WO2021144369A1 - Fimh mutant, compositions therewith and use thereof - Google Patents
Fimh mutant, compositions therewith and use thereof Download PDFInfo
- Publication number
- WO2021144369A1 WO2021144369A1 PCT/EP2021/050707 EP2021050707W WO2021144369A1 WO 2021144369 A1 WO2021144369 A1 WO 2021144369A1 EP 2021050707 W EP2021050707 W EP 2021050707W WO 2021144369 A1 WO2021144369 A1 WO 2021144369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fimh
- polypeptide
- polynucleotide
- lectin domain
- pharmaceutical composition
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 47
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 101
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 100
- 229920001184 polypeptide Polymers 0.000 claims abstract description 99
- 108090001090 Lectins Proteins 0.000 claims abstract description 80
- 102000004856 Lectins Human genes 0.000 claims abstract description 80
- 239000002523 lectin Substances 0.000 claims abstract description 80
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 29
- 230000035772 mutation Effects 0.000 claims abstract description 28
- 150000001413 amino acids Chemical class 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 21
- 230000028993 immune response Effects 0.000 claims abstract description 18
- 108091033319 polynucleotide Proteins 0.000 claims description 42
- 102000040430 polynucleotide Human genes 0.000 claims description 42
- 239000002157 polynucleotide Substances 0.000 claims description 42
- 239000002671 adjuvant Substances 0.000 claims description 41
- 208000019206 urinary tract infection Diseases 0.000 claims description 35
- 235000001014 amino acid Nutrition 0.000 claims description 32
- 241000588724 Escherichia coli Species 0.000 claims description 28
- 229940024606 amino acid Drugs 0.000 claims description 23
- 241000894006 Bacteria Species 0.000 claims description 21
- 238000006467 substitution reaction Methods 0.000 claims description 19
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 16
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 14
- 239000004474 valine Substances 0.000 claims description 14
- 230000001939 inductive effect Effects 0.000 claims description 12
- 239000013598 vector Substances 0.000 claims description 11
- 239000004471 Glycine Substances 0.000 claims description 8
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 8
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 8
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 8
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 8
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 8
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 8
- 235000004279 alanine Nutrition 0.000 claims description 8
- 229960000310 isoleucine Drugs 0.000 claims description 8
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229930182817 methionine Natural products 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 6
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 6
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 5
- 241001573849 Enterobacillus Species 0.000 claims description 5
- 108010000916 Fimbriae Proteins Proteins 0.000 claims description 5
- 238000009472 formulation Methods 0.000 claims description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 5
- 241000588748 Klebsiella Species 0.000 claims description 4
- 230000002265 prevention Effects 0.000 claims description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 abstract description 18
- 230000004936 stimulating effect Effects 0.000 abstract description 2
- 230000027455 binding Effects 0.000 description 40
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 37
- 102000004169 proteins and genes Human genes 0.000 description 36
- 235000018102 proteins Nutrition 0.000 description 35
- 108090000623 proteins and genes Proteins 0.000 description 35
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 32
- 125000003275 alpha amino acid group Chemical group 0.000 description 25
- 229960005486 vaccine Drugs 0.000 description 23
- 210000004027 cell Anatomy 0.000 description 21
- 230000002401 inhibitory effect Effects 0.000 description 16
- -1 DNA or RNA Chemical class 0.000 description 14
- 108010076504 Protein Sorting Signals Proteins 0.000 description 14
- 239000000839 emulsion Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000000427 antigen Substances 0.000 description 12
- 150000008146 mannosides Chemical class 0.000 description 12
- 208000035143 Bacterial infection Diseases 0.000 description 11
- 102000008233 Toll-Like Receptor 4 Human genes 0.000 description 11
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 description 11
- 102000036639 antigens Human genes 0.000 description 11
- 108091007433 antigens Proteins 0.000 description 11
- 208000022362 bacterial infectious disease Diseases 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 230000001580 bacterial effect Effects 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000556 agonist Substances 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 241000588921 Enterobacteriaceae Species 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 7
- 150000002632 lipids Chemical class 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 229930182490 saponin Natural products 0.000 description 7
- 150000007949 saponins Chemical class 0.000 description 7
- 235000017709 saponins Nutrition 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 210000002700 urine Anatomy 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108010006519 Molecular Chaperones Proteins 0.000 description 6
- 125000002252 acyl group Chemical group 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 210000003932 urinary bladder Anatomy 0.000 description 6
- 102100032859 Protein AMBP Human genes 0.000 description 5
- 229940037003 alum Drugs 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 102220070932 rs794728601 Human genes 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 210000001322 periplasm Anatomy 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000002335 preservative effect Effects 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 3
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 231100000491 EC50 Toxicity 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 206010022678 Intestinal infections Diseases 0.000 description 3
- 102000005431 Molecular Chaperones Human genes 0.000 description 3
- 241001644525 Nastus productus Species 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 244000302697 Phragmites karka Species 0.000 description 3
- 241001454523 Quillaja saponaria Species 0.000 description 3
- 235000009001 Quillaja saponaria Nutrition 0.000 description 3
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000010065 bacterial adhesion Effects 0.000 description 3
- 230000029586 bacterial cell surface binding Effects 0.000 description 3
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000012575 bio-layer interferometry Methods 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 238000005277 cation exchange chromatography Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 150000002016 disaccharides Chemical class 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- 150000004665 fatty acids Chemical group 0.000 description 3
- 229960002442 glucosamine Drugs 0.000 description 3
- 108010037896 heparin-binding hemagglutinin Proteins 0.000 description 3
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 3
- 230000003308 immunostimulating effect Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229940031439 squalene Drugs 0.000 description 3
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- RHKWIGHJGOEUSM-UHFFFAOYSA-N 3h-imidazo[4,5-h]quinoline Chemical class C1=CN=C2C(N=CN3)=C3C=CC2=C1 RHKWIGHJGOEUSM-UHFFFAOYSA-N 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 208000036209 Intraabdominal Infections Diseases 0.000 description 2
- 229920000057 Mannan Polymers 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001092142 Molina Species 0.000 description 2
- 241000737052 Naso hexacanthus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 102000002067 Protein Subunits Human genes 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 239000013011 aqueous formulation Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 102000022324 chaperone binding proteins Human genes 0.000 description 2
- 108091012160 chaperone binding proteins Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical group 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 229960001438 immunostimulant agent Drugs 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000002516 postimmunization Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940038774 squalene oil Drugs 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000008163 sugars Chemical group 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical group N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- UFYKDFXCZBTLOO-TXICZTDVSA-N 2-amino-2-deoxy-D-gluconic acid Chemical compound [O-]C(=O)[C@H]([NH3+])[C@@H](O)[C@H](O)[C@H](O)CO UFYKDFXCZBTLOO-TXICZTDVSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- YELMWJNXDALKFE-UHFFFAOYSA-N 3h-imidazo[4,5-f]quinoxaline Chemical class N1=CC=NC2=C(NC=N3)C3=CC=C21 YELMWJNXDALKFE-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- PBGKRBGJOXPISE-OKJBFNJESA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid;(2s,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O.N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 PBGKRBGJOXPISE-OKJBFNJESA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000031729 Bacteremia Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000510930 Brachyspira pilosicoli Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 108010040721 Flagellin Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010031252 Osteomyelitis Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 241001116459 Sequoia Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 206010062255 Soft tissue infection Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000031650 Surgical Wound Infection Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000002689 Toll-like receptor Human genes 0.000 description 1
- 108020000411 Toll-like receptor Proteins 0.000 description 1
- 206010046555 Urinary retention Diseases 0.000 description 1
- 206010046607 Urine abnormality Diseases 0.000 description 1
- DVKFVGVMPLXLKC-PUGXJXRHSA-N [(2s,3r,4s,5s,6r)-2-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(CO)[C@@]1(OP(O)(O)=O)[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DVKFVGVMPLXLKC-PUGXJXRHSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical group O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- YMJBYRVFGYXULK-QZABAPFNSA-N alpha-D-glucosamine 1-phosphate Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(O)=O YMJBYRVFGYXULK-QZABAPFNSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- UPAZUDUZKTYFBG-HNPUZVNISA-N azane [(2S,3R,4R,5S,6R)-2,5-dihydroxy-6-[[(2R,3R,4R,5S,6R)-6-(hydroxymethyl)-5-phosphonooxy-3-[[(3R)-3-tetradecanoyloxytetradecanoyl]amino]-4-[(3R)-3-tetradecanoyloxytetradecanoyl]oxyoxan-2-yl]oxymethyl]-3-[[(3R)-3-hydroxytetradecanoyl]amino]oxan-4-yl] (3R)-3-hydroxytetradecanoate Chemical compound [NH4+].CCCCCCCCCCCCCC(=O)O[C@H](CCCCCCCCCCC)CC(=O)N[C@H]1[C@H](OC[C@H]2O[C@H](O)[C@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H]2O)O[C@H](CO)[C@@H](OP(O)([O-])=O)[C@@H]1OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC UPAZUDUZKTYFBG-HNPUZVNISA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000003443 bladder cell Anatomy 0.000 description 1
- 210000002212 bladder urothelial cell Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000020176 deacylation Effects 0.000 description 1
- 238000005947 deacylation reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 125000004857 imidazopyridinyl group Chemical class N1C(=NC2=C1C=CC=N2)* 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000017555 immunoglobulin mediated immune response Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 208000023127 incomplete bladder emptying Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 208000028774 intestinal disease Diseases 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- KVJWZTLXIROHIL-QDORLFPLSA-N lipid IVA Chemical compound O[C@H]1[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O[C@@H]1CO[C@H]1[C@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@H](OP(O)(O)=O)[C@@H](CO)O1 KVJWZTLXIROHIL-QDORLFPLSA-N 0.000 description 1
- HEHQDWUWJVPREQ-XQJZMFRCSA-N lipid X Chemical compound CCCCCCCCCCC[C@@H](O)CC(=O)N[C@H]1[C@@H](OP(O)(O)=O)O[C@H](CO)[C@@H](O)[C@@H]1OC(=O)C[C@H](O)CCCCCCCCCCC HEHQDWUWJVPREQ-XQJZMFRCSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 1
- 239000004223 monosodium glutamate Substances 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VOXDTCSXQHOYKC-XGEOUJBZSA-N palmitoyllipid A Chemical compound O[C@H]1[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)[C@@H](OP(O)(O)=O)O[C@@H]1CO[C@H]1[C@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@H](OP(O)(O)=O)[C@@H](CO)O1 VOXDTCSXQHOYKC-XGEOUJBZSA-N 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OACODUCFPHHCIH-SANMLTNESA-N tert-butyl (2s)-2-[[4-amino-3-[2-(4-hydroxyphenyl)ethyl]benzoyl]amino]-4-phenylbutanoate Chemical compound C([C@@H](C(=O)OC(C)(C)C)NC(=O)C=1C=C(CCC=2C=CC(O)=CC=2)C(N)=CC=1)CC1=CC=CC=C1 OACODUCFPHHCIH-SANMLTNESA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000000954 titration curve Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 125000003523 triterpene group Chemical group 0.000 description 1
- 150000008130 triterpenoid saponins Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 229940124856 vaccine component Drugs 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
- C07K16/1203—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
- C07K16/1228—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K16/1232—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia from Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/025—Enterobacteriales, e.g. Enterobacter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/025—Enterobacteriales, e.g. Enterobacter
- A61K39/0258—Escherichia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/025—Enterobacteriales, e.g. Enterobacter
- A61K39/0266—Klebsiella
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention relates to the fields of medical microbiology, immunology and vaccines.
