Nothing Special   »   [go: up one dir, main page]

WO2021033321A1 - Brake control device and brake control method - Google Patents

Brake control device and brake control method Download PDF

Info

Publication number
WO2021033321A1
WO2021033321A1 PCT/JP2019/032902 JP2019032902W WO2021033321A1 WO 2021033321 A1 WO2021033321 A1 WO 2021033321A1 JP 2019032902 W JP2019032902 W JP 2019032902W WO 2021033321 A1 WO2021033321 A1 WO 2021033321A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
pressure
wheel
threshold value
control unit
Prior art date
Application number
PCT/JP2019/032902
Other languages
French (fr)
Japanese (ja)
Inventor
悦司 松山
哲弥 佐伯
俊平 小野寺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/032902 priority Critical patent/WO2021033321A1/en
Priority to DE112019007643.4T priority patent/DE112019007643T5/en
Priority to JP2021540614A priority patent/JP7109677B2/en
Publication of WO2021033321A1 publication Critical patent/WO2021033321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D66/02Apparatus for indicating wear
    • F16D66/021Apparatus for indicating wear using electrical detection or indication means
    • F16D66/022Apparatus for indicating wear using electrical detection or indication means indicating that a lining is worn to minimum allowable thickness
    • F16D66/025Apparatus for indicating wear using electrical detection or indication means indicating that a lining is worn to minimum allowable thickness sensing the position of parts of the brake system other than the braking members, e.g. limit switches mounted on master cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition

Definitions

  • the present invention relates to a brake control device and a brake control method mounted on a railway vehicle.
  • some braking devices mounted on railway vehicles press a brake shoe against a wheel to generate a braking force by friction between the brake shoe and the wheel. Since the brake shoe wears due to friction with the wheel, it is necessary to replace it according to the state of wear.
  • an inspector measures the size of the brake shoes.
  • railcars generally have many brake shoes. Therefore, it takes time and effort for the inspector to measure the brake shoes. In addition, the skill of the inspector may cause variations in measurement.
  • Patent Document 1 detects the braking force of the brake shoes and the position of the brake shoes, and controls the brake shoes based on the position information of the brake shoes when the braking force reaches a predetermined value.
  • a technique for automatically detecting the wear state of a brake shoe is disclosed.
  • the brake device described in Patent Document 1 has a position of the brake shoe when the brake shoe in the non-wear state is pressed against the wheel and a position of the brake shoe when the brake shoe in the worn state is pressed against the wheel. By comparing, the wear state of the brake shoes is detected from the fluctuation of the position of the brake shoes.
  • the wheels also wear by pressing the brake shoes against the wheels.
  • the wheel diameter becomes smaller, and the position of the brake shoe when the brake shoe is pressed against the wheel also changes.
  • wheel wear is not considered. Therefore, when the wheels are worn, there is a problem that the accuracy of detecting the worn state of the brake shoes is lowered.
  • the inspector can obtain information on the wheel diameter by measuring the wheel diameter, as in the case of the brake shoe described above, a railroad vehicle generally has many wheels. Therefore, it takes time and effort for the inspector to measure the wheel diameter. In addition, the skill of the inspector may cause variations in measurement.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a brake control device capable of improving the detection accuracy of a wear state of a brake shoe pressed against a wheel in a railroad vehicle.
  • the present invention is a brake control device for generating braking force by pressing a brake shoe against a wheel in a railroad vehicle.
  • the brake control device has an acquisition unit that acquires a physical quantity from a sensor that detects a physical quantity that indicates a force that presses the brake shoe against the wheel, and a storage unit that stores a threshold value for the operating time of the brake set according to the wheel diameter of the wheel. It is characterized by including an operation time from the start of brake control until the physical quantity reaches a constant value, and a control unit that detects a wear state of the brake shoe based on a threshold value.
  • the brake control device has an effect of improving the detection accuracy of the wear state of the brake shoe pressed against the wheel in a railroad vehicle.
  • FIG. 1 is a first diagram showing a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a new state in the brake control system according to the first embodiment.
  • FIG. 2 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a new state in the brake control system according to the first embodiment.
  • FIG. 5 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a worn state and the wheel is in a new state in the brake control system according to the first embodiment.
  • FIG. 1 is a first diagram showing a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a new state in the brake control system according to the first embodiment.
  • FIG. 2 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a new state in the
  • FIG. 5 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a worn state in the brake control system according to the first embodiment.
  • the figure which shows the example of the case where the processing circuit provided in the brake control system which concerns on Embodiment 1 is configured by a processor and a memory.
  • the figure which shows the example of the case where the processing circuit provided in the brake control system which concerns on Embodiment 1 is configured by the dedicated hardware.
  • FIG. 1 is a diagram showing a configuration example of the brake control system 30 according to the first embodiment of the present invention.
  • the brake control system 30 is a system mounted on the railway vehicle 100 and controls the brake 20 of the railway vehicle 100.
  • the brake control system 30 relays the brake command unit 1, the load receiving device 2, the speed sensor 3, the brake control unit 4, the regenerative brake control unit 5, the electropneumatic conversion valve 6, the source air tank 7, and the relay.
  • a valve 8, a pressure sensor 9, a brake cylinder 10, a pressure sensor 11, a brake shoe 12, and a wheel 13 are provided.
  • the brake 20 is composed of an electropneumatic conversion valve 6, a source air tank 7, a relay valve 8, a pressure sensor 9, a brake cylinder 10, a pressure sensor 11, and a brake shoe 12.
  • the railway vehicle 100 actually includes a plurality of speed sensors 3, a brake control unit 4, wheels 13, and a brake 20. Further, when a train is formed by a plurality of railroad vehicles 100, some configurations such as the brake command unit 1 may be mounted only on a specific railroad vehicle such as a leading vehicle and a trailing vehicle of the train.
  • the brake command unit 1 is installed in a driver's cab or the like (not shown) of the railway vehicle 100, and generates and outputs a brake command 1A indicating the control content of the brake 20.
  • the control content of the brake 20 includes control for operating the brake 20, control for releasing the brake 20, and the like.
  • the control for operating the brake 20 is a control for decelerating the railway vehicle 100, that is, a control for applying a brake.
  • the control for releasing the brake 20 is a control for increasing the speed of the railway vehicle 100, that is, a control for releasing the brake.
  • the brake command unit 1 may receive an operation from a driver or the like and generate a brake command 1A according to the received operation content.
  • the load-bearing device 2 uses an air spring pressure sensor or the like (not shown) to generate and output a load-bearing signal 2A indicating the pressure applied to the railway vehicle 100 by passengers or the like.
  • the speed sensor 3 is a sensor that generates and outputs a speed signal 3A indicating the speed of the railroad vehicle 100 based on the rotation speed of the wheels 13. Although omitted in FIG. 1, the speed sensor 3 is installed on the bogies in front of and behind the railroad vehicle 100, and the railroad vehicle 100 can detect the speed from each wheel 13.
  • the brake control unit 4 is a brake control device that generates braking force by pressing the brake shoes 12 against the wheels 13 in the railroad vehicle 100.
  • the brake control unit 4 includes an acquisition unit 41, a control unit 42, and a storage unit 43.
  • the acquisition unit 41 acquires the brake command 1A from the brake command unit 1, acquires the load response signal 2A from the load response device 2, and acquires the speed signal 3A from the speed sensor 3. Further, the acquisition unit 41 acquires the regenerative feedback signal 5A from the regenerative brake control unit 5, and issues the AC (Air Cylinder) pressure feedback command 9A, which is the command pressure of the air signal 6A of the electropneumatic conversion valve 6, from the pressure sensor 9.
  • the feedback command 11A of the BC (Brake Cylinder) pressure which is the brake cylinder pressure 8A of the relay valve 8, is acquired from the pressure sensor 11.
  • the storage unit 43 stores a threshold value for the operating time of the brake 20 set according to the wheel diameter of the wheel 13.
  • the storage unit 43 may store information on the current wheel diameter of the wheel 13 measured by the control unit 42.
  • the control unit 42 calculates the required braking force for the railway vehicle 100 based on the brake command 1A, the load-bearing signal 2A, and the speed signal 3A, and outputs a regenerative pattern signal 4A indicating the required braking force for the railway vehicle 100. To do.
  • the control unit 42 generates and outputs a pressure control signal 4B having the value obtained by subtracting the value of the regenerative feedback signal 5A from the required braking force for the railroad vehicle 100 as the air control supplement amount. Further, the control unit 42 is based on the operation time from the start of control of the brake 20 until the brake cylinder pressure 8A or the command pressure, which is a physical quantity, reaches a constant value, and the threshold value stored in the storage unit 43. The wear state of the brake shoe 12 is detected.
  • the regenerative brake control unit 5 calculates the actual regenerative braking force according to the actual torque based on the regenerative pattern signal 4A, and generates and outputs the regenerative feedback signal 5A indicating the actual regenerative braking force.
  • the electropneumatic conversion valve 6 converts the control signal of the pressure control signal 4B, which is an electric signal output from the control unit 42 of the brake control unit 4, into an air signal 6A indicating the control content by the air pressure.
  • the original air tank 7 is an air tank that outputs compressed air 7A, which is stored compressed air.
  • the relay valve 8 outputs compressed air 7A corresponding to the command pressure, which is the air pressure of the air signal 6A output from the electropneumatic conversion valve 6, thereby providing air with a brake cylinder pressure 8A corresponding to the command pressure of the air signal 6A. Is output to the brake cylinder 10.
  • the brake cylinder pressure 8A is an air signal 6A amplified by compressed air 7A. It is assumed that the brake cylinder pressure 8A and the command pressure of the air signal 6A are in a proportional relationship.
  • the pressure sensor 9 is a sensor that detects the command pressure, which is the air pressure of the air signal 6A.
  • the command pressure is a physical quantity indicating a force that presses the brake shoe 12 against the wheel 13.
  • the pressure sensor 9 feeds back the detected air signal 6A as a feedback command 9A to the brake control unit 4.
  • the brake cylinder 10 presses the brake shoe 12 against the wheel 13 by the brake cylinder pressure 8A.
  • the pressure sensor 11 is a sensor that detects the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10.
  • the brake cylinder pressure 8A is a physical quantity indicating a force that presses the brake shoe 12 against the wheel 13.
  • the pressure sensor 11 returns the detected brake cylinder pressure 8A to the brake control unit 4 as a feedback command 11A.
  • the pressure sensor 11 may be referred to as a first pressure sensor, and the pressure sensor 9 may be referred to as a second pressure sensor.
  • the brake shoe 12 has a coefficient of friction.
  • the brake shoe 12 is pressed against the wheel 13 by the brake cylinder 10 to generate a braking force, that is, a braking force.
  • the braking force in the brake control system 30 can be calculated by the product of the friction coefficient of the brake shoe 12 and the brake cylinder pressure 8A.
  • the wheel 13 generates a braking force, that is, a braking force by pressing the brake shoe 12 by the brake cylinder 10.
  • the brake control system 30 measures the wheel diameter of the wheel 13 at a specified timing.
  • the brake control system 30 considers the wheel diameter of the wheel 13 and is based on the operating time when the brake shoe 12 is pressed against the wheel 13 or the operating time when the brake shoe 12 is pulled away from the wheel 13. Detect the wear condition.
  • FIG. 2 is a first diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a new state and the wheels 13 are in a new state in the brake control system 30 according to the first embodiment. ..
  • FIG. 2 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are not pressed against the wheels 13.
  • FIG. 3 is a second diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a new state and the wheels 13 are in a new state in the brake control system 30 according to the first embodiment. .. FIG. 3 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13.
  • the brake control system 30 has a wheel 13 by slightly increasing the volume of the brake cylinder 10, that is, by a short stroke, in a state where the brake shoes 12 are not worn. The brake shoe 12 can be pressed against the wheel.
  • the brake control unit 4 stores the operating time from pressing the brake shoe 12 against the wheel 13 to the state of FIGS. 2 to 3 as a reference operating time.
  • the brake control unit 4 presses the brake shoe 12 against the wheel 13, air is supplied to the brake cylinder 10, so the operating time at this time is set as the supply time.
  • the brake control unit 4 stores the operating time from pulling the brake shoe 12 away from the wheel 13 to the state of FIGS. 3 to 2 as a reference operating time.
  • the brake control unit 4 pulls the brake shoes 12 away from the wheels 13, air is exhausted from the brake cylinder 10, so the operating time at this time is defined as the exhaust time.
  • FIG. 4 is a diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a worn state and the wheels 13 are in a new state in the brake control system 30 according to the first embodiment.
  • FIG. 4 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13.
  • the brake shoe 12 is worn by the brake 20 being repeatedly applied while the railway vehicle 100 is in operation.
  • the brake control system 30 has a volume of the brake cylinder 10 in the state where the brake shoe 12 is worn as compared with the state where the brake shoe 12 is not worn.
  • the brake shoe 12 can be pressed against the wheel 13 by increasing the size, that is, by a long stroke.
  • the brake control unit 4 stores the supply time when the wear state of the brake shoe 12 becomes the amount of wear required to replace the brake shoe 12 as a supply time threshold value.
  • the brake control unit 4 changes the wear state of the brake shoe 12 to the amount of wear required to replace the brake shoe 12. Therefore, an alarm prompting the replacement of the brake shoe 12 is output.
  • the brake control unit 4 stores the exhaust time when the wear state of the brake shoe 12 becomes the amount of wear required to replace the brake shoe 12 as an exhaust time threshold value.
  • the brake control unit 4 When the operating time when the brake shoe 12 is pulled away from the wheel 13, that is, the exhaust time reaches the exhaust time threshold, the brake control unit 4 changes the wear state of the brake shoe 12 to the amount of wear that requires replacement of the brake shoe 12. As a result, an alarm prompting the replacement of the brake shoe 12 is output.
  • the brake control unit 4 may detect the wear state of the brake shoe 12 by using at least one of the supply time threshold value and the exhaust time threshold value.
  • the railroad vehicle 100 can return to the state as shown in FIG. 2 by exchanging the brake shoes 12.
  • the wheel diameter of the wheel 13 becomes smaller as the brake shoe 12 is replaced many times by repeating the above operation.
  • Factors that reduce the wheel diameter of the wheel 13 include wear due to friction with the brake shoe 12, and milling treatment when the wheel flat occurs on the wheel 13. In the following description, it is assumed that the wheel diameter of the wheel 13 is reduced due to wear.
  • FIG. 5 is a diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a new state and the wheels 13 are in a worn state in the brake control system 30 according to the first embodiment.
  • FIG. 5 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13.
  • the supply time is longer than in the case of FIG. 3 in which the wheels 13 are not worn.
  • the exhaust time is longer than in the case of FIG. 3 in which the wheels 13 are not worn.
  • FIG. 6 is a diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a worn state and the wheels 13 are in a worn state in the brake control system 30 according to the first embodiment.
  • FIG. 6 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13.
  • the volume of the brake cylinder 10 is further increased, that is, it is longer.
  • the brake shoes 12 can be pressed against the wheels 13 by the stroke.
  • the supply time is longer than in the case of FIG. 5 in which the brake shoe 12 is not worn.
  • the exhaust time is longer than in the case of FIG. 5 in which the brake shoe 12 is not worn.
  • the brake control system 30 can increase the volume of the brake cylinder 10 and press the brake shoe 12 against the wheel 13 as shown in FIG. 4 or 5. It is unknown whether the cause of the long stroke is due to the wear of the brake shoes 12 or the wear of the wheels 13. On the other hand, as in the present embodiment, when the wheel diameter of the wheel 13 is measured, the brake control system 30 increases the volume of the brake cylinder 10 and controls the wheel 13 as shown in FIG. 4 or FIG. Even when the wheel element 12 is pressed, it is possible to grasp whether the cause of the long stroke of the brake cylinder 10 is due to the wear of the brake shoe 12 or the wear of the wheel 13.
  • FIG. 7 is a diagram showing a transition of the operating time according to the wear state of the brake shoe 12 when the wheel 13 is new in the brake control system 30 according to the first embodiment.
  • the brake cylinder pressure 8A is referred to as “BC pressure”.
  • FIG. 7A is a brake command 1A output from the brake command unit 1, which indicates a control for operating the brake 20 when it is H (high) and a control for releasing the brake 20 when it is L (low). Is shown.
  • FIG. 7B shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is new, that is, when it is not worn, and when the brake shoe 12 is new, that is, when it is not worn. Shown.
  • FIG. 7C shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is new, that is, when the wheel 13 is not worn, and when the brake shoe 12 is worn.
  • the section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG.
  • the control unit 42 controls the brake shoes when the supply time of the brake cylinder pressure 8A exceeds the supply time threshold value or when the exhaust time of the brake cylinder pressure 8A exceeds the exhaust time threshold value. It is determined that 12 is worn, and an alarm is output.
  • the control unit 42 determines that the brake shoes 12 are worn, it is assumed that the amount of wear of the brake shoes 12 reaches a level at which the brake shoes 12 need to be replaced. The same shall apply hereinafter.
  • FIG. 8 is a diagram showing a transition of the operating time according to the wear state of the brake shoe 12 when the wheel 13 is worn in the brake control system 30 according to the first embodiment.
  • FIG. 8A is a brake command 1A output from the brake command unit 1, which indicates a control for operating the brake 20 when it is H (high) and a control for releasing the brake 20 when it is L (low). Is shown.
  • FIG. 8B shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is worn, that is, when the wheel 13 is worn, and when the brake shoe 12 is new, that is, when the wheel 13 is not worn. Shown.
  • the section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG.
  • FIG. 8C shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is worn, that is, when the wheel 13 is worn and when the brake shoe 12 is worn.
  • the section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG.
  • the control unit 42 controls the brake shoes when the supply time of the brake cylinder pressure 8A exceeds the supply time threshold value or when the exhaust time of the brake cylinder pressure 8A exceeds the exhaust time threshold value. It is determined that 12 is worn, and an alarm is output.
  • the brake control system 30 sets a threshold value used for determining whether or not the brake shoe 12 is worn, that is, a supply time threshold value and an exhaust time threshold value. It is changed according to the wear state of the wheel 13. Specifically, the brake control system 30 increases the threshold value, that is, the supply time threshold value and the exhaust time threshold value, as the wheels 13 are worn. This is because, as shown in FIGS. 5 and 6, as the wheel 13 wears and the wheel diameter becomes smaller, the brake control system 30 presses the brake shoe 12 against the wheel 13 to increase the volume of the brake cylinder 10. That is, it is necessary to lengthen the stroke.
  • the type of wheel 13 and the type of brake shoe 12 used are fixed. Therefore, until the brake cylinder pressure 8A becomes a constant pressure when the brake shoe 12 is pressed against the wheel 13 according to the wheel diameter of the wheel 13 by the designer of the brake control system 30 or the like by simulation or actual measurement.
  • Information on the threshold value based on the operation time is stored in the storage unit 43 of the brake control unit 4.
  • Information on the correspondence relationship with the wheel diameter of the wheel 13 is stored in the storage unit 43 of the brake control unit 4.
  • the brake control system 30 determines the wheel diameter of the wheel 13 from the operating time until the brake cylinder pressure 8A becomes a constant pressure by pressing the brake shoe 12 against the wheel 13 each time the brake shoe 12 is replaced. Can be measured.
  • FIG. 9 is a flowchart showing an operation in which the brake control system 30 according to the first embodiment measures the wheel diameter of the wheel 13.
  • the control unit 42 of the brake control unit 4 determines the wheels of the wheels 13 based on the operating time before the start of operation of the railway vehicle 100. The diameter is measured (step S2). If the brake shoe 12 has not been replaced after measuring the wheel diameter of the wheel 13, the control unit 42 omits the operation of step S2.
  • the control unit 42 can detect the wear state of the wheel 13 based on the wheel diameter of the wheel 13.
  • the control unit 42 assumes that the wear state of the wheel 13 has reached the amount of wear required for the wheel 13 to be replaced, as in the case of replacing the brake shoe 12. An alarm prompting the replacement of the wheel 13 may be output.
  • FIG. 10 is a flowchart showing a first operation in which the brake control system 30 according to the first embodiment determines whether or not the brake shoes 12 are worn.
  • the control unit 42 of the brake control unit 4 acquires information on the wheel diameter of the wheel 13 (step S11).
  • the control unit 42 may use the wheel diameter information measured by the operation of the flowchart shown in FIG. 9, or may use the wheel diameter information measured by an inspector or the like at the time of periodic inspection of the railway vehicle 100. ..
  • the control unit 42 reads a threshold value according to the wheel diameter from the storage unit 43 based on the acquired information on the wheel diameter, and sets a threshold value according to the wheel diameter with respect to the operating time of the brake cylinder 10 (step S12).
  • the control unit 42 acquires the brake command 1A indicating the control content of the brake 20 from the brake command unit 1.
  • the control unit 42 acquires information on the brake cylinder pressure 8A applied to the brake cylinder 10 from the pressure sensor 11 via the acquisition unit 41 (step S13).
  • the control unit 42 calculates the operating time of the brake cylinder 10 based on the information of the brake cylinder pressure 8A acquired from the pressure sensor 11 (step S14).
  • the control unit 42 is the operating time, which is the time from the first value to the second value, which is a constant value, when the control content of the brake 20 is the control for operating the brake 20. Calculate the supply time.
  • the control content of the brake 20 is the control for releasing the brake 20
  • the supply time which is the time from the second value to the first value, which is a constant value, is calculated.
  • the first value is a value in which the brake command 1A is constant in the section of L in FIGS. 7 (b), 7 (c), 8 (b), and 8 (c).
  • the second value is a value in which the brake command 1A is constant in the section H in FIGS. 7 (b), 7 (c), 8 (b), and 8 (c).
  • the control unit 42 compares the operation time with the threshold value (step S15). When the operation time is longer than the threshold value (step S15: Yes), the control unit 42 determines that the brake shoe 12 is worn (step S16). The control unit 42 outputs an alarm indicating that the brake shoe 12 is worn to the driver or the like (step S17). As an alarm, the control unit 42 may display on the display unit of the driver's cab (not shown) indicating that the brake shoes 12 are worn, or from the speaker of the driver's cab (not shown) in the railway vehicle 100. , The sound indicating that the brake shoe 12 is worn may be output. Further, the control unit 42 is a device (not shown) that manages the operation of the railway vehicle 100, and may output an alarm to the device installed on the ground. When the operation time is equal to or less than the threshold value (step S15: No), the control unit 42 returns to the process of step S13, assuming that the brake shoes 12 are not worn.
  • FIG. 11 is a flowchart showing a second operation in which the brake control system 30 according to the first embodiment determines whether or not the brake shoes 12 are worn. The operations from step S11 to step S15 are as described above.
  • the control unit 42 determines whether or not the number of times the operation time exceeds the threshold value reaches the specified number of times within the specified period (step). S21).
  • step S21: No When the number of times the operation time exceeds the threshold value does not reach the specified number of times within the specified period (step S21: No), the control unit 42 returns to the process of step S13.
  • step S21: Yes When the number of times the operation time exceeds the threshold value reaches the specified number of times within the specified period (step S21: Yes), the control unit 42 determines that the brake shoe 12 is worn (step S16). .. The control unit 42 outputs an alarm indicating that the brake shoe 12 is worn to the driver or the like (step S17).
  • the acquisition unit 41 acquires the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10 that presses the brake shoes 12 against the wheels 13, as a physical quantity from the pressure sensor 11.
  • the storage unit 43 stores a supply time threshold value until the brake cylinder pressure 8A becomes a constant value from the first pressure and becomes a second pressure larger than the first pressure when the brake 20 is applied. doing.
  • the control unit 42 detects the wear state of the brake shoe 12 based on the supply time and the supply time threshold value from the first pressure to the second pressure of the brake cylinder pressure 8A. ..
  • the acquisition unit 41 acquires the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10 that presses the brake shoes 12 against the wheels 13, as a physical quantity from the pressure sensor 11.
  • the storage unit 43 stores the exhaust time threshold value from the second pressure to the first pressure, which is a constant value, when the brake cylinder pressure 8A is released.
  • the control unit 42 detects the wear state of the brake shoe 12 based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold value of the brake cylinder pressure 8A. ..
  • the control unit 42 detects the wear state of the brake shoe 12 by using the supply time threshold value or the exhaust time threshold value has been described, but the present invention is not limited thereto.
  • the control unit 42 may detect the wear state of the brake shoe 12 by using both the supply time threshold value and the exhaust time threshold value.
  • the storage unit 43 stores the supply time threshold value and the exhaust time threshold value as threshold values.
  • the control unit 42 is based on the supply time from the first pressure to the second pressure when the brake cylinder pressure 8A is applied and the supply time threshold, and when the brake 20 is released, the brake cylinder
  • the wear state of the brake shoe 12 may be detected based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold of the pressure 8A. In this way, the control unit 42 detects the wear state by using the supply time threshold value when the brake 20 is applied, or detects the wear state by using the exhaust time threshold value when the brake 20 is released. Do at least one of the above.
  • the brake control unit 4 detects the wear state of the brake shoe 12 by using the brake cylinder pressure 8A which is the air pressure of the brake cylinder 10 has been described. However, the method of detecting the wear state of the brake shoe 12 is described in this case. Not limited. As described above, the command pressure of the air signal 6A of the electropneumatic conversion valve 6 is proportional to the brake cylinder pressure 8A. Therefore, the brake control unit 4 can also detect the wear state of the brake shoe 12 by using the command pressure which is the air pressure of the air signal 6A of the electropneumatic conversion valve 6.
  • the acquisition unit 41 acquires the command pressure, which is the air pressure of the air signal 6A output from the electropneumatic conversion valve 6, as a physical quantity from the pressure sensor 9.
  • the storage unit 43 stores a supply time threshold value from the first pressure until the command pressure becomes a constant value and becomes a second pressure larger than the first pressure when the brake 20 is applied. There is.
  • the control unit 42 detects the wear state of the brake shoe 12 based on the supply time from the first pressure to the second pressure and the supply time threshold value.
  • the acquisition unit 41 acquires the command pressure, which is the air pressure of the air signal 6A output from the electropneumatic conversion valve 6, as a physical quantity from the pressure sensor 9.
  • the storage unit 43 stores an exhaust time threshold value from the second pressure to the first pressure, which is a constant value, when the brake 20 is released.
  • the control unit 42 detects the wear state of the brake shoe 12 based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold value.
  • the brake control unit 4 is realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • FIG. 12 is a diagram showing an example in which the processing circuit included in the brake control system 30 according to the first embodiment is configured by a processor and a memory.
  • the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the brake control system 30 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the brake control system 30 is eventually executed. It can also be said that these programs cause the computer to execute the procedures and methods of the brake control system 30.
  • the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 includes non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EPROM (registered trademark) (Electrically EPROM).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM), and EPROM (registered trademark) (Electrically EPROM).
  • Semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
  • FIG. 13 is a diagram showing an example in which the processing circuit included in the brake control system 30 according to the first embodiment is configured by dedicated hardware.
  • the processing circuit is composed of dedicated hardware
  • the processing circuit 93 shown in FIG. 13 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and the like. FPGA (Field Programmable Gate Array) or a combination of these is applicable.
  • Each function of the brake control system 30 may be realized by the processing circuit 93 for each function, or each function may be collectively realized by the processing circuit 93.
  • the functions of the brake control system 30 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
  • the brake control system 30 sets a threshold value for the operating time of the brake 20 according to the wheel diameter, and sets the operating time and the threshold value when the brake 20 is operated. Based on the comparison, it was decided to detect the wear state of the brake shoe 12. As a result, the brake control system 30 can change the threshold value according to the wheel diameter of the wheel 13, so that the accuracy of detecting the wear state of the brake shoe 12 can be improved. Further, since the brake control system 30 can automatically measure the wheel diameter of the wheel 13, it is possible to detect the wear state of the wheel 13. Further, since the brake control system 30 can automatically measure the wheel diameter of the wheel 13, the amount of wear of the brake shoe 12 can be accurately measured based on the operating time when the brake 20 is operated.
  • the brake control system 30 can measure the amount of wear of the brake shoe 12 by using the operating time when the brake 20 is operated and the wheel diameter of the wheel 13. Therefore, the brake control system 30 does not set a threshold value according to the wheel diameter, and detects the wear state of the brake shoe 12 based on the amount of wear of the brake shoe 12, that is, whether or not the brake shoe 12 needs to be replaced. It is also possible to judge.
  • Embodiment 2 In the first embodiment, the brake control system 30 automatically measures the wheel diameter of the wheel 13 only after the brake shoe 12 is replaced. In the second embodiment, the brake control system 30 automatically measures the wheel diameter of the wheel 13 while the railway vehicle 100 is traveling.
  • the configuration of the brake control system 30 is the same as the configuration in the first embodiment.
  • the speed sensor 3 changes the gap between the gear and the gear installed on the axle on which the wheel 13 is attached, and the magnetic flux changes, so that the speed sensor 3 has a speed of a frequency corresponding to the speed of the railroad vehicle 100.
  • the signal 3A is generated and output.
  • the speed signal 3A is a signal having a constant frequency when the speed of the railway vehicle 100 is constant.
  • the number of rotations of the wheel 13 increases as compared with a new state, that is, a state where the wheel 13 is not worn, even if the speed of the railway vehicle 100 is the same.
  • a new state that is, a state where the wheel 13 is not worn
  • the rotation of the gear attached to the axle also increases, and the frequency of the speed signal 3A also increases. This is because the circumference of the wheel 13 becomes shorter due to the wear of the wheel 13, and it is necessary to rotate the wheel 13 more in order to move the same distance.
  • FIG. 14 is a diagram showing the frequency of the speed signal 3A output from the speed sensor 3 according to the wear state of the wheels 13 in the brake control system 30 according to the second embodiment.
  • FIG. 14A shows a speed signal 3A output from the speed sensor 3 when the wheel 13 is new, that is, when it is not worn.
  • FIG. 14B shows a speed signal 3A output from the speed sensor 3 when the wheel 13 is worn, that is, in a worn state.
  • the brake control unit 4 of the brake control system 30 stores information on the relationship between the speed of the railway vehicle 100, the frequency of the speed signal 3A, and the wheel diameter of the wheels 13 in advance based on the features shown in FIG.
  • the designer of the brake control system 30 or the like obtains information on the relationship between the speed of the railroad vehicle 100, the frequency of the speed signal 3A, and the wheel diameter of the wheel 13 by simulation or actual measurement, and stores the brake control unit 4. It is stored in the part 43.
  • the control unit 42 is based on the speed of the railroad vehicle 100 on which the brake control unit 4 is mounted and the frequency of the speed signal 3A output from the speed sensor 3 installed on the shaft on which the wheels 13 are mounted. The wheel diameter of the wheel 13 is measured. Further, the control unit 42 can detect the wear state of the wheel 13 based on the wheel diameter of the wheel 13.
  • the control unit 42 assumes that the wear state of the wheel 13 has reached the amount of wear required for the wheel 13 to be replaced, as in the case of replacing the brake shoe 12. An alarm prompting the replacement of the wheel 13 may be output.
  • the operation of the brake control system 30 for determining whether or not the brake shoes 12 are worn is the same as the flowchart shown in FIG. 10 or 11 of the first embodiment.
  • the control unit 42 uses the method described in the first embodiment as a method of acquiring information on the wheel diameter of the wheel 13, and the wheel 13 based on the frequency of the speed signal 3A of the speed sensor 3. It is possible to obtain information on the wheel diameter of.
  • the brake control system 30 measures the wheel diameter of the wheel 13 based on the frequency of the speed signal 3A of the speed sensor 3. As a result, the brake control system 30 can update the information on the wheel diameter of the wheel 13 with high frequency as compared with the case of the first embodiment, so that the accuracy of detecting the wear state of the brake shoe 12 can be further improved. Can be done.
  • Embodiment 3 In the first and second embodiments, the brake control system 30 has detected the wear of the brake shoes 12 and the wheels 13. In the third embodiment, a method in which the brake control system 30 detects an abnormality of an empty product for operating the brake 20 will be described.
  • the configuration of the brake control system 30 is the same as the configuration in the first embodiment.
  • the brake shoe 12 is pressed against the wheel 13 by the brake cylinder 10.
  • the brake shoe 12 wears each time the brake 20 is applied. That is, it is considered that there is a correlation between the pressing force of the brake shoe 12 by the brake cylinder 10 and the amount of wear of the brake shoe 12.
  • FIG. 15 is a diagram showing an example of the relationship between the cumulative value of the pressing force by the brake cylinder 10 and the amount of wear of the brake shoe 12 in the brake control system 30 according to the third embodiment.
  • the cumulative value of the pressing force is the cumulative value obtained by multiplying the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10, by the time that the brake cylinder pressure 8A is applied to the brake cylinder 10. That is, the cumulative value of the pressing force is obtained by multiplying the physical quantity when the brake shoe 12 is pressed against the wheel 13 by the pressing time after the brake shoe 12 is replaced. As shown in FIG. 15, it is considered that the amount of wear of the brake shoe 12 increases as the cumulative value of the pressing force of the brake cylinder 10 increases.
  • FIG. 16 is a diagram showing an example of the relationship between the operating time of the brake cylinder 10 and the amount of wear of the brake shoe 12 in the brake control system 30 according to the third embodiment.
  • the operating time of the brake cylinder 10 when the wear amount of the brake shoe 12 reaches the replacement level is described above. It becomes the threshold of.
  • FIG. 17 is a diagram showing an example of the relationship between the operating time of the brake cylinder 10 and the cumulative value of the pressing force in the brake control system 30 according to the third embodiment.
  • the solid straight line shown in FIG. 17 shows the relationship between the operating time of the brake cylinder 10 and the cumulative value of the pressing force of the brake cylinder 10.
  • the region indicated by the triangle in which the cumulative value of the pressing force is small but the operating time is large is not caused by the wear of the brake shoe 12, but the component that acts on the brake 20, specifically, It is assumed that there is an abnormality in an empty product such as the relay valve 8. Therefore, when the operation time exceeds the threshold value for the cumulative value of the pressing force, that is, the straight line of the dotted line shown in FIG.
  • the control unit 42 determines that the empty product has an abnormality.
  • the brake control unit 4 stores in advance a threshold value indicated by a dotted straight line, which has a margin with respect to a solid straight line indicating the relationship between the operating time of the brake cylinder 10 and the cumulative value of the pressing force of the brake cylinder 10. Keep it.
  • the threshold value is obtained by a designer of the brake control system 30 or the like by simulation or actual measurement, and is stored in the storage unit 43 of the brake control unit 4.
  • a margin is provided between the solid line indicating the relationship between the operating time and the cumulative value of the pressing force, the dotted line indicating the threshold value, and the triangular area indicating an empty product abnormality. The intervals between the two may be narrowed.
  • FIG. 18 is a flowchart showing an operation in which the brake control system 30 according to the third embodiment determines an abnormality of an empty product.
  • the control unit 42 determines that the empty product has an abnormality (step S32).
  • the control unit 42 ends the operation. In this way, the control unit 42 determines whether or not there is an abnormality in the empty product, which is a component for pressing the brake shoe 12 against the wheel 13, based on the comparison between the cumulative value of the pressing force and the operating time.
  • the control unit 42 performs the above operation constantly or periodically.
  • the brake control system 30 is based on the operating time of the brake 20 and the cumulative value of the pressing force, and further, an abnormality of an empty product which is a component that acts the brake 20. It is possible to determine the presence or absence of.
  • Embodiment 4 a method in which the brake control system 30 detects an abnormality of an empty product for operating the brake 20 will be described by a method different from that of the third embodiment.
  • the brake control system 30 actually includes a plurality of brakes 20. Further, the railway vehicle 100 is generally operated so that the diameters of the plurality of wheels 13 are within a certain range. That is, it is assumed that the operating time of each brake 20 when the brake control system 30 performs the same brake control is within a certain range. Therefore, when the operating time of one brake 20 is significantly longer than the operating time of another brake 20, the brake control system 30 determines that the empty product of the corresponding brake 20 has an abnormality. In this way, the control unit 42 can determine whether or not there is an abnormality in the empty product, which is a component for pressing the brake shoe 12 against the wheel 13, based on the operating time acquired for each shaft connected to the wheel 13. it can.
  • the brake control system 30 is an empty product which is a component that further operates the brake 20 based on the operating time acquired for each shaft connected to the wheel 13. It is possible to determine the presence or absence of an abnormality.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 Brake command unit 1A brake command, 2 load-bearing device, 2A load-bearing signal, 3 speed sensor, 3A speed signal, 4 brake control unit, 4A regeneration pattern signal, 4B pressure control signal, 5 regenerative brake control unit, 5A regeneration Feedback signal, 6 electro-pneumatic conversion valve, 6A air signal, 7 source air tank, 7A compressed air, 8 relay valve, 8A brake cylinder pressure, 9,11 pressure sensor, 9A, 11A feedback command, 10 brake cylinder, 12 wheel control , 13 wheels, 20 brakes, 30 brake control system, 41 acquisition unit, 42 control unit, 43 storage unit, 100 railroad vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Braking Arrangements (AREA)

