P1 of the top center point P1 based on the image acquired in step S26. (X) (see FIG. 5) is calculated. More specifically, the top edge position detection unit 224 detects the x-coordinate values x11 and x14 of the top edges PT1 and PT2 based on the electronic image G, and calculates the average value of these values to calculate the top center point P1. The x-coordinate value P1 (x) of is calculated.
 次に、処理がステップS30に進むと、画像取得部212は、画像メモリ160から、傾斜時ボトム中心点P3(図6参照)のx座標値P3(x)を検出するための電子画像Gを取得し、解析装置200内の画像記憶部210に記憶させる。この電子画像Gは傾斜角φ=φ1における画像であり、例えば二次電子画像GC5(図6参照)または反射電子画像GD6(図7参照)である。但し、先にステップS26で取得した画像は、例えば反射電子画像GD6(図7参照)のようにx座標値P3(x)の検出にも適用できる場合がある。このような場合、ステップS30では、ステップS26で取得した画像を流用してもよい。 Next, when the process proceeds to step S30, the image acquisition unit 212 generates an electronic image G for detecting the x-coordinate value P3 (x) of the bottom center point P3 (see FIG. 6) when tilted from the image memory 160. It is acquired and stored in the image storage unit 210 in the analyzer 200. The electron image G is an image at an inclination angle of φ = φ1, and is, for example, a secondary electron image GC5 (see FIG. 6) or a backscattered electron image GD6 (see FIG. 7). However, the image previously acquired in step S26 may be applicable to the detection of the x-coordinate value P3 (x) as in the reflected electron image GD6 (see FIG. 7). In such a case, in step S30, the image acquired in step S26 may be diverted.
 次に、処理がステップS32に進むと、ボトムエッジ位置検出部228およびボトム中心位置算出部230は、ステップS30で取得した画像に基づいて、傾斜時ボトム中心点P3のx座標値P3(x)(図6参照)を算出する。より詳細には、ボトムエッジ位置検出部228は、電子画像G(例えば図6のGC5または図7のGD6)に基づいて、ボトムエッジPB2のx座標値x13を検出する。次に、ボトム中心位置算出部230は、ボトムエッジPB2のx座標値x13から距離Lx=(Lb・cosφ1)/2を減算して、傾斜時ボトム中心点P3のx座標値P3(x)を算出する。 Next, when the process proceeds to step S32, the bottom edge position detection unit 228 and the bottom center position calculation unit 230 use the x-coordinate value P3 (x) of the tilted bottom center point P3 based on the image acquired in step S30. (See FIG. 6) is calculated. More specifically, the bottom edge position detection unit 228 detects the x-coordinate value x13 of the bottom edge PB2 based on the electronic image G (for example, GC5 in FIG. 6 or GD6 in FIG. 7). Next, the bottom center position calculation unit 230 subtracts the distance Lx = (Lb · cos φ1) / 2 from the x-coordinate value x13 of the bottom edge PB2 to obtain the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination. calculate.
 次に、処理がステップS34に進むと、深さ計算部232は、差分値Δx=P1(x)-P3(x)を算出し、リセス量H=Δx/sinφ1を算出する。以上により、本ルーチンの処理が終了する。
 なお、上述した例においては、計測処理ルーチン(図8)が実行される前に傾斜角φ=φ0およびφ1において取得した各種の電子画像Gを予め画像メモリ160(図1参照)に記憶させたが、必ずしもこれらの画像を予め記憶させておく必要はない。例えば、傾斜角φをφ0に設定して電子顕微鏡100を動作させて電子画像Gを取得し、次に上述のステップS22,S24を実行し、次に傾斜角φをφ1に変更して電子顕微鏡100を動作させ電子画像Gを取得し、次に上述のステップS26~S34を実行してもよい。
Next, when the process proceeds to step S34, the depth calculation unit 232 calculates the difference value Δx = P1 (x) −P3 (x) and calculates the recess amount H = Δx / sinφ1. This completes the processing of this routine.
In the above-described example, various electronic images G acquired at tilt angles φ = φ0 and φ1 are stored in the image memory 160 (see FIG. 1) in advance before the measurement processing routine (FIG. 8) is executed. However, it is not always necessary to store these images in advance. For example, the tilt angle φ is set to φ0, the electron microscope 100 is operated to acquire an electronic image G, then the above steps S22 and S24 are executed, and then the tilt angle φ is changed to φ1 to obtain an electron microscope. The electron image G may be acquired by operating 100, and then steps S26 to S34 described above may be executed.
(エッジ検出の詳細)
 図9は、解析装置200(図1参照)がエッジ検出を行う動作説明図である。
 図9に示す電子画像G1~G4は、二次電子画像GCまたは反射電子画像GDである。ここで、電子画像G1,G2は、傾斜角φ(図3参照)が0°である場合の画像であり、トップエッジPT1,PT2については図示を省略している。
(Details of edge detection)
FIG. 9 is an operation explanatory view in which the analysis device 200 (see FIG. 1) performs edge detection.
The electron images G1 to G4 shown in FIG. 9 are secondary electron image GC or backscattered electron image GD. Here, the electronic images G1 and G2 are images when the inclination angle φ (see FIG. 3) is 0 °, and the top edges PT1 and PT2 are not shown.
 電子画像G1に示す例において、解析装置200(図1参照)は、ボトム幅Lbよりも広い1個の測長ボックスB10を設定する。次に、解析装置200は、この測長ボックスB10の範囲内で、各x座標値について、y座標値の最小値から最大値に渡る画素値を加算してゆく。その加算結果が、電子強度(二次電子強度または反射電子強度)になる。そして、解析装置200は、測長ボックスB10のx軸方向の中心位置(図示せず)から外側に向かって電子強度に対するエッジ検出を行い、これによってボトムエッジPB1,PB2のx座標値を検出する。 In the example shown in the electronic image G1, the analyzer 200 (see FIG. 1) sets one length measuring box B10 wider than the bottom width Lb. Next, the analysis device 200 adds pixel values from the minimum value to the maximum value of the y coordinate value for each x coordinate value within the range of the length measurement box B10. The result of the addition is the electron strength (secondary electron strength or backscattered electron strength). Then, the analysis device 200 detects the edge with respect to the electron intensity from the center position (not shown) in the x-axis direction of the length measuring box B10 toward the outside, thereby detecting the x-coordinate values of the bottom edges PB1 and PB2. ..
 また、電子画像G2に示す例において、解析装置200は、ボトム幅Lbよりも狭い2個の測長ボックスB21,B22を設定する。次に、解析装置200は、この測長ボックスB21,B22の範囲内で、各x座標値について、y座標値の最小値から最大値に渡る画素値を加算し、電子強度を取得する。次に、解析装置200は、測長ボックスB21,B22の対向辺のx座標値x41,x42から外側に向かって電子強度に対するエッジ検出を行い、これによってボトムエッジPB1,PB2のx座標値を検出する。 Further, in the example shown in the electronic image G2, the analysis device 200 sets two length measuring boxes B21 and B22 narrower than the bottom width Lb. Next, the analysis device 200 adds the pixel values from the minimum value to the maximum value of the y coordinate value for each x coordinate value within the range of the length measurement boxes B21 and B22 to acquire the electron strength. Next, the analysis device 200 detects the edge with respect to the electron intensity from the x-coordinate values x41 and x42 of the opposite sides of the length measuring boxes B21 and B22 toward the outside, thereby detecting the x-coordinate values of the bottom edges PB1 and PB2. do.
 また、電子画像G3,G4は、傾斜角φがφ1(図3参照)である場合の画像である。電子画像G3に示す例において、解析装置200(図1参照)は、トップ幅Ltよりも広い1個の測長ボックスB30を設定する。そして、解析装置200は、上述の電子画像G1においてボトムエッジPB1,PB2のx座標値を検出したのと同様の手順により、トップエッジPT1,PT2のx座標値を検出し、可能であればボトムエッジPB1,PB2のx座標値も検出する。 Further, the electronic images G3 and G4 are images when the inclination angle φ is φ1 (see FIG. 3). In the example shown in the electronic image G3, the analyzer 200 (see FIG. 1) sets one length measuring box B30 wider than the top width Lt. Then, the analysis device 200 detects the x-coordinate values of the top edges PT1 and PT2 by the same procedure as the detection of the x-coordinate values of the bottom edges PB1 and PB2 in the electronic image G1 described above, and if possible, the bottom. The x-coordinate values of the edges PB1 and PB2 are also detected.