- the invention relates to polypeptides comprising a FimH lectin domain comprising an amino acid mutation that causes the FimH lectin domain to be in a conformation with low affinity for mannose and inducing high levels of antibody-mediated inhibition of adhesion of E. coli to bladder epithelial cells upon administration to a subject.
- the invention relates to compositions which comprise such polypeptides and to methods of stimulating an immune response in a subject in need thereof by administration of the immunogenic polypeptide.
- E. coli responsible for extra-intestinal infections are genetically distinct from those that cause intestinal disease and have been termed extra-intestinal pathogenic E. coli (ExPEC).
- ExPEC are the most common enteric Gram-negative organisms to cause extra-intestinal infection in the ambulatory, long-term-care, and hospital settings.
- Typical extra-intestinal infections due to E. coli include urinary tract infection (UTI), diverse intra abdominal infections (IAI), pneumonia, surgical site infection, meningitis, intravascular device infection, osteomyelitis, and soft tissue infections, any of which can be accompanied by bacteremia.
- UTI urinary tract infection
- IAI diverse intra abdominal infections
- pneumonia surgical site infection
- meningitis intravascular device infection
- osteomyelitis osteomyelitis
- soft tissue infections any of which can be accompanied by bacteremia.
- E. coli is a leading cause of severe sepsis and it is responsible for high morbidity and mortality rates.
- ExPEC as other members of the Enterob acted aceae family, produces type I fimbriae, which aid in the attachment to mucosal epithelial surfaces.
- type I fimbriae are hair like structures which emanate from the surface members of the Enterobacteriaceae family.
- the major component of Type I fimbriae is repeating subunits of FimA arranged in a right- handed helix to form a filament approximately 1 pm in length and 7 nm in diameter with a central axial hole (Brinton, 1965). Along with FimA as the major subunit, the fimbrial filament also contains FimF, FimG and FimH as minor protein subunits.
- the minor protein subunit FimH is a mannan-binding adhesin that promotes adherence of Type I-fimbriated bacteria to mannose-containing glycoproteins on eukaryotic cell surfaces and represents a family of proteins which bind to various targets, including mannan and fibronectin.
- Immune electron microscopy studies have revealed that FimH is strategically placed at the distal tips of Type I fimbriae where it appears to be complexed with FimG, forming a flexible fibrillum structure, and is also placed longitudinally at various intervals along the filament.
- FimH adhesin protein has been shown to induce protection when used as vaccine in various pre-clinical models against UTI (Langermann S, et al., 1997, Science, 276: 607- 611; Langermann S, et al., 2000, J Infect Dis, 181 : 774-778; O’Brien VP et al., 2016, Nat
- W002102974 describes a number of FimH mutants that all comprise an amino acid modification in the canyon region of the molecule. Specifically, WO02102974 describes variants wherein mannose interacting residues in the binding pocket are mutated. This location of the mutation is selected because it would keep the FimH mutant in a more open conformation and thereby expose epitopes that are poorly accessible in the wild-type protein. However, to date, to the best of our knowledge, none of these mutants have been further pursued as vaccine candidates. In clinical trials, only wild-type FimH has been used.
- the invention provides for a polypeptide comprising a FimH lectin domain comprising, wherein the FimH lectin domain comprises an amino acid selected from the group consisting of valine (V), isoleucine (I), leucine (L), glycine (G), methionine (M), and alanine (A) at the position that corresponds to position 144 in SEQ ID NO: 1.
- V valine
- I isoleucine
- L leucine
- G glycine
- M methionine
- A alanine
- the invention provides for a complex comprising a full length- FimH polypeptide according to the invention and FimC (FimCH).
- the invention provides a polynucleotide encoding a polypeptide according to the invention.
- the invention provides for a pharmaceutical composition comprising a polypeptide according to the invention, a complex according to the invention or a polynucleotide according to the invention.
- the invention provides for a polypeptide according to the invention, a complex according to the invention, a polynucleotide according to the invention or a pharmaceutical composition according to the invention for use as a medicament.
- the invention provides for a polypeptide according to the invention, a complex according to the invention, a polynucleotide according to the invention or a pharmaceutical composition according to the invention for use in inducing an immune response against a bacterium of the family of Enterobacteriaceae.
- the invention further relates to a method for treating or preventing an enterobacillus-related condition a subject in need thereof the method comprising administering an effective amount of a polypeptide according to the invention, a polynucleotide according to the invention or a pharmaceutical composition according to the invention.
- the invention provides for a vector comprising the polynucleotide according to the invention.
- the invention further provides for a method for producing a polypeptide comprising expressing the polypeptide from a recombinant cell containing the polynucleotide of the invention and/or the vector of the invention, optionally the method further comprises recovering the polypeptide which is optionally followed by formulation into a pharmaceutical composition of the polypeptide.
- FIG. 1 Levels of FimH serum antibodies (total IgG) induced by different FimH variants.
- Wistar rats (n 2) received 4 intramuscular immunizations at day 0, 7, 10 and 18 with 60 ug/dose of the different FimH variants combined with a non- Freund’s adjuvant (Speedy - rat model, Eurogentec).
- Levels of anti-FimH antibodies were measured by ELISA pre immunization (day 0, open circles) and post-immunization (day 28, closed circles). Data represents mean of duplicate serum samples from 2 animals/group.
- Antibody titers (EC50) were calculated based on a 4-parameter logistic regression model fitted on a 12-step dilution curve.
- the invention provides for a novel polypeptide comprising a FimH lectin domain wherein the FimH lectin domain is “locked” in a conformation with low affinity for mannose, also referred to herein as the Tow affinity conformation’.
- the present invention is based in part on the observation that FimH antigen in the low affinity for mannose conformation is capable of inducing antibodies that can inhibit mannoside-mediated adhesion. These antibodies are highly inhibitory and have an enhanced effect in preventing or treating bacterial infections. It was found herein that a FimH lectin domain with an F144V mutation has a surprisingly good combination of desirable properties that makes it very suitable for use in vaccines against UTI, e.g. to prevent or reduce recurrent UTT
- the invention provides for a polypeptide, preferably an immunogenic polypeptide, comprising a FimH lectin domain, wherein the FimH lectin domain comprises an amino acid selected from the group consisting of valine (V), isoleucine (I), leucine (L) glycine (G), methionine (M), and alanine (A), at the position that corresponds to position 144 in SEQ ID NO: 1.
- V valine
- I isoleucine
- L leucine
- G glycine
- M methionine
- A alanine
- the amino acid position 144 refers to position 144 in the reference amino acid sequence of the FimH lectin domain of SEQ ID NO: 1.
- amino acid sequences of the invention other than SEQ ID NO: 1 preferably, the amino acid position 144 is present in an amino acid position corresponding to the position 144 in SEQ ID NO: 1, preferably in a ClustalW (1.83) sequence alignment using default settings.
- ClustalW 1.83 sequence alignment using default settings.
- the skilled person will know how to identify corresponding amino acid positions in FimH lectin domain amino acid sequences other than SEQ ID NO: 1 using amino acid sequence alignment algorithms as defined hereinabove.
- the polypeptide comprising a FimH lectin domain according to the invention comprises a mutation that causes the FimH lectin domain to be in the low affinity for mannose conformation.
- the polypeptide comprising a FimH lectin domain according to the invention has been mutated at a position that corresponds to position 144 in SEQ ID NO: 1.
- the mutation can be any one of a deletion, addition or substitution of a single amino acid residue.
- the mutation is a substitution of a single amino acid residue.
- the mutation is preferably a substitution of an amino acid residue that corresponds to position 144 in SEQ ID NO: 1.
- the mutation is a substitution of a phenylalanine (F) amino acid residue at a position corresponding to position 144 in SEQ ID NO: 1.
- the position that corresponds to position 144 in SEQ ID NO: 1 is preferably substituted for an amino acid selected from the group consisting of valine (V), isoleucine (I), leucine (L), glycine (G), methionine (M), and alanine (A).
- mutation means that another amino acid is present on the indicated position than in the corresponding parent molecule, which here is a polypeptide comprising a FimH lectin domain with F at position 144.
- parent molecule may exist physically as polypeptide or in the form of nucleic acid encoding such polypeptide, but may also merely exist in silico or on paper as amino acid sequence or a corresponding nucleic acid sequence encoding the amino acid sequence.
- the polypeptide comprising the FimH lectin domain of the invention comprises the substitution of Phenylalanine (F) to Valine (V) at position 144.
- the polypeptide comprising the FimH lectin domain of the invention is a non-naturally occurring polypeptide which comprises a Valine at position 144.
- the polypeptide comprising the FimH lectin domain of the invention has a valine at position 144 instead of the naturally occurring phenylalanine.
- the FimH lectin domain has an amino acid sequence having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 1.
- the FimH lectin domain may comprise a sequence having SEQ ID NO: 1, with the exception of position 144 which for FimH lectin domain of the invention is substituted by valine (V), isoleucine (I), leucine (L), glycine (G), methionine (M), or alanine (A).
- FimH FL Full-length FimH
- FimH FL is composed of two domains: the N-terminal lectin domain (FimH LD ) connected to the C-terminal pilin domain (FimHpo) by a short tetra- peptides loop linker.
- the polypeptide comprising the FimH lectin domain according to the invention further comprises a FimH pilin domain.
