Nothing Special   »   [go: up one dir, main page]

WO2021029124A1 - 送信装置、受信装置、送信方法及び受信方法 - Google Patents

送信装置、受信装置、送信方法及び受信方法 Download PDF

Info

Publication number
WO2021029124A1
WO2021029124A1 PCT/JP2020/021938 JP2020021938W WO2021029124A1 WO 2021029124 A1 WO2021029124 A1 WO 2021029124A1 JP 2020021938 W JP2020021938 W JP 2020021938W WO 2021029124 A1 WO2021029124 A1 WO 2021029124A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
transmission
tbs
time interval
terminal
Prior art date
Application number
PCT/JP2020/021938
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
鈴木 秀俊
綾子 堀内
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2021539822A priority Critical patent/JP7558950B2/ja
Priority to MX2022000833A priority patent/MX2022000833A/es
Priority to BR112022002511A priority patent/BR112022002511A2/pt
Priority to KR1020227003793A priority patent/KR20220047764A/ko
Priority to EP20852252.4A priority patent/EP4017171A4/en
Priority to US17/633,911 priority patent/US20220294553A1/en
Priority to CN202080057152.9A priority patent/CN114223249A/zh
Publication of WO2021029124A1 publication Critical patent/WO2021029124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present disclosure relates to a transmitting device, a receiving device, a transmitting method, and a receiving method.
  • NR New Radio
  • LTE Long Term Evolution
  • 3rd 3rd
  • the non-limiting examples of the present disclosure contribute to the provision of a transmitting device, a receiving device, a transmitting method, and a receiving method capable of improving the reliability of the transmitting channel.
  • the transmitting device has a time of either a first time section in which the first channel and the second channel are arranged and a second time section in which the first channel is arranged.
  • the first time based on the control circuit that determines the transmission size in the other time interval and the determined transmission size based on the amount of time resources used to determine the transmission size of the first channel for the interval.
  • a transmission circuit that performs transmission processing of the first channel in the section and the second time section is provided.
  • the reliability of the transmission channel can be improved.
  • TBS Transport Block Size
  • a base station (sometimes called eNB) assigns a downlink data signal or an uplink data signal to a terminal (for example, UE: User Equipment).
  • a terminal for example, UE: User Equipment.
  • the size of the transport block (TB: Transport Block) (for example, TBS: Transport Block Size) is specified to the terminal by the control information.
  • the downlink data signal corresponds to the downlink data channel (PDSCH: Physical Downlink Shared CHannel)
  • the uplink data signal corresponds to the uplink data channel (PUSCH: Physical Uplink Shared CHannel)
  • the control information corresponds to the downlink control channel (PDCCH).
  • PDSCH Physical Downlink Shared CHannel
  • PUSCH Physical Uplink Shared CHannel
  • the control information corresponds to the downlink control channel (PDCCH).
  • PDCCH Physical Downlink Control CHannel
  • TBS is also called, for example, the amount of information bits.
  • the terminal determines the number of resources in the frequency domain (for example, resource block (RB: Resource block) or PRB (Physical RB)) included in the PDCCH and modulation coding during PDSCH decoding or PUSCH coding. Based on the method (MCS: Modulation and Coding Scheme), the TBS and coding rate determined by the base station are determined (for example, calculated). The terminal determines the receive buffer size or the transmit buffer size based on, for example, the determined TBS.
  • resource block Resource block
  • PRB Physical RB
  • NR has also agreed to support TBS decisions based on control information at terminals.
  • TBS has, for example, the amount of resources in the frequency domain allocated for TB transmission (for example, the number of RBs), as well as the amount of resources in the time domain allocated for that TB transmission (for example, the number of RBs). For example, it is determined based on the number of symbols) (see, for example, Non-Patent Document 1). The determination of TBS based on the amount of resources in the time domain is because NR enables data allocation with a specified number of symbols.
  • NR in addition to cellular communication, communication with automobiles (for example, V2X: Vehicle to Everything), communication via artificial satellites (for example, NTN: Non-Terrestrial Network), or ultra-reliable and low-delay communication (for example).
  • URLLC Ultra-Reliable and Low-Latency Communications
  • Techniques for improving the reliability of data transmission include, for example, techniques for transmitting the same TB multiple times (for example, called regression and blind retransmission).
  • a base station for example, also called eNB or gNB
  • a terminal for example, also called UE
  • the receiving side may mistakenly recognize the reception of different TBs and may not be able to synthesize the TBs. Therefore, depending on the TBS setting, it may not be possible to improve the reliability of TB transmission.
  • the base station or the transmitting terminal determines the size of the data signal (for example, TBS) at the time of PDSCH or PUSCH transmission. Further, the control information including the resource allocation of PDSCH or PUSCH is transmitted from the base station or the transmitting terminal to the receiving terminal by, for example, a channel different from PDSCH (for example, PDCCH).
  • a channel different from PDSCH for example, PDCCH
  • the base station or the receiving terminal receives a data signal (for example, TB), the resource allocation information in the time area of TB and the resource allocation information in the frequency area (for example) notified from the base station or the transmitting terminal by the control information.
  • PRB number number of demodulation reference signals (DM-RS: DeModulation Reference Signal), MCS order, or TBS is determined (for example, calculated) based on information such as coding rate (Coding Rate).
  • TBS determination example (calculation example) will be explained.
  • the terminal calculates RE number contained within 1PRB the (N 'RE).
  • the RE number ( N'RE ) may be calculated according to the following equation (1).
  • N Symb sh indicates the number of symbols assigned to PDSCH
  • N DMRS PRB is contained within 1 PRB. Indicates the number of REs used in the DM-RS, and Now PRB indicates the value set by the upper layer.
  • the UE calculates the total number of REs (N RE ) assigned to PDSCH, for example, according to the following equation (2).
  • n PRB indicates the total number of PRBs assigned to the UE.
  • the terminal calculates N info indicating the intermediate value (Intermediate Number) of the number of information bits of the data transmitted in PDSCH.
  • N info may be calculated according to the following equation (3).
  • R indicates the code rate (Target Code Rate)
  • Q m indicates the modulation order
  • v indicates the number of layers.
  • the terminal determines the TBS based on the quantized value N'info according to the value of the median N info .
  • the TBS determination example (example using calculation) has been explained above.
  • resources are allocated to each transmission in the repeated transmission or retransmission of the same TB, for example, by an individual control signal (for example, PDCCH, PUCCH, or Physical Sidelink Shared CHannel (PSSCH)). Therefore, even if the TB is the same, different TBSs can be calculated for repeated transmission or retransmission, for example, at the time of initial transmission and at the time of retransmission.
  • an individual control signal for example, PDCCH, PUCCH, or Physical Sidelink Shared CHannel (PSSCH)
  • the base station or the receiving terminal determines the buffer size in the receiving buffer based on the TBS calculated at the time of TB reception.
  • the receive buffer temporarily buffers the received TB.
  • the base station or the receiving terminal synthesizes and decodes the buffered TB of the previous transmission (for example, the first transmission) and the TB at the time of repeated transmission or retransmission.
  • the size of the data to be combined (or the buffer in which the data is buffered) will be different, and the reliability of the decoding result will be improved by the synthesis. It may not be possible to improve.
  • SL Sidelink
  • PC5 Physical Sidelink Control CHannel Support for channels such as (PSCCH), PSSCH, Physical Sidelink Feedback CHannel (PSFCH), or Physical Sidelink Broadcast CHannel (PSBCH) is expected.
  • PSSCH is a channel for TB transmission. It is assumed that the transmitting terminal determines TBS at the time of TB transmission by PSSCH, and the receiving terminal determines (for example, calculates) TBS at the time of TB reception by PSSCH.
  • PSFCH is a channel for notifying the transmitting terminal of the success or failure of decryption of PSSCH.
  • PSFCH resources for example, it is assumed that at least the last symbol in a certain slot is used.
  • PSFCH is not limited to the case where it is transmitted for each slot. For example, if there is no terminal that sends PSFCH, it is assumed that no resources will be allocated to PSFCH.
  • the cycle of the slot to which the PSFCH resource can be allocated for example, one of the cycles such as every slot, 1 slot in 2 slots, and 1 slot in 4 slots can be assumed.
  • Information about the period of slots to which PSFCH resources can be allocated is assumed to be set in, for example, an upper layer or an application layer. Support for other cycles will also be considered. Further, it is expected that whether or not PSFCH resources are allocated changes not only in resources in the time domain but also in resources in the frequency domain (for example, subchannels).
  • PSFCH resources are allocated for each subchannel or slot, or the amount of PSFCH resources can vary. Therefore, resources allocated to channels different from PSFCH, such as PSSCH, are also allocated for each subchannel or slot. It is assumed that it can fluctuate to.
  • the terminal cannot send and receive at the same time. For example, even if the terminal is a subchannel to which PSFCH is not assigned, when transmitting / receiving PSFCH on another subchannel, the terminal may not be able to transmit / receive PSCCH at the symbol to which PSFCH is transmitted / received.
  • the amount of resources that can be allocated to TB may differ depending on the resources in the frequency domain and the resources in the time domain allocated to each transmission. Therefore, the TBS determined (or calculated) by the transmitter and the receiver may also differ from transmission to transmission. Since the TBS for each transmission is different, for example, the effect of improving the reliability of transmission in repeated transmission or retransmission may not be obtained.
  • the communication system according to the present embodiment is, for example, a communication system that supports NR V2X communication (which may be referred to as "side link communication").
  • the communication system according to the present embodiment includes, for example, a plurality of terminals 100.
  • the terminal 100 may include, for example, one or both of a transmitting terminal and a receiving terminal.
  • FIG. 1 is a block diagram showing a partial configuration example of the transmission terminal 100a according to the present embodiment.
  • the control unit (for example, corresponding to a control circuit) is, for example, either a first time section (for example, a first slot) or a second time section (for example, a second slot).
  • the transmission data size in the other time interval may be determined based on the amount of time resources (for example, the number of symbols) used to determine the transmission data size (for example, TBS) for one time interval.
  • a data channel for example, PSSCH
  • a channel different from the data channel for example, PSFCH
  • a data channel may be arranged, but a channel different from the data channel may not be arranged.
  • the transmission unit (for example, corresponding to a transmission circuit) performs processing (for example, coding, modulation, transmission, retransmission, etc.) of data channels in the first time interval and the second time interval based on the determined transmission data size. Including).
  • FIG. 2 is a block diagram showing a partial configuration example of the receiving terminal 100b according to the present embodiment.
  • the control unit (for example, corresponding to a control circuit) is, for example, either a first time section (for example, a first slot) or a second time section (for example, a second slot).
  • the transmission data size in the other time interval may be determined based on the amount of time resources (for example, the number of symbols) used to determine the transmission data size (for example, TBS) for one time interval.
  • a data channel for example, PSSCH
  • a channel different from the data channel for example, PSFCH
  • a data channel may be arranged, but a channel different from the data channel may not be arranged.
  • the receiving unit (for example, corresponding to a receiving circuit) performs reception processing (including processing such as demodulation, decoding and synthesis) of the data channel in the first time interval and the second time interval based on the determined transmission data size. Do.
  • FIG. 3 is a block diagram showing a configuration example of the terminal 100 according to the present embodiment.
  • the terminal 100 includes a PSFCH setting unit 101, a resource pool setting unit 102, an SCI generation unit 103, an ACK / NACK generation unit 104, a TBS determination unit 105, a transmission data buffer unit 106, and error correction.
