Nothing Special   »   [go: up one dir, main page]

WO2021039139A1 - 架橋型メタクリレート樹脂粒子および造孔剤 - Google Patents

架橋型メタクリレート樹脂粒子および造孔剤 Download PDF

Info

Publication number
WO2021039139A1
WO2021039139A1 PCT/JP2020/026709 JP2020026709W WO2021039139A1 WO 2021039139 A1 WO2021039139 A1 WO 2021039139A1 JP 2020026709 W JP2020026709 W JP 2020026709W WO 2021039139 A1 WO2021039139 A1 WO 2021039139A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylate
mass
resin particles
crosslinked
less
Prior art date
Application number
PCT/JP2020/026709
Other languages
English (en)
French (fr)
Inventor
博亮 村上
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Priority to CN202080037359.XA priority Critical patent/CN113874410A/zh
Priority to US17/634,528 priority patent/US20220325020A1/en
Publication of WO2021039139A1 publication Critical patent/WO2021039139A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to crosslinked methacrylate resin particles. Furthermore, the present invention also relates to a pore-forming agent containing the crosslinked methacrylate resin particles.
  • resin particles have been used for various purposes, such as additives for paints (matting agents, design-imparting agents for imparting fine irregularities to the surface of a coating film, etc.), and additives for ink (matting).
  • additives for paints for agents
  • main components or additives of adhesives for additives for artificial marble (low shrinkage agents, etc.)
  • paper treatment agents for cosmetics (fillers for improving slipperiness)
  • fillers for cosmetics fillers for improving slipperiness
  • chromatography Column filler used additive for toner used for electrostatic charge image development, blocking inhibitor for film, light diffuser for light diffuser (light diffusion film, etc.), electrode material for solid oxide fuel cell , Used for the insulating layer of insulated wires.
  • a pore-forming agent, ceramic raw material powder, binder, dispersant, organic solvent, etc. are mixed to prepare a slurry, which is applied to a support and molded into a sheet.
  • a ceramic green sheet To prepare a ceramic green sheet.
  • An electrode material is manufactured by laminating and firing such a ceramic green sheet.
  • an organic component remains on the electrode surface after firing, and such an organic residue causes a decrease in battery efficiency.
  • the pore-forming agent has poor decomposability at low temperature, there is a problem that the surface area of the obtained fuel electrode is reduced.
  • Patent Document 1 describes a monomer composition containing isobutyl methacrylate, alkyl methacrylate in which the transesterifying group is an alkyl group having 4 or less carbon atoms, polyfunctional (meth) acrylate, and two or more emulsifiers.
  • Patent Documents 2 and 3 as a pore-forming agent for an electrode material of a solid oxide fuel cell, (meth) acrylic resin particles having a specific average particle size and a coefficient of variation of particle size within a specific range are used. It has also been proposed to use it.
  • the resin fine particles described in Patent Document 1 use 70 to 95% by weight of isobutyl methacrylate as an essential raw material, and there is a concern that cracks may occur in the base material due to rapid decomposition when thermal decomposition starts. Therefore, there was room for improvement in thermal decomposability. Further, since the resin fine particles described in Patent Document 1 have a low glass transition temperature of the resin, they are too flexible and easily deformed, so that the pore control in the substrate is insufficient when used as a pore-forming agent. There was a risk of becoming. Therefore, resin particles having excellent thermal decomposability and suitable hardness are required.
  • an object of the present invention is to provide resin particles having excellent thermal decomposability and suitable hardness. Another object of the present invention is to provide a pore-forming agent containing the resin particles.
  • the present inventor has determined the blending ratio of the monofunctional methacrylate and the polyfunctional methacrylate in the crosslinked methacrylate resin particles obtained by polymerizing the monofunctional methacrylate and the polyfunctional methacrylate. It has been found that the above problems can be solved by adjusting and setting the number of carbon atoms of the ester substituent of the monofunctional methacrylate to 3 or less. The present invention has been completed based on such findings.
  • Crosslinked methacrylate resin particles obtained by polymerizing monofunctional methacrylate and polyfunctional methacrylate.
  • the blending amount of the monofunctional methacrylate is 60% by mass or more and 95% by mass or less, and the blending amount of the polyfunctional methacrylate is 5% by mass or more and 40% by mass or less with respect to the entire methacrylate compound which is the raw material of the polymerization reaction.
  • the ester substituent of the monofunctional methacrylate has 3 or less carbon atoms and has 3 or less carbon atoms.
  • the monofunctional metacrate is at least one selected from the group consisting of methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and glycidyl methacrylate. Is preferable.
  • the polyfunctional methacrylate comprises ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polyethylene glycol dimethacrylate, and glycerin dimethacrylate. It is preferably at least one selected from the group.
  • the compressive elastic modulus at the time of 10% compressive deformation is preferably 2000 N / mm 2 or more and 3000 N / mm 2 or less.
  • the residual amount at the end of the temperature rise is preferably 2.0% by mass or less.
  • the decomposition rate from the 5% mass reduction temperature to the 50% mass reduction temperature is preferably 2.0% by mass / ° C. or less in the measurement by thermogravimetric differential thermal analysis.
  • the average particle size of the crosslinked methacrylate resin particles is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the coefficient of variation of the particle size of the crosslinked methacrylate resin particles is 10% or more and 50% or less.
  • a pore-forming agent containing the above-mentioned crosslinked methacrylate resin particles is provided.
  • the above-mentioned pore-forming agent is used for forming a solid oxide fuel cell.
  • the above-mentioned pore-forming agent is used for forming an insulated electric wire.
  • crosslinked methacrylic resin particles having excellent thermal decomposability and suitable hardness.
  • Such crosslinked methacrylic resin particles can be suitably used as a pore-forming agent.
  • the resin particles according to the present invention are methacrylate resin particles obtained by polymerizing specific monofunctional methacrylate and polyfunctional methacrylate described in detail below, and have a structure in which each polymer chain is crosslinked by the polyfunctional methacrylate. It is a thing. By blending these two types of monomers in a specific ratio and polymerizing them, it is possible to suppress rapid decomposition due to a temperature rise while lowering the temperature until the start of decomposition of the crosslinked methacrylate resin particles due to heat. Therefore, when used as a pore-forming agent for a base material, pores in the base material are gradually formed, which facilitates control of the pore-forming process. Further, the hardness of the crosslinked methacrylate resin particles can be adjusted within an appropriate range, the resin particles are less likely to be deformed in the base material, and the pore formation process can be easily controlled.
  • the monofunctional methacrylate is not particularly limited as long as the ester substituent has 3 or less carbon atoms.
  • Examples of the monofunctional methacrylate include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate and the like. These monofunctional methacrylates may be used alone or in combination of two or more. In particular, it is preferable to use methyl methacrylate and glycidyl methacrylate in combination.
  • monofunctional methacrylate is used instead of monofunctional acrylate, and the number of carbon atoms of the ester substituent of the monofunctional methacrylate is set to 3 or less to adjust the hardness to a suitable level while improving the thermal decomposability. be able to.
  • the blending amount of the monofunctional methacrylate is 60% by mass or more and 95% by mass or less, and the lower limit value is preferably 65% by mass or more, more preferably 70% by mass, based on the entire methacrylate compound which is the raw material of the polymerization reaction. % Or more, and the upper limit value is preferably 90% by mass or less, and more preferably 85% by mass or less.
  • the blending amount of glycidyl methacrylate is preferably 5% by mass or more and 30% by mass or less, and more preferably 10% by mass or more and 20% by mass or less, based on the total amount of the methacrylate compound of the raw material.
  • the blending amount of the monofunctional methacrylate is within the above numerical range, the hardness can be adjusted to an appropriate level while improving the thermal decomposability.
  • Polyfunctional methacrylate means a methacrylate having two or more functions, and it is preferable to use a methacrylate having two or more functions and six functions or less, and more preferably using a methacrylate having two or more functions and four functions or less.
  • the polyfunctional methacrylate may be used alone or in combination of two or more. Further, polyfunctional methacrylate having a different number of functional groups may be used in combination.
  • bifunctional methacrylate examples include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polyethylene glycol dimethacrylate, glycerin dimethacrylate, and 1,3-butanediol dimethacrylate.
  • ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polyethylene glycol dimethacrylate, glycerin dimethacrylate and the like are preferably used.
  • trifunctional methacrylate examples include pentaerythritol trimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane EO-modified trimethacrylate, isocyanuric acid EO-modified trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, and propoxylated trimethylolpropane trimethacrylate.
  • examples thereof include propoxylated glyceryl trimethacrylate and trifunctional polyester methacrylate.
  • tetrafunctional methacrylate examples include pentaerythritol tetramethritol, ditrimethylolpropane tetramethritol, and ethoxylated pentaerythritol tetramethritol.
  • the blending amount of the polyfunctional methacrylate is 5% by mass or more and 40% by mass or less, and the lower limit is preferably 10% by mass or more, more preferably 15% by mass, based on the entire methacrylate compound which is the raw material of the polymerization reaction. % Or more, and the upper limit value is preferably 35% by mass or less, and more preferably 30% by mass or less.
  • the hardness can be adjusted to an appropriate level while improving the thermal decomposability.
  • the blending amount of the acrylate is preferably less than 1% by mass, more preferably less than 0.5% by mass, and further preferably 0.1% by mass with respect to the entire monomer which is the raw material of the polymerization reaction. It is less than, and even more preferably 0% by mass.
  • a polymerization initiator may be used for the polymerization reaction of monofunctional methacrylate and polyfunctional methacrylate.
  • the polymerization initiator include an oil-soluble peroxide-based polymerization initiator used for aqueous suspension polymerization, and an azo-based polymerization initiator.
  • Azobisisobutyronitrile 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), peroxide-based polymerization initiators such as hydroperoxide and diisopropylbenzene hydroperoxide.
  • azo-based initiators such as (nitrile), (2-carbamoylazo) isobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), and dimethyl-2,2'-azobisisobutyrate.
  • 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide and the like are suitable speed polymerization initiators. It is preferable in that it has a decomposition rate of. From the viewpoint of function and cost, the amount of the polymerization initiator added is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, based on 100 parts by mass of the methacrylate compound as the raw material. ..
  • the above monofunctional methacrylate and polyfunctional methacrylate can be adjusted to a desired droplet size by dissolving the polymerization initiator according to a conventional method and then stirring and mixing with an aqueous solution containing a polymerization stabilizer and a surfactant.
  • Crosslinked methacrylic resin particles can be produced by heating this mixed solution with stirring and carrying out a polymerization reaction.
  • a water-soluble polymer such as polyvinyl alcohol or an inorganic stabilizer such as calcium phosphate can be used.
  • a nonionic surfactant that does not affect the polymerization reactivity
  • ester types such as glycerin fatty acid ester and sorbitan fatty acid ester, polyoxyethylene (or POE) alkyl ether, and polyoxyethylene (or) are used.
  • POE An ether type such as alkylphenyl ether and polyoxyethylene polyoxypropylene glycol, a type in which ethylene oxide is added to a fatty acid or polyhydric alcohol fatty acid ester, and an ester ether having both an ester bond and an ether bond in the molecule. A mold or the like is used.