- the polypeptide of the invention is a full length FimH polypeptide wherein the FimH lectin domain comprises an amino acid selected from the group consisting of valine (V), isoleucine (I), leucine (L), glycine (G), methionine (M), and alanine (A) at the position that corresponds to position 144 in SEQ ID NO: 1.
- V valine
- I isoleucine
- L leucine
- G glycine
- M methionine
- A alanine
- the polypeptide is a full length FimH having at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 2.
- the full length FimH polypeptide may comprise a sequence having SEQ ID NO: 2, with the exception of the F144V substitution as described herein.
- the polypeptide is a full length FimH having at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 4 or preferably at least with amino acids 22-300 thereof.
- the full length FimH polypeptide may comprise a sequence having SEQ ID NO: 4 or more preferably at least amino acids 22-300 thereof, with the exception of the F 144V substitution as described herein.
- the polypeptide is a full length FimH having at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 23-45 and 55 as described in US6,737,063, which is incorporated herein in its entirety.
- FimH polypeptides are not only highly conserved between various strains of E. coli , they are also highly conserved among a wide range of gram-negative bacteria. Moreover, the amino acid changes that occur between strains generally occur at similar amino acid positions. As a result of the high conservation of FimH between E. coli strains, FimH polypeptides from one strain are capable of inducing antibody responses that inhibit or prevent other A. coli strains from binding to cells by a FimH lectin and/or provide protection and/or treatment against infection caused by other E. coli strains.
- the full length FimH has at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 5, or preferably at least with amino acids 22- 300 thereof.
- the full length FimH polypeptide may comprise a sequence having SEQ ID NO: 5 or more preferably at least amino acids 22-300 thereof, with the exception of the F 144 V substitution as described herein.
- the full length FimH has at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 6.
- the full length FimH polypeptide may comprise a sequence having SEQ ID NO: 6, with the exception of the F144V substitution as described herein.
- periplasmic chaperone is defined as a protein localized in the periplasm of bacteria that is capable of forming complexes with a variety of chaperone- binding proteins via recognition of a common binding epitope (or epitopes). Chaperones serve as templates upon which proteins exported from the bacterial cell into the periplasm fold into their native conformations. Association of the chaperone-binding protein with the chaperone also serves to protect the binding proteins from degradation by proteases localized within the periplasm, increases their solubility in aqueous solution, and leads to their sequentially correct incorporation into an assembling pilus.
- FimC is the periplasmic chaperone protein of FimH.
- FimC has an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or about 100% sequence identity with SEQ ID NO: 3.
- FimC has an amino acid sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or about 100% sequence identity with SEQ ID NO: 29 as described in US6,737,063, which is incorporated herein in its entirety.
- FimCH The non-covalent complex of FimC and FimH is named FimCH.
- the invention provides for a complex comprising a polypeptide comprising the FimH lectin domain according to the invention and further comprising a FimH pilin domain or a full length FimH as described herein and FimC.
- the polypeptide comprising a FimH lectin domain according to the invention further comprises a FimH pilin domain and is complexed with FimC to form a FimCH complex.
- the inventors of the present application have created several FimH lectin domain variants with different amino acid changes and tested them for efficiency in various assays (see the examples). Surprisingly, not all the tested FimH proteins with lectin domain mutations were capable of being incorporated into a FimCH complex with the desired properties, i.e. having sufficient purity (protein concentration and degree of purity), integrity and functionality.
- FimH lectin domain which comprises an amino acid selected from the group consisting of valine (V), isoleucine (I), leucine (L), glycine (G), methionine (M), and alanine (A), at the position that corresponds to position 144 in SEQ ID NO: 1 was capable of forming FimCH complex having the desired properties.
- the polypeptide comprising a FimH lectin domain according to the invention is a full length FimH having at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity with SEQ ID NO: 2 and is complexed with FimC to form a FimCH complex.
- a full length FimH in its final form does typically not include the signal peptide, which is for instance shown as amino acids 1-21 of SEQ ID NOs: 4 and 5, i.e. a full-length FimH of SEQ ID NO: 4 or SEQ ID NO: 5 is understood to include amino acids 22-300 of these sequences while typically lacking amino acids 1-21 thereof.
- FimH For recombinant production of a full length FimH it is useful to encode the FimH that includes the signal peptide in the recombinant host cell, to get transport across the inner (cytoplasmic) membrane via the general secretory pathway leading to periplasmic location of the polypeptide (sometimes referred to as ‘periplasmic expression’), but in the final FimH polypeptide as isolated and for instance used in pharmaceutical compositions, the signal peptide typically is no longer present as a result of processing by the recombinant cell that is expressing the polypeptide.
- the FimCH complex comprises or consists of a FimC protein having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or at least about 100% sequence identity with SEQ ID NO: 3 and a FimH protein comprising a lectin domain having an amino acid selected from the group consisting of valine (V), isoleucine (I), leucine (L), glycine (G), methionine (M), and alanine (A), at the position that corresponds to position 144 in SEQ ID NO: 1.
- V valine
- I isoleucine
- L leucine
- G glycine
- M methionine
- A alanine
- the FimCH complex comprises or consists of a FimC protein having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or at least about 100% sequence identity with SEQ ID NO: 3 and a FimH protein that comprises a F144V substitution in the lectin domain or a full-length FimH protein that comprises a FI 65V substitution (e.g. in SEQ ID NOs: 4 or 5 that still include the signal peptide).
- a full length FimH that would still include the signal peptide amino acid position 165 corresponds to amino acid position 144 in the FimH lectin domain.
- the skilled person will know how to identify corresponding amino acid positions in full length FimH amino acid sequences and in FimH lectin domain amino acid sequences using amino acid sequence alignment algorithms as defined hereinabove.
- complexes comprising the E. coli chaperone FimC and a FimH lectin domain variant of the invention may be formed by co-expressing the FimH lectin domain variant polypeptide according to the invention along with FimC, from a recombinant cell.
- the FimCH complex comprises a FimC originating from one bacterial strain while FimH originates from a different bacterial strain.
- the FimCH complex comprises a FimC and a FimH both originating from the same bacterial strain.
- FimH or FimC or both FimH and FimC may be artificial sequences not from actual bacterial isolates that exist in nature, e.g. they can also be based upon consensus sequences or combinations of natural isolates.
- the FimCH complex comprises at least one polypeptide that comprises a His-tag.
- the full-length FimH according to the invention comprises a His-tag or the FimC as described herein comprises a His-tag.
- the FimC comprises the His-tag.
- a His-tag as used herein is a stretch of histidine (His) residues, e.g. six His residues, which may be added internally or preferably at the N- or C-terminus of a protein. Such a tag has well-known use for ease of purification.
- the invention pertains to a polynucleotide encoding a FimH polypeptide as defined herein above.
- the polynucleotide may be preceded by a promoter operably linked thereto.
- the promoter is endogenous to the FimH coding sequence.
- the promotor is an endogenous promoter driving the expression of FimH in a bacterium of the Enterobacteriaceae family.
- the promoter is heterologous to the FimH coding sequence, e.g. a strong promoter known to the skilled person for use in recombinant expression systems is used.
- a pET-DUET vector comprising an inducible Lac promoter can be used for FimH and/or FimC expression.
- IPTG can be used to induce expression.
- the polynucleotide is isolated from its natural environment.
- the invention provides an isolated polynucleotide according to the invention.
- the polypeptide can be a recombinant, synthetic or artificial polynucleotide.
- the polynucleotide may be in any form of nucleic acid, e.g. DNA or RNA, preferably DNA.
- the polynucleotide may comprise one or more nucleotides that are not present in a naturally occurring FimH encoding polynucleotide.
- the polynucleotide has one or more nucleotides that are not present in a naturally occurring FimH-encoding polynucleotide at its 5’ -end and/or 3’ -end.
- the sequences of the encoded mature FimC and/or FimH may preferably be preceded by a signal peptide in the polypeptides as encoded by the respective polynucleotides, and the signal peptides may be endogenous signal peptides to the FimC and/or FimH polypeptides (i.e.
- signal peptides as occurring in nature for these proteins respectively, or they may be heterologous signal peptides, i.e. signal peptides from other proteins or synthetic signal peptides.
- the signal peptides are useful for periplasmic expression, but are typically cleaved off and not present in the finally produced and purified FimC and/or FimH, respectively.
- the polypeptide comprising a FimH lectin domain according to the invention or the polynucleotide encoding the polypeptide comprising a FimH lectin domain according to the invention can be incorporated into a pharmaceutically active mixture by adding a pharmaceutically acceptable carrier.
- the invention also provides for a composition, preferably a pharmaceutical composition comprising a FimH lectin domain according to the invention or the polynucleotide encoding the polypeptide comprising a FimH lectin domain according to the invention.
- compositions of the invention may comprise any pharmaceutically acceptable excipient including a carrier, filler, preservative, solubilizer and/or diluent.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- Suitable excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Examples of suitable pharmaceutical carriers are described in “Remington's pharmaceutical sciences,” XIII ed. Editor-in-Chief Eric W. Martin. Mack Publishing Co., Easton, Pa., 2013.
- compositions of the invention additionally comprise one or more buffers, e.g., Tris-buffered saline, phosphate buffer, and sucrose phosphate glutamate buffer.
- the compositions of the invention additionally comprise one or more salts, e.g., Tris-hydrochloride, sodium chloride, calcium chloride, potassium chloride, sodium phosphate, monosodium glutamate, and aluminum salts (e.g., aluminum hydroxide, aluminum phosphate, potassium aluminum sulfate, or a mixture of such aluminum salts).
- compositions of the invention can be used for eliciting an immune response in a host to whom the composition is administered, i.e., are immunogenic.
- the compositions of the invention can be used as vaccines against an infection caused by a bacterium of the family of Enterobacteriaceae, preferably against an infection caused by Klebsiella, more preferably E.coli and can thus comprise any additional components suitable for use in a vaccine.
- an additional component of a vaccine composition is an adjuvant as described herein.
- the compositions of the invention additionally comprise a preservative, such as phenol, benzethonium chloride, 2-phenoxyethanol, or thimerosal.
- the (pharmaceutical) compositions of the invention comprise 0.001% to 0.01% preservative. In other embodiments, the (pharmaceutical) compositions of the invention do not comprise a preservative. In certain embodiments, the compositions of the invention are formulated to be suitable for the intended route of administration to a subject. For example, the compositions of the invention can be formulated to be suitable for subcutaneous, parenteral, oral, intradermal, transdermal, colorectal, intraperitoneal, intravaginal, or rectal administration.