  • TBS calculation unit 116 and reception data buffer unit 117 are examples of reception data buffer unit 117.
  • the terminal 100 shown in FIG. 3 has a configuration in which one processing system for transmission data and one processing system for reception data are included. For example, in V2X, communication with a base station (not shown) and communication between terminals 100 and between terminals 100 are performed. Since two types of communication are assumed, two transmission / reception data processing systems may be included.
  • control unit shown in FIG. 1 may include, for example, the TBS determination unit 105 shown in FIG. 3, and the transmission unit may include, for example, the transmission data buffer unit 106 and the transmission unit 110 shown in FIG.
  • control unit shown in FIG. 2 may include, for example, the TBS calculation unit 116 shown in FIG. 3
  • reception unit may include, for example, the reception unit 111 and the reception data buffer unit 117 shown in FIG.
  • the PSFCH setting unit 101 allocates PSFCH resources (for example, slots or) used for feedback from the receiving terminal to the transmitting terminal based on the information regarding the PSFCH setting input from the error correction decoding unit 115, for example. Set at least one of the subchannels). For example, the PSFCH setting unit 101 outputs information related to the PSFCH setting to the signal separation unit 112 in the case of a data transmitting terminal related to the set PSFCH, and assigns a signal in the case of a receiving terminal related to the set PSFCH. Output to unit 109.
  • PSFCH resources for example, slots or
  • the resource pool setting unit 102 sets, for example, a resource group (for example, called a resource pool) in a frequency and time domain that can be used in side link communication.
  • the resource pool setting unit 102 sets the resource pool (for example, time resource and frequency resource) used by the terminal 100 for the side link based on the information about the resource pool input from the error correction decoding unit 115.
  • the resource pool setting unit 102 outputs information about the set resource pool to, for example, the SCI generation unit 103, the signal allocation unit 109, and the signal separation unit 112 at the transmission terminal, and outputs to the signal separation unit 112 at the reception terminal.
  • the SCI generation unit 103 generates control information (for example, SCI) to be transmitted from the transmitting terminal to the receiving terminal, for example, based on the information input from the resource pool setting unit 102.
  • the SCI may contain, for example, information about the resource that sends the PSSCH.
  • the SCI generation unit 103 outputs the generated SCI to the signal allocation unit 109 and the signal separation unit 112.
  • the ACK / NACK generation unit 104 determines whether or not the received data signal has been successfully decoded based on the received data signal input from the error correction decoding unit 115.
  • the ACK / NACK generation unit 104 indicates, for example, whether or not to feed back information regarding the success or failure of decoding of the received data signal based on the determination result, or either ACK (decoding success) or NACK (decoding failure).
  • ACK decoding success
  • NACK decoding failure
  • the TBS determination unit 105 determines the TBS to be set in the transmission data signal (for example, TB). For example, the TBS determination unit 105 is based on resource allocation information of a transmission data signal or information notified from an upper layer (for example, information related to PSFCH such as a slot containing allocated resources, a subchannel, or a resource pool). TBS may be determined. The TBS determination unit 105 outputs information about the determined TBS to the transmission data buffer unit 106.
  • the transmission data buffer unit 106 temporarily buffers the transmission data signal.
  • the transmission data buffer unit 106 may output the buffered transmission data signal to the error correction coding unit 107, for example, when the transmission data signal is repeatedly transmitted or retransmitted. Further, the transmission data buffer unit 106 may determine the amount of data to be buffered (also referred to as a buffer size) based on the information regarding TBS input from the TBS determination unit 105.
  • the transmission data buffer unit 106 may be, for example, a circular buffer.
  • the error correction coding unit 107 takes a transmission data signal or a higher layer signal (also referred to as a higher layer parameter; not shown) as an input, error corrects the input signal, and sends the coded signal to the modulation unit 108. Output.
  • a higher layer signal also referred to as a higher layer parameter; not shown
  • the modulation unit 108 modulates the signal input from the error correction coding unit 107, and outputs the modulated signal to the signal allocation unit 109.
  • the signal allocation unit 109 for example, is a PSCCH signal including the SCI based on the information input from the PSFCH setting unit 101, the information input from the resource pool setting unit 102, and the information input from the SCI generation unit 103.
  • the PSSCH signal including the signal input from the modulation unit 108 or the PSFCH signal including the signal input from the ACK / NACK generation unit 104 is assigned to the radio resource of the side link.
  • the signal allocation unit 109 outputs the signal allocated to the resource to the transmission unit 110.
  • the transmission unit 110 performs wireless transmission processing such as up-conversion on the signal input from the signal allocation unit 109, and transmits the transmission signal to the receiving terminal via the antenna.
  • the receiving unit 111 receives the signal transmitted from the transmitting terminal via the antenna, performs reception processing such as down-conversion on the received signal, and then outputs the signal to the signal separation unit 112.
  • the signal separation unit 112 is input from the reception unit 111 based on, for example, the information input from the PSFCH setting unit 101, the information input from the resource pool setting unit 211, or the information input from the SCI reception unit 113. Of the signals, the signal component of PSCCH is output to the SCI receiving unit 113, and the signal component of PSSCH is output to the demodulating unit 114.
  • the SCI receiving unit 113 reads the control information transmitted from the transmitting terminal based on the signal component (for example, SCI) of the PSCCH input from the signal separating unit 112 (may be referred to as “receive”). For example, the SCI receiving unit 113 may output the PSSCH resource allocation information addressed to the terminal 100 included in the SCI to the signal separation unit 112. Further, the SCI receiving unit 113 may output information related to TBS included in the SCI to the TBS calculating unit 116.
  • the signal component for example, SCI
  • the SCI receiving unit 113 may output the PSSCH resource allocation information addressed to the terminal 100 included in the SCI to the signal separation unit 112. Further, the SCI receiving unit 113 may output information related to TBS included in the SCI to the TBS calculating unit 116.
  • the demodulation unit 114 performs demodulation processing on the signal input from the signal separation unit 112, and outputs the obtained demodulation signal to the error correction decoding unit 115.
  • the error correction decoding unit 115 decodes the demodulated signal input from the demodulation unit 114, outputs information on the PSFCH setting included in the obtained upper layer signaling to the PSFCH setting unit 101, and outputs information on the resource pool to the resource pool setting. Output to unit 102. Further, the error correction / decoding unit 115 outputs the obtained received data signal to the ACK / NACK generation unit 104 and the reception data buffer unit 117.
  • the TBS calculation unit 116 is based on the information related to TBS input from the SCI reception unit 113 (for example, the resource allocation information of TB or the information related to PSFCH in the slot, subchannel, or resource pool containing the allocated resource). Then, the TBS set in the received data is determined (for example, calculated). The TBS calculation unit 116 outputs the calculated TBS to the reception data buffer unit 117.
  • the received data buffer unit 117 temporarily buffers the received data signal input from the error correction decoding unit 115.
  • the reception data buffer unit 117 may synthesize the buffered reception data signal and the reception data signal input from the error correction decoding unit 115, for example, when the transmission data signal is repeatedly transmitted or retransmitted. Further, the reception data buffer unit 117 may determine the amount of data to be buffered (also referred to as a buffer size) based on the information regarding TBS input from the TBS calculation unit 116.
  • the reception data buffer unit 117 may be, for example, a circular buffer.
  • control information related to the side link such as PSFCH setting information or resource pool setting information is not limited to signaling in the upper layer, and may be set in, for example, an application layer called "Pre-configured", and the subscriber identity provided in the terminal 100. It may be preset in the module (SIM).
  • FIG. 4 is a flowchart showing an example of processing of the terminal 100.
  • the transmitting terminal determines the TBS of the transmitted data (for example, TB) (ST101). For example, the transmitting terminal may determine TBS based on the resource allocation information of PSSCH and the information related to PSFCH.
  • the transmitting terminal transmits, for example, PSCCH including SCI and PSSCH including transmission data to the receiving terminal (ST102).
  • the transmitting terminal transmits transmission data (TB), for example, based on the determined TBS.
  • the transmission terminal buffers the transmission data in the transmission data buffer unit 106.
  • the transmission terminal may determine the buffer size of the transmission data based on, for example, TBS. PSCCH and PSSCH are received by the receiving terminal.
  • the receiving terminal determines (or calculates) the TBS of the data transmitted from the transmitting terminal (ST103). For example, the receiving terminal may determine the TBS to be set in the received data based on the resource allocation information included in the SCI and the setting information regarding PSFCH from the upper layer. Further, the receiving terminal buffers the received data in the receiving data buffer unit 117. The receiving terminal may determine the buffer size of the received data based on, for example, TBS.
  • the receiving terminal transmits, for example, PSFCH including ACK / NACK for the received data to the transmitting terminal (ST104).
  • the receiving terminal may determine, for example, a slot for transmitting PSFCH based on the PSFCH setting information.
  • the transmitting terminal may retransmit the transmitted data, for example, based on the PSFCH fed back from the receiving terminal.
  • the transmitting terminal may repeatedly transmit the transmitted data.
  • the transmitting terminal and the receiving terminal may, for example, repeat the processes of ST101 to ST104 shown in FIG.
  • parameters related to side links may be predetermined for the terminal 100, for example, in the standard, or may be set in an application layer called Pre-configured.
  • SIM may be preset, or may be set in a higher layer such as SIB or other RRC called configured.
  • the terminal 100 (for example, a transmitting terminal and a receiving terminal) is assigned to PSFCH or is assigned to PSFCH in a plurality of time intervals (for example, a plurality of slots) in repeated transmission or retransmission of TB.
  • a fixed value may be set in TBS regardless of the fluctuation of the amount of resources to be received.
  • the TBS in each of the plurality of slots may be determined without considering, for example, some or all of the variation in the allocated resources of the transmitted data signal for each slot, subchannel or resource pool.
  • "decide without considering XX” means "determine without considering XX", “determine without depending on XX", “determine independently of XX", May be replaced with each other.
  • the TBS determination methods 1 to 3 will be described below.
  • the terminal 100 determines (or calculates) the TBS to be set in the transmission data based on, for example, the resource allocation information of the transmission data signal (for example, PSSCH) and the information about PSFCH. To do. For example, terminal 100 may determine TBS without considering whether PSSCH is allocated, part or all of the amount of resources allocated to PSFCH, or settings or notifications regarding resource allocation.
  • the resource allocation information of the transmission data signal for example, PSSCH
  • the information about PSFCH For example, terminal 100 may determine TBS without considering whether PSSCH is allocated, part or all of the amount of resources allocated to PSFCH, or settings or notifications regarding resource allocation.
  • the terminal 100 is assigned the number of symbols N symb sh assigned to the data signal used for the TBS determination in the receiving terminal to the PSFCH regardless of whether or not the symbol assigned to the PSF CH exists in the slot.
  • the terminal 100 may set the number of symbols N symb sh assigned to the data signal used for the TBS determination in the receiving terminal to the number of symbols of PSSCH when PSFCH is not assigned.
  • FIG. 5 shows the amount of resources in the time domain (for example, the number of symbols) allocated to TB (for example, PSSCH signal) in the determination method 1, and the amount of resources in the time domain of TB used for determining (or calculating) TBS. An example of the relationship with is shown.
  • the resources actually allocated to TB (PSSCH) (for example, symbols) are allocated without overlapping with the resources allocated to PSFCH. It should be noted that the term “overlap” may be read as "collision”.
  • PSFCH is not assigned, and PSSCH is assigned up to the last symbol in the slot.
