WO2021039764A1 - 積層構造体、及び積層構造体の製造方法 - Google Patents
積層構造体、及び積層構造体の製造方法 Download PDFInfo
- Publication number
- WO2021039764A1 WO2021039764A1 PCT/JP2020/031961 JP2020031961W WO2021039764A1 WO 2021039764 A1 WO2021039764 A1 WO 2021039764A1 JP 2020031961 W JP2020031961 W JP 2020031961W WO 2021039764 A1 WO2021039764 A1 WO 2021039764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- laminated structure
- photoelectric conversion
- conversion device
- conductive
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 238000009792 diffusion process Methods 0.000 claims abstract description 145
- 230000002265 prevention Effects 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 50
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 17
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims description 113
- 239000007789 gas Substances 0.000 claims description 107
- 238000004544 sputter deposition Methods 0.000 claims description 84
- 238000005477 sputtering target Methods 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 52
- 239000001257 hydrogen Substances 0.000 claims description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims description 50
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 44
- 238000002161 passivation Methods 0.000 claims description 39
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 28
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 230000003628 erosive effect Effects 0.000 claims description 12
- 238000005401 electroluminescence Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052754 neon Inorganic materials 0.000 claims description 5
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052743 krypton Inorganic materials 0.000 claims description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052724 xenon Inorganic materials 0.000 claims description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 384
- 239000004065 semiconductor Substances 0.000 description 71
- 239000000758 substrate Substances 0.000 description 71
- 229910021417 amorphous silicon Inorganic materials 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 28
- 239000013078 crystal Substances 0.000 description 21
- 125000004429 atom Chemical group 0.000 description 19
- 229910021419 crystalline silicon Inorganic materials 0.000 description 17
- 239000010408 film Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 15
- 238000000137 annealing Methods 0.000 description 15
- 230000008859 change Effects 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000010248 power generation Methods 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910017875 a-SiN Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical group 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- FWPIOHJLMYTOSC-UHFFFAOYSA-N [B]=O.[Zn] Chemical compound [B]=O.[Zn] FWPIOHJLMYTOSC-UHFFFAOYSA-N 0.000 description 1
- MVHKYWUHIXRSGY-UHFFFAOYSA-N [Sn+2]=O.[In+3].[Sn+2]=O.[O-2].[In+3].[O-2].[O-2].[O-2].[O-2] Chemical compound [Sn+2]=O.[In+3].[Sn+2]=O.[O-2].[In+3].[O-2].[O-2].[O-2].[O-2] MVHKYWUHIXRSGY-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H01L31/02167—
-
- H01L31/0224—
-
- H01L31/022433—
-
- H01L31/022466—
-
- H01L31/0747—
-
- H01L31/1868—
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a laminated structure and a method for manufacturing the laminated structure.
- the laminated structure is constructed by stacking a plurality of layers so as to be adjacent to each other.
- each layer has a function such as conductive, semi-conductive, or insulating.
- the functions of the laminated structure as a whole are realized.
- the diffusible diffusing component of one layer diffuses to another layer adjacent to the one layer, and as a result, the performance of the laminated structure as a whole deteriorates. There was a case that the problem occurred.
- a heterojunction type photoelectric conversion device As an example of the laminated structure, a heterojunction type photoelectric conversion device can be mentioned (see, for example, Patent Document 1).
- the heterojunction photoelectric conversion device described in Patent Document 1 has a passivation layer made of hydrogen-terminated amorphous silicon and a transparent conductive layer made of ITO (indium tin oxide), which is provided adjacent to the passivation layer.
- ITO indium tin oxide
- the present invention provides a laminated structure capable of preventing or suppressing the diffusion of the diffusion component from a layer containing the diffusion component to a layer adjacent to the layer, and a method for producing the laminated structure. is there.
- the present invention adopts the following configuration.
- the laminated structure of the present invention A conductive layer that has conductivity and contains a diffusing component that can diffuse to adjacent layers, It is provided adjacent to the conductive layer, contains at least one metal or metal oxide so as to have conductivity, and has the number of atoms relative to the number of atoms of the main metal in the at least one metal or metal oxide. It has a conductive diffusion prevention layer containing a rare gas having a ratio of 0.40 or more.
- the conductive diffusion prevention layer contains a large amount of rare gas.
- Rare gases are chemically stable.
- a large amount of rare gas is stably present as a monatomic molecule in the conductive diffusion prevention layer.
- the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can be prevented or suppressed.
- the diffusion of diffusion components in the manufacturing process of a laminated structure can be prevented or suppressed.
- deterioration of the performance of the laminated structure due to the diffusion of the diffusion component can be prevented or suppressed. Since a chemically stable rare gas is used, the influence on the performance of the laminated structure can be prevented or suppressed.
- the main metal refers to a metal (element) having the largest number of atoms among at least one metal or metal oxide constituting the conductive diffusion prevention layer.
- the ratio of the number of atoms of the rare gas to the number of atoms of the main metal in the conductive diffusion prevention layer is 0.40 or more.
- the ratio is preferably 0.50 or more, more preferably 0.60 or more, and further preferably 0.70 or more.
- the ratio is preferably 1.0 or less, and more preferably 0.82 or less.
- Rare gas can be introduced while suppressing or preventing damage to the conductive diffusion prevention layer and the layer containing the diffusion component that is the underlying layer thereof.
- the conductive diffusion prevention layer may contain a diffusion component of the same type as the diffusion component contained in the conductive layer at the time of manufacture.
- the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can also be prevented or suppressed by adjusting the content of the diffusion component in the conductive diffusion prevention layer at the time of production.
- the introduction of large amounts of rare gas according to the present invention may be applied separately or in combination with the adjustment of the diffusion component content in the conductive diffusion prevention layer.
- the introduction of a large amount of rare gas into the conductive diffusion prevention layer is applied to cause the diffusion component from the conductive layer to the conductive diffusion prevention layer. Diffusion can be prevented or suppressed more effectively.
- diffusion of diffusing components can be prevented or suppressed by a rare gas that is chemically stable and has low reactivity. Therefore, even when it is difficult to adjust the content of the diffusion component in the conductive diffusion prevention layer, the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can be prevented or suppressed by the present invention.
- the laminated structure is A conductive layer that is conductive and contains a component that can diffuse into adjacent layers. It is provided adjacent to the conductive layer, contains at least one metal or metal oxide so as to have conductivity, and has a conductive diffusion prevention layer containing a rare gas.
- the manufacturing method is The process of preparing the structure on which the conductive layer is formed and A sputtering cathode having a tubular shape having a pair of long sides facing each other in cross-sectional shape and having a sputtering target having an erosion surface facing inward containing at least one kind of metal or metal oxide was used.
- the structure is arranged at a distance from the sputtering target in the axial direction of the sputtering target, and discharge is performed so as to generate plasma orbiting along the inner surface of the sputtering target, and the sputtering gas containing the rare gas is generated.
- the conductive diffusion prevention layer is formed on the conductive layer of the structure so as to be adjacent to the conductive layer. Has a step to do.
- the conductive diffusion prevention layer is formed by the above-mentioned sputtering cathode.
- the conductive diffusion prevention layer formed by the sputtering cathode contains a large amount of rare gas.
- the conductive diffusion prevention layer contains, for example, a rare gas having an atomic number ratio of 0.40 or more to the atomic number of the main metal in at least one metal or metal oxide. be able to.
- the diffusion of the diffusion component from the conductive layer to the conductive diffusion prevention layer can be more effectively prevented or suppressed.
- the diffusion of diffusion components in the manufacturing process of a laminated structure can be more effectively prevented or suppressed.
- the pair of long sides may be configured by a rotary target.
- the rotary target has a cylindrical shape and is rotatably provided around its rotation axis by a predetermined rotation mechanism.
- the rotary target is a cylindrical rotary sputtering target.
- As the rotation mechanism for example, a conventionally known rotation mechanism can be adopted.
- the thickness of the conductive layer is not particularly limited, and may be, for example, 100 nm or less, or 50 nm or less.
- the thickness of the conductive layer is not particularly limited, and may be, for example, 1 nm or more, or 5 nm or more.
- the thickness of the conductive diffusion prevention layer is not particularly limited, and may be, for example, 5 to 100 nm or less.
- the rare gas is at least one selected from the group consisting of helium, neon, argon, xenon and krypton. Thereby, the diffusion of the diffusion component to the conductive diffusion prevention layer can be more effectively prevented or suppressed.
- the rare gas is at least one selected from the group consisting of helium, neon, and argon. In particular, argon is preferable as the rare gas.
- the diffusion component is an element different from the rare gas contained in the sputtering gas.
- the diffusion component is an element having an atomic weight smaller than that of the rare gas.
- the element having an atomic weight smaller than that of the rare gas is, for example, at least one element selected from the group consisting of hydrogen, lithium, sodium, boron, selenium, phosphorus, magnesium, and beryllium.
- the element having an atomic weight smaller than that of the rare gas is at least one element selected from the group consisting of, for example, hydrogen, lithium, sodium, boron, phosphorus, magnesium and beryllium.
- the diffusion component is a non-metallic element having an atomic weight smaller than that of the rare gas.
- the non-metal element may or may not contain a rare gas.
- the non-metal element is, for example, at least one element selected from the group consisting of hydrogen, boron, carbon, nitrogen, phosphorus, oxygen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
- the diffusion component is an alkali metal element or an alkaline earth metal element having an atomic weight smaller than that of the rare gas.
- the alkali metal element is, for example, at least one element of lithium and sodium.
- the alkaline earth metal element is, for example, at least one element of magnesium and beryllium.
- the conductive diffusion prevention layer can more effectively prevent or suppress the diffusion of such diffusion components.
- hydrogen is preferable as the diffusion component.
- the laminated structure is a photoelectric conversion device.
- the present invention can be suitably applied to a photoelectric conversion device.
- the deterioration of the performance of the photoelectric conversion device can be effectively prevented or suppressed.