 また、電子画像G4に示す例において、解析装置200は、トップ幅Ltよりも狭い2個の測長ボックスB41,B42を設定する。そして、解析装置200は、上述の電子画像G2においてボトムエッジPB1,PB2のx座標値を検出したのと同様の手順により、トップエッジPT1,PT2のx座標値を検出し、可能であればボトムエッジPB1,PB2のx座標値も検出する。 Further, in the example shown in the electronic image G4, the analysis device 200 sets two length measuring boxes B41 and B42 narrower than the top width Lt. Then, the analysis device 200 detects the x-coordinate values of the top edges PT1 and PT2 by the same procedure as the detection of the x-coordinate values of the bottom edges PB1 and PB2 in the above-mentioned electronic image G2, and if possible, the bottom. The x-coordinate values of the edges PB1 and PB2 are also detected.
〈ユーザインタフェース〉
 次に、本実施形態のユーザインタフェースについて説明する。
 図10~図14は、ディスプレイ260に表示される表示画面502~520を例示する図である。
(表示画面502)
 上述の計測処理ルーチン(図8)において処理がステップS22に進むと、UI制御部214(図1参照)は、ディスプレイ260に例えば図10に示す表示画面502を表示させる。表示画面502は、進捗状況表示欄410と、画像表示欄412と、読み込みボタン414と、クリアボタン416と、画像取得条件表示部418と、を含んでいる。
<User interface>
Next, the user interface of this embodiment will be described.
10 to 14 are diagrams illustrating display screens 502 to 520 displayed on the display 260.
(Display screen 502)
When the process proceeds to step S22 in the above-mentioned measurement processing routine (FIG. 8), the UI control unit 214 (see FIG. 1) causes the display 260 to display, for example, the display screen 502 shown in FIG. The display screen 502 includes a progress status display field 410, an image display field 412, a read button 414, a clear button 416, and an image acquisition condition display unit 418.
 進捗状況表示欄410は、計測処理の進捗状況を表示する欄である。画像表示欄412は、処理対象となる電子画像G10を表示する欄である。ここで、電子画像G10は、例えば、図4に示したGC2またはGD2であり、傾斜角φ=φ0において取得した画像である。但し、表示画面502を表示した時点では、画像表示欄412は空欄になっている。読み込みボタン414は、処理対象となる電子画像G10の読み込みを指令するボタンである。 The progress status display column 410 is a column for displaying the progress status of the measurement process. The image display field 412 is a field for displaying the electronic image G10 to be processed. Here, the electronic image G10 is, for example, GC2 or GD2 shown in FIG. 4, and is an image acquired at an inclination angle φ = φ0. However, when the display screen 502 is displayed, the image display field 412 is blank. The read button 414 is a button for instructing the read of the electronic image G10 to be processed.
 ユーザが読み込みボタン414を押下すると(例えばマウスでクリックすると)、ファイル選択ダイアログ(図示せず)がディスプレイ260(図1参照)に表示され、ここに画像メモリ160に格納されている電子画像が、例えば画像データファイルの一覧形式で表示される。そして、ユーザが所望の電子画像を選択すると、該電子画像が処理対象の電子画像G10として画像記憶部210に読み込まれる。また、ユーザがクリアボタン416を押下すると、画像記憶部210から電子画像G10が消去される。 When the user presses the read button 414 (for example, when clicked with the mouse), a file selection dialog (not shown) is displayed on the display 260 (see FIG. 1), in which the electronic image stored in the image memory 160 is displayed. For example, it is displayed in a list format of image data files. Then, when the user selects a desired electronic image, the electronic image is read into the image storage unit 210 as the electronic image G10 to be processed. Further, when the user presses the clear button 416, the electronic image G10 is erased from the image storage unit 210.
 また、画像取得条件表示部418は、電子画像G10の画像取得条件、すなわち電子画像G10を取得した際における電子顕微鏡100内における各種パラメータを表示する。画像取得条件表示部418の内容は、電子画像G10に、例えばXMP(Extensible Metadata Platform)形式で埋め込まれた内容に基づいている。そのため、電子画像G10が選択される以前は、画像取得条件表示部418は空欄である。 Further, the image acquisition condition display unit 418 displays the image acquisition conditions of the electronic image G10, that is, various parameters in the electron microscope 100 when the electronic image G10 is acquired. The content of the image acquisition condition display unit 418 is based on the content embedded in the electronic image G10 in, for example, an XMP (Extensible Metadata Platform) format. Therefore, before the electronic image G10 is selected, the image acquisition condition display unit 418 is blank.
(表示画面504)
 その後、ユーザが所定の操作を行うと、UI制御部214はディスプレイ260に、例えば図10に示す表示画面504を表示させる。表示画面504においては、表示画面502における読み込みボタン414、クリアボタン416、画像取得条件表示部418に代えて、測長ボックス調整ボタン422と、測長ボタン424と、測長条件指定欄430と、ボトム幅表示欄426と、が含まれている。また、画像表示欄412においては、電子画像G10に対してスーパーインポーズして測長ボックスB50が表示されている。
(Display screen 504)
After that, when the user performs a predetermined operation, the UI control unit 214 causes the display 260 to display, for example, the display screen 504 shown in FIG. On the display screen 504, instead of the read button 414, the clear button 416, and the image acquisition condition display unit 418 on the display screen 502, a length measurement box adjustment button 422, a length measurement button 424, and a length measurement condition designation field 430 are used. The bottom width display field 426 and the like are included. Further, in the image display field 412, the length measuring box B50 is displayed by superimposing on the electronic image G10.
 また、測長条件指定欄430には、測長ボックス数指定欄432と、測長アルゴリズム指定欄434と、閾値指定欄436と、が含まれている。測長ボックス調整ボタン422は、ユーザが押下する度にオン/オフ状態がトグルで切り替わる。そして、測長ボックス調整ボタン422がオン状態であれば、ユーザは測長ボックスB50の位置や寸法を調整できる。 Further, the length measurement condition designation field 430 includes a length measurement box number designation field 432, a length measurement algorithm designation field 434, and a threshold value designation field 436. Each time the user presses the length measurement box adjustment button 422, the on / off state is toggled. Then, when the length measuring box adjustment button 422 is on, the user can adjust the position and dimensions of the length measuring box B50.
 また、ユーザは、測長ボックス数指定欄432において、「1個」または「2個」の中から測長ボックスB50の数を指定できる。また、ユーザは、測長アルゴリズム指定欄434において、電子画像G10のエッジ検出のアルゴリズムを指定できる。また、ユーザは、閾値指定欄436において、エッジ検出に適用される閾値を指定できる。図示の例では、アルゴリズムとして「閾値法(Threshold)」が指定され、閾値として「10%」が指定されている。これは、例えば、図4に示した二次電子強度IC2において、「平坦になっている区間(x座標値x2,x3の間)のレベルから閾値「10%」以上離れたレベルになった位置をエッジと判定する」という事を表している。 Further, the user can specify the number of the length measuring boxes B50 from "1" or "2" in the length measuring box number designation field 432. Further, the user can specify the edge detection algorithm of the electronic image G10 in the length measurement algorithm designation field 434. In addition, the user can specify a threshold value applied to edge detection in the threshold value designation field 436. In the illustrated example, "Threshold" is specified as the algorithm and "10%" is specified as the threshold. This is, for example, in the secondary electron intensity IC2 shown in FIG. 4, the position at which the threshold value is "10%" or more away from the level of the flat section (between x coordinate values x2 and x3). Is determined to be an edge. "
 この閾値が小さいほどボトム幅Lbを正確に検出できる可能性が高まる。但し、閾値を小さくしすぎると、ノイズをエッジ位置として判定してしまう可能性がある。画像データにおけるエッジの判定のアルゴリズムは、閾値法のみならず、様々なものが知られている。本実施形態においては、電子画像Gや電子強度の波形に応じて、最も好ましいと思われるアルゴリズムをユーザが選択できる。このように、ユーザが測長ボックスB50の位置や寸法を決定し、測長条件を設定した後に、測長ボタン424を押下すると、計測処理ルーチン(図8)において処理がステップS24に進み、ボトム幅算出部222(図1参照)がボトム幅Lb(図4参照)を算出する。 The smaller this threshold value, the higher the possibility that the bottom width Lb can be detected accurately. However, if the threshold value is set too small, noise may be determined as the edge position. Various algorithms for determining edges in image data are known, not limited to the threshold method. In the present embodiment, the user can select the most preferable algorithm according to the electronic image G and the waveform of the electronic intensity. In this way, when the user presses the length measurement button 424 after determining the position and dimensions of the length measurement box B50 and setting the length measurement conditions, the process proceeds to step S24 in the measurement processing routine (FIG. 8), and the bottom The width calculation unit 222 (see FIG. 1) calculates the bottom width Lb (see FIG. 4).