  • the crosslinked methacrylic resin particles obtained by polymerization are taken out as powder by crushing after undergoing a solid-liquid separation step and a drying step by a normal operation from the polymerization reaction solution and used. That is, after obtaining a wet cake by centrifugation, the moisture is removed by a method of shelf drying, a method of spray drying, etc., and then an impact is applied by a hammer mill, a bead mill, etc. to loosen the agglomerates and primary or secondary particles. Can be obtained.
  • the crosslinked methacrylic resin particles according to the present invention have a mass of resin particles at 100 ° C. when the temperature is raised from 40 ° C. to 450 ° C. at a rate of 10 ° C./min as measured by thermogravimetric differential thermal analysis (TG / DTA).
  • the temperature at the time when the mass is reduced by 5% (5% mass reduction temperature) is 180 ° C. or higher and 240 ° C. or lower, and the lower limit is preferably 185 ° C. or higher, more preferably 190 ° C. or higher.
  • the upper limit is preferably 230 ° C. or lower, more preferably 225 ° C. or lower, and further preferably 220 ° C. or lower.
  • the resin particles rapidly disappear in the substrate during heating, and the pore formation step can be easily controlled. If the 5% mass reduction temperature is less than 180 ° C., problems such as adhesion, decomposition, or deterioration of the particles may occur in the resin particle manufacturing process, particularly in the drying process.
  • the crosslinked methacrylic resin particles according to the present invention preferably have a residual amount of 2.0 at the end of the temperature rise (when the temperature reaches 450 ° C.) when the temperature is raised from 40 ° C. to 450 ° C. It is 0% by mass or less, more preferably 1.5% by mass or less, and further preferably 1.3% by mass or less.
  • the amount of the residue is within the above numerical range, almost no residue of the resin particles remains in the pores in the base material due to heating, so that it is possible to prevent adverse effects on the performance of the product using the base material.
  • the crosslinked methacrylic resin particles according to the present invention have a decomposition rate from a 5% mass reduction temperature to a 50% mass reduction temperature, preferably 2.0% by mass / ° C. or less, which is a lower limit. Is preferably 0.2% by mass / ° C. or higher, more preferably 0.3% by mass / ° C. or higher, still more preferably 0.5% by mass / ° C. or higher, and the upper limit value is more preferably. It is 1.8% by mass / ° C. or less, more preferably 1.7% by mass / ° C. or less, and even more preferably 1.6% by mass / ° C. or less.
  • the resin particles are gradually decomposed, so that the pores in the substrate are gradually formed, which facilitates the control of the pore formation step. Since a sudden volume change is unlikely to occur in the base material, it is possible to prevent cracks from occurring in the base material.
  • the average particle size of the crosslinked methacrylic resin particles according to the present invention is not particularly limited, but is preferably 0.5 ⁇ m or more and 20 ⁇ m or less, and the lower limit is more preferably 0.7 ⁇ m or more, still more preferably 1.0 ⁇ m. It is more preferably 1.5 ⁇ m or more, and the upper limit value is more preferably 15 ⁇ m or less, further preferably 12 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • uniform pores can be easily formed in the base material.
  • the average particle size of the resin particles is a precision particle size distribution measuring device (Beckman Coulter's Multisizer 4, predetermined aperture diameter: when the average particle size is less than 5 ⁇ m, a 30 ⁇ m aperture is used, and the average particle size is 5 ⁇ m or more. In this case, it can be measured by using an aperture of 70 ⁇ m or more).
  • the shape of the resin particles is not particularly limited, but a spherical shape, a spheroid, or the like is preferable.
  • the crosslinked methacrylic resin particles according to the present invention have suitable hardness because the compressive elastic modulus at the time of 10% compressive deformation is within a specific numerical range.
  • the compressive elastic modulus at the time of 10% compressive deformation (hereinafter referred to as "10% K value”) in the present invention is the compressive elastic modulus when the particle diameter is displaced by 10%.
  • the 10% K value is constant in the vertical downward direction with a 20 ⁇ m diameter diamond circular indenter at room temperature (25 ° C.) for one resin particle sprayed on the sample table using a microcompression tester (MCT-210 manufactured by Shimadzu Corporation).
  • a load is applied at a speed, the load value and the compressive displacement at the time of 10% compression deformation of the resin particle diameter are measured, and the values are obtained by the following mathematical formula (I).
  • the 10% K value universally and quantitatively expresses the flexibility of the resin particles, and by using the 10% K value, it is possible to quantitatively and uniquely express the suitable hardness of the resin particles. It becomes.
  • K (3 / ⁇ 2) ⁇ F ⁇ 10 -3 ⁇ S (-3/2) ⁇ R (-1 / 2) ⁇ ⁇ ⁇ Formula (I)
  • K compressive elastic modulus (N / mm 2 ) when 10% compressive deformation of resin particles
  • F Load value (N) when 10% compression deformation of resin particles
  • S Compressive displacement (mm) in 10% compressive deformation of resin particles
  • R Radius of resin particles (mm)
  • the crosslinked methacrylic resin particles according to the present invention have a 10% K value of preferably 2000 N / mm 2 or more and 3000 N / mm 2 or less, and a lower limit value of more preferably 2050 N / mm 2 or more, further preferably 2100 N / mm. and mm 2 or more, and more preferably the upper limit value or less 2900N / mm 2, more preferably not more than 2800N / mm 2, still more preferably not more than 2500N / mm 2.
  • the 10% K value is within the above numerical range, the hardness is suitable, so that the pore forming step can be easily controlled.
  • the coefficient of variation (Cv) of the particle size of the crosslinked methacrylic resin particles according to the present invention is preferably 10% or more and 50% or less in order to facilitate control of the pore formation step.
  • the lower limit of Cv is more preferably 15% or more, further preferably 18% or more, even more preferably 20% or more, and the upper limit is more preferably 48% or less, still more preferably. It is 47% or less, and even more preferably 45% or less.
  • the method for measuring Cv in the present invention is as described in Examples. When Cv is within the above range, uniform pores are easily formed in the base material.
  • the pore-forming agent according to the present invention contains the above-mentioned crosslinked methacrylic resin particles.
  • the pore-forming agent is thermally decomposed (vaporized), and pores can be formed in the place where the pore-forming agent was present.
  • the pore-forming agent according to the present invention can be applied to various conventionally known uses. For example, it can be used for forming an electrode material of a solid oxide fuel cell, a ceramic filter, an insulating layer of an insulated electric wire, and the like.
  • the base material containing the pore-forming agent is not particularly limited, and can be appropriately selected according to various uses.
  • examples of the base material include ceramics and resin base materials.
  • Example 1 To the dispersion container, 200 parts by mass of deionized water and 2 parts by mass of polyvinyl alcohol (manufactured by Kuraray, trade name: PVA217-EE) as a dispersant were added. Further, 80 parts by mass of methyl methacrylate as a monofunctional methacrylate, 10 parts by mass of 1G and 10 parts by mass of 14G as a polyfunctional methacrylate, and 0.5 parts by mass of lauryl peroxide as a polymerization initiator were added in the above dispersion container. It was added to the aqueous solution to prepare a mixed solution.
  • PVA217-EE polyvinyl alcohol
  • the obtained mixed solution was dispersed by a disperser for a predetermined time to obtain a dispersion having an adjusted droplet diameter.
  • This dispersion was injected into a polymerization reactor equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen inlet, and a polymerization reaction was carried out at 80 ° C. for 4 hours under nitrogen inflow.
  • Solid-liquid separation was performed from the polymerization reaction solution by centrifugal sedimentation operation to obtain a crosslinked methacrylic resin.
  • the obtained crosslinked methacrylic resin was redispersed with ion-exchanged water and settled centrifugally to wash the surfactant. Subsequently, after drying at 80 ° C. for 12 hours under reduced pressure conditions, the particles were crushed to obtain crosslinked methacrylic resin particles.
  • Example 2 Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that 80 parts by mass of methyl methacrylate was used as the monofunctional methacrylate and 20 parts by mass of the above 9PG was used as the polyfunctional methacrylate.
  • Example 3 Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that 60 parts by mass of methyl methacrylate was used as the monofunctional methacrylate and 40 parts by mass of the above 9PG was used as the polyfunctional methacrylate.
  • Example 4 1 part of polyoxyethylene alkyl ether sulfate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: Hytenol NF-17) as a dispersant, 95 parts by mass of methyl methacrylate as a monofunctional methacrylate, and 5 parts by mass of the above 9PG as a polyfunctional methacrylate.
  • Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that the parts were used.
  • Example 5 Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that 75 parts by mass of methyl methacrylate was used as the monofunctional methacrylate, 5 parts by mass of glycidyl methacrylate was used, and 20 parts by mass of the above 9PG was used as the polyfunctional methacrylate.
  • Example 6 Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that 60 parts by mass of methyl methacrylate was used as the monofunctional methacrylate, 20 parts by mass of glycidyl methacrylate was used, and 20 parts by mass of the above 9PG was used as the polyfunctional methacrylate.
  • Example 7 1 part of polyoxyethylene alkyl ether sulfate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: Hytenol NF-17) as a dispersant, 70 parts by mass of methyl methacrylate, 10 parts by mass of glycidyl methacrylate, and polyfunctional methacrylate as monofunctional methacrylate.
  • Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that 20 parts by mass of the above 9PG was used.
  • Example 8 1 part of polyoxyethylene alkyl ether sulfate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: Hytenol NF-17) as a dispersant, 70 parts by mass of methyl methacrylate, 10 parts by mass of glycidyl methacrylate, and polyfunctional methacrylate as monofunctional methacrylate.
  • Crosslinked methacrylic resin particles were obtained in the same manner as in Example 1 except that 5 parts by mass of 1G and 20 parts by mass of 9PG were used.
  • Table 1 shows a list of the compositions of the resin particles obtained in Examples and Comparative Examples.
  • K (3 / ⁇ 2) ⁇ F ⁇ 10 -3 ⁇ S (-3/2) ⁇ R (-1 / 2)
  • K Compressive modulus (N / mm 2 ) in 10% compressive deformation of resin particles
  • F Load value (N) at 10% compressive deformation of resin particles
  • S Compressive displacement (mm) in 10% compressive deformation of resin particles
  • R Radius of resin particles (mm)
  • Table 2 shows the measurement results of the resin particles produced in Examples and Comparative Examples.
  • NiO trade name NiO-FP, manufactured by Sumitomo Metal Mining Co., Ltd.
  • YSZ trade name TZ8YS, manufactured by Tosoh Corporation
  • a slurry for an anode support for a solid oxide fuel cell was obtained by sufficiently kneading 9 parts by mass of propanol and 5 parts by mass of toluene with a bead mill. This slurry was applied to a PET film by the doctor blade method and dried at 90 ° C. overnight to prepare a green sheet for a support. By heating this green sheet at 1100 ° C. for 4 hours, an anode support for a solid oxide fuel cell in which pores were formed was produced.
  • the coating film was cured by heating for 1 hour to form a film made of polyimide on a glass plate.
  • the glass plate on which the film made of polyimide was formed was taken out from the vacuum oven, immersed in water at 25 ° C. for 12 hours, and the film made of polyimide was recovered from the glass plate to obtain the polyimide resin having pores formed. Obtained.
  • the obtained anode support for solid oxide fuel cell and polyimide resin were cut by a focused ion beam processing device (FB-2100, manufactured by Hitachi High-Tech), and the cross section was observed using a scanning electron microscope.
  • the pores obtained by using the resin particles obtained in Example 1 were spherical, no residue was observed inside the pores, and no cracks were confirmed in the base material.
  • a plurality of irregular shapes such as crushed spheres were confirmed, residues were observed inside the pores, and a plurality of cracks were confirmed in the base material. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

