WO2021033650A1 - Liquid crystal element and liquid crystal element manufacturing method - Google Patents
Liquid crystal element and liquid crystal element manufacturing method Download PDFInfo
- Publication number
- WO2021033650A1 WO2021033650A1 PCT/JP2020/030913 JP2020030913W WO2021033650A1 WO 2021033650 A1 WO2021033650 A1 WO 2021033650A1 JP 2020030913 W JP2020030913 W JP 2020030913W WO 2021033650 A1 WO2021033650 A1 WO 2021033650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- light
- crystal element
- region
- orientation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present disclosure relates to a liquid crystal element and a method for manufacturing the liquid crystal element.
- This application claims priority based on Japanese Patent Application No. 2019-149514 filed on August 16, 2019, and incorporates all the contents described in the Japanese application.
- Patent Document 1 discloses a liquid crystal lens including a lens layer.
- the lens layer of Patent Document 1 includes a cholesteric orientation region containing cholesterically oriented liquid crystal molecules.
- Patent Document 2 discloses a liquid crystal film having a fixed cholesteric orientation. Further, Patent Document 2 discloses a fingerprint-like tissue formed by a cholesteric liquid crystal (in particular, see FIG. 1 of Patent Document 2).
- a mechanical orientation control method as a method for controlling the orientation structure of liquid crystal molecules.
- a mechanical orientation control method for example, there is a stretching method in which liquid crystal molecules are oriented so as to be parallel to the stretching direction by stretching the polymer film in one direction.
- one-dimensional orientation control is easy, but two-dimensional or three-dimensional orientation control is difficult.
- the present inventors focused on the periodic structure of the liquid crystal that is spontaneously formed in order to precisely control the molecular orientation. Since the periodic structure of the liquid crystal is the size of nano-order, it is much finer than the structure size obtained by the conventional molecular orientation control technique. For example, cholesteric liquid crystals spontaneously form a periodic structure on the order of nm to ⁇ m in which liquid crystal molecules are spirally oriented. In addition, the smectic liquid crystal has a layered periodic structure.
- the direction of the periodic structure of the liquid crystal is oriented in a desired two-dimensional direction or three-dimensional direction, a fine and desired two-dimensional or three-dimensional molecular orientation structure can be obtained.
- the direction of the periodic structure means the direction in which the structure changes in the periodic structure.
- the direction of the spiral axis is the direction of the periodic structure
- the direction of the layer thickness is the direction of the periodic structure.
- One aspect of the present disclosure is a film-like liquid crystal element having a cholesteric liquid crystal.
- the disclosed liquid crystal element includes a first region in which the spiral axis of the cholesteric liquid crystal is oriented parallel to the in-plane direction of the film-shaped liquid crystal element and the orientation is restricted in the in-plane direction.
- the disclosed liquid crystal element includes a first region having a cholesteric liquid crystal whose molecular orientation is regulated from each of a first surface and a second surface parallel to the direction orthogonal to the first surface.
- Another aspect of the present disclosure is a method for manufacturing a film-shaped liquid crystal element using a cholesteric liquid crystal.
- a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is arranged in a film shape on a substrate that has been subjected to an orientation treatment, and a light intensity distribution is performed on a plane parallel to the substrate.
- a non-photopolymerized monomer region and a photopolymerized polymer region are formed.
- the disclosed method for manufacturing a liquid crystal element is to irradiate a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator with light having a light intensity distribution to obtain a spiral axis of a cholesteric liquid crystal. Prepare to regulate orientation.
- the disclosed method for producing a liquid crystal element is to photopolymerize in the mixture by the light intensity distribution of the irradiated light to the mixture containing a liquid crystal monomer and causing photopolymerization by irradiation with light.
- a concentration distribution of the polymer produced by the above is generated, and the periodic structure of the liquid crystal is oriented by utilizing the concentration distribution.
- the disclosed method for manufacturing a liquid crystal element is isometric in the mixture depending on the light intensity distribution of the irradiated light to the mixture containing a liquid crystal monomer and photopolymerization occurs when the mixture is irradiated with light. It is provided to generate a distribution of the phase transition temperature from the phase to the liquid crystal phase and to orient the periodic structure of the liquid crystal by utilizing the distribution of the phase transition temperature.
- the disclosed liquid crystal element is a liquid crystal element having a periodic structure, in which the periodic structure is oriented parallel to the in-plane direction of the liquid crystal element and the orientation is regulated in the in-plane direction. It has a first area.
- FIG. 1 is a flowchart showing a manufacturing process of an element using a cholesteric liquid crystal.
- FIG. 2 is a diagram showing a material composition.
- FIG. 3 is a perspective view showing an apparatus for manufacturing a liquid crystal element.
- FIG. 4 is a cross-sectional view showing a pattern exposure.
- FIG. 5 is an enlarged cross-sectional view showing a pattern exposure.
- FIG. 6 is a plan view showing the liquid crystal orientation structure in the monomer region.
- FIG. 7 is a plan view showing the liquid crystal orientation structure in the monomer region.
- FIG. 8 is a diagram showing a material composition for obtaining the orientation structure of FIG. 7.
- FIG. 9 shows a reference example and an example of the present disclosure regarding the molecular orientation regulating force.
- FIG. 9 shows a reference example and an example of the present disclosure regarding the molecular orientation regulating force.
- FIG. 10 is a cross-sectional view showing post-exposure.
- FIG. 11 is a diagram showing a measurement system for diffracted light.
- FIG. 12 is an imaging result of diffracted light.
- FIG. 13 is a plan view of the photomask.
- FIG. 14 is a plan view showing the monomer / polymer region obtained by the photomask of FIG.
- FIG. 15 is a diagram showing a material composition according to the second example.
- FIG. 16 is a diagram showing the composition and phase transition behavior of the monomer mixture.
- FIG. 17 is a perspective view showing an apparatus for manufacturing a liquid crystal element.
- FIG. 18 is a diagram showing a manufacturing process of the liquid crystal process.
- FIG. 11 is a diagram showing a measurement system for diffracted light.
- FIG. 12 is an imaging result of diffracted light.
- FIG. 13 is a plan view of the photomask.
- FIG. 14 is a plan view showing the monomer / polymer region obtained by the photomas
- FIG. 21 is a schematic diagram of the mechanism by which the spiral axis orientation is controlled in-plane.
- FIG. 22 is a schematic diagram of the mechanism by which the spiral axis orientation is controlled in-plane.
- FIG. 23 is a schematic diagram of the mechanism by which the spiral axis orientation is controlled in-plane.
- FIG. 24 is an explanatory diagram of a hologram manufacturing process.
- FIG. 25 is an explanatory diagram of a hologram manufacturing process.
- FIG. 26 is an explanatory diagram of a three-dimensional spiral axis arrangement.
- the structure size when the molecular orientation structure is controlled two-dimensionally is about several hundred ⁇ m in principle, and the molecular orientation structure is further miniaturized (for example, on the order of several ⁇ m). The following) is required.
- the present inventors focused on a material called cholesteric liquid crystal as one of the methods for controlling the molecular orientation structure two-dimensionally.
- Cholesteric liquid crystals spontaneously form a periodic structure on the order of nm to ⁇ m in which liquid crystal molecules are spirally oriented.
- Cholesteric liquid crystals can exhibit various optical functions such as reflection, refraction, and diffraction.
- the cholesteric liquid crystal Since the molecules of the cholesteric liquid crystal are spirally oriented, the cholesteric liquid crystal itself has a one-dimensional molecular orientation periodic structure in the spiral axis direction. Moreover, the periodic structure spontaneously formed by the cholesteric liquid crystal is much finer than the periodic structure size of the optical element based on the existing molecular orientation control technology. Therefore, if the spiral axis of the cholesteric liquid crystal can be oriented in a desired two-dimensional direction, a fine and desired two-dimensional molecular orientation structure can be obtained.
- cholesteric liquid crystal whose spiral axis is one-dimensionally structurally controlled, which has been a restriction on its application as an optical element.
- a typical example of a cholesteric liquid crystal in which the spiral axis is one-dimensionally structurally controlled is that the spiral axis is oriented in parallel with the film thickness direction of the film-shaped liquid crystal element. In this structure, the spiral axis is merely oriented in a direction parallel to the film thickness direction.
- the spiral axis is oriented in parallel with the in-plane direction (direction orthogonal to the film thickness direction) of the film-shaped liquid crystal element.
- the present inventors focused on the latter example, that is, a structure in which the spiral axis is oriented parallel to the in-plane direction of the film-shaped liquid crystal element.
- a structure in which the spiral axis is oriented parallel to the in-plane direction of the liquid crystal element which direction the spiral axis faces in the in-plane direction has not been controlled. That is, in the conventional structure, the spiral axes are parallel to the in-plane direction, but the spiral axes are arranged in a random (disordered) direction in the in-plane.
- a structure in which the spiral axis direction is random (disordered) in the plane is called a fingerprint-like tissue (see Patent Document 2).
- the spiral axis of the cholesteric liquid crystal is oriented parallel to the in-plane direction of the film-shaped liquid crystal element, and is oriented in the in-plane direction. It has a regulated first area.
- the in-plane direction is a direction orthogonal to the film thickness direction of the film-shaped liquid crystal element.
- the first region may be one or a plurality. When the film-shaped liquid crystal element has a plurality of first regions, the spiral axis directions in each of the plurality of first regions may be different.
- a term indicating a direction such as parallel, orthogonal, and vertical should not be construed as meaning a strict direction, and the meaning (action effect) of the technique disclosed in this specification. It should be interpreted from the viewpoint of allowing an error within a range that does not impair.
- the liquid crystal element can further include a second region, which is a polymer region having an interface in contact with the first region.
- the interface is parallel to the film thickness direction, and may be an orientation-regulating interface for regulating the orientation of the spiral axis in the first region in the in-plane direction.
- the second region may be isotropic.
- the spiral axis in the first region is preferably oriented parallel or perpendicular to the orientation-regulating interface.
- the orientation of the spiral axis is preferably regulated so as to function as an optical element.
- the film-shaped liquid crystal element can function as an optical element.
- the application of the liquid crystal element is not limited to the optical element.
- the optical element is preferably a diffraction optical element.
- the diffraction optical element is preferably a diffraction grating.
- the diffractive optical element is preferably a diffractive lens.
- the liquid crystal element using the cholesteric liquid crystal according to the embodiment includes a first region having a cholesteric liquid crystal whose molecular orientation is restricted from each of the first surface and the second surface parallel to the direction intersecting the first surface. ..
- the first surface and the second surface can be orthogonal to each other.
- a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is formed on a substrate subjected to a molecular orientation treatment.
- a non-photopolymerized monomer region and a photopolymerized polymer region are formed. Includes forming.
- the molecular orientation treatment is preferably a vertical orientation treatment.
- the light intensity distribution is preferably formed by an exposure pattern.
- the exposure pattern can easily form a monomer region and a polymer region.
- the mixture is preferably set to a temperature showing an isotropic phase.
- the manufacturing method can further include annealing at the liquid crystal temperature after irradiation with the light.
- the production method can further include photopolymerizing the monomer region after the formation of the polymer region.
- a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is irradiated with light having a light intensity distribution to form a spiral shaft of a cholesteric liquid crystal. Prepare to regulate orientation.
- the mixture is arranged on a substrate and the light is applied to the mixture arranged on the substrate.
- the light preferably has a light intensity distribution on a plane parallel to the substrate. In this case, a two-dimensional orientation is obtained.
- the light preferably has a light intensity distribution in a direction orthogonal to the substrate. In this case, a three-dimensional orientation is obtained (see FIG. 26).
- the light having the light intensity distribution can generate a concentration distribution of a polymer produced by photopolymerization in the mixture.
- the periodic structure of the liquid crystal is oriented using the concentration distribution of the polymer.
- the light having the light intensity distribution can cause a distribution of the phase transition temperature from the isotropic phase to the liquid crystal phase in the mixture.
- the periodic structure of the liquid crystal is oriented by the movement of the orientation control surface with the temperature change.
- a mixture containing a liquid crystal monomer and photopolymerized by being irradiated with light is photopolymerized in the mixture by the light intensity distribution of the irradiated light.
- a concentration distribution of the polymer produced by the above is generated, and the periodic structure of the liquid crystal is oriented by utilizing the concentration distribution.
- the method for producing a liquid crystal element according to the embodiment is isometric in the mixture according to the light intensity distribution of the irradiated light to the mixture containing a liquid crystal monomer and photopolymerization occurs when the mixture is irradiated with light.
- a liquid crystal element comprising generating a distribution of a phase transition temperature from a phase to a liquid crystal phase and orienting a periodic structure of a liquid crystal by utilizing the distribution of the phase transition temperature.
- the liquid crystal element according to the embodiment is a liquid crystal element having a periodic structure, and the periodic structure is oriented parallel to the in-plane direction of the liquid crystal element, and the orientation is restricted in the in-plane direction. It has a first area.
- Orienting the periodic structure of the liquid crystal means directing the direction of the periodic structure to a desired direction.
- the direction of the periodic structure means the direction in which the structure changes in the periodic structure.
- the direction of the spiral axis is the direction of the periodic structure
- the direction of the layer thickness is the periodic structure. Is the direction of.
- Orienting the periodic structure may be oriented in a two-dimensional direction or may be oriented in a three-dimensional direction. Therefore, if the direction of the periodic structure of the liquid crystal is oriented in a desired two-dimensional direction or three-dimensional direction, a fine and desired two-dimensional or three-dimensional molecular orientation structure can be obtained.
- the direction of the periodic structure means the direction in which the structure changes in the periodic structure.
- the direction of the spiral axis is the direction of the periodic structure
- the direction of the layer thickness is the direction of the periodic structure.
- FIG. 1 shows a manufacturing process of a liquid crystal element using a cholesteric liquid crystal.
- the liquid crystal element is, for example, a film-like element.
- a raw material monomer (monomer mixture) is produced (step S11).
- FIG. 2 illustrates a list of materials that make up a monomer mixture.
- the monomer mixture of the embodiment contains a liquid crystal monomer, a chiral agent (chiral monomer) for inducing spiral orientation, and a photopolymerization initiator.
- the monomer mixture of the embodiment contains a liquid crystal monomer and is configured to cause photopolymerization when irradiated with light.
- the monomer mixture may optionally contain a non-polymerizable liquid crystal (plasticizer).
- the monomer mixture may optionally contain a cross-linking agent.
- the polymerization group not only radical polymerization but also anionic polymerization, cationic polymerization and the like can be freely selected.
- the liquid crystal monomer is not limited to the structure illustrated in FIG. 2, and a liquid crystal monomer having another structure can be used.
- the "liquid crystalline monomer” means a group of compounds having a "mesogen group” which is a functional group for exhibiting liquid crystal property and a "polymerizing group” which is a functional group for a polymerization reaction.
- the liquid crystal monomer may have one polymerization group, or may have a plurality of polymerization groups in view of the stability of the fine particles.
- the mesogen group includes a phenyl group, a biphenyl group, a phenylcyclohexyl group, a bicyclohexyl group, a phenylbenzoate group, an azobenzene group, a trans group, and heteroelement derivatives and complexes thereof.
- the polymerization group include a vinyl group, an acrylic group, a methacrylic group, an epoxy group, an oxetane group and the like.
- the chiral agent induces the helical structure of the liquid crystal.
- the chiral agent for example, the one shown in FIG. 2 is used.
- the chiral agent is not limited to the structure having the isosorbide skeleton illustrated in FIG. 2, and a polymerizable chiral agent having another structure can be used. Specifically, it may have an "asymmetric center", an "asymmetric axis", or an "asymmetric plane” in the molecular skeleton, and further have a polymerizable group in the same molecule.
- a derivative in which a polymerization group is introduced into "S-811" or "R-811", which are the most widely used chiral agents can be mentioned.
- the compounds having an asymmetric center are, for example, isosorbide, cholesterol, and S811.
- Compounds having an asymmetric axis are, for example, allen, biphenyl, and BINAP.
- Another example of an asymmetric axis is the intracellular helical axis.
- a compound having a spiral axis as an asymmetric axis is, for example, helicene.
- the compound having an asymmetric surface is, for example, cyclophane.
- the period of the helical structure of the cholesteric liquid crystal is determined by the "helical twisting power (HTP)" derived from the molecular structure of the chiral auxiliary.
- HTP helical twisting power
- the chiral agent used in the present invention may have an amount of several mol% with respect to the liquid crystal monomer, for example, an amount of 4 mol% with respect to the liquid crystal monomer.
- the chiral agent does not necessarily have to be polymerizable, and a non-polymerizable chiral agent may be used.
- the produced monomer mixture is enclosed in a substrate cell 100 (see FIG. 3) composed of a pair of a first substrate 111 and a second substrate 112.
- the first substrate 111 and the second substrate 112 are made of glass, for example.
- the thickness of each of the first substrate 111 and the second substrate 112 is preferably 1 ⁇ m or more and 100 ⁇ m or less.
- a spacer 120 for securing a space 130 for containing the monomer mixture is arranged between the two substrates 111 and 112.
- the thickness of the spacer is preferably 1 ⁇ m or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 50 ⁇ m or less.
- the first substrate 111 has a surface (lower surface in FIG. 3) 111A facing the second substrate 112.
- the second substrate 112 has a surface (upper surface in FIG. 3) 112A facing the first substrate 111.
- the facing surfaces 111A and 112A serve as an interface with the monomer mixture sealed in the space 130.
- the facing surfaces 111A and 112A are previously subjected to molecular orientation processing for controlling the orientation of liquid crystal molecules. Due to the molecular orientation treatment, a molecular orientation regulating force (interface regulating force) is generated on the facing surfaces 111A and 112A. That is, the facing surfaces 111A and 112A function as a molecular orientation regulating interface (first molecular orientation regulating interface).
- the molecular orientation treatment applied to the facing surfaces 111A and 112A includes, for example, treatment with a silane coupling agent, treatment of a polymer film (for example, polyimide resin or acrylic resin) using a long-chain alkyl, or a hydrophobic substrate (containing fluorine).
- Chemical modification treatment methods that can control the surface free energy state, such as resin treatment and surface treatment to form polymer brushes such as homopolymers and block copolymers, and the use of substrates with similar surface states can be mentioned. Further, it is possible to change the surface state by physical treatment, and it is also possible to use a substrate having a fine uneven structure of about several tens of nm to several hundreds of ⁇ m (not only organic substances such as polymers but also inorganic substances are possible). ..
- the molecular orientation regulating force (interface regulating force) generated on the facing surfaces 111A and 112A is preferably a regulating force in the out-of-plane direction (vertical direction) of the substrates 111 and 112. That is, the molecular orientation treatment includes a parallel orientation treatment (horizontal alignment treatment) that generates a regulatory force parallel to the interface and a vertical orientation treatment that generates a regulatory force perpendicular to the interface. , It is preferable that the vertical alignment treatment is performed.