  • PSFCH is assigned and assigned to the last symbol in the slot.
  • PSSCH is assigned to a symbol different from PSFCH in the slot.
  • the terminal 100 determines the TBS based on the number of symbols in which the PSSCH (for example, TB) is arranged in the slot shown in FIG. 5A, which includes the PSSCH and does not include the PSFCH. In other words, the terminal 100 determines (or calculates) TBS based on the allocation of PSSCH shown in FIG. 5A regardless of whether or not PSFCH in the slot is allocated.
  • the PSSCH for example, TB
  • the terminal 100 determines (or calculates) TBS based on the allocation of PSSCH shown in FIG. 5A regardless of whether or not PSFCH in the slot is allocated.
  • the terminal 100 determines TBS based on the PSSCH allocation (for example, the number of symbols) in the slot shown in FIG. 5A even in the slot shown in FIG. 5B (when PSFCH is assigned). In other words, the terminal 100 determines the TBS in the slot shown in FIG. 5 (b) based on the number of symbols used in determining the TBS in the slot shown in FIG. 5 (a).
  • PSSCH is allocated to a resource that does not overlap with the resource of PSFCH in consideration of the allocated resource of PSFCH.
  • TBS determination (for example, TBS calculation)
  • the PSSCH in the slot shown in FIG. 5 (a) is determined regardless of the presence or absence of PSFCH allocation and without considering the PSFCH allocation resource (for example, symbol).
  • TBS is determined based on the allocated resources.
  • the terminal 100 uses a data signal for determining the TBS in a certain slot (for example, the slot of FIG. 5A) among a plurality of slots for repeated transmission or retransmission.
  • the number of symbols assigned to N symb sh is also used to determine the TBS in other slots (eg, the slot of FIG. 5B).
  • the terminal 100 can determine the same TBS in a plurality of slots regardless of the presence or absence of PSFCH.
  • the terminal 100 determines (or calculates) the TBS to be set in the transmission data based on, for example, the resource allocation information of the transmission data signal (for example, PSSCH) and the information about PSFCH. To do. For example, terminal 100 may determine TBS in consideration of whether PSSCH is allocated, part or all of the amount of resources allocated to PSFCH, or settings or notifications regarding resource allocation.
  • the resource allocation information of the transmission data signal for example, PSSCH
  • the information about PSFCH For example, terminal 100 may determine TBS in consideration of whether PSSCH is allocated, part or all of the amount of resources allocated to PSFCH, or settings or notifications regarding resource allocation.
  • the terminal 100 is assigned the number of symbols N symb sh assigned to the data signal used for the TBS determination in the receiving terminal to the PSFCH regardless of whether or not the symbol assigned to the PSF CH exists in the slot. Set to a value that does not include the number of symbols.
  • the terminal 100 may set the number of symbols N symb sh assigned to the data signal used for the TBS determination in the receiving terminal to the number of symbols of PSSCH when PSFCH is assigned.
  • FIG. 6 shows the amount of resources in the time domain (for example, the number of symbols) allocated to TB (for example, PSSCH signal) in the determination method 2, and the amount of resources in the time domain of TB used for determining (or calculating) TBS. An example of the relationship with is shown.
  • the resources actually allocated to TB (PSSCH) (for example, symbols) are allocated without overlapping with the resources allocated to PSFCH.
  • PSFCH is not assigned, and PSSCH is assigned up to the last symbol in the slot.
  • PSFCH is assigned and assigned to the last symbol in the slot.
  • PSSCH is assigned to a symbol different from PSFCH in the slot.
  • the terminal 100 determines the TBS based on the number of symbols in which the PSSCH (for example, TB) is arranged in the slot shown in FIG. 6 (b) including the PSSCH and the PSFCH. In other words, the terminal 100 determines (or calculates) TBS based on the PSSCH allocation shown in FIG. 6 (b) regardless of whether or not the PSFCH in the slot is allocated.
  • the PSSCH for example, TB
  • the terminal 100 determines (or calculates) TBS based on the PSSCH allocation shown in FIG. 6 (b) regardless of whether or not the PSFCH in the slot is allocated.
  • the terminal 100 determines the TBS based on the PSSCH allocation (for example, the number of symbols) in the slot shown in FIG. 6B even in the slot shown in FIG. 6A (when no PSFCH allocation is made). In other words, the terminal 100 determines the TBS in the slot shown in FIG. 6A based on the number of symbols used in determining the TBS in the slot shown in FIG. 6B.
  • the PSSCH allocation for example, the number of symbols
  • the terminal 100 determines the TBS in the slot shown in FIG. 6A based on the number of symbols used in determining the TBS in the slot shown in FIG. 6B.
  • PSSCH is allocated to a resource that does not overlap with the resource of PSFCH in consideration of the allocated resource of PSFCH.
  • TBS determination (for example, TBS calculation)
  • the allocation of PSSCH in the slot shown in FIG. 6B is taken into consideration regardless of the presence or absence of PSFCH allocation, considering the allocation resource (for example, symbol) of PSFCH.
  • TBS is determined based on resources.
  • the terminal 100 uses a data signal for determining the TBS in a certain slot (for example, the slot of FIG. 6B) among a plurality of slots for repeated transmission or retransmission.
  • the number of symbols assigned to N symb sh is also used to determine the TBS in other slots (eg, the slot of FIG. 6A ).
  • the terminal 100 can determine the same TBS in a plurality of slots regardless of the presence or absence of PSFCH.
  • the terminal 100 determines the TBS set in the transmission data based on, for example, the resource allocation information of the transmission data signal (for example, PSSCH) and the information regarding PSFCH. Determine (or calculate).
  • the terminal 100 determines the number of symbols N symb sh assigned to the data signal used for the TBS determination, for example, based on the setting or notification for the terminal 100. In other words, the terminal 100 determines whether or not to consider the setting related to PSFCH when determining TBS, based on the setting or notification.
  • the amount of resources allocated to PSSCH in the slot including PSSCH and not including PSFCH (for example, the number of symbols) is the same as in the determination method 1.
  • the TBS may be determined based on.
  • the terminal 100 is set or notified to consider the setting related to PSFCH, it is based on the allocated resource amount (for example, the number of symbols) of PSSCH in the slot including PSSCH and PSFCH as in the determination method 2.
  • TBS may be determined.
  • the amount of time resources based on the TBS determination (for example, the number of symbols N symb sh ) is arranged by TB in one of the slot containing PSSCH and not containing PSFCH and the slot containing PSSCH and PSFCH. It is a value based on the number of symbols to be made, and one of the above slots is notified to the terminal 100 or set in the terminal 100.
  • the terminal 100 can select, for example, the determination method suitable for the TBS determination by the terminal 100 from the determination method 1 and the determination method 2.
  • the method of determining TBS may be set or notified to the terminal 100 based on the capacity of the terminal 100 (for example, UE capability or buffer size, etc.).
  • the number of symbols assigned to the TB (for example, N symb sh ) is, for example, a standard (or a specification). ) Defines a fixed value or candidate group.
  • the number of symbols N symb sh assigned to the data signal used in the TBS calculation of the receiving terminal may be set to a fixed value in the standard, or may be selected from the candidate group defined in the standard.
  • the terminal 100 may determine a candidate to be selected from the candidate group based on the notification by SCI or the setting by the upper layer or the like. , May be determined according to certain criteria.
  • the transmitting terminal and the receiving terminal have the number of symbols assigned to TB used when determining TBS (or calculating TBS), and whether or not the assigned symbols overlap with the symbols that can be assigned to PSFCH. Determine the TBS based on.
  • a resource that is not assigned to another channel or signal different from PSSCH in the slot is set as a resource assigned to PSSCH.
  • resources assigned to other channels or signals different from PSSCH include, for example, PSCCH, PSFCH, symbols corresponding to transmission / reception and transmission / reception switching transient times, or automatic gain control (AGC: Automatic Gain Control). May include resources assigned to the symbol corresponding to.
  • the terminal 100 transmitting terminal or receiving terminal determines, for example, the number of symbols N symb sh used in determining TBS, depending on whether the resources allocated to PSSCH overlap with the resources that can be allocated to PSFCH. Good.
  • the terminal 100 may set the number of symbols assigned to the PSSCH to N symb sh .
  • the terminal 100 may set N symb sh to a value obtained by adding the number of symbols assigned to PSFCH to the number of symbols assigned to PSSCH .
  • the first symbol in the slot of the resource to which the data channel (for example, PDSCH or PSSCH) is assigned by the control information (for example, DCI or SCI) and the assigned symbol length, such as NR of Rel.16. Is expected to be notified.
  • the control information for example, DCI or SCI
  • the transmitting terminal and the receiving terminal may determine whether or not the resource allocated to PSSCH and the resource that can be allocated to PSFCH overlap.
  • the value of the number of symbols N symb sh in the TBS determination differs depending on the judgment result by the transmitting terminal and the receiving terminal. For example, when the PSSCH resource and the PSFCH resource overlap, the number of symbols assigned to PSSCH is set to the value of the number of symbols N symb sh in the TBS determination. On the other hand, if the PSSCH resource and the PSFCH resource do not overlap, the value obtained by adding the number of symbols assigned to PSFCH to the number of symbols assigned to PSSCH is set to the value of the number of symbols N symb sh in the TBS determination. Will be done.
  • the terminal 100 (transmitting terminal or receiving terminal) is related to the repeated transmission or retransmission regardless of the duplication of the PSSCH resource and the PSFCH resource.
  • the same TBS can be determined for a data signal (eg PSSCH).
  • the terminal 100 can flexibly allocate resources to each transmission data, for example, according to the situation of the slot or the sub-channel.
  • a resource that is not assigned to another channel or signal different from PSSCH in the slot is set as a resource assigned to PSSCH.
  • the resources assigned to other channels or signals different from PSSCH include, for example, PSCCH, PSFCH, symbols corresponding to transmission / reception and transmission / reception switching transient times, or resources assigned to symbols corresponding to AGC. May be included.
  • the terminal 100 transmitting terminal or receiving terminal determines, for example, the number of symbols N symb sh used in determining TBS, depending on whether the resources allocated to PSSCH overlap with the resources that can be allocated to PSFCH. Good.
  • the terminal 100 may set N symb sh to a value obtained by subtracting the number of symbols assigned to PSFCH from the number of symbols assigned to PSSCH .
  • the terminal 100 may set the number of symbols assigned to the PSSCH to N symb sh .
  • the control information eg DCI or SCI
  • the transmitting terminal and the receiving terminal may determine whether or not the resource allocated to PSSCH and the resource that can be allocated to PSFCH overlap.
  • the value of the number of symbols N symb sh in the TBS determination differs depending on the judgment result by the transmitting terminal and the receiving terminal. For example, when the PSSCH resource and the PSFCH resource overlap, the value obtained by subtracting the number of symbols assigned to PSFCH from the number of symbols assigned to PSSCH is set to the value of the number of symbols N symb sh in the TBS determination. On the other hand, if the PSSCH resource and the PSFCH resource do not overlap, the number of symbols assigned to PSSCH is set to the value of the number of symbols N symb sh in the TBS determination.
  • the terminal 100 (transmitting terminal or receiving terminal) is related to the repeated transmission or retransmission regardless of the duplication of the PSSCH resource and the PSFCH resource.
  • the same TBS can be determined for a data signal (eg PSSCH).
  • the terminal 100 can flexibly allocate resources to each transmission data, for example, according to the situation of the slot or the sub-channel.