- the photoelectric conversion device is configured to convert light energy into electric energy or convert electric energy into light energy by, for example, the photoelectric effect.
- the photoelectric effect referred to here is, for example, the internal photoelectric effect.
- the photoelectric effect referred to here may include, for example, an external photoelectric effect in place of or in addition to the internal photoelectric effect.
- the photoelectric effect referred to here includes, for example, a photovoltaic effect.
- the photoelectric conversion device is not particularly limited, and examples thereof include a photovoltaic device and an electroluminescence device.
- the photoelectric conversion device has a photoelectric conversion layer for realizing photoelectric conversion.
- the photoelectric conversion layer may be composed of a single layer or may be composed of a plurality of layers.
- the conductive diffusion prevention layer constitutes, for example, an electrode (for example, a transparent conductive layer) of a photoelectric conversion device.
- the conductive diffusion prevention layer is not included in the photoelectric conversion layer, for example.
- the conductive layer is adjacent to the conductive diffusion prevention layer.
- the conductive layer does not form, for example, an electrode of a photoelectric conversion device.
- the conductive layer may be included in the photoelectric conversion layer, for example, or may be provided between the photoelectric conversion layer and the electrode without being included in the photoelectric conversion layer.
- the photoelectric conversion device as a photovoltaic device is not particularly limited, and includes, for example, a silicon-based photoelectric conversion device, a compound-based photoelectric conversion device, and an organic-based photovoltaic conversion device.
- the silicon-based photoelectric conversion device include a single crystal silicon photoelectric conversion device, a polycrystalline silicon photoelectric conversion device, and a thin film-based silicon photoelectric conversion device.
- the compound-based photoelectric conversion device include a CIS-based photoelectric conversion device, a CdTe-based photoelectric conversion device, and a III-V group photoelectric conversion device.
- the organic photoelectric conversion device include a dye-sensitized photoelectric conversion device and an organic thin film type photoelectric conversion device.
- examples of the photoelectric conversion device include a heterojunction type photoelectric conversion device and a perovskite type photoelectric conversion device.
- the electroluminescence device include an organic electroluminescence device and an inorganic electroluminescence device.
- the photoelectric conversion device is preferably a heterojunction type photoelectric conversion device, a perovskite type photoelectric conversion device, an organic photoelectric conversion device, or an organic electroluminescence type light emitting device.
- the present invention can be suitably applied to such a photoelectric conversion device. Degradation of the performance of the photoelectric conversion device can be prevented or suppressed more effectively.
- each layer is made of a conductive organic substance.
- the conductive organic substance includes, for example, an organic compound containing a metal dopant and an organometallic compound.
- the conductive layer may be, for example, a passivation layer containing hydrogen as a diffusion component, or a layer made of an organic substance.
- the conductive diffusion prevention layer can more effectively prevent or suppress the diffusion of the diffusion component from such a conductive layer. As a result, deterioration of the performance of the photoelectric conversion device can be more effectively prevented or suppressed.
- Examples of the passivation layer containing hydrogen as a diffusion component include a—Si: H layer, a—SiC: H layer, a—SiO: H layer, a—SiF: H layer, and a—SiN: H layer. .. These layers will be described later.
- the conductive layer includes, for example, a dangling bond terminated by a diffusion component.
- the conductive diffusion prevention layer may be a transparent conductive layer having transparency and conductivity, and is a layer containing at least one element selected from the group consisting of indium, zinc and tin as the main metal. There may be.
- Specific examples of the conductive diffusion prevention layer include, for example, a layer made of at least one material selected from the group consisting of the following materials, a layer containing at least one material as a main component, or substantially A layer made of at least one of the materials can be mentioned.
- the main component means that the content (mass%) of the at least one compound is the largest. Further, substantially, it means that an additive component such as a dopant material is allowed. The dopant material will be described later.
- the present invention can be suitably applied to such a conductive diffusion prevention layer.
- the laminated structure of the present invention it is possible to prevent or suppress the diffusion of the diffusion component from the layer containing the diffusion component to the layer adjacent to the layer. Further, according to the method for producing a laminated structure of the present invention, while reducing damage to the conductive diffusion prevention layer and the layer containing the diffusion component which is the underlying layer thereof, the layer containing the diffusion component is adjacent to the layer. It is possible to prevent or suppress the diffusion of the diffusion component into the layer.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to an embodiment.
- 2 (a) to 2 (d) are cross-sectional views showing an example of a procedure in the method for manufacturing a photoelectric conversion device according to an embodiment.
- 3 (a) to 3 (b) are sectional views showing an example of a procedure in the method for manufacturing a photoelectric conversion device according to an embodiment.
- FIG. 4 is a vertical sectional view showing a sputtering apparatus used in the method for manufacturing a photoelectric conversion apparatus according to an embodiment.
- FIG. 5 is a plan view showing a sputtering cathode in the sputtering apparatus shown in FIG. FIG.
- FIG. 6 is a vertical cross-sectional view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
- FIG. 7 is a plan view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
- FIG. 8 is a diagram showing an example of the detection results of the rare gas and the main metal by EPMA.
- FIG. 9A is a diagram showing an open circuit voltage VOC of the photoelectric conversion device according to Example 1 and Comparative Example 1
- FIG. 9B is a carrier in the photoelectric conversion device according to Example 1 and Comparative Example 1. It is a figure which shows the lifetime.
- FIG. 10 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to another embodiment.
- Each of FIGS. 11A to 11C is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to another embodiment.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to an embodiment.
- the photoelectric conversion device 1 is provided so as to be adjacent to the first conductive type single crystal semiconductor substrate 11, the passivation layer 12 provided adjacent to the first conductive type single crystal semiconductor substrate 11, and the passivation layer 12. It has a first transparent conductive layer 14.
- the passivation layer 12 includes a substantially intrinsic i-type amorphous hydrogen-containing semiconductor layer 121 provided adjacent to the first conductive single crystal semiconductor substrate 11 and an i-type amorphous hydrogen-containing semiconductor layer 121. It has a second conductive amorphous hydrogen-containing semiconductor layer 122 provided adjacent to the semiconductor layer 122.
- a comb-shaped first collecting electrode 15 is formed on the first transparent conductive layer 14.
- the photoelectric conversion device 1 is adjacent to the passivation layer 16 provided so as to be adjacent to the surface opposite to the surface provided with the passivation layer 12 in the first conductive type single crystal semiconductor substrate 11 and to be adjacent to the passivation layer 16. It has a second transparent conductive layer 17 provided as described above.
- the passivation layer 16 is provided so as to be adjacent to the i-type amorphous semiconductor layer 161 provided so as to be adjacent to the first conductive type single crystal semiconductor substrate 11 and the i-type amorphous semiconductor layer 161. It has a conductive amorphous semiconductor layer 162.
- the passivation layers 12 and 16 can suppress or prevent carrier recombination.
- a second collecting electrode 18 is formed on the second transparent conductive layer 17.
- the first conductive type single crystal semiconductor substrate 11 is, for example, an n-type single crystal silicon (hereinafter referred to as c—Si) substrate. Further, the surface of the n-type c—Si substrate may be provided with an uneven structure that reduces the reflection of light incident on the photoelectric conversion device 1 and improves the light confinement effect.
- c—Si n-type single crystal silicon
- the passivation layer 12 includes an i-type amorphous hydrogen-containing semiconductor layer 121 and a second conductive type amorphous hydrogen-containing semiconductor layer 122.
- the passivation layer 12 has conductivity.
- the passivation layer 12 contains, for example, silicon having a hydrogen-terminated dangling bond.
- the passivation layer 12 is an example of a “conductive layer”.
- the i-type amorphous hydrogen-containing semiconductor layer 121 is, for example, a—Si: H layer, a—SiC: H layer, a—SiO: H layer, a—SiF: H layer, or a—SiN: H layer. is there.
- the i-type amorphous hydrogen-containing semiconductor layer 121 is a semiconductor material having a single optical bandgap, or a semiconductor material in which the optical bandgap is continuously widened from the first conductive type single crystal semiconductor substrate 11 side. Alternatively, it may be composed of a plurality of semiconductor materials laminated from the side of the first conductive single crystal semiconductor substrate 11 so that the optical bandgap is gradually widened.
- a—Si The H layer refers to an i-type amorphous hydrogen-containing silicon layer.
- a-SiC H layer refers to an i-type amorphous hydrogen-containing silicon carbide layer.
- a-SiO H layer refers to an i-type amorphous hydrogen-containing silicon oxide layer.
- a-SiF H layer refers to an i-type amorphous hydrogen-containing silicon fluoride layer.
- a-SiN H layer refers to an i-type amorphous hydrogen-containing silicon nitride layer.
- the thickness of the i-type amorphous hydrogen-containing semiconductor layer 121 is, for example, 15 nm or less.
- the i-type, first conductive type, and second conductive type amorphous silicon layers used in this embodiment are not only completely amorphous layers but also partially crystallized in layers such as microcrystalline silicon. Layers with a structure are also included.
- the second conductive amorphous hydrogen-containing semiconductor layer 122 is, for example, p-type a-Si: H layer, p-type a-SiC: H layer, p-type a-SiO: H layer, p-type a-SiF: H. A layer or a p-type a-SiN: H layer.
- the second conductive amorphous hydrogen-containing semiconductor layer 122 may be made of a semiconductor material having a single optical bandgap, as in the case of the i-type amorphous hydrogen-containing semiconductor layer 121. However, the optical bandgap may be widened continuously or stepwise from the i-type amorphous hydrogen-containing semiconductor layer 121 side.
- the thickness of the second conductive amorphous hydrogen-containing semiconductor layer 122 is, for example, 20 nm or less.
- the first transparent conductive layer 14 is an example of a “conductive diffusion prevention layer”.
- the first transparent conductive layer 14 contains at least one metal or metal oxide.
- the first transparent conductive layer 14 is made of, for example, at least one kind of metal, a metal oxide, or a combination thereof.
- the first transparent conductive layer 14 is made of indium tin oxide (ITO).