- the liquid crystal molecules By generating an interface restricting force in the out-of-plane direction by the vertical alignment treatment, the liquid crystal molecules are oriented in the out-of-plane direction, and the spiral axis direction orthogonal to the orientation direction of the liquid crystal molecules becomes parallel to the in-plane direction.
- an interface restricting force in the in-plane direction is generated by the parallel alignment treatment, the liquid crystal molecules are oriented in the in-plane direction and the spiral axis direction is parallel to the out-of-plane direction.
- the facing surfaces 111A and 112A may not be subjected to molecular orientation treatment. When the facing surfaces 111A and 112A are not subjected to the molecular orientation treatment, the orientation restrictions from the substrates 111 and 112 are reduced and become less dominant.
- the out-of-plane direction here is the Z direction (vertical direction) in FIG. 3, which coincides with the thickness direction of the substrates 111 and 112 and the thickness direction of the film-like liquid crystal element to be formed.
- the in-plane direction is a direction (horizontal direction) in the XY plane in FIG. 3, and is a direction orthogonal to the Z direction.
- the in-plane direction is parallel to the planes of the opposing surfaces 111A and 112A of the substrates 111 and 112, and is also the in-plane direction of the formed film-like liquid crystal element (direction orthogonal to the thickness direction of the liquid crystal element).
- the monomer mixture does not need to be sealed in the cell 100, but is formed into a thin film by spin coating or bar coating on a single substrate, and is in a coated state after the photopolymerization (step S13) described later. Processing may be performed.
- the substrate cell 100 in which the monomer mixture (polymerization sample) 20 is enclosed is irradiated with light (ultraviolet light) to cause a photopolymerization reaction in the monomer mixture (step S13). ..
- the light is applied to the substrate cell 100 via the photomask 200.
- the photomask 200 has a light-shielding portion 201 and a light-transmitting portion (non-light-shielding portion) 202 having a predetermined pattern. By irradiating the light through the photomask 200, the monomer mixture is partially exposed (pattern exposure) according to the pattern of the photomask 200.
- the light irradiated to the monomer mixture 20 has a spatial light intensity distribution in the in-plane direction (XY plane) by the photomask 200.
- the photopolymerization reaction proceeds and the polymer region (polymer wall) 12 is formed.
- the photopolymerization reaction does not proceed and remains in the monomer region 11.
- the region corresponding to the light-shielding portion 201 is the monomer region (first region) 11, and the region corresponding to the translucent portion 202 is the polymer region (second region) 12. ..
- the light intensity distribution does not have to be formed by the photomask 200, and may be obtained by other means for obtaining the light intensity distribution.
- the light irradiation in step S13 is performed at a temperature at which the monomer mixture 20 exhibits an isotropic phase (a state in which there is no liquid crystal orientation). .. It is more preferable that the temperature of the monomer mixture 20 during light irradiation is slightly higher than the liquid crystal phase-isotropic phase transition point.
- the polymer region 12 formed by photopolymerization is immobilized in an isotropic phase (without liquid crystal orientation).
- the interfaces (polymer interfaces) 12A and 12B between the two regions 11 and 12 are formed.
- the polymer interfaces 12A and 12B generate a molecular orientation regulating force (interface regulating force) on the liquid crystal molecules in the monomer region 11. That is, the surfaces 12A and 12B in contact with the monomer region 11 in the polymer region 12 function as a molecular orientation regulating interface (second molecular orientation regulating interface).
- the second molecular orientation control interfaces 12A and 12B are planes parallel to the Z direction. In other words, the interfaces 12A and 12B intersect (orthogonally) the first molecular orientation control interfaces 111A and 112A that are parallel to the XY plane.
- the molecular orientation restricting force (interface regulating force) generated at the interfaces 12A and 12B is a vertical alignment regulating force that orients the molecules perpendicularly to the interfaces 12A and 12B, or or aligns the molecules parallel to the interfaces 12A and 12B.
- Parallel orientation (horizontal orientation) regulatory force When the vertical orientation regulating force is applied, the spiral axis becomes parallel to the interfaces 12A and 12B. Further, when the parallel orientation regulating force acts, the spiral axis becomes perpendicular to the interfaces 12A and 12B.
- the factor that determines the orientation regulating force in which direction is the surface energy of the interfaces 12A and 12B.
- the surface energy of the interfaces 12A and 12B is determined by the material composition of the monomer mixture 20 and the like, but almost any polymerizable material can generate either a vertical alignment regulating force or a parallel alignment regulating force. ..
- a material having a long-chain alkyl or fluorine atom can be used to orient the liquid crystal molecules perpendicular to the interfaces 12A and 12B.
- FIG. 8 shows an example of a material composition that produces a parallel orientation regulating force.
- the distance between the paired interfaces 12A and 12B is 1000 ⁇ m or more and 1 ⁇ m or less. Is preferable, and it is more preferably 200 ⁇ m or more and 10 ⁇ m or less. It is not always necessary to sandwich the regulated interfaces 12A and 12B, and if there is a single interface, an array can be formed within 2000 ⁇ m from the vicinity of the interface.
- the thickness thereof that is, the distance between the paired monomer regions 11 and 11 is preferably 1000 ⁇ m or less, and more preferably 1 ⁇ m or less. preferable.
- the liquid crystal temperature is a temperature at which the monomer region 11 exhibits a liquid crystal phase, and is determined according to the material composition. By making the monomer region 11 into a liquid crystal phase, the spiral axes are neatly arranged as shown in FIGS. 6 and 7.
- FIG. 9 shows how the orientation regulating force works to form a conventional cholesteric liquid crystal structure in which the spiral axis is one-dimensionally controlled.
- the spiral axis is parallel to the film thickness direction (Z direction) or the film-shaped liquid crystal element is formed by the molecular orientation restricting force generated at the interfaces 111A and 112A of the substrates 111 and 112. Only one-dimensional control was possible to make the direction in-plane (direction parallel to the XY plane).
- the molecular orientation regulating force generated at the interfaces 111A and 112A (first molecular orientation regulating force) but also the molecules generated at the interfaces 12A and 12B.
- the direction of the spiral axis can also be controlled by the orientation regulating force (second molecule orientation regulating force). Since the first molecule orientation regulating force and the second molecule orientation regulating force act in the direction of intersecting (orthogonal) with each other, the degree of freedom of control in the spiral axis direction is increased as compared with the reference example.
- the obtained film-like liquid crystal element has a second surface (interface) 12A parallel to the first surface (interface) 111A, 112A and the direction intersecting (orthogonal) with the first surface 111A, 112A.
- 12B each includes a first region 11 having a cholesteric liquid crystal whose molecular orientation is regulated. Due to the orientation restricting force from the intersecting first surfaces 111A and 112A and the second surfaces 12A and 12B, the spiral axis direction of the cholesteric liquid crystal can be freely controlled two-dimensionally in the XY plane.
- the spiral axis is oriented in the in-plane direction (direction parallel to the XY plane) of the film-like liquid crystal element.
- the first surfaces 111A and 112A have a vertical orientation regulating force, so that the spiral axis is oriented parallel to the in-plane direction of the film-shaped liquid crystal element, but the in-plane direction (XY plane). Since the orientation is not regulated in (inside), the orientation is randomly (disordered) in the XY plane. As a result, in the reference example, a fingerprint-like tissue is formed when viewed on the XY plane.
- the orientation regulating force of the second surfaces 12A and 12B regulates the orientation of the spiral axis in the XY plane. Induced self-organization occurs due to the synergistic effect of force. Therefore, as shown in FIGS. 6 and 7, a regular spiral axis arrangement in the XY plane is obtained. Further, the liquid crystal molecules are oriented evenly in the elliptical long axis direction. In the example of FIG. 6, each spiral axis is parallel to the Y direction, and a diffraction grating (diffraction optical element) having a lattice spacing corresponding to the spiral pitch d is obtained. In the example of FIG. 7, each spiral axis is parallel in the X direction, and a diffraction grating (diffraction optical element) having a lattice spacing corresponding to the spiral pitch d is obtained.
- the arrangement and pattern of the second surfaces 12A and 12B that generate the second molecular orientation regulating force can be freely controlled by the light intensity distribution of the light stimulus.
- the light intensity distribution can be easily controlled by using a photomask or the like. Therefore, according to the present disclosure, it is possible to freely control the direction of the second molecule orientation regulating force to obtain a cholesteric liquid crystal orientation structure having a desired regular spiral axis direction. This makes it possible to induce a two-dimensional change in the refractive index in the XY plane.
- the light intensity distribution can be easily controlled over a large area by using a photomask or the like, it is also easy to increase the area of the obtained film-shaped liquid crystal element. Therefore, it is easy to integrate the cholesteric liquid crystal oriented structure.
- post-exposure is performed as needed (step S15; see FIG. 1).
- Post-exposure is performed when polymerization of the monomer region 11 (fixation of the orientation of the liquid crystal structure) is required.
- the post-exposure may be omitted.
- Post-exposure is performed, for example, by removing the photomask 200 and exposing the entire surface as shown in FIG. Further, the post-exposure may be performed by irradiating the substrate cell 100 with light from the surface opposite to the photomask 200 without removing the photomask 200.
- FIG. 11 shows a measurement system for diffracted light generated by a film-shaped liquid crystal element (diffraction grating) obtained by the manufacturing method of the present embodiment.
- the liquid crystal element used here has a thickness of 5 ⁇ m.
- the temperature at the time of encapsulation was 50 ° C.
- the temperature at the time of pattern exposure in step S13 was 55 ° C. (a temperature indicating an isotropic phase).
- the illuminance of the emitted light was 0.1 mW / cm 2 .
- the irradiation time of light for pattern exposure was 10 minutes. Annealing in step S13 was performed at 60 ° C. (liquid crystal temperature) for 10 minutes.
- the temperature during the post-exposure in step S14 was 40 ° C.
- the illuminance of the emitted light was 0.1 mW / cm 2 .
- the irradiation time of light for post-exposure was 10 minutes.
- ND indicates a Neutral Density filter
- P indicates a deflector
- S indicates a liquid crystal element (diffraction grating) obtained by the manufacturing method of the present embodiment.
- ⁇ is a diffraction angle.
- the spiral axis direction of the liquid crystal element S coincides with the deflection direction.
- the light emitted from the laser is applied to the liquid crystal element (diffraction grating) S via the neutral density filter ND and the polarizer P.
- the diffracted light and transmitted light generated by the liquid crystal element S are projected on the screen.
- the diffracted light (up and down) and transmitted light projected on the screen are captured by the camera.
- FIG. 12 shows the imaging results of diffracted light (+1st order light, -1st order light) and transmitted light. As shown in FIG. 12, the +1st order light and the -1st order light appear side by side in the spiral axis direction (vertical direction), and it was confirmed that the liquid crystal element S functions as a diffraction grating.
- the intensities of the +1st order light and the -1st order light changed depending on the incident polarization on the liquid crystal element S, and the polarization of the emitted light was also converted. Therefore, in the liquid crystal element S, linear polarization / circular polarization selectivity can be obtained. Further, the liquid crystal element S can also obtain polarization conversion characteristics.
- FIG. 13 shows another example of the photomask 200A used in step S13.
- a translucent portion 202 is present around a plurality of rectangular light-shielding portions 201 arranged in an array.
- the light transmitting portion 202 is formed in a grid pattern. That is, in the translucent portion 202, a portion parallel to the X direction and a portion parallel to the Y direction intersect.
- FIG. 14 shows a liquid crystal element 10 obtained by pattern exposure using the photomask 200A shown in FIG.
- the liquid crystal element has a monomer region (first region) 11 corresponding to the light-shielding portion 201 of the photomask 200, and a polymer region (second region) 12 corresponding to the translucent portion 202.
- the monomer region 11 has a rectangular shape
- the polymer region 12 has a lattice shape.
- the polymer region 12 is arranged so as to surround each of the monomer regions 11.
- all four sides 12A, 12B, 12C, and 12D surrounding the monomer region 11 serve as interfaces with the polymer region 12. That is, the monomer region 11 is surrounded by polymer interfaces 12A, 12B, 12C, and 12D from all sides.
- the polymer interfaces 12A, 12B12C, and 12D generate a molecular orientation regulating force (interface regulating force) on the liquid crystal molecules in the monomer region 11. That is, the surfaces 12A, 12B, 12C, and 12D in contact with the monomer region 11 in the polymer region 12 function as a molecular orientation regulating interface (second molecular orientation regulating interface).
- the molecular orientation regulating force (interface regulating force) generated at the interfaces 12A, 12B, 12C, 12D is the vertical alignment regulating force that orients the molecule perpendicularly to the interfaces 12A, 12B, 12C, 12D, or the interface 12A, 12B.
- it is a parallel orientation regulating force that orients molecules in parallel.
- each interface 12A, 12B, 12C, 12D generates a vertical orientation regulating force.
- the liquid crystal molecules in the monomer region 11 are subject to regulatory forces according to the distance from each interface 12A, 12B, 12C, 12D. Therefore, the spiral axes are arranged so as to extend radially from the center of the square monomer region 11. Further, at the interfaces 12A, 12B, 12C, and 12D, the spiral axes are arranged concentrically from the center of the square monomer region 11 when a parallel orientation restricting force is generated.
- the spiral pitch spiral periodic structure
- the spiral pitch may be constant or may change in the spiral axis direction.
- the lens it is more preferable for the lens that the spiral pitch (spiral periodic structure) becomes shorter and the focal length becomes shorter from the center toward the extracorporeal direction, but the spiral pinch is constant in the radial direction.
- the spiral pitch spiral periodic structure
- the luminous flux can be narrowed down, it functions as a lens.
- the shape of the light-shielding portion 201 is not limited to a rectangle.
- the shape of the light-shielding portion 201 may be circular or polygonal other than rectangular.
- FIG. 15 shows a list of materials constituting a raw material monomer (monomer mixture) for producing the liquid crystal device according to the second example. Among the materials shown in FIG. 15, they are mixed at a ratio of 1: 1 so that the total molar ratio of the liquid crystal monomer (A-CN) and the non-polymerizable liquid crystal (5CB) is 100. 1 mol% of photopolymerization initiator (PI) was added to the mixture of the liquid crystal monomer and the non-polymerizable liquid crystal.
- PI photopolymerization initiator
- the prepared monomer mixture is an enantiotropic liquid crystal that expresses a liquid crystal phase in both the temperature raising and lowering processes.
- the prepared monomer mixture is enclosed in the two glass substrates shown in FIG.
- the surface of the glass substrate is silane-coupled.
- the silane coupling treatment By the silane coupling treatment, the surface of the glass substrate becomes an orientation-regulating surface that orients the liquid crystal molecules perpendicularly to the surface of the glass substrate.
- the treatment applied to the substrate is not limited to the vertical alignment treatment such as the silane coupling treatment, and may be a parallel orientation treatment (horizontal alignment treatment) such as a rubbing treatment. Further, the substrate may not be oriented.
- a spacer is arranged between the two glass substrates to secure a space for containing the monomer mixture.
- a monomer mixture (sample) is infiltrated into the space between the glass substrates by using the capillary phenomenon.
- the temperature of the monomer mixture during permeation was set to 60 ° C. at which the monomer mixture showed an isotropic phase (see FIG. 18).
- it was heated to 80 ° C. and irradiated with ultraviolet light ( ⁇ 365 mm) having a light intensity of 0.1 mW / cm 2 through a photomask to perform pattern exposure.
- the pattern exposure was performed at 80 ° C. for 10 minutes. 80 ° C.
- the photomask has a linear translucent portion 202.
- the width of the linear translucent portion 202 was set to 650 ⁇ m.
- the photomask was removed, the temperature of the monomer mixture was lowered to 30 ° C. showing the liquid crystal phase, and the entire surface was exposed at 30 ° C. for 10 minutes to complete the photopolymerization.
- FIG. 19 shows the results of polarizing microscope observation of the sample at room temperature after pattern exposure.
- P is a polarizer and A is an analyzer.
- A is an analyzer.
- a striped periodic structure was observed in the region A near the boundary between the light-shielding portion (non-irradiated region in the sample) and the translucent portion (irradiated region in the sample; exposed region) of the photomask. ..
- phase transition behavior of the sample after pattern exposure was observed.
- the phase transition behavior was observed by using a sample before the molecular orientation was fixed by photopolymerization (full exposure) by post-exposure, and allowing the sample to cool every 10 ° C. in a temperature range of 90 ° C. to 30 ° C.
- FIG. 20 shows the results of observing the phase transition behavior of the sample after pattern exposure.
- the temperature of the sample is 90 ° C.
- both the non-irradiated region and the irradiated region have a dark field and do not show optical anisotropy, and it is considered that both regions have an isotropic phase transition.
- the sample was allowed to cool to 80 ° C.
- a polydomain structure in which molecules were randomly oriented was observed in the central part of the irradiation region, and a slightly striped structure was observed from the translucent part to the light-shielding part near the boundary of the photomask. It was observed. From this, it is considered that in the second example, the striped structure is formed in the temperature lowering process after the pattern exposure.
- the liquid crystal phase was developed in the light-shielded portion despite the temperature higher than the transparent point of the monomer mixture. It is considered that this is because the polymer flows into the light-shielding portion due to the mutual diffusion between the polymer generated in the light-transmitting portion (exposure portion) and the monomer of the light-shielding portion during pattern exposure, and the liquid crystal phase is polymer-stabilized.
- the concentration gradient of the polymer caused by the mutual diffusion of the polymer and the monomer during pattern exposure is important for the in-plane uniaxial orientation of the spiral axis. Therefore, the present inventors changed the polymerization conditions during pattern exposure and investigated the effect of molecular diffusion on the formation of striped structures. As a result, a striped structure was formed more widely in the sample exposed to the pattern under conditions where molecular diffusion was likely to occur. From the above results, it can be seen that this striped structure is formed along the region where the polymer concentration gradient is generated, and the polymer concentration gradient generated by molecular diffusion during pattern exposure is important.
- the phase from the translucent portion to the light-shielding portion becomes the liquid crystal phase due to the concentration gradient of the polymer generated in the step shown in FIG. Transition occurs gradually.
- the region where the phase transition occurs in a specific temperature range ( ⁇ T) due to the concentration gradient of the generated polymer becomes very narrow in the left-right direction of FIG.
- ⁇ T specific temperature range
- the molecular orientation is controlled in one direction because the induced self-organization phenomenon of the liquid crystal occurs as the guiding structure (Guiding Structure) by using this difference in the phase transition temperature. This can be thought of as a phenomenon similar to crystal growth along the temperature gradient direction.
- the boundary between the region where the liquid crystal phase is expressed and the region where the liquid crystal molecules are reoriented function as the molecular orientation control interface.