(表示画面506)
 ボトム幅Lbが算出されると、UI制御部214(図1参照)は、例えば図11に示す表示画面506をディスプレイ260に表示させる。
 表示画面506では、画像表示欄412において、電子画像G10にスーパーインポーズして信号プロファイルP10が表示される。ここで、信号プロファイルP10とは、電子画像G10に対応する強度(例えば図4に示したIC2またはID2)のグラフである。さらに、ボトム幅表示欄426には、算出したボトム幅Lbの値が表示される。
(Display screen 506)
When the bottom width Lb is calculated, the UI control unit 214 (see FIG. 1) causes the display 260 to display the display screen 506 shown in FIG. 11, for example.
On the display screen 506, in the image display field 412, the signal profile P10 is displayed by superimposing on the electronic image G10. Here, the signal profile P10 is a graph of the intensity (for example, IC2 or ID2 shown in FIG. 4) corresponding to the electronic image G10. Further, the calculated bottom width Lb value is displayed in the bottom width display column 426.
(表示画面508)
 ここで、ユーザが入力装置262(図1参照)において所定の操作を行うと、計測処理ルーチン(図8)において処理がステップS26に進む。ステップS26において、UI制御部214(図1参照)は、例えば図11に示す表示画面508をディスプレイ260に表示させる。
(Display screen 508)
Here, when the user performs a predetermined operation on the input device 262 (see FIG. 1), the process proceeds to step S26 in the measurement processing routine (FIG. 8). In step S26, the UI control unit 214 (see FIG. 1) causes the display 260 to display, for example, the display screen 508 shown in FIG.
 表示画面508は、上述の表示画面502(図10参照)と同様に、進捗状況表示欄410と、画像表示欄412と、読み込みボタン414と、クリアボタン416と、画像取得条件表示部418と、を含んでいる。但し、表示画面508が表示された直後の段階では、画像表示欄412と画像取得条件表示部418は空欄になっている。 Similar to the display screen 502 (see FIG. 10), the display screen 508 includes a progress status display field 410, an image display field 412, a read button 414, a clear button 416, an image acquisition condition display unit 418, and the like. Includes. However, immediately after the display screen 508 is displayed, the image display field 412 and the image acquisition condition display unit 418 are blank.
 ユーザが、読み込みボタン414を押下する等、表示画面502において上述したのと同様の操作を行うと、処理対象の電子画像G20が画像メモリ160(図1参照)から画像記憶部210に読み込まれる。ここで、電子画像G20は、例えば、図5、図7に示した反射電子画像GD4,GD6であり、傾斜角φ=φ1において取得した反射電子画像である。電子画像G20が画像記憶部210に読み込まれると、UI制御部214(図1参照)は、画像表示欄412に該電子画像G20を表示させる。また、UI制御部214は、電子画像G20の画像取得条件を画像取得条件表示部418に表示させる。 When the user performs the same operation as described above on the display screen 502, such as pressing the read button 414, the electronic image G20 to be processed is read from the image memory 160 (see FIG. 1) into the image storage unit 210. Here, the electronic image G20 is, for example, the reflected electron images GD4 and GD6 shown in FIGS. 5 and 7, and is a reflected electron image acquired at an inclination angle φ = φ1. When the electronic image G20 is read into the image storage unit 210, the UI control unit 214 (see FIG. 1) causes the electronic image G20 to be displayed in the image display field 412. Further, the UI control unit 214 causes the image acquisition condition display unit 418 to display the image acquisition conditions of the electronic image G20.
(表示画面510)
 その後、ユーザが所定の操作を行うと、UI制御部214はディスプレイ260に、例えば図12に示す表示画面510を表示させる。表示画面510は、表示画面504(図10参照)と同様に、進捗状況表示欄410と、画像表示欄412と、測長ボックス調整ボタン422と、測長ボタン424と、測長条件指定欄430と、を含んでいる。これら要素の機能は、表示画面504のものと同様である。但し、画像表示欄412には傾斜角φ=φ1である電子画像G20と、電子画像G20に応じた寸法を有する測長ボックスB60と、が表示される。
(Display screen 510)
After that, when the user performs a predetermined operation, the UI control unit 214 causes the display 260 to display, for example, the display screen 510 shown in FIG. Similar to the display screen 504 (see FIG. 10), the display screen 510 includes a progress status display field 410, an image display field 412, a length measurement box adjustment button 422, a length measurement button 424, and a length measurement condition specification field 430. And, including. The functions of these elements are similar to those of the display screen 504. However, in the image display field 412, an electronic image G20 having an inclination angle φ = φ1 and a length measuring box B60 having dimensions corresponding to the electronic image G20 are displayed.
 また、表示画面510は、ボトム幅表示欄426(図10参照)に代えて、左エッジ座標表示欄442と、右エッジ座標表示欄444と、トップ中心座標表示欄446と、を含んでいる。これらは、図5における左エッジ座標すなわちx座標値x11と、右エッジ座標すなわちx座標値x14と、トップ中心座標すなわちトップ中心点P1のx座標値P1(x)と、を各々表示するための欄である。 Further, the display screen 510 includes a left edge coordinate display field 442, a right edge coordinate display field 444, and a top center coordinate display field 446 instead of the bottom width display field 426 (see FIG. 10). These are for displaying the left edge coordinate, that is, the x coordinate value x11, the right edge coordinate, that is, the x coordinate value x14, and the top center coordinate, that is, the x coordinate value P1 (x) of the top center point P1 in FIG. It is a column.
 但し、表示画面510が表示された時点では、これら表示欄442,444,446は空欄である。ユーザが測長ボックスB60の位置や寸法を決定し、測長条件を設定した後に、測長ボタン424を押下すると、計測処理ルーチン(図8)において処理がステップS28に進む。上述したように、ステップS28においては、トップエッジ位置検出部224(図1参照)がx座標値x11,x14を検出し、トップ中心位置算出部226がトップ中心点P1のx座標値P1(x)(図5参照)を算出する。 However, when the display screen 510 is displayed, these display fields 442, 444, 446 are blank. When the user presses the length measurement button 424 after determining the position and dimensions of the length measurement box B60 and setting the length measurement conditions, the process proceeds to step S28 in the measurement processing routine (FIG. 8). As described above, in step S28, the top edge position detection unit 224 (see FIG. 1) detects the x-coordinate values x11 and x14, and the top center position calculation unit 226 detects the x-coordinate value P1 (x) of the top center point P1. ) (See FIG. 5).
(表示画面512)
 トップ中心点P1のx座標値P1(x)が算出されると、UI制御部214(図1参照)は、例えば図12に示す表示画面512をディスプレイ260に表示させる。表示画面512では、画像表示欄412において、電子画像G20にスーパーインポーズして信号プロファイルP20が表示される。ここで、信号プロファイルP20とは、電子画像G20に対応する強度(例えば図5、図7に示したID4,ID6)のグラフである。さらに、表示欄442,444,446には、左エッジ座標、右エッジ座標およびトップ中心座標が各々表示される。
(Display screen 512)
When the x-coordinate value P1 (x) of the top center point P1 is calculated, the UI control unit 214 (see FIG. 1) causes the display 260 to display the display screen 512 shown in FIG. 12, for example. On the display screen 512, the signal profile P20 is displayed by superimposing on the electronic image G20 in the image display field 412. Here, the signal profile P20 is a graph of the intensities (for example, ID4 and ID6 shown in FIGS. 5 and 7) corresponding to the electronic image G20. Further, the left edge coordinates, the right edge coordinates, and the top center coordinates are displayed in the display columns 442,444,446, respectively.
(表示画面514)
 次に、ユーザが所定の操作を行うと、計測処理ルーチン(図8)において処理がステップS30に進む。ここでは、UI制御部214はディスプレイ260に、例えば図13に示す表示画面514を表示させる。
(Display screen 514)
Next, when the user performs a predetermined operation, the process proceeds to step S30 in the measurement processing routine (FIG. 8). Here, the UI control unit 214 causes the display 260 to display, for example, the display screen 514 shown in FIG.