Abstract

A brake control device which generates a braking force in a train car (100) by pressing a brake shoe (12) against a wheel (13), the brake control device comprising: an acquisition unit (41) which acquires a physical quantity from a sensor that detects a physical quantity indicating a force with which the brake shoe (12) is pressed against the wheel (13); a storage unit (43) which stores a threshold value for an operating time of a brake (20), the threshold value being set in accordance with a wheel diameter of the wheel (13); and a control unit (42) which detects a state of wear of the brake shoe (12) on the basis of the threshold value and the operating time from initiation of control of the brake (20) until the physical quantity reaches a specific value.

Description

ブレーキ制御装置およびブレーキ制御方法Brake control device and brake control method
 本発明は、鉄道車両に搭載されるブレーキ制御装置およびブレーキ制御方法に関する。 The present invention relates to a brake control device and a brake control method mounted on a railway vehicle.
 従来、鉄道車両に搭載されるブレーキ装置には、車輪に制輪子を押し付けて、制輪子と車輪との摩擦によって制動力を発生させるものがある。制輪子は、車輪との摩擦によって摩耗するため、摩耗状態に応じて交換する必要がある。制輪子の摩耗状態を検出するためには、検査員が制輪子の大きさを測定する方法がある。しかしながら、一般的に鉄道車両は多くの制輪子を有する。そのため、検査員が制輪子を測定する方法では手間がかかる。また、検査員のスキルによって、測定にばらつきが生じる可能性がある。 Conventionally, some braking devices mounted on railway vehicles press a brake shoe against a wheel to generate a braking force by friction between the brake shoe and the wheel. Since the brake shoe wears due to friction with the wheel, it is necessary to replace it according to the state of wear. In order to detect the wear state of the brake shoes, there is a method in which an inspector measures the size of the brake shoes. However, railcars generally have many brake shoes. Therefore, it takes time and effort for the inspector to measure the brake shoes. In addition, the skill of the inspector may cause variations in measurement.
 上記のような問題に対して、特許文献1には、制輪子のブレーキ力および制輪子の位置を検出し、ブレーキ力が所定の値になったときの制輪子の位置情報に基づいて、制輪子の摩耗状態を自動的に検出する技術が開示されている。特許文献1に記載のブレーキ装置は、摩耗されていない状態の制輪子を車輪に押し付けたときの制輪子の位置と、摩耗された状態の制輪子を車輪に押し付けたときの制輪子の位置とを比較することで、制輪子の位置の変動から制輪子の摩耗状態を検出する。 In response to the above problems, Patent Document 1 detects the braking force of the brake shoes and the position of the brake shoes, and controls the brake shoes based on the position information of the brake shoes when the braking force reaches a predetermined value. A technique for automatically detecting the wear state of a brake shoe is disclosed. The brake device described in Patent Document 1 has a position of the brake shoe when the brake shoe in the non-wear state is pressed against the wheel and a position of the brake shoe when the brake shoe in the worn state is pressed against the wheel. By comparing, the wear state of the brake shoes is detected from the fluctuation of the position of the brake shoes.
特開2004-278653号公報Japanese Unexamined Patent Publication No. 2004-278653
 鉄道車両では、車輪に制輪子を押し付けることによって車輪も摩耗する。車輪が摩耗すると車輪径が小さくなり、制輪子を車輪に押し付けたときの制輪子の位置も変動する。しかしながら、上記従来の技術によれば、車輪の摩耗については考慮されていない。そのため、車輪が摩耗している状態では、制輪子の摩耗状態を検出する精度が低下する、という問題があった。検査員が車輪径を測定することによって車輪径の情報を取得できるが、前述の制輪子の場合と同様、一般的に鉄道車両は多くの車輪を有する。そのため、検査員が車輪径を測定する方法では手間がかかる。また、検査員のスキルによって、測定にばらつきが生じる可能性がある。 In railway vehicles, the wheels also wear by pressing the brake shoes against the wheels. When the wheel wears, the wheel diameter becomes smaller, and the position of the brake shoe when the brake shoe is pressed against the wheel also changes. However, according to the above-mentioned conventional technique, wheel wear is not considered. Therefore, when the wheels are worn, there is a problem that the accuracy of detecting the worn state of the brake shoes is lowered. Although the inspector can obtain information on the wheel diameter by measuring the wheel diameter, as in the case of the brake shoe described above, a railroad vehicle generally has many wheels. Therefore, it takes time and effort for the inspector to measure the wheel diameter. In addition, the skill of the inspector may cause variations in measurement.
 本発明は、上記に鑑みてなされたものであって、鉄道車両において車輪に押し付ける制輪子の摩耗状態の検出精度を向上可能なブレーキ制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a brake control device capable of improving the detection accuracy of a wear state of a brake shoe pressed against a wheel in a railroad vehicle.
 上述した課題を解決し、目的を達成するために、本発明は、鉄道車両において、車輪に制輪子を押し付けて制動力を発生させるブレーキ制御装置である。ブレーキ制御装置は、車輪に制輪子を押し付ける力を示す物理量を検出するセンサから物理量を取得する取得部と、車輪の車輪径に応じて設定された、ブレーキの動作時間に対する閾値を記憶する記憶部と、ブレーキの制御を開始してから物理量が一定の値になるまでの動作時間と、閾値とに基づいて、制輪子の摩耗状態を検出する制御部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention is a brake control device for generating braking force by pressing a brake shoe against a wheel in a railroad vehicle. The brake control device has an acquisition unit that acquires a physical quantity from a sensor that detects a physical quantity that indicates a force that presses the brake shoe against the wheel, and a storage unit that stores a threshold value for the operating time of the brake set according to the wheel diameter of the wheel. It is characterized by including an operation time from the start of brake control until the physical quantity reaches a constant value, and a control unit that detects a wear state of the brake shoe based on a threshold value.
 本発明によれば、ブレーキ制御装置は、鉄道車両において車輪に押し付ける制輪子の摩耗状態の検出精度を向上できる、という効果を奏する。 According to the present invention, the brake control device has an effect of improving the detection accuracy of the wear state of the brake shoe pressed against the wheel in a railroad vehicle.
実施の形態1に係るブレーキ制御システムの構成例を示す図The figure which shows the structural example of the brake control system which concerns on Embodiment 1. 実施の形態1に係るブレーキ制御システムにおいて、制輪子が新品状態かつ車輪が新品状態のときの車輪、制輪子、およびブレーキシリンダを示す第1の図FIG. 1 is a first diagram showing a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a new state in the brake control system according to the first embodiment. 実施の形態1に係るブレーキ制御システムにおいて、制輪子が新品状態かつ車輪が新品状態のときの車輪、制輪子、およびブレーキシリンダを示す第2の図FIG. 2 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a new state in the brake control system according to the first embodiment. 実施の形態1に係るブレーキ制御システムにおいて、制輪子が摩耗状態かつ車輪が新品状態のときの車輪、制輪子、およびブレーキシリンダを示す図FIG. 5 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a worn state and the wheel is in a new state in the brake control system according to the first embodiment. 実施の形態1に係るブレーキ制御システムにおいて、制輪子が新品状態かつ車輪が摩耗状態のときの車輪、制輪子、およびブレーキシリンダを示す図FIG. 5 shows a wheel, a brake shoe, and a brake cylinder when the brake shoe is in a new state and the wheel is in a worn state in the brake control system according to the first embodiment. 実施の形態1に係るブレーキ制御システムにおいて、制輪子が摩耗状態かつ車輪が摩耗状態のときの車輪、制輪子、およびブレーキシリンダを示す図The figure which shows the wheel, the brake shoe, and the brake cylinder when the brake shoe is a wear state and the wheel is a wear state in the brake control system which concerns on Embodiment 1. FIG. 実施の形態1に係るブレーキ制御システムにおいて、車輪が新品のときの制輪子の摩耗状態に応じた動作時間の推移を示す図The figure which shows the transition of the operation time according to the wear state of the brake shoe when the wheel is new in the brake control system which concerns on Embodiment 1. 実施の形態1に係るブレーキ制御システムにおいて、車輪が摩耗したときの制輪子の摩耗状態に応じた動作時間の推移を示す図In the brake control system according to the first embodiment, a diagram showing a transition of an operating time according to a wear state of a brake shoe when a wheel is worn. 実施の形態1に係るブレーキ制御システムが、車輪の車輪径を測定する動作を示すフローチャートA flowchart showing an operation in which the brake control system according to the first embodiment measures a wheel diameter of a wheel. 実施の形態1に係るブレーキ制御システムが、制輪子が摩耗しているか否かを判定する第1の動作を示すフローチャートA flowchart showing a first operation in which the brake control system according to the first embodiment determines whether or not the brake shoes are worn. 実施の形態1に係るブレーキ制御システムが、制輪子が摩耗しているか否かを判定する第2の動作を示すフローチャートA flowchart showing a second operation in which the brake control system according to the first embodiment determines whether or not the brake shoes are worn. 実施の形態1に係るブレーキ制御システムが備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit provided in the brake control system which concerns on Embodiment 1 is configured by a processor and a memory. 実施の形態1に係るブレーキ制御システムが備える処理回路を専用のハードウェアで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit provided in the brake control system which concerns on Embodiment 1 is configured by the dedicated hardware. 実施の形態2に係るブレーキ制御システムにおいて、車輪の摩耗状態に応じて速度センサから出力される速度信号の周波数を示す図The figure which shows the frequency of the speed signal output from the speed sensor according to the wear state of a wheel in the brake control system which concerns on Embodiment 2. 実施の形態3に係るブレーキ制御システムにおいて、ブレーキシリンダによる押し付け力の累積値と、制輪子の摩耗量との関係の例を示す図The figure which shows the example of the relationship between the cumulative value of the pressing force by a brake cylinder, and the wear amount of a brake shoe in the brake control system which concerns on Embodiment 3. 実施の形態3に係るブレーキ制御システムにおいて、ブレーキシリンダの動作時間と、制輪子の摩耗量との関係の例を示す図The figure which shows the example of the relationship between the operation time of a brake cylinder, and the wear amount of a brake shoe in the brake control system which concerns on Embodiment 3. 実施の形態3に係るブレーキ制御システムにおいて、ブレーキシリンダの動作時間と、押し付け力の累積値との関係の例を示す図The figure which shows the example of the relationship between the operation time of a brake cylinder, and the cumulative value of a pressing force in the brake control system which concerns on Embodiment 3. 実施の形態3に係るブレーキ制御システムが空製品の異常を判定する動作を示すフローチャートA flowchart showing an operation in which the brake control system according to the third embodiment determines an abnormality of an empty product.
 以下に、本発明の実施の形態に係るブレーキ制御装置およびブレーキ制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The brake control device and the brake control method according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係るブレーキ制御システム30の構成例を示す図である。ブレーキ制御システム30は、鉄道車両100に搭載され、鉄道車両100のブレーキ20を制御するシステムである。ブレーキ制御システム30は、ブレーキ指令部1と、応荷重装置2と、速度センサ3と、ブレーキ制御部4と、回生ブレーキ制御部5と、電空変換弁6と、元空気タンク7と、中継弁8と、圧力センサ9と、ブレーキシリンダ10と、圧力センサ11と、制輪子12と、車輪13と、を備える。電空変換弁6、元空気タンク7、中継弁8、圧力センサ9、ブレーキシリンダ10、圧力センサ11、および制輪子12によって、ブレーキ20が構成される。なお、鉄道車両100は、実際には、複数の速度センサ3、ブレーキ制御部4、車輪13、およびブレーキ20を備えているものとする。また、複数の鉄道車両100によって列車が編成されている場合、ブレーキ指令部1など一部の構成については、列車の先頭車両および後尾車両など、特定の鉄道車両にのみ搭載されていてもよい。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the brake control system 30 according to the first embodiment of the present invention. The brake control system 30 is a system mounted on the railway vehicle 100 and controls the brake 20 of the railway vehicle 100. The brake control system 30 relays the brake command unit 1, the load receiving device 2, the speed sensor 3, the brake control unit 4, the regenerative brake control unit 5, the electropneumatic conversion valve 6, the source air tank 7, and the relay. A valve 8, a pressure sensor 9, a brake cylinder 10, a pressure sensor 11, a brake shoe 12, and a wheel 13 are provided. The brake 20 is composed of an electropneumatic conversion valve 6, a source air tank 7, a relay valve 8, a pressure sensor 9, a brake cylinder 10, a pressure sensor 11, and a brake shoe 12. It is assumed that the railway vehicle 100 actually includes a plurality of speed sensors 3, a brake control unit 4, wheels 13, and a brake 20. Further, when a train is formed by a plurality of railroad vehicles 100, some configurations such as the brake command unit 1 may be mounted only on a specific railroad vehicle such as a leading vehicle and a trailing vehicle of the train.
 ブレーキ指令部1は、鉄道車両100の図示しない運転台などに設置され、ブレーキ20の制御内容を示すブレーキ指令1Aを生成して出力する。ブレーキ20の制御内容とは、ブレーキ20を作用させる制御、ブレーキ20を解除する制御などである。ブレーキ20を作用させる制御は、鉄道車両100を減速させる制御、いわゆるブレーキをかける制御である。ブレーキ20を解除する制御は、鉄道車両100の速度を上げることができるようにする制御、いわゆるブレーキを緩める制御である。ブレーキ指令部1は、運転士などから操作を受け付けて、受け付けた操作内容に応じたブレーキ指令1Aを生成してもよい。 The brake command unit 1 is installed in a driver's cab or the like (not shown) of the railway vehicle 100, and generates and outputs a brake command 1A indicating the control content of the brake 20. The control content of the brake 20 includes control for operating the brake 20, control for releasing the brake 20, and the like. The control for operating the brake 20 is a control for decelerating the railway vehicle 100, that is, a control for applying a brake. The control for releasing the brake 20 is a control for increasing the speed of the railway vehicle 100, that is, a control for releasing the brake. The brake command unit 1 may receive an operation from a driver or the like and generate a brake command 1A according to the received operation content.
 応荷重装置2は、図示しない空気ばね圧センサなどを用いて、乗客などによって鉄道車両100にかかる圧力を示す応荷重信号2Aを生成して出力する。 The load-bearing device 2 uses an air spring pressure sensor or the like (not shown) to generate and output a load-bearing signal 2A indicating the pressure applied to the railway vehicle 100 by passengers or the like.
 速度センサ3は、車輪13の回転速度に基づいて、鉄道車両100の速度を示す速度信号3Aを生成して出力するセンサである。なお、図1では省略しているが、速度センサ3は鉄道車両100の前後の台車に設置されており、鉄道車両100では、各車輪13から速度を検出することが可能である。 The speed sensor 3 is a sensor that generates and outputs a speed signal 3A indicating the speed of the railroad vehicle 100 based on the rotation speed of the wheels 13. Although omitted in FIG. 1, the speed sensor 3 is installed on the bogies in front of and behind the railroad vehicle 100, and the railroad vehicle 100 can detect the speed from each wheel 13.
 ブレーキ制御部4は、鉄道車両100において、車輪13に制輪子12を押し付けて制動力を発生させるブレーキ制御装置である。ブレーキ制御部4は、取得部41と、制御部42と、記憶部43と、を備える。 The brake control unit 4 is a brake control device that generates braking force by pressing the brake shoes 12 against the wheels 13 in the railroad vehicle 100. The brake control unit 4 includes an acquisition unit 41, a control unit 42, and a storage unit 43.
 取得部41は、ブレーキ指令部1からブレーキ指令1Aを取得し、応荷重装置2から応荷重信号2Aを取得し、速度センサ3から速度信号3Aを取得する。また、取得部41は、回生ブレーキ制御部5から回生フィードバック信号5Aを取得し、圧力センサ9から電空変換弁6の空気信号6Aの指令圧であるAC(Air Cylinder)圧のフィードバック指令9Aを取得し、圧力センサ11から中継弁8のブレーキシリンダ圧8AであるBC(Brake Cylinder)圧のフィードバック指令11Aを取得する。 The acquisition unit 41 acquires the brake command 1A from the brake command unit 1, acquires the load response signal 2A from the load response device 2, and acquires the speed signal 3A from the speed sensor 3. Further, the acquisition unit 41 acquires the regenerative feedback signal 5A from the regenerative brake control unit 5, and issues the AC (Air Cylinder) pressure feedback command 9A, which is the command pressure of the air signal 6A of the electropneumatic conversion valve 6, from the pressure sensor 9. The feedback command 11A of the BC (Brake Cylinder) pressure, which is the brake cylinder pressure 8A of the relay valve 8, is acquired from the pressure sensor 11.
 記憶部43は、車輪13の車輪径に応じて設定された、ブレーキ20の動作時間に対する閾値を記憶する。記憶部43は、制御部42で測定された車輪13の現在の車輪径の情報を記憶していてもよい。 The storage unit 43 stores a threshold value for the operating time of the brake 20 set according to the wheel diameter of the wheel 13. The storage unit 43 may store information on the current wheel diameter of the wheel 13 measured by the control unit 42.
 制御部42は、ブレーキ指令1A、応荷重信号2A、および速度信号3Aに基づいて、鉄道車両100に対する必要なブレーキ力を算出し、鉄道車両100に対する必要なブレーキ力を示す回生パターン信号4Aを出力する。制御部42は、鉄道車両100に対する必要なブレーキ力から、回生フィードバック信号5Aの値を減算したものを空制補足量とする圧力制御信号4Bを生成して出力する。また、制御部42は、ブレーキ20の制御を開始してから物理量であるブレーキシリンダ圧8Aまたは指令圧が一定の値になるまでの動作時間と、記憶部43に記憶されている閾値とに基づいて、制輪子12の摩耗状態を検出する。 The control unit 42 calculates the required braking force for the railway vehicle 100 based on the brake command 1A, the load-bearing signal 2A, and the speed signal 3A, and outputs a regenerative pattern signal 4A indicating the required braking force for the railway vehicle 100. To do. The control unit 42 generates and outputs a pressure control signal 4B having the value obtained by subtracting the value of the regenerative feedback signal 5A from the required braking force for the railroad vehicle 100 as the air control supplement amount. Further, the control unit 42 is based on the operation time from the start of control of the brake 20 until the brake cylinder pressure 8A or the command pressure, which is a physical quantity, reaches a constant value, and the threshold value stored in the storage unit 43. The wear state of the brake shoe 12 is detected.
 回生ブレーキ制御部5は、回生パターン信号4Aに基づいて、実トルクに応じた実回生ブレーキ力を算出し、実回生ブレーキ力を示す回生フィードバック信号5Aを生成して出力する。 The regenerative brake control unit 5 calculates the actual regenerative braking force according to the actual torque based on the regenerative pattern signal 4A, and generates and outputs the regenerative feedback signal 5A indicating the actual regenerative braking force.
 電空変換弁6は、ブレーキ制御部4の制御部42から出力される電気信号である圧力制御信号4Bの制御信号を、空気の圧力によって制御内容を示す空気信号6Aに変換する。 The electropneumatic conversion valve 6 converts the control signal of the pressure control signal 4B, which is an electric signal output from the control unit 42 of the brake control unit 4, into an air signal 6A indicating the control content by the air pressure.
 元空気タンク7は、貯留されている圧縮された空気である圧縮空気7Aを出力する空気タンクである。 The original air tank 7 is an air tank that outputs compressed air 7A, which is stored compressed air.
 中継弁8は、電空変換弁6から出力された空気信号6Aの空気圧である指令圧に応じた圧縮空気7Aを出力することにより、空気信号6Aの指令圧に応じたブレーキシリンダ圧8Aの空気をブレーキシリンダ10に出力する。ブレーキシリンダ圧8Aは、空気信号6Aが圧縮空気7Aによって増幅されたものである。ブレーキシリンダ圧8Aと空気信号6Aの指令圧とは、比例関係にあるものとする。 The relay valve 8 outputs compressed air 7A corresponding to the command pressure, which is the air pressure of the air signal 6A output from the electropneumatic conversion valve 6, thereby providing air with a brake cylinder pressure 8A corresponding to the command pressure of the air signal 6A. Is output to the brake cylinder 10. The brake cylinder pressure 8A is an air signal 6A amplified by compressed air 7A. It is assumed that the brake cylinder pressure 8A and the command pressure of the air signal 6A are in a proportional relationship.