- the molecular orientation is controlled horizontally with respect to the regulation interface by the affinity between the liquid crystal molecules that are reoriented and the boundary. It can also be considered that the horizontally oriented regulatory interface moved along the polymer concentration gradient direction (direction from right to left in FIG. 22) in the temperature lowering process.
- the in-plane uniaxial orientation of the spiral axis is formed by the combination of the molecular orientation controlled by the induced self-organization and the spiral-inducing force of the chiral auxiliary. ..
- the spiral axis of the cholesteric liquid crystal is oriented only in the direction perpendicular to the regulation interface of horizontal orientation, the in-plane uniaxial orientation of the spiral axis along the concentration gradient of the polymer is achieved.
- control of the spiral axis orientation is not achieved in the central portion of the light-shielding portion (the left region in FIG. 23). It is considered that this is because the concentration gradient of the polymer does not occur, the phase transition temperature is uniform in the central part of the light-shielding portion, and self-assembly occurs randomly.
- a photomask was used to obtain a light intensity distribution, but the means for obtaining the light intensity distribution may be a light source having a light intensity distribution or the like. Further, a light intensity distribution may be obtained by using a photomask in which the light transmittance changes stepwise.
- the spiral axis orientation (orientation of the periodic structure) occurred in the temperature lowering process, but the temperature lowering process is not essential in the spiral axis orientation (orientation of the periodic structure). If the polymerization system can be changed and the liquid crystal phase transition can be gradually induced from the region where the polymer concentration is high in the polymerization process, even if there is no temperature lowering process, it depends on the concentration distribution of the polymer, as in the second example. It is also possible to cause a phase transition from an isotropic phase to a liquid crystal phase.
- FIGS. 24 and 25 show an example of manufacturing a hologram arrangement pattern using a polymer concentration gradient.
- FIG. 24 shows the first step in the production example of the hologram arrangement pattern using the polymer concentration gradient.
- a photomask for patterning the hologram compartment is used.
- the photomask of FIG. 24 includes eight light-shielding portions, and a light-transmitting portion is formed around the light-shielding portions.
- the spacing between the light-shielding portions is arbitrary, but the smaller the spacing, the higher the fill-factor of the high-efficiency hologram.
- FIG. 25 shows the second step in the production example of the hologram arrangement pattern using the polymer concentration gradient.
- a photomask for forming a hologram is used.
- the photomask of FIG. 25 has eight regions corresponding to each of the eight hologram compartments, and each region has a gradient light transmittance.
- the polymer concentration gradient can be used not only for in-plane two-dimensional orientation but also for three-dimensional orientation.
- FIG. 26 shows an example of the three-dimensional orientation of the spiral axis.
- a light source that irradiates a Gaussian beam is used.
- the Gaussian beam has a Gaussian distribution in the light intensity distribution in the plane perpendicular to the optical axis. That is, the light intensity of the Gaussian beam decreases as the distance from the optical axis increases in the plane perpendicular to the optical axis.
- the sample (monomer mixture) contains a dye or the like that absorbs light, and the light intensity decreases as the distance from the light source increases.
- a hemispherical light intensity distribution occurs in the sample with the light source as the center and the light intensity decreases as the distance from the light source increases three-dimensionally.
- the result is a three-dimensional hemispherical polymer concentration gradient in the sample. Therefore, a three-dimensional spiral axis array in which the spiral axes are oriented along the radial direction of the hemisphere is obtained. In this way, the three-dimensional spiral axis arrangement is suitable for angle-independent reflective materials.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
A liquid crystal element manufacturing method according to the present disclosure includes regulating the alignment of the helical axis of a cholesteric liquid crystal by irradiating a mixture including a liquid crystal monomer, a chiral agent, and a photopolymerization initiator with light having a light intensity distribution.
Description
本開示は、液晶素子及び液晶素子の製造方法に関する。本出願は、2019年8月16日出願の日本特許出願第2019-149514号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
The present disclosure relates to a liquid crystal element and a method for manufacturing the liquid crystal element. This application claims priority based on Japanese Patent Application No. 2019-149514 filed on August 16, 2019, and incorporates all the contents described in the Japanese application.
特許文献1は、レンズ層を含む液晶レンズを開示している。特許文献1のレンズ層は、コレステリック配向された液晶分子を含むコレステリック配向領域を含む。
Patent Document 1 discloses a liquid crystal lens including a lens layer. The lens layer of Patent Document 1 includes a cholesteric orientation region containing cholesterically oriented liquid crystal molecules.
特許文献2は、コレステリック配向を固定化した液晶性フィルムを開示している。また、特許文献2は、コレステリック液晶により形成された指紋状組織を開示している(特に、特許文献2の図1参照)。
Patent Document 2 discloses a liquid crystal film having a fixed cholesteric orientation. Further, Patent Document 2 discloses a fingerprint-like tissue formed by a cholesteric liquid crystal (in particular, see FIG. 1 of Patent Document 2).
液晶分子の配向構造を制御する手法としては、力学的な配向制御法がある。力学的な配向制御法としては、例えば、高分子フィルムを一方向に延伸することで延伸方向に対して平行となるように液晶分子を配向する延伸法がある。しかし、力学的な配向制御法では、一次元的な配向制御は容易であるが、二次元又は三次元の配向制御は困難である。
There is a mechanical orientation control method as a method for controlling the orientation structure of liquid crystal molecules. As a mechanical orientation control method, for example, there is a stretching method in which liquid crystal molecules are oriented so as to be parallel to the stretching direction by stretching the polymer film in one direction. However, in the mechanical orientation control method, one-dimensional orientation control is easy, but two-dimensional or three-dimensional orientation control is difficult.
また、偏光選択的なアゾベンゼンなどの色素分子と偏光照射との相互作用を利用することで、液晶分子を自在に配向制御できる光配向法も存在する。しかし、光配向法により達成できる分子配向制御は、原理的に数十マイクロメートルから数ミリメートまでの微細化が限界であり、より高度な光学機能材料の創出においては、新たな分子配向技術の開発が望まれる。
There is also a photo-orientation method that can freely control the orientation of liquid crystal molecules by utilizing the interaction between polarization-selective dye molecules such as azobenzene and polarized light irradiation. However, the molecular orientation control that can be achieved by the photo-alignment method is limited to miniaturization from several tens of micrometers to several millimeters in principle, and in the creation of more advanced optical functional materials, the development of new molecular orientation technology Is desired.
本発明者らは、緻密な分子配向制御のため、自発的に形成される液晶の周期構造に着目した。液晶の周期構造は、ナノオーダの大きさであるため、従来の分子配向制御技術により得られる構造サイズよりも格段に微細である。例えば、コレステリック液晶は、自発的に液晶分子がらせん状配向したnmからμmオーダーの周期構造を形成する。また、スメクチック液晶は、層状の周期構造を有する。
The present inventors focused on the periodic structure of the liquid crystal that is spontaneously formed in order to precisely control the molecular orientation. Since the periodic structure of the liquid crystal is the size of nano-order, it is much finer than the structure size obtained by the conventional molecular orientation control technique. For example, cholesteric liquid crystals spontaneously form a periodic structure on the order of nm to μm in which liquid crystal molecules are spirally oriented. In addition, the smectic liquid crystal has a layered periodic structure.
したがって、液晶の周期構造の方向を所望の2次元方向又は3次元方向に配向させれば、微細かつ所望の2次元的又は3次元的な分子配向構造を得ることができる。ここで、周期構造の方向とは、周期構造において、構造が変化する方向をいい、例えば、コレステリック液晶の場合、らせん軸方向が周期構造の方向であり、スメクチック液晶であれば層の厚さ方向が周期構造の方向である。
Therefore, if the direction of the periodic structure of the liquid crystal is oriented in a desired two-dimensional direction or three-dimensional direction, a fine and desired two-dimensional or three-dimensional molecular orientation structure can be obtained. Here, the direction of the periodic structure means the direction in which the structure changes in the periodic structure. For example, in the case of cholesteric liquid crystal, the direction of the spiral axis is the direction of the periodic structure, and in the case of smectic liquid crystal, the direction of the layer thickness. Is the direction of the periodic structure.
本開示のある側面は、コレステリック液晶を有する膜状の液晶素子である。開示の液晶素子は、コレステリック液晶のらせん軸が前記膜状の液晶素子の面内方向に平行に配向しているとともに、前記面内方向において配向規制された第1領域を備える。
One aspect of the present disclosure is a film-like liquid crystal element having a cholesteric liquid crystal. The disclosed liquid crystal element includes a first region in which the spiral axis of the cholesteric liquid crystal is oriented parallel to the in-plane direction of the film-shaped liquid crystal element and the orientation is restricted in the in-plane direction.
他の観点において、開示の液晶素子は、第1面及び前記第1面に直交する方向に平行な第2面それぞれから分子配向規制されたコレステリック液晶を有する第1領域を備える。
From another point of view, the disclosed liquid crystal element includes a first region having a cholesteric liquid crystal whose molecular orientation is regulated from each of a first surface and a second surface parallel to the direction orthogonal to the first surface.
本開示の他の側面は、コレステリック液晶を用いた膜状の液晶素子の製造方法である。開示の製造方法は、液晶性モノマー、キラル剤、及び光重合開始剤を含む混合物を、配向処理が施された基板上に膜状に配置し、前記基板に対して平行な面において光強度分布を有する光を、膜状の前記混合物に対して照射することで、光重合されていないモノマー領域と光重合されたポリマー領域とを形成する、ことを含む。
Another aspect of the present disclosure is a method for manufacturing a film-shaped liquid crystal element using a cholesteric liquid crystal. In the disclosed production method, a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is arranged in a film shape on a substrate that has been subjected to an orientation treatment, and a light intensity distribution is performed on a plane parallel to the substrate. By irradiating the film-like mixture with light having the above, a non-photopolymerized monomer region and a photopolymerized polymer region are formed.
他の観点において、開示の液晶素子の製造方法は、液晶性モノマー、キラル剤、及び光重合開始剤を含む混合物に対して光強度分布を有する光を照射することで、コレステリック液晶のらせん軸を配向規制することを備える。
In another aspect, the disclosed method for manufacturing a liquid crystal element is to irradiate a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator with light having a light intensity distribution to obtain a spiral axis of a cholesteric liquid crystal. Prepare to regulate orientation.
他の観点において、開示の液晶素子の製造方法は、液晶性モノマーを含み光が照射されることで光重合が生じる混合物に対して照射された光の光強度分布によって、前記混合物中に光重合によって生成されるポリマーの濃度分布を生じさせ、前記濃度分布を利用して液晶の周期構造を配向することを備える。
From another point of view, the disclosed method for producing a liquid crystal element is to photopolymerize in the mixture by the light intensity distribution of the irradiated light to the mixture containing a liquid crystal monomer and causing photopolymerization by irradiation with light. A concentration distribution of the polymer produced by the above is generated, and the periodic structure of the liquid crystal is oriented by utilizing the concentration distribution.
他の観点において、開示の液晶素子の製造方法は、液晶性モノマーを含み光が照射されることで光重合が生じる混合物に対して照射された光の光強度分布によって、前記混合物中に等方相から液晶相への相転移温度の分布を生じさせ、前記相転移温度の分布を利用して液晶の周期構造を配向することを備える。
From another point of view, the disclosed method for manufacturing a liquid crystal element is isometric in the mixture depending on the light intensity distribution of the irradiated light to the mixture containing a liquid crystal monomer and photopolymerization occurs when the mixture is irradiated with light. It is provided to generate a distribution of the phase transition temperature from the phase to the liquid crystal phase and to orient the periodic structure of the liquid crystal by utilizing the distribution of the phase transition temperature.
他の観点において、開示の液晶素子は、周期構造を有する液晶素子であって、前記周期構造が前記液晶素子の面内方向に平行に配向しているとともに、前記面内方向において配向規制された第1領域を備える。
From another viewpoint, the disclosed liquid crystal element is a liquid crystal element having a periodic structure, in which the periodic structure is oriented parallel to the in-plane direction of the liquid crystal element and the orientation is regulated in the in-plane direction. It has a first area.
更なる詳細は、後述の実施形態として説明される。
Further details will be described as embodiments described below.
<1.液晶素子及び液晶素子の製造方法の概要>
近年、高分子などの柔らかい材料により、厚さ数μm程度の薄膜でありながらレンズなどの光学素子として機能する材料が開発されている。薄膜状の光学素子を実現する鍵技術となるのは、高分子材料中の分子の並び方の制御方法である。2次元的に緻密にデザインされた分子配向構造を有する高分子材料は、その配向構造に依存して多彩な光学素子として機能する。 <1. Outline of liquid crystal element and manufacturing method of liquid crystal element>
In recent years, a material that functions as an optical element such as a lens has been developed by using a soft material such as a polymer, even though it is a thin film having a thickness of about several μm. The key technology for realizing a thin-film optical element is a method of controlling the arrangement of molecules in a polymer material. A polymer material having a molecular orientation structure that is precisely designed two-dimensionally functions as a variety of optical elements depending on the orientation structure.
近年、高分子などの柔らかい材料により、厚さ数μm程度の薄膜でありながらレンズなどの光学素子として機能する材料が開発されている。薄膜状の光学素子を実現する鍵技術となるのは、高分子材料中の分子の並び方の制御方法である。2次元的に緻密にデザインされた分子配向構造を有する高分子材料は、その配向構造に依存して多彩な光学素子として機能する。 <1. Outline of liquid crystal element and manufacturing method of liquid crystal element>
In recent years, a material that functions as an optical element such as a lens has been developed by using a soft material such as a polymer, even though it is a thin film having a thickness of about several μm. The key technology for realizing a thin-film optical element is a method of controlling the arrangement of molecules in a polymer material. A polymer material having a molecular orientation structure that is precisely designed two-dimensionally functions as a variety of optical elements depending on the orientation structure.
しかしながら、実用されている既存技術では、2次元的に分子配向構造を制御した際の構造サイズは、原理的におよそ数百μm程度であり、分子配向構造のさらなる微細化(例えば、数μmオーダー以下)が求められる。また、既存技術では素子の大型化(配向構造の集積化)が困難である。
However, in the existing technology in practical use, the structure size when the molecular orientation structure is controlled two-dimensionally is about several hundred μm in principle, and the molecular orientation structure is further miniaturized (for example, on the order of several μm). The following) is required. In addition, it is difficult to increase the size of the device (integration of the orientation structure) with the existing technology.
本発明者らは、2次元的に分子配向構造を制御する手法の一つとして、コレステリック液晶という材料に着目した。コレステリック液晶は、自発的に液晶分子がらせん状配向したnmからμmオーダーの周期構造を形成する。コレステリック液晶は、反射、屈折、回折などの様々な光機能を発現することができる。
The present inventors focused on a material called cholesteric liquid crystal as one of the methods for controlling the molecular orientation structure two-dimensionally. Cholesteric liquid crystals spontaneously form a periodic structure on the order of nm to μm in which liquid crystal molecules are spirally oriented. Cholesteric liquid crystals can exhibit various optical functions such as reflection, refraction, and diffraction.
コレステリック液晶は、分子がらせん状配向しているため、それ自体が、らせん軸方向に1次元的な分子配向周期構造を有する。しかも、コレステリック液晶が自発的に形成する周期構造は、既存の分子配向制御技術に基づく光学素子の周期構造サイズより格段に微細である。したがって、コレステリック液晶のらせん軸を所望される2次元方向に配向させることができれば、微細かつ所望の2次元的な分子配向構造を得ることができる。
Since the molecules of the cholesteric liquid crystal are spirally oriented, the cholesteric liquid crystal itself has a one-dimensional molecular orientation periodic structure in the spiral axis direction. Moreover, the periodic structure spontaneously formed by the cholesteric liquid crystal is much finer than the periodic structure size of the optical element based on the existing molecular orientation control technology. Therefore, if the spiral axis of the cholesteric liquid crystal can be oriented in a desired two-dimensional direction, a fine and desired two-dimensional molecular orientation structure can be obtained.
しかし、従来は、らせん軸が1次元的に構造制御されたコレステリック液晶しか存在しておらず、光学素子としての応用への制約となっていた。らせん軸が1次元的に構造制御されたコレステリック液晶の代表例は、らせん軸が膜状の液晶素子の膜厚方向に平行に配向規制されたものである。この構造では、らせん軸は、単に、膜厚方向に平行な方向に向いているにすぎない。
However, conventionally, there is only a cholesteric liquid crystal whose spiral axis is one-dimensionally structurally controlled, which has been a restriction on its application as an optical element. A typical example of a cholesteric liquid crystal in which the spiral axis is one-dimensionally structurally controlled is that the spiral axis is oriented in parallel with the film thickness direction of the film-shaped liquid crystal element. In this structure, the spiral axis is merely oriented in a direction parallel to the film thickness direction.
また、らせん軸が1次元的に構造制御されたコレステリック液晶の他の例は、らせん軸が、膜状の液晶素子の面内方向(膜厚方向に直交する方向)に平行に配向規制されたものである(特許文献1参照)。
Further, in another example of the cholesteric liquid crystal whose spiral axis is one-dimensionally structurally controlled, the spiral axis is oriented in parallel with the in-plane direction (direction orthogonal to the film thickness direction) of the film-shaped liquid crystal element. (See Patent Document 1).
本発明者らは、後者の例、すなわち、らせん軸が膜状の液晶素子の面内方向に平行に配向している構造に着目した。ただし、従来、らせん軸が液晶素子の面内方向に平行に配向である構造においては、らせん軸が面内方向におけるどの方向に向くかは制御されていなかった。すなわち、従来の構造では、らせん軸は、面内方向に平行ではあるものの、面内において、らせん軸がランダム(無秩序)な方向に配列されていた。
The present inventors focused on the latter example, that is, a structure in which the spiral axis is oriented parallel to the in-plane direction of the film-shaped liquid crystal element. However, conventionally, in a structure in which the spiral axis is oriented parallel to the in-plane direction of the liquid crystal element, which direction the spiral axis faces in the in-plane direction has not been controlled. That is, in the conventional structure, the spiral axes are parallel to the in-plane direction, but the spiral axes are arranged in a random (disordered) direction in the in-plane.
面内において、らせん軸方向がランダム(無秩序)である構造は、指紋状組織と呼ばれる(特許文献2参照)。
A structure in which the spiral axis direction is random (disordered) in the plane is called a fingerprint-like tissue (see Patent Document 2).
面内において、らせん軸方向がランダム(無秩序)であるという、従来の指紋状組織における欠点を解消することが望まれる。この欠点が解消されることで、微細かつ所望の2次元的な分子配向構造を得ることができる。このような分子配向構造を有する素子は、光学分野への応用のみならず、アクチュエーターなどの運動材料への応用など、他の分野への応用も可能である。
It is desired to eliminate the defect in the conventional fingerprint-like tissue that the spiral axis direction is random (disordered) in the plane. By eliminating this defect, a fine and desired two-dimensional molecular orientation structure can be obtained. Devices having such a molecular orientation structure can be applied not only to the optical field but also to other fields such as application to moving materials such as actuators.