 表示画面514は、表示画面502,508(図10、図11参照)と同様に、進捗状況表示欄410と、画像表示欄412と、読み込みボタン414と、クリアボタン416と、画像取得条件表示部418と、を含んでいる。これら要素の機能は、表示画面502,508のものと同様である。また、表示画面514が表示された直後の段階では、画像表示欄412と画像取得条件表示部418は空欄になっている。 Similar to the display screens 502 and 508 (see FIGS. 10 and 11), the display screen 514 includes a progress status display field 410, an image display field 412, a read button 414, a clear button 416, and an image acquisition condition display unit. 418 and. The functions of these elements are the same as those of the display screens 502 and 508. Immediately after the display screen 514 is displayed, the image display field 412 and the image acquisition condition display unit 418 are blank.
 さらに、表示画面514は、画像流用ボタン415を含んでいる。画像流用ボタン415は、既に読み込んだ電子画像G20(図12参照)を今回の処理対象となる電子画像G30として流用することを指定するものである。すなわち、ユーザは、読み込みボタン414等を操作して新たな電子画像G30を画像メモリ160(図1参照)から画像記憶部210に読み込ませてもよく、画像流用ボタン415を操作して、電子画像G20を電子画像G30として流用させてもよい。 Further, the display screen 514 includes an image diversion button 415. The image diversion button 415 specifies that the already read electronic image G20 (see FIG. 12) is diverted as the electronic image G30 to be processed this time. That is, the user may operate the read button 414 or the like to read the new electronic image G30 from the image memory 160 (see FIG. 1) into the image storage unit 210, or operate the image diversion button 415 to read the electronic image. G20 may be diverted as the electronic image G30.
 ここで、電子画像G30は、例えば、二次電子画像GC5(図6参照)または反射電子画像GD6(図7参照)であり、傾斜角φ=φ1において取得した画像である。電子画像G30が取得(または流用)されると、UI制御部214(図1参照)は、画像表示欄412に該電子画像G30を表示させる。また、UI制御部214は、電子画像G30の画像取得条件を画像取得条件表示部418に表示させる。 Here, the electronic image G30 is, for example, a secondary electronic image GC5 (see FIG. 6) or a backscattered electron image GD6 (see FIG. 7), and is an image acquired at an inclination angle φ = φ1. When the electronic image G30 is acquired (or diverted), the UI control unit 214 (see FIG. 1) causes the electronic image G30 to be displayed in the image display field 412. Further, the UI control unit 214 causes the image acquisition condition display unit 418 to display the image acquisition condition of the electronic image G30.
(表示画面516)
 その後、ユーザが所定の操作を行うと、UI制御部214はディスプレイ260に、例えば図13に示す表示画面516を表示させる。表示画面516は、表示画面504,510(図10、図12参照)と同様に、進捗状況表示欄410と、画像表示欄412と、測長ボックス調整ボタン422と、測長ボタン424と、測長条件指定欄430と、を含んでいる。これら要素の機能は、表示画面504,510のものと同様である。但し、画像表示欄412には電子画像G30と、電子画像G30に応じた寸法を有する測長ボックスB70と、が表示される。
(Display screen 516)
After that, when the user performs a predetermined operation, the UI control unit 214 causes the display 260 to display, for example, the display screen 516 shown in FIG. Similar to the display screens 504 and 510 (see FIGS. 10 and 12), the display screen 516 measures the progress status display field 410, the image display field 412, the length measurement box adjustment button 422, and the length measurement button 424. The long condition designation field 430 and the like are included. The functions of these elements are similar to those of the display screens 504 and 510. However, in the image display field 412, an electronic image G30 and a length measuring box B70 having dimensions corresponding to the electronic image G30 are displayed.
 また、表示画面516は、ボトム幅表示欄426(図10参照)に代えて、ボトムエッジ座標表示欄450と、ボトム中心座標表示欄452と、を含んでいる。これらは、図6におけるボトムエッジ座標すなわちx座標値x13と、ボトム中心座標すなわち傾斜時ボトム中心点P3のx座標値P3(x)と、を各々表示するための欄である。 Further, the display screen 516 includes a bottom edge coordinate display field 450 and a bottom center coordinate display field 452 instead of the bottom width display field 426 (see FIG. 10). These are columns for displaying the bottom edge coordinates, that is, the x-coordinate value x13 in FIG. 6, and the bottom center coordinates, that is, the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination.
 但し、表示画面516が表示された時点では、これら表示欄450,452は空欄である。ユーザが測長ボックスB70の位置や寸法を決定し、測長条件を設定した後に、測長ボタン424を押下すると、計測処理ルーチン(図8)において処理がステップS32に進む。上述したように、ステップS32においては、ボトムエッジ位置検出部228(図1参照)がボトムエッジPB2(図6参照)のx座標値x13を検出し、ボトム中心位置算出部230が傾斜時ボトム中心点P3のx座標値P3(x)を算出する。 However, when the display screen 516 is displayed, these display fields 450 and 452 are blank. When the user presses the length measurement button 424 after determining the position and dimensions of the length measurement box B70 and setting the length measurement conditions, the process proceeds to step S32 in the measurement processing routine (FIG. 8). As described above, in step S32, the bottom edge position detection unit 228 (see FIG. 1) detects the x-coordinate value x13 of the bottom edge PB2 (see FIG. 6), and the bottom center position calculation unit 230 is the bottom center when tilted. The x-coordinate value P3 (x) of the point P3 is calculated.
(表示画面518)
 傾斜時ボトム中心点P3のx座標値P3(x)が算出されると、UI制御部214(図1参照)は、例えば図14に示す表示画面518をディスプレイ260に表示させる。表示画面518では、画像表示欄412において、電子画像G30にスーパーインポーズして信号プロファイルP30が表示される。ここで、信号プロファイルP30とは、電子画像G30に対応する強度(例えば図6、図7に示したGC5,ID6)のグラフである。さらに、表示欄450,452には、ボトムエッジ座標およびボトム中心座標が各々表示される。
(Display screen 518)
When the x-coordinate value P3 (x) of the bottom center point P3 at the time of inclination is calculated, the UI control unit 214 (see FIG. 1) causes the display 260 to display, for example, the display screen 518 shown in FIG. On the display screen 518, the signal profile P30 is displayed by superimposing on the electronic image G30 in the image display field 412. Here, the signal profile P30 is a graph of the intensities (for example, GC5 and ID6 shown in FIGS. 6 and 7) corresponding to the electronic image G30. Further, the bottom edge coordinates and the bottom center coordinates are displayed in the display columns 450 and 452, respectively.
(表示画面520)
 次に、ユーザが所定の操作を行うと、計測処理ルーチン(図8)において処理がステップS34に進む。ここでは、UI制御部214はディスプレイ260に、例えば図14に示す表示画面520を表示させる。表示画面520は、進捗状況表示欄410と、ボトム幅表示欄426と、トップ中心座標表示欄446と、ボトム中心座標表示欄452と、を含んでいる。これら要素の機能は、上述したこれら表示欄426,446,452の機能は表示画面506,512,518のものと同様である。
(Display screen 520)
Next, when the user performs a predetermined operation, the process proceeds to step S34 in the measurement processing routine (FIG. 8). Here, the UI control unit 214 causes the display 260 to display, for example, the display screen 520 shown in FIG. The display screen 520 includes a progress status display field 410, a bottom width display field 426, a top center coordinate display field 446, and a bottom center coordinate display field 452. The functions of these elements are the same as those of the display screens 506, 512, 518, with the functions of the display columns 426, 446, 452 described above.
 さらに、表示画面520は、リセス量算出ボタン460と、リセス量表示欄462と、を含んでいる。ユーザがリセス量算出ボタン460を押下すると、深さ計算部232がリセス量H=Δx/sinφ1を算出し、UI制御部214がリセス量Hをリセス量表示欄462に表示させる。 Further, the display screen 520 includes a recess amount calculation button 460 and a recess amount display field 462. When the user presses the recess amount calculation button 460, the depth calculation unit 232 calculates the recess amount H = Δx / sinφ1, and the UI control unit 214 displays the recess amount H in the recess amount display column 462.
