WO2021031507A1 - Formation of fine pitch traces using ultra-thin paa modified fully additive process - Google Patents
Formation of fine pitch traces using ultra-thin paa modified fully additive process Download PDFInfo
- Publication number
- WO2021031507A1 WO2021031507A1 PCT/CN2020/000184 CN2020000184W WO2021031507A1 WO 2021031507 A1 WO2021031507 A1 WO 2021031507A1 CN 2020000184 W CN2020000184 W CN 2020000184W WO 2021031507 A1 WO2021031507 A1 WO 2021031507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- copper
- paa
- traces
- layers
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 90
- 230000008569 process Effects 0.000 title claims description 54
- 239000000654 additive Substances 0.000 title description 13
- 230000000996 additive effect Effects 0.000 title description 10
- 230000015572 biosynthetic process Effects 0.000 title description 10
- 239000000758 substrate Substances 0.000 claims abstract description 105
- 239000010949 copper Substances 0.000 claims abstract description 89
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 88
- 229910052802 copper Inorganic materials 0.000 claims abstract description 88
- 229920005575 poly(amic acid) Polymers 0.000 claims abstract description 72
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 49
- 238000004873 anchoring Methods 0.000 claims abstract description 17
- 230000004048 modification Effects 0.000 claims abstract description 12
- 238000012986 modification Methods 0.000 claims abstract description 12
- 229910018104 Ni-P Inorganic materials 0.000 claims abstract 21
- 229910018536 Ni—P Inorganic materials 0.000 claims abstract 21
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 54
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 46
- 238000007747 plating Methods 0.000 claims description 42
- 229920001721 polyimide Polymers 0.000 claims description 38
- 239000004642 Polyimide Substances 0.000 claims description 35
- 239000010931 gold Substances 0.000 claims description 35
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 claims description 33
- 238000007654 immersion Methods 0.000 claims description 30
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 27
- 229910052737 gold Inorganic materials 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 229910052763 palladium Inorganic materials 0.000 claims description 24
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 11
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 11
- 238000000137 annealing Methods 0.000 claims description 11
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 239000010948 rhodium Substances 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 4
- 230000035939 shock Effects 0.000 claims description 2
- 238000005553 drilling Methods 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 claims 1
- 230000003746 surface roughness Effects 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 130
- 239000010408 film Substances 0.000 description 23
- 238000005476 soldering Methods 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 238000007772 electroless plating Methods 0.000 description 8
- 238000004026 adhesive bonding Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920001621 AMOLED Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000005478 sputtering type Methods 0.000 description 3
- 229910014033 C-OH Inorganic materials 0.000 description 2
- 229910014570 C—OH Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- -1 cyanide ester Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000005606 hygroscopic expansion Effects 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 101150107890 msl-3 gene Proteins 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/486—Via connections through the substrate with or without pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
- B23K26/402—Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1653—Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/54—Contact plating, i.e. electroless electrochemical plating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
- C25D5/022—Electroplating of selected surface areas using masking means
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4857—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/145—Organic substrates, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49822—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5383—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5384—Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5387—Flexible insulating substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Definitions
- This application relates to producing a flexible substrate with fine copper traces, and more particularly, to producing a semiconductor package with solid state diffusion bonding using a flexible substrate with fine copper traces.
- Chip-on-film (COF) packaging constitutes a substantial technology to cope with the future demands of higher function, lower power consumption and miniaturization; in particular, high resolution and increasing I/O count of touch integrated circuit (IC) and display-drive IC integrated modules (TDDI) requiring extremely fine pitch COF packages.
- COF Chip-on-film
- a flexible circuit is fabricated in a subtractive method where the copper trace pattern is formed by etching.
- this subtractive method has an inherent problem in sidewall geometry control.
- SAP semi-additive process
- SAP semi-additive process
- the deformable layer must provide the requisite electrical properties with good trace integrity. It must be able to withstand sufficient pressure during contact and hence there must be enough top width on the trace so that a full contact interface with proper creep deformation and void elimination on the bonding zone is achieved. As the bond pitch reduces, the semi-additive and subtractive methods have limitations to maintain the top to bottom width (T/B) ratio as close to 1 while achieving a reasonable yield.
- An alternative method is a full additive process (FAP) , in which the copper pattern can be formed by electroless plating.
- FAP full additive process
- PI polyimide
- the PI which is comprised of an imide ring can be easily opened by the incoming nucleophilic hydroxide ion forming polyamic acid salt (PAA) . Since the carboxylate group on this polyamic acid is an ion exchange group, it can be reduced to deposit a Pd catalyst when treated in an aqueous Pd (II) ion solution. Once the catalyst is deposited, subsequent electroless plating is then possible.
- PDA nucleophilic hydroxide ion forming polyamic acid salt
- a principal object of the present disclosure is to provide a method of producing a plurality of fine traces on a flexible substrate for a chip on flex (COF) package.
- Another object of the disclosure is to provide a fully additive method of plating up fine and robust copper traces on a flexible substrate for a chip on flex (COF) package.
- COF chip on flex
- a further object of the disclosure is to provide a fully additive method of plating up fine and robust copper traces on a flexible substrate for a chip on flex (COF) package using electroless Ni-P and a reliable nano-size polyamic acid (PAA) anchoring layer on the dielectric/Ni-P interface.
- COF chip on flex
- PAA nano-size polyamic acid
- a method to produce a substrate suitable for various interconnection methods including thermocompression bonding, wire bonding, adhesive bonding, and soldering is achieved.
- a flexible dielectric substrate is provided.
- An alkaline modification is applied to the dielectric substrrate to form a polyamic acid (PAA) anchoring layer on a surface of the dielectric substrate.
- a Ni-P seed layer is elecrolessly plated on the PAA layer.
- Copper traces are plated within a photoresist pattern on the Ni-P seed layer.
- a surface finishing layer is electrolytically plated on the copper traces. The photoresist pattern and Ni-P seed layer not covered by the copper traces are removed to complete the substrate suitable for diffusion bonding.