(1)実施形態に係るコレステリック液晶を用いた膜状の液晶素子は、コレステリック液晶のらせん軸が前記膜状の液晶素子の面内方向に平行に配向しているとともに、前記面内方向において配向規制された第1領域を備える。面内方向において配向規制されていることで、従来の指紋状組織のように、面内において、らせん軸方向がランダム(無秩序)であるという欠点が解消される。ここで、面内方向とは、膜状の液晶素子の膜厚方向に直交する方向である。膜状の液晶素子において、第1領域は、1つでもよいし、複数でもよい。膜状の液晶素子が複数の第1領域を有する場合、複数の第1領域それぞれにおけるらせん軸方向は異なっていてもよい。
(1) In the film-shaped liquid crystal element using the cholesteric liquid crystal according to the embodiment, the spiral axis of the cholesteric liquid crystal is oriented parallel to the in-plane direction of the film-shaped liquid crystal element, and is oriented in the in-plane direction. It has a regulated first area. By restricting the orientation in the in-plane direction, the drawback that the spiral axis direction is random (disordered) in the in-plane as in the conventional fingerprint-like tissue is eliminated. Here, the in-plane direction is a direction orthogonal to the film thickness direction of the film-shaped liquid crystal element. In the film-shaped liquid crystal element, the first region may be one or a plurality. When the film-shaped liquid crystal element has a plurality of first regions, the spiral axis directions in each of the plurality of first regions may be different.
なお、本明細書において、平行、直交、垂直などの方向を示す用語は、厳密な方向を意味するものとして解釈されるべきものではなく、本明細書において開示される技術の意義(作用効果)を損なわない範囲での誤差を許容する観点で解釈されるべきものである。
In addition, in this specification, a term indicating a direction such as parallel, orthogonal, and vertical should not be construed as meaning a strict direction, and the meaning (action effect) of the technique disclosed in this specification. It should be interpreted from the viewpoint of allowing an error within a range that does not impair.
(2)液晶素子は、前記第1領域に接する界面を有するポリマー領域である第2領域を更に備えることができる。前記界面は、膜厚方向に平行であり、前記第1領域における前記らせん軸を、前記面内方向において配向規制するための配向規制界面であってもよい。
(2) The liquid crystal element can further include a second region, which is a polymer region having an interface in contact with the first region. The interface is parallel to the film thickness direction, and may be an orientation-regulating interface for regulating the orientation of the spiral axis in the first region in the in-plane direction.
(3)前記第2領域は、等方相であってもよい。
(3) The second region may be isotropic.
(4)前記第1領域における前記らせん軸は、前記配向規制界面に対して、平行又は垂直に配向されているのが好ましい。
(4) The spiral axis in the first region is preferably oriented parallel or perpendicular to the orientation-regulating interface.
(5)前記第1領域は、光学素子として機能するようにらせん軸が配向規制されているのが好ましい。この場合、膜状の液晶素子を光学素子として機能させることができる。なお、液晶素子の用途は、光学素子に限られるものではない。
(5) In the first region, the orientation of the spiral axis is preferably regulated so as to function as an optical element. In this case, the film-shaped liquid crystal element can function as an optical element. The application of the liquid crystal element is not limited to the optical element.
(6)前記光学素子は、回折光学素子であるのが好ましい。
(6) The optical element is preferably a diffraction optical element.
(7)前記回折光学素子は、回折格子であるのが好ましい。
(7) The diffraction optical element is preferably a diffraction grating.
(8)前記回折光学素子は、回折レンズであるのが好ましい。
(8) The diffractive optical element is preferably a diffractive lens.
(9)実施形態に係るコレステリック液晶を用いた液晶素子は、第1面及び前記第1面に交差する方向に平行な第2面それぞれから分子配向規制されたコレステリック液晶を有する第1領域を備える。第1面と第2面とは直交することができる。
(9) The liquid crystal element using the cholesteric liquid crystal according to the embodiment includes a first region having a cholesteric liquid crystal whose molecular orientation is restricted from each of the first surface and the second surface parallel to the direction intersecting the first surface. .. The first surface and the second surface can be orthogonal to each other.
(10)実施形態に係るコレステリック液晶を用いた膜状の液晶素子の製造方法は、液晶性モノマー、キラル剤、及び光重合開始剤を含む混合物を、分子配向処理が施された基板上に膜状に配置し、前記基板に対して平行な面において光強度分布を有する光を、膜状の前記混合物に対して照射することで、光重合されていないモノマー領域と光重合されたポリマー領域とを形成する、ことを含む。
(10) In the method for producing a film-like liquid crystal element using a cholesteric liquid crystal according to the embodiment, a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is formed on a substrate subjected to a molecular orientation treatment. By irradiating the film-like mixture with light which is arranged in a shape and has a light intensity distribution on a plane parallel to the substrate, a non-photopolymerized monomer region and a photopolymerized polymer region are formed. Includes forming.
(11)前記分子配向処理は、垂直配向処理であるのが好ましい。
(11) The molecular orientation treatment is preferably a vertical orientation treatment.
(12)前記光強度分布は、露光パターンによって形成されるのが好ましい。この場合、露光パターンによって、モノマー領域とポリマー領域を容易に形成できる。
(12) The light intensity distribution is preferably formed by an exposure pattern. In this case, the exposure pattern can easily form a monomer region and a polymer region.
(13)前記光を照射する際において、前記混合物は等方相を示す温度に設定されるのが好ましい。
(13) When irradiating the light, the mixture is preferably set to a temperature showing an isotropic phase.
(14)製造方法は、前記光の照射後に、液晶温度でアニーリングすることを更に含むことができる。
(14) The manufacturing method can further include annealing at the liquid crystal temperature after irradiation with the light.
(15)製造方法は、前記ポリマー領域の形成後に前記モノマー領域を光重合することを更に含むことができる。
(15) The production method can further include photopolymerizing the monomer region after the formation of the polymer region.
(16)実施形態に係る液晶素子の製造方法は、液晶性モノマー、キラル剤、及び光重合開始剤を含む混合物に対して光強度分布を有する光を照射することで、コレステリック液晶のらせん軸を配向規制することを備える。
(16) In the method for producing a liquid crystal element according to the embodiment, a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is irradiated with light having a light intensity distribution to form a spiral shaft of a cholesteric liquid crystal. Prepare to regulate orientation.
(17)前記混合物は、基板上に配置され、前記光は、前記基板上に配置された前記混合物に対して照射されるのが好ましい。
(17) It is preferable that the mixture is arranged on a substrate and the light is applied to the mixture arranged on the substrate.
(18)前記光は、前記基板に対して平行な面において光強度分布を有するのが好ましい。この場合、2次元的な配向が得られる。
(18) The light preferably has a light intensity distribution on a plane parallel to the substrate. In this case, a two-dimensional orientation is obtained.
(19)前記光は、前記基板に対して直交する方向において光強度分布を更に有するのが好ましい。この場合、3次元的な配向が得られる(図26参照)。
(19) The light preferably has a light intensity distribution in a direction orthogonal to the substrate. In this case, a three-dimensional orientation is obtained (see FIG. 26).
(20)前記光強度分布を有する前記光は、前記混合物中に、光重合によって生成されるポリマーの濃度分布を生じさせることができる。ポリマーの濃度分布を利用して、液晶の周期構造が配向される。
(20) The light having the light intensity distribution can generate a concentration distribution of a polymer produced by photopolymerization in the mixture. The periodic structure of the liquid crystal is oriented using the concentration distribution of the polymer.
(21)前記光強度分布を有する前記光は、前記混合物中に、等方相から液晶相への相転移温度の分布を生じさせることができる。相転移温度の分布を利用して、温度変化に伴う配向規制面の移動により、液晶の周期構造が配向される。
(21) The light having the light intensity distribution can cause a distribution of the phase transition temperature from the isotropic phase to the liquid crystal phase in the mixture. Using the distribution of the phase transition temperature, the periodic structure of the liquid crystal is oriented by the movement of the orientation control surface with the temperature change.
(22)実施形態に係る液晶素子の製造方法は、液晶性モノマーを含み光が照射されることで光重合が生じる混合物に対して照射された光の光強度分布によって、前記混合物中に光重合によって生成されるポリマーの濃度分布を生じさせ、前記濃度分布を利用して液晶の周期構造を配向することを備える。
(22) In the method for producing a liquid crystal element according to an embodiment, a mixture containing a liquid crystal monomer and photopolymerized by being irradiated with light is photopolymerized in the mixture by the light intensity distribution of the irradiated light. A concentration distribution of the polymer produced by the above is generated, and the periodic structure of the liquid crystal is oriented by utilizing the concentration distribution.
(23)実施形態に係る液晶素子の製造方法は、液晶性モノマーを含み光が照射されることで光重合が生じる混合物に対して照射された光の光強度分布によって、前記混合物中に等方相から液晶相への相転移温度の分布を生じさせ、前記相転移温度の分布を利用して液晶の周期構造を配向することを備える液晶素子。
(23) The method for producing a liquid crystal element according to the embodiment is isometric in the mixture according to the light intensity distribution of the irradiated light to the mixture containing a liquid crystal monomer and photopolymerization occurs when the mixture is irradiated with light. A liquid crystal element comprising generating a distribution of a phase transition temperature from a phase to a liquid crystal phase and orienting a periodic structure of a liquid crystal by utilizing the distribution of the phase transition temperature.
(23)実施形態に係る液晶素子は、周期構造を有する液晶素子であって、前記周期構造が前記液晶素子の面内方向に平行に配向しているとともに、前記面内方向において配向規制された第1領域を備える。
(23) The liquid crystal element according to the embodiment is a liquid crystal element having a periodic structure, and the periodic structure is oriented parallel to the in-plane direction of the liquid crystal element, and the orientation is restricted in the in-plane direction. It has a first area.
なお、液晶の周期構造を配向することは、周期構造の方向を所望の方向に向けることである。周期構造の方向とは、周期構造において、構造が変化する方向をいい、例えば、コレステリック液晶の場合、らせん軸方向が周期構造の方向であり、スメクチック液晶であれば層の厚さ方向が周期構造の方向である。周期構造を配向することは、2次元方向に配向することであってもよいし、3次元方向に配向させることであってもよい。したがって、液晶の周期構造の方向を所望の2次元方向又は3次元方向に配向させれば、微細かつ所望の2次元的又は3次元的な分子配向構造を得ることができる。ここで、周期構造の方向とは、周期構造において、構造が変化する方向をいい、例えば、コレステリック液晶の場合、らせん軸方向が周期構造の方向であり、スメクチック液晶であれば層の厚さ方向が周期構造の方向である。
Orienting the periodic structure of the liquid crystal means directing the direction of the periodic structure to a desired direction. The direction of the periodic structure means the direction in which the structure changes in the periodic structure. For example, in the case of cholesteric liquid crystal, the direction of the spiral axis is the direction of the periodic structure, and in the case of smectic liquid crystal, the direction of the layer thickness is the periodic structure. Is the direction of. Orienting the periodic structure may be oriented in a two-dimensional direction or may be oriented in a three-dimensional direction. Therefore, if the direction of the periodic structure of the liquid crystal is oriented in a desired two-dimensional direction or three-dimensional direction, a fine and desired two-dimensional or three-dimensional molecular orientation structure can be obtained. Here, the direction of the periodic structure means the direction in which the structure changes in the periodic structure. For example, in the case of cholesteric liquid crystal, the direction of the spiral axis is the direction of the periodic structure, and in the case of smectic liquid crystal, the direction of the layer thickness. Is the direction of the periodic structure.
<2.液晶素子及び液晶素子の製造方法の例>
<2. Examples of liquid crystal elements and methods for manufacturing liquid crystal elements>
<2.1 第1例>
<2.1 First example>
図1は、コレステリック液晶を用いた液晶素子の製造プロセスを示している。実施形態において、液晶素子は、例えば、膜状素子である。まず、原料モノマー(モノマー混合物)が作製される(ステップS11)。図2は、モノマー混合物を構成する材料の一覧を例示している。実施形態のモノマー混合物は、液晶モノマー、らせん配向誘起のためのキラル剤(キラルモノマー)、及び光重合開始剤を含む。実施形態のモノマー混合物は、液晶性モノマーを含み光が照射されることで光重合が生じるよう構成されている。図2に示すように、モノマー混合物は、任意で、非重合性液晶(可塑剤)を含んでもよい。また、モノマー混合物は、任意で、架橋剤を含んでもよい。重合基も、ラジカル重合のみならず、アニオン重合、カチオン重合などを自由に選択できる。
FIG. 1 shows a manufacturing process of a liquid crystal element using a cholesteric liquid crystal. In the embodiment, the liquid crystal element is, for example, a film-like element. First, a raw material monomer (monomer mixture) is produced (step S11). FIG. 2 illustrates a list of materials that make up a monomer mixture. The monomer mixture of the embodiment contains a liquid crystal monomer, a chiral agent (chiral monomer) for inducing spiral orientation, and a photopolymerization initiator. The monomer mixture of the embodiment contains a liquid crystal monomer and is configured to cause photopolymerization when irradiated with light. As shown in FIG. 2, the monomer mixture may optionally contain a non-polymerizable liquid crystal (plasticizer). Moreover, the monomer mixture may optionally contain a cross-linking agent. As the polymerization group, not only radical polymerization but also anionic polymerization, cationic polymerization and the like can be freely selected.
液晶性モノマーは、図2に例示した構造には限定はされず、他の構造の液晶性モノマーを用いることができる。ここで「液晶性モノマー」とは、液晶性を発現するための官能基である「メソゲン基」と、重合反応のための官能基である「重合基」と、を有する化合物群を意味する。液晶モノマーは、一つの重合基を有していても良いし、微粒子の安定性という意味に鑑みれば複数の重合基を有していてもよい。例えば、メソゲン基としては、フェニル基、ビフェニル基、フェニルシクロヘキシル基、ビシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基、トラン基、またこれらのヘテロ元素誘導体および複合体などがある。重合基としては、ビニル基、アクリル基、メタクリル基、エポキシ基、オキセタン基などがある。
The liquid crystal monomer is not limited to the structure illustrated in FIG. 2, and a liquid crystal monomer having another structure can be used. Here, the "liquid crystalline monomer" means a group of compounds having a "mesogen group" which is a functional group for exhibiting liquid crystal property and a "polymerizing group" which is a functional group for a polymerization reaction. The liquid crystal monomer may have one polymerization group, or may have a plurality of polymerization groups in view of the stability of the fine particles. For example, the mesogen group includes a phenyl group, a biphenyl group, a phenylcyclohexyl group, a bicyclohexyl group, a phenylbenzoate group, an azobenzene group, a trans group, and heteroelement derivatives and complexes thereof. Examples of the polymerization group include a vinyl group, an acrylic group, a methacrylic group, an epoxy group, an oxetane group and the like.
キラル剤は、液晶のらせん構造を誘起させる。キラル剤は、例えば、図2に示すものが用いられる。キラル剤は、図2に例示したイソソルビド骨格を有する構造には限定はされず他の構造の重合性キラル剤を用いることができる。具体的には、分子骨格中に「不斉中心」、「不斉軸」、または「不斉面」を有しており、さらに同一分子中に重合基を有すれば良い。例えば、最も汎用されているキラル剤である「S-811」や「R-811」に重合基を導入した誘導体などが挙げられる。なお、不斉中心を有する化合物は、例えば、イソソルビド、コレステロール、S811である。不斉軸を有する化合物は、例えば、アレン,ビフェニル,BINAPである。不斉軸の別の例としては、分子内らせん軸がある。不斉軸としてのらせん軸を有する化合物は、例えば、ヘリセンである。不斉面を有する化合物は、例えば、シクロファンである。また、コレステリック液晶のらせん構造の周期はキラル剤の分子構造に由来する「ヘリカルツイスティングパワー(HTP)」で決定される。キラル剤のHTPが高い(HTP > 数十μm-1)ほど微量(数mol%以下)の添加量で紫外から可視光領域まで反射帯を制御できるためより好ましい。本発明で用いたキラル剤は、液晶性モノマーに対して数mol%の量でよく、例えば、液晶性モノマーに対して4mol%の量でよい。なお、キラル剤は、必ずしも重合性である必要はなく、非重合性キラル剤を用いてもよい。
The chiral agent induces the helical structure of the liquid crystal. As the chiral agent, for example, the one shown in FIG. 2 is used. The chiral agent is not limited to the structure having the isosorbide skeleton illustrated in FIG. 2, and a polymerizable chiral agent having another structure can be used. Specifically, it may have an "asymmetric center", an "asymmetric axis", or an "asymmetric plane" in the molecular skeleton, and further have a polymerizable group in the same molecule. For example, a derivative in which a polymerization group is introduced into "S-811" or "R-811", which are the most widely used chiral agents, can be mentioned. The compounds having an asymmetric center are, for example, isosorbide, cholesterol, and S811. Compounds having an asymmetric axis are, for example, allen, biphenyl, and BINAP. Another example of an asymmetric axis is the intracellular helical axis. A compound having a spiral axis as an asymmetric axis is, for example, helicene. The compound having an asymmetric surface is, for example, cyclophane. In addition, the period of the helical structure of the cholesteric liquid crystal is determined by the "helical twisting power (HTP)" derived from the molecular structure of the chiral auxiliary. The higher the HTP of the chiral agent (HTP> several tens of μm -1 ), the more preferable it is because the reflection band can be controlled from the ultraviolet to the visible light region with a small amount (several mol% or less) of addition. The chiral agent used in the present invention may have an amount of several mol% with respect to the liquid crystal monomer, for example, an amount of 4 mol% with respect to the liquid crystal monomer. The chiral agent does not necessarily have to be polymerizable, and a non-polymerizable chiral agent may be used.
作製されたモノマー混合物は、第1基板111及び第2基板112の対からなる基板セル100(図3参照)内に封入される。第1基板111及び第2基板112は、例えば、ガラス製である。第1基板111及び第2基板112それぞれの厚さは、1μm以上、100μm以下であるのが好ましい。
The produced monomer mixture is enclosed in a substrate cell 100 (see FIG. 3) composed of a pair of a first substrate 111 and a second substrate 112. The first substrate 111 and the second substrate 112 are made of glass, for example. The thickness of each of the first substrate 111 and the second substrate 112 is preferably 1 μm or more and 100 μm or less.