〈比較例〉
 以下、本実施形態の効果を明確にするため、比較例について説明する。比較例に適用するハードウエア構成は本実施形態のもの(図1参照)と同様であるが、比較例では二次電子画像GCのみに基づいてリセス量Hを計測する。
 図15は、比較例において試料700のリセス量Hを計測する計測原理を示す模式図である。
 ここで、試料700は、全体が導体であり、その上面には略台形状に凹んだ凹部702が形成されている。凹部702のトップエッジ704,706にはラウンディングは施されていない。凹部702の底面と側面が成す角度を側面傾斜角θとし、試料700の傾斜角をφとする。二次電子強度IC10は、この試料700に対して取得した二次電子画像GC10に基づく強度である。トップエッジ704,706のx座標値をx52,x56とし、ボトムエッジ710のx座標値をx54とする。また、x座標値x54,x56の間隔をΔxsと呼ぶ。
<Comparison example>
Hereinafter, a comparative example will be described in order to clarify the effect of the present embodiment. The hardware configuration applied to the comparative example is the same as that of the present embodiment (see FIG. 1), but in the comparative example, the recess amount H is measured based only on the secondary electron image GC.
FIG. 15 is a schematic diagram showing a measurement principle for measuring the recess amount H of the sample 700 in the comparative example.
Here, the sample 700 is entirely a conductor, and a recess 702 recessed in a substantially trapezoidal shape is formed on the upper surface thereof. The top edges 704 and 706 of the recess 702 are not rounded. The angle formed by the bottom surface and the side surface of the recess 702 is defined as the side surface inclination angle θ, and the inclination angle of the sample 700 is defined as φ. The secondary electron intensity IC10 is the intensity based on the secondary electron image GC10 acquired for this sample 700. Let the x-coordinate values of the top edges 704 and 706 be x52 and x56, and the x-coordinate values of the bottom edge 710 be x54. Further, the interval between the x-coordinate values x54 and x56 is called Δxs.
 間隔Δxsは、「Δxs=(H/sinθ)cos(θ-φ)」によって求められる値であり、リセス量Hおよび側面傾斜角θが定数であるため傾斜角φの関数になる。図5のx座標値x56においては明らかなエッジが現れている。また、試料700は全体が導体であるため、解析装置200(図1参照)はx座標値x54における立上りも検出できる。これにより、間隔Δxsは、二次電子強度IC10に基づいて計測することができる。そして、ユーザは、傾斜角φを様々な値に変更しながら間隔Δxsを計測する。 The interval Δxs is a value obtained by “Δxs = (H / sinθ) cos (θ−φ)”, and is a function of the inclination angle φ because the recess amount H and the side inclination angle θ are constants. At the x-coordinate value x56 of FIG. 5, a clear edge appears. Further, since the sample 700 is entirely a conductor, the analyzer 200 (see FIG. 1) can also detect the rise at the x-coordinate value x54. Thereby, the interval Δxs can be measured based on the secondary electron intensity IC10. Then, the user measures the interval Δxs while changing the inclination angle φ to various values.
 図16は、様々な傾斜角φに対する間隔Δxsの計測結果の一例を示す図である。
 図16において計測点Q11~Q15は、傾斜角φを変化しながら間隔Δxsを計測した計測点であり、近似曲線QCは、これら計測点Q11~Q15を最小二乗法等によって曲線近似したものである。近似曲線QCの形状は、リセス量Hおよび側面傾斜角θによって決定されるため、近似曲線QCが求まれば、リセス量Hと側面傾斜角θとをフィッティングによって求めることができる。しかし、正確な近似曲線QCを求めるためには、比較的多くの(例えば「5」以上の)計測点を取得しておく必要があり、計測回数が多くなるという問題が生じる。
FIG. 16 is a diagram showing an example of measurement results of the interval Δxs with respect to various inclination angles φ.
In FIG. 16, the measurement points Q11 to Q15 are measurement points in which the interval Δxs is measured while changing the inclination angle φ, and the approximate curve QC is a curve approximation of these measurement points Q11 to Q15 by the least squares method or the like. .. Since the shape of the approximate curve QC is determined by the recess amount H and the side inclination angle θ, if the approximate curve QC is obtained, the recess amount H and the side inclination angle θ can be obtained by fitting. However, in order to obtain an accurate approximate curve QC, it is necessary to acquire a relatively large number of measurement points (for example, "5" or more), which causes a problem that the number of measurement times increases.
 図17は、比較例において、他の試料740のリセス量Hを計測する計測原理を示す模式図である。
 試料740は導体で構成されているが、全体形状は上記実施形態における試料330(図4参照)と同様である。すなわち、試料740の上面には略台形状に凹んだ凹部752が形成され、凹部752のトップエッジ744,746付近にはラウンディングが施されている。また、ボトムエッジ750とトップエッジ746とを結ぶ線を傾斜線754と呼び、凹部752の底面と傾斜線754とが成す角度を側面傾斜角θと呼ぶ。
FIG. 17 is a schematic diagram showing a measurement principle for measuring the recess amount H of another sample 740 in the comparative example.
Although the sample 740 is composed of a conductor, the overall shape is the same as that of the sample 330 (see FIG. 4) in the above embodiment. That is, a recess 752 recessed in a substantially trapezoidal shape is formed on the upper surface of the sample 740, and rounding is provided near the top edges 744 and 746 of the recess 752. Further, the line connecting the bottom edge 750 and the top edge 746 is called an inclined line 754, and the angle formed by the bottom surface of the recess 752 and the inclined line 754 is called a side inclined angle θ.
 二次電子強度IC12は、試料740に対して取得した二次電子画像GC12に基づく強度である。ボトムエッジ750のx座標値をx64とし、トップエッジ746のx座標値をx66とし、両者の間隔をΔxsと呼ぶ。また、試料740は全体が導体であるため、x座標値x64よりも左方およびx座標値x66よりも右方においては、二次電子強度IC12は平坦になる。 The secondary electron intensity IC12 is the intensity based on the secondary electron image GC12 acquired for the sample 740. The x-coordinate value of the bottom edge 750 is x64, the x-coordinate value of the top edge 746 is x66, and the distance between the two is called Δxs. Further, since the sample 740 is entirely a conductor, the secondary electron intensity IC 12 becomes flat on the left side of the x-coordinate value x64 and on the right side of the x-coordinate value x66.
 従って、二次電子強度IC12の立上り点および立下り点を検出することによってx座標値x64,x66を検出し、間隔Δxsを求めることができる。試料740のリセス量Hも、上述した試料700(図15参照)のリセス量Hと同様に求めることができる。但し、トップエッジ746のx座標値x66の計測には誤差が混入しやすいため、正確なリセス量Hを求めるためには、より多くの計測点を取得しておく必要が生じる。 Therefore, the x-coordinate values x64 and x66 can be detected by detecting the rising and falling points of the secondary electron intensity IC 12, and the interval Δxs can be obtained. The recess amount H of the sample 740 can be obtained in the same manner as the recess amount H of the sample 700 (see FIG. 15) described above. However, since an error is likely to be mixed in the measurement of the x-coordinate value x66 of the top edge 746, it is necessary to acquire more measurement points in order to obtain an accurate recess amount H.
 次に、図6を再び参照し、比較例によって試料330のリセス量Hを計測することを検討する。上述の実施形態においては、反射電子画像GD4,GD6(図5、図7参照)に基づいてトップエッジPT1,PT2のx座標値x11,x14を検出したが、比較例においては二次電子画像GC5に基づいてx座標値x11,x14を検出することになる。しかし、図6において、二次電子強度IC5の波形に基づいてx座標値x11,x14を検出しようとすると、誤差が大きくなる。 Next, referring to FIG. 6 again, consider measuring the recess amount H of the sample 330 according to a comparative example. In the above-described embodiment, the x-coordinate values x11 and x14 of the top edges PT1 and PT2 are detected based on the backscattered electron images GD4 and GD6 (see FIGS. 5 and 7), but in the comparative example, the secondary electron image GC5 The x-coordinate values x11 and x14 are detected based on the above. However, in FIG. 6, when trying to detect the x-coordinate values x11 and x14 based on the waveform of the secondary electron intensity IC5, the error becomes large.
 誤差が大きくなる理由は、試料330の表面における酸化膜314が絶縁体であり、一次電子ビームB1(図1参照)によって帯電するためである。帯電の状態は事前に予測することが困難であり、その時々によって異なる。そして、二次電子強度IC5の波形は帯電の状態に応じて大きく変動するため、x座標値x11,x14に対応する位置を正確に同定することが困難になる。誤差の影響を抑制するためには、さらに計測点の数を増やさざるを得ず、これによって全体の計測時間が一層長くなる。
 このように、比較例の技術によって試料330のリセス量Hを計測しようとすると、計測時間が長くなり、リセス量Hの計測誤差も大きくなる。
The reason for the large error is that the oxide film 314 on the surface of the sample 330 is an insulator and is charged by the primary electron beam B1 (see FIG. 1). The state of charge is difficult to predict in advance and varies from time to time. Since the waveform of the secondary electron intensity IC5 fluctuates greatly depending on the state of charging, it becomes difficult to accurately identify the positions corresponding to the x-coordinate values x11 and x14. In order to suppress the influence of the error, the number of measurement points must be further increased, which further lengthens the total measurement time.