  • the number of symbols (N symb sh ) recognized by the receiving terminal as being assigned to the data signal used in the TBS determination is, for example, the data signal as shown in FIG. 5 (b). Can be more than the number of symbols actually assigned to.
  • the TBS set in the TB can be larger than the TBS determined based on the number of symbols actually assigned to the TB.
  • TB may be allocated to a resource smaller than the resource corresponding to the determined TBS (eg, PSSCH resource).
  • the transmitting terminal may thin out the transmitted data, for example. This process is also referred to as, for example, puncturing or puncturing.
  • the transmission terminal can allocate the punctured transmission data to, for example, a resource smaller than the resource corresponding to the determined TBS (for example, the PSSCH resource).
  • the allocated resource becomes smaller. It is possible to suppress the reduction of transmission reliability due to. In addition, the reliability of transmission can be further improved by repeatedly transmitting TB.
  • the number of symbols (N symb sh ) recognized by the receiving terminal as being assigned to the data signal used in the TBS determination is, for example, the data signal as shown in FIG. 6A .
  • the TBS set in the TB can be smaller than the TBS determined based on the number of symbols actually assigned to the TB.
  • TB can be allocated to a resource that is larger than the resource corresponding to the determined TBS (eg, PSSCH resource).
  • the transmitting terminal may adjust the coding rate by adding a redundant bit or the like to the transmitted data, for example.
  • the transmitting terminal can allocate transmission data with redundant bits added to, for example, a resource larger than the resource corresponding to the determined TBS (for example, a PSSCH resource).
  • NR V2X for example, it is assumed that a single SCI reserves resources for multiple PSSCHs on a resource pool to avoid collisions with transmissions from other terminals. This operation is also called "Resource reservation". In Resource reservation, multiple PSSCHs may be used for repeated transmissions or retransmissions of the same TB, or for different TBs.
  • TBS determination (or TBS calculation) of TB transmitted in multiple PSSCHs is described in TBS as described above. 1 to 3 may be applied.
  • the receiving terminal may receive and decode each of the multiple PSSCHs.
  • the same TBS can be calculated. By calculating the same TBS, the reliability of the decoding result can be improved by synthesizing the decoding result based on multiple PSSCHs.
  • the terminal 100 (for example, a transmitting terminal and a receiving terminal) has a PSSCH transmission size (for example, a slot in which PSSCH and PSFCH are arranged, and a slot in which PSSCH is arranged.
  • a PSSCH transmission size for example, a slot in which PSSCH and PSFCH are arranged, and a slot in which PSSCH is arranged.
  • the TBS in the other slot is determined based on the number of symbols used in the determination of TBS). Then, the transmitting terminal performs the PSSCH transmission processing in each slot based on the determined TBS, and the receiving terminal performs the PSSCH reception processing in each slot based on the determined TBS.
  • the TBS in each transmission can be set to be the same.
  • the buffer size of the transmission data or the reception data can be set to be the same, and the reliability of the transmission channel (for example, PSSCH or TB) can be improved.
  • NR V2X NR V2X
  • eMBB enhanced mobile broadband
  • URLLC enhanced mobile broadband
  • NTN NR-U
  • the transmitting terminal in the above embodiment is replaced with a base station or terminal
  • PSCCH is replaced with PDCCH or PUCCH
  • PSSCH is replaced with PDSCH or PUSCH
  • PSFCH is replaced with PUCCH
  • SCI is replaced with DCI
  • the resource pool May be replaced with Component Carrier (CC) and subchannels may be replaced with Bandwidth Part (BWP).
  • CC Component Carrier
  • BWP Bandwidth Part
  • the presence / absence of symbols or the change in the number of symbols is not limited to the case of PSFCH, but may be due to other channels or signals different from PSFCH, other symbols or resources.
  • PSFCH instead of PSFCH, in the NRV2X scenario, PSCCH, PSSCH, PSBCH, a symbol corresponding to the transient time of transmission / reception switching or transmission / reception switching, or a symbol corresponding to AGC may be used.
  • the presence / absence of symbols or the variation in the number of symbols is assigned to the same subchannel, slot, or subchannel and slot as the resource allocation of the TB corresponding to the TBS.
  • PSFCH symbols PSFCH symbols assigned to different subchannels and slots can also be applied.
  • the channel for determining the transmission size is not limited to the data channel (for example, PSSCH, PDSCH or PUSCH), and may be another channel.
  • the transmission / reception terminal includes, for example, a terminal that performs transmission processing and does not perform reception processing, a terminal that performs reception processing and does not perform transmission processing, or a terminal that performs both transmission and reception. Good.
  • PSCCH and PSSCH As an example of the arrangement of PSCCH and PSSCH, for example, as shown in FIGS. 5 and 6, an example in which PSCCH is arranged at the first number symbol of PSSCH has been described, but the arrangement of PSCCH and PSSCH is shown in FIGS. 5 and 6. It is not limited to the arrangement shown.
  • the above embodiment can be applied to an arrangement in which PSCCH and PSSCH are time-multiplexed (TDM: Time Division Multiplexing) and an arrangement in which frequency multiplexing (FDM: Frequency Division Multiplexing) is performed.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • the PSFCH format is not limited to the format arranged in the last symbol in the slot, and may be another format.
  • PSFCH may be placed on a different symbol than the end in the slot.
  • PSFCH may be arranged in two or more symbols.
  • the present invention is not limited to this, and the TBS is set to a plurality of slots that are repeatedly transmitted or retransmitted.
  • TBS may be determined in a slot.
  • the TBS set in the plurality of slots that are repeatedly transmitted or retransmitted does not have to be determined for each of the plurality of slots.
  • the number of symbols assigned to PSSCH may be, for example, assigned by the corresponding PSCCH, or may be preset when the resource pool is set.
  • the slot in which a plurality of TBs are openly transmitted may be a slot that is continuous in time or a slot that is not continuous in time.
  • the unit of the time resource is not limited to the combination of slots and symbols, and may be, for example, a time resource unit such as a frame, a subframe, a slot, a subslot, or a symbol, or another resource unit such as a resource element (RE).
  • a time resource unit such as a frame, a subframe, a slot, a subslot, or a symbol
  • another resource unit such as a resource element (RE).
  • RE resource element
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of the functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • the present disclosure may be realized as digital processing or analog processing. Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is naturally possible to integrate functional blocks using that technology. There is a possibility of applying biotechnology.
  • the communication device may include a wireless transmitter / receiver (transceiver) and a processing / control circuit.
  • the wireless transmitter / receiver may include a receiver and a transmitter, or both as functions.
  • the radio transmitter / receiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator / demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.).
  • Digital players digital audio / video players, etc.
  • wearable devices wearable cameras, smart watches, tracking devices, etc.
  • game consoles digital book readers
  • telehealth telemedicines remote health Care / medicine prescription
  • vehicles with communication functions or mobile transportation automobiles, airplanes, ships, etc.
  • combinations of the above-mentioned various devices can be mentioned.
  • Communication devices are not limited to those that are portable or mobile, but are not portable or fixed, any type of device, device, system, such as a smart home device (home appliances, lighting equipment, smart meters or Includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • a smart home device home appliances, lighting equipment, smart meters or Includes measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc.
  • the communication device also includes devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • the transmitting device has a time of either a first time section in which the first channel and the second channel are arranged and a second time section in which the first channel is arranged.
  • the first time based on the control circuit that determines the transmission size in the other time interval and the determined transmission size based on the amount of time resources used to determine the transmission size of the first channel for the interval.
  • a transmission circuit that performs transmission processing of the first channel in the section and the second time section is provided.
  • the time resource amount is the number of symbols in which the first channel is arranged in the first time interval.
  • the time resource amount is the number of symbols in which the first channel is arranged in the second time interval.
  • the time resource amount is the number of symbols in which the first channel is arranged in either the first time interval or the second time interval, and the one is the same.
  • the time interval of is notified to the transmitting device or set to the transmitting device.
  • control circuit determines the buffer size of the buffer corresponding to the first channel based on the transmission size.
  • the first channel is a data channel that is repeatedly transmitted in the first time interval and the second time interval, or the first time interval and the second time interval.
  • the receiving device is the time of either the first time interval in which the first channel and the second channel are arranged and the second time interval in which the first channel is arranged.
  • the first time based on the control circuit that determines the transmission size in the other time interval and the determined transmission size based on the amount of time resources used to determine the transmission size of the first channel for the interval. It includes a receiving circuit that performs reception processing of the first channel in the section and the second time section.
  • the transmission device is either a first time section in which the first channel and the second channel are arranged, or a second time section in which the first channel is arranged.
  • the transmission size in the other time interval is determined based on the amount of time resources used to determine the transmission size of the first channel for one time interval, and the first transmission size is determined based on the determined transmission size.
  • the transmission processing of the first channel in the time interval and the second time interval is performed.
  • the receiving device is either a first time section in which the first channel and the second channel are arranged, or a second time section in which the first channel is arranged.
  • the transmission size in the other time interval is determined based on the amount of time resources used to determine the transmission size of the first channel for one time interval, and the first transmission size is determined based on the determined transmission size.
  • the reception processing of the first channel in the time interval and the second time interval is performed.
  • One embodiment of the present disclosure is useful for mobile communication systems.