[課題]熱分解性に優れ、好適な硬さを有する樹脂粒子の提供。 [解決手段]本発明による樹脂粒子は、単官能メタクリレートおよび多官能メタクリレートを重合して得られる架橋型メタクリレート樹脂粒子であって、 重合反応の原材料であるメタクリレート化合物全体に対して、前記単官能メタクリレートの配合量が60質量%以上95質量%以下であり、前記多官能メタクリレートの配合量が5質量%以上40質量%以下であり、 前記単官能メタクリレートのエステル置換基の炭素数が3以下であり、 熱重量示差熱分析による測定において前記架橋型メタクリレート樹脂粒子の5%質量減少温度が180℃以上240℃以下である。

Description

架橋型メタクリレート樹脂粒子および造孔剤
 本発明は、架橋型メタクリレート樹脂粒子に関する。さらに、本発明は、該架橋型メタクリレート樹脂粒子を含む造孔剤にも関する。
 従来から、樹脂粒子は、様々な用途、例えば、塗料用の添加剤(艶消し剤、微細な凹凸を塗膜表面に付与するための意匠性付与剤等)、インク用の添加剤(艶消し剤等)、接着剤の主成分または添加剤、人工大理石用の添加剤(低収縮化剤等)、紙処理剤、化粧品用の充填材(滑り性向上のための充填材)、クロマトグラフィーに用いるカラム充填材、静電荷像現像に使用されるトナー用の添加剤、フィルム用のブロッキング防止剤、光拡散体(光拡散フィルム等)用の光拡散剤、固体酸化物型燃料電池の電極材料、絶縁電線の絶縁層等に使用されている。
 固体酸化物型燃料電池の電極材料の製造工程では、造孔剤、セラミック原料粉末、バインダー、分散剤及び有機溶剤等を混合してスラリーを調製し、支持体に塗布してシート状に成型してセラミックグリーンシートを作製する。このようなセラミックグリーンシートを積層して焼成することで、電極材料を製造する。しかし、従来の方法では、焼成後の電極表面に有機成分が残存し、このような有機残渣が電池の効率低下の原因となっていた。また、造孔剤の低温での分解性が悪いと、得られる燃料極の表面積が低下するという問題も生じていた。このような問題に対して、特許文献1では、イソブチルメタクリレート、エステル置換基が炭素数4以下のアルキル基であるアルキルメタクリレート、多官能(メタ)アクリレート及び2種以上の乳化剤を含有するモノマー組成物を重合させて得られるアクリル系樹脂粒子であって、各成分の割合や粒子径を調節し、300℃および350℃で1時間加熱したときの質量減少率が特定の数値以上である樹脂粒子を用いることが提案されている。また、特許文献2および3では、固体酸化物型燃料電池の電極材料の造孔剤として、特定の平均粒子径や粒子サイズの変動係数が特定の範囲内にある(メタ)アクリル系樹脂粒子を用いることも提案されている。
特開2018-125277号公報 特開2007-220731号公報 特開2011-34819号公報
 しかしながら、特許文献1に記載の樹脂微粒子は、必須の原材料として、イソブチルメタクリレートを70~95重量%用いており、熱分解が開始すると分解が急速に進むことにより基材にクラックが生じる懸念があるため、熱分解性に改善の余地があった。また、特許文献1に記載の樹脂微粒子は、樹脂のガラス転移温度が低いことから柔軟性が高過ぎて変形し易いため、造孔剤として用いた際に基材中の細孔制御が不十分となる恐れがあった。そのため、熱分解性に優れ、好適な硬さを有する樹脂粒子が求められている。
 また、従来、原材料である(メタ)アクリレートの分子鎖は長い方が、熱分解が進行し易いと考えられてきた。そのため、特許文献1のようにブチル(メタ)アクリレートやオクチル(メタ)アクリレート等のエステル置換基の炭素数が4以上の化合物を用いることが提案されてきた。しかし、本発明者は、意外にも、アクリレートではなく、メタクリレートを用い、かつメタクリレートの分子鎖を比較的短くすることで、熱分解が進行し易く、かつ分解後の残渣を少なくできることを知見した。
 したがって、本発明の目的は、熱分解性に優れ、好適な硬さを有する樹脂粒子を提供することである。また、本発明の他の目的は、該樹脂粒子を含む造孔剤を提供することである。
 本発明者は、上記課題を解決するために鋭意検討した結果、単官能メタクリレートおよび多官能メタクリレートを重合して得られる架橋型メタクリレート樹脂粒子であって、単官能メタクリレートおよび多官能メタクリレートの配合割合を調節し、かつ、単官能メタクリレートのエステル置換基の炭素数を3以下とすることにより、上記課題を解決できることを知見した。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明の一態様によれば、
 単官能メタクリレートおよび多官能メタクリレートを重合して得られる架橋型メタクリレート樹脂粒子であって、
 重合反応の原材料であるメタクリレート化合物全体に対して、前記単官能メタクリレートの配合量が60質量%以上95質量%以下であり、前記多官能メタクリレートの配合量が5質量%以上40質量%以下であり、
 前記単官能メタクリレートのエステル置換基の炭素数が3以下であり、
 熱重量示差熱分析による測定において前記架橋型メタクリレート樹脂粒子の5%質量減少温度が180℃以上240℃以下である、架橋型メタクリレート樹脂粒子が提供される。
 本発明の態様においては、前記単官能メタクレートが、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、およびグリシジルメタクリレートからなる群から選択される少なくとも1種であることが好ましい。
 本発明の態様においては、前記多官能メタクリレートが、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、およびグリセリンジメタクリレートからなる群から選択される少なくとも1種であることが好ましい。
 本発明の態様においては、10%圧縮変形時の圧縮弾性率が2000N/mm以上3000N/mm以下であることが好ましい。
 本発明の態様においては、熱重量示差熱分析による測定において40℃から450℃まで昇温した際に、昇温終了時の残渣量が2.0質量%以下であることが好ましい。
 本発明の態様においては、熱重量示差熱分析による測定において5%質量減少温度から50%質量減少温度までの分解速度が2.0質量%/℃以下であることが好ましい。
 本発明の態様においては、前記架橋型メタクリレート樹脂粒子の平均粒子径が0.5μm以上20μm以下であることが好ましい。
 本発明の態様においては、前記架橋型メタクリレート樹脂粒子の粒子サイズの変動係数が10%以上50%以下であることが好ましい。
 本発明の他の態様においては、上記の架橋型メタクリレート樹脂粒子を含む、造孔剤が提供される。
 本発明の他の態様においては、上記の造孔剤が固体酸化物型燃料電池の形成に用いられることが好ましい。
 本発明の他の態様においては、上記の造孔剤が絶縁電線の形成に用いられることが好ましい。
 本発明によれば、熱分解性に優れ、好適な硬さを有する架橋型メタクリル樹脂粒子を提供することができる。このような架橋型メタクリル樹脂粒子は、造孔剤として好適に用いることができる。
実施例1、比較例2、比較例13の樹脂粒子の熱重量示差熱分析で測定した分解曲線を示す。
<架橋型メタクリル樹脂粒子>
 本発明による樹脂粒子は、下記で詳述する特定の単官能メタクリレートおよび多官能メタクリレートを重合して得られるメタクリレート樹脂の粒子であり、多官能メタクリレートによって各重合体鎖間が架橋された構造を有するものである。これらの2種の単量体を特定割合で配合して重合させることで、架橋型メタクリレート樹脂粒子の熱による分解開始までの温度を下げつつ、温度上昇による急激な分解を抑えることができる。そのため、基材の造孔剤として用いた際に、基材中の細孔が徐々に形成されることで細孔形成工程の制御が容易となる。また、架橋型メタクリレート樹脂粒子の硬さを適切な範囲に調節することができ、基材中で樹脂粒子が変形しづらく、細孔形成工程の制御が容易となる。
(単官能メタクリレート)
 単官能メタクリレートは、エステル置換基の炭素数が3以下であれば、特に限定されない。単官能メタクリレートとしては、例えば、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、およびグリシジルメタクリレート等が挙げられる。これらの単官能メタクリレートは、1種単独で用いてもよいし、2種以上を併用してもよい。特に、メチルメタクリレートおよびグリシジルメタクリレートを併用することが好ましい。本発明においては、単官能アクリレートではなく単官能メタクリレートを用い、かつ単官能メタクリレートのエステル置換基の炭素数を3以下にすることで、熱分解性を向上しながら、好適な硬さに調節することができる。
 単官能メタクリレートの配合量は、重合反応の原材料であるメタクリレート化合物全体に対して、60質量%以上95質量%以下であり、下限値としては好ましくは65質量%以上であり、より好ましくは70質量%以上であり、上限値としては好ましくは90質量%以下であり、より好ましくは85質量%以下である。グリシジルメタクリレートを用いる場合、グリシジルメタクリレートの配合量は、原材料のメタクリレート化合物全体に対して、好ましくは5質量%以上30質量%以下であり、より好ましくは10質量%以上20質量%以下である。単官能メタクリレートの配合量が上記数値範囲内であれば、熱分解性を向上しながら、好適な硬さに調節することができる。