第1基板111と第2基板112との間には、両基板111,112間に、モノマー混合物を入れるための空間130を確保するためのスペーサ120が配置されている。スペーサの厚み(空間130の厚み;形成される膜状の液晶素子の厚み)は、例えば、1μm以上、100μm以下であるのが好ましく、1μm以上、50μm以下であるのがより好ましい。
Between the first substrate 111 and the second substrate 112, a spacer 120 for securing a space 130 for containing the monomer mixture is arranged between the two substrates 111 and 112. The thickness of the spacer (thickness of the space 130; thickness of the film-like liquid crystal element formed) is preferably 1 μm or more and 100 μm or less, and more preferably 1 μm or more and 50 μm or less.
第1基板111は、第2基板112への対向面(図3において下面)111Aを有する。第2基板112は、第1基板111への対向面(図3において上面)112Aを有する。対向面111A,112Aは、空間130に封入されたモノマー混合物との界面になる。
The first substrate 111 has a surface (lower surface in FIG. 3) 111A facing the second substrate 112. The second substrate 112 has a surface (upper surface in FIG. 3) 112A facing the first substrate 111. The facing surfaces 111A and 112A serve as an interface with the monomer mixture sealed in the space 130.
対向面111A,112Aには、予め、液晶分子の配向制御のための分子配向処理が施されている。分子配向処理により、対向面111A,112Aには分子配向規制力(界面規制力)が生じる。つまり、対向面111A,112Aは、分子配向規制界面(第1分子配向規制界面)として機能する。対向面111A,112Aに施される分子配向処理は、例えば、シランカップリング剤による処理、長鎖アルキル等を用いる高分子膜(例えばポリイミド樹脂やアクリル樹脂など)の処理、疎水性基板(フッ素含有樹脂や)の処理、ホモポリマーやブロックコポリマーなどポリマーブラシを形成する表面処理、など表面自由エネルギー状態を制御できる化学修飾処理法や類似の表面状態を有する基板の使用が挙げられる。また、物理的な処理により表面状態を変えることも可能であり、数十nm~数百μm程度の微細な凹凸構造を有する基板(高分子など有機物に限らず無機物でも可能)を用いることもできる。
The facing surfaces 111A and 112A are previously subjected to molecular orientation processing for controlling the orientation of liquid crystal molecules. Due to the molecular orientation treatment, a molecular orientation regulating force (interface regulating force) is generated on the facing surfaces 111A and 112A. That is, the facing surfaces 111A and 112A function as a molecular orientation regulating interface (first molecular orientation regulating interface). The molecular orientation treatment applied to the facing surfaces 111A and 112A includes, for example, treatment with a silane coupling agent, treatment of a polymer film (for example, polyimide resin or acrylic resin) using a long-chain alkyl, or a hydrophobic substrate (containing fluorine). Chemical modification treatment methods that can control the surface free energy state, such as resin treatment and surface treatment to form polymer brushes such as homopolymers and block copolymers, and the use of substrates with similar surface states can be mentioned. Further, it is possible to change the surface state by physical treatment, and it is also possible to use a substrate having a fine uneven structure of about several tens of nm to several hundreds of μm (not only organic substances such as polymers but also inorganic substances are possible). ..
対向面111A,112Aに生じる分子配向規制力(界面規制力)は、基板111,112の面外方向(垂直方向)への規制力であるのが好ましい。すなわち、分子配向処理としては、界面に対して平行な規制力を生じさせる平行配向処理(水平配向処理)と、界面に対して垂直な規制力を生じさせる垂直配向処理とがあるが、ここでは、垂直配向処理であるのが好ましい。垂直配向処理により面外方向への界面規制力を生じさせることで、液晶分子が面外方向に配向し、液晶分子の配向方向に直交するらせん軸方向は、面内方向に平行になる。なお、平行配向処理により面内方向への界面規制力を生じさせると、液晶分子が面内方向に配向し、らせん軸方向は面外方向に平行になる。なお、対向面111A,112Aには、分子配向処理が施されていなくてもよい。対向面111A,112Aに分子配向処理が施されていない場合、基板111,112からの配向規制は、少なくなり、支配的ではなくなる。
The molecular orientation regulating force (interface regulating force) generated on the facing surfaces 111A and 112A is preferably a regulating force in the out-of-plane direction (vertical direction) of the substrates 111 and 112. That is, the molecular orientation treatment includes a parallel orientation treatment (horizontal alignment treatment) that generates a regulatory force parallel to the interface and a vertical orientation treatment that generates a regulatory force perpendicular to the interface. , It is preferable that the vertical alignment treatment is performed. By generating an interface restricting force in the out-of-plane direction by the vertical alignment treatment, the liquid crystal molecules are oriented in the out-of-plane direction, and the spiral axis direction orthogonal to the orientation direction of the liquid crystal molecules becomes parallel to the in-plane direction. When an interface restricting force in the in-plane direction is generated by the parallel alignment treatment, the liquid crystal molecules are oriented in the in-plane direction and the spiral axis direction is parallel to the out-of-plane direction. The facing surfaces 111A and 112A may not be subjected to molecular orientation treatment. When the facing surfaces 111A and 112A are not subjected to the molecular orientation treatment, the orientation restrictions from the substrates 111 and 112 are reduced and become less dominant.
ここでの面外方向は、図3におけるZ方向(垂直方向)であり、基板111,112の厚さ方向及び形成される膜状の液晶素子の厚さ方向に一致する。また、面内方向は、図3におけるXY平面内の方向(水平方向)であり、Z方向に直交する方向である。面内方向は、基板111,112の対向面111A,112Aの面に平行であるとともに、形成される膜状の液晶素子の面内方向(液晶素子の厚さ方向に直交する方向)でもある。
The out-of-plane direction here is the Z direction (vertical direction) in FIG. 3, which coincides with the thickness direction of the substrates 111 and 112 and the thickness direction of the film-like liquid crystal element to be formed. The in-plane direction is a direction (horizontal direction) in the XY plane in FIG. 3, and is a direction orthogonal to the Z direction. The in-plane direction is parallel to the planes of the opposing surfaces 111A and 112A of the substrates 111 and 112, and is also the in-plane direction of the formed film-like liquid crystal element (direction orthogonal to the thickness direction of the liquid crystal element).
なお、モノマー混合物は、セル100内に封入される必用はなく、単一の基板上においてスピンコート又はバーコートにより薄膜状に形成され、塗膜状態で、後述の光重合(ステップS13)以降の処理が行われてもよい。
The monomer mixture does not need to be sealed in the cell 100, but is formed into a thin film by spin coating or bar coating on a single substrate, and is in a coated state after the photopolymerization (step S13) described later. Processing may be performed.
続いて、図4に示すように、モノマー混合物(重合用試料)20が封入された基板セル100に対して光(紫外光)が照射され、モノマー混合物に光重合反応を生じさせる(ステップS13)。光は、フォトマスク200を介して、基板セル100へ照射される。図3及び図4に示すように、フォトマスク200は、所定パターンの遮光部201及び透光部(非遮光部)202を有する。フォトマスク200を介して光が照射されることで、モノマー混合物は、フォトマスク200のパターンに従って部分的に露光(パターン露光)される。
Subsequently, as shown in FIG. 4, the substrate cell 100 in which the monomer mixture (polymerization sample) 20 is enclosed is irradiated with light (ultraviolet light) to cause a photopolymerization reaction in the monomer mixture (step S13). .. The light is applied to the substrate cell 100 via the photomask 200. As shown in FIGS. 3 and 4, the photomask 200 has a light-shielding portion 201 and a light-transmitting portion (non-light-shielding portion) 202 having a predetermined pattern. By irradiating the light through the photomask 200, the monomer mixture is partially exposed (pattern exposure) according to the pattern of the photomask 200.
すなわち、モノマー混合物20に照射される光は、フォトマスク200により、面内方向(XY平面)において空間的な光強度分布を有する。モノマー混合物20において、光強度が高い部分、すなわち透光部202から露光される部分、においては、光重合反応が進行し、ポリマー領域(ポリマー壁)12が形成される。一方、モノマー混合物20において、光強度が低い部分、すなわち遮光部201により遮光される部分、においては、光重合反応が(ほんとんど)進行せず、モノマー領域11のままである。
That is, the light irradiated to the monomer mixture 20 has a spatial light intensity distribution in the in-plane direction (XY plane) by the photomask 200. In the monomer mixture 20, in the portion having high light intensity, that is, the portion exposed from the translucent portion 202, the photopolymerization reaction proceeds and the polymer region (polymer wall) 12 is formed. On the other hand, in the monomer mixture 20, in the portion where the light intensity is low, that is, the portion shaded by the light-shielding portion 201, the photopolymerization reaction (almost) does not proceed and remains in the monomer region 11.
このように、基板111,112間において、遮光部201に対応した領域は、モノマー領域(第1領域)11となり、透光部202に対応した領域は、ポリマー領域(第2領域)12となる。なお、光強度分布はフォトマスク200によって形成される必要はなく、光強度分布を得る他の手段によってもよい。
As described above, between the substrates 111 and 112, the region corresponding to the light-shielding portion 201 is the monomer region (first region) 11, and the region corresponding to the translucent portion 202 is the polymer region (second region) 12. .. The light intensity distribution does not have to be formed by the photomask 200, and may be obtained by other means for obtaining the light intensity distribution.
パターン露光開始時点においては、分子配向の乱れ(欠陥)が無いほうが好ましいため、ステップS13の光の照射は、モノマー混合物20が等方相(液晶配向がない状態)を示す温度で行うのが好ましい。光照射時のモノマー混合物20の温度は、液晶相-等方相転移点よりもわずかに高い温度であるのがより好ましい。光重合により形成されたポリマー領域12は、等方相(液晶配向がない状態)で固定化されている。
At the start of pattern exposure, it is preferable that there is no disorder (defect) in molecular orientation. Therefore, it is preferable that the light irradiation in step S13 is performed at a temperature at which the monomer mixture 20 exhibits an isotropic phase (a state in which there is no liquid crystal orientation). .. It is more preferable that the temperature of the monomer mixture 20 during light irradiation is slightly higher than the liquid crystal phase-isotropic phase transition point. The polymer region 12 formed by photopolymerization is immobilized in an isotropic phase (without liquid crystal orientation).
図5に示すように、モノマー領域11とポリマー領域12とが形成されることで、両領域11,12間の界面(ポリマー界面)12A,12Bが形成される。ポリマー界面12A,12Bは、モノマー領域11中の液晶分子に対する分子配向規制力(界面規制力)を生じさせる。つまり、ポリマー領域12においてモノマー領域11に接する面12A,12Bは、分子配向規制界面(第2分子配向規制界面)として機能する。
As shown in FIG. 5, by forming the monomer region 11 and the polymer region 12, the interfaces (polymer interfaces) 12A and 12B between the two regions 11 and 12 are formed. The polymer interfaces 12A and 12B generate a molecular orientation regulating force (interface regulating force) on the liquid crystal molecules in the monomer region 11. That is, the surfaces 12A and 12B in contact with the monomer region 11 in the polymer region 12 function as a molecular orientation regulating interface (second molecular orientation regulating interface).
第2分子配向規制界面12A,12Bは、Z方向に平行な面である。換言すると、界面12A,12Bは、XY平面に平行である第1分子配向規制界面111A,112Aに交差(直交)する。
The second molecular orientation control interfaces 12A and 12B are planes parallel to the Z direction. In other words, the interfaces 12A and 12B intersect (orthogonally) the first molecular orientation control interfaces 111A and 112A that are parallel to the XY plane.
界面12A,12Bに生じる分子配向規制力(界面規制力)は、界面12A、12Bに対して分子を垂直に配向させる垂直配向規制力、又は、界面12A,12Bに対して分子を平行に配向させる平行配向(水平配向)規制力である。垂直配向規制力が働く場合、らせん軸は、界面12A,12Bに対して平行になる。また、平行配向規制力が働く場合、らせん軸は、界面12A,12Bに対して垂直になる。いずれの方向の配向規制力が生じるかを決定する要因は、界面12A,12Bの表面エネルギーである。界面12A,12Bの表面エネルギーは、モノマー混合物20の材料組成等によって決まるが、概ねどのような重合性材料であっても、垂直配向規制力及び平行配向規制力のいずれかを生じさせることができる。例えば、長鎖アルキル又はフッ素原子を有する材料を用いると、液晶分子を界面12A,12Bに対して垂直に配向させることができる。
The molecular orientation restricting force (interface regulating force) generated at the interfaces 12A and 12B is a vertical alignment regulating force that orients the molecules perpendicularly to the interfaces 12A and 12B, or or aligns the molecules parallel to the interfaces 12A and 12B. Parallel orientation (horizontal orientation) regulatory force. When the vertical orientation regulating force is applied, the spiral axis becomes parallel to the interfaces 12A and 12B. Further, when the parallel orientation regulating force acts, the spiral axis becomes perpendicular to the interfaces 12A and 12B. The factor that determines the orientation regulating force in which direction is the surface energy of the interfaces 12A and 12B. The surface energy of the interfaces 12A and 12B is determined by the material composition of the monomer mixture 20 and the like, but almost any polymerizable material can generate either a vertical alignment regulating force or a parallel alignment regulating force. .. For example, a material having a long-chain alkyl or fluorine atom can be used to orient the liquid crystal molecules perpendicular to the interfaces 12A and 12B.
図2に示す材料組成の場合、界面12A,12Bには、液晶分子に対して垂直配向規制力が生じ、図6の平面図に示すように、らせん軸は、界面12A,12Bに対して平行になる。一方、界面12A,12Bに平行配向規制力が生じると、図7に示すように、らせん軸は、界面12A,12Bに対して垂直になる。図8は、平行配向規制力を生じさせる材料組成の例を示している。
In the case of the material composition shown in FIG. 2, a vertical orientation restricting force is generated at the interfaces 12A and 12B with respect to the liquid crystal molecules, and as shown in the plan view of FIG. 6, the spiral axis is parallel to the interfaces 12A and 12B. become. On the other hand, when a parallel orientation restricting force is generated at the interfaces 12A and 12B, the spiral axis becomes perpendicular to the interfaces 12A and 12B as shown in FIG. FIG. 8 shows an example of a material composition that produces a parallel orientation regulating force.
図5に示すように、モノマー領域11が、対をなす第2分子配向規制界面12A,12Bに挟まれている場合、対をなす界面12A,12Bの間隔は、1000μm以上、1μm以下であるのが好ましく、200μm以上、10μm以下であるのがより好ましい。必ずしも、規制界面12A、12Bで挟む必要はなく、単一の界面さえあればその界面近傍から2000μm以内では配列が形成できる。
As shown in FIG. 5, when the monomer region 11 is sandwiched between the paired second molecule orientation regulating interfaces 12A and 12B, the distance between the paired interfaces 12A and 12B is 1000 μm or more and 1 μm or less. Is preferable, and it is more preferably 200 μm or more and 10 μm or less. It is not always necessary to sandwich the regulated interfaces 12A and 12B, and if there is a single interface, an array can be formed within 2000 μm from the vicinity of the interface.
また、ポリマー領域12はモノマー領域に対して界面として機能すればよいため、その厚さすなわち対をなすモノマー領域11,11の間隔は、1000μm以下であるのが好ましく、1μm以下であるのがより好ましい。
Further, since the polymer region 12 may function as an interface with respect to the monomer region, the thickness thereof, that is, the distance between the paired monomer regions 11 and 11 is preferably 1000 μm or less, and more preferably 1 μm or less. preferable.
パターン露光後に、液晶温度でアニーリングが行われる(ステップS14)。液晶温度は、モノマー領域11が液晶相を示す温度であり、材料組成に応じて決定される。モノマー領域11を液晶相にすることで、図6及び図7に示すように、らせん軸がきれいに配列する。
After pattern exposure, annealing is performed at the liquid crystal temperature (step S14). The liquid crystal temperature is a temperature at which the monomer region 11 exhibits a liquid crystal phase, and is determined according to the material composition. By making the monomer region 11 into a liquid crystal phase, the spiral axes are neatly arranged as shown in FIGS. 6 and 7.
図9は、参考例として、らせん軸が1次元的に構造制御された従来のコレステリック液晶構造を形成するための配向規制力の働き方を示している。従来は、参考例に示すように、基板111,112の界面111A,112Aに生じる分子配向規制力により、らせん軸を、膜厚方向に平行(Z方向)にするか、膜状の液晶素子の面内方向(XY平面に平行な方向)にするかの1次元的な制御しかできなかった。
As a reference example, FIG. 9 shows how the orientation regulating force works to form a conventional cholesteric liquid crystal structure in which the spiral axis is one-dimensionally controlled. Conventionally, as shown in the reference example, the spiral axis is parallel to the film thickness direction (Z direction) or the film-shaped liquid crystal element is formed by the molecular orientation restricting force generated at the interfaces 111A and 112A of the substrates 111 and 112. Only one-dimensional control was possible to make the direction in-plane (direction parallel to the XY plane).
これに対して、本実施形態として開示する例では、図9に示すように、界面111A,112Aに生じる分子配向規制力(第1分子配向規制力)だけでなく、界面12A,12Bに生じる分子配向規制力(第2分子配向規制力)によっても、らせん軸の方向を制御できる。第1分子配向規制力と第2分子配向規制力とは、互いに交差(直交)する方向に働くため、参考例に比べて、らせん軸方向の制御の自由度が高まっている。
On the other hand, in the example disclosed as the present embodiment, as shown in FIG. 9, not only the molecular orientation regulating force generated at the interfaces 111A and 112A (first molecular orientation regulating force) but also the molecules generated at the interfaces 12A and 12B. The direction of the spiral axis can also be controlled by the orientation regulating force (second molecule orientation regulating force). Since the first molecule orientation regulating force and the second molecule orientation regulating force act in the direction of intersecting (orthogonal) with each other, the degree of freedom of control in the spiral axis direction is increased as compared with the reference example.
すなわち、本開示の例では、得られる膜状液晶素子は、第1面(界面)111A,112A及び前記第1面111A,112Aに交差(直交)する方向に平行な第2面(界面)12A,12Bそれぞれから分子配向規制されたコレステリック液晶を有する第1領域11を備える。このような交差する第1面111A,112A及び第2面12A,12Bからの配向規制力により、XY平面内においてコレステリック液晶のらせん軸方向を2次元的に自在に制御できる。
That is, in the example of the present disclosure, the obtained film-like liquid crystal element has a second surface (interface) 12A parallel to the first surface (interface) 111A, 112A and the direction intersecting (orthogonal) with the first surface 111A, 112A. , 12B each includes a first region 11 having a cholesteric liquid crystal whose molecular orientation is regulated. Due to the orientation restricting force from the intersecting first surfaces 111A and 112A and the second surfaces 12A and 12B, the spiral axis direction of the cholesteric liquid crystal can be freely controlled two-dimensionally in the XY plane.