  • Terminal 101 PSFCH setting unit 102 Resource pool setting unit 103 SCI generation unit 104 ACK / NACK generation unit 105 TBS determination unit 106 Transmission data buffer unit 107 Error correction coding unit 108 Modulation unit 109 Signal allocation unit 110 Transmission unit 111 Reception unit 112 Signal separation unit 113 SCI reception unit 114 Demodulation unit 115 Error correction decoding unit 116 TBS calculation unit 117 Received data buffer unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Transmitters (AREA)

Abstract

送信チャネルの信頼性を向上する。送信端末は、第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、第1チャネルが配置される第2の時間区間の何れか一方の時間区間について第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における送信サイズを決定する制御回路と、決定した送信サイズに基づいて、第1の時間区間及び第2の時間区間における第1チャネルの送信処理を行う送信回路と、を具備する。

Description

送信装置、受信装置、送信方法及び受信方法
 本開示は、送信装置、受信装置、送信方法及び受信方法に関する。
 第5世代移動通信システム(5G)の標準化に関して、Long Term Evolution(LTE)又はLTE-Advancedとは必ずしも後方互換性を有さない新しい無線アクセス技術(例えば、NR:New Radioと呼ぶ)が、3rd Generation Partnership Project(3GPP)において議論されている。
3GPP TS 38.214 V15.6.0, "NR; Physical layer procedures for data (Release 15)," 2019-06
 しかしながら、新しい無線アクセス技術において、送信チャネルの信頼性を向上する方法については検討の余地がある。
 本開示の非限定的な実施例は、送信チャネルの信頼性を向上できる送信装置、受信装置、送信方法及び受信方法の提供に資する。
 本開示の一実施例に係る送信装置は、第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定する制御回路と、決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの送信処理を行う送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、送信チャネルの信頼性を向上できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
送信端末の一部の構成例を示すブロック図 受信端末の一部の構成例を示すブロック図 端末の構成例を示すブロック図 端末の動作例を示すフローチャート Transport Block Size(TBS)決定方法の一例を示す図 TBS決定方法の一例を示す図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 例えば、LTE/LTE-Advancedにおいて、基地局(例えば、eNBと呼ぶこともある)は、端末(例えば、UE:User Equipmentと呼ぶこともある)に対する下りデータ信号又は上りデータ信号を割り当てる際に、トランスポートブロック(TB:Transport Block)のサイズ(例えば、TBS:Transport Block Size)を制御情報によって端末に指定する。
 なお、例えば、下りデータ信号は下りデータチャネル(PDSCH:Physical Downlink Shared CHannel)に対応し、上りデータ信号は上りデータチャネル(PUSCH:Physical Uplink Shared CHannel)に対応し、制御情報は下り制御チャネル(PDCCH:Physical Downlink Control CHannel)に対応する。また、TBSは、例えば、情報ビット量とも呼ばれる。
 例えば、端末は、PDSCH復号又はPUSCH符号化の際に、PDCCHに含まれる周波数領域のリソース量(例えば、リソースブロック(RB:Resource block)、又はPRB(Physical RB))数、及び、変調符号化方式(MCS:Modulation and Coding Scheme)に基づいて、基地局が決定したTBS及び符号化率を決定(例えば、算出)する。端末は、例えば、決定したTBSに基づいて、受信バッファサイズ又は送信バッファサイズを決定する。
 NRでも、端末において制御情報に基づくTBS決定のサポートが合意されている。
 NRでは、LTE/LTE-Advancedと異なり、TBSは、例えば、TB送信に割り当てられた周波数領域のリソース量(例えば、RB数)に加えて、そのTB送信に割り当てられた時間領域のリソース量(例えば、シンボル数)に基づいて決定される(例えば、非特許文献1を参照)。時間領域のリソース量に基づくTBSの決定は、NRでは、シンボル数を指定したデータ割当が可能になったからである。
 また、NRでは、セルラ通信に加え、対自動車通信(例えば、V2X:Vehicle to Everything)、人工衛星を介した通信(例えば、NTN:Non-Terrestrial Network)、又は、超高信頼低遅延通信(例えば、URLLC:Ultra-Reliable and Low-Latency Communications)といった様々なシナリオにおいて、データ送信(例えば、TB送信)の信頼性を向上する技術のサポートが検討されている。データ送信の信頼性を向上する技術には、例えば、同一のTBを複数回送信する技術(例えば、repetition及びblind retransmissionと呼ばれる)がある。
 例えば、同一のTBを複数回送信する際、複数の送信それぞれにおけるTBに対して異なるTBSが設定されると、基地局(例えば、eNB又はgNBとも呼ぶ)又は端末(例えば、UEとも呼ぶ)といった受信側は、異なるTBの受信と誤認識し、TBを合成できない場合があり得る。このため、TBS設定によってはTB送信の信頼性を向上できない場合があり得る。
 NRでは、例えば、基地局又は送信端末は、PDSCH又はPUSCH送信の際に、データ信号のサイズ(例えば、TBS)を決定する。また、PDSCH又はPUSCHのリソース割当を含む制御情報は、例えば、PDSCHとは別のチャネル(例えば、PDCCH)によって基地局又は送信端末から受信端末へ送信される。
 また、基地局又は受信端末は、データ信号(例えば、TB)を受信する際、制御情報によって基地局又は送信端末から通知されたTBの時間領域のリソース割当情報、周波数領域のリソース割当情報(例えば、PRB数)、復調用参照信号(DM-RS:DeModulation Reference Signal)数、MCSオーダ、又は、符号化率(Coding Rate)といった情報に基づいてTBSを決定(例えば、算出)する。
 TBSの決定例(算出例)について説明する。
 例えば、端末(例えば、UE)は、1PRB内に含まれるRE数(N'RE)を算出する。例えば、RE数(N'RE)は、次式(1)に従って算出されてよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、NSC RBは、1PRB内に含まれるサブキャリア数(例えば、NSC RB=12)を示し、NSymb shはPDSCHに割り当てられたシンボル数を示し、NDMRS PRBは1PRB内に含まれるDM-RSに用いられるRE数を示し、Noh PRBは上位レイヤによって設定される値を示す。
 次に、UEは、PDSCHに割り当てられたRE数の合計(NRE)を、例えば、次式(2)に従って算出する。
Figure JPOXMLDOC01-appb-M000002
 ここで、nPRBは、UEに割り当てられたPRB数の合計を示す。
 次に、端末は、PDSCHにおいて送信されているデータの情報ビット数の中間値(Intermediate Number)を示すNinfoを算出する。例えば、中間値Ninfoは、次式(3)に従って算出されてよい。
Figure JPOXMLDOC01-appb-M000003
 ここで、Rは符号化率(Target Code Rate)を示し、Qmは変調オーダ(modulation order)を示し、vはレイヤ数を示す。
 そして、端末は、中間値Ninfoの値に応じて量子化された値N'infoに基づいてTBSを決定する。
 以上、TBSの決定例(算出を用いる例)について説明した。
 同一TBの繰り返し送信又は再送における各送信には、例えば、個別の制御信号(例えば、PDCCH、PUCCH、又は、Physical Sidelink Shared CHannel(PSSCH))によってリソースが割り当てられることが想定される。よって、同一TBであっても繰り返し送信又は再送において、例えば、初回送信時と再送時とで異なるTBSが算出され得る。
 例えば、基地局又は受信端末は、TB受信時に算出したTBSに基づいて、受信バッファにおけるバッファサイズを決定する。なお、受信バッファは、受信したTBを一時的にバッファする。そして、基地局又は受信端末は、繰り返し送信又は再送時には、バッファされている以前の送信(例えば、初回送信)分のTBと、繰り返し送信又は再送時のTBとを合成し復号する。
 そのため、同一TBの繰り返し送信又は再送において、それぞれの送信について異なるTBSが算出されると、合成するデータ(又は、データがバッファされるバッファ)のサイズが異なるので、合成によって復号結果の信頼性を向上できない場合があり得る。
 例えば、NRのV2Xシナリオにおいて、サイドリンク(SL:Sidelink)又はPC5と呼ばれるリンクを使用する端末間の直接の送受信(別言すると、基地局を含むネットワークを介さない通信)では、Physical Sidelink Control CHannel(PSCCH)、PSSCH、Physical Sidelink Feedback CHannel(PSFCH)、又は、Physical Sidelink Broadcast CHannel(PSBCH)といったチャネルのサポートが想定される。
 例えば、PSSCHはTB送信のためのチャネルである。送信端末は、PSSCHによるTB送信の際にTBSを決定し、受信端末は、PSSCHによるTB受信の際にTBSを決定(例えば、算出)することが想定される。
 また、例えば、PSFCHは、PSSCHの復号成否を受信端末から送信端末へ通知するためのチャネルである。PSFCHのリソースには、例えば、少なくとも或るスロット内の末尾1シンボルが用いられることが想定される。また、PSFCHは、スロット毎に送信される場合に限らない。例えば、PSFCHを送信する端末が存在しない場合、PSFCHには、リソースは割り当てられないことが想定される。
 また、PSFCHリソースが割り当てられ得るスロットの周期として、例えば、毎スロット、2スロット中の1スロット、及び、4スロット中の1スロットといった周期の何れかが想定され得る。PSFCHリソースが割り当てられ得るスロットの周期に関する情報は、例えば、上位レイヤ又はアプリケーションレイヤ等で設定されることが想定される。また、他の周期のサポートも検討される。また、時間領域のリソースに限らず、例えば、周波数領域のリソース(例えば、サブチャネル)において、PSFCHリソースが割り当てられるか否かが変わることも想定される。
 これらより、サブチャネル又はスロット毎にPSFCHリソースの割り当ての有無、又は、PSFCHリソースの量が変動し得るため、例えば、PSSCHのような、PSFCHと異なるチャネルに割り当てられるリソースも、サブチャネル又はスロット毎に変動し得ることが想定される。
 また、例えば、サイドリンク通信では、端末は送受信を同時に実施できない。例えば、端末は、PSFCHが割り当てられていないサブチャネルであっても、他のサブチャネルにおいてPSFCHを送受信する場合、PSFCHが送受信されるシンボルにおいてPSCCHを送受信できない場合もあり得る。
 上記より、NRにおけるTBの繰り返し送信又は再送の際、各送信に割り当てられる周波数領域のリソース及び時間領域のリソースによってTB(例えば、サイドリンク通信ではPSSCH)に割当可能なリソース量が異なり得る。そのため、送信機及び受信機において決定(又は算出)されるTBSも送信毎に異なり得る。送信毎のTBSが異なることにより、例えば、繰り返し送信又は再送における送信の信頼性向上の効果を得られない場合があり得る。