- a method of manufacturing a 2ML (metal layer) substrate suitable for various interconnection methods including thermocomrpession bonding, wire bonding, adhesive bonding, and soldering is achieved.
- a flexible dielectric substrate is provided.
- At least one via opening is laser drilled all the way through the dielectric substrate.
- An alkaline modification is applied to the dielectric substrrate to form a polyamic acid (PAA) anchoring layer on top and bottom surfaces of the dielectric substrate.
- a Ni-P seed layer is elecrolessly plated on top and bottom PAA layers.
- Photoresist dry resist/wet resist
- Copper traces are plated within photoresist patterns on the top and bottom Ni-P seed layers and through the at least one via opening.
- a surface finishing layer is electrolytically plated at least on one side of the copper traces. The photoresist patterns and Ni-P seed layers not covered by the copper traces are removed to complete the substrate suitable for diffusion bonding.
- a method of manufacturing a multiplayer substrate suitable for various interconnection methods including thermocomrpession bonding, wire bonding, adhesive bonding, and soldering is achieved.
- a flexible dielectric substrate is provided. At least one via opening is laser drilled all the way through the dielectric substrate.
- An alkaline modification is applied to the dielectric substrrate to form a polyamic acid (PAA) anchoring layer on top and bottom surfaces of the dielectric substrate.
- a Ni-P seed layer is elecrolessly plated on top and bottom PAA layers.
- Photoresist dry resist/wet resist
- Copper traces are plated within photoresist patterns on the top and bottom Ni-P seed layers and through the at least one via opening.
- the photoresist patterns and Ni-P seed layers not covered by the copper traces are removed to complete the substrate suitable for diffusion bonding.
- a bonding film is laminated on top and bottom surfaces of the first copper traces.
- a dielectric layer (PI) is laminated on top and bottom of the bonding films.
- At least one second via opening is laser drilled all the way through the dielectric layer and bonding film to contact the first copper traces on top and bottom of the substrate.
- an alkaline modification is applied to the dielectric layers to form a second polyamic acid (PAA) anchoring layer on top and bottom surfaces of the dielectric layers and within the at least one second via openings.
- a second Ni-P seed layer is electrolessly plated on top and bottom of the second PAA layers.
- a second photoresist pattern is formed on top and bottom of the second Ni-P seed layers.
- Second copper traces are plated within the second photoresist patterns and through the at least one second via opening.
- a surface finishing layer is plated on the second copper traces. The second photoresist patterns are removed and the second Ni-P seed layers not covered by the second copper traces are etched away to complete the flexible substrate.
- a 2ML (metal layer) chip on film (COF) is achieved.
- the COF comprises a flexible dielectric substrate having a first polyamic acid (PAA) anchoring layer on its top surface, at least one first copper trace on a first Ni-P seed layer on the first PAA layer and having a surface finishing layer on a top surface of the at least one first copper trace, and at least one die mounted on the dielectric substrate through diffusion bonding with the at least one first copper trace.
- PAA polyamic acid
- a multilayer chip on film comprises a flexible dielectric substrate having a first polyamic acid (PAA) anchoring layer on its top surface and a second PAA layer on its bottom surface, at least one first copper trace on a first Ni-P seed layer on the first PAA layer and at least one second copper trace on a second Ni-P seed layer on the second PAA layer wherein the first and second copper traces are interconnected through a via through the dielectric substrate, having a surface finishing layer on a top surface of the at least one first copper trace, and at least one die mounted on the dielectric substrate through diffusion bonding with the at least one first copper trace.
- PAA polyamic acid
- Fig. 1 is a flowchart of steps in a first alternative of a first preferred embodiment of the present disclosure.
- Figs. 2A-2G schematically illustrate in oblique representation steps in a first alternative of the first preferred embodiment of the present disclosure.
- Figs. 2H-2J schematically illustrate in oblique representation additional steps in a first alternative of the first preferred embodiment of the present disclosure.
- Fig. 3 is a flowchart of steps in a second alternative of the first preferred embodiment of the present disclosure.
- Figs. 2K-2M schematically illustrate in oblique representation additional steps in the second alternative of the first preferred embodiment of the present disclosure.
- Fig. 4 is a flowchart of steps in a first alternative of a second preferred embodiment of the present disclosure.
- Figs. 5A-5H schematically illustrate in oblique representation steps in the second preferred embodiment of the present disclosure.
- Figs. 5I-5K schematically illustrate in oblique representation additional steps in the first alternative of the second preferred embodiment of the present disclosure.
- Fig. 6 is a flowchart of steps in a second alternative of the second preferred embodiment of the present disclosure.
- Figs. 5L-5N schematically illustrate in oblique representation additional steps in the second alternative of the second preferred embodiment of the present disclosure.
- Figs. 7A-7K schematically illustrate in oblique representation additional steps in a third preferred embodiment of the present disclosure.
- Figs. 7L-7N schematically illustrate in oblique representation additional steps in a first alternative of the third preferred embodiment of the present disclosure.
- Figs. 7O-7Q schematically illustrate in oblique representation additional steps in a second alternative of the third preferred embodiment of the present disclosure.
- Fig. 8 is an oblique representation of a completed flexible substrate of the second preferred embodiment of the present disclosure.
- Fig. 9 graphically illustrates the peel strength of traces produced by the method of the present disclosure before and after reliability testing.
- Fig. 10 graphically illustrates bending endurance before and after annealing of the flexible substrate of the present disclosure as compared to a traditional subtractive process.
- Fig. 11 graphically illustrates strain as a function of pressure of the present disclosure as compared to a traditional subtractive process.
- Fig. 12 graphically illustrates strain as a function of temperature of the present disclosure as compared to a traditional subtractive process.
- Fig. 13 is an oblique representation of a completed COF using the flexible substrate of the present disclosure.
- the present disclosure discloses a method of producing a plurality of fine traces on a flexible substrate, specifically for chip on flex (COF) packages.
- This process will plate up reliable and robust copper traces with a trace pitch as fine as 8 ⁇ m and top to bottom width ratio close to 1.