- the pharmaceutical composition can be formulated for intravenous, oral, buccal, intraperitoneal, intranasal, intratracheal, subcutaneous, intramuscular, topical, intradermal, transdermal or pulmonary administration, preferably intramuscular administration.
- compositions of the invention can be included in a container, pack, or dispenser together with instructions for administration.
- the compositions of the invention can be stored before use, e.g., the compositions can be stored frozen (e.g., at about -20°C or at about -70°C); stored in refrigerated conditions (e.g., at about 2-8°C, e.g. about 4°C); or stored at room temperature.
- separate compositions comprising one or more of the components (i), (ii), and (iii) may be stored and mixed to the vaccine combination composition comprising all three of (i), (ii) and (iii) prior to use.
- the separate compositions are provided in a combination administration schedule.
- the pharmaceutical composition of the invention can be administered together with a composition that comprises one or more polysaccharides covalently linked to a carrier protein.
- a composition comprises one or more bioconjugates of an E. coli O-antigen polysaccharide covalently linked to a carrier protein, such as for instance described in WO2019/175145 which is incorporated herein in its entirety.
- the pharmaceutical composition of the invention herein further comprises an adjuvant.
- adjuvant refers to a compound that when administered in conjunction with or as part of a composition of the invention augments, enhances and/or boosts the immune response to FimH, but when the adjuvant compound is administered alone does not generate an immune response to the conjugate and/or FimH.
- adjuvants can enhance an immune response by several mechanisms including, e.g., lymphocyte recruitment, stimulation of B and/or T cells, and stimulation of antigen presenting cells.
- the pharmaceutical compositions of the invention comprise, or are administered in combination with, an adjuvant.
- the adjuvant for administration in combination with a composition of the invention can be administered before, concomitantly with, or after administration of the immunogenic compositions.
- the FimH of the invention and the adjuvant are administered in the form of a single composition.
- adjuvants include, but are not limited to, aluminum salts (alum) (such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, and aluminum oxide, including nanoparticles comprising alum or nanoalum formulations), calcium phosphate (e.g. Masson JD et al, 2017, Expert Rev Vaccines 16: 289-299), monophosphoryl lipid A (MPL) or 3-de-O-acylated monophosphoryl lipid A (3D-MPL) (see e.g., United Kingdom Patent GB2220211, EP0971739, EP1194166, US6491919), AS01, AS02, AS03 and AS04 (all GlaxoSmithKline; see e.g. EP1126876, US7357936 for
- the adjuvant is Freund’s adjuvant (complete or incomplete).
- the adjuvant comprises Quil-A, such as for instance commercially obtainable from Brenntag (now Croda) or Invivogen.
- QuilA contains the water-extractable fraction of saponins from the Quillaja saponaria Molina tree.
- saponins belong to the group of triterpenoid saponins, that have a common triterpenoid backbone structure. Saponins are known to induce a strong adjuvant response to T- dependent as well as T-independent antigens, as well as strong cytotoxic CD8+ lymphocyte responses and potentiating the response to mucosal antigens. They can also be combined with cholesterol and phospholipids, to form immunostimulatory complexes (ISCOMs), wherein QuilA adjuvant can activate both antibody -mediated and cell-mediated immune responses to a broad range of antigens from different origens.
- the adjuvant is AS01, preferably AS01B.
- SOI is an Adjuvant System containing MPL (3-0- desacyM'-monophosphoryl lipid A), QS21 (Quillaja saponaria Molina, fraction 21) and liposomes.
- the AS01 is commercially available (GSK) or can be made as described in WO 96/33739, incorporated herein by reference.
- Certain adjuvants comprise emulsions, which are mixtures of two immiscible fluids, e.g. oil and water, one of which is suspended as small drops inside the other, and are stabilized by surface-active agents. Oil-in-water emulsions have water forming the continuous phase, surrounding small droplets of oil, while water-in-oil emulsions have oil forming the continuous phase.
- Certain emulsions comprise squalene (a metabolizable oil).
- Certain adjuvants comprise block copolymers, which are copolymers formed when two monomers cluster together and form blocks of repeating units.
- An example of a water in oil emulsion comprising a block copolymer, squalene and a microparticulate stabilizer is TiterMax®, which can be commercially obtained from Sigma-Aldrich.
- emulsions can be combined with or comprise further immunostimulating components, such as a TLR4 agonist.
- Certain adjuvants are oil in water emulsions (such as squalene or peanut oil) also used in MF59 (see e.g.
- the adjuvant comprises saponins, preferably the water-extractable fraction of saponins obtained from Quillaja saponaria.
- the adjuvant comprises QS-21.
- the adjuvant contains a toll-like receptor 4 (TLR4) agonist.
- TLR4 agonists are well known in the art, see e.g. Ireton GC and SG Reed, 2013, Expert Rev Vaccines 12: 793-807.
- the adjuvant is a TLR4 agonist comprising lipid A, or an analog or derivative thereof.
- the adjuvant preferably including a TLR4 agonist
- emulsions such as water-in-oil (w/o) emulsions or oil-in-water (o/w) emulsions (examples are MF59, AS03), stable (nano-)emulsions (SE), lipid suspensions, liposomes, (polymeric) nano
- the immunostimulatory TLR4 agonist may optionally be combined with other immunomodulatory components, such as saponins (e.g. QuilA, QS7, QS21, Matrix M, Iscoms, Iscomatrix, etc), aluminum salts, activators for other TLRs (e.g. imidazoquinolines, flagellin, CpG, dsRNA analogs, etc), and the like (see e.g. Reed et al, 2013, supra).
- saponins e.g. QuilA, QS7, QS21, Matrix M, Iscoms, Iscomatrix, etc
- aluminum salts e.g. imidazoquinolines, flagellin, CpG, dsRNA analogs, etc
- activators for other TLRs e.g. imidazoquinolines, flagellin, CpG, dsRNA analogs, etc
- lipid A refers to the hydrophobic lipid moiety of an LPS molecule that comprises glucosamine and is linked to keto-deoxyoctulosonate in the inner core of the LPS molecule through a ketosidic bond, which anchors the LPS molecule in the outer leaflet of the outer membrane of Gram -negative bacteria.
- Lipid A includes naturally occurring lipid A, mixtures, analogs, derivatives and precursors thereof.
- the term includes monosaccharides, e.g., the precursor of lipid A referred to as lipid X; disaccharide lipid A; hepta-acyl lipid A; hexa- acyl lipid A; penta-acyl lipid A; tetra-acyl lipid A, e.g., tetra-acyl precursor of lipid A, referred to as lipid IVA; dephosphorylated lipid A; monophosphoryl lipid A; diphosphoryl lipid A, such as lipid A from Escherichia coli and Rhodobacter sphaeroides.
- immune activating lipid A structures contain 6 acyl chains.
- Four primary acyl chains attached directly to the glucosamine sugars are 3 -hydroxy acyl chains usually between 10 and 16 carbons in length.
- Two additional acyl chains are often attached to the 3 -hydroxy groups of the primary acyl chains.
- E. coli lipid A typically has four C143- hydroxy acyl chains attached to the sugars and one C12 and one C14 attached to the 3- hydroxy groups of the primary acyl chains at the T and 3’ position, respectively.
- lipid A analog or derivative refers to a molecule that resembles the structure and immunological activity of lipid A, but that does not necessarily naturally occur in nature.
- Lipid A analogs or derivatives may be modified to e.g. be shortened or condensed, and/or to have their glucosamine residues substituted with another amine sugar residue, e.g. galactosamine residues, to contain a 2-deoxy-2-aminogluconate in place of the glucosamine- 1 -phosphate at the reducing end, to bear a galacturonic acid moiety instead of a phosphate at position 4’ .
- Lipid A analogs or derivatives may be prepared from lipid A isolated from a bacterium, e.g., by chemical derivation, or chemically synthesized, e.g. by first determining the structure of the preferred lipid A and synthesizing analogs or derivatives thereof. Lipid A analogs or derivatives are also useful as TLR4 agonist adjuvants (see, e.g. Gregg KA et al, 2017, MBio 8, eDD492-17, doi: 10.1128/mBio.00492-17). For example, a lipid A analog or derivative can be obtained by deacylation of a wild-type lipid A molecule, e.g., by alkali treatment.
- Lipid A analogs or derivatives can for instance be prepared from lipid A isolated from bacteria. Such molecules could also be chemically synthesized. Another example of lipid A analogs or derivatives are lipid A molecules isolated from bacterial cells harboring mutations in, or deletions or insertions of enzymes involved in lipid A biosynthesis and/or lipid A modification. MPL and 3D-MPL are lipid A analogs or derivatives that have been modified to attenuate lipid A toxicity. Lipid A, MPL and 3D-MPL have a sugar backbone onto which long fatty acid chains are attached, wherein the backbone contains two 6-carbon sugars in glycosidic linkage, and a phosphoryl moiety at the 4 position.
- MPL or 3D-MPL may be present as a composite or mixture of a number of fatty acid substitution patterns, e.g. hepta-acyl, hexa-acyl, penta-acyl, etc., with varying fatty acid lengths. This is also true for some of the other lipid A analogs or derivatives described herein, however synthetic lipid A variants may also be defined and homogeneous. MPL and its manufacture are for instance described in US 4,436,727.
- 3D-MPL is for instance described in US 4,912,094B1, and differs from MPL by selective removal of the 3-hydroxymyristic acyl residue that is ester linked to the reducing-end glucosamine at position 3 (compare for instance the structure of MPL in column 1 vs 3D-MPL in column 6 of US 4,912,094B1).
- MPL e.g. the first structure in Table 1 of Ireton GC and SG Reed, 2013, supra, refers to this structure as MPL®, but actually depicts the structure of 3D-MPL.
- lipid A examples include MPL, 3D-MPL, RC529 (e.g. EP1385541), PET-lipid A, GLA (glycopyranosyl lipid adjuvant, a synthetic disaccharide glycolipid; e.g. US20100310602, US8722064), SLA (e.g.
- PHAD phosphorylated hexaacyl disaccharide; the structure of which is the same as that of GLA
- 3D-PHAD, 3D-(6-acyl)- PHAD 3D(6A)-PHAD
- PHAD, 3D-PHAD, and 3D(6A)PHAD are synthetic lipid A variants, see e.g.