(多官能メタクリレート)
 多官能メタクリレートは、2官能以上のメタクリレートを意味し、2官能以上6官能以下のメタクリレートを用いることが好ましく、2官能以上4官能以下のメタクリレートを用いることがより好ましい。多官能メタクリレートは、1種単独で用いてもよいし、2種以上を併用してもよい。また、異なる官能基数の多官能メタクリレートを併用してもよい。
 2官能メタクリレートとしては、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、グリセリンジメタクリレート、1,3-ブタンジオールジメタクリレート、1,4-ブタンジオールジメタクリレート、エトキシ化ビスフェノールAジメタクリレート、エトキシ化ビスフェノールFジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、プロポキシ化ネオペンチルグリコールジメタクリレート、ペンタエリスリトールジアクリレートモノステアレート、イソシアヌル酸エトキシ変性ジメタクリレート(イソシアヌル酸EO変性ジメタクリレート)等が挙げられる。これらの中でも、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、グリセリンジメタクリレート等を用いることが好ましい。
 3官能メタクリレートとしては、例えば、ペンタエリスリトールトリメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンEO変性トリメタクリレート、イソシアヌル酸EO変性トリメタクリレート、エトキシ化トリメチロールプロパントリメタクリレート、プロポキシ化トリメチロールプロパントリメタクリレート、プロポキシ化グリセリルトリメタクリレート、3官能ポリエステルメタクリレート等が挙げられる。
 4官能メタクリレートとしては、例えば、ペンタエリスリトールテトラメタクリレート、ジトリメチロールプロパンテトラメタクリレート、エトキシ化ペンタエリスリトールテトラメタクリレート等が挙げられる。
 多官能メタクリレートの配合量は、重合反応の原材料であるメタクリレート化合物全体に対して、5質量%以上40質量%以下であり、下限値としては好ましくは10質量%以上であり、より好ましくは15質量%以上であり、上限値としては好ましくは35質量%以下であり、より好ましくは30質量%以下である。多官能メタクリレートの配合量が上記数値範囲内であれば、熱分解性を向上しながら、好適な硬さに調節することができる。
 本発明の架橋型メタクリル樹脂粒子の原材料として、本発明の効果を損なわないように、原材料として、上記の単官能メタクリレートおよび多官能メタクリレート以外のメタクリレートやアクリレートの配合量を極力少なくすることが好ましい。例えば、アクリレートの配合量は、重合反応の原材料である単量体全体に対して好ましくは1質量%未満であり、より好ましくは0.5質量%未満であり、さらに好ましくは0.1質量%未満であり、さらにより好ましくは0質量%である。
 単官能メタクリレートおよび多官能メタクリレートの重合反応には、通常、重合開始剤を用いてもよい。重合開始剤としては、例えば、水系懸濁重合に用いられる油溶性の過酸化物系重合開始剤、又はアゾ系重合開始剤が挙げられる。具体的には、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルトクロロ過酸化ベンゾイル、オルトメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、クメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系重合開始剤、アゾビスバレロニトリル、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、(2-カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等のアゾ系開始剤が挙げられる。これらの中でも、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等が、適度の速さの重合開始剤の分解速度を有する等の点で好ましい。重合開始剤の添加量は、機能やコストの観点から、原材料のメタクリレート化合物100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.01~5質量部である。
 上記の単官能メタクリレートおよび多官能メタクリレートは常法に従って重合開始剤を溶解後、重合安定剤および界面活性剤を含む水溶液と攪拌混合することにより、所望の液滴径に調整することができる。この混合液を攪拌下、加熱し重合反応を行って、架橋型メタクリル樹脂粒子を製造することができる。
 重合安定剤としては、ポリビニルアルコールなどの水溶性高分子やリン酸カルシウムなどの無機系安定剤を用いることができる。
 界面活性剤としては、重合反応性に影響を与えないノニオン系界面活性剤が用いられ、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のエステル型、ポリオキシエチレン(またはPOE)アルキルエーテル、ポリオキシエチレン(またはPOE)アルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のエーテル型、脂肪酸や多価アルコール脂肪酸エステルにエチレンオキシドを付加したタイプで、分子中にエステル結合とエーテル結合の両方を有しているエステルエーテル型などが用いられる。
 重合により得られた架橋型メタクリル樹脂粒子は、重合反応液から通常の操作により固液分離工程および乾燥工程を経た後に、解砕を行うことによって粉体として取り出して使用される。すなわち、遠心分離によってウェットケーキを得た後に棚段乾燥をする方法、噴霧乾燥による方法などによって水分を除去した後、ハンマーミル、ビーズミルなどによって衝撃を与えることで凝集をほぐし、一次または二次粒子を得ることができる。
(樹脂粒子物性)
 本発明による架橋型メタクリル樹脂粒子は、熱重量示差熱分析(TG/DTA)による測定において、40℃から450℃まで10℃/分の速度で昇温した際に、100℃の樹脂粒子の質量を100%として、質量が5%減少した時点の温度(5%質量減少温度)が180℃以上240℃以下であり、下限値としては好ましくは185℃以上であり、より好ましくは190℃以上であり、上限値としては好ましくは230℃以下であり、より好ましくは225℃以下であり、さらに好ましくは220℃以下である。5%質量減少温度が上記数値範囲内であれば、加熱時に迅速に樹脂粒子が基材中で消失し、細孔形成工程の制御が容易となる。5%質量減少温度が180℃未満の場合、樹脂粒子の製造工程、特に乾燥工程において粒子が固着、分解、ないし劣化する等の不具合を生じる恐れがある。
 本発明による架橋型メタクリル樹脂粒子は、上記のTG/DTAによる測定において、40℃から450℃まで昇温した際に、昇温終了時(450℃到達時)の残渣量が好ましくは2.0質量%以下であり、より好ましくは1.5質量%以下であり、さらに好ましくは1.3質量%以下である。残渣量が上記数値範囲内であれば、加熱により基材中の細孔に樹脂粒子の残渣がほとんど残らないため、基材を用いた製品の性能に悪影響を与えるのを防ぐことができる。
 本発明による架橋型メタクリル樹脂粒子は、上記のTG/DTAによる測定において、5%質量減少温度から50%質量減少温度までの分解速度が好ましくは2.0質量%/℃以下であり、下限値としては好ましくは0.2質量%/℃以上であり、より好ましくは0.3質量%/℃以上であり、さらに好ましくは0.5質量%/℃以上であり、上限値としてはより好ましくは1.8質量%/℃以下であり、さらに好ましくは1.7質量%/℃以下であり、さらにより好ましくは1.6質量%/℃以下である。分解速度が上記数値範囲内であれば、樹脂粒子が徐々に分解されるため、基材中の細孔が徐々に形成されることで細孔形成工程の制御が容易となる。基材中で急激な体積変化が生じにくいため、基材中にクラックが生じるのを防止することができる。
 本発明による架橋型メタクリル樹脂粒子の平均粒子径は、特に限定されないが、好ましくは0.5μm以上20μm以下であり、下限値としてはより好ましくは0.7μm以上であり、さらに好ましくは1.0μm以上であり、さらにより好ましくは1.5μm以上であり、上限値としてはより好ましくは15μm以下であり、さらに好ましくは12μm以下であり、さらにより好ましくは10μm以下である。樹脂粒子の平均粒子径が上記数値範囲内であれば、基材中に均一な細孔を形成し易い。
 なお、樹脂粒子の平均粒子径は、精密粒度分布測定装置(ベックマン・コールター社のマルチサイザー4、所定のアパチャー径:平均粒子径が5μm未満の場合、30μmアパチャー使用、平均粒子径が5μm以上の場合、70μm以上アパチャー使用)を用いることにより測定することができる。また、樹脂粒子の形状は特に限定されないが、球形、回転楕円体などが好ましい。