- ITO indium tin oxide
- Indium tin oxide is an inorganic mixture of indium oxide (In 2 O 3 ) and tin oxide (SnO 2).
- the main metal of indium tin oxide is indium.
- the main metal refers to the metal having the largest number of atoms among the metals or metal oxides constituting the conductive diffusion prevention layer.
- the first transparent conductive layer 14 is not limited to the above example.
- the first transparent conductive layer 14 may be made of indium oxide. In this case, the main metal is indium.
- the first transparent conductive layer 14 may be made of zinc oxide (ZnO). In this case, the main metal is zinc.
- the first transparent conductive layer 14 may be made of tin oxide. In this case, the main metal is tin. Further, even if at least one or more elements selected from well-known dopant materials such as aluminum (Al), gallium (Ga), boron (B), and nitrogen (N) are added to the conductive diffusion prevention layer. Good.
- the first transparent electrode layer 14 may contain a diffusion component of the same type as the diffusion component contained in the passivation layer 12 at the time of manufacture.
- the first transparent conductive layer 14 contains a rare gas in which the ratio of the number of atoms to the number of atoms of the main metal in the metal or metal oxide constituting the first transparent conductive layer 14 is 0.40 or more.
- the rare gas is at least one selected from the group consisting of helium, neon, argon, xenon and krypton. In this embodiment, the rare gas is argon.
- the ratio of the number of atoms of the rare gas to the number of atoms of the main metal is preferably 0.50 or more, more preferably 0.60 or more, and further preferably 0.70 or more.
- the ratio of the number of atoms of the rare gas to the number of atoms of the main metal is preferably 1.0 or less, and more preferably 0.82 or less.
- the thickness of the first transparent conductive layer 14 is, for example, 5 to 100 nm.
- the number of atoms can be measured by, for example, an electron probe microanalyzer (EPMA).
- the comb-shaped first collecting electrode 15 includes, for example, silver (Ag), Al (aluminum), gold (Au), copper (Cu), nickel (Ni), rhodium (Rh), platinum (Pt), and palladium (Pr). ), Chromium (Cr), Titanium (Ti), Molybdenum (Mo) and the like, and it is composed of at least one kind of element or alloy.
- the passivation layer 16 includes an i-type amorphous semiconductor layer 161 and a first conductive type amorphous semiconductor layer 162.
- the passivation layer 16 has conductivity.
- the passivation layer 16 contains, for example, silicon having a hydrogen-terminated dangling bond.
- the passivation layer 16 is an example of a “conductive layer”.
- the i-type amorphous semiconductor layer 161 is, for example, i-type a-Si: H layer, i-type a-SiC: H layer, i-type a-SiO: H layer, i-type a-SiF: H layer, or i.
- Type a-SiN H layer.
- the thickness of the i-type amorphous semiconductor layer 161 is, for example, 15 nm or less.
- the first conductive amorphous semiconductor layer 162 includes, for example, an n-type a—Si: H layer, an n-type a—SiC: H layer, an n-type a—SiO: H layer, and an n-type a—SiF: H layer. Alternatively, it is an n-type a—SiN: H layer.
- the thickness of the first conductive amorphous semiconductor layer 162 is, for example, 20 nm or less.
- the i-type amorphous semiconductor layer 161 and the first conductive type amorphous semiconductor layer 162 are semiconductor materials having a single optical bandgap, as in the case of the i-type amorphous hydrogen-containing semiconductor layer 121. It may be configured such that the optical bandgap is continuously or stepwise widened toward the first conductive type single crystal semiconductor substrate 11 side.
- the second transparent conductive layer 17 is formed on the back surface of the first conductive single crystal semiconductor substrate 11 opposite to the light receiving surface.
- the second transparent conductive layer 17 is an example of a “conductive diffusion prevention layer”.
- the second transparent conductive layer 17 can be formed in the same manner as the first transparent conductive layer 14.
- the second transparent conductive layer 17 may have a surface texture in which irregularities are formed on the surface. This surface texture scatters the incident light and can improve the light utilization efficiency in the first conductive type single crystal semiconductor substrate 11 which is the main power generation layer.
- the first transparent electrode layer 17 may contain a diffusion component of the same type as the diffusion component contained in the passivation layer 16 at the time of manufacture.
- the second collecting electrode 18 is made of at least one kind of element or alloy selected from Ag, Al, Au, Cu, Ni, Rh, Pt, Pr, Cr, Ti, Mo and the like. Although the second collecting electrode 18 is formed in a comb shape in FIG. 1, it may be formed so as to cover the entire surface on the second transparent conductive layer 17.
- the first conductive type is n-type and the second conductive type is p-type is shown.
- the first conductive type is p-type and the second conductive type is second conductive.
- the type may be n type.
- the first conductive type is defined as n type
- the second conductive type is defined as p type.
- the photoelectric conversion device 1 when light is incident from the first surface side, carriers are generated in the first conductive type (n type) single crystal semiconductor substrate 11.
- the electrons and holes, which are carriers, are separated by an internal electric field formed by the first conductive type (n type) single crystal semiconductor substrate 11 and the second conductive type (p type) amorphous hydrogen-containing semiconductor layer 122. ..
- the electrons move toward the first conductive type (n type) single crystal semiconductor substrate 11 and reach the second transparent conductive layer 17 through the passivation layer 16.
- the holes move toward the second conductive type (p type) amorphous hydrogen-containing semiconductor layer 122 and reach the first transparent conductive layer 14.
- the first collecting electrode 15 becomes a positive electrode
- the second collecting electrode 18 becomes a negative electrode
- electric power is taken out to the outside.
- FIGS. 2 to 3 are cross-sectional views schematically showing an example of a procedure of a method for manufacturing a photoelectric conversion device according to an embodiment.
- the first conductive type single crystal semiconductor substrate 11 (n-type c—Si substrate 11a) is prepared.
- Pyramid-shaped uneven structures having a height of several ⁇ m to several tens of ⁇ m may be formed on both surfaces of the n-type c—Si substrate 11a.
- the pyramid-shaped uneven structure can be formed, for example, by anisotropic etching using an alkaline solution such as sodium hydroxide (NaOH) or potassium hydroxide (KOH).
- n-type c—Si substrate 11a is moved into the first vacuum chamber.
- Vacuum heating is performed at a substrate temperature of 200 ° C. or lower to remove moisture adhering to the substrate surface.
- heat treatment is performed at a substrate temperature of 170 ° C.
- hydrogen (H 2 ) gas is introduced into the first vacuum chamber.
- One side of the n-type c—Si substrate 11a is cleaned by plasma discharge.
- an i-type a-Si: H layer 121a as an i-type amorphous hydrogen-containing semiconductor layer 121 is formed on one side of the n-type c—Si substrate 11a.
- the i-type a-Si: H layer 121a is plasma chemical vapor deposition, for example, under the condition that silane (SiH 4 ) gas and H 2 gas are introduced into the first vacuum chamber and the substrate temperature is maintained at 170 ° C. It is formed by a vapor phase growth (CVD: Chemical Vapor Deposition) method.
- a p-type a-Si: H layer 122a as the second conductive amorphous hydrogen-containing semiconductor layer 122 is formed on the i-type a-Si: H layer 121a.
- the n-type c—Si substrate 11a is moved into the second vacuum chamber.
- the p-type a-Si: H layer 122a is formed by the plasma CVD method under the condition that SiH 4 gas, H 2 gas, and diborane (B 2 H 6) gas are introduced into the second vacuum chamber. ..
- the substrate temperature is, for example, 170 ° C. or lower.
- the flow rate of the B 2 H 6 gas is, for example, about 1% with respect to the flow rate of the SiH 4 gas.
- the passivation layer 12 is formed by the i-type a-Si: H layer 121a and the p-type a-Si: H layer 122a.
- the n-type c—Si substrate 11a is moved to the third vacuum chamber. Introduce H 2 gas into the third vacuum chamber.
- the substrate temperature is set to 170 ° C., and the second surface of the n-type c—Si substrate 11a is cleaned by plasma discharge.
- an i-type a-Si: H layer 161a as an i-type amorphous semiconductor layer 161 is formed on the second surface of the n-type c—Si substrate 11a.
- the i-type a-Si: H layer 161a is the i-type a-Si: H under the condition that SiH 4 gas and H 2 gas are introduced into the third vacuum chamber and the substrate temperature is maintained at 170 ° C. Similar to layer 121a, it is formed by the plasma CVD method.
- an n-type a-Si: H layer 162a as the first conductive amorphous semiconductor layer 162 is formed on the i-type a-Si: H layer 161a.
- the n-type c—Si substrate 11a is moved to the fourth vacuum chamber.
- the n-type a—Si: H layer 162a is prepared under the condition that SiH 4 gas, H 2 gas, and phosphine (PH 3 ) gas are introduced into the fourth vacuum chamber and the substrate temperature is maintained at 170 ° C. , Formed by plasma CVD method.
- the passivation layer 16 is formed by the i-type a-Si: H layer 161a and the n-type a-Si: H layer 162a.
- an ITO layer 14a as the first transparent conductive layer 14 is formed on the p-type a-Si: H layer 122a.
- the ITO layer 14a can be formed by a sputtering method using an ITO target.
- the ITO layer 14a is a p-type a-Si: H layer by a sputtering method under the condition that a rare gas such as argon (Ar) gas is introduced into the fifth vacuum chamber and the substrate temperature is about room temperature.
- the ITO layer 14a is deposited on the 122a.
- a rare gas such as argon (Ar) gas
- O 2 gas and / or H 2 gas may be introduced.
- nitrogen (N 2 ) gas may be introduced.
- the ITO layer 14a may be formed by a reactive plasma deposition (RPD) method.
- the method for forming the ITO layer 14a is not necessarily limited to these methods.
- the sputtering apparatus used in the sputtering method will be described later with reference to FIGS. 4 to 7.