- the copper traces are built up by a fully additive process using electroless Ni-P as a seed layer on a modified dielectric material with a specific thickness that is capable of producing a reliable nano-size polyamic acid (PAA) anchoring layer on the dielectric/Ni-P interface.
- PAA nano-size polyamic acid
- the proposed process is compatible with a wide range of dielectric and surface finishing materials.
- the traces formed are suitable for various interconnection methods including thermocompression bonding, wire bonding, adhesive bonding, and soldering of IC/chip to form a semiconductor package.
- This formation of fine pitch COF is targeted for future demand of miniaturization in numerous sectors including organic light emitting diodes (OLED) , active matrix organic light emitting diode (AMOLED) , liquid crystal display thin film transistor (LCD/TFT) , smart wearable, medical imaging, and IoTs packaging.
- OLED organic light emitting diodes
- AMOLED active matrix organic light emitting diode
- LCD/TFT liquid crystal display thin film transistor
- smart wearable smart wearable, medical imaging, and IoTs packaging.
- a fine pitch chip on flex is formed using a full additive process which is able to form reliable adhesion that ensures robust precision formation of fine traces on the flexible substrate and provides unique opportunities for ultra-fine pitch and high electrical performance interconnects.
- each embodiment may include either electrolytic surface finishing or electroless surface finishing.
- the process begins with a flexible dielectric substrate 10.
- the dielectric may be any kind of polyimide (PI) , such as Kapton PI or Upisel PI, modified PI (MPI) , cyclo olefin polymer (COP) , or liquid crystal polymer (LCP) .
- PI polyimide
- MPI modified PI
- COP cyclo olefin polymer
- LCP liquid crystal polymer
- the polyimide surface is modified by applying a KOH/alkaline base chemical to the PI surface.
- Concentration of the modifier chemical is optimized to produce a PAA layer thickness of less than 10 nmin order to achieve the desirable trace integrity performance.
- the modification layer of the present disclosure is extremely thin ( ⁇ 10 nm) , which can prevent the degradation of chemical bonding by reducing water intake on the layer during heat treatment and consequently minimizing the effect induced by the coefficient of hygroscopic expansion. Therefore, high adhesion can still be maintained after heat treatment.
- the PAA layer could be more than 10nm, but should be less than 100 nm.
- a catalyst layer is deposited on the PAA layer by immersion into an ionic metal solution.
- Palladium (Pd) or Nickel (Ni) is deposited to activate the surface for subsequent electroless Ni-P plating.
- an autocatalytic nickel-phosphorus (Ni-P) seed layer 14 is applied over the modified polyimide film using an electroless plating process.
- the thickness of the Ni-P layer is ideally 0.1 ⁇ m +/-10%.
- the composition of Ni-P in the seed layer is Ni: 96.5 ⁇ 97.5 wt%, P: 2.5 ⁇ 3.5 wt%.
- step 104 the substrate is annealed at about 200 °C for a duration of at least ten minutes to at most two hours.
- step 105 as shown in Fig. 2D, a layer of photoresist 16, preferably a positive-acting photoresist, is applied to the seed layer surface of the substrate.
- the photoresist may be a dry film or a liquid photoresist.
- the photoresist is exposed (step 106 and Fig. 2E) and developed (step 107 and Fig. 2F) to form a fine pitch trace for circuitization.
- the plating is employed only on the areas of the spacing which are not covered by the photoresist. In some applications, the plating is controlled to be at an aspect ratio of close to 1. The ratio of the top to bottom widths of the traces using this method can be close to 1.
- the copper is a fine-grained deposit with highly ductile properties.
- the thickness of copper is about 8 ⁇ m. In some applications, the thickness of electrolytic copper can be in a range of 2-18 ⁇ m.
- the elongation strength of the copper deposit is over 15%with a tensile strength of between 290-340 N/mm 2 .
- the hardness of electrolytic copper is 100 in vicker hardness with a purity of more than 99.9%.
- the electrolytic copper plating process enables high speed plating that enables mass production of the fine pitch COF.
- step 109 the surfaces of the traces are finished by plating electrolytic Ni/Au, electrolytic Palladium, electrolytic Titanium, electrolytic Tin, or electrolytic Rhodium as shown by 22 in Fig. 2H.
- the photoresist layer 16 is stripped, as shown in step 110 and Fig. 2I, followed by etching away the Ni-P seed layer 14 using a hydrogen peroxide acidic base solution that is strictly controlled to etch the Ni-P seed layer in a unidirectional manner with no or minimal etch on the copper trace to maintain the copper trace aspect ratio of close to 1, as shown in step 111 and Fig. 2J. This completes formation of the traces on the flexible substrate.
- the inner lead bonding (ILB) pitch between the traces is a pitch defining a center to center distance between two adjacent traces, each respective trace having a respective surface layer.
- the ILB of the substrate of the present disclosure is less than about 8 ⁇ m. In some applications, the ILB pitch can be 4-30 ⁇ m.
- the COF is assembled.
- the traces are compatible with various interconnection methods including thermocompression bonding, adhesive bonding, wire bonding and soldering of die or dies to form the semiconductor package.
- Fig. 13 shows a completed COF using the flexible substrate of the present disclosure.
- Copper traces 20 with surface finishing 22 on substrate 10 with PAA surface treatment are used to connect with several components.
- Die 204 is shown with thermocompressive bonding to copper traces 20a through gold bumps 202.
- Solder mask 200 and underfill 205 is shown.
- Die 206 is bonded to a copper trace 20b preferably using epoxy.
- Gold wires 208 are bonded to copper traces 20c.
- Component 212 is soldered (210) to copper traces 20d.
- the first alternative process included an electrolytic surface finishing.
- the second alternative process includes an electroless surface finishing.
- Fig. 3 shows that the steps in the process of the second alternative are identical to the first alternative through step 108, copper plating, as shown in Fig. 2G.
- step 112 photoresist 16 is stripped from the substrate, leaving copper traces 20 on the Ni-P layer 14, as shown in Fig. 2K.
- step 113 the Ni-P layer is etched away from the substrate, as shown in Fig. 2L.