 本発明による架橋型メタクリル樹脂粒子は、10%圧縮変形時の圧縮弾性率が特定の数値範囲内にあることで、好適な硬さを有するものである。本発明における10%圧縮変形時の圧縮弾性率(以下、「10%K値」という)とは、粒子直径が10%変位したときの圧縮弾性率である。10%K値は、微小圧縮試験器(島津製作所製MCT-210)を用い、試料台に散布した樹脂粒子1個について室温(25℃)において直径20μmのダイヤモンド製円形圧子を垂直下方向に一定速度で負荷をかけ、樹脂粒子直径の10%圧縮変形時の荷重値および圧縮変位を測定し、下記の数式(I)により求められる値である。10%K値は、樹脂粒子の柔軟性を普遍的かつ定量的に表すものであり、10%K値を用いることにより、樹脂粒子の好適な硬さを定量的且つ一義的に表すことが可能となる。
 K=(3/√2)・F・10-3・S(-3/2)・R(-1/2)  ・・・数式(I)
 (式中、 K:樹脂粒子の10%圧縮変形時の圧縮弾性率(N/mm
      F:樹脂粒子の10%圧縮変形時の荷重値(N)
      S:樹脂粒子の10%圧縮変形における圧縮変位(mm)
      R:樹脂粒子の半径(mm)
 本発明による架橋型メタクリル樹脂粒子は、10%K値が好ましくは2000N/mm以上3000N/mm以下であり、下限値としてはより好ましくは2050N/mm以上であり、さらに好ましくは2100N/mm以上であり、上限値としてはより好ましくは2900N/mm以下であり、さらに好ましくは2800N/mm以下であり、さらにより好ましくは2500N/mm以下である。10%K値が上記数値範囲内であれば、好適な硬さを有するため、細孔形成工程の制御が容易となる。
 本発明による架橋型メタクリル樹脂粒子の粒子サイズの変動係数(Cv)は、細孔形成工程の制御を容易にするために10%以上50%以下であることが好ましい。Cvは下限値としてはより好ましくは15%以上であり、さらに好ましくは18%以上であり、さらにより好ましくは20%以上であり、上限値としてはより好ましくは48%以下であり、さらに好ましくは47%以下であり、さらにより好ましくは45%以下である。Cvは、その値が小さいほど(ゼロに近いほど)、粒度分布が狭く、粒子の径が均一で粒子サイズが揃っていることを意味する。本発明におけるCvの測定方法は、実施例で記載した通りである。Cvが上記範囲内であれば、基材中に均一な細孔を形成し易い。
<造孔剤>
 本発明による造孔剤は、上記の架橋型メタクリル樹脂粒子を含むものである。造孔剤を含有させた基材を加熱することで、造孔剤が熱分解(気化)し、造孔剤の存在していた箇所に細孔を形成することが可能となる。
 本発明による造孔剤は、従来公知の様々な用途に適用することができる。例えば、固体酸化物型燃料電池の電極材料、セラミックフィルター、絶縁電線の絶縁層等の形成に用いることができる。
 造孔剤を含有させる基材は、特に限定されず、各種用途に応じて、適宜、選択することができる。例えば、基材としては、セラミック、樹脂基材等が挙げられる。
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 まず、実施例および比較例の樹脂粒子の製造のために、以下の原材料を準備した。
<単官能メタクリレート>
・MMA:メチルメタクリレート(三菱レイヨン株式会社製)
・GMA:グリシジルメタクリレート(富士フイルム和光純薬株式会社製)
・n-BMA:n-ブチルメタクリレート(富士フイルム和光純薬株式会社製)
・i-BMA:i-ブチルメタクリレート(富士フイルム和光純薬株式会社製)
・OMA:2-エチルヘキシルメタクリレート(富士フイルム和光純薬株式会社製)
・DMA:n-ドデシルメタクリレート(富士フイルム和光純薬株式会社製)
<単官能アクリレート>
・MA:メチルアクリレート(富士フイルム和光純薬株式会社製)
・EA:エチルアクリレート(富士フイルム和光純薬株式会社製)
・BA:n-ブチルアクリレート(富士フイルム和光純薬株式会社製)
・OA:2-エチルヘキシルアクリレート(富士フイルム和光純薬株式会社製)
<多官能メタクリレート>
・1G:下記式で表される2官能メタクリレート(新中村化学工業株式会社製、商品名:1G(エチレングリコールジメタクリレート))
Figure JPOXMLDOC01-appb-C000001
・14G:下記式で表される2官能メタクリレート(新中村化学工業株式会社製、商品名:14G(ポリエチレングリコール#600ジメタクリレート))
Figure JPOXMLDOC01-appb-C000002
・9PG:下記式で表される2官能メタクリレート(新中村化学工業株式会社製、商品名:9PG(ポリプロピレングリコール#400ジメタクリレート)))
Figure JPOXMLDOC01-appb-C000003
(式中、m+n=7である。)
<多官能アクリレート>
・TMPTA:トリメチロールプロパントリアクリレート(新中村化学工業株式会社製、商品名:TMPTA)
・A-600:下記式で表される2官能アクリレート(新中村化学工業株式会社製、商品名:A-600(ポリエチレングリコール#600ジアクリレート))
Figure JPOXMLDOC01-appb-C000004
・APG-400:下記式で表される2官能アクリレート(新中村化学工業株式会社製、商品名:APG-400(ポリプロピレングリコール(#400)ジアクリレート))
Figure JPOXMLDOC01-appb-C000005
(式中、m+n=7である。)
<樹脂粒子の製造>
[実施例1]
 分散容器に、脱イオン水200質量部、分散剤としてポリビニルアルコール(クラレ社製、商品名:PVA217-EE)2質量部を加えた。また、単官能メタクリレートとしてメチルメタクリレート80質量部、多官能メタクリレートとして上記の1Gを10質量部および14Gを10質量部、重合開始剤としてラウリルパーオキサイド0.5質量部を、上記の分散容器内の水溶液に加え、混合液とした。得られた混合液を所定時間、分散機により分散処理し、液滴径を調整した分散液を得た。この分散液を攪拌機、温度計、還流冷却器及び窒素導入口を備えた重合反応器に注入し、窒素流入下80℃で4時間重合反応を行った。重合反応液から遠心沈降操作による固液分離を行って、架橋型メタクリル樹脂を得た。得られた架橋型メタクリル樹脂をイオン交換水で再度分散し、遠心沈降することで、界面活性剤の洗浄を行った。続いて、減圧条件下80℃で12時間乾燥した後に、解砕を行うことによって、架橋型メタクリル樹脂粒子を得た。
[実施例2]
 単官能メタクリレートとしてメチルメタクリレート80質量部、多官能メタクリレートとして上記の9PGを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[実施例3]
 単官能メタクリレートとしてメチルメタクリレートを60質量部、多官能メタクリレートとして上記の9PGを40質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[実施例4]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能メタクリレートとしてメチルメタクリレートを95質量部、多官能メタクリレートとして上記の9PGを5質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[実施例5]
 単官能メタクリレートとしてメチルメタクリレートを75質量部、グリシジルメタクリレートを5質量部、多官能メタクリレートとして上記の9PGを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[実施例6]
 単官能メタクリレートとしてメチルメタクリレートを60質量部、グリシジルメタクリレートを20質量部、多官能メタクリレートとして上記の9PGを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[実施例7]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能メタクリレートとしてメチルメタクリレートを70質量部、グリシジルメタクリレートを10質量部、多官能メタクリレートとして上記の9PGを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[実施例8]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能メタクリレートとしてメチルメタクリレートを70質量部、グリシジルメタクリレートを10質量部、多官能メタクリレートとして上記の1Gを5質量部、9PGを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例1]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能メタクリレートとしてメチルメタクリレートを55質量部、n-ブチルメタクリレートを25質量部、多官能メタクリレートとして上記の9PGを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例2]
 単官能メタクリレートとしてメチルメタクリレートを80質量部、多官能アクリレートとしてトリメチロールプロパントリアクリレートを20質量部用いた以外は実施例1と同様にして、架橋型(メタ)アクリル樹脂粒子を得た。