- the ITO layer 14a can contain a large amount of rare gas as described above. That is, by using the sputtering apparatus as shown in FIGS. 4 to 7, the conductive diffusion prevention layer (ITO layer 14a) can be formed and a large amount of rare gas can be contained in the layer.
- the conductive diffusion prevention layer may be produced by a method other than the manufacturing method using the above-mentioned sputtering apparatus. As such a method, a conventionally known method such as the above-mentioned RPD method can be adopted. After the layer is formed by another method, a treatment for increasing the rare gas content in the layer may be performed. Examples of such a treatment include an ion implantation method. As a result, a large amount of rare gas can be introduced into the layer.
- an ITO layer 17a as the second transparent conductive layer 17 is formed on the n-type a-Si: H layer 162a.
- the n-type c—Si substrate 11a is moved to the sixth vacuum chamber.
- the ITO layer 17a can be produced by various methods such as a sputtering method, an electron beam deposition method, an atomic layer deposition method, a CVD method, a low pressure CVD method, a MOCVD method, a solgel method, a printing method, and a spray method.
- the first collecting electrode 15 is formed on the ITO layer 14a.
- the second collecting electrode 18 is formed on the ITO layer 17a.
- the first collecting electrode 15 and the second collecting electrode 18 can be produced by applying a conductive paste such as silver paste to a comb shape by a printing method and then firing at a substrate temperature of 200 ° C. for 90 minutes.
- the second collecting electrode 18 is at least one kind of element selected from Ag, Al, Au, Cu, Ni, Rh, Pt, Pr, Cr, Ti, Mo and the like having high reflectance and conductivity, or It may be composed of a layer made of an alloy.
- the second collection electrode 18 may be formed so as to cover the entire surface on the ITO layer 17a. As described above, the photoelectric conversion device 1 having the structure shown in FIG. 1 can be obtained.
- the photoelectric conversion device 1 having one semiconductor photoelectric conversion layer has been described as an example, but the present invention is not limited thereto. That is, the present invention is not limited to a photoelectric conversion device having a heterojunction between crystalline silicon and amorphous silicon, and for example, a photoelectric conversion having a structure in which a transparent conductive layer is formed on a predetermined conductive type semiconductor layer. It can also be applied to devices.
- the sputtering apparatus used in the above-mentioned sputtering method will be described.
- the sputtering apparatus according to this embodiment can be used at least for producing a transparent conductive layer.
- the sputtering apparatus may generate either the transparent conductive layer 14 on the light receiving surface side, the transparent conductive layer 17 on the opposite side of the light receiving surface, or both of them.
- FIG. 4 and 5 are a vertical sectional view and a plan view showing a sputtering apparatus according to the present embodiment. 4 and 5 show configurations near the sputtering cathode and anode provided inside the vacuum vessel of the sputtering apparatus.
- FIG. 4 is a cross-sectional view taken along the line WW of FIG.
- FIG. 6 is a vertical cross-sectional view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
- FIG. 7 is a plan view showing a state in which plasma is generated in the vicinity of the surface of the sputtering target in the sputtering apparatus shown in FIG.
- the X direction is the longitudinal direction of the sputtering cathode 1.
- the Y direction is the lateral direction of the sputtering cathode 1.
- the Z direction is the axial direction of the sputtering target 210.
- the X, Y and Z directions are orthogonal to each other.
- the X direction and the Y direction correspond to the radial direction of the sputtering target 210.
- the X direction is the horizontal direction.
- the Y direction is the vertical direction.
- the Z direction is the direction in which the sputtering cathode 1 and the object E to be processed face each other.
- the Z direction may be the vertical direction. That is, any of spatter down, side spatter, and spatter up can be adopted.
- the sputtering apparatus has a rectangular tubular shape having a rectangular cross-sectional shape, and a sputtering target 210 having an erosion surface facing inward, and the sputtering target 210. It has a permanent magnet 220 provided on the outside of the permanent magnet 220 and a yoke 230 provided on the outside of the permanent magnet 220.
- the sputtering target 210 is made of a material for forming the transparent conductive layer (14, 17).
- the sputtering cathode 201 is formed by the sputtering target 210, the permanent magnet 220, and the yoke 230.
- the sputtering cathode 201 is generally fixed to a vacuum vessel (not shown) in an electrically insulated state. Further, a magnetic circuit MF (see FIG. 6) is formed by the permanent magnet 220 and the yoke 230. The polarities of the permanent magnets 220 are as shown in FIG. 4, but the polarities of the permanent magnets 220 may be completely opposite to each other.
- a backing plate (not shown) for cooling is preferably provided between the sputtering target 210 and the permanent magnet 220, and a refrigerant (for example, cooling water) is allowed to flow through a flow path provided inside the backing plate. Is done.
- An anode 240 having an L-shaped cross section is provided in the vicinity of the rectangular parallelepiped space surrounded by the sputtering target 210 so that the erosion surface of the sputtering target 210 is exposed.
- the anode 240 is generally connected to a grounded vacuum vessel.
- a light blocking shield 250 having an L-shaped cross-sectional shape is provided so that the erosion surface of the sputtering target 210 is exposed.
- the light blocking shield 250 is made of a conductor, typically metal.
- the light blocking shield 250 also serves as an anode and, like the anode 240, is generally connected to a grounded vacuum vessel.
- / A is selected to be 2 or more, and is generally selected to be 40 or less.
- a is generally selected to be 50 mm or more and 150 mm or less.
- This sputtering apparatus is configured to form a film on a substrate S located at a position separated from the space so as to face the space surrounded by the sputtering target 210.
- the substrate S is held by a predetermined transfer mechanism (not shown) provided in the sputtering apparatus.
- the film formation is performed while moving the substrate S with respect to the sputtering target 210 in the direction (X direction) across the long side portion of the sputtering target 210.
- the substrate S is not particularly limited, and may be a long film wound on a roll used in a so-called roll-to-roll process, or may be a substrate.
- a rare gas is introduced as a sputtering gas into the space surrounded by the sputtering target 210.
- a high voltage, generally DC, required for plasma generation is applied between the anode 240 and the sputtering cathode 201 by a predetermined power source.
- the anode 240 is grounded and a negative high voltage (eg, -400V) is applied to the sputtering cathode.
- a negative high voltage eg, -400V
- the sputtering conditions at the time of film formation are not particularly limited, but in order to increase the rare gas content of the conductive diffusion prevention layer (transparent conductive layer), for example, the following conditions are preferably adopted.
- the rare gas flow rate (for example, argon flow rate) is preferably 50 sccm or more.
- the rare gas flow rate (for example, argon flow rate) is preferably 500 sccm or less.
- oxygen flow rate is preferably 2 sccm or more.
- the oxygen flow rate is preferably 20 sccm or less.
- the sputtering power is preferably 500 W or more.
- the sputtering power is preferably 5000 W or less.
- the DC discharge voltage is preferably 250 V or more.
- the DC discharge voltage (absolute value) is preferably 1000 V or less.
- a pulse discharge may be applied to the DC discharge.
- the sputtering pressure is preferably 0.1 Pa or more.
- the sputtering pressure is preferably 1 Pa or less.
- the TS is preferably 30 mm or more.
- the TS is preferably 300 mm or less. Note that TS indicates the distance between the sputtering target 210 and the substrate S.
- the temperature of the substrate S is preferably 10 ° C. or higher, more preferably 20 ° C. or higher.
- the temperature of the substrate S is preferably 70 ° C. or lower, more preferably 60 ° C. or lower.
- the atoms constituting the sputtering target 210 are ejected from the space surrounded by the sputtering target 210. At this time, atoms are ejected from the portion of the erosion plane of the sputtering target 210 near the plasma 260. However, the atoms protruding from the erosion plane on the short side inside the sputtering target 210 are not used for film formation, for example.
- an atom protruding from the erosion surface of the short side of the sputtering target 210 is provided by providing a horizontal shielding plate above the sputtering target 210 so as to shield both ends in the long side direction of the sputtering target 210. Should not reach the substrate S during film formation.
- a horizontal shielding plate above the sputtering target 210 so as to shield both ends in the long side direction of the sputtering target 210.
- sputter particle bundles 270 and 280 as shown in FIG. 6 are obtained from the erosion surface of the long side portion of the sputtering target 210.
- the sputtered particle bundles 270 and 280 have a substantially uniform intensity distribution in the longitudinal direction of the sputtering target 210.
- sputtered particles are moved with respect to the sputtering target 210 in the direction (X direction) across the long side of the sputtering target 210.
- the film is formed by the bundles 270 and 280.
- the sputtered particle bundle 270 first enters the substrate S and film formation starts.
- the sputtered particle bundle 280 also contributes to the film formation in addition to the sputtered particle bundle 270.
- the sputter particle bundles 270 and 280 are incident on the substrate S to form a film.
- the substrate S is further moved while forming a film.
- the substrate S is moved away from the space surrounded by the sputtering target 210 to a position where the sputter particle bundles 270 and 280 are not incident on the substrate S.
- the film formation is completed.
- the transparent electrode layers 14 and 17 as the conductive diffusion prevention layer are formed so as to contain a large amount of rare gas.
- n-type c—Si substrate 11a as the first conductive type single crystal semiconductor substrate 11 was prepared.
- the n-type c—Si substrate 11a was introduced into a vacuum chamber and heated at 200 ° C. to remove water adhering to the substrate surface.
- hydrogen gas was introduced into the vacuum chamber, and the surface of the substrate was cleaned by plasma discharge.
- the substrate temperature was set to about 150 ° C.
- SiH 4 gas and H 2 gas were introduced into the vacuum chamber, and i-type a-Si: H layer 121a was formed by the RF plasma CVD method.
- the ITO layer 14a was formed on the p-type a-Si: H layer 122a by a sputtering method.
- the ITO layer 14a is an example of the first transparent conductive layer 14.
- the ITO layer 14a is composed of In 2 O 3 to which SnO 2 is added.
- the ITO layer 14a was formed by using a sputtering apparatus having a sputtering cathode 201 shown in FIGS. 4 to 7 at a substrate temperature of about room temperature.