- step 114 the surfaces of the traces are finished by full body or selective surface finishing by immersion Tin (Sn) , electroless plating of Ni/Au, electroless Nickel/Immersion gold (ENIG) , Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) , Electroless Palladium/Autocatalytic Gold (EPAG) , or Immersion Gold/Electroless Palladium/Immersion Gold (IGEPIG) , as shown by 22 in Fig. 2M.
- immersion Tin Sn
- electroless plating of Ni/Au electroless Nickel/Immersion gold
- EPIG Electroless Nickel/Electroless Palladium/Immersion Gold
- EPAG Electroless Palladium/Autocatalytic Gold
- IGEPIG Immersion Gold/Electroless Palladium/Immersion Gold
- the electroless process of the second alternative requires a thinner surface finishing thickness but has a slower plating rate as compared to electrolytic plating.
- the first embodiment shows a method of manufacturing a flexible substrate having at least one metal layer.
- the metal layer can be one conductive metal layer or more than one conductive metal layer.
- the flexible substrate can have double sided conductive metal layers or more than two stack-up conductive metal layers.
- the second embodiment of the present disclosure shows a double sided (2 ML) metal layer process.
- the process begins with a flexible dielectric substrate 10.
- the dielectric may be any kind of polyimide (PI) , such as Kapton PI or Upisel PI, modified PI (MPI) , cyclo olefin polymer (COP) , or liquid crystal polymer (LCP) ,
- PI polyimide
- MPI modified PI
- COP cyclo olefin polymer
- LCP liquid crystal polymer
- Dielectric 10 has a preferred thickness of between about 12.5 and 100 ⁇ m, as shown in Fig. 5A.
- step 401 of Fig. 4 via openings 11 are laser drilled through the substrate 10, as shown in Fig. 5B. Vias will electrically connect the metal layer on either side of the substrate.
- the polyimide surface is modified by applying a KOH/alkaline base chemical to the PI surface. This alters the molecular bond forming a polyamic acid (PAA) layer 12 on the top side of the substrate and 13 on the bottom side of the substrate, as shown in Fig. 5C, as well as within the via openings.
- Concentration of the modifier chemical is optimized to produce a PAA layer thickness of less than10nm in order to achieve the desirable trace integrity performance.
- the PAA layer could be more than 10nm, but should be less than 100 nm.
- step 403 catalyst layers, not shown, are deposited on the PAA layers 12 and 13 by immersion into an ionic metal solution. Typically, Palladium (Pd) or Nickel (Ni) is deposited to activate the surface for subsequent electroless Ni-P plating.
- an autocatalytic nickel-phosphorus (Ni-P) seed layer 14, 15 is applied over both sides of the modified polyimide film and within the via holes 11 using an electroless plating process.
- the thickness of the Ni-P layer is ideally 0.1 ⁇ m +/-10%.
- the composition of Ni-P in the seed layer is Ni: 96.5 ⁇ 97.5 wt%, P: 2.5 ⁇ 3.5 wt%.
- step 405 the substrate is annealed at about 200 °C for at least ten minutes and at most two hours.
- a layer of photoresist 16, 17, preferably a positive-acting photoresist is applied to the top and bottom seed layer surfaces of the substrate, respectively.
- the photoresist may be a dry film or a liquid photoresist.
- the photoresist is exposed (step 407 and Fig. 5F) and developed (step 408 and Fig. 5G) to form a fine pitch trace for circuitization.
- step 409 and Fig. 5H layers of conductive metal 20, 21, including a plurality of traces for active bonding and a soldering pad, are plated up to the desired thickness on top and bottom of the substrate, respectively, using electrolytic copper plating.
- the plating is employed only on the areas of the spacing which are not covered by the photoresist. In some applications, the plating is controlled to be at an aspect ratio of close to 1. The ratio of the top to bottom widths of the traces using this method can be close to 1.
- Plating continues through the via openings resulting in an electrical connection between the top and bottom copper layers.
- the copper is a fine-grained deposit with highly ductile properties.
- the thickness of copper is about 8 ⁇ m.
- the thickness of electrolytic copper can be in a range of 2-18 ⁇ m.
- the elongation strength of the copper deposit is over 15%with a tensile strength of between 290-340 N/mm 2 .
- the hardness of electrolytic copper is 100 in vicker hardness with a purity of more than 99.9%.
- step 410 the surfaces of the traces 20 are finished by plating electrolytic Ni/Au, electrolytic Palladium, electrolytic Titanium, electrolytic Tin, or Electrolytic Rhodium, as shown by 22 in Fig. 5I. At least one of the traces on the top and the traces on the bottom of the substrate are finished with the surface finishing 22.
- the photoresist layers 16, 17 are stripped, as shown in step 411 and Fig. 5J, followed by etching away the Ni-P seed layer 14, 15 using a hydrogen peroxide acidic base solution that is strictly controlled to etch the Ni-P seed layer in unidirectional manner with no or minimal etch on the copper trace to maintain the copper trace aspect ratio of close to 1, as shown in step 412 and Fig. 5K. This completes formation of the traces on the flexible substrate.
- the first alternative process included an electrolytic surface finishing.
- the second alternative process includes an electroless surface finishing.
- Fig. 6 shows that the steps in the process of the second alternative are identical to the first alternative through step 409, copper plating, as shown in Fig. 5H.
- step 413 photoresist 16, 17 are stripped from the substrate, leaving copper traces 20, 21 on the Ni-P layer 14, 15, as shown in Fig. 5L.
- step 414 the Ni-P layer is etched away from the substrate, as shown in Fig. 5M.
- step 415 the surfaces of the traces are finished by full body or selective surface finishing by immersion Tin, electroless plating of Ni/Au, electroless Nickel/Immersion gold (ENIG) , Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) , Electroless Palladium/Autocatalytic Gold (EPAG) , or Immersion Gold/Electroless Palladium/Immersion Gold (IGEPIG) as shown by 22 in Fig. 5N.