[比較例3]
 単官能メタクリレートとしてメチルメタクリレートを80質量部、多官能メタクリレートとして上記の1Gを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例4]
 単官能メタクリレートとしてメチルメタクリレートを70質量部、単官能アクリレートとしてメチルアクリレートを10質量部、多官能メタクリレートとして上記の1Gを20質量部用いた以外は実施例1と同様にして、架橋型(メタ)アクリル樹脂粒子を得た。
[比較例5]
 単官能アクリレートとしてエチルアクリレートを80質量部、多官能アクリレートとしてトリメチロールプロパントリアクリレートを20質量部用いた以外は実施例1と同様にして、架橋型アクリル樹脂粒子を得た。
[比較例6]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能アクリレートとしてn-ブチルアクリレートを80質量部、多官能アクリレートとしてトリメチロールプロパントリアクリレートを20質量部用いた以外は実施例1と同様にして、架橋型アクリル樹脂粒子を得た。
[比較例7]
 単官能アクリレートとして2-エチルヘキシルアクリレートを80質量部、多官能メタクリレートとして上記の1Gを20質量部用いた以外は実施例1と同様にして、架橋型(メタ)アクリル樹脂粒子を得た。
[比較例8]
 単官能メタクリレートとしてn-ブチルメタクリレートを90質量部、多官能メタクリレートとして上記の1Gを10質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例9]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能メタクリレートとしてイソブチルメタクリレートを90質量部、多官能メタクリレートとして上記の1Gを10質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例10]
 単官能メタクリレートとしてn-ブチルメタクリレートを95質量部、多官能メタクリレートとして上記の1Gを5質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例11]
 単官能メタクリレートとしてメチルメタクリレートを50質量部、2-エチルヘキシルメタクリレートを30質量部、多官能メタクリレートとして上記の1Gを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例12]
 単官能メタクリレートとしてメチルメタクリレートを20質量部、2-エチルヘキシルメタクリレートを60質量部、多官能メタクリレートとして上記の1Gを20質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例13]
 単官能メタクリレートとしてメチルメタクリレートを60質量部、n-ドデシルメタクリレートを30質量部、多官能メタクリレートとして上記の1Gを10質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例14]
 分散剤としてポリオキシエチレンアルキルエーテル硫酸塩(第一工業製薬製、商品名:ハイテノールNF-17)1部、単官能メタクリレートとしてメチルメタクリレートを10質量部、2-エチルヘキシルメタクリレートを80質量部、多官能メタクリレートとして上記の1Gを10質量部用いた以外は実施例1と同様にして、架橋型メタクリル樹脂粒子を得た。
[比較例15]
 単官能メタクリレートとしてn-ブチルメタクリレートを80質量部、多官能アクリレートとして上記のA-600を20質量部用いた以外は実施例1と同様にして、架橋型(メタ)アクリル樹脂粒子を得た。
[比較例16]
 単官能メタクリレートとしてn-ブチルメタクリレートを80質量部、多官能アクリレートとして上記のAPG-400を20質量部用いた以外は実施例1と同様にして、架橋型(メタ)アクリル樹脂粒子を得た。
 実施例および比較例で得られた樹脂粒子の組成の一覧を表1に示した。
Figure JPOXMLDOC01-appb-T000006
<樹脂粒子の物性評価>
(耐熱性の測定)
 実施例および比較例で製造した各樹脂粒子をSII社製TG/DTA7200を用いて熱分解性を測定した。空気流量50mL/分の雰囲気下で40℃から10℃/分の速度で昇温を開始し、450℃まで昇温した。100℃到達時の試料の質量を100%として、質量が5%減少した時点の温度を5%質量減少温度、質量が50%減少した時点の温度を50%質量減少温度、昇温終了時(450℃到達時)の質量割合を残渣量(質量%)とした。また、5%質量減少温度から50%質量減少温度までの分解速度(質量%/℃以下)を算出した。測定結果を表2に示した。また、実施例1、比較例2、比較例13の樹脂粒子の熱重量示差熱分析で測定した分解曲線を図1に示した。
(平均粒子径および変動係数(Cv)の測定)
 実施例および比較例で製造した各樹脂粒子の平均粒子径および変動係数(Cv)を、精密粒度分布測定装置(ベックマン・コールター社のマルチサイザー4、アパチャー孔径30μm)を用いて測定した。測定結果を表2に示した。
(10%K値の測定)
 実施例および比較例で製造した各樹脂粒子から試料樹脂粒子をサンプリングした。続いて、微小圧縮試験器(島津製作所製MCT-210)を用い、試料台に散布した試料樹脂粒子(一次粒子、粒子径5μm)1個について、室温(25℃ )において直径20μmのダイヤモンド製円形圧子を垂直下方向に一定の負荷速度で荷重をかけて、試料樹脂粒子が粒子径の10%まで圧縮した際の荷重値、圧縮変位を測定し、下記の式より10%K値を算出した。算出結果を表2に示した。10%K値が2000N/mm未満であると、柔軟性が高過ぎて、樹脂粒子を基材に分散させるために強い力をかけると変形し易くなり、細孔形成工程の制御が不十分となる恐れがあるため、造孔剤として不適である。
  K=(3/√2)・F・10-3・S(-3/2)・R(-1/2)
   K:樹脂粒子の10%圧縮変形における圧縮弾性率(N/mm
   F:樹脂粒子の10%圧縮変形における荷重値(N)
   S:樹脂粒子の10%圧縮変形における圧縮変位(mm)
   R:樹脂粒子の半径(mm)
 実施例および比較例で製造した樹脂粒子の測定結果を表2に示した。
Figure JPOXMLDOC01-appb-T000007
<造孔後の基材断面の評価>
(固体酸化物形燃料電池用アノード支持体の作成)
 NiO(商品名NiO-FP、住友金属鉱山株式会社製)とYSZ(商品名TZ8YS,東ソー株式会社製)とを体積比40:60で湿式混合し、乾燥させた。得られた混合粉体70質量部と実施例1または比較例11で得られた樹脂粒子10質量部、バインダーとしてポリビニルブチラールを3質量部、可塑剤としてジブチルテレフタレートを3質量部、溶媒として2-プロパノール9質量部、トルエン5質量部をビーズミルで十分混練することで固体酸化物形燃料電池用アノード支持体用スラリーを得た。このスラリーをドクターブレード法によってPETフィルムに塗布し、90℃で一晩乾燥させることで支持体用グリーンシートを作成した。このグリーンシートを1100℃で4時間加熱することで、細孔が形成された固体酸化物形燃料電池用アノード支持体を作製した。
(細孔が形成されたポリイミド樹脂の作成)
 窒素雰囲気とした分散容器に、4,4-ジアミノジフェニルエーテル(和歌山精化工業株式会社製:DDE)11質量部とN,N-ジメチルアセトアミドを165質量部と実施例1または比較例11で得られた樹脂粒子2質量部を添加した後、ビーズミルで十分攪拌することにより、樹脂粒子が分散したDDEの溶解液を得た。次いで、前記溶解液を三口フラスコに移し、ドライアイス-アセトン浴中に沈めて冷却し、前記溶解液を固化させた。このようにして固化させた溶解液を含有する三口フラスコ内に、窒素雰囲気下、無水ピロメリット酸(東京化成工業株式会社製)を12質量部添加し、25 ℃で12時間攪拌して反応液を得た。得られた反応液をガラス板上に、加熱硬化後の塗膜の厚みが100μmとなるようにして流延し、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス板を減圧オーブンに投入し、100mmHgの圧力下において、40℃の温度条件で12時間加熱した後、更に、1mmHgの圧力下において、400℃の温度条件で1時間加熱して塗膜を硬化せしめて、ガラス板上にポリイミドからなるフィルムを形成した。次いで、前記ポリイミドからなるフィルムの形成されたガラス板を減圧オーブンから取り出し、25℃の水に12時間浸け、ガラス板上からポリイミドからなるフィルムを回収して、細孔が形成されたポリイミド樹脂を得た。
 得られた固体酸化物形燃料電池用アノード支持体およびポリイミド樹脂を収束イオンビーム加工装置(日立ハイテク社製、FB-2100)によって切断し、走査型電子顕微鏡を用いて断面を観察した。実施例1で得られた樹脂粒子を用いて得られた細孔は球状であり、細孔内部に残渣は認められず、また、基材にクラックは確認されなかった。一方、比較例11の樹脂粒子により形成された細孔は球が潰れたような不定形状が複数確認され、細孔内部には残渣が認められ、また、基材にはクラックが複数確認された。

Claims (11)

  1.  単官能メタクリレートおよび多官能メタクリレートを重合して得られる架橋型メタクリレート樹脂粒子であって、
     重合反応の原材料であるメタクリレート化合物全体に対して、前記単官能メタクリレートの配合量が60質量%以上95質量%以下であり、前記多官能メタクリレートの配合量が5質量%以上40質量%以下であり、
     前記単官能メタクリレートのエステル置換基の炭素数が3以下であり、
     熱重量示差熱分析による測定において前記架橋型メタクリレート樹脂粒子の5%質量減少温度が180℃以上240℃以下である、架橋型メタクリレート樹脂粒子。
  2.  前記単官能メタクレートが、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレートおよびグリシジルメタクリレートからなる群から選択される少なくとも1種である、請求項1に記載の架橋型メタクリレート樹脂粒子。
  3.  前記多官能メタクリレートが、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、およびグリセリンジメタクリレートからなる群から選択される少なくとも1種である、請求項1または2に記載の架橋型メタクリレート樹脂粒子。
  4.  10%圧縮変形時の圧縮弾性率が2000N/mm以上3000N/mm以下である、請求項1~3のいずれか一項に記載の架橋型メタクリレート樹脂粒子。
  5.  熱重量示差熱分析による測定において40℃から450℃まで昇温した際に、昇温終了時の残渣量が2.0質量%以下である、請求項1~4のいずれか一項に記載の架橋型メタクリレート樹脂粒子。
  6.  熱重量示差熱分析による測定において5%質量減少温度から50%質量減少温度までの分解速度が2.0質量%/℃以下である、請求項1~5のいずれか一項に記載の架橋型メタクリレート樹脂粒子。
  7.  前記架橋型メタクリレート樹脂粒子の平均粒子径が0.5μm以上20μm以下である、請求項1~6のいずれか一項に記載の架橋型メタクリレート樹脂粒子。
  8.  前記架橋型メタクリレート樹脂粒子の粒子サイズの変動係数が10%以上50%以下である、請求項1~7のいずれか一項に記載の架橋型メタクリレート樹脂粒子。
  9.  請求項1~8のいずれか一項に記載の架橋型メタクリレート樹脂粒子を含む、造孔剤。
  10.  固体酸化物型燃料電池の形成に用いられる、請求項9に記載の造孔剤。
  11.  絶縁電線の形成に用いられる、請求項9に記載の造孔剤。
PCT/JP2020/026709 2019-08-29 2020-07-08 架橋型メタクリレート樹脂粒子および造孔剤 WO2021039139A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080037359.XA CN113874410A (zh) 2019-08-29 2020-07-08 交联型甲基丙烯酸酯树脂粒子和造孔剂
US17/634,528 US20220325020A1 (en) 2019-08-29 2020-07-08 Cross-linked methacrylate resin particles and a pore-forming agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-157189 2019-08-29
JP2019157189A JP2021031659A (ja) 2019-08-29 2019-08-29 架橋型メタクリレート樹脂粒子および造孔剤