 そこで、本開示の一実施例では、繰り返し送信又は再送における送信の信頼性を向上する方法について説明する。
 (実施の形態1)
 [通信システムの概要]
 本実施の形態に係る通信システムは、一例として、NR V2X通信(「サイドリンク通信」と称されてもよい)をサポートする通信システムである。本実施の形態に係る通信システムは、例えば、複数の端末100を備える。端末100は、例えば、送信端末及び受信端末の何れか一方、又は双方の構成を備えてよい。
 図1は、本実施の形態に係る送信端末100aの一部の構成例を示すブロック図である。図1に示す送信端末100aにおいて、制御部(例えば、制御回路に相当)は、例えば、第1時間区間(例えば、第1スロット)と第2時間区間(例えば、第2スロット)との何れか一方の時間区間について送信データサイズ(例えば、TBS)の決定に用いた時間リソース量(例えば、シンボル数)に基づいて、他方の時間区間における送信データサイズを決定してよい。第1時間区間には、例えば、データチャネル(例えば、PSSCH)、及び、データチャネルと異なるチャネル(例えば、PSFCH)が配置されてよい。第2時間区間には、データチャネルは配置されるがデータチャネルと異なるチャネルは配置されない区間であってよい。送信部(例えば、送信回路に相当)は、決定した送信データサイズに基づいて、第1時間区間及び第2時間区間においてデータチャネルの送信処理(例えば、符号化、変調、送信又は再送といった処理を含む)を行う。
 図2は、本実施の形態に係る受信端末100bの一部の構成例を示すブロック図である。図2に示す受信端末100bにおいて、制御部(例えば、制御回路に相当)は、例えば、第1時間区間(例えば、第1スロット)と第2時間区間(例えば、第2スロット)との何れか一方の時間区間について送信データサイズ(例えば、TBS)の決定に用いた時間リソース量(例えば、シンボル数)に基づいて、他方の時間区間における送信データサイズを決定してよい。第1時間区間には、例えば、データチャネル(例えば、PSSCH)、及び、データチャネルと異なるチャネル(例えば、PSFCH)が配置されてよい。第2時間区間には、データチャネルは配置されるがデータチャネルと異なるチャネルは配置されない区間であってよい。受信部(例えば、受信回路に相当)は、決定した送信データサイズに基づいて、第1時間区間及び第2時間区間においてデータチャネルの受信処理(例えば、復調、復号及び合成といった処理を含む)を行う。
 [端末の構成]
 図3は、本実施の形態に係る端末100の構成例を示すブロック図である。図3において、端末100は、PSFCH設定部101と、リソースプール設定部102と、SCI生成部103と、ACK/NACK生成部104と、TBS決定部105と、送信データバッファ部106と、誤り訂正符号化部107と、変調部108と、信号割当部109と、送信部110と、受信部111と、信号分離部112と、SCI受信部113と、復調部114と、誤り訂正復号部115と、TBS算出部116と、受信データバッファ部117と、を有する。
 なお、図3に示す端末100では、送信データ及び受信データの処理系が各々1つずつ含む構成であるが、例えば、V2Xでは基地局(図示せず)との通信、及び、端末100間の通信の2種類が想定されるため、送受信データ処理系が2つずつ含まれてもよい。
 また、図1に示す制御部は、例えば、図3に示すTBS決定部105を含み、送信部は、例えば、図3に示す送信データバッファ部106及び送信部110を含んでよい。また、図2に示す制御部は、例えば、図3に示すTBS算出部116を含み、受信部は、例えば、図3に示す受信部111及び受信データバッファ部117を含んでよい。
 図3において、PSFCH設定部101は、例えば、誤り訂正復号部115から入力されるPSFCH設定に関する情報に基づいて、受信端末から送信端末へのフィードバックに使用されるPSFCHのリソース割当(例えば、スロット又はサブチャネルの少なくとも一つ)を設定する。PSFCH設定部101は、例えば、PSFCH設定に関する情報を、設定したPSFCHに関連するデータの送信端末の場合には信号分離部112へ出力し、設定したPSFCHに関連する受信端末の場合には信号割当部109へ出力する。
 リソースプール設定部102は、例えば、サイドリンク通信において使用可能な周波数及び時間領域のリソース群(例えば、リソースプールと呼ぶ)を設定する。例えば、リソースプール設定部102は、誤り訂正復号部115から入力される、リソースプールに関する情報に基づいて、端末100がサイドリンクに使用するリソースプール(例えば、時間リソース及び周波数リソース)を設定する。リソースプール設定部102は、設定したリソースプールに関する情報を、例えば、送信端末ではSCI生成部103、信号割当部109及び信号分離部112へ出力し、受信端末では信号分離部112へ出力する。
 SCI生成部103は、例えば、リソースプール設定部102から入力される情報に基づいて、送信端末から受信端末へ送信する制御情報(例えば、SCI)を生成する。SCIには、例えば、PSSCHを送信するリソースに関する情報が含まれてよい。SCI生成部103は、生成したSCIを信号割当部109及び信号分離部112へ出力する。
 ACK/NACK生成部104は、誤り訂正復号部115から入力される受信データ信号に基づいて、受信データ信号が復号に成功したか否かを判定する。ACK/NACK生成部104は、例えば、判定結果に基づいて、受信データ信号の復号成否に関する情報をフィードバックするか否かを示す情報、又は、ACK(復号成功)及びNACK(復号失敗)の何れかを含む情報(例えば、応答信号、ACK/NACK又はHARQ-ACKとも呼ぶ)を生成し、信号割当部109へ出力する。
 TBS決定部105は、送信データ信号(例えば、TB)に設定されるTBSを決定する。例えば、TBS決定部105は、送信データ信号のリソース割当情報、又は、上位レイヤから通知される情報(例えば、割当リソースを含むスロット、サブチャネル、又は、リソースプールといったPSFCHに関連する情報)に基づいてTBSを決定してよい。TBS決定部105は、決定したTBSに関する情報を、送信データバッファ部106へ出力する。
 送信データバッファ部106は、送信データ信号を一時的にバッファする。送信データバッファ部106は、例えば、送信データ信号の繰り返し送信又は再送の際に、バッファされた送信データ信号を誤り訂正符号化部107に出力してよい。また、送信データバッファ部106は、TBS決定部105から入力されるTBSに関する情報に基づいて、バッファするデータ量(バッファサイズとも呼ぶ)を決定してよい。送信データバッファ部106は、例えば、サーキュラバッファでもよい。
 誤り訂正符号化部107は、送信データ信号又は上位レイヤ信号(または、上位レイヤパラメータとも呼ぶ。図示せず)を入力とし、入力信号を誤り訂正符号化し、符号化後の信号を変調部108へ出力する。
 変調部108は、誤り訂正符号化部107から入力される信号を変調し、変調信号を信号割当部109へ出力する。
 信号割当部109は、例えば、PSFCH設定部101から入力される情報、リソースプール設定部102から入力される情報、及び、SCI生成部103から入力される情報に基づいて、SCIを含むPSCCHの信号、変調部108から入力される信号を含むPSSCHの信号、又は、ACK/NACK生成部104から入力される信号を含むPSFCHの信号を、サイドリンクの無線リソースに割り当てる。信号割当部109は、リソースに割り当てた信号を送信部110へ出力する。
 送信部110は、信号割当部109から入力される信号に対してアップコンバート等の無線送信処理を施し、アンテナを介して送信信号を受信端末へ送信する。
 受信部111は、送信端末から送信された信号をアンテナを介して受信し、受信信号に対してダウンコンバート等の受信処理を施した後に信号分離部112へ出力する。
 信号分離部112は、例えば、PSFCH設定部101から入力される情報、リソースプール設定部211から入力される情報、又は、SCI受信部113から入力される情報に基づいて、受信部111から入力される信号のうち、PSCCHの信号成分をSCI受信部113へ出力し、PSSCHの信号成分を復調部114へ出力する。
 SCI受信部113は、信号分離部112から入力されるPSCCHの信号成分(例えば、SCI)に基づいて、送信端末から送信された制御情報を読み取る(「受信する」と称してもよい)。例えば、SCI受信部113は、SCIに含まれる端末100宛てのPSSCHのリソース割当情報を信号分離部112へ出力してよい。また、SCI受信部113は、SCIに含まれるTBSに関連する情報をTBS算出部116へ出力してよい。
 復調部114は、信号分離部112から入力される信号に対して、復調処理を施し、得られた復調信号を誤り訂正復号部115へ出力する。
 誤り訂正復号部115は、復調部114から入力される復調信号を復号し、得られた上位レイヤシグナリングに含まれるPSFCH設定に関する情報をPSFCH設定部101へ出力し、リソースプールに関する情報をリソースプール設定部102へ出力する。また、誤り訂正復号部115は、得られた受信データ信号を、ACK/NACK生成部104、及び、受信データバッファ部117へ出力する。
 TBS算出部116は、SCI受信部113から入力されたTBSに関連する情報(例えば、TBのリソース割当情報、又は、割当リソースを含むスロット、サブチャネル又はリソースプールにおけるPSFCHに関連する情報)に基づいて、受信したデータに設定されたTBSを決定(例えば、算出)する。TBS算出部116は、算出したTBSを、受信データバッファ部117へ出力する。
 受信データバッファ部117は、誤り訂正復号部115から入力された受信データ信号を一時的にバッファする。受信データバッファ部117は、例えば、送信データ信号の繰り返し送信又は再送の際に、バッファされた受信データ信号と、誤り訂正復号部115から入力される受信データ信号とを合成してよい。また、受信データバッファ部117は、TBS算出部116から入力されるTBSに関する情報に基づいて、バッファするデータ量(バッファサイズとも呼ぶ)を決定してよい。受信データバッファ部117は、例えば、サーキュラバッファでもよい。
 なお、PSFCH設定情報又はリソースプール設定情報といったサイドリンクに関する制御情報は、上位レイヤのシグナリングに限らず、例えば、「Pre-configured」と呼ばれるアプリケーションレイヤで設定されてもよく、端末100が備えるsubscriber identity module(SIM)に予め設定されてもよい。
 [端末100の動作]
 次に、端末100(例えば、送信端末及び受信端末)の動作の一例について説明する。
 図4は、端末100の処理の一例を示すフローチャートである。
 送信端末は、送信データ(例えば、TB)のTBSを決定する(ST101)。例えば、送信端末は、PSSCHのリソース割当情報、及び、PSFCHに関連する情報に基づいてTBSを決定してよい。
 送信端末は、例えば、SCIを含むPSCCH及び送信データを含むPSSCHを受信端末へ送信する(ST102)。送信端末は、例えば、決定したTBSに基づいて、送信データ(TB)を送信する。また、送信端末は、送信データを送信データバッファ部106にバッファする。なお、送信端末は、例えば、TBSに基づいて、送信データのバッファサイズを決定してよい。PSCCH及びPSSCHは、受信端末によって受信される。
 受信端末は、送信端末から送信されるデータのTBSを決定(又は算出)する(ST103)。例えば、受信端末は、SCIに含まれるリソース割当情報、及び、上位レイヤからのPSFCHに関する設定情報に基づいて、受信データに設定されるTBSを決定してよい。また、受信端末は、受信データを受信データバッファ部117にバッファする。なお、受信端末は、例えば、TBSに基づいて、受信データのバッファサイズを決定してよい。
 受信端末は、例えば、受信データに対するACK/NACKを含むPSFCHを送信端末へ送信する(ST104)。受信端末は、例えば、PSFCH設定情報に基づいて、PSFCHを送信するスロットを決定してよい。
 送信端末は、例えば、受信端末からフィードバックされるPSFCHに基づいて、送信データを再送してよい。または、送信端末は、送信データを繰り返し送信してよい。送信データの繰り返し送信又は再送の場合、送信端末及び受信端末は、例えば、図4に示すST101~ST104の処理を繰り返してもよい。
 また、サイドリンクに関するパラメータ(例えば、PSFCH設定情報及びリソースプール設定情報)は、端末100に対して、例えば、規格において予め規定されてもよく、Pre-configuredと呼ばれるアプリケーションレイヤで設定されてもよく、SIMに予め設定されてもよく、configuredと呼ばれるSIB又はその他のRRC等の上位レイヤで設定されてもよい。