第1面(界面)111A,112Aが、垂直配向規制力を持つ場合、らせん軸は、膜状の液晶素子の面内方向(XY平面に平行な方向)に配向する。図9に示す参考例では、第1面111A,112Aが、垂直配向規制力を持つことで、らせん軸は膜状の液晶素子の面内方向に平行に配向するものの、面内方向(XY平面内)においては配向規制されていないため、XY平面内においてランダム(無秩序)に配向する。この結果、参考例では、XY平面でみたときに指紋状となる組織が形成される。
When the first surfaces (interfaces) 111A and 112A have a vertical orientation restricting force, the spiral axis is oriented in the in-plane direction (direction parallel to the XY plane) of the film-like liquid crystal element. In the reference example shown in FIG. 9, the first surfaces 111A and 112A have a vertical orientation regulating force, so that the spiral axis is oriented parallel to the in-plane direction of the film-shaped liquid crystal element, but the in-plane direction (XY plane). Since the orientation is not regulated in (inside), the orientation is randomly (disordered) in the XY plane. As a result, in the reference example, a fingerprint-like tissue is formed when viewed on the XY plane.
これに対して、本開示の例では、第1面111A,112Aの配向規制力に加えて、第2面12A,12Bの配向規制力により、XY平面において、らせん軸が配向規制され、両規制力の相乗効果により誘導自己組織化が生じる。したがって、図6及び図7に示すように、XY平面における規則的ならせん軸配列が得られる。また、液晶分子は、楕円長軸方向に平均的に配向する。図6の例では、各らせん軸がY方向に平行であり、らせんピッチdに相当する格子間隔を持つ回折格子(回折光学素子)が得られる。図7の例では、各らせん軸がX方向に平行であり、らせんピッチdに相当する格子間隔を持つ回折格子(回折光学素子)が得られる。
On the other hand, in the example of the present disclosure, in addition to the orientation restricting force of the first surfaces 111A and 112A, the orientation regulating force of the second surfaces 12A and 12B regulates the orientation of the spiral axis in the XY plane. Induced self-organization occurs due to the synergistic effect of force. Therefore, as shown in FIGS. 6 and 7, a regular spiral axis arrangement in the XY plane is obtained. Further, the liquid crystal molecules are oriented evenly in the elliptical long axis direction. In the example of FIG. 6, each spiral axis is parallel to the Y direction, and a diffraction grating (diffraction optical element) having a lattice spacing corresponding to the spiral pitch d is obtained. In the example of FIG. 7, each spiral axis is parallel in the X direction, and a diffraction grating (diffraction optical element) having a lattice spacing corresponding to the spiral pitch d is obtained.
第2分子配向規制力を生じさせる第2面12A,12Bの配置及びパターンは、光刺激の光強度分布により自在に制御できる。そして、光強度分布の制御は、フォトマスク等を利用することにより、容易に行える。したがって、本開示によれば、第2分子配向規制力の方向を自在に制御して、所望の規則的ならせん軸方向を持つコレステリック液晶配向構造を得ることができる。これにより、XY平面における2次元的な屈折率の変化を誘起できる。
The arrangement and pattern of the second surfaces 12A and 12B that generate the second molecular orientation regulating force can be freely controlled by the light intensity distribution of the light stimulus. The light intensity distribution can be easily controlled by using a photomask or the like. Therefore, according to the present disclosure, it is possible to freely control the direction of the second molecule orientation regulating force to obtain a cholesteric liquid crystal orientation structure having a desired regular spiral axis direction. This makes it possible to induce a two-dimensional change in the refractive index in the XY plane.
しかも、光強度分布の制御は、フォトマスク等を利用することにより、大面積において行うことが容易であるため、得られる膜状の液晶素子の大面積化も容易である。したがって、コレステリック液晶配向構造の集積化が容易である。
Moreover, since the light intensity distribution can be easily controlled over a large area by using a photomask or the like, it is also easy to increase the area of the obtained film-shaped liquid crystal element. Therefore, it is easy to integrate the cholesteric liquid crystal oriented structure.
さて、ステップS14のアニーリングの後、必要に応じて後露光が行われる(ステップS15;図1参照)。後露光は、モノマー領域11の重合化(液晶構造の配向固定化)が必要される場合に行われる。後露光を行うことで、全体が重合化された膜状の液晶素子が得られる。なお、後露光は省略してもよい。
Now, after the annealing in step S14, post-exposure is performed as needed (step S15; see FIG. 1). Post-exposure is performed when polymerization of the monomer region 11 (fixation of the orientation of the liquid crystal structure) is required. By performing post-exposure, a film-like liquid crystal element having a polymerized whole can be obtained. The post-exposure may be omitted.
後露光は、例えば、図10に示すように、フォトマスク200を取り外して、全面露光することにより行われる。また、後露光は、フォトマスク200を取り外すことなく、基板セル100のフォトマスク200とは反対側の面から光を照射することにより行われてもよい。
Post-exposure is performed, for example, by removing the photomask 200 and exposing the entire surface as shown in FIG. Further, the post-exposure may be performed by irradiating the substrate cell 100 with light from the surface opposite to the photomask 200 without removing the photomask 200.
図11は、本実施形態の製造方法により得られた膜状の液晶素子(回折格子)によって生じる回折光の測定系を示す。ここで用いられた液晶素子は、厚さ5μmである。ステップS12においては、図2に示す材料組成(液晶モノマー:非重合性液晶=50:50モル%,この混合物に対してキラル剤を5モル部,重合開始剤を1.0モル部添加)のモノマー混合物を基板セル100に封入した。封入の際の温度は、50℃とした。ステップS13のパターン露光の際の温度は、55℃(等方相を示す温度)とした。照射する光の照度は、0.1mW/cm2とした。パターン露光のための光の照射時間は10分とした。ステップS13のアニーリングは、60℃(液晶温度)で10分間行った。
FIG. 11 shows a measurement system for diffracted light generated by a film-shaped liquid crystal element (diffraction grating) obtained by the manufacturing method of the present embodiment. The liquid crystal element used here has a thickness of 5 μm. In step S12, the material composition shown in FIG. 2 (liquid crystal monomer: non-polymerizable liquid crystal = 50: 50 mol%, 5 mol parts of chiral agent and 1.0 mol part of polymerization initiator were added to this mixture). The monomer mixture was sealed in the substrate cell 100. The temperature at the time of encapsulation was 50 ° C. The temperature at the time of pattern exposure in step S13 was 55 ° C. (a temperature indicating an isotropic phase). The illuminance of the emitted light was 0.1 mW / cm 2 . The irradiation time of light for pattern exposure was 10 minutes. Annealing in step S13 was performed at 60 ° C. (liquid crystal temperature) for 10 minutes.
ステップS14の後露光の際の温度は、40℃とした。照射する光の照度は、0.1mW/cm2とした。後露光のための光の照射時間は10分とした。
The temperature during the post-exposure in step S14 was 40 ° C. The illuminance of the emitted light was 0.1 mW / cm 2 . The irradiation time of light for post-exposure was 10 minutes.
図11において、NDは、ニュートラル・デンシティー(Neutral Density)フィルターを示し、Pは偏向子を示し、Sは本実施形態の製造方法により得られた液晶素子(回折格子)を示す。図11において、αは、回折角である。液晶素子Sのらせん軸方向は偏向方向と一致する。レーザから照射された光は、ニュートラル・デンシティー・フィルタND及び偏光子Pを経て、液晶素子(回折格子)Sへ照射される。液晶素子Sにより生じた回折光及び透過光は、スクリーン上に投影される。スクリーン上に投影された回折光(上下)と透過光は、カメラにより撮像される。
In FIG. 11, ND indicates a Neutral Density filter, P indicates a deflector, and S indicates a liquid crystal element (diffraction grating) obtained by the manufacturing method of the present embodiment. In FIG. 11, α is a diffraction angle. The spiral axis direction of the liquid crystal element S coincides with the deflection direction. The light emitted from the laser is applied to the liquid crystal element (diffraction grating) S via the neutral density filter ND and the polarizer P. The diffracted light and transmitted light generated by the liquid crystal element S are projected on the screen. The diffracted light (up and down) and transmitted light projected on the screen are captured by the camera.
図12は、回折光(+1次光、-1次光)と透過光の撮像結果を示している。図12に示すように、+1次光と-1次光とは、らせん軸方向(上下方向)に並んで表れており、液晶素子Sが回折格子として機能していることが確認された。
FIG. 12 shows the imaging results of diffracted light (+1st order light, -1st order light) and transmitted light. As shown in FIG. 12, the +1st order light and the -1st order light appear side by side in the spiral axis direction (vertical direction), and it was confirmed that the liquid crystal element S functions as a diffraction grating.
また、液晶素子Sへの入射偏光によって+1次光及び-1次光の強度が変わるとともに、出射光の偏光も変換されていた。したがって、液晶素子Sでは、直線偏光・円偏光選択性が得られる。また、液晶素子Sでは、偏光変換特性も得られる。
Further, the intensities of the +1st order light and the -1st order light changed depending on the incident polarization on the liquid crystal element S, and the polarization of the emitted light was also converted. Therefore, in the liquid crystal element S, linear polarization / circular polarization selectivity can be obtained. Further, the liquid crystal element S can also obtain polarization conversion characteristics.
図13は、ステップS13で用いられるフォトマスク200Aの他の例を示している。図13に示すフォトマスク200Aは、アレイ配列された複数の矩形状の遮光部201の周囲に透光部202が存在する。透光部202は、格子状に形成されている。すなわち、透光部202は、X方向に平行な部分と、Y方向に平行な部分とが交差している。
FIG. 13 shows another example of the photomask 200A used in step S13. In the photomask 200A shown in FIG. 13, a translucent portion 202 is present around a plurality of rectangular light-shielding portions 201 arranged in an array. The light transmitting portion 202 is formed in a grid pattern. That is, in the translucent portion 202, a portion parallel to the X direction and a portion parallel to the Y direction intersect.
図14は、図13に示すフォトマスク200Aを用いたパターン露光により得られる液晶素子10を示している。液晶素子は、フォトマスク200の遮光部201に対応するモノマー領域(第1領域)11と、透光部202に対応するポリマー領域(第2領域)12と、を有する。モノマー領域11は、矩形状であり、ポリマー領域12は、格子状である。ポリマー領域12は、モノマー領域11それぞれの周囲を取り囲むように配置されている。
FIG. 14 shows a liquid crystal element 10 obtained by pattern exposure using the photomask 200A shown in FIG. The liquid crystal element has a monomer region (first region) 11 corresponding to the light-shielding portion 201 of the photomask 200, and a polymer region (second region) 12 corresponding to the translucent portion 202. The monomer region 11 has a rectangular shape, and the polymer region 12 has a lattice shape. The polymer region 12 is arranged so as to surround each of the monomer regions 11.
したがって、モノマー領域11を囲む4辺12A,12B,12C,12Dすべてが、ポリマー領域12との界面になる。つまり、つまりモノマー領域11は、四方からポリマー界面12A,12B,12C,12Dによって囲まれている。ポリマー界面12A,12B12C,12Dは、モノマー領域11中の液晶分子に対する分子配向規制力(界面規制力)を生じさせる。つまり、ポリマー領域12においてモノマー領域11に接する面12A,12B,12C,12Dは、分子配向規制界面(第2分子配向規制界面)として機能する。
Therefore, all four sides 12A, 12B, 12C, and 12D surrounding the monomer region 11 serve as interfaces with the polymer region 12. That is, the monomer region 11 is surrounded by polymer interfaces 12A, 12B, 12C, and 12D from all sides. The polymer interfaces 12A, 12B12C, and 12D generate a molecular orientation regulating force (interface regulating force) on the liquid crystal molecules in the monomer region 11. That is, the surfaces 12A, 12B, 12C, and 12D in contact with the monomer region 11 in the polymer region 12 function as a molecular orientation regulating interface (second molecular orientation regulating interface).
界面12A,12B,12C,12Dに生じる分子配向規制力(界面規制力)は、界面12A、12B,12C,12Dに対して分子を垂直に配向させる垂直配向規制力、又は、界面12A,12Bに対して分子を平行に配向させる平行配向規制力である。
The molecular orientation regulating force (interface regulating force) generated at the interfaces 12A, 12B, 12C, 12D is the vertical alignment regulating force that orients the molecule perpendicularly to the interfaces 12A, 12B, 12C, 12D, or the interface 12A, 12B. On the other hand, it is a parallel orientation regulating force that orients molecules in parallel.
図14の例では、各界面12A,12B,12C,12Dは、垂直配向規制力を生じさせる。モノマー領域11内の液晶分子は、各界面12A,12B,12C,12Dからの距離に応じた規制力を受ける。したがって、正方形のモノマー領域11の中心から、らせん軸が放射状に延びるよう配列する。また、各界面12A,12B,12C,12Dは、平行配向規制力を生じさせた場合、正方形のモノマー領域11の中心から、らせん軸が同心円状に配列する。
In the example of FIG. 14, each interface 12A, 12B, 12C, 12D generates a vertical orientation regulating force. The liquid crystal molecules in the monomer region 11 are subject to regulatory forces according to the distance from each interface 12A, 12B, 12C, 12D. Therefore, the spiral axes are arranged so as to extend radially from the center of the square monomer region 11. Further, at the interfaces 12A, 12B, 12C, and 12D, the spiral axes are arranged concentrically from the center of the square monomer region 11 when a parallel orientation restricting force is generated.
らせん軸が放射状又は同心状に配列した液晶素子は、回折レンズ(回折光学素子)として機能する。なお、らせんピッチ(らせん周期構造)は、一定でもよいし、らせん軸方向において変化してもよい。
A liquid crystal element in which the spiral axes are arranged radially or concentrically functions as a diffractive lens (diffractive optical element). The spiral pitch (spiral periodic structure) may be constant or may change in the spiral axis direction.
なお、らせんピッチ(らせん周期構造)は、中心から経外方向に向かうにつれて、短くなり焦点距離が短くなっていくのがレンズとしては、より好ましいが、径方向において、らせんピンチが一定であっても、光束を絞ることはできるため、レンズとして機能する。
It is more preferable for the lens that the spiral pitch (spiral periodic structure) becomes shorter and the focal length becomes shorter from the center toward the extracorporeal direction, but the spiral pinch is constant in the radial direction. However, since the luminous flux can be narrowed down, it functions as a lens.
また、放射状又は同心状のらせん軸配向を得るには、遮光部201の形状は矩形に限定されない。遮光部201の形状は、円形であってもよいし、矩形以外の多角形であってもよい。
Further, in order to obtain radial or concentric spiral axis orientation, the shape of the light-shielding portion 201 is not limited to a rectangle. The shape of the light-shielding portion 201 may be circular or polygonal other than rectangular.
<2.2 第2例>
<2.2 Second example>
以下、第2例について説明する。第2例において特に説明しない点は、第1例と同様である。図15は、第2例に係る液晶素子を製造するための原料モノマー(モノマー混合物)を構成する材料の一覧を示している。図15に示す材料のうち、液晶性モノマー(A-CN)と非重合性液晶(5CB)とのモル比の合計が100となるように、それぞれ1:1で混合される。液晶性モノマーと非重合性液晶の混合物へ光重合開始剤(PI)を1mol%加えた。さらにコレステリック液晶を発現させるためのキラル剤を0.5mol%添加して、モノマー混合物を調製した(図16参照)。調製したモノマー混合物は、昇温・降温両過程で液晶相を発現するエナンチオトロピック液晶である。
The second example will be described below. The points not particularly described in the second example are the same as those in the first example. FIG. 15 shows a list of materials constituting a raw material monomer (monomer mixture) for producing the liquid crystal device according to the second example. Among the materials shown in FIG. 15, they are mixed at a ratio of 1: 1 so that the total molar ratio of the liquid crystal monomer (A-CN) and the non-polymerizable liquid crystal (5CB) is 100. 1 mol% of photopolymerization initiator (PI) was added to the mixture of the liquid crystal monomer and the non-polymerizable liquid crystal. Further, 0.5 mol% of a chiral agent for expressing a cholesteric liquid crystal was added to prepare a monomer mixture (see FIG. 16). The prepared monomer mixture is an enantiotropic liquid crystal that expresses a liquid crystal phase in both the temperature raising and lowering processes.
調製されたモノマー混合物は、図6に示す2枚のガラス基板内に封入される。ガラス基板の表面は、シランカップリング処理されている。シランカップリング処理により、ガラス基板の表面は、液晶分子をガラス基板表面に対して垂直に配向させる配向規制面になる。基板に施される処理は、シランカップリング処理などの垂直配向処理に限られず、ラビング処理などの平行配向処理(水平配向処理)であってもよい。また、基板には配向処理が施されていなくてもよい。
The prepared monomer mixture is enclosed in the two glass substrates shown in FIG. The surface of the glass substrate is silane-coupled. By the silane coupling treatment, the surface of the glass substrate becomes an orientation-regulating surface that orients the liquid crystal molecules perpendicularly to the surface of the glass substrate. The treatment applied to the substrate is not limited to the vertical alignment treatment such as the silane coupling treatment, and may be a parallel orientation treatment (horizontal alignment treatment) such as a rubbing treatment. Further, the substrate may not be oriented.
2枚のガラス基板の間には、モノマー混合物を入れるための空間を確保するためのスペーサが配置されている。ガラス基板間の空間内には、毛細管現象を用いて、モノマー混合物(サンプル)が浸透される。浸透の際のモノマー混合物の温度は、モノマー混合物が等方相を示す60℃とした(図18参照)。その後、80℃まで加熱し、光強度0.1mW/cm2の紫外光(λ=365mm)を、フォトマスクを介して照射して、パターン露光を行った。パターン露光は、80℃で10分間行った。80℃は、液晶性モノマーA-CNのホモポリマーP-CNが液晶相を示す温度である。なお、図17にも示すように、フォトマスクは線状の透光部202を有している。線状の透光部202の幅は650μmとした。
A spacer is arranged between the two glass substrates to secure a space for containing the monomer mixture. A monomer mixture (sample) is infiltrated into the space between the glass substrates by using the capillary phenomenon. The temperature of the monomer mixture during permeation was set to 60 ° C. at which the monomer mixture showed an isotropic phase (see FIG. 18). Then, it was heated to 80 ° C. and irradiated with ultraviolet light (λ = 365 mm) having a light intensity of 0.1 mW / cm 2 through a photomask to perform pattern exposure. The pattern exposure was performed at 80 ° C. for 10 minutes. 80 ° C. is the temperature at which the homopolymer P-CN of the liquid crystal monomer A-CN exhibits a liquid crystal phase. As shown in FIG. 17, the photomask has a linear translucent portion 202. The width of the linear translucent portion 202 was set to 650 μm.
ついで、フォトマスクを取り除き、モノマー混合物が液晶相を示す30℃まで降温し、30℃で10分間全面露光を施すことで光重合を完了した。
Then, the photomask was removed, the temperature of the monomer mixture was lowered to 30 ° C. showing the liquid crystal phase, and the entire surface was exposed at 30 ° C. for 10 minutes to complete the photopolymerization.