- the TLR4 agonist adjuvant comprises a lipid A analog or derivative chosen from 3D-MPL, GLA, or SLA.
- Exemplary adjuvants comprising a lipid A analog or derivative include GLA-LSQ (synthetic MPL [GLA], QS21, lipids formulated as liposomes), SLA-LSQ (synthetic MPL [SLA], QS21, lipids, formulated as liposomes), GLA-SE (synthetic MPL [GLA], squalene oil/water emulsion), SLA-SE (synthetic MPL [SLA], squalene oil/water emulsion), SLA- Nanoalum (synthetic MPL [SLA], aluminum salt), GLA-Nanoalum (synthetic MPL [GLA], aluminum salt), SLA-AF (synthetic MPL [SLA], aqueous suspension), GLA-AF (synthetic MPL [GLA], aqueous suspension,), SLA-alum (synthetic MPL [SLA], aluminum salt), GLA-alum (synthetic MPL [G
- Non-glycolipid molecules may also be used as TLR4 agonist adjuvants, e.g. synthetic molecules such as Neoseptin-3 or natural molecules such as LelF, see e.g. Reed SG et al, 2016, supra.
- the invention in another aspect relates to a polypeptide comprising a FimH lectin domain of the invention, a polynucleotide of the invention or a pharmaceutical composition of the invention for use as a medicament.
- the invention relates to the use of a polypeptide comprising a FimH lectin domain as described herein, a polynucleotide as described or a pharmaceutical composition described herein as a medicament for inducing an immune response against a gram negative bacterium of the family of Enterobacteriaceae.
- an “immunogen” or “immunogenic " or “antigen” are used interchangeably to describe a molecule capable of inducing an immunological response against itself on administration to a recipient, either alone, in conjunction with an adjuvant, or presented on a display vehicle.
- an “immunological response” or “immune response” to an antigen or composition refers to the development in a subject of a humoral and/or a cellular immune response to the antigen or an antigen present in the composition.
- the invention relates to the polypeptide comprising a FimH lectin domain as described herein, a polynucleotide as described or a pharmaceutical composition described herein for use in inducing an immune response against a bacterial infection caused a gram negative bacterium of the family Enterobacteriaceae.
- the bacterial infection is caused by Staphylococcus saprophyticus or Staphylococcus aureus , Proteus spp., Serratia spp., or Pseudomonas spp.
- the bacterial infection is caused by Klebsiella spp., or E.coli.
- the bacterial infection is caused by E.coli.
- the invention relates to the use of a polypeptide comprising a FimH lectin domain as described herein, a polynucleotide as described or a pharmaceutical composition described herein as a medicament for inducing an immune response against li.coli or Klebsiella, preferably E. coli.
- the bacterial infection, caused by a gram negative bacterium of the family Enterobacteriaceae is an infection by E.coli , e.g. by ExPEC, more particularly a urinary tract infection (UTI).
- UTI urinary tract infection
- the invention relates to the polypeptide comprising a FimH lectin domain as described herein, a polynucleotide as described or a pharmaceutical composition described herein for use in treating, preventing, or suppressing symptoms and/or sequelae associated with a UTI in a subject.
- said UTI is a rUTI.
- E.coli is one of the main causative agents of UTIs and rUTIs which are an important health care problem in young females and older adults.
- the bacterial infection is a UTI or rUTI caused by E.coli.
- the invention relates to a method of treating, preventing, or suppressing symptoms and/or sequelae associated with an enterobacillus-related condition a subject in need thereof.
- the method comprises administering to the subject an effective amount of the polypeptide comprising a FimH lectin domain as described herein, a polynucleotide as described or a pharmaceutical composition described herein.
- the administration induces an immune response that is effective in treating or preventing an enterobacillus-related condition.
- the enterobacillus-related condition is a urogenital tract infection, more particularly a UTI or rUTI.
- the invention also relates to use of a polypeptide comprising a FimH lectin domain as described herein, a polynucleotide as described or a pharmaceutical composition described herein for the manufacture of a medicament for treating, preventing, or suppressing a bacterial infection caused a gram negative bacterium of the family Enter obacteriaceae, preferably a bacterial infection caused by E.coli. More preferably, the bacterial infection is a UTI or rUTI caused by E.coli.
- the invention relates to vector comprising a polynucleotide encoding a polypeptide of the invention.
- the vector is a plasmid or a viral vector, preferably a plasmid.
- the vector is preferably in the form of DNA, e.g. a DNA plasmid.
- the vector comprises the polynucleotide of the invention operably linked to a promoter, meaning that the polynucleotide is under control of a promoter.
- the promoter may be located upstream of the polynucleotide that encodes the polypeptide of the invention, e.g. in an expression cassette in a plasmid.
- the invention further relates to a method for the production of a polypeptide of the invention, the method comprising culturing a recombinant cell containing the polynucleotide encoding the polypeptide comprising a FimH lectin domain as described herein and/or the vector as described herein, wherein the culturing takes place under conditions conducive to the production of the polypeptide.
- the method further comprises recovering the polypeptide, which is optionally followed by formulation into a pharmaceutical composition.
- a pharmaceutical composition Preferably an E. coli cell, for example an E.coli BL21 derivative, cell is used in the method for producing the polypeptide comprising a FimH lectin domain according to the invention.
- the recovery of the polypeptide preferably includes a purification and/or isolation step which can be performed using conventional protein purification methods well known in the art. Such methods may include ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Typical examples for such purification and/or isolation may utilize an antibody to the protein or to a His tag or cleavable leader or tail that is expressing as part of the protein structure.
- the polypeptide described herein have a His-tag included and are purified by methods such as IMAC affinity purification.
- the polypeptides described herein do not comprise a His-tag, in such cases purification is performed by cation exchange chromatography (cIEX) and hydrophobic interaction chromatography (HIC).
- the conjunctive term “and/or” between multiple recited elements is understood as encompassing both individual and combined options. For instance, where two elements are conjoined by “and/or”, a first option refers to the applicability of the first element without the second. A second option refers to the applicability of the second element without the first. A third option refers to the applicability of the first and second elements together. Any one of these options is understood to fall within the meaning, and therefore satisfy the requirement of the term “and/or” as used herein. Concurrent applicability of more than one of the options is also understood to fall within the meaning, and therefore satisfy the requirement of the term “and/or.”
- the term “pharmaceutically acceptable carrier” refers to a non-toxic material that does not interfere with the effectiveness of a composition according to the invention or the biological activity of a composition according to the invention.
- a “pharmaceutically acceptable carrier” can include any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, oil, lipid, lipid containing vesicle, microsphere, liposomal encapsulation, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the pharmaceutically acceptable carrier will depend on the route of administration for a particular application. According to particular embodiments, in view of the present disclosure, any pharmaceutically acceptable carrier suitable for use in a vaccine can be used in the invention.
- Suitable excipients include but are not limited to sterile water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof, as well as stabilizers, e.g. Human Serum Albumin (HSA) or other suitable proteins and reducing sugars.
- HSA Human Serum Albumin
- the term “effective amount” refers to an amount of an active ingredient or component that elicits the desired biological or medicinal response in a subject. An effective amount can be determined empirically and in a routine manner, in relation to the stated purpose. For example, in vitro assays can optionally be employed to help identify optimal dosage ranges.
- subject or “patient” means any animal, preferably a mammal, most preferably a human, who will be or has been vaccinated by a method or composition according to an embodiment of the invention.
- mammal encompasses any mammal. Examples of mammals include, but are not limited to, cows, horses, sheep, pigs, cats, dogs, mice, rats, rabbits, guinea pigs, monkeys, humans, etc., most preferably a human.
- a subject is a human adult.
- human adult refers to a human that is 18 years or older. In certain embodiments, a subject is less than 18 years old, e.g.
- a subject is a human subject of about 18 to about 50 years. In certain embodiments, a subject is a human of about 50 to about 100 years, e.g. 50-85 years, 60-80 years, 50 years or older, 55 years or older, 60 years or older, 65 years or older, 70 years or older, 75 years or older, 80 years or older, 85 years or older. In some embodiments hereof the subject is not older than 85 years, not older than 80 years, not older than 75 years. In certain embodiments, a human subject is a male. In certain embodiments, a human subject is a female.
- a “UTI” means an infection of the kidney, bladder, ureter, or urethra.
- Symptoms of UTI may include one or more of burning feeling when urinating, frequent or intense urge to urinate, incomplete bladder emptying, urine having abnormal look and/or smell, elevated white blood cells in urine, feeling tired or shaky, feeling disoriented, fever or chills, malaise, pain or pressure in back, lower abdomen, pelvis or bladder.
- Sequelae of UTI may include systemic complications such as invasive disease and sepsis.
- a UTI is clinically and/or microbiologically documented, e.g.
- the subject is a human subj ect that previously has had or currently is having a UTI.
- the subject has had a UTI within the last two years, the last year, or the last 6 months.
- the subject has had or currently has a recurrent UTI (rUTI).
- rUTI as used herein means at least two infections in six months or at least three UTIs in one year.
- a subject to which the polypeptide comprising a FimH lectin domain of the invention, the FimCH complex of the invention, or a composition of the invention is administered has suffered at least two UTIs within the last two years, within the last year, or within the last six months. In certain embodiments, the subject has suffered from complicated UTI.
- a ‘complicated UTF as used herein means a UTI associated with a condition, such as structural or functional abnormalities of the genitourinary tract or the presence of an underlying disease.
- a UTI leads to elevated numbers of white blood cells in urine or other urine abnormalities.
- a subject with UTI has a number of bacteria in urine, i.e.
- the urine is not sterile, e.g. a bacterial cell count of at least about 10 cells/mL, at least about 100 cells/mL, at least about 10 3 cells/mL, e.g. at least about 10 4 cells/mL, e.g. at least about 10 5 cells/mL.
- an “immunological response” or “immune response” to an antigen or composition refers to the development in a subject of a humoral and/or a cellular immune response to the antigen or an antigen present in the composition. Unless otherwise indicated, the term “at least” preceding a series of elements is to be understood to refer to every element in the series.
- sequence identity is herein defined as a relationship between two or more amino acid (polypeptide or protein) sequences or two or more nucleic acid (polynucleotide) sequences, as determined by comparing the sequences.
- identity also means the degree of sequence relatedness between amino acid or nucleic acid sequences, as the case may be, as determined by the match between strings of such sequences.
- similarity between two amino acid sequences is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide. "Identity” and “similarity” can be readily calculated by known methods.
- Sequence identity and “sequence similarity” can be determined by alignment of two peptide or two nucleotide sequences using global or local alignment algorithms, depending on the length of the two sequences. Sequences of similar lengths are preferably aligned using a global alignment algorithm (e.g. Needleman Wunsch) which aligns the sequences optimally over the entire length, while sequences of substantially different lengths are preferably aligned using a local alignment algorithm (e.g. Smith Waterman). Sequences may then be referred to as "substantially identical” or “essentially similar” when they (when optimally aligned by for example the programs GAP or BESTFIT using default parameters) share at least a certain minimal percentage of sequence identity (as defined below).
- a global alignment algorithm e.g. Needleman Wunsch
- GAP uses the Needleman and Wunsch global alignment algorithm to align two sequences over their entire length (full length), maximizing the number of matches and minimizing the number of gaps. A global alignment is suitably used to determine sequence identity when the two sequences have similar lengths.
- the default scoring matrix used is nwsgapdna and for proteins the default scoring matrix is Blosum62 (Henikoff & Henikoff, 1992, PNAS 89, 915-919).
- Sequence alignments and scores for percentage sequence identity may be determined using computer programs, such as the GCG Wisconsin Package, Version 10.3, available from Accelrys Inc., 9685 Scranton Road, San Diego, CA 92121-3752 USA, or using open source software, such as the program “needle” (using the global Needleman Wunsch algorithm) or “water” (using the local Smith Waterman algorithm) in EmbossWIN version 2.10.0, using the same parameters as for GAP above, or using the default settings (both for ‘needle’ and for ‘water’ and both for protein and for DNA alignments, the default Gap opening penalty is 10.0 and the default gap extension penalty is 0.5; default scoring matrices are Blosum62 for proteins and DNAFull for DNA). When sequences have a substantially different overall lengths, local alignments, such as those using the Smith Waterman algorithm, are preferred.
- nucleic acid and protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences.
- search can be performed using the BLASTn and BLASTx programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403 — 10.
- Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17): 3389-3402.
- the default parameters of the respective programs e.g., BLASTx and BLASTn
- FimC and FimH were expressed in a pET-DUET vector using heterologous signal sequences for expression in the periplasm and a C-terminal His-tag on FimC for affinity purification using immobilized metal affinity chromatography (IMAC). Expression was induced using IPTG and protein was extracted and purified using IMAC purification (Talon).
- IMAC immobilized metal affinity chromatography
- FimH variants were designed with the goal of finding a FimH lectin domain variant that could induce functional inhibitory antibodies, thereby preventing bacterial binding to bladder cells while providing broad coverage. To optimize the chances of finding a suitable FimH lectin domain variant, variants with a different predicted mode of action were selected.
- FimH_Q133K and FimH_R60P have a mutation in the mannose interacting residues in the binding pocket. These mutations are predicted to directly influence the binding interaction with mannose. These mutants were taken as positive controls. The double mutant R60P Q133K was taken along to check for potentially enhanced effects. Additionally, wild-type (WT) FimH lectin domain was taken along as a negative control. Several further FimH mutants (including the ones referred to as ‘Mutant G and ‘Mutant T herein) were created and tested as candidates in the panel with the aim of obtaining functional inhibitory antibodies.
- Wistar rats received 4 intramuscular (i.m.) immunizations at day 0, 7, 10 and 18 with the hereinabove described FimH variants (60 pg each variant/dose) combined with a non- Freund adjuvant (Speedy rat 28-Day model, Eurogentec). Functionality of serum antibodies was investigated at day 0 (pre-immunization) and day 28 (post-immunization) by Adhesion Inhibition Assay (AIA) as described below.
- AIA Adhesion Inhibition Assay
- Adhesion inhibition assay Bacteria ( E . coli J96) were labeled with a fluorescein isothiocyanate (FITC). Labeled bacteria were incubated with bladder urothelial cells (5637 cell line) for lh at 37°C. The % of adherent bacteria was measured by flow cytometry. For evaluation of serum inhibition, bacteria are previously incubated with serum samples for 30 minutes at 37°C and then mixed with 5637 cells. ELISA
- 96-well plates are coated overnight with 1 ug/mL of FimH. After washing, coated wells are incubated with blocking buffer [phosphate-buffered saline (PBS) + 2% bovine serum albumin (BSA)] for 1 hour at room temperature. After washing with PBS + 0.05% Tween 20, serum is added to the plates that are then incubated for 1 hour at room temperature.
- blocking buffer [phosphate-buffered saline (PBS) + 2% bovine serum albumin (BSA)] for 1 hour at room temperature. After washing with PBS + 0.05% Tween 20, serum is added to the plates that are then incubated for 1 hour at room temperature.
- Serum antibody inhibitory titers were calculated as half maximal inhibitory concentration (IC50) based on a 4-parameter logistic regression model.
- levels of serum antibodies induced by different FimH variants were evaluated by ELISA.
- EC50 titers, defined as half maximal effective concentration were calculated based on duplicate 12-step titration curves that were analyzed with a 4PL nonlinear regression model. Evaluation of the magnitude of inhibitory antibodies induced by each of the FimH variants showed that, FimH-23-10_F144V was capable of inducing the highest levels of functional antibodies (Figure 1), which was surprising and entirely unpredictable prior to the present invention. Based on this result the FimH lectin domain comprising the F144V substitution was selected as the lead candidate.
- Mutations in the lectin domain of FimH may cause the loss of epitopes that are crucial in eliciting a strong and functional immune response such as the epitopes that are present in the binding pocket of FimH.
- the binding of monoclonal antibodies (mAh) mAb475 and mAb926 to the mutant FimH lectin domains was assessed.
- mAb475 and mAb926, recognize overlapping but distinct epitopes on the FimH lectin domain within the mannose-binding pocket of the FimH (Kisiela et al. 2013 & 2015).
- FimH lectin domains have been previously described in W002102974.
- WO02 102974 describes an extensive list of possible mutations of mostly unspecified mutations (65 possible mutation sites are suggested in the lectin domain of FimH which is approximately 159 amino acids long).
- WO02102974 indicates that the FimH lectin domains having an amino acid substitution at position 54, 133 or 135 are the most promising candidates, FimH_Q133K is explicitly mentioned as a highly preferred option. It was therefore quite surprising that FimH-23-10_Q133K was not recognized by the functional mAb475, indicating integrity issues of the binding pocket (Table 3). In contrast, FimH-23-10_F144V was recognized by both mAb475 and mAb926 indicating that the binding pocket remained completely intact (Table 3).
- FimH_F144V showed strongly reduced affinity for mannose (indicating that the variant was in the low affinity for mannose conformation) and was capable of inhibiting binding of both low- and high affinity FimH lectin domain proteins to immobilized mono-mannoside. Furthermore, FimH_F144V induced the highest levels of functional antibodies out of all the mutations tested and was shown to have an intact binding pocket. This mutant was also manufacturable in a FimCH complex.
- FimH lectin domain with a valine at position 144 has a surprising combination of features that make it very suitable as a vaccine component, i.e. better than wild-type on which efforts to develop a FimH-based vaccine have hitherto appear to have been focused, and better than the other variants tested herein.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK21700027.2T DK4090363T3 (en) | 2020-01-16 | 2021-01-14 | FimH mutant, compositions therewith and use thereof |
CA3168108A CA3168108A1 (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof |
CN202180009530.0A CN115038461A (en) | 2020-01-16 | 2021-01-14 | FimH mutants, compositions thereof, and uses thereof |
AU2021208493A AU2021208493B2 (en) | 2020-01-16 | 2021-01-14 | FimH mutant, compositions therewith and use thereof |
EP21700027.2A EP4090363B1 (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof |
KR1020227026828A KR20220128372A (en) | 2020-01-16 | 2021-01-14 | FIMH mutants, compositions having them and uses thereof |
JP2022542383A JP7485771B2 (en) | 2020-01-16 | 2021-01-14 | FimH mutants, compositions thereof, and uses thereof |
MX2022008830A MX2022008830A (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof. |
IL294445A IL294445B2 (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof |
LTEPPCT/EP2021/050707T LT4090363T (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof |
FIEP21700027.2T FI4090363T3 (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof |
BR112022013720A BR112022013720A2 (en) | 2020-01-16 | 2021-01-14 | MUTANT FIMH, COMPOSITIONS WITH IT AND ITS USE |
SA522433319A SA522433319B1 (en) | 2020-01-16 | 2022-07-16 | Fimh mutant, compositions therewith and use thereof |
JP2023218988A JP2024045126A (en) | 2020-01-16 | 2023-12-26 | Fimh mutant, compositions therewith and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20152217 | 2020-01-16 | ||
EP20152217.4 | 2020-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021144369A1 true WO2021144369A1 (en) | 2021-07-22 |
Family
ID=69174406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/050707 WO2021144369A1 (en) | 2020-01-16 | 2021-01-14 | Fimh mutant, compositions therewith and use thereof |
Country Status (18)
Country | Link |
---|---|
US (3) | US11421003B2 (en) |
EP (1) | EP4090363B1 (en) |
JP (2) | JP7485771B2 (en) |
KR (1) | KR20220128372A (en) |
CN (1) | CN115038461A (en) |
AR (1) | AR121066A1 (en) |
AU (1) | AU2021208493B2 (en) |
BR (1) | BR112022013720A2 (en) |
CA (1) | CA3168108A1 (en) |
DK (1) | DK4090363T3 (en) |
FI (1) | FI4090363T3 (en) |
IL (1) | IL294445B2 (en) |
LT (1) | LT4090363T (en) |
MX (1) | MX2022008830A (en) |
PT (1) | PT4090363T (en) |
SA (1) | SA522433319B1 (en) |
TW (1) | TW202140521A (en) |
WO (1) | WO2021144369A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022137078A1 (en) * | 2020-12-23 | 2022-06-30 | Pfizer Inc. | E. coli fimh mutants and uses thereof |
WO2023111907A1 (en) * | 2021-12-17 | 2023-06-22 | Pfizer Inc. | Polynucleotide compositions and uses thereof |
WO2023227608A1 (en) | 2022-05-25 | 2023-11-30 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
US12128095B2 (en) | 2018-08-24 | 2024-10-29 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2021208493B2 (en) | 2020-01-16 | 2023-03-30 | Janssen Pharmaceuticals, Inc. | FimH mutant, compositions therewith and use thereof |
IL303954A (en) | 2021-01-12 | 2023-08-01 | Janssen Pharmaceuticals Inc | Fimh mutants, compositions therewith and use thereof |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4436727A (en) | 1982-05-26 | 1984-03-13 | Ribi Immunochem Research, Inc. | Refined detoxified endotoxin product |
US4866034A (en) | 1982-05-26 | 1989-09-12 | Ribi Immunochem Research Inc. | Refined detoxified endotoxin |
US4877611A (en) | 1986-04-15 | 1989-10-31 | Ribi Immunochem Research Inc. | Vaccine containing tumor antigens and adjuvants |
GB2220211A (en) | 1988-06-29 | 1990-01-04 | Ribi Immunochem Research Inc | Modified lipopolysaccharides |
EP0399843A2 (en) | 1989-05-25 | 1990-11-28 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
US4987237A (en) | 1983-08-26 | 1991-01-22 | Ribi Immunochem Research, Inc. | Derivatives of monophosphoryl lipid A |
US5057540A (en) | 1987-05-29 | 1991-10-15 | Cambridge Biotech Corporation | Saponin adjuvant |
US5191072A (en) | 1989-09-20 | 1993-03-02 | Japan Tobacco Inc. | Lipid a monosaccharide analogues |
EP0671948A1 (en) | 1992-06-25 | 1995-09-20 | Smithkline Beecham Biolog | Vaccine composition containing adjuvants. |
WO1996033739A1 (en) | 1995-04-25 | 1996-10-31 | Smithkline Beecham Biologicals S.A. | Vaccines containing a saponin and a sterol |
US5593969A (en) | 1991-09-03 | 1997-01-14 | Igen Incorporated | Lipid-A analogs: monosaccharide and dissaccharide compounds for inhibiting binding of lipid A receptors to lipid A receptors |
EP0971739A2 (en) | 1997-04-01 | 2000-01-19 | Ribi Immunochem Research, Inc. | Aqueous immunologic adjuvant compositions of monophosphoryl lipid a |
EP1126876A2 (en) | 1998-10-16 | 2001-08-29 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Adjuvant systems and vaccines |
EP1194166A2 (en) | 1999-06-22 | 2002-04-10 | Corixa Corporation | Aqueous immunologic adjuvant compositions of monophosphoryl lipid a |
WO2002102974A2 (en) | 2000-12-08 | 2002-12-27 | Medimmune, Inc. | Mutant proteins, high potency inhibitory antibodies and fimch crystal structure |
US6676958B2 (en) | 2001-06-19 | 2004-01-13 | Advanced Bioadjuvants, Llc | Adjuvant composition for mucosal and injection delivered vaccines |
EP1385541A1 (en) | 2000-04-13 | 2004-02-04 | Corixa Corporation | Immunostimulant compositions comprising an aminoalkyl glucosaminide phosphate and qs-21 |
US6737063B2 (en) | 2000-07-07 | 2004-05-18 | Medimmune, Inc. | FimH adhesin proteins and methods of use |
US6759241B1 (en) | 1999-10-04 | 2004-07-06 | University Of Maryland Biotechnology Institute | Adjuvant comprising a lipopolysaccharide antagonist |
WO2006116423A2 (en) | 2005-04-26 | 2006-11-02 | Eisai Co., Ltd | Compositions and methods for cancer immunotherapy |
WO2007109812A2 (en) | 2006-03-23 | 2007-09-27 | Novartis Ag | Immunopotentiating compounds |
WO2007109813A1 (en) | 2006-03-23 | 2007-09-27 | Novartis Ag | Imidazoquinoxaline compounds as immunomodulators |
US20100310602A1 (en) | 2009-06-05 | 2010-12-09 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
US20110206758A1 (en) | 2005-12-13 | 2011-08-25 | Pierre Vandepapeliere | Vaccine Compositions Comprising a Saponin Adjuvant |
WO2013119856A1 (en) | 2012-02-07 | 2013-08-15 | Infectious Disease Research Institute | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
US20150056224A1 (en) | 2013-05-18 | 2015-02-26 | Aduro Biotech, Inc. | Compositions and methods for activating stimulator of interferon gene-dependent signalling |
US9017698B2 (en) | 2013-09-25 | 2015-04-28 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US20150216969A1 (en) * | 2013-09-25 | 2015-08-06 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9149521B2 (en) | 2013-09-25 | 2015-10-06 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9415101B2 (en) | 2013-09-25 | 2016-08-16 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9415097B2 (en) | 2013-09-25 | 2016-08-16 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9504743B2 (en) | 2013-09-25 | 2016-11-29 | Sequoia Sciences, Inc | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
WO2019175145A1 (en) | 2018-03-12 | 2019-09-19 | Janssen Vaccines & Prevention B.V. | Vaccines against urinary tract infections |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5370872A (en) | 1991-08-12 | 1994-12-06 | Swiss Serum And Vaccine Institute Berne | Escherichia coliO-polysaccharide-protein conjugate vaccine |
US6500434B1 (en) | 1998-04-23 | 2002-12-31 | Medimmune, Inc. | Chaperone and adhesin proteins; vaccines, diagnostics and method for treating infections |
US6858211B1 (en) | 1998-07-20 | 2005-02-22 | The United States Of America As Represented By The Department Of Health And Human Services | Vaccines against Escherichia coli O157 infection |
AU2001218049A1 (en) | 2000-08-18 | 2002-03-04 | Med Immune, Inc. | Method of administering fimh protein as a vaccine for urinary tract infections |
CN103396478B (en) | 2005-05-11 | 2016-09-28 | Eth苏黎世公司 | Recombinant N-glycosylated proteins from prokaryotic cell |
ES2684129T3 (en) | 2008-02-20 | 2018-10-01 | Glaxosmithkline Biologicals S.A. | Bioconjugates prepared from recombinant N-glycosylated proteins from prokaryotic cells |
AR100859A1 (en) | 2014-02-24 | 2016-11-09 | Glycovaxyn Ag | Polysaccharides and their uses |
EP3294761A4 (en) | 2015-05-13 | 2019-04-03 | University of Washington | Compositions and methods for treatment and prevention of uropathogenice. coli |
CA2991002C (en) | 2015-07-07 | 2023-11-28 | Janssen Vaccines & Prevention B.V. | Vaccine against rsv |
TWI715617B (en) | 2015-08-24 | 2021-01-11 | 比利時商葛蘭素史密斯克藍生物品公司 | Methods and compositions for immune protection against extra-intestinal pathogenic e. coli |
EP4077372A1 (en) | 2019-12-20 | 2022-10-26 | Vib Vzw | Nanobody exchange chromatography |
AU2021208493B2 (en) | 2020-01-16 | 2023-03-30 | Janssen Pharmaceuticals, Inc. | FimH mutant, compositions therewith and use thereof |
IL303954A (en) | 2021-01-12 | 2023-08-01 | Janssen Pharmaceuticals Inc | Fimh mutants, compositions therewith and use thereof |
-
2021
- 2021-01-14 AU AU2021208493A patent/AU2021208493B2/en active Active
- 2021-01-14 JP JP2022542383A patent/JP7485771B2/en active Active
- 2021-01-14 IL IL294445A patent/IL294445B2/en unknown
- 2021-01-14 KR KR1020227026828A patent/KR20220128372A/en unknown
- 2021-01-14 CN CN202180009530.0A patent/CN115038461A/en active Pending
- 2021-01-14 EP EP21700027.2A patent/EP4090363B1/en active Active
- 2021-01-14 LT LTEPPCT/EP2021/050707T patent/LT4090363T/en unknown
- 2021-01-14 DK DK21700027.2T patent/DK4090363T3/en active
- 2021-01-14 FI FIEP21700027.2T patent/FI4090363T3/en active
- 2021-01-14 CA CA3168108A patent/CA3168108A1/en active Pending
- 2021-01-14 MX MX2022008830A patent/MX2022008830A/en unknown
- 2021-01-14 BR BR112022013720A patent/BR112022013720A2/en unknown
- 2021-01-14 PT PT217000272T patent/PT4090363T/en unknown
- 2021-01-14 WO PCT/EP2021/050707 patent/WO2021144369A1/en active Application Filing
- 2021-01-15 TW TW110101729A patent/TW202140521A/en unknown
- 2021-01-15 US US17/150,025 patent/US11421003B2/en active Active
- 2021-01-15 AR ARP210100099A patent/AR121066A1/en unknown
-
2022
- 2022-07-16 SA SA522433319A patent/SA522433319B1/en unknown
- 2022-07-26 US US17/814,966 patent/US12012435B2/en active Active
-
2023
- 2023-12-26 JP JP2023218988A patent/JP2024045126A/en active Pending
-
2024
- 2024-05-06 US US18/655,708 patent/US20240294582A1/en active Pending
Patent Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4436727A (en) | 1982-05-26 | 1984-03-13 | Ribi Immunochem Research, Inc. | Refined detoxified endotoxin product |
US4866034A (en) | 1982-05-26 | 1989-09-12 | Ribi Immunochem Research Inc. | Refined detoxified endotoxin |
US4987237A (en) | 1983-08-26 | 1991-01-22 | Ribi Immunochem Research, Inc. | Derivatives of monophosphoryl lipid A |
US4877611A (en) | 1986-04-15 | 1989-10-31 | Ribi Immunochem Research Inc. | Vaccine containing tumor antigens and adjuvants |
US5057540A (en) | 1987-05-29 | 1991-10-15 | Cambridge Biotech Corporation | Saponin adjuvant |
GB2220211A (en) | 1988-06-29 | 1990-01-04 | Ribi Immunochem Research Inc | Modified lipopolysaccharides |
US4912094A (en) | 1988-06-29 | 1990-03-27 | Ribi Immunochem Research, Inc. | Modified lipopolysaccharides and process of preparation |
US4912094B1 (en) | 1988-06-29 | 1994-02-15 | Ribi Immunochem Research Inc. | Modified lipopolysaccharides and process of preparation |
EP0399843A2 (en) | 1989-05-25 | 1990-11-28 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
US6299884B1 (en) | 1989-05-25 | 2001-10-09 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
US6451325B1 (en) | 1989-05-25 | 2002-09-17 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
US5191072A (en) | 1989-09-20 | 1993-03-02 | Japan Tobacco Inc. | Lipid a monosaccharide analogues |
US5593969A (en) | 1991-09-03 | 1997-01-14 | Igen Incorporated | Lipid-A analogs: monosaccharide and dissaccharide compounds for inhibiting binding of lipid A receptors to lipid A receptors |
EP0761231A1 (en) | 1992-06-25 | 1997-03-12 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Vaccine composition containing adjuvants |
US5750110A (en) | 1992-06-25 | 1998-05-12 | Smithkline Beecham Biologicals, S.A | Vaccine composition containing adjuvants |
EP0671948A1 (en) | 1992-06-25 | 1995-09-20 | Smithkline Beecham Biolog | Vaccine composition containing adjuvants. |
WO1996033739A1 (en) | 1995-04-25 | 1996-10-31 | Smithkline Beecham Biologicals S.A. | Vaccines containing a saponin and a sterol |
US6491919B2 (en) | 1997-04-01 | 2002-12-10 | Corixa Corporation | Aqueous immunologic adjuvant compostions of monophosphoryl lipid A |
EP0971739A2 (en) | 1997-04-01 | 2000-01-19 | Ribi Immunochem Research, Inc. | Aqueous immunologic adjuvant compositions of monophosphoryl lipid a |
EP1126876A2 (en) | 1998-10-16 | 2001-08-29 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Adjuvant systems and vaccines |
US7357936B1 (en) | 1998-10-16 | 2008-04-15 | Smithkline Beecham Biologicals, Sa | Adjuvant systems and vaccines |
EP1194166A2 (en) | 1999-06-22 | 2002-04-10 | Corixa Corporation | Aqueous immunologic adjuvant compositions of monophosphoryl lipid a |
US6759241B1 (en) | 1999-10-04 | 2004-07-06 | University Of Maryland Biotechnology Institute | Adjuvant comprising a lipopolysaccharide antagonist |
EP1385541A1 (en) | 2000-04-13 | 2004-02-04 | Corixa Corporation | Immunostimulant compositions comprising an aminoalkyl glucosaminide phosphate and qs-21 |
US6737063B2 (en) | 2000-07-07 | 2004-05-18 | Medimmune, Inc. | FimH adhesin proteins and methods of use |
WO2002102974A2 (en) | 2000-12-08 | 2002-12-27 | Medimmune, Inc. | Mutant proteins, high potency inhibitory antibodies and fimch crystal structure |
US6676958B2 (en) | 2001-06-19 | 2004-01-13 | Advanced Bioadjuvants, Llc | Adjuvant composition for mucosal and injection delivered vaccines |
WO2006116423A2 (en) | 2005-04-26 | 2006-11-02 | Eisai Co., Ltd | Compositions and methods for cancer immunotherapy |
US20110206758A1 (en) | 2005-12-13 | 2011-08-25 | Pierre Vandepapeliere | Vaccine Compositions Comprising a Saponin Adjuvant |
WO2007109812A2 (en) | 2006-03-23 | 2007-09-27 | Novartis Ag | Immunopotentiating compounds |
WO2007109813A1 (en) | 2006-03-23 | 2007-09-27 | Novartis Ag | Imidazoquinoxaline compounds as immunomodulators |
US20100310602A1 (en) | 2009-06-05 | 2010-12-09 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
US8722064B2 (en) | 2009-06-05 | 2014-05-13 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
WO2013119856A1 (en) | 2012-02-07 | 2013-08-15 | Infectious Disease Research Institute | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
US20150056224A1 (en) | 2013-05-18 | 2015-02-26 | Aduro Biotech, Inc. | Compositions and methods for activating stimulator of interferon gene-dependent signalling |
US9017698B2 (en) | 2013-09-25 | 2015-04-28 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US20150216969A1 (en) * | 2013-09-25 | 2015-08-06 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9149521B2 (en) | 2013-09-25 | 2015-10-06 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9149522B2 (en) | 2013-09-25 | 2015-10-06 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9415101B2 (en) | 2013-09-25 | 2016-08-16 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9415097B2 (en) | 2013-09-25 | 2016-08-16 | Sequoia Sciences, Inc. | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
US9504743B2 (en) | 2013-09-25 | 2016-11-29 | Sequoia Sciences, Inc | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
WO2019175145A1 (en) | 2018-03-12 | 2019-09-19 | Janssen Vaccines & Prevention B.V. | Vaccines against urinary tract infections |
Non-Patent Citations (28)
Title |
---|
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10 |
ALTSCHUL ET AL., NUCLEIC ACIDS RES, vol. 25, no. 17, 1997, pages 3389 - 3402 |
BIOWORLD TODAY, 15 November 1998 (1998-11-15) |
BRUMBAUGH ARMOBLEY HLT, EXPERT REV VACCINES, vol. 11, 2012, pages 663 - 676 |
CARTER D ET AL., CLIN TRANSL IMMUNOLOGY, vol. 5, 2016, pages e108 |
GREGG KA ET AL., MBIO, vol. 8, 2017, pages eDD492 - 17 |
HENIKOFFHENIKOFF, PNAS, vol. 89, 1992, pages 915 - 919 |
IRETON GCSG REED, EXPERT REV VACCINES, vol. 12, 2013, pages 793 - 807 |
JOHNSON ET AL., J MED CHEM, vol. 42, 1999, pages 4640 - 4649 |
KALAS ET AL., SCI ADV, vol. 10, no. 2, 2017 |
KENSIL ET AL.: "Vaccine Design: The Subunit and Adjuvant Approach", 1995, PLENUM PRESS, pages: 495 - 524 |
KISIELA, PROC NATL ACAD SCI, vol. 19, no. 47, 2013, pages 19089 - 94 |
LANGERMANN S ET AL., J INFECT DIS, vol. 181, 2000, pages 774 - 778 |
LANGERMANN S ET AL., SCIENCE, vol. 276, 1997, pages 607 - 611 |
MASSON JD ET AL., EXPERT REV VACCINES, vol. 16, 2017, pages 289 - 299 |
O'BRIEN VP ET AL., NAT MICROBIOL, vol. 2, 2016, pages 16196 |
PEARL MAGALA ET AL: "RMSD analysis of structures of the bacterial protein FimH identifies five conformations of its lectin domain", PROTEINS: STRUCTURE, FUNCTION, AND BIOINFORMATICS, vol. 88, no. 4, 17 October 2019 (2019-10-17), US, pages 593 - 603, XP055706802, ISSN: 0887-3585, DOI: 10.1002/prot.25840 * |
PETROVSKY NPD COOPER, VACCINE, vol. 33, 2015, pages 5920 - 5926 |
RABBANI S ET AL., J BIOL. CHEM., vol. 293, no. 5, 2018, pages 1835 - 1849 |
RAETZ CRC WHITFIELD, ANNU REV BIOCHEM, vol. 71, 2002, pages 635 - 700 |
RAETZ, J. BACTERIOLOGY, vol. 175, 1993, pages 5745 - 5753 |
REED G ET AL., NATURE MED, vol. 19, 2013, pages 1597 - 1608 |
REED SG ET AL., CURR OPIN IMMUNOL, vol. 41, 2016, pages 85 - 90 |
REEDALVING CR ET AL., CURR OPIN IMMUNOL, vol. 24, 2012, pages 310 - 315 |
SCHEMBRI M A ET AL: "Molecular characterization of the escherichia coli FimH adhesin", JOURNAL OF INFECTIOUS DISEASES. JID, UNIVERSITY OF CHICAGO PRESS, US, vol. 183, no. SUPPL. 1, 1 January 2001 (2001-01-01), pages S28 - S31, XP002961102, ISSN: 0022-1899, DOI: 10.1086/318847 * |
STOUTE ET AL., N. ENGL. J. MED., vol. 336, 1997, pages 86 - 91 |
TCHESNOKOCA, INFECT IMMUN, vol. 79, no. 10, 2011, pages 3895 - 904 |
ZHU DW TUO, NAT PROD CHEM RES, vol. 3, 2016, pages e113 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12128095B2 (en) | 2018-08-24 | 2024-10-29 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
WO2022137078A1 (en) * | 2020-12-23 | 2022-06-30 | Pfizer Inc. | E. coli fimh mutants and uses thereof |
WO2023111907A1 (en) * | 2021-12-17 | 2023-06-22 | Pfizer Inc. | Polynucleotide compositions and uses thereof |
WO2023227608A1 (en) | 2022-05-25 | 2023-11-30 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
Also Published As
Publication number | Publication date |
---|---|
IL294445B2 (en) | 2023-10-01 |
US20240294582A1 (en) | 2024-09-05 |
AR121066A1 (en) | 2022-04-13 |
JP2024045126A (en) | 2024-04-02 |
US20230049056A1 (en) | 2023-02-16 |
IL294445B1 (en) | 2023-06-01 |
EP4090363A1 (en) | 2022-11-23 |
MX2022008830A (en) | 2022-10-07 |
SA522433319B1 (en) | 2024-07-10 |
US20210221856A1 (en) | 2021-07-22 |
BR112022013720A2 (en) | 2022-10-11 |
TW202140521A (en) | 2021-11-01 |
CN115038461A (en) | 2022-09-09 |
FI4090363T3 (en) | 2024-09-25 |
JP2023500749A (en) | 2023-01-10 |
EP4090363B1 (en) | 2024-09-04 |
DK4090363T3 (en) | 2024-09-30 |
KR20220128372A (en) | 2022-09-20 |
JP7485771B2 (en) | 2024-05-16 |
AU2021208493A1 (en) | 2022-06-30 |
IL294445A (en) | 2022-09-01 |
LT4090363T (en) | 2024-09-25 |
US12012435B2 (en) | 2024-06-18 |
US11421003B2 (en) | 2022-08-23 |
PT4090363T (en) | 2024-09-19 |
AU2021208493B2 (en) | 2023-03-30 |
CA3168108A1 (en) | 2021-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021208493B2 (en) | FimH mutant, compositions therewith and use thereof | |
US20190275134A1 (en) | Vaccines against urinary tract infections | |
US20230406890A1 (en) | Fimh mutants, compositions therewith and use thereof | |
AU2021342797B2 (en) | Multivalent vaccine compositions and uses thereof | |
EA047213B1 (en) | MUTANT FORM OF FIMH, COMPOSITIONS BASED ON ITS AND THEIR APPLICATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21700027 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021208493 Country of ref document: AU Date of ref document: 20210114 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2022542383 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3168108 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022013720 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021700027 Country of ref document: EP Effective date: 20220816 |
|
ENP | Entry into the national phase |
Ref document number: 112022013720 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220711 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 522433319 Country of ref document: SA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 522433319 Country of ref document: SA |