- ENIG electroless Nickel/Immersion gold
- ENEPIG Electroless Nickel/Electroless Palladium/Immersion Gold
- EPAG Electroless Palladium/Autocatalytic Gold
- IGEPIG Immersion Gold/Electroless Palladium/Immersion Gold
- the third embodiment of the present disclosure shows more than two stack-up conductive metal layers.
- Figs. 5A-5H and 7A-7N the third preferred embodiment in the process of the present disclosure will be described in detail.
- the steps in the process of the third embodiment are identical to the second embodiment through step 409, copper plating, as shown in Fig. 5H.
- photoresist layers 16, 17 are stripped, followed by etching away the Ni-P seed layer 14, 15 using a hydrogen peroxide acidic base solution that is strictly controlled to etch the Ni-P seed layer in a unidirectional manner with no or minimal etch on the copper trace to maintain the copper trace aspect ratio of close to 1, as shown in Fig. 7B.
- a bonding film 70, 71 is laminated onto the top and bottom surfaces, respectively.
- the bonding film can be any kind of dielectric material including polyimide, fluoropolymer, polyester, and so on.
- the bonding material can be any kind of modified epoxy or thermoset adhesive film reinforced with fibers, such as epoxy, cyanide ester, or acrylic adhesive.
- the bonding film will have a low coefficient of thermal expansion (CTE) and high glass transition temperature (Tg) .
- the bonding film can be an Ajinomoto Bonding film (ABF) , an epoxy resin-based film consisting of. : Bisphenol A epoxy resin: 9 wt. %, Petroleum naphtha: under 5.0 wt.
- Another polyimide base film 73, 74 is laminated onto the top and bottom bonding films, respectively, as shown in Fig. 7D.
- polyimide (PI) liquid crystal polymer (LCP) may be used as layer 73, 74.
- Dielectric 73, 74 has a preferred thickness of between about 12.5 and 100 ⁇ m, as shown in Fig. 7D.
- via openings 75 are laser drilled through the PI layer and bonding layer on both top and bottom of the substrate 10, as shown in Fig. 7E. Vias will electrically connect the additional metal layers on either side of the substrate to the metal layers 20.
- the polyimide surfaces 73, 74 are modified by applying a KOH/alkaline base chemical to the PI surface. This alters the molecular bond forming polyamic acid (PAA) anchoring layers 76, 77, as shown in Fig. 7F. Concentration of the modifier chemical is optimized to produce PAA layer thickness of less than 10 nm in order to achieve the desirable trace integrity performance.
- PAA polyamic acid
- a catalyst layer is deposited on the PAA layers 76, 77 by immersion into an ionic metal solution.
- Palladium (Pd) or Nickel (Ni) is deposited to activate the surface for subsequent electroless Ni-P plating.
- an autocatalytic nickel-phosphorus (Ni-P) seed layer 78, 79 is applied over the modified polyimide films 76, 77 on top and bottom of the substrate, respectively, using an electroless plating process.
- the thickness of the Ni-P layer is ideally 0.1 ⁇ m +/-10%.
- the composition of Ni-P in the seed layer is Ni: 96.5 ⁇ 97.5 wt%, P: 2.5 ⁇ 3.5 wt%.
- the substrate is annealed at about 200 °C for a duration of at least ten minutes and at most two hours.
- a layer of photoresist 82, 83 preferably a positive-acting photoresist, is applied to the seed layer surface 78, 79 on top and bottom, respectively, of the substrate.
- the photoresist may be a dry film or a liquid photoresist.
- the photoresist is exposed (Fig. 7I) and developed (Fig. 7J) to form fine pitch traces for circuitization on top and bottom surfaces of the substrate.
- a layer of conductive metal 90, 91 including a plurality of traces for active bonding and a soldering pad, is plated up to the desired thickness on top and bottom of the substrate, respectively, using electrolytic copper plating.
- the plating is employed only on the areas of the spacing which are not covered by the photoresist. In some applications, the plating is controlled to be at an aspect ratio of close to 1. The ratio of the top to bottom widths of the traces using this method can be close to 1.
- the copper is a fine-grained deposit with highly ductile properties.
- the thickness of copper is about 8 ⁇ m. Copper composition details are as described above.
- the surfaces of the traces are finished by plating immersion Tin, electrolytic Ni/Au, electrolytic Palladium, electrolytic Titanium, electrolytic Tin, or electrolytic Rhodium, as shown by 92 in Fig. 7L. At least one of the traces on the top and the traces on the bottom of the substrate are finished with the surface finishing 92.
- the photoresist layers 82, 83 are stripped, as shown in Fig. 7M, followed by etching away the Ni-P seed layer 78, 79 using a hydrogen peroxide acidic base solution that is strictly controlled to etch the Ni-P seed layer in a unidirectional manner with no or minimal etch on the copper trace to maintain the copper trace aspect ratio of close to 1, as shown in Fig. 7N. This completes formation of four level metal traces on the flexible substrate.
- the first alternative process included an electrolytic surface finishing.
- the second alternative process includes an electroless surface finishing.
- the steps in the process of the second alternative are identical to the first alternative through copper plating, as shown in Fig. 7K.
- photoresist 78, 79 are stripped from the substrate, leaving copper traces 90, 91 on the Ni-P layer 78, 79, as shown in Fig. 7O.
- the Ni-P layer is etched away from the substrate, as shown in Fig. 7P.
- the surfaces of the traces are finished by selective surface finishing by immersion Tin, electroless plating of Ni/Au, electroless Nickel/Immersion gold (ENIG) , Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) , Electroless Palladium/Autocatalytic Gold (EPAG) , or Immersion Gold/Electroless Palladium/Immersion Gold (IGEPIG) as shown by 92 in Fig. 7Q. At least one of the traces on the top and the traces on the bottom of the substrate are finished with the surface finishing 92.
- a cover coat such as solder resist or coverlay, is formed to act as a barrier between adjacent copper traces to protect the traces and prevent electrical shorts.
- the flexible substrate of the present disclosure is suitable for any cover coat material.
- Fig. 8 illustrates a completed oblique view of the four level conductive layer flexible substrate of the third embodiment. It can be seen that the metal layers 90, 20, 21, 91 (top down) are electrically connected through vias 75 and 11. Surface finishing 92 is shown on the exposed top copper traces 90. Cover coat, such as solder resist, 93 covers portions of the top copper traces 90 and covers the bottom copper traces 91. In this example, these areas are not used for bonding, so they do not need the relatively more expensive surface finishing 92.
- a flexible substrate having multiple conductive layers more than four can be achieved by sequentially repeating the steps of the third embodiment on the completed copper formation of the third embodiment.
- the process of the present disclosure can achieve an extremely smooth surface (Ra ⁇ 100 nm) without compromising the trace adhesion. This smooth surface is able to minimize the conductor loss during signal transmission.
- the traces are compatible with various interconnection methods including thermocompression bonding, adhesive bonding, wire bonding and soldering of die or dies to form the semiconductor package.
- TEM images of the substrate in the process of the present disclosure showed the thickness of the Ni-P seed layer of about 100 nm and the thickness of the PAA anchoring layer of about 3-4 nm before and after 300°C annealing. No degradation of the PAA anchoring layer was observed after annealing.
- Fig. 10 graphically illustrates the bending endurance before and after annealing of the flexible substrate with the proposed method (Full Additive) using direct metallization as compared to a traditional Subtractive process using a sputtering type base film material.
- the traditional method is shown on the left of the graph.
- Bending endurance is shown before annealing (301) , after annealing at 200°C for 24 hours (302) , and after annealing at 300°Cfor 24 hours (303) .
- On the right is shown the bonding endurance of the full additive method of the present disclosure before annealing (305) , after annealing at 200°C for 24 hours (306) , and after annealing at 300°C for 24 hours (307) . It can be seen that the process of the present disclosure provides improved bending endurance in all cases.
- Fig. 11 graphically shows the plastic deformation characteristic of the thermocompression bonding of the fully additive process of the present disclosure 311 as compared to a conventional subtractive (sputtering) process 313.
- temperature is constant at 345 °C and the pressure is varied.
- Fig. 12 shows the deformation strain of the process of the present disclosure 321 as compared to a conventional subtractive process 323 at a constant pressure of 140 MPa at various temperatures.
- Trace adhesion strength and bend durability of the process of the disclosure is similar to if not better than the substrate fabricated by a conventional subtractive process with a sputtering type base film material. Likewise, similar plastic deformation behavior after thermcompression bonding is observed as compared to a substrate fabricated by a conventional subtractive process with a sputtering type base film material. Reliable adhesion strength (on both sides for a two or more metal layer substrate) is maintained particularly due to the stability of the PAA anchoring layer after a 300°C heat treatment for 24 hours.
- the flexible substrate of the present disclosure is suitable for various interconnection methods including thermocompression bonding, wire bonding, adhesive bonding, and soldering of the IC/Chips to form a semiconductor package.
- the manufacturing process of the present disclosure results in an extremely smooth surface of the copper trace (Ra ⁇ 100 nm) without compromising the trace adhesion. This smooth surface is able to minimize the conductor loss during signal transmission.
- the present disclosure has described a method of manufacturing a flexible substrate with fine traces for COF that can be integrated into AMOLED, OLED, TFT/LCD and at least one of: a smart phone device, portable devices, IoT packaging, smart wearables, tablets, UHD TV, micro display, optoelectronics, medical devices, industrials (building &machinery monitoring) , and IC packaging/3D IC integration modules.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Ceramic Engineering (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
Claims (20)
- A method of manufacturing a flexible substrate comprising:providing a flexible dielectric substrate comprising any kind of polyimide (PI) , including Kapton PI or Upisel PI, modified PI (MPI) , cyclo olefin polymer (COP) , or liquid crystal polymer (LCP) ;applying an alkaline modification to said dielectric substrrate to form a polyamic acid (PAA) anchoring layer on a surface of said dielectric substrate;electrolessly plating a Ni-P seed layer on said PAA layer;forming a photoresist pattern on said Ni-P seed layer;plating copper traces within said photoresist pattern;plating a surface finishing layer on said copper traces; andremoving said photoresist pattern and etching away said Ni-P seed layer not covered by said copper traces to complete said flexible substrate.
- The method according to claim 1 wherein said alkaline modification comprises applying a KOH/alkaline base chemical to said dielectric substrate wherein said PAA layer has a thickness of less than 100 nm and preferably less than 10 nm.
- The method according to claim 1 further comprising depositing a catalyst layer comprising Palladium (Pd) or Nickel (Ni) on said PAA layer by immersion into an ionic metal solution to activate said PAA layer for subsequent electroless Ni-P seed layer plating.
- The method according to claim 1 wherein said electrolessly plating said Ni-P seed layer is an autocatalytic process and wherein said Ni-P seed layer has a thickness of 0.1 μm +/-10%and a composition of Ni: 96.5~97.5 wt%and P: 2.5~3.5 wt%.
- The method according to claim 1 wherein said forming said photoresist pattern comprises:applying a photoresist on said Ni-P seed layer; andexposing and developing said photoresist to form a pattern for fine pitch traces for circuitization.
- The method according to claim 1 further comprising annealing said substrate after forming said Ni-P seed layer preferably at 200 ℃ for at least ten minutes to at most 2 hours.
- The method according to claim 1 wherein said plating said copper traces comprises electrolytically plating copper to a thickness of between about 2 to 18 μm wherein a ratio of the top to bottom widths of said copper traces is close to 1, wherein an elongation strength of said copper traces is over 15%, wherein a tensile strength of said copper traces is between about 290 and 340 N/mm 2, and wherein a hardness of said copper traces is 100 in vicker hardness with a purity of more than 99.9%.
- The method according to claim 1 wherein said surface finishing layer comprises immersion Tin, electrolytic Ni/Au, electroless Nickel/Immersion gold (ENIG) , Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) , electrolytic Palladium, electrolytic Titanium, electrolytic Tin, electrolytic Rhodium, Electroless Palladium/Autocatalytic Gold (EPAG) , or Immersion Gold/Electroless Palladium/Immersion Gold (IGEPIG) .
- The method accordjng to claim 1 further comprising:laser drilling at least one first via opening all the way through said dielectric substrate wherein said applying said alkaline modification to said dielectric substrate, electrolessly plating said first Ni-P seed layer, and forming said first photoresist pattern are performed on both top and bottom surfaces and wherein said plating first copper traces is within said first photoresist patterns and through said at least one first via opening.
- The method of claim 9 further comprising:laminating a bonding film on top and bottom surfaces of said first copper traces;laminating a dielectric layer on top and bottom of said bonding films;laser drilling at least one second via opening all the way through said dielectric layer and said bonding film to contact said first copper traces on top and bottom of said substrate;thereafter applying an alkaline modification to said dielectric layers to form a second polyamic acid (PAA) anchoring layer on top and bottom surfaces of said dielectric layers and within said at least one second via openings;electrolessly plating a second Ni-P seed layer on top and bottom of said second PAA layers;forming a second photoresist pattern on top and bottom of said second Ni-P seed layers;plating second copper traces within said second photoresist patterns and through said at least one second via opening;plating a surface finishing layer on said second copper traces; andremoving said second photoresist patterns and etching away said second Ni-P seed layers not covered by said second copper traces to complete said flexible substrate.
- A chip on film comprising:a flexible dielectric substrate having a first polyamic acid (PAA) anchoring layer on its top surface;at least one first copper trace on a first Ni-P seed layer on said first PAA layer and having a surface finishing layer on a top surface of said at least one first copper trace wherein said surface finishing layer comprises electrolytic Ni/Au, electroless Nickel/Immersion gold (ENIG) , Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) , electrolytic Palladium, electrolytic Titanium, immersion Tin, electrolytic Tin, electrolytic Rhodium, Electroless Palladium/Autocatalytic Gold (EPAG) , or Immersion Gold/Electroless Palladium/Immersion Gold (IGEPIG) ; andat least one die mounted on said dielectric substrate to said at least one first copper trace.
- The chip on film according to claim 11 wherein said flexible dielectric layer comprises any kind of polyimide (PI) , including Kapton PI or Upisel PI, modified PI (MPI) , cyclo olefin polymer (COP) , or liquid crystal polymer (LCP) .
- The chip on film according to claim 11 further comprising:a second PAA layer on a bottom surface of said dielectric substrate; andat least one second copper trace on a second Ni-P seed layer on said second PAA layer wherein said first and second copper traces are interconnected by through a copper via through said dielectric substrate wherein said copper via further comprises a third PAA layer contacting said dielectric substrate and a third Ni-P seed layer between said third PAA layer and said copper via.
- The chip on film according to claim 13 wherein said first and second PAA layers have a thickness of less than 100 nm and preferably less than 10 nm.
- The chip on film according to claim 13 wherein said first and second Ni-P seed layers have a thickness of 0.1 μm +/-10%, a surface roughness with Ra value below 100 nm, and a composition of Ni: 96.5~97.5 wt%and P: 2.5~3.5 wt%.
- The chip on film according to claim 13 wherein said at least one first copper trace and at least one second copper trace have a thickness of between about 2 to 18 μm wherein a ratio of the top to bottom widths of said at least one first copper trace and at least one second copper trace is close to 1, wherein an elongation strength of said at least one first copper trace is over 15%, wherein a tensile strength of said at least one first copper trace is between about 290 and 340 N/mm 2, and wherein a hardness of said at least one first copper trace and at least one second copper trace is 100 in vicker hardness with a purity of more than 99.9%.
- The chip on film according to claim 13 wherein a center to center distance between two adjacent said first copper traces and between two adjacent said second copper traces is less than 8 μm.
- The chip on film according to claim 13 wherein a second peel strength of said chip on film after reliability tests of low temperature storage, high temperature storage, moisture sensitivity level-3, and thermal shock is the same or greater than a first peel strength of said chip on film before said reliability tests.
- The chip on film according to claim 13 further comprising:a first bonding film over said at least one first copper trace and a second bonding film over said at least one second copper trace; andan additional flexible dielectric substrate layer on said first and second bonding films and third and fourth at least one copper traces on third and fourth Ni-P seed layers on third and fourth PAA anchoring layers on said third and fourth additional flexible dielectric substrate layers, respectively, wherein said at least one third and fourth copper traces are interconnected to underlying said first and second at least one copper traces, respectively, by second and third copper vias through said third and fourth additional PI or LCP layers and said first and second bonding layers, respectively, wherein said second and third copper vias further comprise a fourth PAA layer contacting said third and fourth additional flexible dielectric substrate layers and said first and second bonding layers, respectively, and a fourth Ni-P seed layer between said fourth PAA layer and said second and third copper vias wherein said at least one die is mounted and bonded on a topmost of said at least one third or fourth copper trace.