図19は、パターン露光後における、室温でのサンプルの偏光顕微鏡観察の結果を示している。なお、図19において、Pは偏光子であり、Aは検光子である。図19に示すように、フォトマスクの遮光部(サンプルにおける非照射領域)と透光部(サンプルにおける照射領域;露光領域)との境界付近の領域Aにおいて、しま状の周期構造が観察された。
FIG. 19 shows the results of polarizing microscope observation of the sample at room temperature after pattern exposure. In FIG. 19, P is a polarizer and A is an analyzer. As shown in FIG. 19, a striped periodic structure was observed in the region A near the boundary between the light-shielding portion (non-irradiated region in the sample) and the translucent portion (irradiated region in the sample; exposed region) of the photomask. ..
サンプルの照射領域において、境界付近の領域Aから離れた範囲では、ポリドメイン構造が観察された。これは、等方相温度で重合を施したために、高分子化に伴い局所最安定な液晶相が発現したためであると考えられる。一方、境界付近の領域A内においては、境界にそってしま条の周期構造が自発的に形成された。これは、パターン露光による光強度分布によって、らせん軸配向が面内で制御されたことを示している。
In the irradiated area of the sample, a polydomain structure was observed in the range away from the area A near the boundary. It is considered that this is because the local most stable liquid crystal phase was expressed with the polymerization due to the polymerization at the isotropic phase temperature. On the other hand, in the region A near the boundary, a periodic structure of stripes was spontaneously formed along the boundary. This indicates that the spiral axis orientation was controlled in-plane by the light intensity distribution by pattern exposure.
観察されたしま状構造について詳細な検討をするため、パターン露光後のサンプルの相転移挙動観察を行った。相転移挙動観察は、後露光による光重合(全面露光)により分子配向を固定化する前のサンプルを使用し、90℃から30の温度範囲で10℃ごとに放冷して行った。
In order to examine the observed striped structure in detail, the phase transition behavior of the sample after pattern exposure was observed. The phase transition behavior was observed by using a sample before the molecular orientation was fixed by photopolymerization (full exposure) by post-exposure, and allowing the sample to cool every 10 ° C. in a temperature range of 90 ° C. to 30 ° C.
図20は、パターン露光後のサンプルの相転移挙動観察結果を示している。サンプルの温度が90℃の場合、非照射領域及び照射領域ともに暗視野であり、光学異方性を示しておらず、いずれの領域も等方相に相転移していると考えられる。次にサンプルを80℃まで放冷すると、照射領域の中心部では分子がランダムに配向したポリドメイン構造が観察され、フォトマスクの境界付近では透光部から遮光部にかけて、わずかにしま状構造が観察された。このことから、第2例において、しま状構造はパターン露光後の降温過程で形成されていると考えられる。またこのとき,モノマー混合物の透明点より高い温度にも関わらず遮光部中で液晶相が発現した。これはパターン露光中に透光部(露光部)で生成したポリマーと遮光部のモノマーとの相互拡散によって遮光部にポリマーが流れ込み、液晶相が高分子安定化されたためであると考えられる。
FIG. 20 shows the results of observing the phase transition behavior of the sample after pattern exposure. When the temperature of the sample is 90 ° C., both the non-irradiated region and the irradiated region have a dark field and do not show optical anisotropy, and it is considered that both regions have an isotropic phase transition. Next, when the sample was allowed to cool to 80 ° C., a polydomain structure in which molecules were randomly oriented was observed in the central part of the irradiation region, and a slightly striped structure was observed from the translucent part to the light-shielding part near the boundary of the photomask. It was observed. From this, it is considered that in the second example, the striped structure is formed in the temperature lowering process after the pattern exposure. At this time, the liquid crystal phase was developed in the light-shielded portion despite the temperature higher than the transparent point of the monomer mixture. It is considered that this is because the polymer flows into the light-shielding portion due to the mutual diffusion between the polymer generated in the light-transmitting portion (exposure portion) and the monomer of the light-shielding portion during pattern exposure, and the liquid crystal phase is polymer-stabilized.
次に、サンプルを30°Cまで徐々に放冷すると、照射領域から非照射領域に向かって方向性を持って、徐々に液晶相が発現した。これはパターン露光中のポリマーとモノマーの相互拡散によって照射領域から非照射領域にかけてポリマーの濃度勾配が生じたためであると考えられる。この結果から,しま状構造はポリマーの濃度勾配が生じている領域に沿って形成されており、パターン露光中の分子拡散、及び、それにより生じるポリマーの濃度勾配が重要であることが示唆された。
Next, when the sample was gradually allowed to cool to 30 ° C, the liquid crystal phase gradually appeared from the irradiated region toward the non-irradiated region. It is considered that this is because the mutual diffusion of the polymer and the monomer during the pattern exposure causes a concentration gradient of the polymer from the irradiated region to the non-irradiated region. From this result, it was suggested that the striped structure was formed along the region where the polymer concentration gradient was generated, and that the molecular diffusion during pattern exposure and the resulting polymer concentration gradient were important. ..
また、全面露光により重合完了した後のサンプルの遮光部の中心部を観察した結果,らせん軸配列が面内でランダムな指紋状組織が観察されたが,しま状構造は形成されていなかった。この結果から,しま状構造はポリマーの濃度勾配が生じている領域に沿って形成されており、らせん軸の面内一軸配向にはパターン露光中の分子拡散およびそれにより生じるポリマーの濃度勾配が重要であることが明らかとなった。さらに、降温過程において、相転移に伴い遮光部方向へしま状構造が広がることから、方向性を持った液晶相転移現象が、らせん軸のような周期構造の配向に重要であることがわかる。
In addition, as a result of observing the central part of the light-shielded part of the sample after the polymerization was completed by full exposure, a fingerprint-like structure in which the spiral axis arrangement was random in the plane was observed, but a striped structure was not formed. From this result, the striped structure is formed along the region where the polymer concentration gradient is generated, and the molecular diffusion during pattern exposure and the resulting polymer concentration gradient are important for the in-plane uniaxial orientation of the spiral axis. It became clear that. Furthermore, since the striped structure expands toward the light-shielding portion along with the phase transition in the temperature lowering process, it can be seen that the directional liquid crystal phase transition phenomenon is important for the orientation of the periodic structure such as the spiral axis.
なお、パターン露光直後のサンプルを、液体窒素を用いて30℃付近まで急冷し、全面露光を施した後に得られたサンプルを室温下で偏光顕微鏡観察した。パターン露光直後のサンプルを液体窒素により急冷した結果、フォトマスクの境界付近でしま状構造が観察されなかった。そのため、このしま状構造は重合過程ではなくパターン露光後の降温過程で形成されるものと考えられる。一方で、前述のようにパターン露光後に10℃ごとに放冷したサンプル中ではしま状構造が形成されたことから、第2例においては、しま状構造の形成には温度変化速度依存性、ここでは降温速度依存性、を示すことがわかる。
The sample immediately after pattern exposure was rapidly cooled to around 30 ° C. using liquid nitrogen, and the sample obtained after full exposure was observed with a polarizing microscope at room temperature. As a result of quenching the sample immediately after pattern exposure with liquid nitrogen, no striped structure was observed near the boundary of the photomask. Therefore, it is considered that this striped structure is formed not in the polymerization process but in the temperature lowering process after pattern exposure. On the other hand, as described above, a striped structure was formed in the sample cooled at every 10 ° C. after pattern exposure. Therefore, in the second example, the formation of the striped structure depends on the rate of temperature change. Then, it can be seen that the temperature drop rate depends.
前述のように、らせん軸の面内一軸配向にはパターン露光中のポリマーとモノマーの相互拡散によって生じるポリマーの濃度勾配が重要であることが示唆された。そこで、本発明者らは、パターン露光時の重合条件を変更し、しま状構造形成における分子拡散の影響について検討した。その結果、分子拡散が起こりやすい条件でパターン露光したサンプル中で、しま状構造がより広く形成された。以上の結果から、このしま状構造はポリマーの濃度勾配が生じている領域に沿って形成されており、パターン露光中の分子拡散によって生じるポリマーの濃度勾配が重要であることがわかる。
As mentioned above, it was suggested that the concentration gradient of the polymer caused by the mutual diffusion of the polymer and the monomer during pattern exposure is important for the in-plane uniaxial orientation of the spiral axis. Therefore, the present inventors changed the polymerization conditions during pattern exposure and investigated the effect of molecular diffusion on the formation of striped structures. As a result, a striped structure was formed more widely in the sample exposed to the pattern under conditions where molecular diffusion was likely to occur. From the above results, it can be seen that this striped structure is formed along the region where the polymer concentration gradient is generated, and the polymer concentration gradient generated by molecular diffusion during pattern exposure is important.
以上のように、コレステリック液晶を示すモノマー混合物を等方相中でパターン露光することにより、らせん軸の面内一軸配向に由来したしま状構造が形成された。図21から図23は、しま状構造形成のメカニズムを示している。
As described above, by pattern exposure of the monomer mixture showing the cholesteric liquid crystal in the isotropic phase, a striped structure derived from the in-plane uniaxial orientation of the spiral axis was formed. 21 to 23 show the mechanism of striped structure formation.
まず、図21に示すように、モノマー混合物が等方相を示す温度でフォトマスクを用いてパターン露光を行うと、光強度分が生じ、光を照射した領域でのみ重合反応が起こる。このため、重合領域と非重合領域の間で化学ポテンシャルの勾配が生じる。その結果、これらの領域の境界と垂直な方向(図21の左右方向)にポリマーとモノマーの相互拡散が誘起され、最終的に透光部から遮光部にかけてポリマーの濃度勾配が生じる。これはパターン露光によって、透光部から遮光部に向かって、等方相から液晶相への相転移温度勾配が生じたと考えることもできる。
First, as shown in FIG. 21, when pattern exposure is performed using a photomask at a temperature at which the monomer mixture exhibits an isotropic phase, a light intensity component is generated, and a polymerization reaction occurs only in a region irradiated with light. Therefore, a gradient of chemical potential is generated between the polymerized region and the non-polymerized region. As a result, mutual diffusion of the polymer and the monomer is induced in the direction perpendicular to the boundary of these regions (horizontal direction in FIG. 21), and finally a concentration gradient of the polymer is generated from the translucent portion to the light-shielding portion. It can also be considered that the pattern exposure caused a phase transition temperature gradient from the isotropic phase to the liquid crystal phase from the translucent portion to the light-shielding portion.
次に、図22に示すように、パターン露光後のサンプルを徐々に放冷すると、図21に示す工程で生じたポリマーの濃度勾配により、透光部から遮光部に向かって液晶相への相転移が徐々に起こる。このとき,生じたポリマーの濃度勾配によってある特定の温度範囲(ΔT)において相転移する領域は、図22の左右方向において非常に狭くなる。その結果、この相転移温度の差を、ガイディング構造(Guiding Structure)として液晶の誘導自己組織化現象が起こるため、分子配向が一方向に制御される。これは、温度勾配方向に沿った結晶成長と似た現象として考えることができる。
Next, as shown in FIG. 22, when the sample after the pattern exposure is gradually allowed to cool, the phase from the translucent portion to the light-shielding portion becomes the liquid crystal phase due to the concentration gradient of the polymer generated in the step shown in FIG. Transition occurs gradually. At this time, the region where the phase transition occurs in a specific temperature range (ΔT) due to the concentration gradient of the generated polymer becomes very narrow in the left-right direction of FIG. As a result, the molecular orientation is controlled in one direction because the induced self-organization phenomenon of the liquid crystal occurs as the guiding structure (Guiding Structure) by using this difference in the phase transition temperature. This can be thought of as a phenomenon similar to crystal growth along the temperature gradient direction.
このように、液晶相を発現した領域と液晶分子が再配向する領域との境界が分子配向規制界面として機能する。このとき再配向する液晶分子と境界との親和性によって、規制界面に対して水平に分子配向が制御される。これは、降温過程において水平配向の規制界面がポリマーの濃度勾配方向(図22において右から左へ向かう方向)に沿って移動したと考えることもできる。
In this way, the boundary between the region where the liquid crystal phase is expressed and the region where the liquid crystal molecules are reoriented function as the molecular orientation control interface. At this time, the molecular orientation is controlled horizontally with respect to the regulation interface by the affinity between the liquid crystal molecules that are reoriented and the boundary. It can also be considered that the horizontally oriented regulatory interface moved along the polymer concentration gradient direction (direction from right to left in FIG. 22) in the temperature lowering process.
最後に、図23に示すように、図22に示す工程で、誘導自己組織化によって制御された分子配向とキラル剤のらせん誘起力との組み合わせにより、らせん軸の面内一軸配向が形成される。このとき、コレステリック液晶のらせん軸は水平配向の規制界面に対して垂直な方向にのみ配向されるため、ポリマーの濃度勾配に沿ったらせん軸の面内一軸配向が達成される。ただし、遮光部中心部(図23の左側領域)では、らせん軸配向の制御は達成されない。これはポリマーの濃度勾配が生じず、遮光部中心部では、相転移温度が均一になっており、自己組織化がランダムに起こったためであると考えられる。
Finally, as shown in FIG. 23, in the process shown in FIG. 22, the in-plane uniaxial orientation of the spiral axis is formed by the combination of the molecular orientation controlled by the induced self-organization and the spiral-inducing force of the chiral auxiliary. .. At this time, since the spiral axis of the cholesteric liquid crystal is oriented only in the direction perpendicular to the regulation interface of horizontal orientation, the in-plane uniaxial orientation of the spiral axis along the concentration gradient of the polymer is achieved. However, control of the spiral axis orientation is not achieved in the central portion of the light-shielding portion (the left region in FIG. 23). It is considered that this is because the concentration gradient of the polymer does not occur, the phase transition temperature is uniform in the central part of the light-shielding portion, and self-assembly occurs randomly.
なお、第2例において、光強度分布を得るために、フォトマスクを用いたが、光強度分布を得るための手段は、光強度分布を有する光源などであってもよい。また、光の透過率が段階的に変化するフォトマスクを用いて光強度分布を得てもよい。
In the second example, a photomask was used to obtain a light intensity distribution, but the means for obtaining the light intensity distribution may be a light source having a light intensity distribution or the like. Further, a light intensity distribution may be obtained by using a photomask in which the light transmittance changes stepwise.
前述の第2例において、らせん軸配向(周期構造の配向)は、降温過程で生じたが、らせん軸配向(周期構造の配向)において降温過程は必須ではない。重合系を変化させ、重合過程において高分子濃度が高くなった領域から徐々に液晶相転移が誘起できれば,降温過程がなくとも、ポリマーの濃度分布に依存して、第2例のように、段階的に等方相から液晶相への相転移を生じさせることもできる。
In the above-mentioned second example, the spiral axis orientation (orientation of the periodic structure) occurred in the temperature lowering process, but the temperature lowering process is not essential in the spiral axis orientation (orientation of the periodic structure). If the polymerization system can be changed and the liquid crystal phase transition can be gradually induced from the region where the polymer concentration is high in the polymerization process, even if there is no temperature lowering process, it depends on the concentration distribution of the polymer, as in the second example. It is also possible to cause a phase transition from an isotropic phase to a liquid crystal phase.
図24及び図25は、ポリマー濃度勾配を利用したホログラム配列パターンの製造例を示している。図24は、ポリマー濃度勾配を利用したホログラム配列パターンの製造例における第1工程を示している。第1工程では、ホログラム区画用のパターニングを行うためのフォトマスクが用いられる。図24のフォトマスクは、8個の遮光部を備え、遮光部の周囲に透光部が形成されている。なお、遮光部の間隔は任意であるが、間隔が小さいほど、Fill-factorの高い高効率ホログラムが得られる。
FIGS. 24 and 25 show an example of manufacturing a hologram arrangement pattern using a polymer concentration gradient. FIG. 24 shows the first step in the production example of the hologram arrangement pattern using the polymer concentration gradient. In the first step, a photomask for patterning the hologram compartment is used. The photomask of FIG. 24 includes eight light-shielding portions, and a light-transmitting portion is formed around the light-shielding portions. The spacing between the light-shielding portions is arbitrary, but the smaller the spacing, the higher the fill-factor of the high-efficiency hologram.
図24のフォトマスクを介して、サンプル(モノマー混合物)に対して、紫外光を照射すると、図24に示すように、8個のモノマー領域(ホログラム用区画)を区画するポリマー枠が形成される。第1工程では、強い紫外光が短時間照射されるため、きわめて高いポリマー濃度のポリマー枠を形成するだけであり、らせん軸配向には関与しない。
When the sample (monomer mixture) is irradiated with ultraviolet light through the photomask of FIG. 24, a polymer frame for partitioning eight monomer regions (hologram compartments) is formed as shown in FIG. 24. .. In the first step, since strong ultraviolet light is irradiated for a short time, only a polymer frame having an extremely high polymer concentration is formed, and it does not participate in the spiral axis orientation.
図25は、ポリマー濃度勾配を利用したホログラム配列パターンの製造例における第2工程を示している。第2工程では、ホログラムを形成するためのフォトマスクが用いられる。図25のフォトマスクは、8個のホログラム用区画それぞれに対応して、8個の領域を有し、各領域は、グラディエントな光透過率を有する。
FIG. 25 shows the second step in the production example of the hologram arrangement pattern using the polymer concentration gradient. In the second step, a photomask for forming a hologram is used. The photomask of FIG. 25 has eight regions corresponding to each of the eight hologram compartments, and each region has a gradient light transmittance.
図25のフォトマスクを介して、第1工程後のサンプルに対して、紫外光を照射すると、8個のホログラム用区画それぞれに、グラディエントな光強度分布が生じ、その結果、サンプル中にグラディエントなポリマー濃度勾配が生じる。この結果、ポリマー濃度勾配方向にらせん軸が配向されたホログラムが得られる。
When the sample after the first step is irradiated with ultraviolet light through the photomask of FIG. 25, a gradient light intensity distribution is generated in each of the eight hologram compartments, and as a result, the sample is gradient. A polymer concentration gradient occurs. As a result, a hologram having a spiral axis oriented in the polymer concentration gradient direction is obtained.