As described above, when the recess amount H of the sample 330 is to be measured by the technique of the comparative example, the measurement time becomes long and the measurement error of the recess amount H also becomes large.
〈第1実施形態の効果〉
 以上のように本実施形態によれば、溝(312)を形成した試料330を第1の姿勢(φ=φ0)において荷電粒子線装置(100)で撮影した画像であって溝(312)の底面346における一対のボトムエッジPB1,PB2に対応する部分を含む第1の画像(GC2,GD2)と、試料330を、第1の姿勢(φ=φ0)よりも傾斜させた第2の姿勢(φ=φ1)において荷電粒子線装置(100)で撮影した画像であって所定エネルギ(100eV)以上のエネルギを有する荷電粒子に基づいた第2の画像(GD4,GD6)と、を取得する画像取得部212と、第1の画像(GC2,GD2)と、第2の画像(GD4,GD6)と、に基づいて、溝(312)の深さ(H)を算出する深さ算出部220と、を備える。
<Effect of the first embodiment>
As described above, according to the present embodiment, the sample 330 in which the groove (312) is formed is an image taken by the charged particle beam device (100) in the first posture (φ = φ0) of the groove (312). The first image (GC2, GD2) including the portion corresponding to the pair of bottom edges PB1 and PB2 on the bottom surface 346 and the second posture (φ = φ0) in which the sample 330 is tilted from the first posture (φ = φ0). Image acquisition to acquire a second image (GD4, GD6) based on a charged particle having an energy of a predetermined energy (100 eV) or more, which is an image taken by a charged particle beam device (100) at φ = φ1). A depth calculation unit 220 that calculates the depth (H) of the groove (312) based on the unit 212, the first image (GC2, GD2), and the second image (GD4, GD6). To be equipped.
 このように、本実施形態によれば、試料330を第1の姿勢(φ=φ0)よりも傾斜させた第2の姿勢(φ=φ1)によって第2の画像(GD4,GD6)を取得できる。そして、エネルギの高い荷電粒子による第2の画像(GD4,GD6)を適用するため、溝(312)の深さ(H)を正確に計測できる。 As described above, according to the present embodiment, the second image (GD4, GD6) can be acquired by the second posture (φ = φ1) in which the sample 330 is tilted from the first posture (φ = φ0). .. Then, since the second image (GD4, GD6) of the charged particles having high energy is applied, the depth (H) of the groove (312) can be accurately measured.
 また、画像取得部212は、さらに、試料330を、第2の姿勢(φ=φ1)において荷電粒子線装置(100)で撮影した画像であって所定エネルギ(100eV)未満のエネルギを有する荷電粒子に基づいた第3の画像(GC5)を取得するものであり、深さ算出部220は、第1の画像(GC2,GD2)と、第2の画像(GD4,GD6)と、第3の画像(GC5)と、に基づいて、深さ(H)を算出することが好ましい。
 このように、様々な計測条件が異なる第1の画像(GC2,GD2)と、第2の画像(GD4,GD6)と、第3の画像(GC5)と、を用いることにより、深さ(H)を正確に算出できる。
Further, the image acquisition unit 212 is an image of the sample 330 taken by the charged particle beam device (100) in the second posture (φ = φ1) and has an energy of less than a predetermined energy (100 eV). The third image (GC5) based on the above is acquired, and the depth calculation unit 220 acquires the first image (GC2, GD2), the second image (GD4, GD6), and the third image. It is preferable to calculate the depth (H) based on (GC5).
In this way, by using the first image (GC2, GD2), the second image (GD4, GD6), and the third image (GC5), which have different measurement conditions, the depth (H) is increased. ) Can be calculated accurately.
 また、深さ算出部220は、第1の画像(GC2,GD2)に基づいて、一対のボトムエッジPB1,PB2の位置に対応する一対の第1のボトムエッジ位置(x2,x3)を検出し、一対の第1のボトムエッジ位置(x2,x3)に基づいて底面346の幅であるボトム幅(Lb)を算出するボトム幅算出部222を備えることが好ましい。
 これにより、傾斜の小さな第1の画像(GC2,GD2)に基づいて、ボトム幅(Lb)を正確に算出することができる。
Further, the depth calculation unit 220 detects a pair of first bottom edge positions (x2, x3) corresponding to the positions of the pair of bottom edges PB1 and PB2 based on the first image (GC2, GD2). , It is preferable to include a bottom width calculation unit 222 that calculates the bottom width (Lb), which is the width of the bottom surface 346, based on the pair of first bottom edge positions (x2, x3).
Thereby, the bottom width (Lb) can be accurately calculated based on the first image (GC2, GD2) having a small inclination.
 また、深さ算出部220は、第2の画像(GD4,GD6)に基づいて、第2の姿勢(φ=φ1)における溝(312)の一対のトップエッジPT1,PT2の位置であるトップエッジ位置(x11,x14)を検出するトップエッジ位置検出部224と、一対のトップエッジ位置(x11,x14)の中間点であるトップ中心位置(P1(x))を算出するトップ中心位置算出部226と、さらに備えることが好ましい。
 これにより、エネルギの高い荷電粒子による第2の画像(GD4,GD6)に基づいて、試料330に対する帯電の影響を抑制しつつトップエッジ位置(x11,x14)とトップ中心位置(P1(x))とを算出することができる。
Further, the depth calculation unit 220 is based on the second image (GD4, GD6) and is the position of the pair of top edges PT1 and PT2 of the groove (312) in the second posture (φ = φ1). Top edge position detection unit 224 that detects the position (x11, x14) and top center position calculation unit 226 that calculates the top center position (P1 (x)) that is the midpoint between the pair of top edge positions (x11, x14). It is preferable to further prepare.
As a result, based on the second image (GD4, GD6) of the charged particles with high energy, the top edge position (x11, x14) and the top center position (P1 (x)) while suppressing the influence of the charge on the sample 330. Can be calculated.
 また、深さ算出部220は、第2の画像(GD4,GD6)または第3の画像(GC5)に基づいて、一対のボトムエッジPB1,PB2のうち一方の位置に対応する第2のボトムエッジ位置(x13)を検出するボトムエッジ位置検出部228と、第2のボトムエッジ位置(x13)と、ボトム幅Lbと、に基づいて、第2の姿勢(φ=φ1)におけるボトム中心位置(P3(x))を算出するボトム中心位置算出部230と、をさらに備えることが好ましい。
 これにより、第2の画像(GD4,GD6)において一対のボトムエッジPB1,PB2のうち少なくとも一方の第2のボトムエッジ位置(x13)を検出できれば、ボトム中心位置(P3(x))を算出することができる。
Further, the depth calculation unit 220 has a second bottom edge corresponding to one of the positions of the pair of bottom edges PB1 and PB2 based on the second image (GD4, GD6) or the third image (GC5). Based on the bottom edge position detection unit 228 that detects the position (x13), the second bottom edge position (x13), and the bottom width Lb, the bottom center position (P3) in the second posture (φ = φ1). It is preferable to further include a bottom center position calculation unit 230 for calculating (x)).
As a result, if the second bottom edge position (x13) of at least one of the pair of bottom edges PB1 and PB2 can be detected in the second image (GD4, GD6), the bottom center position (P3 (x)) is calculated. be able to.
 また、荷電粒子線装置(100)は、試料330に対して荷電粒子線(B1)を照射するものであり、深さ算出部220は、第2の姿勢(φ=φ1)において、荷電粒子線(B1)の経路に対して直交する方向と、溝(312)の一対のトップエッジPT1,PT2を結ぶ線と、の角度をφ1としたとき、トップ中心位置(P1(x))とボトム中心位置(P3(x))との差をsinφ1で除算することによって深さ(H)を計算する深さ計算部232をさらに備えることが好ましい。
 このように、トップ中心位置(P1(x))とボトム中心位置(P3(x))とに基づいて深さ(H)を計算することにより、深さ(H)を正確に計算することができる。
Further, the charged particle beam device (100) irradiates the sample 330 with the charged particle beam (B1), and the depth calculation unit 220 performs the charged particle beam in the second posture (φ = φ1). When the angle between the direction orthogonal to the path of (B1) and the line connecting the pair of top edges PT1 and PT2 of the groove (312) is φ1, the top center position (P1 (x)) and the bottom center It is preferable to further include a depth calculation unit 232 for calculating the depth (H) by dividing the difference from the position (P3 (x)) by sinφ1.