 圧力センサ9は、空気信号6Aの空気圧である指令圧を検出するセンサである。指令圧は、車輪13に制輪子12を押し付ける力を示す物理量である。圧力センサ9は、検出した空気信号6Aの指令圧をフィードバック指令9Aとして、ブレーキ制御部4に帰還させる。 The pressure sensor 9 is a sensor that detects the command pressure, which is the air pressure of the air signal 6A. The command pressure is a physical quantity indicating a force that presses the brake shoe 12 against the wheel 13. The pressure sensor 9 feeds back the detected air signal 6A as a feedback command 9A to the brake control unit 4.
 ブレーキシリンダ10は、ブレーキシリンダ圧8Aによって、車輪13に制輪子12を押し付ける。 The brake cylinder 10 presses the brake shoe 12 against the wheel 13 by the brake cylinder pressure 8A.
 圧力センサ11は、ブレーキシリンダ10の空気圧であるブレーキシリンダ圧8Aを検出するセンサである。ブレーキシリンダ圧8Aは、車輪13に制輪子12を押し付ける力を示す物理量である。圧力センサ11は、検出したブレーキシリンダ圧8Aをフィードバック指令11Aとして、ブレーキ制御部4に帰還させる。以降の説明において、圧力センサ11を第1の圧力センサと称し、圧力センサ9を第2の圧力センサと称することがある。 The pressure sensor 11 is a sensor that detects the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10. The brake cylinder pressure 8A is a physical quantity indicating a force that presses the brake shoe 12 against the wheel 13. The pressure sensor 11 returns the detected brake cylinder pressure 8A to the brake control unit 4 as a feedback command 11A. In the following description, the pressure sensor 11 may be referred to as a first pressure sensor, and the pressure sensor 9 may be referred to as a second pressure sensor.
 制輪子12は、摩擦係数を有している。制輪子12は、ブレーキシリンダ10によって車輪13に押し付けられることで、ブレーキ力、すなわち制動力を発生させる。ブレーキ制御システム30におけるブレーキ力は、制輪子12の摩擦係数と、ブレーキシリンダ圧8Aの積によって算出することができる。 The brake shoe 12 has a coefficient of friction. The brake shoe 12 is pressed against the wheel 13 by the brake cylinder 10 to generate a braking force, that is, a braking force. The braking force in the brake control system 30 can be calculated by the product of the friction coefficient of the brake shoe 12 and the brake cylinder pressure 8A.
 車輪13は、ブレーキシリンダ10によって制輪子12を押し付けられることで、ブレーキ力、すなわち制動力を発生させる。 The wheel 13 generates a braking force, that is, a braking force by pressing the brake shoe 12 by the brake cylinder 10.
 つづいて、ブレーキ制御システム30の動作について説明する。本実施の形態では、ブレーキ制御システム30は、規定されたタイミングにおいて、車輪13の車輪径を測定する。ブレーキ制御システム30は、車輪13の車輪径を考慮して、車輪13に制輪子12を押し付けるときの動作時間、または車輪13から制輪子12を引き離すときの動作時間に基づいて、制輪子12の摩耗状態を検出する。 Next, the operation of the brake control system 30 will be described. In the present embodiment, the brake control system 30 measures the wheel diameter of the wheel 13 at a specified timing. The brake control system 30 considers the wheel diameter of the wheel 13 and is based on the operating time when the brake shoe 12 is pressed against the wheel 13 or the operating time when the brake shoe 12 is pulled away from the wheel 13. Detect the wear condition.
 図2は、実施の形態1に係るブレーキ制御システム30において、制輪子12が新品状態かつ車輪13が新品状態のときの車輪13、制輪子12、およびブレーキシリンダ10を示す第1の図である。図2は、車輪13に制輪子12を押し付けていないときの、車輪13、制輪子12、およびブレーキシリンダ10の状態を示すものである。図3は、実施の形態1に係るブレーキ制御システム30において、制輪子12が新品状態かつ車輪13が新品状態のときの車輪13、制輪子12、およびブレーキシリンダ10を示す第2の図である。図3は、車輪13に制輪子12を押し付けているときの、車輪13、制輪子12、およびブレーキシリンダ10の状態を示すものである。図2と図3とを比較して分かるように、ブレーキ制御システム30は、制輪子12が摩耗していない状態では、ブレーキシリンダ10の容積を少し大きくすることで、すなわち短いストロークによって、車輪13に制輪子12を押し付けることができる。 FIG. 2 is a first diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a new state and the wheels 13 are in a new state in the brake control system 30 according to the first embodiment. .. FIG. 2 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are not pressed against the wheels 13. FIG. 3 is a second diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a new state and the wheels 13 are in a new state in the brake control system 30 according to the first embodiment. .. FIG. 3 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13. As can be seen by comparing FIG. 2 and FIG. 3, the brake control system 30 has a wheel 13 by slightly increasing the volume of the brake cylinder 10, that is, by a short stroke, in a state where the brake shoes 12 are not worn. The brake shoe 12 can be pressed against the wheel.
 ここで、新品時すなわち摩耗していない状態の車輪13の車輪径が既知であるとする。ブレーキ制御部4は、車輪13に制輪子12を押し付けて図2から図3の状態になるまでの動作時間を、基準の動作時間として記憶しておく。ブレーキ制御部4が車輪13に制輪子12を押し付けるときはブレーキシリンダ10に空気が供給されるため、このときの動作時間を供給時間とする。また、ブレーキ制御部4は、車輪13から制輪子12を引き離して図3から図2の状態になるまでの動作時間を、基準の動作時間として記憶しておく。ブレーキ制御部4が車輪13から制輪子12を引き離すときはブレーキシリンダ10から空気が排気されるため、このときの動作時間を排気時間とする。 Here, it is assumed that the wheel diameter of the wheel 13 when it is new, that is, when it is not worn, is known. The brake control unit 4 stores the operating time from pressing the brake shoe 12 against the wheel 13 to the state of FIGS. 2 to 3 as a reference operating time. When the brake control unit 4 presses the brake shoe 12 against the wheel 13, air is supplied to the brake cylinder 10, so the operating time at this time is set as the supply time. Further, the brake control unit 4 stores the operating time from pulling the brake shoe 12 away from the wheel 13 to the state of FIGS. 3 to 2 as a reference operating time. When the brake control unit 4 pulls the brake shoes 12 away from the wheels 13, air is exhausted from the brake cylinder 10, so the operating time at this time is defined as the exhaust time.
 図4は、実施の形態1に係るブレーキ制御システム30において、制輪子12が摩耗状態かつ車輪13が新品状態のときの車輪13、制輪子12、およびブレーキシリンダ10を示す図である。図4は、車輪13に制輪子12を押し付けているときの、車輪13、制輪子12、およびブレーキシリンダ10の状態を示すものである。制輪子12は、鉄道車両100が運用されている間、ブレーキ20が何度も作用されることによって摩耗する。図3と図4とを比較して分かるように、ブレーキ制御システム30は、制輪子12が摩耗している状態では、制輪子12が摩耗していない状態と比較して、ブレーキシリンダ10の容積を大きくすることで、すなわち長いストロークによって、車輪13に制輪子12を押し付けることができる。制輪子12が摩耗している図4の場合では、制輪子12が摩耗していない図3の場合と比較して、供給時間が長くなる。なお、制輪子12が摩耗している図4の場合では、制輪子12が摩耗していない図3の場合と比較して、排気時間も長くなる。 FIG. 4 is a diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a worn state and the wheels 13 are in a new state in the brake control system 30 according to the first embodiment. FIG. 4 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13. The brake shoe 12 is worn by the brake 20 being repeatedly applied while the railway vehicle 100 is in operation. As can be seen by comparing FIG. 3 and FIG. 4, the brake control system 30 has a volume of the brake cylinder 10 in the state where the brake shoe 12 is worn as compared with the state where the brake shoe 12 is not worn. The brake shoe 12 can be pressed against the wheel 13 by increasing the size, that is, by a long stroke. In the case of FIG. 4 in which the brake shoe 12 is worn, the supply time is longer than in the case of FIG. 3 in which the brake shoe 12 is not worn. In the case of FIG. 4 in which the brake shoe 12 is worn, the exhaust time is longer than in the case of FIG. 3 in which the brake shoe 12 is not worn.
 ここで、ブレーキ制御部4は、制輪子12の摩耗状態が、制輪子12の交換が必要な摩耗量になったときの供給時間を、供給時間閾値として記憶しておく。ブレーキ制御部4は、車輪13に制輪子12を押し付けたときの動作時間すなわち供給時間が供給時間閾値に達した場合、制輪子12の摩耗状態が制輪子12の交換が必要な摩耗量になったとして、制輪子12の交換を促すアラームを出力する。また、ブレーキ制御部4は、制輪子12の摩耗状態が、制輪子12の交換が必要な摩耗量になったときの排気時間を、排気時間閾値として記憶しておく。ブレーキ制御部4は、車輪13から制輪子12を引き離すときの動作時間すなわち排気時間が排気時間閾値に達した場合、制輪子12の摩耗状態が制輪子12の交換が必要な摩耗量になったとして、制輪子12の交換を促すアラームを出力する。なお、ブレーキ制御部4は、供給時間閾値および排気時間閾値のうち少なくとも1つを用いて、制輪子12の摩耗状態を検出してもよい。鉄道車両100は、制輪子12が交換されることで、図2のような状態に戻ることができる。 Here, the brake control unit 4 stores the supply time when the wear state of the brake shoe 12 becomes the amount of wear required to replace the brake shoe 12 as a supply time threshold value. When the operating time when the brake shoe 12 is pressed against the wheel 13, that is, the supply time reaches the supply time threshold, the brake control unit 4 changes the wear state of the brake shoe 12 to the amount of wear required to replace the brake shoe 12. Therefore, an alarm prompting the replacement of the brake shoe 12 is output. Further, the brake control unit 4 stores the exhaust time when the wear state of the brake shoe 12 becomes the amount of wear required to replace the brake shoe 12 as an exhaust time threshold value. When the operating time when the brake shoe 12 is pulled away from the wheel 13, that is, the exhaust time reaches the exhaust time threshold, the brake control unit 4 changes the wear state of the brake shoe 12 to the amount of wear that requires replacement of the brake shoe 12. As a result, an alarm prompting the replacement of the brake shoe 12 is output. The brake control unit 4 may detect the wear state of the brake shoe 12 by using at least one of the supply time threshold value and the exhaust time threshold value. The railroad vehicle 100 can return to the state as shown in FIG. 2 by exchanging the brake shoes 12.
 ブレーキ制御システム30では、上記の動作を繰り返すことによって何度も制輪子12を交換しているうちに、車輪13の車輪径も小さくなってくる。車輪13の車輪径が小さくなる要因としては、制輪子12との摩擦による摩耗、車輪13に車輪フラットが発生した場合の転削処理、などがある。以降の説明では、車輪13の車輪径が摩耗によって小さくなったものとして説明する。 In the brake control system 30, the wheel diameter of the wheel 13 becomes smaller as the brake shoe 12 is replaced many times by repeating the above operation. Factors that reduce the wheel diameter of the wheel 13 include wear due to friction with the brake shoe 12, and milling treatment when the wheel flat occurs on the wheel 13. In the following description, it is assumed that the wheel diameter of the wheel 13 is reduced due to wear.
 図5は、実施の形態1に係るブレーキ制御システム30において、制輪子12が新品状態かつ車輪13が摩耗状態のときの車輪13、制輪子12、およびブレーキシリンダ10を示す図である。図5は、車輪13に制輪子12を押し付けているときの、車輪13、制輪子12、およびブレーキシリンダ10の状態を示すものである。図3と図5とを比較して分かるように、制輪子12が新品状態であっても、車輪13の車輪径が小さくなった場合には、ブレーキシリンダ10の容積を大きくすることで、すなわち長いストロークによって、車輪13に制輪子12を押し付けることができる。車輪13が摩耗している図5の場合では、車輪13が摩耗していない図3の場合と比較して、供給時間が長くなる。なお、車輪13が摩耗している図5の場合では、車輪13が摩耗していない図3の場合と比較して、排気時間も長くなる。 FIG. 5 is a diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a new state and the wheels 13 are in a worn state in the brake control system 30 according to the first embodiment. FIG. 5 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13. As can be seen by comparing FIG. 3 and FIG. 5, even if the brake shoe 12 is in a new state, when the wheel diameter of the wheel 13 becomes smaller, the volume of the brake cylinder 10 is increased, that is, The brake shoe 12 can be pressed against the wheel 13 by a long stroke. In the case of FIG. 5 in which the wheels 13 are worn, the supply time is longer than in the case of FIG. 3 in which the wheels 13 are not worn. In the case of FIG. 5 in which the wheels 13 are worn, the exhaust time is longer than in the case of FIG. 3 in which the wheels 13 are not worn.
 図6は、実施の形態1に係るブレーキ制御システム30において、制輪子12が摩耗状態かつ車輪13が摩耗状態のときの車輪13、制輪子12、およびブレーキシリンダ10を示す図である。図6は、車輪13に制輪子12を押し付けているときの、車輪13、制輪子12、およびブレーキシリンダ10の状態を示すものである。図4と図6とを比較して分かるように、制輪子12が摩耗した場合、車輪13の車輪径が小さくなっているときは、ブレーキシリンダ10の容積をさらに大きくすることで、すなわちさらに長いストロークによって、車輪13に制輪子12を押し付けることができる。制輪子12が摩耗している図6の場合では、制輪子12が摩耗していない図5の場合と比較して、供給時間が長くなる。なお、制輪子12が摩耗している図6の場合では、制輪子12が摩耗していない図5の場合と比較して、排気時間も長くなる。 FIG. 6 is a diagram showing the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are in a worn state and the wheels 13 are in a worn state in the brake control system 30 according to the first embodiment. FIG. 6 shows the states of the wheels 13, the brake shoes 12, and the brake cylinder 10 when the brake shoes 12 are pressed against the wheels 13. As can be seen by comparing FIG. 4 and FIG. 6, when the brake shoe 12 is worn and the wheel diameter of the wheel 13 is small, the volume of the brake cylinder 10 is further increased, that is, it is longer. The brake shoes 12 can be pressed against the wheels 13 by the stroke. In the case of FIG. 6 in which the brake shoe 12 is worn, the supply time is longer than in the case of FIG. 5 in which the brake shoe 12 is not worn. In the case of FIG. 6 in which the brake shoe 12 is worn, the exhaust time is longer than in the case of FIG. 5 in which the brake shoe 12 is not worn.
 ブレーキ制御システム30は、仮に、車輪13の車輪径が不明の場合、図4または図5のように、ブレーキシリンダ10の容積を大きくして車輪13に制輪子12を押し付けても、ブレーキシリンダ10のストロークが長くなる原因が、制輪子12の摩耗によるものなのか、車輪13の摩耗によるものなのかが分からない。一方、本実施の形態のように、ブレーキ制御システム30は、車輪13の車輪径が測定されている場合、図4または図5のように、ブレーキシリンダ10の容積を大きくして車輪13に制輪子12を押し付けたときでも、ブレーキシリンダ10のストロークが長くなる原因が、制輪子12の摩耗によるものなのか、車輪13の摩耗によるものなのかを把握することができる。 If the wheel diameter of the wheel 13 is unknown, the brake control system 30 can increase the volume of the brake cylinder 10 and press the brake shoe 12 against the wheel 13 as shown in FIG. 4 or 5. It is unknown whether the cause of the long stroke is due to the wear of the brake shoes 12 or the wear of the wheels 13. On the other hand, as in the present embodiment, when the wheel diameter of the wheel 13 is measured, the brake control system 30 increases the volume of the brake cylinder 10 and controls the wheel 13 as shown in FIG. 4 or FIG. Even when the wheel element 12 is pressed, it is possible to grasp whether the cause of the long stroke of the brake cylinder 10 is due to the wear of the brake shoe 12 or the wear of the wheel 13.
 図7は、実施の形態1に係るブレーキ制御システム30において、車輪13が新品のときの制輪子12の摩耗状態に応じた動作時間の推移を示す図である。なお、図7ではブレーキシリンダ圧8Aを「BC圧」と表記している。以降においても同様とする。図7(a)は、ブレーキ指令部1から出力されるブレーキ指令1Aであり、H(ハイ)のときがブレーキ20を作用させる制御を示し、L(ロー)のときがブレーキ20を解除する制御を示している。図7(b)は、車輪13が新品時すなわち摩耗していない状態、かつ制輪子12が新品時すなわち摩耗していない状態のときの、圧力センサ11で検出されるブレーキシリンダ圧8Aの推移を示している。ブレーキ指令1AがHの区間かつブレーキシリンダ圧8Aが一定の区間が、図3の状態に相当する。図7(c)は、車輪13が新品時すなわち摩耗していない状態、かつ制輪子12が摩耗した状態のときの、圧力センサ11で検出されるブレーキシリンダ圧8Aの推移を示している。ブレーキ指令1AがHの区間かつブレーキシリンダ圧8Aが一定の区間が、図4の状態に相当する。制御部42は、図7(c)に示すように、ブレーキシリンダ圧8Aの供給時間が供給時間閾値を超えた場合、またはブレーキシリンダ圧8Aの排気時間が排気時間閾値を超えた場合、制輪子12が摩耗していると判定し、アラームを出力する。なお、制御部42において制輪子12が摩耗していると判定する場合は、制輪子12の摩耗量が制輪子12の交換が必要なレベルになった場合とする。以降においても同様とする。 FIG. 7 is a diagram showing a transition of the operating time according to the wear state of the brake shoe 12 when the wheel 13 is new in the brake control system 30 according to the first embodiment. In FIG. 7, the brake cylinder pressure 8A is referred to as “BC pressure”. The same shall apply hereinafter. FIG. 7A is a brake command 1A output from the brake command unit 1, which indicates a control for operating the brake 20 when it is H (high) and a control for releasing the brake 20 when it is L (low). Is shown. FIG. 7B shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is new, that is, when it is not worn, and when the brake shoe 12 is new, that is, when it is not worn. Shown. The section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG. FIG. 7C shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is new, that is, when the wheel 13 is not worn, and when the brake shoe 12 is worn. The section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG. As shown in FIG. 7C, the control unit 42 controls the brake shoes when the supply time of the brake cylinder pressure 8A exceeds the supply time threshold value or when the exhaust time of the brake cylinder pressure 8A exceeds the exhaust time threshold value. It is determined that 12 is worn, and an alarm is output. When the control unit 42 determines that the brake shoes 12 are worn, it is assumed that the amount of wear of the brake shoes 12 reaches a level at which the brake shoes 12 need to be replaced. The same shall apply hereinafter.
 図8は、実施の形態1に係るブレーキ制御システム30において、車輪13が摩耗したときの制輪子12の摩耗状態に応じた動作時間の推移を示す図である。図8(a)は、ブレーキ指令部1から出力されるブレーキ指令1Aであり、H(ハイ)のときがブレーキ20を作用させる制御を示し、L(ロー)のときがブレーキ20を解除する制御を示している。図8(b)は、車輪13が摩耗時すなわち摩耗している状態、かつ制輪子12が新品時すなわち摩耗していない状態のときの、圧力センサ11で検出されるブレーキシリンダ圧8Aの推移を示している。ブレーキ指令1AがHの区間かつブレーキシリンダ圧8Aが一定の区間が、図5の状態に相当する。図8(c)は、車輪13が摩耗時すなわち摩耗している状態、かつ制輪子12が摩耗した状態のときの、圧力センサ11で検出されるブレーキシリンダ圧8Aの推移を示している。ブレーキ指令1AがHの区間かつブレーキシリンダ圧8Aが一定の区間が、図6の状態に相当する。制御部42は、図8(c)に示すように、ブレーキシリンダ圧8Aの供給時間が供給時間閾値を超えた場合、またはブレーキシリンダ圧8Aの排気時間が排気時間閾値を超えた場合、制輪子12が摩耗していると判定し、アラームを出力する。 FIG. 8 is a diagram showing a transition of the operating time according to the wear state of the brake shoe 12 when the wheel 13 is worn in the brake control system 30 according to the first embodiment. FIG. 8A is a brake command 1A output from the brake command unit 1, which indicates a control for operating the brake 20 when it is H (high) and a control for releasing the brake 20 when it is L (low). Is shown. FIG. 8B shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is worn, that is, when the wheel 13 is worn, and when the brake shoe 12 is new, that is, when the wheel 13 is not worn. Shown. The section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG. FIG. 8C shows the transition of the brake cylinder pressure 8A detected by the pressure sensor 11 when the wheel 13 is worn, that is, when the wheel 13 is worn and when the brake shoe 12 is worn. The section where the brake command 1A is H and the section where the brake cylinder pressure 8A is constant corresponds to the state shown in FIG. As shown in FIG. 8C, the control unit 42 controls the brake shoes when the supply time of the brake cylinder pressure 8A exceeds the supply time threshold value or when the exhaust time of the brake cylinder pressure 8A exceeds the exhaust time threshold value. It is determined that 12 is worn, and an alarm is output.
 図7および図8に示すように、本実施の形態では、ブレーキ制御システム30は、制輪子12が摩耗しているか否かを判定するために使用する閾値、すなわち供給時間閾値および排気時間閾値を車輪13の摩耗状態によって変化させる。具体的には、ブレーキ制御システム30は、車輪13が摩耗しているほど、閾値すなわち供給時間閾値および排気時間閾値を長くする。これは、図5および図6に示すように、車輪13が摩耗して車輪径が小さくなるほど、ブレーキ制御システム30は、車輪13に制輪子12を押し付けるため、ブレーキシリンダ10の容積を大きくする、すなわちストロークを長くする必要があるためである。一般的に、同じ種類の鉄道車両100では、使用される車輪13の種類、および制輪子12の種類は決まっている。そのため、ブレーキ制御システム30の設計者などが、シミュレーションまたは実測などによって、車輪13の車輪径に応じて、車輪13に制輪子12を押し付けたときのブレーキシリンダ圧8Aが一定の圧力になるまでの動作時間に基づく閾値の情報をブレーキ制御部4の記憶部43に記憶させておく。 As shown in FIGS. 7 and 8, in the present embodiment, the brake control system 30 sets a threshold value used for determining whether or not the brake shoe 12 is worn, that is, a supply time threshold value and an exhaust time threshold value. It is changed according to the wear state of the wheel 13. Specifically, the brake control system 30 increases the threshold value, that is, the supply time threshold value and the exhaust time threshold value, as the wheels 13 are worn. This is because, as shown in FIGS. 5 and 6, as the wheel 13 wears and the wheel diameter becomes smaller, the brake control system 30 presses the brake shoe 12 against the wheel 13 to increase the volume of the brake cylinder 10. That is, it is necessary to lengthen the stroke. Generally, in the railway vehicle 100 of the same type, the type of wheel 13 and the type of brake shoe 12 used are fixed. Therefore, until the brake cylinder pressure 8A becomes a constant pressure when the brake shoe 12 is pressed against the wheel 13 according to the wheel diameter of the wheel 13 by the designer of the brake control system 30 or the like by simulation or actual measurement. Information on the threshold value based on the operation time is stored in the storage unit 43 of the brake control unit 4.