- the i-type a-Si: H layer 161a was formed on the surface opposite to the n-type c-Si substrate 11a by the plasma CVD method. Further, PH 3 gas was introduced as a doping gas to form an n-type a-Si: H layer 162a on the i-type a-Si: H layer 161a. Then, the ITO layer 17a was formed on the n-type a-Si: H layer 162a at a substrate temperature of about room temperature by a sputtering apparatus having the sputtering cathode 201 shown in FIGS. 4 to 7. The ITO layer 17a is an example of the second transparent conductive layer 17.
- Example 2 The photoelectric conversion device 1 was manufactured under the same conditions as in Example 1 except that the sputtering pressure at the time of forming the ITO layers 14a and 17a was set to 1.0 Pa.
- Example 3 The photoelectric conversion device 1 was manufactured under the same conditions as in Example 1 except that the sputtering pressure at the time of forming the ITO layers 14a and 17a was set to 0.1 Pa.
- the photoelectric conversion device 1 was manufactured in the same manner as in Example 1 except that the ITO layers 14a and 17a were formed by the planar magnetron sputtering method.
- the planar magnetron sputtering method was processed under the following conditions.
- Argon flow rate 200 sccm
- Oxygen flow rate 5 sccm
- Sputtering power 1200W DC discharge voltage (absolute value): 360V Sputtering pressure: 0.4Pa TS: 100 mm
- the data of Example 1 is shown by a solid line.
- the data of Comparative Example 1 is shown by a broken line.
- M represents a baseline of the data of Example 1.
- K indicates the baseline of the data of Comparative Example 1.
- the baselines M and K shown in FIG. 8 are lines schematically drawn to explain the measurement method.
- P indicates the peak height of the main metal (In) from the baseline M in Example 1.
- Q indicates the peak height of the main metal (In) from the baseline K in Comparative Example 1.
- S indicates the peak height of the rare gas (Ar) from the baseline M in Example 1.
- R indicates the peak height of the rare gas (Ar) from the baseline K in Comparative Example 1.
- the atomic number ratio (Ar / In) in Example 1 was obtained by S / P.
- the atomic number ratio (Ar / In) in Comparative Example 1 was obtained by R / Q.
- the atomic number ratio (Ar / In) was obtained by the same method.
- the short-circuit current density Jsc is expressed by the following equation (2).
- Jsc n 0 ⁇ q ⁇ ⁇ exp (qV / kT) -1 ⁇ ⁇ ⁇ ⁇ (2)
- N 0 minority carrier density, q: unit charge, V: potential difference, k: Botulman constant, T: temperature
- the minority carrier density n 0 is proportional to the carrier lifetime. Therefore, as is clear from the above equations (1) and (2), the power generation efficiency is proportional to the open circuit voltage Voc and the carrier lifetime. Therefore, the power generation efficiency was evaluated by measuring the open circuit voltage Voc and the carrier lifetime.
- the open circuit voltage Voc is a voltage when no current is flowing through the photoelectric conversion device 1.
- a voltage is applied to the photoelectric conversion device 1 in which a current flows due to irradiation with light in the direction opposite to the current, and the voltage is gradually increased.
- the density of the current flowing when the applied voltage is 0 is the short-circuit current density Jsc.
- the voltage applied when the current stops flowing is the open circuit voltage Voc.
- the open circuit voltage was measured before the film formation by sputtering, immediately after the film formation by sputtering, and immediately after the heat treatment (annealing). In addition, the open circuit voltage was measured according to the number of days elapsed.
- the carrier lifetime was measured by the ⁇ -PCD method.
- excess carriers electron-hole pairs
- the microwave reflectance of the pulsed surface increases as the density of excess carriers increases.
- the carrier lifetime was measured by measuring the time change of microwave reflectance.
- the carrier lifetime is defined as the time required for the microwave reflectance to decrease to 1 / e from the pulsed laser light irradiation completion time. Note that e is the number of Napiers.
- a laser beam was obtained using a semiconductor laser having a wavelength of 904 nm.
- a microwave was obtained using a single waveguide having a frequency of 10 GHz.
- the carrier lifetime was measured before film formation by sputtering, immediately after film formation by sputtering, and immediately after heat treatment (annealing).
- career lifetime was measured according to the number of days elapsed.
- the atomic number ratio (Ar / In) of Example 1 was 0.66.
- the atomic number ratio (Ar / In) of Example 2 was 0.40.
- the atomic number ratio (Ar / In) of Example 3 was 0.82.
- the atomic number ratio (Ar / In) of Comparative Example 1 was 0.30.
- FIG. 9A shows the open circuit voltage VOC and the elapsed time of the photoelectric conversion device according to the first embodiment and the first comparative example.
- the solid line shows the data of Example 1.
- the broken line shows the data of Comparative Example 1.
- a higher open circuit voltage Voc was obtained than in Comparative Example 1.
- a high open circuit voltage Voc was maintained for a long period of time.
- Examples 2 and 3 (not shown), as in Example 1, a high open circuit voltage Voc was maintained for a long period of time.
- FIG. 9B shows the carrier lifetime and the number of elapsed days in the photoelectric conversion apparatus according to Example 1 and Comparative Example 1.
- the solid line shows the data of Example 1.
- the broken line shows the data of Comparative Example 1.
- Example 1 a longer career lifetime was obtained than in Comparative Example 1.
- Example 1 a long career lifetime was maintained over a long period of time.
- Examples 2 and 3 (not shown), a long career lifetime was maintained for a long period of time as in Example 1.
- the “change value due to annealing” (increase amount) in Example 3 was larger than the “change value due to annealing” (increase amount) in Comparative Example 1. It is considered that the damage caused by sputtering in Example 3 was small as in Examples 1 and 2, but in Example 3, a large increase was obtained by the recovery. On the other hand, regarding the career lifetime, the “change value due to annealing” (increase amount) in Examples 1 and 3 was more than three times the “change value due to annealing” (increase amount) in Comparative Example 1.
- the “change value due to annealing” (increase amount) in Example 2 was about twice the “change value due to annealing” (increase amount) in Comparative Example 1. It is considered that this is because the rare gas (argon) contained in the generated transparent conductive layer (ITO layer) in large quantities suppressed the diffusion of the diffusion component (hydrogen) from the passivation layer.
- Comparative Example 1 as described above, hydrogen termination of the dangling bond is generated by annealing, but hydrogen diffusion also occurs, so that it is considered that the amount of increase is smaller than that of Examples 1 to 3.
- the transparent conductive layer containing a large amount of rare gas suppresses or prevents the diffusion of the diffusing component also by the amount of change in the open circuit voltage and the carrier lifetime due to sputtering and annealing.
- the photoelectric conversion devices according to Examples 1 to 3 have a higher atomic number ratio (Ar / In), a higher open circuit voltage Voc, and a longer carrier life than the photoelectric conversion devices according to Comparative Example 1. I was able to get time and achieve excellent power generation efficiency.
- the sputtering cathode 201 is used when forming the ITO layers 14a and 17a.
- the sputtering targets 210 have erosion surfaces facing each other.
- the sputtering target 201 has a pair of long sides facing each other. Therefore, the recoil rare gas (for example, recoil Ar) may collide with the target a plurality of times. At each collision, some of the recoil rare gas is taken up by the sputtering particles. As a result, sputtering particles containing a larger amount of rare gas are generated, or more sputtering particles containing a rare gas are generated.
- the recoil rare gas for example, recoil Ar
- the higher the performance of the passivation layer the longer the carrier lifetime.
- the performance of the passivation layer depends on the degree of optimization of the termination of the dangling bond by hydrogen. If the layer formed on the passivation layer can maintain the optimized state of the termination of the dangling bond by hydrogen in the passivation layer, the carrier lifetime can be maintained longer. The state of dangling bond termination deviates from the optimized state by becoming more variable or more variable with increasing hydrogen diffusion, which reduces carrier lifetime. To do.
- the atomic number ratio of the rare gas / main metal in the ITO layers 14a and 17a is high, and the ITO layers 14a and 17a have more rare gases as compared with Comparative Example 1.
- the rare gas causes an action of suppressing the diffusion of hydrogen.
- the laminated structure of the present invention is not limited to the example shown in FIG.
- Examples of the laminated structure of the present invention include the photoelectric conversion devices shown in FIGS. 10 and 11 (a) to 11 (c).
- FIG. 10 is a cross-sectional view showing a schematic configuration of a photoelectric conversion device according to another embodiment.
- the laminated structure 1 shown in FIG. 10 has a laminated structure similar to that of the laminated structure 1 shown in FIG. 1, except that the passivation layers 12 and 16 are single layers.
- the differences from the laminated structure 1 shown in FIG. 1 will be described, and the description other than the differences will be omitted.
- the passivation layer 12 is composed of an i-type amorphous hydrogen-containing semiconductor layer.
- the passivation layer 12 is provided between the first conductive type single crystal semiconductor substrate 11 and the first transparent conductive layer 14 so as to be in contact with both the first conductive type single crystal semiconductor substrate 11 and the first transparent conductive layer 14. Has been done.
- the i-type amorphous hydrogen-containing semiconductor layer can be formed in the same manner as the i-type amorphous hydrogen-containing semiconductor layer 121 described above.
- the passivation layer 16 is made of an i-type amorphous semiconductor layer.
- the passivation layer 16 is provided between the first conductive type single crystal semiconductor substrate 11 and the second transparent conductive layer 17 so as to be in contact with both the first conductive type single crystal semiconductor substrate 11 and the second transparent conductive layer 17.
- the i-type amorphous semiconductor layer can be formed in the same manner as the i-type amorphous semiconductor layer 161 described above.
- FIGS. 11A to 11C are cross-sectional views showing a schematic configuration of a photoelectric conversion device according to another embodiment.
- the photoelectric conversion device 301 according to each of FIGS. 11A to 11C is an organic electroluminescence device.