ポリマー濃度勾配は、面内における2次元配向だけでなく、3次元配向にも利用できる。図26は、らせん軸の3次元配向の例を示している。この例では、ガウシアンビームを照射する光源が用いられる。ガウシアンビームは、光軸に対する垂直面内の光強度分布がガウス分布を持つ。つまり、ガウシアンビームは、光軸に対する垂直面内において、光軸から離れるほど光強度が低くなる。また、サンプル(モノマー混合物)は、光を吸収する色素などを含有しており、光源から離れるほど光強度が低くなる。この場合、光源を中心として、光源から3次元的に離れるほど光強度が小さくなる半球状の光強度分布が、サンプル内において生じる。その結果、サンプル中に3次元的な半球状のポリマー濃度勾配が生じる。したがって、半球の径方向に沿って、らせん軸が配向された3次元らせん軸配列が得られる。このようなら3次元らせん軸配列は、角度非依存の反射材料に好適である。
The polymer concentration gradient can be used not only for in-plane two-dimensional orientation but also for three-dimensional orientation. FIG. 26 shows an example of the three-dimensional orientation of the spiral axis. In this example, a light source that irradiates a Gaussian beam is used. The Gaussian beam has a Gaussian distribution in the light intensity distribution in the plane perpendicular to the optical axis. That is, the light intensity of the Gaussian beam decreases as the distance from the optical axis increases in the plane perpendicular to the optical axis. Further, the sample (monomer mixture) contains a dye or the like that absorbs light, and the light intensity decreases as the distance from the light source increases. In this case, a hemispherical light intensity distribution occurs in the sample with the light source as the center and the light intensity decreases as the distance from the light source increases three-dimensionally. The result is a three-dimensional hemispherical polymer concentration gradient in the sample. Therefore, a three-dimensional spiral axis array in which the spiral axes are oriented along the radial direction of the hemisphere is obtained. In this way, the three-dimensional spiral axis arrangement is suitable for angle-independent reflective materials.
<3.付記>
本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。 <3. Addendum>
The present invention is not limited to the above embodiment, and various modifications are possible.
本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。 <3. Addendum>
The present invention is not limited to the above embodiment, and various modifications are possible.
10 :液晶素子(膜状素子)
11 :第1領域(モノマー領域)
12 :第2領域(ポリマー領域)
12A :第2分子配向規制界面(ポリマー界面;第2面)
12B :第2分子配向規制界面(ポリマー界面;第2面)
12C :第2分子配向規制界面(ポリマー界面;第2面)
12D :第2分子配向規制界面(ポリマー界面;第2面)
20 :モノマー混合物
100 :基板セル
111 :第1基板
111A :第1分子配向規制界面(基板界面;第1面)
112 :第2基板
112A :第1分子配向規制界面(基板界面;第1面)
120 :スペーサ
130 :空間
200 :フォトマスク
200A :フォトマスク
201 :遮光部
202 :透光部
ND :フィルター
P :偏光子
S :液晶素子(膜状素子) 10: Liquid crystal element (film-like element)
11: First region (monomer region)
12: Second region (polymer region)
12A: Second molecular orientation control interface (polymer interface; second surface)
12B: Second molecular orientation control interface (polymer interface; second surface)
12C: Second molecular orientation control interface (polymer interface; second surface)
12D: Second molecular orientation control interface (polymer interface; second surface)
20: Monomer mixture 100: Substrate cell 111:First substrate 111A: First molecular orientation control interface (substrate interface; first surface)
112:Second substrate 112A: First molecular orientation control interface (board interface; first surface)
120: Spacer 130: Space 200:Photomask 200A: Photomask 201: Light-shielding part 202: Transmissive part ND: Filter P: Polarizer S: Liquid crystal element (film-like element)
11 :第1領域(モノマー領域)
12 :第2領域(ポリマー領域)
12A :第2分子配向規制界面(ポリマー界面;第2面)
12B :第2分子配向規制界面(ポリマー界面;第2面)
12C :第2分子配向規制界面(ポリマー界面;第2面)
12D :第2分子配向規制界面(ポリマー界面;第2面)
20 :モノマー混合物
100 :基板セル
111 :第1基板
111A :第1分子配向規制界面(基板界面;第1面)
112 :第2基板
112A :第1分子配向規制界面(基板界面;第1面)
120 :スペーサ
130 :空間
200 :フォトマスク
200A :フォトマスク
201 :遮光部
202 :透光部
ND :フィルター
P :偏光子
S :液晶素子(膜状素子) 10: Liquid crystal element (film-like element)
11: First region (monomer region)
12: Second region (polymer region)
12A: Second molecular orientation control interface (polymer interface; second surface)
12B: Second molecular orientation control interface (polymer interface; second surface)
12C: Second molecular orientation control interface (polymer interface; second surface)
12D: Second molecular orientation control interface (polymer interface; second surface)
20: Monomer mixture 100: Substrate cell 111:
112:
120: Spacer 130: Space 200:
Claims (24)
- コレステリック液晶を用いた膜状の液晶素子であって、
コレステリック液晶のらせん軸が前記液晶素子の面内方向に平行に配向しているとともに、前記面内方向において配向規制された第1領域を備える
コレステリック液晶を用いた膜状の液晶素子。 A film-like liquid crystal element using a cholesteric liquid crystal.
A film-shaped liquid crystal element using a cholesteric liquid crystal in which the spiral axis of the cholesteric liquid crystal is oriented parallel to the in-plane direction of the liquid crystal element and has a first region whose orientation is restricted in the in-plane direction. - 前記第1領域に接する界面を有するポリマー領域である第2領域を更に備え、
前記界面は、膜厚方向に平行であり、前記第1領域における前記らせん軸を、前記面内方向において配向規制するための配向規制界面である
請求項1に記載のコレステリック液晶を用いた膜状の液晶素子。 A second region, which is a polymer region having an interface in contact with the first region, is further provided.
The film-like interface using the cholesteric liquid crystal according to claim 1, which is parallel to the film thickness direction and is an orientation-regulating interface for regulating the orientation of the spiral axis in the first region in the in-plane direction. Liquid crystal element. - 前記第2領域は、等方相である
請求項2に記載のコレステリック液晶を用いた膜状の液晶素子。 The second region is a film-shaped liquid crystal element using the cholesteric liquid crystal according to claim 2, which is an isotropic phase. - 前記第1領域における前記らせん軸は、前記配向規制界面に対して、平行又は垂直に配向されている
請求項2又は3に記載のコレステリック液晶を用いた膜状の液晶素子。 The film-shaped liquid crystal element using the cholesteric liquid crystal according to claim 2 or 3, wherein the spiral axis in the first region is oriented parallel or perpendicular to the orientation-regulating interface. - 前記第1領域は、光学素子として機能するようにらせん軸が配向規制されている
請求項1から4のいずれか1項に記載のコレステリック液晶を用いた膜状の液晶素子。 The first region is a film-shaped liquid crystal element using the cholesteric liquid crystal according to any one of claims 1 to 4, wherein the orientation of the spiral axis is regulated so as to function as an optical element. - 前記光学素子は、回折光学素子である
請求項5に記載のコレステリック液晶を用いた膜状の液晶素子。 The optical element is a film-shaped liquid crystal element using the cholesteric liquid crystal according to claim 5, which is a diffractive optical element. - 前記回折光学素子は、回折格子である
請求項6に記載のコレステリック液晶を用いた膜状の液晶素子。 The diffractive optical element is a film-shaped liquid crystal element using the cholesteric liquid crystal according to claim 6, which is a diffraction grating. - 前記回折光学素子は、回折レンズである
請求項6に記載のコレステリック液晶を用いた膜状の液晶素子。 The diffractive optical element is a film-shaped liquid crystal element using the cholesteric liquid crystal according to claim 6, which is a diffractive lens. - 第1面及び前記第1面に交差する方向に平行な第2面それぞれから分子配向規制されたコレステリック液晶を有する第1領域を備える
液晶素子。 A liquid crystal element comprising a first region having a cholesteric liquid crystal whose molecular orientation is regulated from each of a first surface and a second surface parallel to the direction intersecting the first surface. - コレステリック液晶を用いた膜状の液晶素子の製造方法であって、
液晶性モノマー、キラル剤、及び光重合開始剤を含む混合物を、分子配向処理が施された基板上に膜状に配置し、
前記基板に対して平行な面において光強度分布を有する光を、膜状の前記混合物に対して照射することで、光重合されていないモノマー領域と光重合されたポリマー領域とを形成する、
ことを含むコレステリック液晶を用いた液晶素子の製造方法。 A method for manufacturing a film-like liquid crystal element using a cholesteric liquid crystal.
A mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator is arranged in a film form on a substrate subjected to a molecular orientation treatment.
By irradiating the film-like mixture with light having a light intensity distribution on a plane parallel to the substrate, a non-photopolymerized monomer region and a photopolymerized polymer region are formed.
A method for manufacturing a liquid crystal element using a cholesteric liquid crystal. - 前記分子配向処理は、垂直配向処理である
請求項10に記載のコレステリック液晶を用いた液晶素子の製造方法。 The method for manufacturing a liquid crystal element using a cholesteric liquid crystal according to claim 10, wherein the molecular orientation treatment is a vertical orientation treatment. - 前記光強度分布は、露光パターンによって形成される
請求項10又は11に記載のコレステリック液晶を用いた液晶素子の製造方法。 The method for manufacturing a liquid crystal element using a cholesteric liquid crystal according to claim 10 or 11, wherein the light intensity distribution is formed by an exposure pattern. - 前記光を照射する際において、前記混合物は等方相を示す温度に設定される
請求項10から12のいずれか1項に記載のコレステリック液晶を用いた液晶素子の製造方法。 The method for manufacturing a liquid crystal element using a cholesteric liquid crystal according to any one of claims 10 to 12, wherein the mixture is set to a temperature indicating an isotropic phase when irradiated with the light. - 前記光の照射後に、液晶温度でアニーリングすることを更に含む
請求項10から13のいずれか1項に記載のコレステリック液晶を用いた液晶素子の製造方法。 The method for manufacturing a liquid crystal element using a cholesteric liquid crystal according to any one of claims 10 to 13, further comprising annealing at a liquid crystal temperature after irradiation with light. - 前記ポリマー領域の形成後に前記モノマー領域を光重合することを更に含む
請求項10から14のいずれか1項に記載のコレステリック液晶を用いた液晶素子の製造方法。 The method for producing a liquid crystal device using a cholesteric liquid crystal according to any one of claims 10 to 14, further comprising photopolymerizing the monomer region after forming the polymer region. - 液晶性モノマー、キラル剤、及び光重合開始剤を含む混合物に対して光強度分布を有する光を照射することで、コレステリック液晶のらせん軸を配向規制する
ことを備える液晶素子の製造方法。 A method for manufacturing a liquid crystal element, which comprises regulating the orientation of the spiral axis of a cholesteric liquid crystal by irradiating a mixture containing a liquid crystal monomer, a chiral agent, and a photopolymerization initiator with light having a light intensity distribution. - 前記混合物は、基板上に配置され、
前記光は、前記基板上に配置された前記混合物に対して照射される
請求項16に記載の液晶素子の製造方法。 The mixture is placed on the substrate and
The method for manufacturing a liquid crystal element according to claim 16, wherein the light is applied to the mixture arranged on the substrate. - 前記光は、前記基板に対して平行な面において光強度分布を有する
請求項17に記載の液晶素子の製造方法。 The method for manufacturing a liquid crystal element according to claim 17, wherein the light has a light intensity distribution on a plane parallel to the substrate. - 前記光は、前記基板に対して直交する方向において光強度分布を更に有する
請求項18に記載の液晶素子の製造方法。 The method for manufacturing a liquid crystal element according to claim 18, wherein the light further has a light intensity distribution in a direction orthogonal to the substrate. - 前記光強度分布を有する前記光は、前記混合物中に、光重合によって生成されるポリマーの濃度分布を生じさせる
請求項16から請求項19のいずれか1項に記載の液晶素子の製造方法。 The method for producing a liquid crystal element according to any one of claims 16 to 19, wherein the light having the light intensity distribution causes a concentration distribution of a polymer produced by photopolymerization in the mixture. - 前記光強度分布を有する前記光は、前記混合物中に、等方相から液晶相への相転移温度の分布を生じさせる
請求項16から請求項20のいずれか1項に記載の液晶素子の製造方法。 The production of the liquid crystal element according to any one of claims 16 to 20, wherein the light having the light intensity distribution causes a distribution of a phase transition temperature from an isotropic phase to a liquid crystal phase in the mixture. Method. - 液晶性モノマーを含み光が照射されることで光重合が生じる混合物に対して照射された光の光強度分布によって、前記混合物中に光重合によって生成されるポリマーの濃度分布を生じさせ、
前記濃度分布を利用して液晶の周期構造を配向する
ことを備える液晶素子の製造方法。 The light intensity distribution of the light irradiated to the mixture containing the liquid crystal monomer and causing photopolymerization by irradiation with light causes a concentration distribution of the polymer produced by photopolymerization in the mixture.
A method for manufacturing a liquid crystal device, which comprises orienting a periodic structure of a liquid crystal using the concentration distribution. - 液晶性モノマーを含み光が照射されることで光重合が生じる混合物に対して照射された光の光強度分布によって、前記混合物中に等方相から液晶相への相転移温度の分布を生じさせ、
前記相転移温度の分布を利用して液晶の周期構造を配向する
ことを備える液晶素子の製造方法。 The light intensity distribution of the light irradiated to the mixture containing the liquid crystal monomer and photopolymerization occurs when the mixture is irradiated with light causes the distribution of the phase transition temperature from the isotropic phase to the liquid crystal phase in the mixture. ,
A method for manufacturing a liquid crystal device, which comprises orienting a periodic structure of a liquid crystal using the distribution of the phase transition temperature. - 周期構造を有する液晶素子であって、
前記周期構造が前記液晶素子の面内方向に平行に配向しているとともに、前記面内方向において配向規制された第1領域を備える
液晶素子。 A liquid crystal element having a periodic structure
A liquid crystal element having a first region whose periodic structure is oriented parallel to the in-plane direction of the liquid crystal element and whose orientation is restricted in the in-plane direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021540771A JP7513290B2 (en) | 2019-08-16 | 2020-08-14 | Liquid crystal element and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019149514 | 2019-08-16 | ||
JP2019-149514 | 2019-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021033650A1 true WO2021033650A1 (en) | 2021-02-25 |
Family
ID=74661125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030913 WO2021033650A1 (en) | 2019-08-16 | 2020-08-14 | Liquid crystal element and liquid crystal element manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7513290B2 (en) |
WO (1) | WO2021033650A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022234837A1 (en) * | 2021-05-07 | 2022-11-10 | 学校法人立命館 | Liquid crystal polymer fine particles, and method for producing liquid crystal polymer fine particles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001083311A (en) * | 1999-09-14 | 2001-03-30 | Nippon Mitsubishi Oil Corp | Polarization diffraction device |
JP2012073522A (en) * | 2010-09-29 | 2012-04-12 | Toppan Printing Co Ltd | Phase type diffraction element, manufacturing method therefor, and imaging device |
WO2018193952A1 (en) * | 2017-04-17 | 2018-10-25 | 富士フイルム株式会社 | Optical film, stacked optical film, and aerial imaging device equipped with stacked optical film |
WO2019013284A1 (en) * | 2017-07-12 | 2019-01-17 | 富士フイルム株式会社 | Liquid crystal composition, production method of reflective layer, reflective layer, cured product, and optically anisotropic body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010131632A1 (en) | 2009-05-11 | 2012-11-01 | 学校法人東京理科大学 | Liquid crystal polymer compound and photomask for lithography |
JP2012045864A (en) | 2010-08-27 | 2012-03-08 | National Institute Of Advanced Industrial Science & Technology | Optical information recording medium using liquid crystal polymer, optical information recording method, and method for manufacturing optical information recording medium |
WO2018154991A1 (en) | 2017-02-24 | 2018-08-30 | 富士フイルム株式会社 | Depolarizing film, depolarizing member, and method for producing depolarizing film |
-
2020
- 2020-08-14 WO PCT/JP2020/030913 patent/WO2021033650A1/en active Application Filing
- 2020-08-14 JP JP2021540771A patent/JP7513290B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001083311A (en) * | 1999-09-14 | 2001-03-30 | Nippon Mitsubishi Oil Corp | Polarization diffraction device |
JP2012073522A (en) * | 2010-09-29 | 2012-04-12 | Toppan Printing Co Ltd | Phase type diffraction element, manufacturing method therefor, and imaging device |
WO2018193952A1 (en) * | 2017-04-17 | 2018-10-25 | 富士フイルム株式会社 | Optical film, stacked optical film, and aerial imaging device equipped with stacked optical film |
WO2019013284A1 (en) * | 2017-07-12 | 2019-01-17 | 富士フイルム株式会社 | Liquid crystal composition, production method of reflective layer, reflective layer, cured product, and optically anisotropic body |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022234837A1 (en) * | 2021-05-07 | 2022-11-10 | 学校法人立命館 | Liquid crystal polymer fine particles, and method for producing liquid crystal polymer fine particles |
Also Published As
Publication number | Publication date |
---|---|
JP7513290B2 (en) | 2024-07-09 |
JPWO2021033650A1 (en) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5624741B2 (en) | Optical vortex retarder microarray | |
TW424161B (en) | Patterned layer of a polymer material having a cholesteric order | |
US20210149255A1 (en) | Method of manufacturing optical element and optical element | |
JP5410548B2 (en) | Manufacturing method of optical filter for stereoscopic image display device | |
US7969541B2 (en) | Retardation film, method of manufacturing the same, and display | |
KR100852224B1 (en) | Retardation film and process for producing the same | |
KR101622013B1 (en) | Optical device | |
EP2659298A2 (en) | Variable transmission window | |
JPH11109361A (en) | Production of multidomain liquid crystal display element | |
JP2006201388A (en) | Optical diffraction liquid crystal element | |
Zhang et al. | Multiple degrees‐of‐freedom programmable soft‐matter‐photonics: Configuration, manipulation, and advanced applications | |
WO2021033650A1 (en) | Liquid crystal element and liquid crystal element manufacturing method | |
EP3237970B1 (en) | Multiple alignment method in liquid crystalline medium | |
JP6735897B2 (en) | Method of manufacturing depolarizing member and depolarizing film | |
CN116879990A (en) | Mask plate, liquid crystal polarization grating and preparation method thereof | |
JP2004046224A (en) | Photo-responsive liquid crystal-containing photonic crystal | |
US9846266B2 (en) | Liquid crystalline polymer film with diffractive optical noise removed and method of manufacturing the same | |
JP2015200725A (en) | Retardation film and manufacturing method therefor | |
KR100582990B1 (en) | Polarization Grating Device Using Liquid Crystals And Its Manufacturing Method | |
Ogiwara et al. | Analysis of optical properties and internal structures of γ-ray-irradiated holographic devices formed using liquid crystal composites | |
JP2005292241A (en) | Optical anisotropic substance and its manufacturing method | |
US12124061B2 (en) | Method of forming photo-alignment film and method of forming liquid crystal layer | |
Tagashira et al. | Radial and azimuthal polarizer using a one-dimensional photonic crystal with a patterned liquid crystal defect layer | |
US20230125215A1 (en) | Optically anisotropic film, optical element, and optical system | |
JP5046154B2 (en) | Method for forming polarization grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20853820 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021540771 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20853820 Country of ref document: EP Kind code of ref document: A1 |