 また、ブレーキ制御システム30の設計者などが、シミュレーションまたは実測などによって、新品すなわち摩耗していない状態の制輪子12を車輪13に押し付けてブレーキシリンダ圧8Aが一定の圧力になるまでの動作時間と車輪13の車輪径との対応関係の情報をブレーキ制御部4の記憶部43に記憶させておく。これにより、ブレーキ制御システム30は、制輪子12が交換されるごとに、車輪13に制輪子12を押し付けてブレーキシリンダ圧8Aが一定の圧力になるまでの動作時間から、車輪13の車輪径を測定することができる。 In addition, the operating time until the brake cylinder pressure 8A becomes a constant pressure when the designer of the brake control system 30 presses the brake shoe 12 in a new state, that is, in a non-wearing state, against the wheel 13 by simulation or actual measurement. Information on the correspondence relationship with the wheel diameter of the wheel 13 is stored in the storage unit 43 of the brake control unit 4. As a result, the brake control system 30 determines the wheel diameter of the wheel 13 from the operating time until the brake cylinder pressure 8A becomes a constant pressure by pressing the brake shoe 12 against the wheel 13 each time the brake shoe 12 is replaced. Can be measured.
 ブレーキ制御システム30のブレーキ制御部4の動作を、フローチャートを用いて説明する。図9は、実施の形態1に係るブレーキ制御システム30が、車輪13の車輪径を測定する動作を示すフローチャートである。ブレーキ制御システム30において、ブレーキ制御部4の制御部42は、制輪子12が交換された場合(ステップS1:Yes)、鉄道車両100の運用開始前に、動作時間に基づいて、車輪13の車輪径を測定する(ステップS2)。制御部42は、車輪13の車輪径を測定してから制輪子12が交換されていない場合(ステップS1:No)、ステップS2の動作を省略する。制御部42は、車輪13の車輪径に基づいて、車輪13の摩耗状態を検出することができる。制御部42は、車輪13の車輪径が規定された値になった場合、車輪13の摩耗状態が車輪13の交換が必要な摩耗量になったとして、制輪子12を交換する場合と同様、車輪13の交換を促すアラームを出力してもよい。 The operation of the brake control unit 4 of the brake control system 30 will be described with reference to a flowchart. FIG. 9 is a flowchart showing an operation in which the brake control system 30 according to the first embodiment measures the wheel diameter of the wheel 13. In the brake control system 30, when the brake shoes 12 are replaced (step S1: Yes), the control unit 42 of the brake control unit 4 determines the wheels of the wheels 13 based on the operating time before the start of operation of the railway vehicle 100. The diameter is measured (step S2). If the brake shoe 12 has not been replaced after measuring the wheel diameter of the wheel 13, the control unit 42 omits the operation of step S2. The control unit 42 can detect the wear state of the wheel 13 based on the wheel diameter of the wheel 13. When the wheel diameter of the wheel 13 reaches a specified value, the control unit 42 assumes that the wear state of the wheel 13 has reached the amount of wear required for the wheel 13 to be replaced, as in the case of replacing the brake shoe 12. An alarm prompting the replacement of the wheel 13 may be output.
 図10は、実施の形態1に係るブレーキ制御システム30が、制輪子12が摩耗しているか否かを判定する第1の動作を示すフローチャートである。ブレーキ制御システム30において、ブレーキ制御部4の制御部42は、車輪13の車輪径の情報を取得する(ステップS11)。制御部42は、図9に示すフローチャートの動作によって測定された車輪径の情報を用いてもよいし、鉄道車両100の定期点検時に検査員などによって測定された車輪径の情報を用いてもよい。制御部42は、取得した車輪径の情報に基づいて、車輪径に応じた閾値を記憶部43から読み出し、ブレーキシリンダ10の動作時間に対する、車輪径に応じた閾値を設定する(ステップS12)。制御部42は、ブレーキ指令部1からブレーキ20の制御内容を示すブレーキ指令1Aを取得する。制御部42は、取得部41を介して、圧力センサ11から、ブレーキシリンダ10にかかるブレーキシリンダ圧8Aの情報を取得する(ステップS13)。 FIG. 10 is a flowchart showing a first operation in which the brake control system 30 according to the first embodiment determines whether or not the brake shoes 12 are worn. In the brake control system 30, the control unit 42 of the brake control unit 4 acquires information on the wheel diameter of the wheel 13 (step S11). The control unit 42 may use the wheel diameter information measured by the operation of the flowchart shown in FIG. 9, or may use the wheel diameter information measured by an inspector or the like at the time of periodic inspection of the railway vehicle 100. .. The control unit 42 reads a threshold value according to the wheel diameter from the storage unit 43 based on the acquired information on the wheel diameter, and sets a threshold value according to the wheel diameter with respect to the operating time of the brake cylinder 10 (step S12). The control unit 42 acquires the brake command 1A indicating the control content of the brake 20 from the brake command unit 1. The control unit 42 acquires information on the brake cylinder pressure 8A applied to the brake cylinder 10 from the pressure sensor 11 via the acquisition unit 41 (step S13).
 制御部42は、圧力センサ11から取得したブレーキシリンダ圧8Aの情報に基づいて、ブレーキシリンダ10の動作時間を算出する(ステップS14)。制御部42は、動作時間として、ブレーキ20の制御内容がブレーキ20を作用させる制御の場合、ブレーキシリンダ圧8Aが第1の値から一定の値である第2の値になるまでの時間である供給時間を算出する。ブレーキ20の制御内容がブレーキ20を解除する制御の場合、ブレーキシリンダ圧8Aが第2の値から一定の値である第1の値になるまでの時間である供給時間を算出する。第1の値は、図7(b)、図7(c)、図8(b)、および図8(c)において、ブレーキ指令1AがLの区間において一定になっている値である。第2の値は、図7(b)、図7(c)、図8(b)、および図8(c)において、ブレーキ指令1AがHの区間において一定になっている値である。 The control unit 42 calculates the operating time of the brake cylinder 10 based on the information of the brake cylinder pressure 8A acquired from the pressure sensor 11 (step S14). The control unit 42 is the operating time, which is the time from the first value to the second value, which is a constant value, when the control content of the brake 20 is the control for operating the brake 20. Calculate the supply time. When the control content of the brake 20 is the control for releasing the brake 20, the supply time, which is the time from the second value to the first value, which is a constant value, is calculated. The first value is a value in which the brake command 1A is constant in the section of L in FIGS. 7 (b), 7 (c), 8 (b), and 8 (c). The second value is a value in which the brake command 1A is constant in the section H in FIGS. 7 (b), 7 (c), 8 (b), and 8 (c).
 制御部42は、動作時間と閾値とを比較する(ステップS15)。制御部42は、動作時間が閾値よりも大きい場合(ステップS15:Yes)、制輪子12が摩耗していると判定する(ステップS16)。制御部42は、運転士などに対して、制輪子12が摩耗していることを示すアラームを出力する(ステップS17)。制御部42は、アラームとして、鉄道車両100において図示しない運転台の表示部に制輪子12が摩耗していることを示す表示をしてもよいし、鉄道車両100において図示しない運転台のスピーカーから、制輪子12が摩耗していることを示す音声を出力してもよい。また、制御部42は、鉄道車両100の運行を管理する図示しない装置であって、地上に設置された装置に対して、アラームを出力してもよい。制御部42は、動作時間が閾値以下の場合(ステップS15:No)、制輪子12が摩耗していないとして、ステップS13の処理に戻る。 The control unit 42 compares the operation time with the threshold value (step S15). When the operation time is longer than the threshold value (step S15: Yes), the control unit 42 determines that the brake shoe 12 is worn (step S16). The control unit 42 outputs an alarm indicating that the brake shoe 12 is worn to the driver or the like (step S17). As an alarm, the control unit 42 may display on the display unit of the driver's cab (not shown) indicating that the brake shoes 12 are worn, or from the speaker of the driver's cab (not shown) in the railway vehicle 100. , The sound indicating that the brake shoe 12 is worn may be output. Further, the control unit 42 is a device (not shown) that manages the operation of the railway vehicle 100, and may output an alarm to the device installed on the ground. When the operation time is equal to or less than the threshold value (step S15: No), the control unit 42 returns to the process of step S13, assuming that the brake shoes 12 are not worn.
 なお、制御部42は、何らかの原因によって突発的に動作時間が長くなった場合、誤って制輪子12が摩耗していると判定してしまう。そのため、制御部42は、ステップS15において動作時間が閾値を超えた回数が規定された回数に達した場合、制輪子12が摩耗していると判定してもよい。図11は、実施の形態1に係るブレーキ制御システム30が、制輪子12が摩耗しているか否かを判定する第2の動作を示すフローチャートである。ステップS11からステップS15までの動作は前述の通りである。制御部42は、動作時間が閾値よりも大きい場合(ステップS15:Yes)、規定された期間内に動作時間が閾値を超えた回数が規定された回数に達したか否かを判定する(ステップS21)。制御部42は、規定された期間内に動作時間が閾値を超えた回数が規定された回数に達していない場合(ステップS21:No)、ステップS13の処理に戻る。制御部42は、規定された期間内に動作時間が閾値を超えた回数が規定された回数に達した場合(ステップS21:Yes)、制輪子12が摩耗していると判定する(ステップS16)。制御部42は、運転士などに対して、制輪子12が摩耗していることを示すアラームを出力する(ステップS17)。 If the operating time suddenly becomes long for some reason, the control unit 42 mistakenly determines that the brake shoe 12 is worn. Therefore, the control unit 42 may determine that the brake shoe 12 is worn when the number of times the operation time exceeds the threshold value reaches the specified number of times in step S15. FIG. 11 is a flowchart showing a second operation in which the brake control system 30 according to the first embodiment determines whether or not the brake shoes 12 are worn. The operations from step S11 to step S15 are as described above. When the operation time is larger than the threshold value (step S15: Yes), the control unit 42 determines whether or not the number of times the operation time exceeds the threshold value reaches the specified number of times within the specified period (step). S21). When the number of times the operation time exceeds the threshold value does not reach the specified number of times within the specified period (step S21: No), the control unit 42 returns to the process of step S13. When the number of times the operation time exceeds the threshold value reaches the specified number of times within the specified period (step S21: Yes), the control unit 42 determines that the brake shoe 12 is worn (step S16). .. The control unit 42 outputs an alarm indicating that the brake shoe 12 is worn to the driver or the like (step S17).
 このように、ブレーキ制御部4において、取得部41は、圧力センサ11から、物理量として、車輪13に制輪子12を押し付けるブレーキシリンダ10の空気圧であるブレーキシリンダ圧8Aを取得する。記憶部43は、閾値として、ブレーキ20を作用させるときにブレーキシリンダ圧8Aが第1の圧力から一定の値であって第1の圧力より大きい第2の圧力になるまでの供給時間閾値を記憶している。制御部42は、ブレーキ20を作用させる場合、ブレーキシリンダ圧8Aが第1の圧力から第2の圧力になるまでの供給時間と供給時間閾値とに基づいて、制輪子12の摩耗状態を検出する。 In this way, in the brake control unit 4, the acquisition unit 41 acquires the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10 that presses the brake shoes 12 against the wheels 13, as a physical quantity from the pressure sensor 11. As a threshold value, the storage unit 43 stores a supply time threshold value until the brake cylinder pressure 8A becomes a constant value from the first pressure and becomes a second pressure larger than the first pressure when the brake 20 is applied. doing. When the brake 20 is applied, the control unit 42 detects the wear state of the brake shoe 12 based on the supply time and the supply time threshold value from the first pressure to the second pressure of the brake cylinder pressure 8A. ..
 または、ブレーキ制御部4において、取得部41は、圧力センサ11から、物理量として、車輪13に制輪子12を押し付けるブレーキシリンダ10の空気圧であるブレーキシリンダ圧8Aを取得する。記憶部43は、閾値として、ブレーキ20を解除するときにブレーキシリンダ圧8Aが第2の圧力から一定の値である第1の圧力になるまでの排気時間閾値を記憶している。制御部42は、ブレーキ20を解除する場合、ブレーキシリンダ圧8Aが第2の圧力から第1の圧力になるまでの排気時間と排気時間閾値とに基づいて、制輪子12の摩耗状態を検出する。制御部42が供給時間閾値または排気時間閾値を用いて制輪子12の摩耗状態を検出する場合について説明したが、これらに限定されない。制御部42は、供給時間閾値および排気時間閾値の両方を用いて、制輪子12の摩耗状態を検出してもよい。この場合、記憶部43は、閾値として、供給時間閾値および排気時間閾値を記憶している。制御部42は、ブレーキ20を作用させる場合はブレーキシリンダ圧8Aが第1の圧力から第2の圧力になるまでの供給時間と供給時間閾値とに基づいて、ブレーキ20を解除する場合はブレーキシリンダ圧8Aが第2の圧力から第1の圧力になるまでの排気時間と排気時間閾値とに基づいて、制輪子12の摩耗状態を検出してもよい。このように、制御部42は、ブレーキ20を作用させる場合に供給時間閾値を用いて摩耗状態を検出する、または、ブレーキ20を解除する場合に排気時間閾値を用いて摩耗状態を検出する、ことの少なくともいずれか一方を行う。 Alternatively, in the brake control unit 4, the acquisition unit 41 acquires the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10 that presses the brake shoes 12 against the wheels 13, as a physical quantity from the pressure sensor 11. As a threshold value, the storage unit 43 stores the exhaust time threshold value from the second pressure to the first pressure, which is a constant value, when the brake cylinder pressure 8A is released. When the brake 20 is released, the control unit 42 detects the wear state of the brake shoe 12 based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold value of the brake cylinder pressure 8A. .. The case where the control unit 42 detects the wear state of the brake shoe 12 by using the supply time threshold value or the exhaust time threshold value has been described, but the present invention is not limited thereto. The control unit 42 may detect the wear state of the brake shoe 12 by using both the supply time threshold value and the exhaust time threshold value. In this case, the storage unit 43 stores the supply time threshold value and the exhaust time threshold value as threshold values. When the brake 20 is applied, the control unit 42 is based on the supply time from the first pressure to the second pressure when the brake cylinder pressure 8A is applied and the supply time threshold, and when the brake 20 is released, the brake cylinder The wear state of the brake shoe 12 may be detected based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold of the pressure 8A. In this way, the control unit 42 detects the wear state by using the supply time threshold value when the brake 20 is applied, or detects the wear state by using the exhaust time threshold value when the brake 20 is released. Do at least one of the above.
 なお、ブレーキ制御部4が、ブレーキシリンダ10の空気圧であるブレーキシリンダ圧8Aを用いて制輪子12の摩耗状態を検出する場合について説明したが、制輪子12の摩耗状態を検出する方法はこれに限定されない。前述のように、電空変換弁6の空気信号6Aの指令圧は、ブレーキシリンダ圧8Aと比例関係にある。そのため、ブレーキ制御部4は、電空変換弁6の空気信号6Aの空気圧である指令圧を用いて制輪子12の摩耗状態を検出することも可能である。 The case where the brake control unit 4 detects the wear state of the brake shoe 12 by using the brake cylinder pressure 8A which is the air pressure of the brake cylinder 10 has been described. However, the method of detecting the wear state of the brake shoe 12 is described in this case. Not limited. As described above, the command pressure of the air signal 6A of the electropneumatic conversion valve 6 is proportional to the brake cylinder pressure 8A. Therefore, the brake control unit 4 can also detect the wear state of the brake shoe 12 by using the command pressure which is the air pressure of the air signal 6A of the electropneumatic conversion valve 6.
 この場合、ブレーキ制御部4において、取得部41は、圧力センサ9から、物理量として、電空変換弁6から出力される空気信号6Aの空気圧である指令圧を取得する。記憶部43は、閾値として、ブレーキ20を作用させるときに指令圧が第1の圧力から一定の値であって第1の圧力より大きい第2の圧力になるまでの供給時間閾値を記憶している。制御部42は、ブレーキ20を作用させる場合、指令圧が第1の圧力から第2の圧力になるまでの供給時間と供給時間閾値とに基づいて、制輪子12の摩耗状態を検出する。 In this case, in the brake control unit 4, the acquisition unit 41 acquires the command pressure, which is the air pressure of the air signal 6A output from the electropneumatic conversion valve 6, as a physical quantity from the pressure sensor 9. As a threshold value, the storage unit 43 stores a supply time threshold value from the first pressure until the command pressure becomes a constant value and becomes a second pressure larger than the first pressure when the brake 20 is applied. There is. When the brake 20 is applied, the control unit 42 detects the wear state of the brake shoe 12 based on the supply time from the first pressure to the second pressure and the supply time threshold value.
 または、ブレーキ制御部4において、取得部41は、圧力センサ9から、物理量として、電空変換弁6から出力される空気信号6Aの空気圧である指令圧を取得する。記憶部43は、閾値として、ブレーキ20を解除するときに指令圧が第2の圧力から一定の値である第1の圧力になるまでの排気時間閾値を記憶している。制御部42は、ブレーキ20を解除する場合、指令圧が第2の圧力から第1の圧力になるまでの排気時間と排気時間閾値とに基づいて、制輪子12の摩耗状態を検出する。 Alternatively, in the brake control unit 4, the acquisition unit 41 acquires the command pressure, which is the air pressure of the air signal 6A output from the electropneumatic conversion valve 6, as a physical quantity from the pressure sensor 9. As a threshold value, the storage unit 43 stores an exhaust time threshold value from the second pressure to the first pressure, which is a constant value, when the brake 20 is released. When the brake 20 is released, the control unit 42 detects the wear state of the brake shoe 12 based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold value.
 つづいて、ブレーキ制御システム30のハードウェア構成について説明する。ブレーキ制御システム30において、ブレーキ制御部4以外の構成は、一般的な鉄道車両に搭載される機器により実現される。ブレーキ制御部4は処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。 Next, the hardware configuration of the brake control system 30 will be described. In the brake control system 30, configurations other than the brake control unit 4 are realized by equipment mounted on a general railway vehicle. The brake control unit 4 is realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
 図12は、実施の形態1に係るブレーキ制御システム30が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図である。処理回路がプロセッサ91およびメモリ92で構成される場合、ブレーキ制御システム30の処理回路の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路は、ブレーキ制御システム30の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、ブレーキ制御システム30の手順および方法をコンピュータに実行させるものであるともいえる。 FIG. 12 is a diagram showing an example in which the processing circuit included in the brake control system 30 according to the first embodiment is configured by a processor and a memory. When the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the brake control system 30 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the brake control system 30 is eventually executed. It can also be said that these programs cause the computer to execute the procedures and methods of the brake control system 30.
 ここで、プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などであってもよい。また、メモリ92には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. Further, the memory 92 includes non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EPROM (registered trademark) (Electrically EPROM). Semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
 図13は、実施の形態1に係るブレーキ制御システム30が備える処理回路を専用のハードウェアで構成する場合の例を示す図である。処理回路が専用のハードウェアで構成される場合、図13に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。ブレーキ制御システム30の各機能を機能別に処理回路93で実現してもよいし、各機能をまとめて処理回路93で実現してもよい。 FIG. 13 is a diagram showing an example in which the processing circuit included in the brake control system 30 according to the first embodiment is configured by dedicated hardware. When the processing circuit is composed of dedicated hardware, the processing circuit 93 shown in FIG. 13 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and the like. FPGA (Field Programmable Gate Array) or a combination of these is applicable. Each function of the brake control system 30 may be realized by the processing circuit 93 for each function, or each function may be collectively realized by the processing circuit 93.
 なお、ブレーキ制御システム30の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 Note that some of the functions of the brake control system 30 may be realized by dedicated hardware, and some may be realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
 以上説明したように、本実施の形態によれば、ブレーキ制御システム30は、ブレーキ20の動作時間に対する、車輪径に応じた閾値を設定し、ブレーキ20を動作させたときの動作時間と閾値との比較に基づいて、制輪子12の摩耗状態を検出することとした。これにより、ブレーキ制御システム30は、車輪13の車輪径に応じて閾値を変更できることから、制輪子12の摩耗状態を検出する精度を向上させることができる。また、ブレーキ制御システム30は、車輪13の車輪径を自動測定できることから、車輪13の摩耗状態も検出することができる。また、ブレーキ制御システム30は、車輪13の車輪径を自動測定できることから、ブレーキ20を動作させたときの動作時間に基づいて、制輪子12の摩耗量を精度良く測定することができる。 As described above, according to the present embodiment, the brake control system 30 sets a threshold value for the operating time of the brake 20 according to the wheel diameter, and sets the operating time and the threshold value when the brake 20 is operated. Based on the comparison, it was decided to detect the wear state of the brake shoe 12. As a result, the brake control system 30 can change the threshold value according to the wheel diameter of the wheel 13, so that the accuracy of detecting the wear state of the brake shoe 12 can be improved. Further, since the brake control system 30 can automatically measure the wheel diameter of the wheel 13, it is possible to detect the wear state of the wheel 13. Further, since the brake control system 30 can automatically measure the wheel diameter of the wheel 13, the amount of wear of the brake shoe 12 can be accurately measured based on the operating time when the brake 20 is operated.
 なお、ブレーキ制御システム30は、ブレーキ20を動作させたときの動作時間および車輪13の車輪径を用いて、制輪子12の摩耗量を測定することができる。そのため、ブレーキ制御システム30は、車輪径に応じた閾値を設定せず、制輪子12の摩耗量に基づいて、制輪子12の摩耗状態を検出、すなわち制輪子12の交換が必要か否かを判定することも可能である。 The brake control system 30 can measure the amount of wear of the brake shoe 12 by using the operating time when the brake 20 is operated and the wheel diameter of the wheel 13. Therefore, the brake control system 30 does not set a threshold value according to the wheel diameter, and detects the wear state of the brake shoe 12 based on the amount of wear of the brake shoe 12, that is, whether or not the brake shoe 12 needs to be replaced. It is also possible to judge.
実施の形態2.
 実施の形態1では、ブレーキ制御システム30が自動で車輪13の車輪径を測定するのは制輪子12の交換後のみであった。実施の形態2では、鉄道車両100の走行中、ブレーキ制御システム30が自動で車輪13の車輪径を測定する。
Embodiment 2.
In the first embodiment, the brake control system 30 automatically measures the wheel diameter of the wheel 13 only after the brake shoe 12 is replaced. In the second embodiment, the brake control system 30 automatically measures the wheel diameter of the wheel 13 while the railway vehicle 100 is traveling.
 実施の形態2において、ブレーキ制御システム30の構成は、実施の形態1のときの構成と同様である。ブレーキ制御システム30において、速度センサ3は、車輪13が取り付けられた車軸に設置された歯車との間のギャップが変化し、磁束が変化することによって、鉄道車両100の速度に応じた周波数の速度信号3Aを生成して出力する。速度信号3Aは、鉄道車両100の速度が一定の場合は周波数が一定の信号である。ここで、実施の形態1で述べたように、車輪13に制輪子12を押し付けることによって、制輪子12が摩耗するとともに、車輪13も摩耗して車輪径が小さくなる。車輪13は、車輪径が小さくなると、鉄道車両100の速度が同じであっても、新品時すなわち摩耗していない状態と比較して、回転数が多くなる。車輪13の回転数が多くなることで、車軸に取り付けられた歯車の回転も速くなり、速度信号3Aの周波数も高くなる。これは、車輪13が摩耗することによって、車輪13の円周が短くなり、同じ距離を移動するためには、車輪13を多く回転させる必要があるためである。 In the second embodiment, the configuration of the brake control system 30 is the same as the configuration in the first embodiment. In the brake control system 30, the speed sensor 3 changes the gap between the gear and the gear installed on the axle on which the wheel 13 is attached, and the magnetic flux changes, so that the speed sensor 3 has a speed of a frequency corresponding to the speed of the railroad vehicle 100. The signal 3A is generated and output. The speed signal 3A is a signal having a constant frequency when the speed of the railway vehicle 100 is constant. Here, as described in the first embodiment, by pressing the brake shoes 12 against the wheels 13, the brake shoes 12 are worn and the wheels 13 are also worn to reduce the wheel diameter. When the wheel diameter becomes smaller, the number of rotations of the wheel 13 increases as compared with a new state, that is, a state where the wheel 13 is not worn, even if the speed of the railway vehicle 100 is the same. As the number of rotations of the wheel 13 increases, the rotation of the gear attached to the axle also increases, and the frequency of the speed signal 3A also increases. This is because the circumference of the wheel 13 becomes shorter due to the wear of the wheel 13, and it is necessary to rotate the wheel 13 more in order to move the same distance.
 図14は、実施の形態2に係るブレーキ制御システム30において、車輪13の摩耗状態に応じて速度センサ3から出力される速度信号3Aの周波数を示す図である。図14(a)は、車輪13が新品時すなわち摩耗していない状態のときに速度センサ3から出力される速度信号3Aを示している。図14(b)は、車輪13が摩耗時すなわち摩耗している状態のときに速度センサ3から出力される速度信号3Aを示している。ブレーキ制御システム30のブレーキ制御部4は、図14に示す特徴に基づいて、予め鉄道車両100の速度、速度信号3Aの周波数、および車輪13の車輪径の関係の情報を記憶しておく。鉄道車両100の速度、速度信号3Aの周波数、および車輪13の車輪径の関係の情報については、ブレーキ制御システム30の設計者などが、シミュレーションまたは実測などによって求めておき、ブレーキ制御部4の記憶部43に記憶させておく。制御部42は、ブレーキ制御部4が搭載された鉄道車両100の速度と、車輪13が取り付けられた軸に対して設置された速度センサ3から出力される速度信号3Aの周波数とに基づいて、車輪13の車輪径を測定する。また、制御部42は、車輪13の車輪径に基づいて、車輪13の摩耗状態を検出することができる。制御部42は、車輪13の車輪径が規定された値になった場合、車輪13の摩耗状態が車輪13の交換が必要な摩耗量になったとして、制輪子12を交換する場合と同様、車輪13の交換を促すアラームを出力してもよい。 FIG. 14 is a diagram showing the frequency of the speed signal 3A output from the speed sensor 3 according to the wear state of the wheels 13 in the brake control system 30 according to the second embodiment. FIG. 14A shows a speed signal 3A output from the speed sensor 3 when the wheel 13 is new, that is, when it is not worn. FIG. 14B shows a speed signal 3A output from the speed sensor 3 when the wheel 13 is worn, that is, in a worn state. The brake control unit 4 of the brake control system 30 stores information on the relationship between the speed of the railway vehicle 100, the frequency of the speed signal 3A, and the wheel diameter of the wheels 13 in advance based on the features shown in FIG. The designer of the brake control system 30 or the like obtains information on the relationship between the speed of the railroad vehicle 100, the frequency of the speed signal 3A, and the wheel diameter of the wheel 13 by simulation or actual measurement, and stores the brake control unit 4. It is stored in the part 43. The control unit 42 is based on the speed of the railroad vehicle 100 on which the brake control unit 4 is mounted and the frequency of the speed signal 3A output from the speed sensor 3 installed on the shaft on which the wheels 13 are mounted. The wheel diameter of the wheel 13 is measured. Further, the control unit 42 can detect the wear state of the wheel 13 based on the wheel diameter of the wheel 13. When the wheel diameter of the wheel 13 reaches a specified value, the control unit 42 assumes that the wear state of the wheel 13 has reached the amount of wear required for the wheel 13 to be replaced, as in the case of replacing the brake shoe 12. An alarm prompting the replacement of the wheel 13 may be output.
 実施の形態2において、ブレーキ制御システム30が、制輪子12が摩耗しているか否かを判定する動作は、実施の形態1の図10または図11に示すフローチャートと同様である。実施の形態2では、制御部42は、車輪13の車輪径の情報を取得する方法として、実施の形態1で説明した方法の他、速度センサ3の速度信号3Aの周波数に基づいて、車輪13の車輪径の情報を取得することができる。 In the second embodiment, the operation of the brake control system 30 for determining whether or not the brake shoes 12 are worn is the same as the flowchart shown in FIG. 10 or 11 of the first embodiment. In the second embodiment, the control unit 42 uses the method described in the first embodiment as a method of acquiring information on the wheel diameter of the wheel 13, and the wheel 13 based on the frequency of the speed signal 3A of the speed sensor 3. It is possible to obtain information on the wheel diameter of.
 以上説明したように、本実施の形態によれば、ブレーキ制御システム30は、速度センサ3の速度信号3Aの周波数に基づいて、車輪13の車輪径を測定することとした。これにより、ブレーキ制御システム30は、実施の形態1のときと比較して、車輪13の車輪径の情報を高頻度で更新できることから、さらに制輪子12の摩耗状態を検出する精度を向上させることができる。 As described above, according to the present embodiment, the brake control system 30 measures the wheel diameter of the wheel 13 based on the frequency of the speed signal 3A of the speed sensor 3. As a result, the brake control system 30 can update the information on the wheel diameter of the wheel 13 with high frequency as compared with the case of the first embodiment, so that the accuracy of detecting the wear state of the brake shoe 12 can be further improved. Can be done.
実施の形態3.
 実施の形態1,2では、ブレーキ制御システム30は、制輪子12および車輪13の摩耗を検出していた。実施の形態3では、ブレーキ制御システム30が、ブレーキ20を作用させるための空製品の異常を検出する方法について説明する。
Embodiment 3.
In the first and second embodiments, the brake control system 30 has detected the wear of the brake shoes 12 and the wheels 13. In the third embodiment, a method in which the brake control system 30 detects an abnormality of an empty product for operating the brake 20 will be described.
 実施の形態3において、ブレーキ制御システム30の構成は、実施の形態1のときの構成と同様である。前述のように、制輪子12は、ブレーキシリンダ10によって車輪13に押し付けられる。図1に示すようなブレーキ20の構成では、ブレーキ20を作用させるごとに制輪子12は摩耗する。すなわち、ブレーキシリンダ10による制輪子12の押し付け力と、制輪子12の摩耗量との間には相関があるものと考えられる。 In the third embodiment, the configuration of the brake control system 30 is the same as the configuration in the first embodiment. As described above, the brake shoe 12 is pressed against the wheel 13 by the brake cylinder 10. In the configuration of the brake 20 as shown in FIG. 1, the brake shoe 12 wears each time the brake 20 is applied. That is, it is considered that there is a correlation between the pressing force of the brake shoe 12 by the brake cylinder 10 and the amount of wear of the brake shoe 12.
 図15は、実施の形態3に係るブレーキ制御システム30において、ブレーキシリンダ10による押し付け力の累積値と、制輪子12の摩耗量との関係の例を示す図である。押し付け力の累積値とは、ブレーキシリンダ10の空気圧であるブレーキシリンダ圧8Aに、ブレーキシリンダ10にブレーキシリンダ圧8Aがかかっている時間を乗算した値を累積したものである。すなわち、押し付け力の累積値は、制輪子12を交換してから車輪13に制輪子12を押し付けたときの物理量を押し付けた時間で乗算したものである。図15に示すように、ブレーキシリンダ10の押し付け力の累積値が増加するほど、制輪子12の摩耗量も増加すると考えられる。 FIG. 15 is a diagram showing an example of the relationship between the cumulative value of the pressing force by the brake cylinder 10 and the amount of wear of the brake shoe 12 in the brake control system 30 according to the third embodiment. The cumulative value of the pressing force is the cumulative value obtained by multiplying the brake cylinder pressure 8A, which is the air pressure of the brake cylinder 10, by the time that the brake cylinder pressure 8A is applied to the brake cylinder 10. That is, the cumulative value of the pressing force is obtained by multiplying the physical quantity when the brake shoe 12 is pressed against the wheel 13 by the pressing time after the brake shoe 12 is replaced. As shown in FIG. 15, it is considered that the amount of wear of the brake shoe 12 increases as the cumulative value of the pressing force of the brake cylinder 10 increases.
 図16は、実施の形態3に係るブレーキ制御システム30において、ブレーキシリンダ10の動作時間と、制輪子12の摩耗量との関係の例を示す図である。図16で示される、ブレーキシリンダ10の動作時間と制輪子12の摩耗量との関係を示す直線において、制輪子12の摩耗量が交換レベルに達したときのブレーキシリンダ10の動作時間が、前述の閾値となる。 FIG. 16 is a diagram showing an example of the relationship between the operating time of the brake cylinder 10 and the amount of wear of the brake shoe 12 in the brake control system 30 according to the third embodiment. In the straight line showing the relationship between the operating time of the brake cylinder 10 and the wear amount of the brake shoe 12 shown in FIG. 16, the operating time of the brake cylinder 10 when the wear amount of the brake shoe 12 reaches the replacement level is described above. It becomes the threshold of.
 図17は、実施の形態3に係るブレーキ制御システム30において、ブレーキシリンダ10の動作時間と、押し付け力の累積値との関係の例を示す図である。図17で示される実線の直線は、ブレーキシリンダ10の動作時間とブレーキシリンダ10の押し付け力の累積値との関係を示している。ここで、図17において、押し付け力の累積値が小さいにもかかわらず動作時間が大きい三角形で示される領域は、制輪子12の摩耗が原因ではなく、ブレーキ20を作用させる部品、具体的には中継弁8などの空製品に異常があると想定される。そのため、制御部42は、動作時間が、押し付け力の累積値に対する閾値、すなわち図17で示される点線の直線を超えた場合、空製品に異常があると判定する。ブレーキ制御部4は、ブレーキシリンダ10の動作時間とブレーキシリンダ10の押し付け力の累積値との関係を示す実線の直線に対して余裕を持たせた、点線の直線で示される閾値を予め記憶しておく。閾値は、ブレーキ制御システム30の設計者などが、シミュレーションまたは実測などによって求めておき、ブレーキ制御部4の記憶部43に記憶させておく。なお、図17では見易いように、動作時間と押し付け力の累積値との関係を示す実線、閾値を示す点線、および空製品異常を示す三角形の領域の間に余裕を持たせているが、実際には各々の間隔を狭めてもよい。 FIG. 17 is a diagram showing an example of the relationship between the operating time of the brake cylinder 10 and the cumulative value of the pressing force in the brake control system 30 according to the third embodiment. The solid straight line shown in FIG. 17 shows the relationship between the operating time of the brake cylinder 10 and the cumulative value of the pressing force of the brake cylinder 10. Here, in FIG. 17, the region indicated by the triangle in which the cumulative value of the pressing force is small but the operating time is large is not caused by the wear of the brake shoe 12, but the component that acts on the brake 20, specifically, It is assumed that there is an abnormality in an empty product such as the relay valve 8. Therefore, when the operation time exceeds the threshold value for the cumulative value of the pressing force, that is, the straight line of the dotted line shown in FIG. 17, the control unit 42 determines that the empty product has an abnormality. The brake control unit 4 stores in advance a threshold value indicated by a dotted straight line, which has a margin with respect to a solid straight line indicating the relationship between the operating time of the brake cylinder 10 and the cumulative value of the pressing force of the brake cylinder 10. Keep it. The threshold value is obtained by a designer of the brake control system 30 or the like by simulation or actual measurement, and is stored in the storage unit 43 of the brake control unit 4. In FIG. 17, for easy viewing, a margin is provided between the solid line indicating the relationship between the operating time and the cumulative value of the pressing force, the dotted line indicating the threshold value, and the triangular area indicating an empty product abnormality. The intervals between the two may be narrowed.
 図18は、実施の形態3に係るブレーキ制御システム30が空製品の異常を判定する動作を示すフローチャートである。制御部42は、ブレーキシリンダ10の動作時間が押し付け力の累積値に応じた閾値よりも大きい場合(ステップS31:Yes)、空製品に異常があると判定する(ステップS32)。制御部42は、ブレーキシリンダ10の動作時間が押し付け力の累積値に応じた閾値よりも小さい場合(ステップS31:No)、動作を終了する。このように、制御部42は、押し付け力の累積値と、動作時間との比較に基づいて、車輪13に制輪子12を押し付けるための部品である空製品の異常の有無を判定する。制御部42は、上記動作を常時または周期的に実施する。 FIG. 18 is a flowchart showing an operation in which the brake control system 30 according to the third embodiment determines an abnormality of an empty product. When the operating time of the brake cylinder 10 is larger than the threshold value corresponding to the cumulative value of the pressing force (step S31: Yes), the control unit 42 determines that the empty product has an abnormality (step S32). When the operation time of the brake cylinder 10 is smaller than the threshold value corresponding to the cumulative value of the pressing force (step S31: No), the control unit 42 ends the operation. In this way, the control unit 42 determines whether or not there is an abnormality in the empty product, which is a component for pressing the brake shoe 12 against the wheel 13, based on the comparison between the cumulative value of the pressing force and the operating time. The control unit 42 performs the above operation constantly or periodically.
 以上説明したように、本実施の形態によれば、ブレーキ制御システム30は、ブレーキ20の動作時間と押し付け力の累積値とに基づいて、さらに、ブレーキ20を作用させる部品である空製品の異常の有無を判定することができる。 As described above, according to the present embodiment, the brake control system 30 is based on the operating time of the brake 20 and the cumulative value of the pressing force, and further, an abnormality of an empty product which is a component that acts the brake 20. It is possible to determine the presence or absence of.
実施の形態4.
 実施の形態4では、ブレーキ制御システム30が、実施の形態3とは異なる方法で、ブレーキ20を作用させるための空製品の異常を検出する方法について説明する。
Embodiment 4.
In the fourth embodiment, a method in which the brake control system 30 detects an abnormality of an empty product for operating the brake 20 will be described by a method different from that of the third embodiment.
 ブレーキ制御システム30は、実際には、複数のブレーキ20を備えている。また、鉄道車両100は、一般的に複数の車輪13の各車輪径が一定の範囲内になるように、運用されている。すなわち、ブレーキ制御システム30が同じブレーキ制御を行った場合の各ブレーキ20の動作時間は、一定の範囲内になることが想定される。そのため、あるブレーキ20の動作時間が他のブレーキ20の動作時間に対して著しく長くなっている場合、ブレーキ制御システム30は、該当するブレーキ20の空製品に異常があると判定する。このように、制御部42は、車輪13に接続された軸毎に取得した動作時間に基づいて、車輪13に制輪子12を押し付けるための部品である空製品の異常の有無を判定することができる。 The brake control system 30 actually includes a plurality of brakes 20. Further, the railway vehicle 100 is generally operated so that the diameters of the plurality of wheels 13 are within a certain range. That is, it is assumed that the operating time of each brake 20 when the brake control system 30 performs the same brake control is within a certain range. Therefore, when the operating time of one brake 20 is significantly longer than the operating time of another brake 20, the brake control system 30 determines that the empty product of the corresponding brake 20 has an abnormality. In this way, the control unit 42 can determine whether or not there is an abnormality in the empty product, which is a component for pressing the brake shoe 12 against the wheel 13, based on the operating time acquired for each shaft connected to the wheel 13. it can.
 以上説明したように、本実施の形態によれば、ブレーキ制御システム30は、車輪13に接続された軸毎に取得した動作時間に基づいて、さらに、ブレーキ20を作用させる部品である空製品の異常の有無を判定することができる。 As described above, according to the present embodiment, the brake control system 30 is an empty product which is a component that further operates the brake 20 based on the operating time acquired for each shaft connected to the wheel 13. It is possible to determine the presence or absence of an abnormality.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 ブレーキ指令部、1A ブレーキ指令、2 応荷重装置、2A 応荷重信号、3 速度センサ、3A 速度信号、4 ブレーキ制御部、4A 回生パターン信号、4B 圧力制御信号、5 回生ブレーキ制御部、5A 回生フィードバック信号、6 電空変換弁、6A 空気信号、7 元空気タンク、7A 圧縮空気、8 中継弁、8A ブレーキシリンダ圧、9,11 圧力センサ、9A,11A フィードバック指令、10 ブレーキシリンダ、12 制輪子、13 車輪、20 ブレーキ、30 ブレーキ制御システム、41 取得部、42 制御部、43 記憶部、100 鉄道車両。 1 Brake command unit, 1A brake command, 2 load-bearing device, 2A load-bearing signal, 3 speed sensor, 3A speed signal, 4 brake control unit, 4A regeneration pattern signal, 4B pressure control signal, 5 regenerative brake control unit, 5A regeneration Feedback signal, 6 electro-pneumatic conversion valve, 6A air signal, 7 source air tank, 7A compressed air, 8 relay valve, 8A brake cylinder pressure, 9,11 pressure sensor, 9A, 11A feedback command, 10 brake cylinder, 12 wheel control , 13 wheels, 20 brakes, 30 brake control system, 41 acquisition unit, 42 control unit, 43 storage unit, 100 railroad vehicle.

Claims (15)

  1.  鉄道車両において、車輪に制輪子を押し付けて制動力を発生させるブレーキ制御装置であって、
     前記車輪に前記制輪子を押し付ける力を示す物理量を検出するセンサから前記物理量を取得する取得部と、
     前記車輪の車輪径に応じて設定された、ブレーキの動作時間に対する閾値を記憶する記憶部と、
     前記ブレーキの制御を開始してから前記物理量が一定の値になるまでの動作時間と、前記閾値とに基づいて、前記制輪子の摩耗状態を検出する制御部と、
     を備えることを特徴とするブレーキ制御装置。
    A brake control device that generates braking force by pressing a brake shoe against a wheel in a railway vehicle.
    An acquisition unit that acquires the physical quantity from a sensor that detects a physical quantity indicating a force that presses the brake shoe against the wheel.
    A storage unit that stores a threshold value for the operating time of the brake, which is set according to the wheel diameter of the wheel.
    A control unit that detects the wear state of the brake shoe based on the operating time from the start of control of the brake to the constant value of the physical quantity and the threshold value.
    A brake control device characterized by being provided with.
  2.  前記取得部は、前記センサである第1の圧力センサから、前記物理量として、前記車輪に前記制輪子を押し付けるブレーキシリンダの空気圧であるブレーキシリンダ圧を取得し、
     前記記憶部は、前記閾値として、前記ブレーキを作用させるときに前記ブレーキシリンダ圧が第1の圧力から前記一定の値であって前記第1の圧力より大きい第2の圧力になるまでの供給時間閾値を記憶し、
     前記制御部は、前記ブレーキを作用させる場合、前記ブレーキシリンダ圧が前記第1の圧力から前記第2の圧力になるまでの供給時間と前記供給時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、
     ことを特徴とする請求項1に記載のブレーキ制御装置。
    The acquisition unit acquires the brake cylinder pressure, which is the air pressure of the brake cylinder that presses the brake shoe against the wheel, as the physical quantity from the first pressure sensor, which is the sensor.
    As the threshold value, the storage unit takes a supply time from the first pressure until the brake cylinder pressure becomes a second pressure that is a constant value and larger than the first pressure when the brake is applied. Memorize the threshold and
    When the brake is applied, the control unit is in a worn state of the brake shoe based on the supply time from the first pressure to the second pressure and the supply time threshold value. To detect,
    The brake control device according to claim 1.
  3.  前記取得部は、前記第1の圧力センサから、前記物理量として、前記車輪に前記制輪子を押し付けるブレーキシリンダの空気圧であるブレーキシリンダ圧を取得し、
     前記記憶部は、前記閾値として、前記ブレーキを解除するときに前記ブレーキシリンダ圧が前記第2の圧力から前記一定の値である前記第1の圧力になるまでの排気時間閾値を記憶し、
     前記制御部は、前記ブレーキを解除する場合、前記ブレーキシリンダ圧が前記第2の圧力から前記第1の圧力になるまでの排気時間と前記排気時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、
     ことを特徴とする請求項2に記載のブレーキ制御装置。
    The acquisition unit acquires the brake cylinder pressure, which is the air pressure of the brake cylinder that presses the brake shoe against the wheel, as the physical quantity from the first pressure sensor.
    As the threshold value, the storage unit stores the exhaust time threshold value from the second pressure to the first pressure, which is a constant value, when the brake is released.
    When the brake is released, the control unit is in a worn state of the brake shoe based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold value. To detect,
    2. The brake control device according to claim 2.
  4.  前記取得部は、前記センサである第2の圧力センサから、前記物理量として、前記制御部から前記ブレーキに出力される制御信号を空気信号に変換する電空変換弁から出力される前記空気信号の空気圧である指令圧を取得し、
     前記記憶部は、前記閾値として、前記ブレーキを作用させるときに前記指令圧が第1の圧力から前記一定の値であって前記第1の圧力より大きい第2の圧力になるまでの供給時間閾値を記憶し、
     前記制御部は、前記ブレーキを作用させる場合、前記指令圧が前記第1の圧力から前記第2の圧力になるまでの供給時間と前記供給時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、
     ことを特徴とする請求項1に記載のブレーキ制御装置。
    The acquisition unit receives the air signal output from the second pressure sensor, which is the sensor, as a physical quantity from an electropneumatic conversion valve that converts a control signal output from the control unit to the brake into an air signal. Obtain the command pressure, which is the air pressure,
    As the threshold value, the storage unit has a supply time threshold value from the first pressure until the command pressure becomes a second pressure that is a constant value higher than the first pressure when the brake is applied. Remember,
    When the brake is applied, the control unit determines the wear state of the brake shoe based on the supply time from the first pressure to the second pressure and the supply time threshold value. To detect,
    The brake control device according to claim 1.
  5.  前記取得部は、前記第2の圧力センサから、前記物理量として、前記制御部から前記ブレーキに出力される制御信号を空気信号に変換する電空変換弁から出力される前記空気信号の空気圧である指令圧を取得し、
     前記記憶部は、前記閾値として、前記ブレーキを解除するときに前記指令圧が前記第2の圧力から前記一定の値である前記第1の圧力になるまでの排気時間閾値を記憶し、
     前記制御部は、前記ブレーキを解除する場合、前記指令圧が前記第2の圧力から前記第1の圧力になるまでの排気時間と前記排気時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、
     ことを特徴とする請求項4に記載のブレーキ制御装置。
    The acquisition unit is the air pressure of the air signal output from the second pressure sensor as the physical quantity from the electropneumatic conversion valve that converts the control signal output from the control unit to the brake into an air signal. Get the command pressure,
    As the threshold value, the storage unit stores the exhaust time threshold value from the second pressure to the first pressure, which is a constant value, when the brake is released.
    When the brake is released, the control unit determines the wear state of the brake shoe based on the exhaust time from the second pressure to the first pressure and the exhaust time threshold value. To detect,
    The brake control device according to claim 4.
  6.  前記制御部は、前記動作時間が前記閾値を超えた場合、前記制輪子が摩耗していると判定し、アラームを出力する、
     ことを特徴とする請求項1から5のいずれか1つに記載のブレーキ制御装置。
    When the operating time exceeds the threshold value, the control unit determines that the brake shoes are worn and outputs an alarm.
    The brake control device according to any one of claims 1 to 5, wherein the brake control device is characterized.
  7.  前記制御部は、規定された期間内に前記動作時間が前記閾値を超えた回数が規定された回数に達した場合、前記制輪子が摩耗していると判定し、アラームを出力する、
     ことを特徴とする請求項6に記載のブレーキ制御装置。
    When the number of times the operation time exceeds the threshold value reaches the specified number of times within the specified period, the control unit determines that the brake shoes are worn and outputs an alarm.
    The brake control device according to claim 6.
  8.  前記制御部は、前記制輪子が交換された場合、前記動作時間に基づいて、前記車輪径を測定する、
     ことを特徴とする請求項1から7のいずれか1つに記載のブレーキ制御装置。
    When the brake shoe is replaced, the control unit measures the wheel diameter based on the operating time.
    The brake control device according to any one of claims 1 to 7, wherein the brake control device is characterized.
  9.  前記制御部は、前記ブレーキ制御装置が搭載された鉄道車両の速度と、前記車輪が取り付けられた軸に対して設置された速度センサから出力される速度信号の周波数とに基づいて、前記車輪径を測定する、
     ことを特徴とする請求項1から8のいずれか1つに記載のブレーキ制御装置。
    The control unit has the wheel diameter based on the speed of the railroad vehicle on which the brake control device is mounted and the frequency of the speed signal output from the speed sensor installed on the shaft on which the wheel is mounted. To measure,
    The brake control device according to any one of claims 1 to 8, wherein the brake control device is characterized.
  10.  前記制御部は、前記車輪径に基づいて、前記車輪の摩耗状態を検出する、
     ことを特徴とする請求項8または9に記載のブレーキ制御装置。
    The control unit detects the wear state of the wheel based on the wheel diameter.
    The brake control device according to claim 8 or 9.
  11.  前記制御部は、前記制輪子を交換してから前記車輪に前記制輪子を押し付けたときの物理量を押し付けた時間で乗算した押し付け力の累積値と、前記動作時間との比較に基づいて、前記車輪に前記制輪子を押し付けるための部品の異常の有無を判定する、
     ことを特徴とする請求項1から10のいずれか1つに記載のブレーキ制御装置。
    The control unit is based on a comparison between the cumulative value of the pressing force obtained by multiplying the physical quantity when the brake shoe is pressed against the wheel after the brake shoe is replaced by the pressing time, and the operating time. Judging whether there is an abnormality in the parts for pressing the brake shoes against the wheels,
    The brake control device according to any one of claims 1 to 10.
  12.  前記制御部は、前記車輪に接続された軸毎に取得した動作時間に基づいて、前記車輪に前記制輪子を押し付けるための部品の異常の有無を判定する、
     ことを特徴とする請求項1から10のいずれか1つに記載のブレーキ制御装置。
    The control unit determines whether or not there is an abnormality in the component for pressing the brake shoe against the wheel based on the operating time acquired for each shaft connected to the wheel.
    The brake control device according to any one of claims 1 to 10.
  13.  鉄道車両において、車輪に制輪子を押し付けて制動力を発生させるブレーキ制御装置のブレーキ制御方法であって、
     取得部が、前記車輪に前記制輪子を押し付ける力を示す物理量を検出するセンサから前記物理量を取得する第1のステップと、
     制御部が、ブレーキの制御を開始してから前記物理量が一定の値になるまでの動作時間と、前記車輪の車輪径に応じて設定された前記ブレーキの動作時間に対する閾値とに基づいて、前記制輪子の摩耗状態を検出する第2のステップと、
     を含むことを特徴とするブレーキ制御方法。
    A brake control method for a brake control device that generates braking force by pressing a brake shoe against a wheel in a railroad vehicle.
    The first step in which the acquisition unit acquires the physical quantity from a sensor that detects a physical quantity indicating a force for pressing the brake shoe against the wheel.
    Based on the operating time from when the control unit starts controlling the brake until the physical quantity reaches a constant value, and the threshold value for the operating time of the brake set according to the wheel diameter of the wheel, the said The second step of detecting the wear condition of the brake shoe,
    A brake control method characterized by including.
  14.  前記第1のステップにおいて、前記取得部は、前記センサである第1の圧力センサから、前記物理量として、前記車輪に前記制輪子を押し付けるブレーキシリンダの空気圧であるブレーキシリンダ圧を取得し、
     前記第2のステップにおいて、前記制御部は、前記ブレーキを作用させる場合、前記ブレーキシリンダ圧が第1の圧力から前記一定の値であって前記第1の圧力より大きい第2の圧力になるまでの供給時間と、前記閾値である、前記ブレーキを作用させるときに前記ブレーキシリンダ圧が前記第1の圧力から前記第2の圧力になるまでの供給時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、または、前記ブレーキを解除する場合、前記ブレーキシリンダ圧が前記第2の圧力から前記一定の値である前記第1の圧力になるまでの排気時間と、前記閾値である、前記ブレーキを解除するときに前記ブレーキシリンダ圧が前記第2の圧力から前記第1の圧力になるまでの排気時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、ことの少なくともいずれか一方を行う、
     ことを特徴とする請求項13に記載のブレーキ制御方法。
    In the first step, the acquisition unit acquires the brake cylinder pressure, which is the air pressure of the brake cylinder that presses the brake shoe against the wheel, as the physical quantity from the first pressure sensor, which is the sensor.
    In the second step, when the brake is applied, the control unit changes the brake cylinder pressure from the first pressure to a second pressure that is a constant value and larger than the first pressure. The wear of the brake shoe based on the supply time of the brake shoe and the supply time threshold value from the first pressure to the second pressure when the brake is applied. When the state is detected or the brake is released, the exhaust time from the second pressure to the first pressure, which is a constant value, and the threshold value. At least one of detecting the wear state of the brake shoe based on the exhaust time threshold from the second pressure to the first pressure when the brake is released. I do,
    The brake control method according to claim 13, wherein the brake control method is characterized.
  15.  前記第1のステップにおいて、前記取得部は、前記センサである第2の圧力センサから、前記物理量として、前記制御部から前記ブレーキに出力される制御信号を空気信号に変換する電空変換弁から出力される前記空気信号の空気圧である指令圧を取得し、
     前記第2のステップにおいて、前記制御部は、前記ブレーキを作用させる場合、前記指令圧が第1の圧力から前記一定の値であって前記第1の圧力より大きい第2の圧力になるまでの供給時間と、前記閾値である、前記ブレーキを作用させるときに前記指令圧が前記第1の圧力から前記第2の圧力になるまでの供給時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、または、前記ブレーキを解除する場合、前記指令圧が前記第2の圧力から前記一定の値である前記第1の圧力になるまでの排気時間と、前記閾値である、前記ブレーキを解除するときに前記指令圧が前記第2の圧力から前記第1の圧力になるまでの排気時間閾値とに基づいて、前記制輪子の摩耗状態を検出する、ことの少なくともいずれか一方を行う、
     ことを特徴とする請求項13に記載のブレーキ制御方法。
    In the first step, the acquisition unit is from an electropneumatic conversion valve that converts a control signal output from the control unit to the brake as the physical quantity from the second pressure sensor, which is the sensor, into an air signal. The command pressure, which is the air pressure of the output air signal, is acquired.
    In the second step, when the brake is applied, the control unit increases the command pressure from the first pressure to a second pressure which is a constant value and larger than the first pressure. The wear state of the brake shoe is determined based on the supply time and the supply time threshold from the first pressure to the second pressure when the brake is applied, which is the threshold value. When detecting or releasing the brake, the exhaust time from the second pressure to the first pressure, which is a constant value, and the brake, which is the threshold value, are released. At least one of detecting the wear state of the brake shoe based on the exhaust time threshold from the second pressure to the first pressure when the command pressure is applied is performed.
    The brake control method according to claim 13, wherein the brake control method is characterized.
PCT/JP2019/032902 2019-08-22 2019-08-22 Brake control device and brake control method WO2021033321A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/032902 WO2021033321A1 (en) 2019-08-22 2019-08-22 Brake control device and brake control method
DE112019007643.4T DE112019007643T5 (en) 2019-08-22 2019-08-22 BRAKE CONTROL DEVICE AND BRAKE CONTROL METHOD
JP2021540614A JP7109677B2 (en) 2019-08-22 2019-08-22 Brake control device and brake control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032902 WO2021033321A1 (en) 2019-08-22 2019-08-22 Brake control device and brake control method