In this way, the depth (H) can be calculated accurately by calculating the depth (H) based on the top center position (P1 (x)) and the bottom center position (P3 (x)). can.
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification example]
The present invention is not limited to the above-described embodiment, and various modifications are possible. The above-described embodiments are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, another configuration may be added to the configuration of the above embodiment, and a part of the configuration may be replaced with another configuration. In addition, the control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications to the above embodiment are, for example, as follows.
(1)上記実施形態においては、「荷電粒子線装置」の一例として電子顕微鏡100を適用した例を説明したが、荷電粒子線装置は電子顕微鏡100に限定されるものではない。すなわち、電子顕微鏡100は「荷電粒子」として電子を適用したものであるが、荷電粒子は電子に限られるものではなく、イオン粒等であってもよい。 (1) In the above embodiment, an example in which the electron microscope 100 is applied as an example of the "charged particle beam device" has been described, but the charged particle beam device is not limited to the electron microscope 100. That is, the electron microscope 100 applies electrons as "charged particles", but the charged particles are not limited to electrons and may be ion particles or the like.
(2)上記実施形態における解析装置200のハードウエアは一般的なコンピュータによって実現できるため、図8に示したフローチャート、その他上述した各種処理を実行するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。 (2) Since the hardware of the analysis device 200 in the above embodiment can be realized by a general computer, the flowchart shown in FIG. 8 and other programs for executing various processes described above are stored in a storage medium or a transmission line. It may be distributed via.
(3)上述した各処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(Field Programmable Gate Array)等を用いたハードウエア的な処理に置き換えてもよい。また、図1に示した画像記憶部210は、ネットワーク(図示せず)上のクラウドに設けてもよい。 (3) Each of the above-mentioned processes has been described as a software-like process using a program in the above embodiment, but a part or all of them may be an ASIC (Application Specific Integrated Circuit; IC for a specific application) or an FPGA (Field). It may be replaced with hardware-like processing using Programmable Gate Array) or the like. Further, the image storage unit 210 shown in FIG. 1 may be provided in a cloud on a network (not shown).
(4)上記実施形態においては、試料330として図2のステップS6に記載された、トップエッジがラウンディングした構造を対象にリセス量の計測方法を説明した。しかし、比較例として記述したトップエッジがラウンディングしていない構造の試料700(図15参照)にも本発明を適用してもよい。試料700の構造では、トップエッジのx座標値(x52とx56)を二次電子強度IC10から算出することができる。すなわち、これらのx52とx56をそれぞれPT1とPT2とすることで、同様にリセス量を計測することが可能となる。 (4) In the above embodiment, the method of measuring the recess amount for the structure in which the top edge is rounded, which is described in step S6 of FIG. 2 as the sample 330, has been described. However, the present invention may also be applied to a sample 700 (see FIG. 15) having a structure in which the top edge is not rounded, which is described as a comparative example. In the structure of the sample 700, the x-coordinate values (x52 and x56) of the top edge can be calculated from the secondary electron intensity IC10. That is, by setting these x52 and x56 as PT1 and PT2, respectively, the recess amount can be measured in the same manner.
1 半導体検査システム(検査システム)
100 電子顕微鏡(荷電粒子線装置)
200 解析装置(荷電粒子線画像用解析装置、コンピュータ)
212 画像取得部(画像取得手段)
220 深さ算出部(深さ算出手段)
222 ボトム幅算出部
224 トップエッジ位置検出部
226 トップ中心位置算出部
228 ボトムエッジ位置検出部
230 ボトム中心位置算出部
232 深さ計算部
312 トレンチ(溝)
330 試料
346 底面
C 二次電子(荷電粒子)
D 反射電子(荷電粒子)
G 電子画像(画像)
B1 一次電子ビーム(荷電粒子線)
Lb ボトム幅
GC2 二次電子画像(第1の画像)
GC5 二次電子画像(第3の画像)
GD2 反射電子画像(第1の画像)
GD4,GD6 反射電子画像(第2の画像)
PB1,PB2 ボトムエッジ
PT1,PT2 トップエッジ
x2,x3 x座標値(第1のボトムエッジ位置)
x11,x14 x座標値(トップエッジ位置)
x13 x座標値(第2のボトムエッジ位置)
1 Semiconductor inspection system (inspection system)
100 electron microscope (charged particle beam device)
200 analyzer (charged particle beam image analyzer, computer)
212 Image acquisition unit (image acquisition means)
220 Depth calculation unit (depth calculation means)
222 Bottom width calculation unit 224 Top edge position detection unit 226 Top center position calculation unit 228 Bottom edge position detection unit 230 Bottom center position calculation unit 232 Depth calculation unit 312 Trench (groove)
330 Sample 346 Bottom surface C Secondary electrons (charged particles)
D Reflected electron (charged particle)
G electronic image (image)
B1 primary electron beam (charged particle beam)
Lb bottom width GC2 secondary electron image (first image)
GC5 secondary electron image (third image)
GD2 reflected electron image (first image)
GD4, GD6 reflected electron image (second image)
PB1, PB2 Bottom edge PT1, PT2 Top edge x2, x3 x coordinate value (first bottom edge position)
x11, x14 x coordinate value (top edge position)
x13 x coordinate value (second bottom edge position)

Claims (8)

  1.  溝を形成した試料を第1の姿勢において荷電粒子線装置で撮影した画像であって前記溝の底面における一対のボトムエッジに対応する部分を含む第1の画像と、前記試料を、前記第1の姿勢よりも傾斜させた第2の姿勢において前記荷電粒子線装置で撮影した画像であって所定エネルギ以上のエネルギを有する荷電粒子に基づいた第2の画像とを取得する画像取得部と、
     前記第1の画像と、前記第2の画像と、に基づいて、前記溝の深さを算出する深さ算出部と、を備える
     ことを特徴とする荷電粒子線画像用解析装置。
    An image of a grooved sample taken with a charged particle beam device in a first posture, the first image including a portion corresponding to a pair of bottom edges on the bottom surface of the groove, and the sample are the first. An image acquisition unit that acquires an image taken by the charged particle beam device in a second posture inclined from the posture of the above and based on a charged particle having an energy equal to or higher than a predetermined energy, and an image acquisition unit.
    An analysis device for a charged particle beam image, comprising: a depth calculation unit for calculating the depth of the groove based on the first image and the second image.
  2.  前記画像取得部は、さらに、前記試料を、前記第2の姿勢において前記荷電粒子線装置で撮影した画像であって前記所定エネルギ未満のエネルギを有する荷電粒子に基づいた第3の画像を取得するものであり、
     前記深さ算出部は、前記第1の画像と、前記第2の画像と、前記第3の画像と、に基づいて、前記深さを算出する
     ことを特徴とする請求項1に記載の荷電粒子線画像用解析装置。
    The image acquisition unit further acquires a third image based on the charged particles having an energy less than the predetermined energy, which is an image of the sample taken by the charged particle beam device in the second posture. It is a thing
    The charge according to claim 1, wherein the depth calculation unit calculates the depth based on the first image, the second image, and the third image. Analytical device for particle beam images.
  3.  前記深さ算出部は、
     前記第1の画像に基づいて、一対の前記ボトムエッジの位置に対応する一対の第1のボトムエッジ位置を検出し、一対の第1のボトムエッジ位置に基づいて前記底面の幅であるボトム幅を算出するボトム幅算出部を備える
     ことを特徴とする請求項2に記載の荷電粒子線画像用解析装置。
    The depth calculation unit
    A pair of first bottom edge positions corresponding to a pair of the bottom edge positions are detected based on the first image, and a bottom width which is the width of the bottom surface based on the pair of first bottom edge positions. The charged particle beam image analysis apparatus according to claim 2, further comprising a bottom width calculation unit for calculating.