- the electron transport layer 312 (ETL), the charge generation layer 313 (CGL), and the hole transport are on the light receiving surface (upper surface in the drawing) of the light emitting layer 311 (EML).
- the layer 314 (HTL), the protective layer 315, and the transparent conductive layer 316 are laminated in this order from the bottom to the top in the drawing so that adjacent layers come into contact with each other.
- a hole transport layer 317 (HTL), a hole injection layer 318 (HIL), and a metal electrode layer 319 are shown in the drawing.
- the protective layer 315 contains a diffusion component (for example, hydrogen), and the transparent conductive layer 316 contains a large amount of rare gas as described above. Except for this point, for each layer 311 to 319, for example, a known configuration can be adopted.
- the protective layer 315 is made of, for example, a conductive organic substance.
- the conductive organic substance includes, for example, an organic compound containing a metal dopant and a metal organic compound, and more specifically, for example, an organometallic complex such as metal phthalocyanine.
- the transparent conductive layer 316 for example, the same configuration as the transparent conductive layers 14 and 17 described above can be adopted.
- the protective layer 315 is an example of the “conductive layer”
- the transparent conductive layer 316 is an example of the “conductive diffusion prevention layer”.
- the photoelectric conversion device 301 shown in FIG. 11B is the same as the photoelectric conversion device 301 shown in FIG. 11A except that it does not have the protective layer 315. Therefore, the differences will be described below. , Except for the differences, the description will be omitted.
- the hole transport layer 317 contains a diffusion component (for example, hydrogen), and the transparent electrode layer 316 contains a large amount of rare gas as described above.
- the hole transport layer 314 is an example of the “conductive layer”
- the transparent conductive layer 316 is an example of the “conductive diffusion prevention layer”.
- the photoelectric conversion device 301 shown in FIG. 11 (c) is the same as the photoelectric conversion device 301 shown in FIG. 11 (b) except that it does not have the charge generation layer 313 and the hole transport layer 314. The differences will be described in the above section, and the description will be omitted except for the differences.
- the electron transport layer 312 contains a diffusion component (for example, hydrogen), and the transparent electrode layer 316 contains a large amount of rare gas as described above.
- the electron transport layer 312 is an example of the “conductive layer”
- the transparent conductive layer 316 is an example of the “conductive diffusion prevention layer”.
- Photoelectric conversion device 11 1st conductive type single crystal semiconductor substrate 12 Passion layer 121 i-type amorphous hydrogen-containing semiconductor layer 122 2nd conductive type amorphous hydrogen-containing semiconductor layer 14 1st transparent conductive layer 15 1st collecting electrode 16 Passion layer 161 i-type amorphous semiconductor layer 162 1st conductive type amorphous semiconductor layer 17 2nd transparent conductive layer 18 2nd collecting electrode
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
導電性を有するとともに、隣接する層へ拡散可能な拡散成分を含む導電層と、
前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、前記少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含む導電性拡散防止層と
を有する。
前記積層構造体は、
導電性を有するとともに、隣接する層へ拡散可能な成分を含む導電層と、
前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、希ガスを含む導電性拡散防止層と
を有し、
前記製造方法は、
導電層が形成された構造体を準備する工程と、
横断面形状が互いに対向する一対の長辺部を有する管状の形状を有し、前記少なくとも1種の金属又は金属酸化物を含むエロージョン面が内側を向いているスパッタリングターゲットを有するスパッタリングカソードを用い、前記スパッタリングターゲットの軸線方向において前記スパッタリングターゲットと間隔を空けて前記構造体を配置し、前記スパッタリングターゲットの内面に沿って周回するプラズマが発生するように放電を行って、前記希ガスを含むスパッタリングガスにより発生するプラズマ中のイオンにより前記スパッタリングターゲットの前記長辺部の内面をスパッタリングすることにより、前記構造体の前記導電層上に、前記導電層と隣接するように前記導電性拡散防止層を形成する工程と
を有する。
酸化インジウム錫(Indium Tin Oxide)(酸化インジウムと酸化錫との混合酸化物)
酸化インジウム亜鉛(Indium Zinc Oxide)(酸化インジウムと酸化亜鉛との混合酸化物)
酸化亜鉛アルミニウム(Zinc Aluminum Oxide)(酸化亜鉛と酸化アルミニウムとの混合酸化物)
酸化亜鉛マグネシウム(Zinc Magnesium Oxide)(酸化亜鉛と酸化マグネシウムとの混合酸化物)
酸化亜鉛ホウ素(Zinc Boron Oxide)(酸化亜鉛と酸化ホウ素との混合酸化物)
酸化亜鉛ベリリウム(Zinc Beryllium Oxide)(酸化亜鉛と酸化ベリリウムとの混合酸化物)
フッ素ドープ酸化錫(Fluorine-doped tin oxide)
酸化インジウム(Indium Oxide)
酸化錫(Tin Oxide)
酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide)(酸化インジウムと酸化ガリウムと酸化亜鉛との混合酸化物)
なお、ここで、主成分は、当該少なくとも1種の化合物の含有率(質量%)が最も大きいことを意味する。また、実質的は、ドーパント材料等の添加成分が許容されることを意味する。ドーパント材については後述する。本発明は、このような導電性拡散防止層に好適に適用され得る。
以下、発明を実施するための形態(以下、「実施形態」という)について図面を参照しながら説明する。以下においては、光電変換装置について説明する。光電変換装置は、「積層構造体」の一例である。積層構造体は、光電変換装置に限定されない。
a-Si:H層は、i型非晶質水素含有シリコン層を指す。
a-SiC:H層は、i型非晶質水素含有シリコンカーバイド層を指す。
a-SiO:H層は、i型非晶質水素含有シリコンオキサイド層を指す。
a-SiF:H層は、i型非晶質水素含有フッ化シリコン層を指す。
a-SiN:H層は、i型非晶質水素含有シリコンナイトライド層を指す。
また、i型非晶質水素含有半導体層121の厚さは、例えば15nm以下である。なお、この実施形態において用いるi型、第1導電型および第2導電型の非晶質シリコン層には、完全な非晶質層だけではなく、微結晶シリコン等の層中に部分的に結晶構造を有する層も含まれる。
次に、上述したスパッタリング法に用いられるスパッタリング装置について説明する。本実施形態に係るスパッタリング装置は、少なくとも透明導電層の生成に用いられ得る。当該スパッタリング装置により、受光面側の透明導電層14、受光面と反対側の透明導電層17、又はそれらの両方のいずれが生成されてもよい。
実施形態に示される構造の光電変換装置の実施例について、比較例とともに示す。
第1導電型単結晶半導体基板11としてのn型c-Si基板11aを準備した。次に、n型c-Si基板11a上を真空チャンバへ導入し、200℃で加熱を行って基板表面に付着した水分を除去した。その後、真空チャンバ内に水素ガスを導入し、プラズマ放電により基板表面のクリーニングを行った。続いて、基板温度を約150℃とし、SiH4ガスおよびH2ガスを真空チャンバ内に導入して、RFプラズマCVD法によって、i型a-Si:H層121aを形成した。続いて、SiH4ガス、H2ガスおよびB2H6ガスを導入して、p型a-Si:H層122aを形成した。次に、p型a-Si:H層122a上に、スパッタリング法によりITO層14aを形成した。ITO層14aは、第1透明導電層14の一例である。ITO層14aは、SnO2が添加されたIn2O3からなる。ITO層14aは、基板温度を室温程度とし、図4~図7に示したスパッタリングカソード201を有するスパッタリング装置を用いて形成した。その後、プラズマCVD法によって、n型c-Si基板11aの反対側の面上に、i型a-Si:H層161aを形成した。さらに、ドーピングガスとしてPH3ガスを導入し、i型a-Si:H層161a上に、n型a-Si:H層162aを形成した。ついで、n型a-Si:H層162a上に、室温程度の基板温度で、図4~図7に示したスパッタリングカソード201を有するスパッタリング装置によって、ITO層17aを形成した。ITO層17aは、第2透明導電層17の一例である。その後、真空チャンバへArガスを導入し、約200℃の基板温度で約2時間の加熱処理を行った。そして、ITO層14a、17aの上面の所定領域に、スクリーン印刷法により銀ペーストから成る櫛型の第1集電極15及び第2集電極18を形成した。それによって、光電変換装置1の製造を完了した。なお、ITO層14a、17aの生成時におけるスパッタリング条件は、以下の通りであった。
アルゴン流量:200sccm
酸素流量:6sccm
スパッタリング電力:1500W
直流放電電圧(絶対値):370V
スパッタリング圧力:0.4Pa
T-S:100mm
ITO層14a、17aの生成時におけるスパッタリング圧力が、1.0Paに設定されたこと以外については、実施例1と同様の条件により、光電変換装置1を製造した。