- The chip on film according to claim 19 further comprising any number of bonding layers, additional flexible dielectric substrate layers, and copper traces on top and bottom of said chip on film.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227009098A KR20220061992A (en) | 2019-08-22 | 2020-08-19 | Formation of Fine Pitch Traces Using Ultra-Thin PAA Modified Full Additive Process |
CN202080057766.7A CN114616662A (en) | 2019-08-22 | 2020-08-19 | Method for manufacturing fine-pitch wiring by using ultra-fine PAA modified full-additive method |
JP2022511270A JP2022545799A (en) | 2019-08-22 | 2020-08-19 | Formation of fine pitch traces using ultra-thin PAA modified with a fully additive process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/548,373 | 2019-08-22 | ||
US16/548,373 US10636734B2 (en) | 2018-02-02 | 2019-08-22 | Formation of fine pitch traces using ultra-thin PAA modified fully additive process |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031507A1 true WO2021031507A1 (en) | 2021-02-25 |
Family
ID=74660105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/000184 WO2021031507A1 (en) | 2019-08-22 | 2020-08-19 | Formation of fine pitch traces using ultra-thin paa modified fully additive process |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022545799A (en) |
KR (1) | KR20220061992A (en) |
CN (1) | CN114616662A (en) |
WO (1) | WO2021031507A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116156772A (en) * | 2022-12-28 | 2023-05-23 | 南通威斯派尔半导体技术有限公司 | AMB copper-clad ceramic circuit board and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030143411A1 (en) * | 2002-01-28 | 2003-07-31 | Fujitsu Limited | Surface conductive resin, process for forming the same and wiring board |
CN102450110A (en) * | 2009-05-26 | 2012-05-09 | 荒川化学工业株式会社 | Flexible circuit board and method for manufacturing same |
CN104105819A (en) * | 2012-02-16 | 2014-10-15 | 安美特德国有限公司 | Method for electroless nickel-phosphorous alloy deposition onto flexible substrates |
US20190043821A1 (en) * | 2016-10-06 | 2019-02-07 | Compass Technology Company Limited | Fabrication Process and Structure of Fine Pitch Traces for a Solid State Diffusion Bond on Flip Chip Interconnect |
CN109791921A (en) * | 2016-10-06 | 2019-05-21 | 金柏科技有限公司 | For flip connect on solid-state diffusion engagement the conducting wire with fine spacing processing procedure and structure |
WO2019148308A1 (en) * | 2018-02-02 | 2019-08-08 | Compass Technology Company Limited | Formation of fine pitch traces using ultra-thin paa modified fully additive process |
US20190385936A1 (en) * | 2018-02-02 | 2019-12-19 | Compass Technology Company Limited | Formation of Fine Pitch Traces Using Ultra-Thin PAA Modified Fully Additive Process |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014801A (en) * | 2009-07-03 | 2011-01-20 | Mitsui Mining & Smelting Co Ltd | Flexible copper-clad laminate, flexible printed wiring board for cof, and method of manufacturing them |
JP6299226B2 (en) * | 2014-01-10 | 2018-03-28 | 住友金属鉱山株式会社 | Metal-clad laminated board, wiring board, and multilayer wiring board |
JP2016020437A (en) * | 2014-07-14 | 2016-02-04 | 住友電気工業株式会社 | Adhesive composition for printed wiring board, bonding film for printed wiring board, coverlay for printed wiring board, copper-clad laminate, and printed wiring board |
EP3159432B1 (en) * | 2015-10-23 | 2020-08-05 | ATOTECH Deutschland GmbH | Surface treatment agent for copper and copper alloy surfaces |
-
2020
- 2020-08-19 WO PCT/CN2020/000184 patent/WO2021031507A1/en active Application Filing
- 2020-08-19 KR KR1020227009098A patent/KR20220061992A/en unknown
- 2020-08-19 JP JP2022511270A patent/JP2022545799A/en active Pending
- 2020-08-19 CN CN202080057766.7A patent/CN114616662A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030143411A1 (en) * | 2002-01-28 | 2003-07-31 | Fujitsu Limited | Surface conductive resin, process for forming the same and wiring board |
CN102450110A (en) * | 2009-05-26 | 2012-05-09 | 荒川化学工业株式会社 | Flexible circuit board and method for manufacturing same |
CN104105819A (en) * | 2012-02-16 | 2014-10-15 | 安美特德国有限公司 | Method for electroless nickel-phosphorous alloy deposition onto flexible substrates |
US20190043821A1 (en) * | 2016-10-06 | 2019-02-07 | Compass Technology Company Limited | Fabrication Process and Structure of Fine Pitch Traces for a Solid State Diffusion Bond on Flip Chip Interconnect |
CN109791921A (en) * | 2016-10-06 | 2019-05-21 | 金柏科技有限公司 | For flip connect on solid-state diffusion engagement the conducting wire with fine spacing processing procedure and structure |
WO2019148308A1 (en) * | 2018-02-02 | 2019-08-08 | Compass Technology Company Limited | Formation of fine pitch traces using ultra-thin paa modified fully additive process |
US20190385936A1 (en) * | 2018-02-02 | 2019-12-19 | Compass Technology Company Limited | Formation of Fine Pitch Traces Using Ultra-Thin PAA Modified Fully Additive Process |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116156772A (en) * | 2022-12-28 | 2023-05-23 | 南通威斯派尔半导体技术有限公司 | AMB copper-clad ceramic circuit board and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114616662A (en) | 2022-06-10 |
JP2022545799A (en) | 2022-10-31 |
KR20220061992A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10643942B2 (en) | Formation of fine pitch traces using ultra-thin PAA modified fully additive process | |
US10636734B2 (en) | Formation of fine pitch traces using ultra-thin PAA modified fully additive process | |
US10510653B2 (en) | Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect | |
US6028364A (en) | Semiconductor device having a stress relieving mechanism | |
KR100939550B1 (en) | Flexible Film | |
US6423571B2 (en) | Method of making a semiconductor device having a stress relieving mechanism | |
US11594509B2 (en) | Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect | |
KR100947608B1 (en) | Flexible Film | |
TW200928535A (en) | Flexible film and display device comprising the same | |
WO2021031507A1 (en) | Formation of fine pitch traces using ultra-thin paa modified fully additive process | |
US11749595B2 (en) | Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect | |
US20110297423A1 (en) | Printed circuit board and method of manufacturing the same | |
KR20090067744A (en) | Flexible film | |
KR100889002B1 (en) | Flexible film | |
JP4321978B2 (en) | Multilayer printed wiring board and method for producing multilayer printed wiring board | |
US20240258218A1 (en) | Semiconductor package device and method for forming the same | |
JP4181149B2 (en) | Semiconductor package | |
JP4043611B2 (en) | Wiring board manufacturing method and wiring board | |
JP2000133330A (en) | Anisotropic electroconductive film, semiconductor mounting board using it, liquid crystal device, and electronic appliance | |
JPH10173090A (en) | Chip carrier | |
KR20010106298A (en) | A process of electroless Tin Double Plating at TAPE AUTOMATED BONDING and CHIP on Film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20854976 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022511270 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227009098 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20854976 Country of ref document: EP Kind code of ref document: A1 |