  4.  前記深さ算出部は、
     前記第2の画像に基づいて、前記第2の姿勢における前記溝の一対のトップエッジの位置であるトップエッジ位置を検出するトップエッジ位置検出部と、
     一対の前記トップエッジ位置の中間点であるトップ中心位置を算出するトップ中心位置算出部と、さらに備える
     ことを特徴とする請求項3に記載の荷電粒子線画像用解析装置。
    The depth calculation unit
    Based on the second image, a top edge position detecting unit that detects a top edge position that is a position of a pair of top edges of the groove in the second posture, and a top edge position detecting unit.
    The analysis device for a charged particle beam image according to claim 3, further comprising a top center position calculation unit that calculates a top center position that is an intermediate point between the pair of top edge positions.
  5.  前記深さ算出部は、
     前記第2の画像または前記第3の画像に基づいて、一対の前記ボトムエッジのうち一方の位置に対応する第2のボトムエッジ位置を検出するボトムエッジ位置検出部と、
     前記第2のボトムエッジ位置と、前記ボトム幅と、に基づいて、前記第2の姿勢におけるボトム中心位置を算出するボトム中心位置算出部と、をさらに備える
     ことを特徴とする請求項4に記載の荷電粒子線画像用解析装置。
    The depth calculation unit
    A bottom edge position detecting unit that detects a second bottom edge position corresponding to one of the positions of the pair of bottom edges based on the second image or the third image.
    4. The fourth aspect of the present invention is characterized in that the bottom center position calculation unit for calculating the bottom center position in the second posture is further provided based on the second bottom edge position and the bottom width. Charged particle beam image analyzer.
  6.  前記荷電粒子線装置は、前記試料に対して荷電粒子線を照射するものであり、
     前記深さ算出部は、前記第2の姿勢において、前記荷電粒子線の経路に対して直交する方向と、前記溝の一対の前記トップエッジを結ぶ線と、の角度をφ1としたとき、前記トップ中心位置とボトム中心位置との差をsinφ1で除算することによって前記深さを計算する深さ計算部をさらに備える
     ことを特徴とする請求項5に記載の荷電粒子線画像用解析装置。
    The charged particle beam device irradiates the sample with a charged particle beam.
    In the second posture, the depth calculation unit said that the angle between the direction orthogonal to the path of the charged particle beam and the line connecting the pair of top edges of the groove is φ1. The analyzer for a charged particle beam image according to claim 5, further comprising a depth calculation unit that calculates the depth by dividing the difference between the top center position and the bottom center position by sinφ1.
  7.  試料に対して荷電粒子線を照射し、前記試料において発生した荷電粒子に基づいて画像を形成する荷電粒子線装置と、
     溝を形成した前記試料を第1の姿勢において前記荷電粒子線装置で撮影した画像であって前記溝の底面における一対のボトムエッジに対応する部分を含む第1の画像と、前記試料を、前記第1の姿勢よりも傾斜させた第2の姿勢において前記荷電粒子線装置で撮影した画像であって所定エネルギ以上のエネルギを有する荷電粒子に基づいた第2の画像と、を前記荷電粒子線装置から取得する画像取得部と、
     前記第1の画像と、前記第2の画像と、に基づいて、前記溝の深さを算出する深さ算出部と、を備える
     ことを特徴とする検査システム。
    A charged particle beam device that irradiates a sample with a charged particle beam and forms an image based on the charged particles generated in the sample.
    An image of the grooved sample taken with the charged particle beam device in the first posture, including a portion corresponding to a pair of bottom edges on the bottom surface of the groove, and the sample. An image taken by the charged particle beam device in a second posture inclined from the first posture and based on a charged particle having an energy equal to or higher than a predetermined energy, and a second image based on the charged particle beam device are shown in the charged particle beam device. Image acquisition unit to be acquired from
    An inspection system including a depth calculation unit that calculates the depth of the groove based on the first image and the second image.
  8.  コンピュータを、
     溝を形成した試料を第1の姿勢において荷電粒子線装置で撮影した画像であって前記溝の底面における一対のボトムエッジに対応する部分を含む第1の画像と、前記試料を、前記第1の姿勢よりも傾斜させた第2の姿勢において前記荷電粒子線装置で撮影した画像であって所定エネルギ以上のエネルギを有する荷電粒子に基づいた第2の画像と、を取得する画像取得手段
     前記第1の画像と、前記第2の画像と、に基づいて、前記溝の深さを算出する深さ算出手段、
     として機能させるためのプログラム。
    Computer,
    An image of a grooved sample taken with a charged particle beam device in a first posture, the first image including a portion corresponding to a pair of bottom edges on the bottom surface of the groove, and the sample are shown in the first image. Image acquisition means for acquiring an image taken by the charged particle beam device in a second posture tilted from the posture of the above and based on a charged particle having an energy equal to or higher than a predetermined energy. Depth calculation means for calculating the depth of the groove based on the image of 1 and the second image.
    A program to function as.
PCT/JP2020/001764 2020-01-20 2020-01-20 Charged particle beam image analysis device, inspection system, and program WO2021149117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001764 WO2021149117A1 (en) 2020-01-20 2020-01-20 Charged particle beam image analysis device, inspection system, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001764 WO2021149117A1 (en) 2020-01-20 2020-01-20 Charged particle beam image analysis device, inspection system, and program

Publications (1)

Publication Number Publication Date
WO2021149117A1 true WO2021149117A1 (en) 2021-07-29

Family

ID=76991686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001764 WO2021149117A1 (en) 2020-01-20 2020-01-20 Charged particle beam image analysis device, inspection system, and program

Country Status (1)

Country Link
WO (1) WO2021149117A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233309A (en) * 1990-02-07 1991-10-17 Toshiba Corp Method and device for measuring pattern shape
JP2000252339A (en) * 1999-02-25 2000-09-14 Sony Corp Method for measuring depth of groove of semiconductor device
JP2001082931A (en) * 1999-09-09 2001-03-30 Toshiba Corp Method and apparatus for measuring depth of hole
US20170102343A1 (en) * 2015-10-08 2017-04-13 Samsung Electronics Co., Ltd. Apparatus for measuring semiconductor device
JP2019087518A (en) * 2017-11-10 2019-06-06 株式会社日立ハイテクノロジーズ Pattern measurement apparatus and measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233309A (en) * 1990-02-07 1991-10-17 Toshiba Corp Method and device for measuring pattern shape
JP2000252339A (en) * 1999-02-25 2000-09-14 Sony Corp Method for measuring depth of groove of semiconductor device
JP2001082931A (en) * 1999-09-09 2001-03-30 Toshiba Corp Method and apparatus for measuring depth of hole
US20170102343A1 (en) * 2015-10-08 2017-04-13 Samsung Electronics Co., Ltd. Apparatus for measuring semiconductor device
JP2019087518A (en) * 2017-11-10 2019-06-06 株式会社日立ハイテクノロジーズ Pattern measurement apparatus and measurement method

Similar Documents

Publication Publication Date Title
US7385196B2 (en) Method and scanning electron microscope for measuring width of material on sample
US8766183B2 (en) Charged particle beam device
JP5156619B2 (en) Sample size inspection / measurement method and sample size inspection / measurement device
US7491933B2 (en) Electron beam apparatus
US7973282B2 (en) Charged particle beam apparatus and dimension measuring method
WO2017179138A1 (en) Pattern measurement device and pattern measurement method
JP4231798B2 (en) Charged particle beam equipment and magnification measurement method
US8487253B2 (en) Scanning electron microscope
US11133148B2 (en) Scanning electron microscope
US11211226B2 (en) Pattern cross-sectional shape estimation system and program
WO2014175150A1 (en) Sample observation device
US20140014836A1 (en) Charged particle beam apparatus
JP2006108123A (en) Charged particle beam device
US20190103250A1 (en) Charged Particle Beam Device
US7910885B2 (en) System and method for determining a cross sectional feature of a structural element using a reference structural element
JP3836735B2 (en) Circuit pattern inspection device
KR102278301B1 (en) Charged particle beam apparatus
WO2021149117A1 (en) Charged particle beam image analysis device, inspection system, and program
WO2020157860A1 (en) Charged particle beam system and charged particle beam imaging method
WO2013011792A1 (en) Method for automatically determining inspection conditions and measurement conditions of sample, and scanning microscope
US11177112B2 (en) Pattern measurement device and non-transitory computer readable medium having stored therein program for executing measurement
JP2016139531A (en) Sample observation, inspection, measurement method, and scanning electron microscope
JP5218683B2 (en) Charged particle beam equipment
US11626266B2 (en) Charged particle beam device
JP5012756B2 (en) Charged particle beam equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP