Nothing Special   »   [go: up one dir, main page]

WO2021039764A1 - 積層構造体、及び積層構造体の製造方法 - Google Patents

積層構造体、及び積層構造体の製造方法 Download PDF

Info

Publication number
WO2021039764A1
WO2021039764A1 PCT/JP2020/031961 JP2020031961W WO2021039764A1 WO 2021039764 A1 WO2021039764 A1 WO 2021039764A1 JP 2020031961 W JP2020031961 W JP 2020031961W WO 2021039764 A1 WO2021039764 A1 WO 2021039764A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated structure
photoelectric conversion
conversion device
conductive
Prior art date
Application number
PCT/JP2020/031961
Other languages
English (en)
French (fr)
Inventor
寛 岩田
Original Assignee
京浜ラムテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京浜ラムテック株式会社 filed Critical 京浜ラムテック株式会社
Priority to US17/638,625 priority Critical patent/US20220302325A1/en
Priority to EP20858182.7A priority patent/EP4023431A4/en
Priority to KR1020227009949A priority patent/KR102689097B1/ko
Priority to JP2021542916A priority patent/JP7437053B2/ja
Priority to CN202080060403.9A priority patent/CN114342090A/zh
Publication of WO2021039764A1 publication Critical patent/WO2021039764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • H01L31/02167
    • H01L31/0224
    • H01L31/022433
    • H01L31/022466
    • H01L31/0747
    • H01L31/1868
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminated structure and a method for manufacturing the laminated structure.
  • the laminated structure is constructed by stacking a plurality of layers so as to be adjacent to each other.
  • each layer has a function such as conductive, semi-conductive, or insulating.
  • the functions of the laminated structure as a whole are realized.
  • the diffusible diffusing component of one layer diffuses to another layer adjacent to the one layer, and as a result, the performance of the laminated structure as a whole deteriorates. There was a case that the problem occurred.
  • a heterojunction type photoelectric conversion device As an example of the laminated structure, a heterojunction type photoelectric conversion device can be mentioned (see, for example, Patent Document 1).
  • the heterojunction photoelectric conversion device described in Patent Document 1 has a passivation layer made of hydrogen-terminated amorphous silicon and a transparent conductive layer made of ITO (indium tin oxide), which is provided adjacent to the passivation layer.
  • ITO indium tin oxide
  • the present invention provides a laminated structure capable of preventing or suppressing the diffusion of the diffusion component from a layer containing the diffusion component to a layer adjacent to the layer, and a method for producing the laminated structure. is there.
  • the present invention adopts the following configuration.
  • the laminated structure of the present invention A conductive layer that has conductivity and contains a diffusing component that can diffuse to adjacent layers, It is provided adjacent to the conductive layer, contains at least one metal or metal oxide so as to have conductivity, and has the number of atoms relative to the number of atoms of the main metal in the at least one metal or metal oxide. It has a conductive diffusion prevention layer containing a rare gas having a ratio of 0.40 or more.
  • the conductive diffusion prevention layer contains a large amount of rare gas.
  • Rare gases are chemically stable.
  • a large amount of rare gas is stably present as a monatomic molecule in the conductive diffusion prevention layer.
  • the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can be prevented or suppressed.
  • the diffusion of diffusion components in the manufacturing process of a laminated structure can be prevented or suppressed.
  • deterioration of the performance of the laminated structure due to the diffusion of the diffusion component can be prevented or suppressed. Since a chemically stable rare gas is used, the influence on the performance of the laminated structure can be prevented or suppressed.
  • the main metal refers to a metal (element) having the largest number of atoms among at least one metal or metal oxide constituting the conductive diffusion prevention layer.
  • the ratio of the number of atoms of the rare gas to the number of atoms of the main metal in the conductive diffusion prevention layer is 0.40 or more.
  • the ratio is preferably 0.50 or more, more preferably 0.60 or more, and further preferably 0.70 or more.
  • the ratio is preferably 1.0 or less, and more preferably 0.82 or less.
  • Rare gas can be introduced while suppressing or preventing damage to the conductive diffusion prevention layer and the layer containing the diffusion component that is the underlying layer thereof.
  • the conductive diffusion prevention layer may contain a diffusion component of the same type as the diffusion component contained in the conductive layer at the time of manufacture.
  • the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can also be prevented or suppressed by adjusting the content of the diffusion component in the conductive diffusion prevention layer at the time of production.
  • the introduction of large amounts of rare gas according to the present invention may be applied separately or in combination with the adjustment of the diffusion component content in the conductive diffusion prevention layer.
  • the introduction of a large amount of rare gas into the conductive diffusion prevention layer is applied to cause the diffusion component from the conductive layer to the conductive diffusion prevention layer. Diffusion can be prevented or suppressed more effectively.
  • diffusion of diffusing components can be prevented or suppressed by a rare gas that is chemically stable and has low reactivity. Therefore, even when it is difficult to adjust the content of the diffusion component in the conductive diffusion prevention layer, the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can be prevented or suppressed by the present invention.
  • the laminated structure is A conductive layer that is conductive and contains a component that can diffuse into adjacent layers. It is provided adjacent to the conductive layer, contains at least one metal or metal oxide so as to have conductivity, and has a conductive diffusion prevention layer containing a rare gas.
  • the manufacturing method is The process of preparing the structure on which the conductive layer is formed and A sputtering cathode having a tubular shape having a pair of long sides facing each other in cross-sectional shape and having a sputtering target having an erosion surface facing inward containing at least one kind of metal or metal oxide was used.
  • the structure is arranged at a distance from the sputtering target in the axial direction of the sputtering target, and discharge is performed so as to generate plasma orbiting along the inner surface of the sputtering target, and the sputtering gas containing the rare gas is generated.
  • the conductive diffusion prevention layer is formed on the conductive layer of the structure so as to be adjacent to the conductive layer. Has a step to do.
  • the conductive diffusion prevention layer is formed by the above-mentioned sputtering cathode.
  • the conductive diffusion prevention layer formed by the sputtering cathode contains a large amount of rare gas.
  • the conductive diffusion prevention layer contains, for example, a rare gas having an atomic number ratio of 0.40 or more to the atomic number of the main metal in at least one metal or metal oxide. be able to.
  • the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can be more effectively prevented or suppressed.
  • the diffusion of diffusion components in the manufacturing process of a laminated structure can be more effectively prevented or suppressed.
  • the pair of long sides may be configured by a rotary target.
  • the rotary target has a cylindrical shape and is rotatably provided around its rotation axis by a predetermined rotation mechanism.
  • the rotary target is a cylindrical rotary sputtering target.
  • As the rotation mechanism for example, a conventionally known rotation mechanism can be adopted.
  • the thickness of the conductive layer is not particularly limited, and may be, for example, 100 nm or less, or 50 nm or less.
  • the thickness of the conductive layer is not particularly limited, and may be, for example, 1 nm or more, or 5 nm or more.
  • the thickness of the conductive diffusion prevention layer is not particularly limited, and may be, for example, 5 to 100 nm or less.
  • the rare gas is at least one selected from the group consisting of helium, neon, argon, xenon and krypton. Thereby, the diffusion of the diffusion component to the conductive diffusion prevention layer can be more effectively prevented or suppressed.
  • the rare gas is at least one selected from the group consisting of helium, neon, and argon. In particular, argon is preferable as the rare gas.
  • the diffusion component is an element different from the rare gas contained in the sputtering gas.
  • the diffusion component is an element having an atomic weight smaller than that of the rare gas.
  • the element having an atomic weight smaller than that of the rare gas is, for example, at least one element selected from the group consisting of hydrogen, lithium, sodium, boron, selenium, phosphorus, magnesium, and beryllium.
  • the element having an atomic weight smaller than that of the rare gas is at least one element selected from the group consisting of, for example, hydrogen, lithium, sodium, boron, phosphorus, magnesium and beryllium.
  • the diffusion component is a non-metallic element having an atomic weight smaller than that of the rare gas.
  • the non-metal element may or may not contain a rare gas.
  • the non-metal element is, for example, at least one element selected from the group consisting of hydrogen, boron, carbon, nitrogen, phosphorus, oxygen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
  • the diffusion component is an alkali metal element or an alkaline earth metal element having an atomic weight smaller than that of the rare gas.
  • the alkali metal element is, for example, at least one element of lithium and sodium.
  • the alkaline earth metal element is, for example, at least one element of magnesium and beryllium.
  • the conductive diffusion prevention layer can more effectively prevent or suppress the diffusion of such diffusion components.
  • hydrogen is preferable as the diffusion component.
  • the laminated structure is a photoelectric conversion device.
  • the present invention can be suitably applied to a photoelectric conversion device.
  • the deterioration of the performance of the photoelectric conversion device can be effectively prevented or suppressed.
  • the photoelectric conversion device is configured to convert light energy into electric energy or convert electric energy into light energy by, for example, the photoelectric effect.
  • the photoelectric effect referred to here is, for example, the internal photoelectric effect.
  • the photoelectric effect referred to here may include, for example, an external photoelectric effect in place of or in addition to the internal photoelectric effect.
  • the photoelectric effect referred to here includes, for example, a photovoltaic effect.
  • the photoelectric conversion device is not particularly limited, and examples thereof include a photovoltaic device and an electroluminescence device.
  • the photoelectric conversion device has a photoelectric conversion layer for realizing photoelectric conversion.
  • the photoelectric conversion layer may be composed of a single layer or may be composed of a plurality of layers.
  • the conductive diffusion prevention layer constitutes, for example, an electrode (for example, a transparent conductive layer) of a photoelectric conversion device.
  • the conductive diffusion prevention layer is not included in the photoelectric conversion layer, for example.
  • the conductive layer is adjacent to the conductive diffusion prevention layer.
  • the conductive layer does not form, for example, an electrode of a photoelectric conversion device.
  • the conductive layer may be included in the photoelectric conversion layer, for example, or may be provided between the photoelectric conversion layer and the electrode without being included in the photoelectric conversion layer.
  • the photoelectric conversion device as a photovoltaic device is not particularly limited, and includes, for example, a silicon-based photoelectric conversion device, a compound-based photoelectric conversion device, and an organic-based photovoltaic conversion device.
  • the silicon-based photoelectric conversion device include a single crystal silicon photoelectric conversion device, a polycrystalline silicon photoelectric conversion device, and a thin film-based silicon photoelectric conversion device.
  • the compound-based photoelectric conversion device include a CIS-based photoelectric conversion device, a CdTe-based photoelectric conversion device, and a III-V group photoelectric conversion device.
  • the organic photoelectric conversion device include a dye-sensitized photoelectric conversion device and an organic thin film type photoelectric conversion device.
  • examples of the photoelectric conversion device include a heterojunction type photoelectric conversion device and a perovskite type photoelectric conversion device.
  • the electroluminescence device include an organic electroluminescence device and an inorganic electroluminescence device.
  • the photoelectric conversion device is preferably a heterojunction type photoelectric conversion device, a perovskite type photoelectric conversion device, an organic photoelectric conversion device, or an organic electroluminescence type light emitting device.
  • the present invention can be suitably applied to such a photoelectric conversion device. Degradation of the performance of the photoelectric conversion device can be prevented or suppressed more effectively.
  • each layer is made of a conductive organic substance.
  • the conductive organic substance includes, for example, an organic compound containing a metal dopant and an organometallic compound.
  • the conductive layer may be, for example, a passivation layer containing hydrogen as a diffusion component, or a layer made of an organic substance.
  • the conductive diffusion prevention layer can more effectively prevent or suppress the diffusion of the diffusion component from such a conductive layer. As a result, deterioration of the performance of the photoelectric conversion device can be more effectively prevented or suppressed.
  • Examples of the passivation layer containing hydrogen as a diffusion component include a—Si: H layer, a—SiC: H layer, a—SiO: H layer, a—SiF: H layer, and a—SiN: H layer. .. These layers will be described later.
  • the conductive layer includes, for example, a dangling bond terminated by a diffusion component.
  • the conductive diffusion prevention layer may be a transparent conductive layer having transparency and conductivity, and is a layer containing at least one element selected from the group consisting of indium, zinc and tin as the main metal. There may be.
  • Specific examples of the conductive diffusion prevention layer include, for example, a layer made of at least one material selected from the group consisting of the following materials, a layer containing at least one material as a main component, or substantially A layer made of at least one of the materials can be mentioned.
  • the main component means that the content (mass%) of the at least one compound is the largest. Further, substantially, it means that an additive component such as a dopant material is allowed. The dopant material will be described later.
  • the present invention can be suitably applied to such a conductive diffusion prevention layer.
  • the laminated structure of the present invention it is possible to prevent or suppress the diffusion of the diffusion component from the layer containing the diffusion component to the layer adjacent to the layer. Further, according to the method for producing a laminated structure of the present invention, while reducing damage to the conductive diffusion prevention layer and the layer containing the diffusion component which is the underlying layer thereof, the layer containing the diffusion component is adjacent to the layer. It is possible to prevent or suppress the diffusion of the diffusion component into the layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to an embodiment.
  • 2 (a) to 2 (d) are cross-sectional views showing an example of a procedure in the method for manufacturing a photoelectric conversion device according to an embodiment.
  • 3 (a) to 3 (b) are sectional views showing an example of a procedure in the method for manufacturing a photoelectric conversion device according to an embodiment.
  • FIG. 4 is a vertical sectional view showing a sputtering apparatus used in the method for manufacturing a photoelectric conversion apparatus according to an embodiment.
  • FIG. 5 is a plan view showing a sputtering cathode in the sputtering apparatus shown in FIG. FIG.
  • FIG. 6 is a vertical cross-sectional view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
  • FIG. 7 is a plan view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
  • FIG. 8 is a diagram showing an example of the detection results of the rare gas and the main metal by EPMA.
  • FIG. 9A is a diagram showing an open circuit voltage VOC of the photoelectric conversion device according to Example 1 and Comparative Example 1
  • FIG. 9B is a carrier in the photoelectric conversion device according to Example 1 and Comparative Example 1. It is a figure which shows the lifetime.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to another embodiment.
  • Each of FIGS. 11A to 11C is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to another embodiment.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to an embodiment.
  • the photoelectric conversion device 1 is provided so as to be adjacent to the first conductive type single crystal semiconductor substrate 11, the passivation layer 12 provided adjacent to the first conductive type single crystal semiconductor substrate 11, and the passivation layer 12. It has a first transparent conductive layer 14.
  • the passivation layer 12 includes a substantially intrinsic i-type amorphous hydrogen-containing semiconductor layer 121 provided adjacent to the first conductive single crystal semiconductor substrate 11 and an i-type amorphous hydrogen-containing semiconductor layer 121. It has a second conductive amorphous hydrogen-containing semiconductor layer 122 provided adjacent to the semiconductor layer 122.
  • a comb-shaped first collecting electrode 15 is formed on the first transparent conductive layer 14.
  • the photoelectric conversion device 1 is adjacent to the passivation layer 16 provided so as to be adjacent to the surface opposite to the surface provided with the passivation layer 12 in the first conductive type single crystal semiconductor substrate 11 and to be adjacent to the passivation layer 16. It has a second transparent conductive layer 17 provided as described above.
  • the passivation layer 16 is provided so as to be adjacent to the i-type amorphous semiconductor layer 161 provided so as to be adjacent to the first conductive type single crystal semiconductor substrate 11 and the i-type amorphous semiconductor layer 161. It has a conductive amorphous semiconductor layer 162.
  • the passivation layers 12 and 16 can suppress or prevent carrier recombination.
  • a second collecting electrode 18 is formed on the second transparent conductive layer 17.
  • the first conductive type single crystal semiconductor substrate 11 is, for example, an n-type single crystal silicon (hereinafter referred to as c—Si) substrate. Further, the surface of the n-type c—Si substrate may be provided with an uneven structure that reduces the reflection of light incident on the photoelectric conversion device 1 and improves the light confinement effect.
  • c—Si n-type single crystal silicon
  • the passivation layer 12 includes an i-type amorphous hydrogen-containing semiconductor layer 121 and a second conductive type amorphous hydrogen-containing semiconductor layer 122.
  • the passivation layer 12 has conductivity.
  • the passivation layer 12 contains, for example, silicon having a hydrogen-terminated dangling bond.
  • the passivation layer 12 is an example of a “conductive layer”.
  • the i-type amorphous hydrogen-containing semiconductor layer 121 is, for example, a—Si: H layer, a—SiC: H layer, a—SiO: H layer, a—SiF: H layer, or a—SiN: H layer. is there.
  • the i-type amorphous hydrogen-containing semiconductor layer 121 is a semiconductor material having a single optical bandgap, or a semiconductor material in which the optical bandgap is continuously widened from the first conductive type single crystal semiconductor substrate 11 side. Alternatively, it may be composed of a plurality of semiconductor materials laminated from the side of the first conductive single crystal semiconductor substrate 11 so that the optical bandgap is gradually widened.
  • a—Si The H layer refers to an i-type amorphous hydrogen-containing silicon layer.
  • a-SiC H layer refers to an i-type amorphous hydrogen-containing silicon carbide layer.
  • a-SiO H layer refers to an i-type amorphous hydrogen-containing silicon oxide layer.
  • a-SiF H layer refers to an i-type amorphous hydrogen-containing silicon fluoride layer.
  • a-SiN H layer refers to an i-type amorphous hydrogen-containing silicon nitride layer.
  • the thickness of the i-type amorphous hydrogen-containing semiconductor layer 121 is, for example, 15 nm or less.
  • the i-type, first conductive type, and second conductive type amorphous silicon layers used in this embodiment are not only completely amorphous layers but also partially crystallized in layers such as microcrystalline silicon. Layers with a structure are also included.
  • the second conductive amorphous hydrogen-containing semiconductor layer 122 is, for example, p-type a-Si: H layer, p-type a-SiC: H layer, p-type a-SiO: H layer, p-type a-SiF: H. A layer or a p-type a-SiN: H layer.
  • the second conductive amorphous hydrogen-containing semiconductor layer 122 may be made of a semiconductor material having a single optical bandgap, as in the case of the i-type amorphous hydrogen-containing semiconductor layer 121. However, the optical bandgap may be widened continuously or stepwise from the i-type amorphous hydrogen-containing semiconductor layer 121 side.
  • the thickness of the second conductive amorphous hydrogen-containing semiconductor layer 122 is, for example, 20 nm or less.
  • the first transparent conductive layer 14 is an example of a “conductive diffusion prevention layer”.
  • the first transparent conductive layer 14 contains at least one metal or metal oxide.
  • the first transparent conductive layer 14 is made of, for example, at least one kind of metal, a metal oxide, or a combination thereof.
  • the first transparent conductive layer 14 is made of indium tin oxide (ITO).
  • ITO indium tin oxide
  • Indium tin oxide is an inorganic mixture of indium oxide (In 2 O 3 ) and tin oxide (SnO 2).
  • the main metal of indium tin oxide is indium.
  • the main metal refers to the metal having the largest number of atoms among the metals or metal oxides constituting the conductive diffusion prevention layer.
  • the first transparent conductive layer 14 is not limited to the above example.
  • the first transparent conductive layer 14 may be made of indium oxide. In this case, the main metal is indium.
  • the first transparent conductive layer 14 may be made of zinc oxide (ZnO). In this case, the main metal is zinc.
  • the first transparent conductive layer 14 may be made of tin oxide. In this case, the main metal is tin. Further, even if at least one or more elements selected from well-known dopant materials such as aluminum (Al), gallium (Ga), boron (B), and nitrogen (N) are added to the conductive diffusion prevention layer. Good.
  • the first transparent electrode layer 14 may contain a diffusion component of the same type as the diffusion component contained in the passivation layer 12 at the time of manufacture.
  • the first transparent conductive layer 14 contains a rare gas in which the ratio of the number of atoms to the number of atoms of the main metal in the metal or metal oxide constituting the first transparent conductive layer 14 is 0.40 or more.
  • the rare gas is at least one selected from the group consisting of helium, neon, argon, xenon and krypton. In this embodiment, the rare gas is argon.
  • the ratio of the number of atoms of the rare gas to the number of atoms of the main metal is preferably 0.50 or more, more preferably 0.60 or more, and further preferably 0.70 or more.
  • the ratio of the number of atoms of the rare gas to the number of atoms of the main metal is preferably 1.0 or less, and more preferably 0.82 or less.
  • the thickness of the first transparent conductive layer 14 is, for example, 5 to 100 nm.
  • the number of atoms can be measured by, for example, an electron probe microanalyzer (EPMA).
  • the comb-shaped first collecting electrode 15 includes, for example, silver (Ag), Al (aluminum), gold (Au), copper (Cu), nickel (Ni), rhodium (Rh), platinum (Pt), and palladium (Pr). ), Chromium (Cr), Titanium (Ti), Molybdenum (Mo) and the like, and it is composed of at least one kind of element or alloy.
  • the passivation layer 16 includes an i-type amorphous semiconductor layer 161 and a first conductive type amorphous semiconductor layer 162.
  • the passivation layer 16 has conductivity.
  • the passivation layer 16 contains, for example, silicon having a hydrogen-terminated dangling bond.
  • the passivation layer 16 is an example of a “conductive layer”.
  • the i-type amorphous semiconductor layer 161 is, for example, i-type a-Si: H layer, i-type a-SiC: H layer, i-type a-SiO: H layer, i-type a-SiF: H layer, or i.
  • Type a-SiN H layer.
  • the thickness of the i-type amorphous semiconductor layer 161 is, for example, 15 nm or less.
  • the first conductive amorphous semiconductor layer 162 includes, for example, an n-type a—Si: H layer, an n-type a—SiC: H layer, an n-type a—SiO: H layer, and an n-type a—SiF: H layer. Alternatively, it is an n-type a—SiN: H layer.
  • the thickness of the first conductive amorphous semiconductor layer 162 is, for example, 20 nm or less.
  • the i-type amorphous semiconductor layer 161 and the first conductive type amorphous semiconductor layer 162 are semiconductor materials having a single optical bandgap, as in the case of the i-type amorphous hydrogen-containing semiconductor layer 121. It may be configured such that the optical bandgap is continuously or stepwise widened toward the first conductive type single crystal semiconductor substrate 11 side.
  • the second transparent conductive layer 17 is formed on the back surface of the first conductive single crystal semiconductor substrate 11 opposite to the light receiving surface.
  • the second transparent conductive layer 17 is an example of a “conductive diffusion prevention layer”.
  • the second transparent conductive layer 17 can be formed in the same manner as the first transparent conductive layer 14.
  • the second transparent conductive layer 17 may have a surface texture in which irregularities are formed on the surface. This surface texture scatters the incident light and can improve the light utilization efficiency in the first conductive type single crystal semiconductor substrate 11 which is the main power generation layer.
  • the first transparent electrode layer 17 may contain a diffusion component of the same type as the diffusion component contained in the passivation layer 16 at the time of manufacture.
  • the second collecting electrode 18 is made of at least one kind of element or alloy selected from Ag, Al, Au, Cu, Ni, Rh, Pt, Pr, Cr, Ti, Mo and the like. Although the second collecting electrode 18 is formed in a comb shape in FIG. 1, it may be formed so as to cover the entire surface on the second transparent conductive layer 17.
  • the first conductive type is n-type and the second conductive type is p-type is shown.
  • the first conductive type is p-type and the second conductive type is second conductive.
  • the type may be n type.
  • the first conductive type is defined as n type
  • the second conductive type is defined as p type.
  • the photoelectric conversion device 1 when light is incident from the first surface side, carriers are generated in the first conductive type (n type) single crystal semiconductor substrate 11.
  • the electrons and holes, which are carriers, are separated by an internal electric field formed by the first conductive type (n type) single crystal semiconductor substrate 11 and the second conductive type (p type) amorphous hydrogen-containing semiconductor layer 122. ..
  • the electrons move toward the first conductive type (n type) single crystal semiconductor substrate 11 and reach the second transparent conductive layer 17 through the passivation layer 16.
  • the holes move toward the second conductive type (p type) amorphous hydrogen-containing semiconductor layer 122 and reach the first transparent conductive layer 14.
  • the first collecting electrode 15 becomes a positive electrode
  • the second collecting electrode 18 becomes a negative electrode
  • electric power is taken out to the outside.
  • FIGS. 2 to 3 are cross-sectional views schematically showing an example of a procedure of a method for manufacturing a photoelectric conversion device according to an embodiment.
  • the first conductive type single crystal semiconductor substrate 11 (n-type c—Si substrate 11a) is prepared.
  • Pyramid-shaped uneven structures having a height of several ⁇ m to several tens of ⁇ m may be formed on both surfaces of the n-type c—Si substrate 11a.
  • the pyramid-shaped uneven structure can be formed, for example, by anisotropic etching using an alkaline solution such as sodium hydroxide (NaOH) or potassium hydroxide (KOH).
  • n-type c—Si substrate 11a is moved into the first vacuum chamber.
  • Vacuum heating is performed at a substrate temperature of 200 ° C. or lower to remove moisture adhering to the substrate surface.
  • heat treatment is performed at a substrate temperature of 170 ° C.
  • hydrogen (H 2 ) gas is introduced into the first vacuum chamber.
  • One side of the n-type c—Si substrate 11a is cleaned by plasma discharge.
  • an i-type a-Si: H layer 121a as an i-type amorphous hydrogen-containing semiconductor layer 121 is formed on one side of the n-type c—Si substrate 11a.
  • the i-type a-Si: H layer 121a is plasma chemical vapor deposition, for example, under the condition that silane (SiH 4 ) gas and H 2 gas are introduced into the first vacuum chamber and the substrate temperature is maintained at 170 ° C. It is formed by a vapor phase growth (CVD: Chemical Vapor Deposition) method.
  • a p-type a-Si: H layer 122a as the second conductive amorphous hydrogen-containing semiconductor layer 122 is formed on the i-type a-Si: H layer 121a.
  • the n-type c—Si substrate 11a is moved into the second vacuum chamber.
  • the p-type a-Si: H layer 122a is formed by the plasma CVD method under the condition that SiH 4 gas, H 2 gas, and diborane (B 2 H 6) gas are introduced into the second vacuum chamber. ..
  • the substrate temperature is, for example, 170 ° C. or lower.
  • the flow rate of the B 2 H 6 gas is, for example, about 1% with respect to the flow rate of the SiH 4 gas.
  • the passivation layer 12 is formed by the i-type a-Si: H layer 121a and the p-type a-Si: H layer 122a.
  • the n-type c—Si substrate 11a is moved to the third vacuum chamber. Introduce H 2 gas into the third vacuum chamber.
  • the substrate temperature is set to 170 ° C., and the second surface of the n-type c—Si substrate 11a is cleaned by plasma discharge.
  • an i-type a-Si: H layer 161a as an i-type amorphous semiconductor layer 161 is formed on the second surface of the n-type c—Si substrate 11a.
  • the i-type a-Si: H layer 161a is the i-type a-Si: H under the condition that SiH 4 gas and H 2 gas are introduced into the third vacuum chamber and the substrate temperature is maintained at 170 ° C. Similar to layer 121a, it is formed by the plasma CVD method.
  • an n-type a-Si: H layer 162a as the first conductive amorphous semiconductor layer 162 is formed on the i-type a-Si: H layer 161a.
  • the n-type c—Si substrate 11a is moved to the fourth vacuum chamber.
  • the n-type a—Si: H layer 162a is prepared under the condition that SiH 4 gas, H 2 gas, and phosphine (PH 3 ) gas are introduced into the fourth vacuum chamber and the substrate temperature is maintained at 170 ° C. , Formed by plasma CVD method.
  • the passivation layer 16 is formed by the i-type a-Si: H layer 161a and the n-type a-Si: H layer 162a.
  • an ITO layer 14a as the first transparent conductive layer 14 is formed on the p-type a-Si: H layer 122a.
  • the ITO layer 14a can be formed by a sputtering method using an ITO target.
  • the ITO layer 14a is a p-type a-Si: H layer by a sputtering method under the condition that a rare gas such as argon (Ar) gas is introduced into the fifth vacuum chamber and the substrate temperature is about room temperature.
  • the ITO layer 14a is deposited on the 122a.
  • a rare gas such as argon (Ar) gas
  • O 2 gas and / or H 2 gas may be introduced.
  • nitrogen (N 2 ) gas may be introduced.
  • the ITO layer 14a may be formed by a reactive plasma deposition (RPD) method.
  • the method for forming the ITO layer 14a is not necessarily limited to these methods.
  • the sputtering apparatus used in the sputtering method will be described later with reference to FIGS. 4 to 7.
  • the ITO layer 14a can contain a large amount of rare gas as described above. That is, by using the sputtering apparatus as shown in FIGS. 4 to 7, the conductive diffusion prevention layer (ITO layer 14a) can be formed and a large amount of rare gas can be contained in the layer.
  • the conductive diffusion prevention layer may be produced by a method other than the manufacturing method using the above-mentioned sputtering apparatus. As such a method, a conventionally known method such as the above-mentioned RPD method can be adopted. After the layer is formed by another method, a treatment for increasing the rare gas content in the layer may be performed. Examples of such a treatment include an ion implantation method. As a result, a large amount of rare gas can be introduced into the layer.
  • an ITO layer 17a as the second transparent conductive layer 17 is formed on the n-type a-Si: H layer 162a.
  • the n-type c—Si substrate 11a is moved to the sixth vacuum chamber.
  • the ITO layer 17a can be produced by various methods such as a sputtering method, an electron beam deposition method, an atomic layer deposition method, a CVD method, a low pressure CVD method, a MOCVD method, a solgel method, a printing method, and a spray method.
  • the first collecting electrode 15 is formed on the ITO layer 14a.
  • the second collecting electrode 18 is formed on the ITO layer 17a.
  • the first collecting electrode 15 and the second collecting electrode 18 can be produced by applying a conductive paste such as silver paste to a comb shape by a printing method and then firing at a substrate temperature of 200 ° C. for 90 minutes.
  • the second collecting electrode 18 is at least one kind of element selected from Ag, Al, Au, Cu, Ni, Rh, Pt, Pr, Cr, Ti, Mo and the like having high reflectance and conductivity, or It may be composed of a layer made of an alloy.
  • the second collection electrode 18 may be formed so as to cover the entire surface on the ITO layer 17a. As described above, the photoelectric conversion device 1 having the structure shown in FIG. 1 can be obtained.
  • the photoelectric conversion device 1 having one semiconductor photoelectric conversion layer has been described as an example, but the present invention is not limited thereto. That is, the present invention is not limited to a photoelectric conversion device having a heterojunction between crystalline silicon and amorphous silicon, and for example, a photoelectric conversion having a structure in which a transparent conductive layer is formed on a predetermined conductive type semiconductor layer. It can also be applied to devices.
  • the sputtering apparatus used in the above-mentioned sputtering method will be described.
  • the sputtering apparatus according to this embodiment can be used at least for producing a transparent conductive layer.
  • the sputtering apparatus may generate either the transparent conductive layer 14 on the light receiving surface side, the transparent conductive layer 17 on the opposite side of the light receiving surface, or both of them.
  • FIG. 4 and 5 are a vertical sectional view and a plan view showing a sputtering apparatus according to the present embodiment. 4 and 5 show configurations near the sputtering cathode and anode provided inside the vacuum vessel of the sputtering apparatus.
  • FIG. 4 is a cross-sectional view taken along the line WW of FIG.
  • FIG. 6 is a vertical cross-sectional view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
  • FIG. 7 is a plan view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
  • the X direction is the longitudinal direction of the sputtering cathode 1.
  • the Y direction is the lateral direction of the sputtering cathode 1.
  • the Z direction is the axial direction of the sputtering target 210.
  • the X, Y and Z directions are orthogonal to each other.
  • the X direction and the Y direction correspond to the radial direction of the sputtering target 210.
  • the X direction is the horizontal direction.
  • the Y direction is the vertical direction.
  • the Z direction is the direction in which the sputtering cathode 1 and the object E to be processed face each other.
  • the Z direction may be the vertical direction. That is, any of spatter down, side spatter, and spatter up can be adopted.
  • the sputtering apparatus has a rectangular tubular shape having a rectangular cross-sectional shape, and a sputtering target 210 having an erosion surface facing inward, and the sputtering target 210. It has a permanent magnet 220 provided on the outside of the permanent magnet 220 and a yoke 230 provided on the outside of the permanent magnet 220.
  • the sputtering target 210 is made of a material for forming the transparent conductive layer (14, 17).
  • the sputtering cathode 201 is formed by the sputtering target 210, the permanent magnet 220, and the yoke 230.
  • the sputtering cathode 201 is generally fixed to a vacuum vessel (not shown) in an electrically insulated state. Further, a magnetic circuit MF (see FIG. 6) is formed by the permanent magnet 220 and the yoke 230. The polarities of the permanent magnets 220 are as shown in FIG. 4, but the polarities of the permanent magnets 220 may be completely opposite to each other.
  • a backing plate (not shown) for cooling is preferably provided between the sputtering target 210 and the permanent magnet 220, and a refrigerant (for example, cooling water) is allowed to flow through a flow path provided inside the backing plate. Is done.
  • An anode 240 having an L-shaped cross section is provided in the vicinity of the rectangular parallelepiped space surrounded by the sputtering target 210 so that the erosion surface of the sputtering target 210 is exposed.
  • the anode 240 is generally connected to a grounded vacuum vessel.
  • a light blocking shield 250 having an L-shaped cross-sectional shape is provided so that the erosion surface of the sputtering target 210 is exposed.
  • the light blocking shield 250 is made of a conductor, typically metal.
  • the light blocking shield 250 also serves as an anode and, like the anode 240, is generally connected to a grounded vacuum vessel.
  • / A is selected to be 2 or more, and is generally selected to be 40 or less.
  • a is generally selected to be 50 mm or more and 150 mm or less.
  • This sputtering apparatus is configured to form a film on a substrate S located at a position separated from the space so as to face the space surrounded by the sputtering target 210.
  • the substrate S is held by a predetermined transfer mechanism (not shown) provided in the sputtering apparatus.
  • the film formation is performed while moving the substrate S with respect to the sputtering target 210 in the direction (X direction) across the long side portion of the sputtering target 210.
  • the substrate S is not particularly limited, and may be a long film wound on a roll used in a so-called roll-to-roll process, or may be a substrate.
  • a rare gas is introduced as a sputtering gas into the space surrounded by the sputtering target 210.
  • a high voltage, generally DC, required for plasma generation is applied between the anode 240 and the sputtering cathode 201 by a predetermined power source.
  • the anode 240 is grounded and a negative high voltage (eg, -400V) is applied to the sputtering cathode.
  • a negative high voltage eg, -400V
  • the sputtering conditions at the time of film formation are not particularly limited, but in order to increase the rare gas content of the conductive diffusion prevention layer (transparent conductive layer), for example, the following conditions are preferably adopted.
  • the rare gas flow rate (for example, argon flow rate) is preferably 50 sccm or more.
  • the rare gas flow rate (for example, argon flow rate) is preferably 500 sccm or less.
  • oxygen flow rate is preferably 2 sccm or more.
  • the oxygen flow rate is preferably 20 sccm or less.
  • the sputtering power is preferably 500 W or more.
  • the sputtering power is preferably 5000 W or less.
  • the DC discharge voltage is preferably 250 V or more.
  • the DC discharge voltage (absolute value) is preferably 1000 V or less.
  • a pulse discharge may be applied to the DC discharge.
  • the sputtering pressure is preferably 0.1 Pa or more.
  • the sputtering pressure is preferably 1 Pa or less.
  • the TS is preferably 30 mm or more.
  • the TS is preferably 300 mm or less. Note that TS indicates the distance between the sputtering target 210 and the substrate S.
  • the temperature of the substrate S is preferably 10 ° C. or higher, more preferably 20 ° C. or higher.
  • the temperature of the substrate S is preferably 70 ° C. or lower, more preferably 60 ° C. or lower.
  • the atoms constituting the sputtering target 210 are ejected from the space surrounded by the sputtering target 210. At this time, atoms are ejected from the portion of the erosion plane of the sputtering target 210 near the plasma 260. However, the atoms protruding from the erosion plane on the short side inside the sputtering target 210 are not used for film formation, for example.
  • an atom protruding from the erosion surface of the short side of the sputtering target 210 is provided by providing a horizontal shielding plate above the sputtering target 210 so as to shield both ends in the long side direction of the sputtering target 210. Should not reach the substrate S during film formation.
  • a horizontal shielding plate above the sputtering target 210 so as to shield both ends in the long side direction of the sputtering target 210.
  • sputter particle bundles 270 and 280 as shown in FIG. 6 are obtained from the erosion surface of the long side portion of the sputtering target 210.
  • the sputtered particle bundles 270 and 280 have a substantially uniform intensity distribution in the longitudinal direction of the sputtering target 210.
  • sputtered particles are moved with respect to the sputtering target 210 in the direction (X direction) across the long side of the sputtering target 210.
  • the film is formed by the bundles 270 and 280.
  • the sputtered particle bundle 270 first enters the substrate S and film formation starts.
  • the sputtered particle bundle 280 also contributes to the film formation in addition to the sputtered particle bundle 270.
  • the sputter particle bundles 270 and 280 are incident on the substrate S to form a film.
  • the substrate S is further moved while forming a film.
  • the substrate S is moved away from the space surrounded by the sputtering target 210 to a position where the sputter particle bundles 270 and 280 are not incident on the substrate S.
  • the film formation is completed.
  • the transparent electrode layers 14 and 17 as the conductive diffusion prevention layer are formed so as to contain a large amount of rare gas.
  • n-type c—Si substrate 11a as the first conductive type single crystal semiconductor substrate 11 was prepared.
  • the n-type c—Si substrate 11a was introduced into a vacuum chamber and heated at 200 ° C. to remove water adhering to the substrate surface.
  • hydrogen gas was introduced into the vacuum chamber, and the surface of the substrate was cleaned by plasma discharge.
  • the substrate temperature was set to about 150 ° C.
  • SiH 4 gas and H 2 gas were introduced into the vacuum chamber, and i-type a-Si: H layer 121a was formed by the RF plasma CVD method.
  • the ITO layer 14a was formed on the p-type a-Si: H layer 122a by a sputtering method.
  • the ITO layer 14a is an example of the first transparent conductive layer 14.
  • the ITO layer 14a is composed of In 2 O 3 to which SnO 2 is added.
  • the ITO layer 14a was formed by using a sputtering apparatus having a sputtering cathode 201 shown in FIGS. 4 to 7 at a substrate temperature of about room temperature.
  • the i-type a-Si: H layer 161a was formed on the surface opposite to the n-type c-Si substrate 11a by the plasma CVD method. Further, PH 3 gas was introduced as a doping gas to form an n-type a-Si: H layer 162a on the i-type a-Si: H layer 161a. Then, the ITO layer 17a was formed on the n-type a-Si: H layer 162a at a substrate temperature of about room temperature by a sputtering apparatus having the sputtering cathode 201 shown in FIGS. 4 to 7. The ITO layer 17a is an example of the second transparent conductive layer 17.
  • Example 2 The photoelectric conversion device 1 was manufactured under the same conditions as in Example 1 except that the sputtering pressure at the time of forming the ITO layers 14a and 17a was set to 1.0 Pa.
  • Example 3 The photoelectric conversion device 1 was manufactured under the same conditions as in Example 1 except that the sputtering pressure at the time of forming the ITO layers 14a and 17a was set to 0.1 Pa.
  • the photoelectric conversion device 1 was manufactured in the same manner as in Example 1 except that the ITO layers 14a and 17a were formed by the planar magnetron sputtering method.
  • the planar magnetron sputtering method was processed under the following conditions.
  • Argon flow rate 200 sccm
  • Oxygen flow rate 5 sccm
  • Sputtering power 1200W DC discharge voltage (absolute value): 360V Sputtering pressure: 0.4Pa TS: 100 mm
  • the data of Example 1 is shown by a solid line.
  • the data of Comparative Example 1 is shown by a broken line.
  • M represents a baseline of the data of Example 1.
  • K indicates the baseline of the data of Comparative Example 1.
  • the baselines M and K shown in FIG. 8 are lines schematically drawn to explain the measurement method.
  • P indicates the peak height of the main metal (In) from the baseline M in Example 1.
  • Q indicates the peak height of the main metal (In) from the baseline K in Comparative Example 1.
  • S indicates the peak height of the rare gas (Ar) from the baseline M in Example 1.
  • R indicates the peak height of the rare gas (Ar) from the baseline K in Comparative Example 1.
  • the atomic number ratio (Ar / In) in Example 1 was obtained by S / P.
  • the atomic number ratio (Ar / In) in Comparative Example 1 was obtained by R / Q.
  • the atomic number ratio (Ar / In) was obtained by the same method.
  • the short-circuit current density Jsc is expressed by the following equation (2).
  • Jsc n 0 ⁇ q ⁇ ⁇ exp (qV / kT) -1 ⁇ ⁇ ⁇ ⁇ (2)
  • N 0 minority carrier density, q: unit charge, V: potential difference, k: Botulman constant, T: temperature
  • the minority carrier density n 0 is proportional to the carrier lifetime. Therefore, as is clear from the above equations (1) and (2), the power generation efficiency is proportional to the open circuit voltage Voc and the carrier lifetime. Therefore, the power generation efficiency was evaluated by measuring the open circuit voltage Voc and the carrier lifetime.
  • the open circuit voltage Voc is a voltage when no current is flowing through the photoelectric conversion device 1.
  • a voltage is applied to the photoelectric conversion device 1 in which a current flows due to irradiation with light in the direction opposite to the current, and the voltage is gradually increased.
  • the density of the current flowing when the applied voltage is 0 is the short-circuit current density Jsc.
  • the voltage applied when the current stops flowing is the open circuit voltage Voc.
  • the open circuit voltage was measured before the film formation by sputtering, immediately after the film formation by sputtering, and immediately after the heat treatment (annealing). In addition, the open circuit voltage was measured according to the number of days elapsed.
  • the carrier lifetime was measured by the ⁇ -PCD method.
  • excess carriers electron-hole pairs
  • the microwave reflectance of the pulsed surface increases as the density of excess carriers increases.
  • the carrier lifetime was measured by measuring the time change of microwave reflectance.
  • the carrier lifetime is defined as the time required for the microwave reflectance to decrease to 1 / e from the pulsed laser light irradiation completion time. Note that e is the number of Napiers.
  • a laser beam was obtained using a semiconductor laser having a wavelength of 904 nm.
  • a microwave was obtained using a single waveguide having a frequency of 10 GHz.
  • the carrier lifetime was measured before film formation by sputtering, immediately after film formation by sputtering, and immediately after heat treatment (annealing).
  • career lifetime was measured according to the number of days elapsed.
  • the atomic number ratio (Ar / In) of Example 1 was 0.66.
  • the atomic number ratio (Ar / In) of Example 2 was 0.40.
  • the atomic number ratio (Ar / In) of Example 3 was 0.82.
  • the atomic number ratio (Ar / In) of Comparative Example 1 was 0.30.
  • FIG. 9A shows the open circuit voltage VOC and the elapsed time of the photoelectric conversion device according to the first embodiment and the first comparative example.
  • the solid line shows the data of Example 1.
  • the broken line shows the data of Comparative Example 1.
  • a higher open circuit voltage Voc was obtained than in Comparative Example 1.
  • a high open circuit voltage Voc was maintained for a long period of time.
  • Examples 2 and 3 (not shown), as in Example 1, a high open circuit voltage Voc was maintained for a long period of time.
  • FIG. 9B shows the carrier lifetime and the number of elapsed days in the photoelectric conversion apparatus according to Example 1 and Comparative Example 1.
  • the solid line shows the data of Example 1.
  • the broken line shows the data of Comparative Example 1.
  • Example 1 a longer career lifetime was obtained than in Comparative Example 1.
  • Example 1 a long career lifetime was maintained over a long period of time.
  • Examples 2 and 3 (not shown), a long career lifetime was maintained for a long period of time as in Example 1.
  • the “change value due to annealing” (increase amount) in Example 3 was larger than the “change value due to annealing” (increase amount) in Comparative Example 1. It is considered that the damage caused by sputtering in Example 3 was small as in Examples 1 and 2, but in Example 3, a large increase was obtained by the recovery. On the other hand, regarding the career lifetime, the “change value due to annealing” (increase amount) in Examples 1 and 3 was more than three times the “change value due to annealing” (increase amount) in Comparative Example 1.
  • the “change value due to annealing” (increase amount) in Example 2 was about twice the “change value due to annealing” (increase amount) in Comparative Example 1. It is considered that this is because the rare gas (argon) contained in the generated transparent conductive layer (ITO layer) in large quantities suppressed the diffusion of the diffusion component (hydrogen) from the passivation layer.
  • Comparative Example 1 as described above, hydrogen termination of the dangling bond is generated by annealing, but hydrogen diffusion also occurs, so that it is considered that the amount of increase is smaller than that of Examples 1 to 3.
  • the transparent conductive layer containing a large amount of rare gas suppresses or prevents the diffusion of the diffusing component also by the amount of change in the open circuit voltage and the carrier lifetime due to sputtering and annealing.
  • the photoelectric conversion devices according to Examples 1 to 3 have a higher atomic number ratio (Ar / In), a higher open circuit voltage Voc, and a longer carrier life than the photoelectric conversion devices according to Comparative Example 1. I was able to get time and achieve excellent power generation efficiency.
  • the sputtering cathode 201 is used when forming the ITO layers 14a and 17a.
  • the sputtering targets 210 have erosion surfaces facing each other.
  • the sputtering target 201 has a pair of long sides facing each other. Therefore, the recoil rare gas (for example, recoil Ar) may collide with the target a plurality of times. At each collision, some of the recoil rare gas is taken up by the sputtering particles. As a result, sputtering particles containing a larger amount of rare gas are generated, or more sputtering particles containing a rare gas are generated.
  • the recoil rare gas for example, recoil Ar
  • the higher the performance of the passivation layer the longer the carrier lifetime.
  • the performance of the passivation layer depends on the degree of optimization of the termination of the dangling bond by hydrogen. If the layer formed on the passivation layer can maintain the optimized state of the termination of the dangling bond by hydrogen in the passivation layer, the carrier lifetime can be maintained longer. The state of dangling bond termination deviates from the optimized state by becoming more variable or more variable with increasing hydrogen diffusion, which reduces carrier lifetime. To do.
  • the atomic number ratio of the rare gas / main metal in the ITO layers 14a and 17a is high, and the ITO layers 14a and 17a have more rare gases as compared with Comparative Example 1.
  • the rare gas causes an action of suppressing the diffusion of hydrogen.
  • the laminated structure of the present invention is not limited to the example shown in FIG.
  • Examples of the laminated structure of the present invention include the photoelectric conversion devices shown in FIGS. 10 and 11 (a) to 11 (c).
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to another embodiment.
  • the laminated structure 1 shown in FIG. 10 has a laminated structure similar to that of the laminated structure 1 shown in FIG. 1, except that the passivation layers 12 and 16 are single layers.
  • the differences from the laminated structure 1 shown in FIG. 1 will be described, and the description other than the differences will be omitted.
  • the passivation layer 12 is composed of an i-type amorphous hydrogen-containing semiconductor layer.
  • the passivation layer 12 is provided between the first conductive type single crystal semiconductor substrate 11 and the first transparent conductive layer 14 so as to be in contact with both the first conductive type single crystal semiconductor substrate 11 and the first transparent conductive layer 14. Has been done.
  • the i-type amorphous hydrogen-containing semiconductor layer can be formed in the same manner as the i-type amorphous hydrogen-containing semiconductor layer 121 described above.
  • the passivation layer 16 is made of an i-type amorphous semiconductor layer.
  • the passivation layer 16 is provided between the first conductive type single crystal semiconductor substrate 11 and the second transparent conductive layer 17 so as to be in contact with both the first conductive type single crystal semiconductor substrate 11 and the second transparent conductive layer 17.
  • the i-type amorphous semiconductor layer can be formed in the same manner as the i-type amorphous semiconductor layer 161 described above.
  • FIGS. 11A to 11C are cross-sectional views showing a schematic configuration of a photoelectric conversion device according to another embodiment.
  • the photoelectric conversion device 301 according to each of FIGS. 11A to 11C is an organic electroluminescence device.
  • the electron transport layer 312 (ETL), the charge generation layer 313 (CGL), and the hole transport are on the light receiving surface (upper surface in the drawing) of the light emitting layer 311 (EML).
  • the layer 314 (HTL), the protective layer 315, and the transparent conductive layer 316 are laminated in this order from the bottom to the top in the drawing so that adjacent layers come into contact with each other.
  • a hole transport layer 317 (HTL), a hole injection layer 318 (HIL), and a metal electrode layer 319 are shown in the drawing.
  • the protective layer 315 contains a diffusion component (for example, hydrogen), and the transparent conductive layer 316 contains a large amount of rare gas as described above. Except for this point, for each layer 311 to 319, for example, a known configuration can be adopted.
  • the protective layer 315 is made of, for example, a conductive organic substance.
  • the conductive organic substance includes, for example, an organic compound containing a metal dopant and a metal organic compound, and more specifically, for example, an organometallic complex such as metal phthalocyanine.
  • the transparent conductive layer 316 for example, the same configuration as the transparent conductive layers 14 and 17 described above can be adopted.
  • the protective layer 315 is an example of the “conductive layer”
  • the transparent conductive layer 316 is an example of the “conductive diffusion prevention layer”.
  • the photoelectric conversion device 301 shown in FIG. 11B is the same as the photoelectric conversion device 301 shown in FIG. 11A except that it does not have the protective layer 315. Therefore, the differences will be described below. , Except for the differences, the description will be omitted.
  • the hole transport layer 317 contains a diffusion component (for example, hydrogen), and the transparent electrode layer 316 contains a large amount of rare gas as described above.
  • the hole transport layer 314 is an example of the “conductive layer”
  • the transparent conductive layer 316 is an example of the “conductive diffusion prevention layer”.
  • the photoelectric conversion device 301 shown in FIG. 11 (c) is the same as the photoelectric conversion device 301 shown in FIG. 11 (b) except that it does not have the charge generation layer 313 and the hole transport layer 314. The differences will be described in the above section, and the description will be omitted except for the differences.
  • the electron transport layer 312 contains a diffusion component (for example, hydrogen), and the transparent electrode layer 316 contains a large amount of rare gas as described above.
  • the electron transport layer 312 is an example of the “conductive layer”
  • the transparent conductive layer 316 is an example of the “conductive diffusion prevention layer”.
  • Photoelectric conversion device 11 1st conductive type single crystal semiconductor substrate 12 Passion layer 121 i-type amorphous hydrogen-containing semiconductor layer 122 2nd conductive type amorphous hydrogen-containing semiconductor layer 14 1st transparent conductive layer 15 1st collecting electrode 16 Passion layer 161 i-type amorphous semiconductor layer 162 1st conductive type amorphous semiconductor layer 17 2nd transparent conductive layer 18 2nd collecting electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の課題は、拡散成分を含む層(12、16)から、当該層(12、16)と隣接する層(14、17)への当該拡散成分の拡散を防止乃至抑制することが可能な積層構造体(1)を提供すること。積層構造体(1)であって、積層構造体(1)は、導電性を有するとともに、隣接する層(14、17)へ拡散可能な拡散成分を含む導電層(12、16)と、導電層(12、16)と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含む導電性拡散防止層(14、17)とを有する。

Description

積層構造体、及び積層構造体の製造方法
本発明は、積層構造体、及び積層構造体の製造方法に関する。
積層構造体は、複数の層が互いに隣接するように重ね合わされることにより構成される。積層構造体においては、各層が、導電性或いは半導電性乃至絶縁性等の機能を有する。各層の機能の組合せにより、積層構造体全体としての機能が実現される。このような積層構造体においては、一つの層が有する拡散可能な拡散成分が、当該一つの層と隣接する他の層へ拡散してしまい、その結果、積層構造体全体としての性能が低下するという問題が生じる場合があった。
積層構造体の一例として、ヘテロ接合型光電変換装置が挙げられる(例えば特許文献1参照)。特許文献1に記載のヘテロ接合型光電変換装置は、水素終端アモルファスシリコンからなるパッシベーション層と、パッシベーション層と隣接するように設けられ、ITO(酸化インジウム錫)からなる透明導電層とを有している。このようなヘテロ接合型光電変換装置では、例えば製造工程において、パッシベーション層から透明導電層へ水素が拡散してしまい、その結果、光電変換装置の性能(例えば発電効率)が低下するという問題が生じる場合があった。この問題は、ヘテロ接合型光電変換装置に限らず、積層構造体において生じ得る問題であった。
国際公開第2013/061637号
本発明は、拡散成分を含む層から、当該層と隣接する層への当該拡散成分の拡散を防止乃至抑制することが可能な積層構造体、及び該積層構造体の製造方法を提供することである。
本発明は、以下の構成を採用する。
本発明の積層構造体は、
導電性を有するとともに、隣接する層へ拡散可能な拡散成分を含む導電層と、
前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、前記少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含む導電性拡散防止層と
を有する。
本発明の積層構造体において、導電性拡散防止層は、多量の希ガスを含む。希ガスは、化学的に安定している。多量の希ガスが、導電性拡散防止層内において、単原子分子として安定的に存在する。これにより、導電層から導電性拡散防止層への拡散成分の拡散が防止乃至抑制され得る。例えば、積層構造体の製造工程における拡散成分の拡散が防止乃至抑制され得る。その結果、拡散成分の拡散に起因する積層構造体の性能低下が防止乃至抑制され得る。化学的に安定な希ガスが用いられるので、積層構造体の性能への影響は防止乃至抑制され得る。
主金属とは、導電性拡散防止層を構成する少なくとも1種の金属又は金属酸化物のうち、最も原子数の多い金属(元素)をいう。導電性拡散防止層における主金属の原子数に対する希ガスの原子数の比率は、0.40以上である。当該比率は、0.50以上であることが好ましく、0.60以上であることがより好ましく、0.70以上であることが更に好ましい。より多くの希ガスを導入することにより、拡散抑制効果を向上させることができる。また、当該比率は、1.0以下であることが好ましく、0.82以下であることがより好ましい。導電性拡散防止層およびその下地層となる拡散成分を含む層へのダメージを抑制乃至防止しつつ、希ガスを導入できる。なお、導電性拡散防止層は、製造された時点において、導電層に含有される拡散成分と同種の拡散成分を含有していてもよい。製造時点での導電性拡散防止層における拡散成分の含有量の調整によっても、導電層から導電性拡散防止層への拡散成分の拡散が防止乃至抑制され得る。導電性拡散防止層における拡散成分の含有量の調整と別に又は組み合わせて、本発明による多量の希ガスの導入は適用され得る。導電性拡散防止層における拡散成分の含有量の調整に加えて、導電性拡散防止層への多量の希ガスの導入が適用されることにより、導電層から導電性拡散防止層への拡散成分の拡散がより効果的に防止乃至抑制され得る。また、本発明によれば、化学的に安定で且つ反応性の低い希ガスにより拡散成分の拡散を防止乃至抑制できる。そのため、導電性拡散防止層における拡散成分の含有量の調整が適用し難い場合等においても、本発明により、導電層から導電性拡散防止層への拡散成分の拡散が防止乃至抑制され得る。
本発明の積層構造体の製造方法において、
前記積層構造体は、
導電性を有するとともに、隣接する層へ拡散可能な成分を含む導電層と、
前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、希ガスを含む導電性拡散防止層と
を有し、
前記製造方法は、
導電層が形成された構造体を準備する工程と、
横断面形状が互いに対向する一対の長辺部を有する管状の形状を有し、前記少なくとも1種の金属又は金属酸化物を含むエロージョン面が内側を向いているスパッタリングターゲットを有するスパッタリングカソードを用い、前記スパッタリングターゲットの軸線方向において前記スパッタリングターゲットと間隔を空けて前記構造体を配置し、前記スパッタリングターゲットの内面に沿って周回するプラズマが発生するように放電を行って、前記希ガスを含むスパッタリングガスにより発生するプラズマ中のイオンにより前記スパッタリングターゲットの前記長辺部の内面をスパッタリングすることにより、前記構造体の前記導電層上に、前記導電層と隣接するように前記導電性拡散防止層を形成する工程と
を有する。
本発明の積層構造体の製造方法において、導電性拡散防止層は、上述のスパッタリングカソードにより形成される。当該スパッタリングカソードにより形成された導電性拡散防止層は、多量の希ガスを含む。加えて、当該製造方法によれば、希ガス導入時に、スパッタリングによる導電性拡散防止層およびその下地層となる拡散成分を含む層へのダメージを低減できる。よって、本発明の積層構造体の製造方法によれば、導電性拡散防止層およびその下地層となる拡散成分を含む層へのダメージを低減しつつ、多量の希ガスを導電性拡散防止層内に存在させることができる。これにより、導電層から導電性拡散防止層への拡散成分の拡散が防止乃至抑制され得る。本発明の積層構造体の製造方法により、導電性拡散防止層は、例えば、少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含むことができる。これにより、導電層から導電性拡散防止層への拡散成分の拡散がより効果的に防止乃至抑制され得る。例えば、積層構造体の製造工程における拡散成分の拡散がより効果的に防止乃至抑制され得る。その結果、拡散成分の拡散に起因する積層構造体の性能低下がより効果的に防止乃至抑制され得る。なお、一対の長辺部は、ロータリーターゲットにより構成されていてもよい。ロータリーターゲットは、円筒形状を有し、所定の回転機構により、その回転軸の周りに回転可能に設けられる。ロータリーターゲットは、円筒回転式スパッタリングターゲットである。回転機構としては、例えば、従来公知の回転機構が採用され得る。
さらに、上述の積層構造体及び積層構造体の製造方法に関して、本発明は、以下の構成を採用することができる。導電層の厚さとしては、特に限定されず、例えば、100nm以下であってもよく、50nm以下であってもよい。導電層の厚さとしては、特に限定されず、例えば、1nm以上であってもよく、5nm以上であってもよい。導電性拡散防止層の厚さとしては、特に限定されず、例えば、5~100nm以下であってもよい。
一実施形態において、前記希ガスは、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも1種である。これにより、導電性拡散防止層への拡散成分の拡散が、より効果的に防止乃至抑制され得る。一実施形態において、希ガスとしては、ヘリウム、ネオン、アルゴンからなる群から選択される少なくとも1種である。特に、希ガスとしては、アルゴンが好ましい。
前記拡散成分に関して、一実施形態において、前記拡散成分は、スパッタリングガスに含まれる希ガスと異なる元素である。一実施形態において、前記拡散成分は、前記希ガスよりも原子量の小さい元素である。前記希ガスよりも原子量の小さい元素は、例えば、水素、リチウム、ナトリウム、ホウ素、セレン、リン、マグネシウム、ベリリウムからなる群から選択される少なくとも1種の元素である。また、一実施形態において、前記希ガスよりも原子量の小さい元素は、例えば、水素、リチウム、ナトリウム、ホウ素、リン、マグネシウム、ベリリウムからなる群から選択される少なくとも1種の元素である。一実施形態において、前記拡散成分は、前記希ガスよりも原子量の小さい非金属元素である。前記非金属元素は、希ガスを含んでいてもよく、含まなくてもよい。前記非金属元素は、例えば、水素、ホウ素、炭素、窒素、リン、酸素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群から選択される少なくとも1種の元素である。また、一実施形態において、前記拡散成分は、前記希ガスよりも原子量の小さいアルカリ金属元素又はアルカリ土類金属元素である。前記アルカリ金属元素は、例えば、リチウム及びナトリウムの少なくとも1種の元素である。前記アルカリ土類金属元素は、例えば、マグネシウム及びベリリウムの少なくとも1種の元素である。導電性拡散防止層は、このような拡散成分の拡散を、より効果的に防止乃至抑制できる。特に、拡散成分としては、水素が好ましい。
一実施形態において、積層構造体は、光電変換装置である。本発明は、光電変換装置に好適に適用され得る。光電変換装置の性能低下が効果的に防止乃至抑制され得る。光電変換装置は、例えば、光電効果により、光エネルギーを電気エネルギーに変換する、又は電気エネルギーを光エネルギーに変換するように構成される。ここでいう光電効果は、例えば、内部光電効果である。ここでいう光電効果は、例えば、内部光電効果に代えて又は加えて、外部光電効果を含んでもよい。ここでいう光電効果は、例えば、光起電力効果を含む。光電変換装置としては、特に限定されず、例えば、光起電力装置、エレクトロルミネッセンス装置が挙げられる。光電変換装置は、光電変換を実現するための光電変換層を有する。光電変換層は、単一の層からなってもよく、複数の層から構成されていてもよい。導電性拡散防止層は、例えば、光電変換装置の電極(例えば透明導電層)を構成する。導電拡散防止層は、例えば、光電変換層に含まれない。導電層は、導電性拡散防止層と隣接する。導電層は、例えば、光電変換装置の電極を構成しない。導電層は、例えば、光電変換層に含まれてもよく、光電変換層に含まれずに光電変換層と電極との間に設けられてもよい。
光起電力装置(所謂太陽電池)としての光電変換装置は、特に限定されず、例えば、シリコン系光電変換装置、化合物系光電変換装置、有機系光光電変換装置を含む。シリコン系光電変換装置としては、例えば、単結晶シリコン光電変換装置、多結晶シリコン光電変換装置、薄膜系シリコン光電変換装置が挙げられる。化合物系光電変換装置としては、例えば、CIS系光電変換装置、CdTe系光電変換装置、III-V族系光電変換装置が挙げられる。有機物光電変換装置としては、例えば、色素増感型光電変換装置、有機薄膜型光電変換装置が挙げられる。また、光電変換装置としては、例えば、ヘテロ接合型光電変換装置、ペロブスカイト型光電変換装置が挙げられる。エレクトロルミネッセンス装置としては、例えば、有機エレクトロルミネッセンス装置、無機エレクトロルミネッセンス装置が挙げられる。
光電変換装置は、ヘテロ接合型光電変換装置、ペロブスカイト型光電変換装置、有機物光電変換装置、又は有機エレクトロルミネッセンス型発光装置であることが好ましい。本発明は、このような光電変換装置により好適に適用され得る。光電変換装置の性能低下がより効果的に防止乃至抑制され得る。有機物光電変換装置では、各層が導電性有機物からなる。導電性有機物は、例えば、金属ドーパントを含む有機化合物、有機金属化合物を含む。
導電層は、例えば、拡散成分として水素を含むパッシベーション層であってもよく、有機物からなる層であってもよい。導電性拡散防止層は、このような導電層からの拡散成分の拡散をより効果的に防止乃至抑制できる。その結果、光電変換装置の性能低下がより効果的に防止乃至抑制され得る。拡散成分として水素を含むパッシベーション層としては、例えば、a-Si:H層、a-SiC:H層、a-SiO:H層、a-SiF:H層、a-SiN:H層が挙げられる。これらの層については後述する。導電層は、例えば、拡散成分により終端されたダングリングボンドを含む。
導電性拡散防止層は、透明であり且つ導電性を有する透明導電層であってもよく、前記主金属として、インジウム、亜鉛及び錫からなる群から選択される、少なくとも1つの元素を含む層であってもよい。導電性拡散防止層の具体例としては、例えば、以下の材料からなる群から選択される、少なくとも1種の材料からなる層、主成分として当該少なくとも1種の材料を含む層、又は実質的に当該少なくとも1種の材料からなる層が挙げられる。
酸化インジウム錫(Indium Tin Oxide)(酸化インジウムと酸化錫との混合酸化物)
酸化インジウム亜鉛(Indium Zinc Oxide)(酸化インジウムと酸化亜鉛との混合酸化物)
酸化亜鉛アルミニウム(Zinc Aluminum Oxide)(酸化亜鉛と酸化アルミニウムとの混合酸化物)
酸化亜鉛マグネシウム(Zinc Magnesium Oxide)(酸化亜鉛と酸化マグネシウムとの混合酸化物)
酸化亜鉛ホウ素(Zinc Boron Oxide)(酸化亜鉛と酸化ホウ素との混合酸化物)
酸化亜鉛ベリリウム(Zinc Beryllium Oxide)(酸化亜鉛と酸化ベリリウムとの混合酸化物)
フッ素ドープ酸化錫(Fluorine-doped tin oxide)
酸化インジウム(Indium Oxide)
酸化錫(Tin Oxide)
酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide)(酸化インジウムと酸化ガリウムと酸化亜鉛との混合酸化物)
なお、ここで、主成分は、当該少なくとも1種の化合物の含有率(質量%)が最も大きいことを意味する。また、実質的は、ドーパント材料等の添加成分が許容されることを意味する。ドーパント材については後述する。本発明は、このような導電性拡散防止層に好適に適用され得る。
本発明の積層構造体によれば、拡散成分を含む層から、当該層と隣接する層への当該拡散成分の拡散を防止乃至抑制することができる。また、本発明の積層構造体の製造方法によれば、導電性拡散防止層およびその下地層となる拡散成分を含む層へのダメージを低減しつつ、拡散成分を含む層から、当該層と隣接する層への当該拡散成分の拡散を防止乃至抑制することができる。
図1は、実施形態に係る光電変換装置の概略構成を示す断面図である。 図2(a)~(d)は、実施形態に係る光電変換装置の製造方法における手順の一例を示す断面図である。 図3(a)~(b)は、実施形態に係る光電変換装置の製造方法における手順の一例を示す断面図である。 図4は、実施形態に係る光電変換装置の製造方法に用いられるスパッタリング装置を示す縦断面図である。 図5は、図4に示すスパッタリング装置におけるスパッタリングカソードを示す平面図である。 図6は、図4に示すスパッタリング装置においてスパッタリングターゲットの表面近傍にプラズマが発生した状態を示す縦断面図である。 図7は、図4に示すスパッタリング装置においてスパッタリングターゲットの表面近傍にプラズマが発生した状態を示す平面図である。 図8は、EPMAによる希ガス及び主金属の検出結果の一例を示す図である。 図9(a)は、実施例1及び比較例1に係る光電変換装置の開放電圧Vocを示す図であり、図9(b)は、実施例1及び比較例1に係る光電変換装置におけるキャリアライフタイムを示す図である。 図10は、他の実施形態に係る光電変換装置の概略構成を示す断面図である。 図11(a)~(c)の各々は、他の実施形態に係る光電変換装置の概略構成を示す断面図である。
<<積層構造体>>
以下、発明を実施するための形態(以下、「実施形態」という)について図面を参照しながら説明する。以下においては、光電変換装置について説明する。光電変換装置は、「積層構造体」の一例である。積層構造体は、光電変換装置に限定されない。
図1は、実施形態に係る光電変換装置の概略構成を示す断面図である。光電変換装置1は、第1導電型単結晶半導体基板11と、第1導電型単結晶半導体基板11に隣接するように設けられたパッシベーション層12と、パッシベーション層12と隣接するように設けられた第1透明導電層14とを有する。パッシベーション層12は、第1導電型単結晶半導体基板11に隣接するように設けられた実質的に真性なi型非晶質水素含有半導体層121と、i型非晶質水素含有半導体層121と隣接するように設けられた第2導電型非晶質水素含有半導体層122とを有する。第1透明導電層14上には、櫛型の第1集電極15が形成されている。また、光電変換装置1は、第1導電型単結晶半導体基板11におけるパッシベーション層12が設けられた面と反対側の面に隣接するように設けられたパッシベーション層16と、パッシベーション層16と隣接するように設けられた第2透明導電層17を有する。パッシベーション層16は、第1導電型単結晶半導体基板11と隣接するように設けられたi型非晶質半導体層161と、i型非晶質半導体層161と隣接するように設けられた第1導電型非晶質半導体層162とを有する。パッシベーション層12、16は、キャリアの再結合を抑制乃至防止可能である。第2透明導電層17上には第2集電極18が形成されている。
第1導電型単結晶半導体基板11は、例えば、n型単結晶シリコン(以下、c-Siという)基板である。また、n型c-Si基板の表面には、光電変換装置1へ入射してきた光の反射を低減し、光閉じ込め効果を向上させる凹凸構造が設けられてもよい。
パッシベーション層12は、i型非晶質水素含有半導体層121と、第2導電型非晶質水素含有半導体層122とを含む。パッシベーション層12は、導電性を有する。パッシベーション層12は、例えば、水素で終端されたダングリングボンドを有するシリコンを含む。パッシベーション層12は、「導電層」の一例である。
i型非晶質水素含有半導体層121は、例えば、a-Si:H層、a-SiC:H層、a-SiO:H層、a-SiF:H層、又はa-SiN:H層である。なお、i型非晶質水素含有半導体層121は、単一の光学的バンドギャップを有する半導体材料、第1導電型単結晶半導体基板11側から連続的に光学的バンドギャップが広くなる半導体材料、又は、第1導電型単結晶半導体基板11側から段階的に光学的バンドギャップが広くなるように積層された複数の半導体材料により構成されてもよい。
a-Si:H層は、i型非晶質水素含有シリコン層を指す。
a-SiC:H層は、i型非晶質水素含有シリコンカーバイド層を指す。
a-SiO:H層は、i型非晶質水素含有シリコンオキサイド層を指す。
a-SiF:H層は、i型非晶質水素含有フッ化シリコン層を指す。
a-SiN:H層は、i型非晶質水素含有シリコンナイトライド層を指す。
また、i型非晶質水素含有半導体層121の厚さは、例えば15nm以下である。なお、この実施形態において用いるi型、第1導電型および第2導電型の非晶質シリコン層には、完全な非晶質層だけではなく、微結晶シリコン等の層中に部分的に結晶構造を有する層も含まれる。
第2導電型非晶質水素含有半導体層122は、例えば、p型a-Si:H層、p型a-SiC:H層、p型a-SiO:H層、p型a-SiF:H層、又はp型a-SiN:H層である。なお、第2導電型非晶質水素含有半導体層122は、i型非晶質水素含有半導体層121の場合と同様に、単一の光学的バンドギャップを有する半導体材料によって構成されていてもよいし、i型非晶質水素含有半導体層121側から連続的に又は段階的に光学的バンドギャップが広くなるように構成されていてもよい。第2導電型非晶質水素含有半導体層122の厚さは、例えば20nm以下である。
第1透明導電層14は、「導電性拡散防止層」の一例である。第1透明導電層14は、少なくとも1種の金属又は金属酸化物を含む。第1透明導電層14は、例えば、少なくとも1種の金属、金属酸化物又はこれらの組合せからなる。本実施形態において、第1透明導電層14は、酸化インジウム錫(ITO)からなる。酸化インジウム錫は、酸化インジウム(In)と、酸化錫(SnO)との無機混合物である。本実施形態において、酸化インジウム錫の主金属は、インジウムである。なお、主金属とは、導電性拡散防止層を構成する金属又は金属酸化物のうち、最も原子数が多い金属をいう。第1透明導電層14は、上述の例に限定されない。第1透明導電層14は、酸化インジウムにより構成されてもよい。この場合、主金属は、インジウムである。第1透明導電層14は、酸化亜鉛(ZnO)により構成されてもよい。この場合、主金属は、亜鉛である。第1透明導電層14は、酸化錫により構成されてもよい。この場合、主金属は、錫である。また、導電性拡散防止層には、アルミニウム(Al)、ガリウム(Ga)、硼素(B)、窒素(N)等の周知のドーパント材料から選択される少なくとも1種類以上の元素が添加されてもよい。第1透明電極層14は、製造された時点において、パッシベーション層12に含まれる拡散成分と同種の拡散成分を含有していてもよい。
第1透明導電層14は、第1透明導電層14を構成する金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含む。希ガスは、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも1種である。本実施形態において、希ガスは、アルゴンである。主金属の原子数に対する希ガスの原子数の比率は、0.50以上であることが好ましく、0.60以上であることがより好ましく、0.70以上であることが更に好ましい。主金属の原子数に対する希ガスの原子数の比率は、1.0以下であることが好ましく、0.82以下であることがより好ましい。第1透明導電層14の厚さは、例えば、5~100nmである。原子数は、例えば、電子プローブマイクロアナライザ(EPMA)によって計測可能である。
櫛型の第1集電極15は、例えば、銀(Ag)、Al(アルミニウム)、金(Au)、銅(Cu)、ニッケル(Ni)、ロジウム(Rh)、白金(Pt)、パラジウム(Pr)、クロム(Cr)、チタン(Ti)、モリブデン(Mo)等から選択される少なくとも1種類以上の元素又は合金からなる。
パッシベーション層16は、i型非晶質半導体層161と、第1導電型非晶質半導体層162とを含む。パッシベーション層16は、導電性を有する。パッシベーション層16は、例えば、水素で終端されたダングリングボンドを有するシリコンを含む。パッシベーション層16は、「導電層」の一例である。
i型非晶質半導体層161は、例えば、i型a-Si:H層、i型a-SiC:H層、i型a-SiO:H層、i型a-SiF:H層、又はi型a-SiN:H層である。i型非晶質半導体層161の厚さは、例えば、15nm以下である。
第1導電型非晶質半導体層162は、例えば、n型a-Si:H層、n型a-SiC:H層、n型a-SiO:H層、n型a-SiF:H層、又はn型a-SiN:H層である。第1導電型非晶質半導体層162の厚さは、例えば、20nm以下である。
なお、i型非晶質半導体層161と第1導電型非晶質半導体層162は、i型非晶質水素含有半導体層121の場合と同様に、単一の光学的バンドギャップを有する半導体材料によって構成されていてもよいし、第1導電型単結晶半導体基板11側に向かうにつれて連続的に又は段階的に光学的バンドギャップが広くなるように構成されていてもよい。
第2透明導電層17は、第1導電型単結晶半導体基板11の受光面とは反対の裏面に形成される。第2透明導電層17は、「導電性拡散防止層」の一例である。第2透明導電層17は、第1透明導電層14と同様に形成され得る。第2透明導電層17は、表面に凹凸が形成された表面テクスチャを有してもよい。この表面テクスチャは、入射した光を散乱させ、主たる発電層である第1導電型単結晶半導体基板11での光利用効率を高めることができる。第1透明電極層17は、製造された時点において、パッシベーション層16に含まれる拡散成分と同種の拡散成分を含有していてもよい。
第2集電極18は、Ag,Al,Au,Cu,Ni,Rh,Pt,Pr,Cr,Ti,Mo等から選択される少なくとも1種類以上の元素又は合金からなる。なお、図1では、第2集電極18は櫛型状に形成されているが、第2透明導電層17上の全面を覆うように形成されてもよい。
なお、上記では、第1導電型をn型とし、第2導電型をp型とした材料例を示したが、逆に、上記の材料において、第1導電型をp型とし、第2導電型をn型としてもよい。
このような構造の光電変換装置1における動作の概要について説明する。ただし、ここでは図1の各層において第1導電型をn型とし、第2導電型をp型として説明を行う。光電変換装置1では、光が第1の面側から入射すると、第1導電型(n型)単結晶半導体基板11でキャリアが生成される。キャリアである電子とホールとは、第1導電型(n型)単結晶半導体基板11と第2導電型(p型)非晶質水素含有半導体層122とで形成される内部電界によって分離される。電子は、第1導電型(n型)単結晶半導体基板11に向かって移動し、パッシベーション層16を通って第2透明導電層17へと到達する。ホールは、第2導電型(p型)非晶質水素含有半導体層122に向かって移動し、第1透明導電層14へと到達する。その結果、第1集電極15がプラス極となり、第2集電極18がマイナス極となって、外部に電力が取り出される。
次に、このような構造の光電変換装置1の製造方法について説明する。図2~図3は、実施形態による光電変換装置の製造方法の手順の一例を模式的に示す断面図である。まず、第1導電型単結晶半導体基板11(n型c-Si基板11a)を用意する。n型c-Si基板11aの両面に、数μmから数十μmの高さを有するピラミッド状の凹凸構造を形成してもよい。ピラミッド状の凹凸構造は、例えば、水酸化ナトリウム(NaOH)や水酸化カリウム(KOH)等のアルカリ溶液を用いた異方性エッチングによって形成され得る。
次に、洗浄を行う。n型c-Si基板11aを第1の真空チャンバ内へ移動する。200℃以下の基板温度で真空加熱して基板表面に付着した水分を除去する。例えば、基板温度170℃で加熱処理する。その後、第1の真空チャンバ内に水素(H)ガスを導入する。プラズマ放電によってn型c-Si基板11aの片面のクリーニングを行う。
ついで、図2(a)に示されるように、n型c-Si基板11aの片面に、i型非晶質水素含有半導体層121としてのi型a-Si:H層121aを形成する。i型a-Si:H層121aは、例えば、第1の真空チャンバ内にシラン(SiH)ガスとHガスが導入され、且つ基板温度が170℃に保持される状況下において、プラズマ化学気相成長(CVD:Chemial Vapor Deposition)法によって形成される。
その後、図2(b)に示されるように、i型a-Si:H層121a上に、第2導電型非晶質水素含有半導体層122としてのp型a-Si:H層122aを形成する。この処理では、先ず、n型c-Si基板11aを第2の真空チャンバ内へ移動する。p型a-Si:H層122aは、第2の真空チャンバ内に、SiHガス、Hガス、ジボラン(B)ガスが導入される状況下において、プラズマCVD法によって形成される。このとき、基板温度は、例えば、170℃以下である。Bガスの流量は、例えば、SiHガスの流量に対して1%程度とする。i型a-Si:H層121aとp型a-Si:H層122aとによってパッシベーション層12が形成される。
ついで、n型c-Si基板11aを第3の真空チャンバへ移動する。第3の真空チャンバ内にHガスを導入する。基板温度を170℃にして、プラズマ放電によるn型c-Si基板11aの第2の面のクリーニングを行う。
その後、図2(c)に示されるように、n型c-Si基板11aの第2の面上にi型非晶質半導体層161としてのi型a-Si:H層161aを形成する。i型a-Si:H層161aは、第3の真空チャンバ内にSiHガスおよびHガスが導入され、且つ基板温度が170℃に保持される状況下において、i型a-Si:H層121aと同様に、プラズマCVD法によって形成される。
続いて、図2(d)に示されるように、i型a-Si:H層161a上に第1導電型非晶質半導体層162としてのn型a-Si:H層162aを形成する。この処理では、先ず、n型c-Si基板11aを第4の真空チャンバへ移動する。n型a-Si:H層162aは、第4の真空チャンバ内にSiHガス、Hガス、およびホスフィン(PH)ガスが導入され、且つ基板温度が170℃に保持される状況下において、プラズマCVD法によって形成される。i型a-Si:H層161aとn型a-Si:H層162aとによってパッシベーション層16が形成される。
次に、図3(a)に示されるように、p型a-Si:H層122a上に、第1透明導電層14としてのITO層14aを形成する。ITO層14aは、ITOターゲットを用いたスパッタリング法により形成され得る。ITO層14aは、第5の真空チャンバへ、希ガス、例えば、アルゴン(Ar)ガスが導入され、且つ基板温度が室温程度である状況下において、スパッタリング法によって、p型a-Si:H層122a上に、ITO層14aを堆積する。希ガスに加えて、Oガス及び/又はHガスが導入されてもよい。さらに、窒素(N)ガスが導入されてもよい。この実施形態で用いる室温程度とは、外部から意図的に加熱を行わないことを意味する。ITO層14aは、反応性プラズマ蒸着(RPD)法により形成されてもよい。ITO層14aの形成方法は、必ずしも、これらの方法に限定されない。スパッタリング法において用いられるスパッタリング装置については、後で図4~図7を用いて説明する。これにより、ITO層14aは、上述したように多量の希ガスを含むことができる。即ち、図4~図7に示すようなスパッタリング装置を用いることにより、導電性拡散防止層(ITO層14a)を生成しつつ、当該層に多量の希ガスを含ませることができる。これにより、当該層およびその下地層となる拡散成分を含む層(121a+122a)へのダメージを低減しつつ、拡散成分の拡散を防止乃至抑制できる。導電性拡散防止層は、上述のスパッタリング装置を用いた製造方法以外の方法により生成されてもよい。そのような方法としては、例えば、上述のRPD法等、従来公知の方法を採用可能である。他の方法による当該層の生成後に、当該層内の希ガス含有量を高める処理を施してもよい。そのような処理としては、例えば、イオン注入法が挙げられる。これにより、多量の希ガスを当該層内に導入できる。
ついで、図3(b)に示されるように、n型a-Si:H層162a上に、第2透明導電層17としてのITO層17aを形成する。この処理では、先ず、n型c-Si基板11aを第6の真空チャンバに移動する。ITO層17aは、例えば、スパッタリング法、電子ビーム堆積法、原子層堆積法、CVD法、低圧CVD法、MOCVD法、ゾルゲル法、印刷法、スプレー法等の種々の方法により作製可能である。
そして、ITO層14a上に第1集電極15を形成する。さらに、ITO層17a上に第2集電極18を形成する。第1集電極15および第2集電極18は、印刷法により銀ペーストなどの導電性ペーストを櫛型に塗布した後、基板温度200℃で90分間焼成することによって作製され得る。また、第2集電極18は、高い反射率と導電性を有するAg,Al,Au,Cu,Ni,Rh,Pt,Pr,Cr,Ti,Mo等から選択される少なくとも1種類以上の元素又は合金からなる層により構成されてもよい。第2集電極18は、ITO層17a上の全面を覆うように形成されてもよい。以上のようにして、図1に示される構造の光電変換装置1が得られる。
ここでは、1つの半導体光電変換層を有する光電変換装置1を例にとって説明したが、本発明はこれに限定されるものではない。つまり、本発明は結晶シリコンと非晶質シリコンとのヘテロ接合を有する光電変換装置に限定されることなく、例えば所定の導電型の半導体層上に透明導電層が形成される構造を有する光電変換装置にも適用することができる。
<<スパッタリング装置>>
次に、上述したスパッタリング法に用いられるスパッタリング装置について説明する。本実施形態に係るスパッタリング装置は、少なくとも透明導電層の生成に用いられ得る。当該スパッタリング装置により、受光面側の透明導電層14、受光面と反対側の透明導電層17、又はそれらの両方のいずれが生成されてもよい。
図4および図5は、本実施形態に係るスパッタリング装置を示す縦断面図および平面図である。図4及び図5は、スパッタリング装置の真空容器の内部に設けられたスパッタリングカソードおよびアノード付近の構成を示す。図4は、図5のW-W線に沿った断面図である。図6は、図4に示すスパッタリング装置においてスパッタリングターゲットの表面近傍にプラズマが発生した状態を示す縦断面図である。図7は、図4に示すスパッタリング装置においてスパッタリングターゲットの表面近傍にプラズマが発生した状態を示す平面図である。
X方向は、スパッタリングカソード1の長手方向である。Y方向は、スパッタリングカソード1の短手方向である。Z方向は、スパッタリングターゲット210の軸線方向である。X、Y及びZ方向は、互いに直交する。X方向及びY方向は、スパッタリングターゲット210の径方向に該当する。スパッタリングカソード201が設けられたスパッタリング装置においては、X方向は、水平方向である。Y方向は、鉛直方向である。Z方向は、スパッタリングカソード1と被処理体Eとが互いに向かい合う方向である。但し、Z方向が鉛直方向であってもよい。即ち、スパッタダウン、サイドスパッタ、スパッタアップのいずれも採用可能である。
図4および図5に示すように、本実施形態に係るスパッタリング装置は、横断面形状が矩形の角管状の形状を有し、エロージョン面が内側を向いているスパッタリングターゲット210と、このスパッタリングターゲット210の外側に設けられた永久磁石220と、この永久磁石220の外側に設けられたヨーク230とを有する。スパッタリングターゲット210は、透明導電層(14,17)を形成するための材料により構成されている。スパッタリングターゲット210、永久磁石220およびヨーク230により、スパッタリングカソード201が形成されている。スパッタリングカソード201は、一般的には、電気的に絶縁された状態で真空容器(図示せず)に対して固定される。また、永久磁石220およびヨーク230により磁気回路MF(図6参照)が形成されている。永久磁石220の極性は図4に示す通りであるが、各々が全く逆の極性でも何ら差し支えない。スパッタリングターゲット210と永久磁石220との間には、好適には冷却用のバッキングプレート(図示せず)が設けられ、このバッキングプレートの内部に設けられた流路に冷媒(例えば冷却水)が流される。スパッタリングターゲット210により囲まれた直方体状の空間の近傍に、スパッタリングターゲット210のエロージョン面が露出するようにL字型の断面形状を有するアノード240が設けられている。このアノード240は、一般的には、接地された真空容器に接続される。また、スパッタリングターゲット210により囲まれた直方体状の空間の近傍に、スパッタリングターゲット210のエロージョン面が露出するようにL字型の断面形状を有する光線遮断シールド250が設けられている。光線遮断シールド250は導電体、典型的には金属により形成される。光線遮断シールド250はアノードを兼用し、アノード240と同様に、一般的には、接地された真空容器に接続される。
図5に示すように、スパッタリングターゲット210の互いに対向する一対の長辺部の間の距離をa、スパッタリングターゲット210の互いに対向する一対の短辺部の間の距離をbとすると、例えば、b/aは2以上に選ばれ、一般的には40以下に選ばれる。aは、例えば、一般的には50mm以上150mm以下に選ばれる。
このスパッタリング装置は、スパッタリングターゲット210により囲まれた空間と対向するように当該空間から間隔を空けて離れた位置に位置する基板Sに対して成膜を行うように構成されている。基板Sは、スパッタリング装置に設けられた所定の搬送機構(図示せず)により保持される。成膜は、基板Sを、スパッタリングターゲット210に対し、スパッタリングターゲット210の長辺部を横断する方向(X方向)に移動させながら行う。基板Sとしては、特に限定されず、いわゆるロールツーロールプロセスで用いられるロールに巻かれた長尺のフィルムであってもよく、基板であってもよい。
真空容器を真空ポンプにより高真空に排気した後、スパッタリングターゲット210により囲まれた空間にスパッタリングガスとして希ガスを導入する。アノード240とスパッタリングカソード201との間に、所定の電源によりプラズマ発生に必要な、一般的には直流の高電圧を印加する。一般的には、アノード240が接地され、スパッタリングカソードに負の高電圧(例えば、-400V)が印加される。これによって、図6および図7に示すように、スパッタリングターゲット210の表面近傍にこのスパッタリングターゲット210の内面に沿って周回するプラズマ260が発生する。
成膜時のスパッタリング条件としては、特に限定されないが、導電性拡散防止層(透明導電層)の希ガス含有量を高めるために、例えば、以下のような条件が採用されることが好ましい。希ガス流量(例えばアルゴン流量)は、50sccm以上であることが好ましい。希ガス流量(例えばアルゴン流量)は、500sccm以下であることが好ましい。希ガスと共に酸素が供給される場合には、酸素流量は、2sccm以上であることが好ましい。酸素流量は、20sccm以下であることが好ましい。スパッタリング電力は、500W以上であることが好ましい。スパッタリング電力は、5000W以下であることが好ましい。直流放電電圧(絶対値)は、250V以上であることが好ましい。直流放電電圧(絶対値)は、1000V以下であることが好ましい。なお、直流放電には、パルス放電が適用されてもよい。スパッタリング圧力は、0.1Pa以上であることが好ましい。スパッタリング圧力は、1Pa以下であることが好ましい。T-Sは、30mm以上であることが好ましい。T-Sは、300mm以下であることが好ましい。なお、T-Sは、スパッタリングターゲット210と基板Sとの距離を示す。基板Sの温度は、10℃以上であることが好ましく、20℃以上であることがより好ましい。基板Sの温度は、70℃以下であることが好ましく、60℃以下であることがより好ましい。
スパッタリングターゲット210の内面に沿って周回するプラズマ260中における希ガスのイオンにより、スパッタリングターゲット210がスパッタリングされる結果、スパッタリングターゲット210を構成する原子がスパッタリングターゲット210により囲まれた空間から飛び出す。このとき、スパッタリングターゲット210のエロージョン面のうちプラズマ260の近傍の部分から原子が飛び出す。しかし、スパッタリングターゲット210の内側の短辺部のエロージョン面から飛び出す原子は、例えば、成膜に使用されない。これを実現するためには、スパッタリングターゲット210の長辺方向の両端部を遮蔽するようにスパッタリングターゲット210の上方に水平遮蔽板を設けることにより、スパッタリングターゲット210の短辺部のエロージョン面から飛び出す原子が成膜時に基板Sに到達しないようにすればよい。あるいは、スパッタリングターゲット210の長手方向の幅bを基板Sの幅より十分に大きくすることにより、スパッタリングターゲット210の短辺部のエロージョン面から飛び出す原子が成膜時に基板Sに到達しないようにしてもよい。スパッタリングターゲット210から飛び出る原子の一部は光線遮断シールド250により遮られる結果、スパッタリングターゲット210の長辺部のエロージョン面から、図6に示すようなスパッタ粒子束270、280が得られる。スパッタ粒子束270、280は、スパッタリングターゲット210の長手方向にほぼ均一な強度分布を有する。
安定なスパッタ粒子束270、280が得られるようになった時点で、基板Sを、スパッタリングターゲット210に対し、スパッタリングターゲット210の長辺部を横断する方向(X方向)に移動させながら、スパッタ粒子束270、280により成膜を行う。基板Sが、スパッタリングターゲット210により囲まれた空間と対向する位置に向かって移動すると、まずスパッタ粒子束270が基板Sに入射して成膜が開始する。基板Sがさらに移動し、スパッタ粒子束280が入射するようになると、スパッタ粒子束270に加えてスパッタ粒子束280も成膜に寄与するようになる。その結果、基板Sにスパッタ粒子束270、280が入射して成膜が行われる。こうして成膜を行いながら基板Sをさらに移動させる。そして、基板Sが、スパッタリングターゲット210により囲まれた空間から離れ、基板Sに対してスパッタ粒子束270、280が入射しなくなる位置まで移動させる。これにより、成膜が完了する。
上述したスパッタリングカソード201を用いることにより、導電性拡散防止層としての透明電極層14、17は、多量の希ガスを含有するように形成される。
<<実施例>>
実施形態に示される構造の光電変換装置の実施例について、比較例とともに示す。
<実施例1>
 第1導電型単結晶半導体基板11としてのn型c-Si基板11aを準備した。次に、n型c-Si基板11a上を真空チャンバへ導入し、200℃で加熱を行って基板表面に付着した水分を除去した。その後、真空チャンバ内に水素ガスを導入し、プラズマ放電により基板表面のクリーニングを行った。続いて、基板温度を約150℃とし、SiHガスおよびHガスを真空チャンバ内に導入して、RFプラズマCVD法によって、i型a-Si:H層121aを形成した。続いて、SiHガス、HガスおよびBガスを導入して、p型a-Si:H層122aを形成した。次に、p型a-Si:H層122a上に、スパッタリング法によりITO層14aを形成した。ITO層14aは、第1透明導電層14の一例である。ITO層14aは、SnOが添加されたInからなる。ITO層14aは、基板温度を室温程度とし、図4~図7に示したスパッタリングカソード201を有するスパッタリング装置を用いて形成した。その後、プラズマCVD法によって、n型c-Si基板11aの反対側の面上に、i型a-Si:H層161aを形成した。さらに、ドーピングガスとしてPHガスを導入し、i型a-Si:H層161a上に、n型a-Si:H層162aを形成した。ついで、n型a-Si:H層162a上に、室温程度の基板温度で、図4~図7に示したスパッタリングカソード201を有するスパッタリング装置によって、ITO層17aを形成した。ITO層17aは、第2透明導電層17の一例である。その後、真空チャンバへArガスを導入し、約200℃の基板温度で約2時間の加熱処理を行った。そして、ITO層14a、17aの上面の所定領域に、スクリーン印刷法により銀ペーストから成る櫛型の第1集電極15及び第2集電極18を形成した。それによって、光電変換装置1の製造を完了した。なお、ITO層14a、17aの生成時におけるスパッタリング条件は、以下の通りであった。
アルゴン流量:200sccm
酸素流量:6sccm
スパッタリング電力:1500W
直流放電電圧(絶対値):370V
スパッタリング圧力:0.4Pa
T-S:100mm
<実施例2>
 ITO層14a、17aの生成時におけるスパッタリング圧力が、1.0Paに設定されたこと以外については、実施例1と同様の条件により、光電変換装置1を製造した。
<実施例3>
 ITO層14a、17aの生成時におけるスパッタリング圧力が、0.1Paに設定されたこと以外については、実施例1と同様の条件により、光電変換装置1を製造した。
<比較例1>
ITO層14a、17aを、プレーナーマグネトロンスパッタリング法により形成したこと以外については、実施例1と同様にして、光電変換装置1を製造した。なお、プレーナーマグネトロンスパッタリング法については、以下の条件で処理を行った。
アルゴン流量:200sccm
酸素流量:5sccm
スパッタリング電力:1200W
直流放電電圧(絶対値):360V
スパッタリング圧力:0.4Pa
T-S:100mm
<<評価方法>>
<希ガス/主金属の原子数比>
先ず、フィールドエミッション電子プローブマイクロアナライザ(EPMA)(日本電子株式会社製「JXA-8500F」)を用いてITO層14aに対して測定を行った。測定条件は、以下の通りであった。
加速電圧:20kV
照射電流:約0.2μm
測定面積:約10μm
得られた結果は、図8に示す通りであった。図8は、EPMAによる希ガス及び主金属の検出結果の一例を示す。縦軸は、特性X線強度を示す。特性X線強度は、主金属(In)のピークが1となるように示されている。横軸は、特性X線波長(nm)を示す。実施例1のデータは、実線により示されている。比較例1のデータは、破線により示されている。Mは、実施例1のデータのベースラインを示す。Kは、比較例1のデータのベースラインを示す。なお、図8に示すベースラインM、Kは、計測方法を説明するために模式的に描かれた線である。Pは、実施例1におけるベースラインMからの主金属(In)のピーク高さを示す。Qは、比較例1におけるベースラインKからの主金属(In)のピーク高さを示す。Sは、実施例1におけるベースラインMからの希ガス(Ar)のピーク高さを示す。Rは、比較例1におけるベースラインKからの希ガス(Ar)のピーク高さを示す。S/Pにより、実施例1における原子数比(Ar/In)を得た。R/Qにより、比較例1における原子数比(Ar/In)を得た。実施例2、3についても、同様の方法により、原子数比(Ar/In)を得た。
<発電効率>
発電効率の評価については、開放電圧Vocとキャリアライフタイムとを測定することにより実施した。
発電効率は、下記(1)式により表される。
発電効率=(Jsc×Voc×FF(%))/入射光強度・・・(1)
(Jsc:短絡電流密度、FF:フィルファクタ)
短絡電流密度Jscは、下記(2)式により表される。
Jsc=n・q・{exp(qV/kT)-1}・・・(2)
(n:少数キャリア密度、q:単位電荷、V:電位差、k:ボツルマン定数、T:温度)
少数キャリア密度nは、キャリアライフタイムに比例する。従って、上記(1)及び(2)式から明らかなように、発電効率は、開放電圧Voc及びキャリアライフタイムに比例する。そこで、開放電圧Vocとキャリアライフタイムとを測定することにより、発電効率を評価した。
<開放電圧Voc>
開放電圧Vocは、光電変換装置1に電流が流れていない時の電圧である。光が照射されることにより電流が流れている光電変換装置1に対して、当該電流と逆向きに電圧を印加し、電圧を徐々に上げていく。印加される電圧が0である時に流れている電流の密度が、短絡電流密度Jscである。電流が流れなくなった時に印加されている電圧が、開放電圧Vocである。なお、開放電圧は、スパッタリングによる成膜前、スパッタリングによる成膜直後、及び加熱処理(アニーリング)直後において測定された。さらに、開放電圧は、経過日数に応じて測定された。
<キャリアライフタイム>
キャリアライフタイムについては、μ-PCD法により測定した。光電変換装置1にレーザ光をパルス照射すると過剰キャリア(電子・正孔対)が生成される。過剰キャリアの密度の上昇に応じてパルス照射表面のマイクロ波反射率が上昇する。この現象を利用して、マイクロ波反射率の時間変化を計測することにより、キャリアライフタイムを測定した。本測定において、キャリアライフタイムは、パルスレーザ光照射完了時刻から、マイクロ波反射率が1/eに減少するまでに要する時間として定義される。なお、eは、ネイピア数である。本測定では、波長904nmの半導体レーザを用いてレーザ光を得た。また、周波数10GHzのシングル導波管を用いてマイクロ波を得た。なお、キャリアライフタイムは、スパッタリングによる成膜前、スパッタリングによる成膜直後、及び加熱処理(アニーリング)直後において測定された。さらに、キャリアライフタイムは、経過日数に応じて測定された。
<<評価結果>>
<希ガス/主金属の原子数比>
実施例1の原子数比(Ar/In)は、0.66であった。実施例2の原子数比(Ar/In)は、0.40であった。実施例3の原子数比(Ar/In)は、0.82であった。比較例1の原子数比(Ar/In)は、0.30であった。
<開放電圧Voc>
図9(a)は、実施例1及び比較例1に係る光電変換装置の開放電圧Voc及び経過時間を示す。実線は、実施例1のデータを示す。破線は、比較例1のデータを示す。実施例1では、比較例1よりも、高い開放電圧Vocが得られた。加えて、実施例1では、長期間にわたって、高い開放電圧Vocが維持された。実施例2、3(図示せず)についても、実施例1と同様に、長期間にわたって、高い開放電圧Vocが維持された。
<キャリアライフタイム>
図9(b)は、実施例1及び比較例1に係る光電変換装置におけるキャリアライフタイム及び経過日数を示す。実線は、実施例1のデータを示す。破線は、比較例1のデータを示す。実施例1では、比較例1よりも、長いキャリアライフタイムが得られた。加えて、実施例1では、長期間にわたって、長いキャリアライフタイムが維持された。実施例2、3(図示せず)についても、実施例1と同様に、長期間において、長いキャリアライフタイムが維持された。
また、実施例1~3及び比較例1に関して、スパッタリング前、スパッタリング直後及びアニーリング直後における開放電圧Voc及びキャリアライフタイムは、下表の通りであった。
Figure JPOXMLDOC01-appb-T000001
「スパッタリングによる変化量」(減少量)が示すように、開放電圧及びキャリアライフタイムの両方が、スパッタリングによって減少した。この理由は、例えば、水素終端されたダングリングボンドがダメージを受けたためであると考えられる。開放電圧及びキャリアライフタイムの両方に関して、実施例1~3の「スパッタリングによる変化量」(減少量)は、比較例1の「スパッタリングによる変化量」(減少量)よりも少なかった。これは、生成中の透明導電層(ITO層)に多く含まれる希ガス(アルゴン)が、パッシベーション層からの拡散成分(水素)の拡散を抑制したためであると考えられる。
「アニーリングによる変化値」(増加量)が示すように、開放電圧及びキャリアライフタイムの両方が、アニーリングによって増加した。この理由は、例えば、ダングリングボンドが、層内に吸蔵されている水素により再び終端されたためであると考えられる。開放電圧に関して、実施例1、2の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)よりも少なかった。これは、実施例1、2におけるスパッタリングによるダメージが小さかったため、その回復による増加量も小さくなったことに起因していると考えられる。一方、実施例3の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)よりも多かった。実施例3におけるスパッタリングによるダメージは、実施例1、2と同様に小さいが、実施例3では、回復によって、大きな増加量が得られたためである、と考えられる。一方、キャリアライフタイムに関して、実施例1、3の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)の3倍以上であった。さらに、キャリアライフタイムに関して、実施例2の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)の約2倍であった。これは、生成された透明導電層(ITO層)に多く含まれる希ガス(アルゴン)が、パッシベーション層からの拡散成分(水素)の拡散を抑制したためであると考えられる。比較例1においても、上述したように、アニーリングによってダングリングボンドの水素終端が生じるが、水素の拡散も生じるため、実施例1~3と比べて、増加量が少なくなったと考えられる。
このように、スパッタリング及びアニーリングによる開放電圧及びキャリアライフタイムの変化量によっても、多量の希ガスを含有する透明導電層による拡散成分の拡散の抑制乃至防止が確認された。
以上のように、実施例1~3に係る光電変換装置は、比較例1に係る光電変換装置と比べて、高い原子数比(Ar/In)を有し、高い開放電圧Voc及び長いキャリアライフタイムを得ることができ、優れた発電効率を実現できた。
実施例1~3では、ITO層14a、17aを生成する時にスパッタリングカソード201が用いられている。スパッタリングカソード201では、スパッタリングターゲット210が、互いに対向するエロージョン面を有している。言い換えると、スパッタリングターゲット201は、互いに対向する一対の長辺部を有している。そのため、反跳希ガス(例えば反跳Ar)が複数回ターゲットに衝突する事態が生じる。衝突の度に、反跳希ガスの一部がスパッタリング粒子に取り込まれる。その結果、より多くの希ガスを含有するスパッタリング粒子が生成されたり、希ガスを含有するスパッタリング粒子がより多く生成されたりする。これにより、より多くの希ガスを含有するITO層14a、17aが形成される。これに対して、比較例1のプレーナーマグネトロンスパッタリング法では、スパッタリングターゲットが、互いに対向する部分(エロージョン面)を有さない。そのため、スパッタリングターゲットへの希ガスの衝突は、通常、一回である。その結果、比較例1では、希ガスの含有量が、実施例1よりも低くなる。
このように、図4~図7に示すスパッタリングカソード201を用いて導電性拡散防止層を形成することにより、導電性拡散防止層の希ガス含有量を高めることができる。
実施例1~3及び比較例1のような光電変換装置1においては、パッシベーション層の性能が高いほど、キャリアライフタイムが長くなる。パッシベーション層の性能は、水素によるダングリングボンドの終端の最適化の程度に依存する。パッシベーション層上に形成される層により、パッシベーション層における水素によるダングリングボンドの終端が最適化された状態を維持できれば、キャリアライフタイムをより長く保つことができる。ダングリングボンドの終端の状態は、水素の拡散の増加に伴って、より大きく変化したり、より変化し易くなったりして、最適化された状態から逸脱し、これにより、キャリアライフタイムが減少する。実施例1~3に係る光電変換装置1では、ITO層14a、17aにおける希ガス/主金属の原子数比が高く、ITO層14a、17aは、比較例1と比べて、より多くの希ガスを含有している。その希ガスが水素の拡散を抑制する作用を生じさせている。
このように、導電性拡散防止層の希ガス含有量を高めることにより、導電層から導電性拡散防止層への拡散成分の拡散を抑制乃至防止できる。
<<変形例>>
本発明の積層構造体は、図1に示す例に限定されない。本発明の積層構造体としては、例えば、図10及び図11(a)~(c)の各々に示す光電変換装置が挙げられる。
図10は、他の実施形態に係る光電変換装置の概略構成を示す断面図である。図10に示す積層構造体1は、パッシベーション層12、16が単一層であることを除いて、図1に示す積層構造体1と同様の積層構造を有する。ここでは、図1に示す積層構造体1との相違点について説明し、当該相違点以外についての説明は省略する。
パッシベーション層12は、i型非晶質水素含有半導体層からなる。パッシベーション層12は、第1導電型単結晶半導体基板11と第1透明導電層14との間において、第1導電型単結晶半導体基板11及び第1透明導電層14の両方と接触するように設けられている。i型非晶質水素含有半導体層は、上述したi型非晶質水素含有半導体層121と同じように形成され得る。
パッシベーション層16は、i型非晶質半導体層からなる。パッシベーション層16は、第1導電型単結晶半導体基板11と第2透明導電層17との間において、第1導電型単結晶半導体基板11及び第2透明導電層17の両方と接触するように設けられている。i型非晶質半導体層は、上述したi型非晶質半導体層161と同じように形成され得る。
図11(a)~(c)の各々は、他の実施形態に係る光電変換装置の概略構成を示す断面図である。図11(a)~(c)の各々に係る光電変換装置301は、有機エレクトロルミネッセンス装置である。
図11(a)に示す光電変換装置301では、発光層311(EML)の受光面(図中の上面)には、電子輸送層312(ETL)、電荷生成層313(CGL)、正孔輸送層314(HTL)、保護層315及び透明導電層316が、図中における下から上に向けてこの順に、隣り合う層が互いに接触するように積層されている。発光層311(EML)の受光面と反対側の面(図中の下面)には、正孔輸送層317(HTL)、正孔注入層318(HIL)及び金属電極層319が、図中における上から下に向けてこの順に、隣り合う層が互いに接触するように積層されている。保護層315は、拡散成分(例えば水素)を含有し、透明導電層316が、上述したように多量の希ガスを含有する。その点を除いて、各層311~319としては、例えば、公知の構成が採用され得る。保護層315は、例えば、導電性有機物からなる。導電性有機物は、例えば、金属ドーパントを含む有機化合物、金属有機化合物を含み、より具体的には、例えば、金属フタロシアニン等の有機金属錯体を含む。透明導電層316としては、例えば、上述した透明導電層14、17と同様の構成が採用され得る。図11(a)に示す光電変換装置301において、保護層315は、「導電層」の一例であり、透明導電層316は、「導電性拡散防止層」の一例である。
図11(b)に示す光電変換装置301は、保護層315を有さない点を除いて、図11(a)に示す光電変換装置301と同様であるから、以下においては相違点について説明し、相違点以外については説明を省略する。正孔輸送層317は、拡散成分(例えば水素)を含有し、透明電極層316は、上述したように多量の希ガスを含有する。図11(b)に示す光電変換装置301において、正孔輸送層314は、「導電層」の一例であり、透明導電層316は、「導電性拡散防止層」の一例である。
図11(c)に示す光電変換装置301は、電荷生成層313及び正孔輸送層314を有さない点を除いて、図11(b)に示す光電変換装置301と同様であるから、以下においては相違点について説明し、相違点以外については説明を省略する。電子輸送層312は、拡散成分(例えば水素)を含有し、透明電極層316は、上述したように多量の希ガスを含有する。図11(c)に示す光電変換装置301において、電子輸送層312は、「導電層」の一例であり、透明導電層316は、「導電性拡散防止層」の一例である。
上述の実施形態および実施例において挙げた数値、材料、構造、形状などはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、材料、構造、形状などを用いてもよい。
1 光電変換装置
11 第1導電型単結晶半導体基板
12 パッシベーション層
121 i型非晶質水素含有半導体層
122 第2導電型非晶質水素含有半導体層
14 第1透明導電層
15 第1集電極
16 パッシベーション層
161 i型非晶質半導体層
162 第1導電型非晶質半導体層
17 第2透明導電層
18 第2集電極

Claims (25)

  1. 積層構造体であって、
    前記積層構造体は、
    導電性を有するとともに、隣接する層へ拡散可能な拡散成分を含む導電層と、
    前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、前記少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含む導電性拡散防止層と
    を有する。
  2. 請求項1に記載の積層構造体であって、
    前記希ガスは、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも1種である。
  3. 請求項1又は2に記載の積層構造体であって、
    前記拡散成分は、前記希ガスよりも原子量の小さい非金属元素である。
  4. 請求項1~3のいずれか1に記載の積層構造体であって、
    前記積層構造体は、光電変換装置である。
  5. 請求項4に記載の積層構造体であって、
    前記光電変換装置は、ヘテロ接合型光電変換装置である。
  6. 請求項4に記載の積層構造体であって、
    前記光電変換装置は、ペロブスカイト型光電変換装置である。
  7. 請求項4に記載の積層構造体であって、
    前記光電変換装置は、有機物光電変換装置である。
  8. 請求項4に記載の積層構造体であって、
    前記光電変換装置は、有機エレクトロルミネッセンス型発光装置である。
  9. 請求項4~6のいずれか1に記載の積層構造体であって、
    前記導電層は、前記拡散成分として水素を含むパッシベーション層である。
  10. 請求項4、7又は8に記載の積層構造体であって、
    前記導電層は、有機物からなる。
  11. 請求項4~10のいずれか1に記載の積層構造体であって、
    前記導電性拡散防止層は、透明であり且つ導電性を有する透明導電層である。
  12. 請求項4~11のいずれか1に記載の積層構造体であって、
    前記導電性拡散防止層は、前記主金属として、インジウム、亜鉛及び錫からなる群から選択される、少なくとも1つの元素を含む。
  13. 積層構造体の製造方法であって、
    前記積層構造体は、
    導電性を有するとともに、隣接する層へ拡散可能な成分を含む導電層と、
    前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、希ガスを含む導電性拡散防止層と
    を有し、
    前記製造方法は、
    導電層が形成された構造体を準備する工程と、
    横断面形状が互いに対向する一対の長辺部を有する管状の形状を有し、前記少なくとも1種の金属又は金属酸化物を含むエロージョン面が内側を向いているスパッタリングターゲットを有するスパッタリングカソードを用い、前記スパッタリングターゲットの軸線方向において前記スパッタリングターゲットと間隔を空けて前記構造体を配置し、前記スパッタリングターゲットの内面に沿って周回するプラズマが発生するように放電を行って、前記希ガスを含むスパッタリングガスにより発生するプラズマ中のイオンにより前記スパッタリングターゲットの前記長辺部の内面をスパッタリングすることにより、前記構造体の前記導電層上に、前記導電層と隣接するように前記導電性拡散防止層を形成する工程と
    を有する。
  14. 請求項13に記載の積層構造体の製造方法であって、
    前記導電性拡散防止層は、前記少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の前記希ガスを含む。
  15. 請求項13又は14に記載の積層構造体の製造方法であって、
    前記希ガスは、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも1種である。
  16. 請求項13~15のいずれか1に記載の積層構造体の製造方法であって、
    前記拡散成分は、前記希ガスよりも原子量の小さい非金属元素である。
  17. 請求項13~16のいずれか1に記載の積層構造体の製造方法であって、
    前記積層構造体は、光電変換装置である。
  18. 請求項17に記載の積層構造体の製造方法であって、
    前記光電変換装置は、ヘテロ接合型光電変換装置である。
  19. 請求項17に記載の積層構造体の製造方法であって、
    前記光電変換装置は、ペロブスカイト型光電変換装置である。
  20. 請求項17に記載の積層構造体の製造方法であって、
    前記光電変換装置は、有機物光電変換装置である。
  21. 請求項17に記載の積層構造体の製造方法であって、
    前記光電変換装置は、有機エレクトロルミネッセンス型発光装置である。
  22. 請求項17~19のいずれか1に記載の積層構造体の製造方法であって、
    前記導電層は、前記拡散成分として水素を含むパッシベーション層である。
  23. 請求項17、20又は21に記載の積層構造体の製造方法であって、
    前記導電層は、有機物からなる。
  24. 請求項17~23のいずれか1に記載の積層構造体の製造方法であって、
    前記導電性拡散防止層は、透明であり且つ導電性を有する透明導電層である。
  25. 請求項17~24のいずれか1に記載の積層構造体の製造方法であって、
    前記導電性拡散防止層は、前記主金属として、インジウム、亜鉛及び錫からなる群から選択される、少なくとも1つの元素を含む。
PCT/JP2020/031961 2019-08-30 2020-08-25 積層構造体、及び積層構造体の製造方法 WO2021039764A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/638,625 US20220302325A1 (en) 2019-08-30 2020-08-25 Multilayer Structure and Method for Producing Multilayer Structure
EP20858182.7A EP4023431A4 (en) 2019-08-30 2020-08-25 MULTI-LAYER STRUCTURE AND METHOD OF MAKING A MULTI-LAYER STRUCTURE
KR1020227009949A KR102689097B1 (ko) 2019-08-30 2020-08-25 적층 구조체, 및 적층 구조체의 제조 방법
JP2021542916A JP7437053B2 (ja) 2019-08-30 2020-08-25 積層構造体、及び積層構造体の製造方法
CN202080060403.9A CN114342090A (zh) 2019-08-30 2020-08-25 积层结构体及积层结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-157956 2019-08-30
JP2019157956 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039764A1 true WO2021039764A1 (ja) 2021-03-04

Family

ID=74685624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031961 WO2021039764A1 (ja) 2019-08-30 2020-08-25 積層構造体、及び積層構造体の製造方法

Country Status (6)

Country Link
US (1) US20220302325A1 (ja)
EP (1) EP4023431A4 (ja)
JP (1) JP7437053B2 (ja)
KR (1) KR102689097B1 (ja)
CN (1) CN114342090A (ja)
WO (1) WO2021039764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058021A1 (ja) * 2022-09-13 2024-03-21 京セラ株式会社 太陽電池素子及び太陽電池モジュール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0140884B2 (ja) * 1984-06-15 1989-09-01 Seiki Kinzoku Kako Kk
WO2012043124A1 (ja) * 2010-10-01 2012-04-05 株式会社カネカ 光電変換装置の製造方法
WO2013061637A1 (ja) 2011-10-27 2013-05-02 三菱電機株式会社 光電変換装置とその製造方法、および光電変換モジュール
JP2016106440A (ja) * 2016-03-23 2016-06-16 株式会社半導体エネルギー研究所 光電変換装置の作製方法
US20160329443A1 (en) * 2015-05-06 2016-11-10 Solarcity Corporation Solar cell with a low-resistivity transparent conductive oxide layer
JP2017028279A (ja) * 2015-07-17 2017-02-02 株式会社半導体エネルギー研究所 半導体装置、照明装置、および車両
JP2017152695A (ja) * 2016-02-23 2017-08-31 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
WO2017195722A1 (ja) * 2016-05-09 2017-11-16 株式会社カネカ 積層型光電変換装置およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2895213B2 (ja) * 1990-11-26 1999-05-24 キヤノン株式会社 光起電力素子
JP2001152323A (ja) * 1999-11-29 2001-06-05 Canon Inc 透明電極および光起電力素子の作製方法
JP2001172051A (ja) * 1999-12-15 2001-06-26 Nippon Sheet Glass Co Ltd ディスプレイ用ガラス基板
JP2004311965A (ja) * 2003-03-26 2004-11-04 Canon Inc 光起電力素子の製造方法
WO2007086276A1 (ja) * 2006-01-25 2007-08-02 Ulvac, Inc. スパッタリング装置及び成膜方法
FR2924723B1 (fr) * 2007-12-11 2010-12-17 Centre Nat Rech Scient Support solide revetu d'au moins un film de metal et d'au moins une couche d'oxyde transparent et conducteur pour la detection par spr et/ou par une methode electrochimique
US10672925B2 (en) * 2013-06-14 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Thin film solar cell and method of forming same
JP2015072938A (ja) 2013-10-01 2015-04-16 長州産業株式会社 光発電素子及びその製造方法
JP6729602B2 (ja) * 2015-11-30 2020-07-22 Agc株式会社 光電変換素子を製造する方法
CN109881166B (zh) * 2016-03-30 2021-04-20 京浜乐梦金属科技株式会社 溅射阴极、溅射装置和成膜体的制造方法
JP6440884B1 (ja) 2018-05-10 2018-12-19 京浜ラムテック株式会社 スパッタリングカソードおよびスパッタリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0140884B2 (ja) * 1984-06-15 1989-09-01 Seiki Kinzoku Kako Kk
WO2012043124A1 (ja) * 2010-10-01 2012-04-05 株式会社カネカ 光電変換装置の製造方法
WO2013061637A1 (ja) 2011-10-27 2013-05-02 三菱電機株式会社 光電変換装置とその製造方法、および光電変換モジュール
US20160329443A1 (en) * 2015-05-06 2016-11-10 Solarcity Corporation Solar cell with a low-resistivity transparent conductive oxide layer
JP2017028279A (ja) * 2015-07-17 2017-02-02 株式会社半導体エネルギー研究所 半導体装置、照明装置、および車両
JP2017152695A (ja) * 2016-02-23 2017-08-31 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP2016106440A (ja) * 2016-03-23 2016-06-16 株式会社半導体エネルギー研究所 光電変換装置の作製方法
WO2017195722A1 (ja) * 2016-05-09 2017-11-16 株式会社カネカ 積層型光電変換装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058021A1 (ja) * 2022-09-13 2024-03-21 京セラ株式会社 太陽電池素子及び太陽電池モジュール

Also Published As

Publication number Publication date
CN114342090A (zh) 2022-04-12
JPWO2021039764A1 (ja) 2021-03-04
US20220302325A1 (en) 2022-09-22
EP4023431A1 (en) 2022-07-06
EP4023431A4 (en) 2022-10-19
KR102689097B1 (ko) 2024-07-25
KR20220050220A (ko) 2022-04-22
JP7437053B2 (ja) 2024-02-22

Similar Documents

Publication Publication Date Title
JP3768672B2 (ja) 積層型光起電力素子
JP5762552B2 (ja) 光電変換装置とその製造方法
US20070023082A1 (en) Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
KR20080002657A (ko) 반도체 구조, 태양 전지 및 광 전지 디바이스 제조 방법
JP2012164961A (ja) 太陽電池およびその製造方法
JPH0590620A (ja) 太陽電池
WO2012040299A2 (en) A thin-film photovoltaic device with a zinc magnesium oxide window layer
US20180062008A1 (en) Method and system for manufacturing electrical contact for photovoltaic structures
KR20120052310A (ko) 태양 전지 전면 컨택트 도핑
JP2007208093A (ja) 堆積膜の形成方法及び光起電力素子の形成方法
KR20200075640A (ko) 텐덤 태양전지
CN105355699B (zh) 一种多结多叠层碲化镉薄膜太阳能电池及其制备方法
JP7437053B2 (ja) 積層構造体、及び積層構造体の製造方法
JPH10178195A (ja) 光起電力素子
US20090020153A1 (en) Diamond-Like Carbon Electronic Devices and Methods of Manufacture
KR102218417B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
JP5645734B2 (ja) 太陽電池素子
EP3419057B1 (en) Solar cell and method for preparing same
JP5770294B2 (ja) 光電変換装置およびその製造方法
KR20110072959A (ko) 후면접합 태양전지의 제조방법
US20090260680A1 (en) Photovoltaic Devices and Associated Methods
JP2002222969A (ja) 積層型太陽電池
KR102218629B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
JP2007189266A (ja) 積層型光起電力素子
JPH0582815A (ja) 太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227009949

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020858182

Country of ref document: EP

Effective date: 20220330

ENP Entry into the national phase

Ref document number: 2021542916

Country of ref document: JP

Kind code of ref document: A