 次に、TBSの決定方法の例について説明する。
 本実施の形態では、端末100(例えば、送信端末及び受信端末)は、例えば、TBの繰り返し送信又は再送における複数の時間区間(例えば、複数のスロット)において、PSFCHの割り当ての有無又はPSFCHに割り当てられるリソース量の変動に依らずに固定値をTBSに設定してよい。換言すると、複数のスロットそれぞれにおけるTBSは、例えば、スロット、サブチャネル又はリソースプール毎の送信データ信号の割当リソースの変動の一部又は全てを考慮せずに決定されてよい。なお、「○○を考慮せずに決定」するとは、「○○に基づかずに決定」する、「○○に依存せずに決定」する、「○○とは独立して決定」する、といった表現に相互に置き換えられてもよい。
 以下、TBSの決定方法1~3についてそれぞれ説明する。
 [決定方法1]
 端末100(例えば、送信端末又は受信端末)は、例えば、送信データ信号(例えば、PSSCH)のリソース割当情報、及び、PSFCHに関する情報に基づいて、送信データに設定されるTBSを決定(又は算出)する。例えば、端末100は、PSSCHの割当の有無、PSFCHに割り当てられるリソース量の一部又は全て、又は、リソース割当に関する設定又は通知を考慮せずに、TBSを決定してよい。
 例えば、端末100は、受信端末におけるTBS決定に用いられるデータ信号に割り当てられるシンボル数Nsymb shを、そのスロットにおいてPSFCHに割り当てられたシンボルが存在するか否かに依らず、PSFCHに割り当てられたシンボル数を含む値に設定する。例えば、端末100は、受信端末におけるTBS決定に用いられるデータ信号に割り当てられるシンボル数Nsymb shを、PSFCHが割り当てられていない場合のPSSCHのシンボル数に設定してもよい。
 図5は、決定方法1におけるTB(例えば、PSSCHの信号)に割り当てられる時間領域のリソース量(例えば、シンボル数)、及び、TBSの決定(又は算出)に用いられるTBの時間領域のリソース量との関係の一例を示す。
 図5に示す例では、TB(PSSCH)に実際に割り当てられるリソース(例えば、シンボル)は、PSFCHに割り当てられるリソースと重複せずに割り当てられる。なお、「重複」(overlap)という用語は、「衝突」(collision)に相互に読み替えられてもよい。
 例えば、図5(a)に示すスロットでは、PSFCHの割当が無く、PSSCHは、スロット内の末尾のシンボルまで割り当てられる。
 一方、図5(b)に示すスロットでは、PSFCHの割当が有り、スロット内の末尾のシンボルに割り当てられる。また、図5(b)では、PSSCHは、スロット内のPSFCHと異なるシンボルに割り当てられる。
 決定方法1では、端末100は、PSSCHを含み、PSFCHを含まない図5(a)に示すスロットにおいてPSSCH(例えば、TB)が配置されるシンボル数に基づいてTBSを決定する。換言すると、端末100は、スロット内のPSFCHの割当の有無に依らず、図5(a)に示すPSSCHの割当に基づいて、TBSを決定(又は算出)する。
 例えば、端末100は、図5(b)に示すスロット(PSFCHの割当有りの場合)でも、図5(a)に示すスロットにおけるPSSCHの割当(例えば、シンボル数)に基づいてTBSを決定する。換言すると、端末100は、図5(a)に示すスロットにおいてTBSの決定に用いたシンボル数に基づいて、図5(b)に示すスロットにおけるTBSを決定する。
 例えば、時間リソース(例えば、シンボル)への実際の割当(例えば、PSSCH mapping)では、PSSCHは、PSFCHの割当リソースを考慮して、PSFCHのリソースと重複しないリソースに割り当てられる。これに対して、TBS決定(例えば、TBS calculation)では、PSFCH割当の有無に依らず、PSFCHの割当リソース(例えば、シンボル)を考慮せずに、図5(a)に示すスロット内のPSSCHの割当リソースに基づいてTBSが決定される。
 決定方法1では、図5に示すように、端末100は、繰り返し送信又は再送する複数のスロットのうちの或るスロット(例えば、図5(a)のスロット)においてTBSの決定に用いたデータ信号に割り当てられるシンボル数Nsymb shを、他のスロット(例えば、図5(b)のスロット)におけるTBSの決定にも用いる。この決定により、決定方法1では、図5に示すように、端末100は、複数のスロットにおいて、PSFCHの有無に依らず、同一のTBSを決定できる。
 [決定方法2]
 端末100(例えば、送信端末又は受信端末)は、例えば、送信データ信号(例えば、PSSCH)のリソース割当情報、及び、PSFCHに関する情報に基づいて、送信データに設定されるTBSを決定(又は算出)する。例えば、端末100は、PSSCHの割当の有無、PSFCHに割り当てられるリソース量の一部又は全て、又は、リソース割当に関する設定又は通知を考慮して、TBSを決定してよい。
 例えば、端末100は、受信端末におけるTBS決定に用いられるデータ信号に割り当てられるシンボル数Nsymb shを、そのスロットにおいてPSFCHに割り当てられたシンボルが存在するか否かに依らず、PSFCHに割り当てられたシンボル数を含まない値に設定する。例えば、端末100は、受信端末におけるTBS決定に用いられるデータ信号に割り当てられるシンボル数Nsymb shを、PSFCHが割り当てられた場合のPSSCHのシンボル数に設定してもよい。
 図6は、決定方法2におけるTB(例えば、PSSCHの信号)に割り当てられる時間領域のリソース量(例えば、シンボル数)、及び、TBSの決定(又は算出)に用いられるTBの時間領域のリソース量との関係の一例を示す。
 図6に示す例では、TB(PSSCH)に実際に割り当てられるリソース(例えば、シンボル)は、PSFCHに割り当てられるリソースと重複せずに割り当てられる。
 例えば、図6(a)に示すスロットでは、PSFCHの割当が無く、PSSCHは、スロット内の末尾のシンボルまで割り当てられる。
 一方、図6(b)に示すスロットでは、PSFCHの割当が有り、スロット内の末尾のシンボルに割り当てられる。また、図6(b)では、PSSCHは、スロット内のPSFCHと異なるシンボルに割り当てられる。
 決定方法2では、端末100は、PSSCH及びPSFCHを含む図6(b)に示すスロットにおいてPSSCH(例えば、TB)が配置されるシンボル数に基づいてTBSを決定する。換言すると、端末100は、スロット内のPSFCHの割当の有無に依らず、図6(b)に示すPSSCHの割当に基づいて、TBSを決定(又は算出)する。
 例えば、端末100は、図6(a)に示すスロット(PSFCHの割当無しの場合)でも、図6(b)に示すスロットにおけるPSSCHの割当(例えば、シンボル数)に基づいてTBSを決定する。換言すると、端末100は、図6(b)に示すスロットにおいてTBSの決定に用いたシンボル数に基づいて、図6(a)に示すスロットにおけるTBSを決定する。
 例えば、時間リソース(例えば、シンボル)への実際の割当(例えば、PSSCH mapping)では、PSSCHは、PSFCHの割当リソースを考慮して、PSFCHのリソースと重複しないリソースに割り当てられる。これに対して、TBS決定(例えば、TBS calculation)では、PSFCH割当の有無に依らず、PSFCHの割当リソース(例えば、シンボル)を考慮して、図6(b)に示すスロット内のPSSCHの割当リソースに基づいてTBSが決定される。
 決定方法2では、図6に示すように、端末100は、繰り返し送信又は再送する複数のスロットのうちの或るスロット(例えば、図6(b)のスロット)においてTBSの決定に用いたデータ信号に割り当てられるシンボル数Nsymb shを、他のスロット(例えば、図6(a)のスロット)におけるTBSの決定にも用いる。この決定により、決定方法2では、図6に示すように、端末100は、複数のスロットにおいて、PSFCHの有無に依らず、同一のTBSを決定できる。
 [決定方法3]
 決定方法3では、端末100(例えば、送信端末又は受信端末)は、例えば、送信データ信号(例えば、PSSCH)のリソース割当情報、及び、PSFCHに関する情報に基づいて、送信データに設定されるTBSを決定(又は算出)する。
 決定方法3では、端末100は、例えば、端末100に対する設定又は通知に基づいて、TBS決定に用いるデータ信号に割り当てられるシンボル数Nsymb shを決定する。換言すると、端末100は、TBS決定の際にPSFCHに関する設定を考慮するか否かを、設定又は通知に基づいて決定する。
 例えば、端末100は、PSFCHに関する設定を考慮しないことが設定又は通知された場合、決定方法1と同様、PSSCHが含まれ、PSFCHが含まれないスロットにおけるPSSCHの割当リソース量(例えば、シンボル数)に基づいて、TBSを決定してよい。一方、例えば、端末100は、PSFCHに関する設定を考慮することが設定又は通知された場合、決定方法2と同様、PSSCH及びPSFCHが含まれるスロットにおけるPSSCHの割当リソース量(例えば、シンボル数)に基づいて、TBSを決定してよい。
 換言すると、端末100においてTBS決定において基づく時間リソース量(例えば、シンボル数Nsymb sh)は、PSSCHを含み、PSFCHを含まないスロット及びPSSCH及びPSFCHを含むスロットの何れか一方のスロットにおいてTBが配置されるシンボル数に基づく値であり、上記一方のスロットは、端末100に通知される、又は、端末100に設定される。
 決定方法3により、端末100は、例えば、決定方法1及び決定方法2のうち、端末100によるTBS決定に適した決定方法を選択できる。例えば、TBSの決定方法は、端末100の能力(例えば、UE capability又はバッファサイズ等)に基づいて、当該端末100に設定又は通知されてよい。
 以上、TBSの決定方法について説明した。
 次に、TBS決定に関する動作例について説明する。
 [動作例1]
 動作例1では、TBS決定処理について説明する。
 <動作例1-1>
 動作例1-1では、送信端末及び受信端末におけるTBS決定の際に用いられるTBへのリソース割当情報のうち、TBに割り当てられるシンボル数(例えば、Nsymb sh)は、例えば、規格(又は仕様)によって固定値又は候補群が規定される。
 例えば、受信端末のTBS算出において使用されるデータ信号に割り当てられるシンボル数Nsymb shは、規格において固定値に定められてもよく、規格において定められた候補群の中から選択されてもよい。
 ここで、シンボル数Nsymb shに対して候補群が与えられた場合、端末100は、候補群の中から選択する候補を、SCIによる通知又は上位レイヤ等による設定に基づいて決定してもよく、或る基準に従って決定してもよい。
 動作例1-1により、例えば、TBS決定に用いるシンボル数Nsymb shに対する固定値又は候補群の通知を不要にでき、シグナリング量を低減できる。
 <動作例1-2>
 動作例1-2では、送信端末及び受信端末は、TBS決定(又はTBS算出)の際に用いられるTBに割り当てられるシンボル数、及び、割り当てられるシンボルがPSFCHの割り当てられ得るシンボルに重複するか否かに基づいて、TBSを決定する。
 以下、TBSの決定方法1及び決定方法2それぞれに対して動作例1-2を適用した例を説明する。
 (動作例1-2a)
 動作例1-2をTBSの決定方法1に適用した例について説明する。
 例えば、スロット内において、PSSCHと異なる他のチャネル又は信号に割り当てられていないリソースがPSSCHへの割当リソースに設定されることが想定される。
 ここで、PSSCHと異なる他のチャネル又はシグナルに割り当てられたリソースには、例えば、PSCCH、PSFCH、送受信及び受送信の切替過渡時間に対応するシンボル、又は、自動利得制御(AGC:Automatic Gain Control)に対応するシンボルに割り当てられたリソースが含まれてよい。
 端末100(送信端末又は受信端末)は、例えば、PSSCHに割り当てられるリソースがPSFCHに割り当てられ得るリソースに重複するか否かに応じて、TBSの決定に用いられるシンボル数Nsymb shを決定してよい。
 例えば、PSSCHリソースとPSFCHリソースとが重複する場合、端末100は、PSSCHに割り当てられたシンボル数を、Nsymb shに設定してよい。一方、PSSCHリソースとPSFCHリソースとが重複しない場合、端末100は、PSSCHに割り当てられたシンボル数に、PSFCHに割り当てられたシンボル数を加算した値を、Nsymb shに設定してよい。
 また、例えば、Rel.16のNRのように、制御情報(例えば、DCI又はSCI)によって、データチャネル(例えば、PDSCH又はPSSCH)が割り当てられるリソースのスロット内における先頭のシンボルと、割り当てられるシンボル長とが通知されることが想定される。