ITO層14a、17aの生成時におけるスパッタリング圧力が、0.1Paに設定されたこと以外については、実施例1と同様の条件により、光電変換装置1を製造した。
ITO層14a、17aを、プレーナーマグネトロンスパッタリング法により形成したこと以外については、実施例1と同様にして、光電変換装置1を製造した。なお、プレーナーマグネトロンスパッタリング法については、以下の条件で処理を行った。
アルゴン流量:200sccm
酸素流量:5sccm
スパッタリング電力:1200W
直流放電電圧(絶対値):360V
スパッタリング圧力:0.4Pa
T-S:100mm
<希ガス/主金属の原子数比>
先ず、フィールドエミッション電子プローブマイクロアナライザ(EPMA)(日本電子株式会社製「JXA-8500F」)を用いてITO層14aに対して測定を行った。測定条件は、以下の通りであった。
加速電圧:20kV
照射電流:約0.2μm
測定面積:約10μm
得られた結果は、図8に示す通りであった。図8は、EPMAによる希ガス及び主金属の検出結果の一例を示す。縦軸は、特性X線強度を示す。特性X線強度は、主金属(In)のピークが1となるように示されている。横軸は、特性X線波長(nm)を示す。実施例1のデータは、実線により示されている。比較例1のデータは、破線により示されている。Mは、実施例1のデータのベースラインを示す。Kは、比較例1のデータのベースラインを示す。なお、図8に示すベースラインM、Kは、計測方法を説明するために模式的に描かれた線である。Pは、実施例1におけるベースラインMからの主金属(In)のピーク高さを示す。Qは、比較例1におけるベースラインKからの主金属(In)のピーク高さを示す。Sは、実施例1におけるベースラインMからの希ガス(Ar)のピーク高さを示す。Rは、比較例1におけるベースラインKからの希ガス(Ar)のピーク高さを示す。S/Pにより、実施例1における原子数比(Ar/In)を得た。R/Qにより、比較例1における原子数比(Ar/In)を得た。実施例2、3についても、同様の方法により、原子数比(Ar/In)を得た。
発電効率の評価については、開放電圧Vocとキャリアライフタイムとを測定することにより実施した。
発電効率=(Jsc×Voc×FF(%))/入射光強度・・・(1)
(Jsc:短絡電流密度、FF:フィルファクタ)
短絡電流密度Jscは、下記(2)式により表される。
Jsc=n0・q・{exp(qV/kT)-1}・・・(2)
(n0:少数キャリア密度、q:単位電荷、V:電位差、k:ボツルマン定数、T:温度)
少数キャリア密度n0は、キャリアライフタイムに比例する。従って、上記(1)及び(2)式から明らかなように、発電効率は、開放電圧Voc及びキャリアライフタイムに比例する。そこで、開放電圧Vocとキャリアライフタイムとを測定することにより、発電効率を評価した。
開放電圧Vocは、光電変換装置1に電流が流れていない時の電圧である。光が照射されることにより電流が流れている光電変換装置1に対して、当該電流と逆向きに電圧を印加し、電圧を徐々に上げていく。印加される電圧が0である時に流れている電流の密度が、短絡電流密度Jscである。電流が流れなくなった時に印加されている電圧が、開放電圧Vocである。なお、開放電圧は、スパッタリングによる成膜前、スパッタリングによる成膜直後、及び加熱処理(アニーリング)直後において測定された。さらに、開放電圧は、経過日数に応じて測定された。
キャリアライフタイムについては、μ-PCD法により測定した。光電変換装置1にレーザ光をパルス照射すると過剰キャリア(電子・正孔対)が生成される。過剰キャリアの密度の上昇に応じてパルス照射表面のマイクロ波反射率が上昇する。この現象を利用して、マイクロ波反射率の時間変化を計測することにより、キャリアライフタイムを測定した。本測定において、キャリアライフタイムは、パルスレーザ光照射完了時刻から、マイクロ波反射率が1/eに減少するまでに要する時間として定義される。なお、eは、ネイピア数である。本測定では、波長904nmの半導体レーザを用いてレーザ光を得た。また、周波数10GHzのシングル導波管を用いてマイクロ波を得た。なお、キャリアライフタイムは、スパッタリングによる成膜前、スパッタリングによる成膜直後、及び加熱処理(アニーリング)直後において測定された。さらに、キャリアライフタイムは、経過日数に応じて測定された。
<希ガス/主金属の原子数比>
実施例1の原子数比(Ar/In)は、0.66であった。実施例2の原子数比(Ar/In)は、0.40であった。実施例3の原子数比(Ar/In)は、0.82であった。比較例1の原子数比(Ar/In)は、0.30であった。
図9(a)は、実施例1及び比較例1に係る光電変換装置の開放電圧Voc及び経過時間を示す。実線は、実施例1のデータを示す。破線は、比較例1のデータを示す。実施例1では、比較例1よりも、高い開放電圧Vocが得られた。加えて、実施例1では、長期間にわたって、高い開放電圧Vocが維持された。実施例2、3(図示せず)についても、実施例1と同様に、長期間にわたって、高い開放電圧Vocが維持された。
図9(b)は、実施例1及び比較例1に係る光電変換装置におけるキャリアライフタイム及び経過日数を示す。実線は、実施例1のデータを示す。破線は、比較例1のデータを示す。実施例1では、比較例1よりも、長いキャリアライフタイムが得られた。加えて、実施例1では、長期間にわたって、長いキャリアライフタイムが維持された。実施例2、3(図示せず)についても、実施例1と同様に、長期間において、長いキャリアライフタイムが維持された。
「アニーリングによる変化値」(増加量)が示すように、開放電圧及びキャリアライフタイムの両方が、アニーリングによって増加した。この理由は、例えば、ダングリングボンドが、層内に吸蔵されている水素により再び終端されたためであると考えられる。開放電圧に関して、実施例1、2の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)よりも少なかった。これは、実施例1、2におけるスパッタリングによるダメージが小さかったため、その回復による増加量も小さくなったことに起因していると考えられる。一方、実施例3の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)よりも多かった。実施例3におけるスパッタリングによるダメージは、実施例1、2と同様に小さいが、実施例3では、回復によって、大きな増加量が得られたためである、と考えられる。一方、キャリアライフタイムに関して、実施例1、3の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)の3倍以上であった。さらに、キャリアライフタイムに関して、実施例2の「アニーリングによる変化値」(増加量)は、比較例1の「アニーリングによる変化値」(増加量)の約2倍であった。これは、生成された透明導電層(ITO層)に多く含まれる希ガス(アルゴン)が、パッシベーション層からの拡散成分(水素)の拡散を抑制したためであると考えられる。比較例1においても、上述したように、アニーリングによってダングリングボンドの水素終端が生じるが、水素の拡散も生じるため、実施例1~3と比べて、増加量が少なくなったと考えられる。
このように、スパッタリング及びアニーリングによる開放電圧及びキャリアライフタイムの変化量によっても、多量の希ガスを含有する透明導電層による拡散成分の拡散の抑制乃至防止が確認された。
このように、図4~図7に示すスパッタリングカソード201を用いて導電性拡散防止層を形成することにより、導電性拡散防止層の希ガス含有量を高めることができる。
このように、導電性拡散防止層の希ガス含有量を高めることにより、導電層から導電性拡散防止層への拡散成分の拡散を抑制乃至防止できる。
本発明の積層構造体は、図1に示す例に限定されない。本発明の積層構造体としては、例えば、図10及び図11(a)~(c)の各々に示す光電変換装置が挙げられる。
11 第1導電型単結晶半導体基板
12 パッシベーション層
121 i型非晶質水素含有半導体層
122 第2導電型非晶質水素含有半導体層
14 第1透明導電層
15 第1集電極
16 パッシベーション層
161 i型非晶質半導体層
162 第1導電型非晶質半導体層
17 第2透明導電層
18 第2集電極
Claims (25)
- 積層構造体であって、
前記積層構造体は、
導電性を有するとともに、隣接する層へ拡散可能な拡散成分を含む導電層と、
前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、前記少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の希ガスを含む導電性拡散防止層と
を有する。 - 請求項1に記載の積層構造体であって、
前記希ガスは、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも1種である。 - 請求項1又は2に記載の積層構造体であって、
前記拡散成分は、前記希ガスよりも原子量の小さい非金属元素である。 - 請求項1~3のいずれか1に記載の積層構造体であって、
前記積層構造体は、光電変換装置である。 - 請求項4に記載の積層構造体であって、
前記光電変換装置は、ヘテロ接合型光電変換装置である。 - 請求項4に記載の積層構造体であって、
前記光電変換装置は、ペロブスカイト型光電変換装置である。 - 請求項4に記載の積層構造体であって、
前記光電変換装置は、有機物光電変換装置である。 - 請求項4に記載の積層構造体であって、
前記光電変換装置は、有機エレクトロルミネッセンス型発光装置である。 - 請求項4~6のいずれか1に記載の積層構造体であって、
前記導電層は、前記拡散成分として水素を含むパッシベーション層である。 - 請求項4、7又は8に記載の積層構造体であって、
前記導電層は、有機物からなる。 - 請求項4~10のいずれか1に記載の積層構造体であって、
前記導電性拡散防止層は、透明であり且つ導電性を有する透明導電層である。 - 請求項4~11のいずれか1に記載の積層構造体であって、
前記導電性拡散防止層は、前記主金属として、インジウム、亜鉛及び錫からなる群から選択される、少なくとも1つの元素を含む。 - 積層構造体の製造方法であって、
前記積層構造体は、
導電性を有するとともに、隣接する層へ拡散可能な成分を含む導電層と、
前記導電層と隣接するように設けられ、導電性を有するように少なくとも1種の金属又は金属酸化物を含むとともに、希ガスを含む導電性拡散防止層と
を有し、
前記製造方法は、
導電層が形成された構造体を準備する工程と、
横断面形状が互いに対向する一対の長辺部を有する管状の形状を有し、前記少なくとも1種の金属又は金属酸化物を含むエロージョン面が内側を向いているスパッタリングターゲットを有するスパッタリングカソードを用い、前記スパッタリングターゲットの軸線方向において前記スパッタリングターゲットと間隔を空けて前記構造体を配置し、前記スパッタリングターゲットの内面に沿って周回するプラズマが発生するように放電を行って、前記希ガスを含むスパッタリングガスにより発生するプラズマ中のイオンにより前記スパッタリングターゲットの前記長辺部の内面をスパッタリングすることにより、前記構造体の前記導電層上に、前記導電層と隣接するように前記導電性拡散防止層を形成する工程と
を有する。 - 請求項13に記載の積層構造体の製造方法であって、
前記導電性拡散防止層は、前記少なくとも1種の金属又は金属酸化物における主金属の原子数に対する原子数の比率が0.40以上の前記希ガスを含む。 - 請求項13又は14に記載の積層構造体の製造方法であって、
前記希ガスは、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも1種である。 - 請求項13~15のいずれか1に記載の積層構造体の製造方法であって、
前記拡散成分は、前記希ガスよりも原子量の小さい非金属元素である。 - 請求項13~16のいずれか1に記載の積層構造体の製造方法であって、
前記積層構造体は、光電変換装置である。 - 請求項17に記載の積層構造体の製造方法であって、
前記光電変換装置は、ヘテロ接合型光電変換装置である。 - 請求項17に記載の積層構造体の製造方法であって、
前記光電変換装置は、ペロブスカイト型光電変換装置である。 - 請求項17に記載の積層構造体の製造方法であって、
前記光電変換装置は、有機物光電変換装置である。 - 請求項17に記載の積層構造体の製造方法であって、
前記光電変換装置は、有機エレクトロルミネッセンス型発光装置である。 - 請求項17~19のいずれか1に記載の積層構造体の製造方法であって、
前記導電層は、前記拡散成分として水素を含むパッシベーション層である。 - 請求項17、20又は21に記載の積層構造体の製造方法であって、
前記導電層は、有機物からなる。 - 請求項17~23のいずれか1に記載の積層構造体の製造方法であって、
前記導電性拡散防止層は、透明であり且つ導電性を有する透明導電層である。 - 請求項17~24のいずれか1に記載の積層構造体の製造方法であって、
前記導電性拡散防止層は、前記主金属として、インジウム、亜鉛及び錫からなる群から選択される、少なくとも1つの元素を含む。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/638,625 US20220302325A1 (en) | 2019-08-30 | 2020-08-25 | Multilayer Structure and Method for Producing Multilayer Structure |
EP20858182.7A EP4023431A4 (en) | 2019-08-30 | 2020-08-25 | MULTI-LAYER STRUCTURE AND METHOD OF MAKING A MULTI-LAYER STRUCTURE |