Publications (1)

Publication Number Publication Date
WO2021033321A1 true WO2021033321A1 (en) 2021-02-25

Family

ID=74660463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032902 WO2021033321A1 (en) 2019-08-22 2019-08-22 Brake control device and brake control method

Country Status (3)

Country Link
JP (1) JP7109677B2 (en)
DE (1) DE112019007643T5 (en)
WO (1) WO2021033321A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511171B (en) * 2021-07-08 2022-10-25 中车唐山机车车辆有限公司 Rail vehicle, tread cleaning control method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102531U (en) * 1987-12-26 1989-07-11
JPH10305399A (en) * 1997-05-12 1998-11-17 Komatsu Ltd Method and device for detecting lining abrasion of wet clutch brake in mechanical press
JP2004278653A (en) * 2003-03-14 2004-10-07 Nabco Ltd Brake device
WO2009153884A1 (en) * 2008-06-20 2009-12-23 三菱電機株式会社 Train braking apparatus and train braking method
WO2014119447A1 (en) * 2013-01-30 2014-08-07 ナブテスコ株式会社 Railroad vehicle brake device, railroad vehicle, and railroad vehicle formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102531U (en) * 1987-12-26 1989-07-11
JPH10305399A (en) * 1997-05-12 1998-11-17 Komatsu Ltd Method and device for detecting lining abrasion of wet clutch brake in mechanical press
JP2004278653A (en) * 2003-03-14 2004-10-07 Nabco Ltd Brake device
WO2009153884A1 (en) * 2008-06-20 2009-12-23 三菱電機株式会社 Train braking apparatus and train braking method
WO2014119447A1 (en) * 2013-01-30 2014-08-07 ナブテスコ株式会社 Railroad vehicle brake device, railroad vehicle, and railroad vehicle formation

Also Published As

Publication number Publication date
JP7109677B2 (en) 2022-07-29
DE112019007643T5 (en) 2022-05-19
JPWO2021033321A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US9522667B2 (en) Brake force detection for dynamic brakes of a rail vehicle
JP5378477B2 (en) Method for monitoring the thickness of at least one mutual friction member of a vehicle friction brake, in particular the brake lining of a vehicle brake device
US7185745B2 (en) Electrically actuatable vehicle brake and method for controlling an electrically actuatable vehicle brake
CN102007025B (en) Train braking apparatus and train braking method
JP6767984B2 (en) Methods for monitoring brakes for automobiles, braking systems for implementing this method, as well as automobiles with such braking systems.
JP4250216B2 (en) Method and apparatus for controlling vehicle brake device
JP6762440B2 (en) Brake control device for railway vehicles and brake control method for railway vehicles
US10655696B2 (en) Method and system for analyzing the wear behavior of brake pads/linings
JP7312676B2 (en) Brake abnormality determination device, brake state storage device, abnormality determination method, abnormality determination program, and brake control device
JP6608650B2 (en) Sliding re-adhesion control device for railway vehicles
JP2018523607A (en) Method and apparatus for condition monitoring of service brake, brake and brake system
JP4453755B2 (en) Wheel attitude control method and wheel attitude control device
WO2021033321A1 (en) Brake control device and brake control method
US10077032B2 (en) Method and system for reducing brake drag
JP6410029B2 (en) Brake force evaluation method for railway vehicles
JP2002527290A (en) Method and apparatus for monitoring braking in an anti-lock or electronic braking system
JP3996957B2 (en) Tire condition monitoring device
US7996136B2 (en) Brake performance monitoring system and method
JPH11511092A (en) Control method and device for vehicle brake device
KR20180133134A (en) Method for detecting a error of caliper by using abs
KR100806084B1 (en) Warning device for friction pad' wear in brake
WO2023131988A1 (en) Wheel tread roughness estimation device and wheel tread roughness estimation method
KR101928527B1 (en) Electro-Mechanical Brake System by using current control and initiating Method thereof
JP7455288B2 (en) Wheel tread roughening control device and wheel tread roughening control method
JP7279235B1 (en) Generator and brake controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540614

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19941790

Country of ref document: EP

Kind code of ref document: A1