Publications (1)

Publication Number Publication Date
WO2021039139A1 true WO2021039139A1 (ja) 2021-03-04

Family

ID=74675518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026709 WO2021039139A1 (ja) 2019-08-29 2020-07-08 架橋型メタクリレート樹脂粒子および造孔剤

Country Status (4)

Country Link
US (1) US20220325020A1 (ja)
JP (1) JP2021031659A (ja)
CN (1) CN113874410A (ja)
WO (1) WO2021039139A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252306A (ja) * 1994-03-17 1995-10-03 Mitsubishi Rayon Co Ltd 低温熱分解性感光性樹脂組成物
JPH10244152A (ja) * 1997-03-03 1998-09-14 Amcol Internatl Corp 吸油性コポリマーおよびその製造方法
JPH10321459A (ja) * 1997-05-21 1998-12-04 Diafoil Co Ltd コンデンサ用二軸配向ポリエステルフィルム
JP2004342329A (ja) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd エッジ部を有する電線の塗装方法及び絶縁電線
WO2007029679A1 (ja) * 2005-09-06 2007-03-15 Kuraray Co., Ltd. 光拡散性メタクリル樹脂導光体およびそれを備えた面光源装置
JP2007220731A (ja) * 2006-02-14 2007-08-30 Sekisui Chem Co Ltd 電池用多孔質体、電池用多孔質体の製造方法、固体電解コンデンサ、電気二重層キャパシタ及び固体酸化物形燃料電池
JP2010528111A (ja) * 2007-05-31 2010-08-19 クレイトン ユニバーシティ 自己修復性歯科用複合材料および関連する方法
WO2013085039A1 (ja) * 2011-12-08 2013-06-13 株式会社日本触媒 導電性微粒子及びそれを含む異方性導電材料
WO2017056529A1 (ja) * 2015-09-30 2017-04-06 積水化成品工業株式会社 重合体粒子及びその用途
WO2017057748A1 (ja) * 2015-09-30 2017-04-06 積水化成品工業株式会社 光拡散性樹脂組成物の成形体及びその用途
JP2017122596A (ja) * 2016-01-05 2017-07-13 日立化成株式会社 分離材及びその製造方法、並びにカラム
WO2019004440A1 (ja) * 2017-06-30 2019-01-03 昭和電工株式会社 液体クロマトグラフィー用充填剤及び液体クロマトグラフィー用カラム
JP2019065134A (ja) * 2017-09-29 2019-04-25 積水化成品工業株式会社 造孔材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771626B2 (ja) * 2001-08-07 2011-09-14 日東電工株式会社 イオン伝導性接着性多孔質膜とそれを用いて得られる高分子ゲル電解質
JP4761840B2 (ja) * 2005-06-01 2011-08-31 積水化学工業株式会社 加熱消滅性樹脂粒子
JP5525193B2 (ja) * 2009-06-23 2014-06-18 旭化成イーマテリアルズ株式会社 多層多孔膜および塗布液
WO2013005796A1 (ja) * 2011-07-06 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
JP6943714B2 (ja) * 2017-01-27 2021-10-06 積水化学工業株式会社 固体酸化物型燃料電池電極造孔剤用樹脂微粒子

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252306A (ja) * 1994-03-17 1995-10-03 Mitsubishi Rayon Co Ltd 低温熱分解性感光性樹脂組成物
JPH10244152A (ja) * 1997-03-03 1998-09-14 Amcol Internatl Corp 吸油性コポリマーおよびその製造方法
JPH10321459A (ja) * 1997-05-21 1998-12-04 Diafoil Co Ltd コンデンサ用二軸配向ポリエステルフィルム
JP2004342329A (ja) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd エッジ部を有する電線の塗装方法及び絶縁電線
WO2007029679A1 (ja) * 2005-09-06 2007-03-15 Kuraray Co., Ltd. 光拡散性メタクリル樹脂導光体およびそれを備えた面光源装置
JP2007220731A (ja) * 2006-02-14 2007-08-30 Sekisui Chem Co Ltd 電池用多孔質体、電池用多孔質体の製造方法、固体電解コンデンサ、電気二重層キャパシタ及び固体酸化物形燃料電池
JP2010528111A (ja) * 2007-05-31 2010-08-19 クレイトン ユニバーシティ 自己修復性歯科用複合材料および関連する方法
WO2013085039A1 (ja) * 2011-12-08 2013-06-13 株式会社日本触媒 導電性微粒子及びそれを含む異方性導電材料
WO2017056529A1 (ja) * 2015-09-30 2017-04-06 積水化成品工業株式会社 重合体粒子及びその用途
WO2017057748A1 (ja) * 2015-09-30 2017-04-06 積水化成品工業株式会社 光拡散性樹脂組成物の成形体及びその用途
JP2017122596A (ja) * 2016-01-05 2017-07-13 日立化成株式会社 分離材及びその製造方法、並びにカラム
WO2019004440A1 (ja) * 2017-06-30 2019-01-03 昭和電工株式会社 液体クロマトグラフィー用充填剤及び液体クロマトグラフィー用カラム
JP2019065134A (ja) * 2017-09-29 2019-04-25 積水化成品工業株式会社 造孔材

Also Published As

Publication number Publication date
JP2021031659A (ja) 2021-03-01
US20220325020A1 (en) 2022-10-13
CN113874410A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
JP5555788B2 (ja) 無機質焼結体製造用バインダー
EP2980047B1 (en) Binder for manufacturing inorganic sintered body
JP6804989B2 (ja) 無機質焼結体製造用バインダー
EP3157968B1 (en) Multi-stage latex polymers, process thereof, and coating compositions made thereof
JP5873368B2 (ja) 無機質焼結体製造用バインダー
JP2018125277A (ja) 固体酸化物型燃料電池電極造孔剤用樹脂微粒子
WO2021039139A1 (ja) 架橋型メタクリレート樹脂粒子および造孔剤
KR20140007944A (ko) 에폭시 수지 조성물, 경화물 및 광 반도체 밀봉 재료
KR101805226B1 (ko) 소성용 바인더 재료 및 그의 제조 방법, 페이스트 조성물, 및 무기 소결체
JP2018129215A (ja) ジルコニア電解質およびその製造方法
JP2013227514A (ja) ペースト用樹脂組成物、並びにペースト組成物及びその製造方法
KR20150031178A (ko) 폴리머 캡슐화된 이산화티탄 입자
JP7261378B2 (ja) スラリー組成物
JPH04363313A (ja) 反応性樹脂微粒子、その製造法および加熱成形用樹脂組成物
JP2018079616A (ja) セラミックグリーンシート成形用樹脂組成物およびセラミックグリーンシート成形用材料
JP3367178B2 (ja) セラミック成形用有機バインダー、その製法及びこれを用いたセラミック基板
JP6306304B2 (ja) ペースト用樹脂組成物、並びにペースト組成物及びその製造方法
JP6125290B2 (ja) ペースト用樹脂組成物、並びにペースト組成物及びその製造方法
WO2024181265A1 (ja) ポリイミド多孔質膜造孔用の樹脂粒子及びその製造方法
WO2022091912A1 (ja) ビニル系樹脂粒子
JP6123156B2 (ja) 表面積の大きい真球状架橋ポリアクリロニトリル系微粒子
JP3560330B2 (ja) 成形用セラミックス顆粒、それを用いた焼結用セラミックス成形体及びそれを用いて得られるセラミックス焼結体
US8022135B2 (en) Embedment casting composition
JP2004217686A (ja) セラミック成形用バインダー樹脂およびセラミックシート
JPS62283858A (ja) セラミツク用有機バインダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856441

Country of ref document: EP

Kind code of ref document: A1