KR1020227009949A KR102689097B1 (ko) | 2019-08-30 | 2020-08-25 | 적층 구조체, 및 적층 구조체의 제조 방법 |
JP2021542916A JP7437053B2 (ja) | 2019-08-30 | 2020-08-25 | 積層構造体、及び積層構造体の製造方法 |
CN202080060403.9A CN114342090A (zh) | 2019-08-30 | 2020-08-25 | 积层结构体及积层结构体的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-157956 | 2019-08-30 | ||
JP2019157956 | 2019-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039764A1 true WO2021039764A1 (ja) | 2021-03-04 |
Family
ID=74685624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031961 WO2021039764A1 (ja) | 2019-08-30 | 2020-08-25 | 積層構造体、及び積層構造体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220302325A1 (ja) |
EP (1) | EP4023431A4 (ja) |
JP (1) | JP7437053B2 (ja) |
KR (1) | KR102689097B1 (ja) |
CN (1) | CN114342090A (ja) |
WO (1) | WO2021039764A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024058021A1 (ja) * | 2022-09-13 | 2024-03-21 | 京セラ株式会社 | 太陽電池素子及び太陽電池モジュール |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0140884B2 (ja) * | 1984-06-15 | 1989-09-01 | Seiki Kinzoku Kako Kk | |
WO2012043124A1 (ja) * | 2010-10-01 | 2012-04-05 | 株式会社カネカ | 光電変換装置の製造方法 |
WO2013061637A1 (ja) | 2011-10-27 | 2013-05-02 | 三菱電機株式会社 | 光電変換装置とその製造方法、および光電変換モジュール |
JP2016106440A (ja) * | 2016-03-23 | 2016-06-16 | 株式会社半導体エネルギー研究所 | 光電変換装置の作製方法 |
US20160329443A1 (en) * | 2015-05-06 | 2016-11-10 | Solarcity Corporation | Solar cell with a low-resistivity transparent conductive oxide layer |
JP2017028279A (ja) * | 2015-07-17 | 2017-02-02 | 株式会社半導体エネルギー研究所 | 半導体装置、照明装置、および車両 |
JP2017152695A (ja) * | 2016-02-23 | 2017-08-31 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器、及び照明装置 |
WO2017195722A1 (ja) * | 2016-05-09 | 2017-11-16 | 株式会社カネカ | 積層型光電変換装置およびその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2895213B2 (ja) * | 1990-11-26 | 1999-05-24 | キヤノン株式会社 | 光起電力素子 |
JP2001152323A (ja) * | 1999-11-29 | 2001-06-05 | Canon Inc | 透明電極および光起電力素子の作製方法 |
JP2001172051A (ja) * | 1999-12-15 | 2001-06-26 | Nippon Sheet Glass Co Ltd | ディスプレイ用ガラス基板 |
JP2004311965A (ja) * | 2003-03-26 | 2004-11-04 | Canon Inc | 光起電力素子の製造方法 |
WO2007086276A1 (ja) * | 2006-01-25 | 2007-08-02 | Ulvac, Inc. | スパッタリング装置及び成膜方法 |
FR2924723B1 (fr) * | 2007-12-11 | 2010-12-17 | Centre Nat Rech Scient | Support solide revetu d'au moins un film de metal et d'au moins une couche d'oxyde transparent et conducteur pour la detection par spr et/ou par une methode electrochimique |
US10672925B2 (en) * | 2013-06-14 | 2020-06-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Thin film solar cell and method of forming same |
JP2015072938A (ja) | 2013-10-01 | 2015-04-16 | 長州産業株式会社 | 光発電素子及びその製造方法 |
JP6729602B2 (ja) * | 2015-11-30 | 2020-07-22 | Agc株式会社 | 光電変換素子を製造する方法 |
CN109881166B (zh) * | 2016-03-30 | 2021-04-20 | 京浜乐梦金属科技株式会社 | 溅射阴极、溅射装置和成膜体的制造方法 |
JP6440884B1 (ja) | 2018-05-10 | 2018-12-19 | 京浜ラムテック株式会社 | スパッタリングカソードおよびスパッタリング装置 |
-
2020
- 2020-08-25 CN CN202080060403.9A patent/CN114342090A/zh active Pending
- 2020-08-25 EP EP20858182.7A patent/EP4023431A4/en active Pending
- 2020-08-25 US US17/638,625 patent/US20220302325A1/en active Pending
- 2020-08-25 WO PCT/JP2020/031961 patent/WO2021039764A1/ja unknown
- 2020-08-25 JP JP2021542916A patent/JP7437053B2/ja active Active
- 2020-08-25 KR KR1020227009949A patent/KR102689097B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0140884B2 (ja) * | 1984-06-15 | 1989-09-01 | Seiki Kinzoku Kako Kk | |
WO2012043124A1 (ja) * | 2010-10-01 | 2012-04-05 | 株式会社カネカ | 光電変換装置の製造方法 |
WO2013061637A1 (ja) | 2011-10-27 | 2013-05-02 | 三菱電機株式会社 | 光電変換装置とその製造方法、および光電変換モジュール |
US20160329443A1 (en) * | 2015-05-06 | 2016-11-10 | Solarcity Corporation | Solar cell with a low-resistivity transparent conductive oxide layer |
JP2017028279A (ja) * | 2015-07-17 | 2017-02-02 | 株式会社半導体エネルギー研究所 | 半導体装置、照明装置、および車両 |
JP2017152695A (ja) * | 2016-02-23 | 2017-08-31 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器、及び照明装置 |
JP2016106440A (ja) * | 2016-03-23 | 2016-06-16 | 株式会社半導体エネルギー研究所 | 光電変換装置の作製方法 |
WO2017195722A1 (ja) * | 2016-05-09 | 2017-11-16 | 株式会社カネカ | 積層型光電変換装置およびその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024058021A1 (ja) * | 2022-09-13 | 2024-03-21 | 京セラ株式会社 | 太陽電池素子及び太陽電池モジュール |
Also Published As
Publication number | Publication date |
---|---|
CN114342090A (zh) | 2022-04-12 |
JPWO2021039764A1 (ja) | 2021-03-04 |
US20220302325A1 (en) | 2022-09-22 |
EP4023431A1 (en) | 2022-07-06 |
EP4023431A4 (en) | 2022-10-19 |
KR102689097B1 (ko) | 2024-07-25 |
KR20220050220A (ko) | 2022-04-22 |
JP7437053B2 (ja) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3768672B2 (ja) | 積層型光起電力素子 | |
JP5762552B2 (ja) | 光電変換装置とその製造方法 | |
US20070023082A1 (en) | Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices | |
KR20080002657A (ko) | 반도체 구조, 태양 전지 및 광 전지 디바이스 제조 방법 | |
JP2012164961A (ja) | 太陽電池およびその製造方法 | |
JPH0590620A (ja) | 太陽電池 | |
WO2012040299A2 (en) | A thin-film photovoltaic device with a zinc magnesium oxide window layer | |
US20180062008A1 (en) | Method and system for manufacturing electrical contact for photovoltaic structures | |
KR20120052310A (ko) | 태양 전지 전면 컨택트 도핑 | |
JP2007208093A (ja) | 堆積膜の形成方法及び光起電力素子の形成方法 | |
KR20200075640A (ko) | 텐덤 태양전지 | |
CN105355699B (zh) | 一种多结多叠层碲化镉薄膜太阳能电池及其制备方法 | |
JP7437053B2 (ja) | 積層構造体、及び積層構造体の製造方法 | |
JPH10178195A (ja) | 光起電力素子 | |
US20090020153A1 (en) | Diamond-Like Carbon Electronic Devices and Methods of Manufacture | |
KR102218417B1 (ko) | 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법 | |
JP5645734B2 (ja) | 太陽電池素子 | |
EP3419057B1 (en) | Solar cell and method for preparing same | |
JP5770294B2 (ja) | 光電変換装置およびその製造方法 | |
KR20110072959A (ko) | 후면접합 태양전지의 제조방법 | |
US20090260680A1 (en) | Photovoltaic Devices and Associated Methods | |
JP2002222969A (ja) | 積層型太陽電池 | |
KR102218629B1 (ko) | 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법 | |
JP2007189266A (ja) | 積層型光起電力素子 | |
JPH0582815A (ja) | 太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858182 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227009949 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020858182 Country of ref document: EP Effective date: 20220330 |
|
ENP | Entry into the national phase |
Ref document number: 2021542916 Country of ref document: JP Kind code of ref document: A |