 送信端末及び受信端末は、例えば、この通知に基づいて、PSSCHに割り当てられたリソースと、PSFCHの割り当てられ得るリソースとが重複するか否かを判断してよい。送信端末及び受信端末による判断結果に応じて、TBS決定におけるシンボル数Nsymb shの値は異なる。例えば、PSSCHリソースとPSFCHリソースとが重複する場合には、PSSCHに割り当てられたシンボル数がTBS決定におけるシンボル数Nsymb shの値に設定される。これに対して、PSSCHリソースとPSFCHリソースとが重複しない場合には、PSSCHに割り当てられたシンボル数にPSFCHに割り当てられたシンボル数を加算した値がTBS決定におけるシンボル数Nsymb shの値に設定される。
 動作例1-2aによって、同一TBの繰り返し送信又は再送が発生した場合でも、端末100(送信端末又は受信端末)は、PSSCHリソースとPSFCHリソースとの重複に依らず、繰り返し送信又は再送に関連するデータ信号(例えば、PSSCH)について同一のTBSを決定できる。また、動作例1-2aによって、端末100は、例えば、各送信データに対して、スロット又はサブチャネルの状況に応じてリソースを柔軟に割り当てることができる。
 (動作例1-2b)
 動作例1-2をTBSの決定方法2に適用した例について説明する。
 例えば、スロット内において、PSSCHと異なる他のチャネル又は信号に割り当てられていないリソースがPSSCHへの割当リソースに設定されることが想定される。
 ここで、PSSCHと異なる他のチャネル又はシグナルに割り当てられたリソースには、例えば、PSCCH、PSFCH、送受信及び受送信の切替過渡時間に対応するシンボル、又は、AGCに対応するシンボルに割り当てられたリソースが含まれてよい。
 端末100(送信端末又は受信端末)は、例えば、PSSCHに割り当てられるリソースがPSFCHに割り当てられ得るリソースに重複するか否かに応じて、TBSの決定に用いられるシンボル数Nsymb shを決定してよい。
 例えば、PSSCHリソースとPSFCHリソースとが重複する場合、端末100は、PSSCHに割り当てられたシンボル数から、PSFCHに割り当てられたシンボル数を減算した値を、Nsymb shに設定してよい。一方、PSSCHリソースとPSFCHリソースとが重複しない場合、端末100は、PSSCHに割り当てられたシンボル数を、Nsymb shに設定してよい。
 また、例えば、Rel.16のNRのように、制御情報(例えば、DCI又はSCI)によって、データチャネル(例えば、PDSCH又はPSSCH)が割り当てられるリソースのスロット内における先頭のシンボルと、割り当てられるシンボル長とが通知されることが想定される。
 送信端末及び受信端末は、例えば、この通知に基づいて、PSSCHに割り当てられたリソースと、PSFCHの割り当てられ得るリソースとが重複するか否かを判断してよい。送信端末及び受信端末による判断結果に応じて、TBS決定におけるシンボル数Nsymb shの値は異なる。例えば、PSSCHリソースとPSFCHリソースとが重複する場合には、PSSCHに割り当てられたシンボル数からPSFCHに割り当てられたシンボル数を減算した値がTBS決定におけるシンボル数Nsymb shの値に設定される。これに対して、PSSCHリソースとPSFCHリソースとが重複しない場合には、PSSCHに割り当てられたシンボル数がTBS決定におけるシンボル数Nsymb shの値に設定される。
 動作例1-2bによって、同一TBの繰り返し送信又は再送が発生した場合でも、端末100(送信端末又は受信端末)は、PSSCHリソースとPSFCHリソースとの重複に依らず、繰り返し送信又は再送に関連するデータ信号(例えば、PSSCH)について同一のTBSを決定できる。また、動作例1-2bによって、端末100は、例えば、各送信データに対して、スロット又はサブチャネルの状況に応じてリソースを柔軟に割り当てることができる。
 [動作例2]
 動作例2では、TBS決定及び実際のリソース割当決定の後の処理について説明する。
 以下では、例えば、送信端末がTBS及び実際にTBの送信に用いられるデータチャネル(例えば、PDSCH、PUSCH又はPSSCH)に割り当てられるリソース決定後の符号化率(Coding Rate)の調整方法の例について説明する。
 <動作例2-1>
 TBSの決定方法1又は決定方法3において、受信端末がTBS決定の際に用いるデータ信号に割り当てられたと認識するシンボル数(Nsymb sh)は、例えば、図5(b)のように、データ信号に実際に割り当てられたシンボル数よりも多くなり得る。この場合、TBに設定されるTBSは、TBに実際に割り当てられたシンボル数に基づいて決定されるTBSよりも大きくなり得る。また、例えば、図5(b)では、TBは、決定されたTBSに相当するリソースよりも小さいリソース(例えば、PSSCHリソース)に割り当てられ得る。
 そこで、送信端末は、例えば、送信データを間引いてもよい。この処理は、例えば、パンクチャ又はパンクチャリングとも呼ばれる。送信データの間引きにより、送信端末は、例えば、決定されたTBSに相当するリソースよりも小さいリソース(例えば、PSSCHリソース)に、パンクチャリングされた送信データを割り当てることができる。
 よって、実際に割り当てられたシンボル数に基づいて設定されるTBSよりも大きいTBSが決定されたTBを、決定されたTBSに相当するリソースよりも小さいリソースに割り当てた結果、割当リソースが小さくなることによる送信の信頼性低減を抑制できる。また、TBの繰り返し送信により、送信の信頼性をより向上できる。
 <動作例2-2>
 TBSの決定方法2又は決定方法3において、受信端末がTBS決定の際に用いるデータ信号に割り当てられたと認識するシンボル数(Nsymb sh)は、例えば、図6(a)のように、データ信号に実際に割り当てられたシンボル数よりも小さくなり得る。この場合、TBに設定されるTBSは、TBに実際に割り当てられたシンボル数に基づいて決定されるTBSよりも小さくなり得る。また、例えば、図6(a)では、TBは、決定されたTBSに相当するリソースよりも大きいリソース(例えば、PSSCHリソース)に割り当てられ得る。
 そこで、送信端末は、例えば、送信データに冗長ビット等を付加して、符号化率を調整してよい。符号化率の調整により、送信端末は、例えば、決定されたTBSに相当するリソースよりも大きいリソース(例えば、PSSCHリソース)に、冗長ビットを付加した送信データを割り当てることができる。
 よって、例えば、実際に割り当てられたシンボル数に基づいて決定されるTBSよりも小さいTBSが設定されたTBを、設定されたTBSに相当するリソースよりも大きいリソースに割り当てた場合でも、割り当てられたリソースの利用効率を向上し、送信の信頼性を向上できる。
 [動作例3]
 動作例3では、Resource reservation時の動作について説明する。
 NR V2Xでは、例えば、或る単一のSCIによって、複数のPSSCHのためのリソースを或るリソースプール上で予約し、他の端末の送信との衝突発生を避ける運用が想定される。この運用は「Resource reservation」とも呼ばれる。Resource reservationにおいて、複数のPSSCHは、同一のTBの繰り返し送信又は再送のために用いられてもよく、異なる複数のTBのために用いられてもよい。
 例えば、Resource reservationにおいて、或る単一のSCIによって複数のPSSCHのためのリソースに関連する情報が通知される場合、複数のPSSCHにおいて送信されるTBのTBS決定(又はTBS算出)に上述したTBSの決定方法1~3を適用してよい。例えば、単一のSCIによって複数のPSSCHのためのリソースを予約した際、複数のPSSCHが同一のTBの繰り返し送信又は再送に用いられる場合、複数のPSSCHそれぞれの受信及び復号処理において、受信端末は、同一のTBSを算出できる。同一TBSの算出により、複数のPSSCHに基づく復号結果の合成によって復号結果の信頼性を向上できる。
 以上、動作例について説明した。
 本実施の形態では、端末100(例えば、送信端末及び受信端末)は、例えば、PSSCH及びPSFCHが配置されるスロット、及び、PSSCHが配置されるスロットの何れか一方のスロットについてPSSCHの送信サイズ(例えば、TBS)の決定に用いたシンボル数に基づいて、他方のスロットにおけるTBSを決定する。そして、送信端末は、決定したTBSに基づいて、各スロットにおけるPSSCHの送信処理を行い、受信端末は、決定したTBSに基づいて、各スロットにおけるPSSCHの受信処理を行う。
 この動作により、例えば、TBの繰り返し送信又は再送の際、各送信においてPSSCH又はPSFCHに割り当てられるリソースが異なり得る場合でも、各送信におけるTBSを同一に設定できる。同一TBSの設定により、例えば、送信データ又は受信データのバッファサイズを同一に設定でき、送信チャネル(例えば、PSSCH又はTB)の信頼性を向上できる。
 以上、本開示の各実施の形態について説明した。
 (他の実施の形態)
 上記実施の形態では、一例として、NR V2Xシナリオを前提とする場合について説明した。しかし、本開示の一実施例は、NR V2Xに限らず、例えば、モバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)、URLLC、NTN及びNR-UといったNRをベースとする様々なシナリオにおける同一TBの複数回送信(又は再送)に対して適用可能である。この場合、例えば、上記実施の形態における送信端末を基地局又は端末に置き換え、PSCCHをPDCCH又はPUCCHに置き換え、PSSCHをPDSCH又はPUSCHに置き換え、PSFCHをPUCCHに置き換え、SCIをDCIに置き換え、リソースプールをComponent Carrier(CC)に置き換え、サブチャネルをBandwidth Part(BWP)に置き換えてよい。
 上記実施の形態において、TBS決定の際、シンボルの有無又はシンボル数の変動は、PSFCHによる場合に限定されず、PSFCHと異なる他のチャネル又はシグナル、他のシンボル又はリソースによる場合でもよい。例えば、PSFCHの代わりに、NR V2Xシナリオにおいて、PSCCH、PSSCH、PSBCH、送受信切り替え又は受送信切り替えの過渡時間に対応するシンボル、又は、AGCに対応するシンボルでもよい。
 上記実施の形態において、TBS決定の際、シンボルの有無又はシンボル数の変動は、TBSに対応するTBのリソース割当と同一のサブチャネル、スロット、又は、サブチャネル及びスロットの何れかに割り当てられたPSFCHシンボルに限らず、異なるサブチャネル及びスロットに割り当てられたPSFCHシンボルについても適用できる。
 上記実施の形態において、送信サイズ(例えば、TBS)を決定するチャネルは、データチャネル(例えば、PSSCH、PDSCH又はPUSCH)に限定されず、他のチャネルでもよい。
 また、サイドリンクにおいて送受信端末には、例えば、送信処理を行い、受信処理を行わない端末、受信処理を行い、送信処理を行わない端末、又は、送信及び受信の双方を行う端末が含まれてよい。
 PSCCH及びPSSCHの配置の一例として、例えば、図5及び図6に示すように、PSSCHの先頭数シンボルにPSCCHが配置される例について説明したが、PSCCH及びPSSCHの配置は図5及び図6に示す配置に限定されない。例えば、PSCCHとPSSCHとが時間多重(TDM:Time Division Multiplexing)される配置、周波数多重(FDM:Frequency Division Multiplexing)される配置の場合にも、上記実施の形態を適用できる。
 PSFCHのフォーマットは、例えば、図5及び図6に示すように、スロット内の末尾の1シンボルに配置されるフォーマットに限定されず、他のフォーマットでもよい。例えば、PSFCHは、スロット内の末尾と異なるシンボルに配置されてもよい。また、例えば、PSFCHは、2シンボル以上に配置されてもよい。
 また、上記実施の形態では、例えば、繰り返し送信又は再送される複数のスロット毎にTBSが決定される場合について説明したが、これに限定されず、繰り返し送信又は再送される複数のスロットに設定されるTBSは、或るスロットにおいて決定されてもよい。換言すると、繰り返し送信又は再送される複数のスロットに設定されるTBSは、複数のスロット毎に決定されなくてもよい。
 PSSCHの割り当てシンボル数は、例えば、対応するPSCCHによって割り当てられてもよく、リソースプールの設定時に予め設定されてもよい。
 TBが複数開送信されるスロットは、時間的に連続するスロットでもよく、時間的に連続していないスロットでもよい。
 時間リソースの単位は、スロット及びシンボルの組み合わせに限らず、例えば、フレーム、サブフレーム、スロット、サブスロット又は、シンボルといった時間リソース単位でもよく、リソースエレメント(RE)といった他のリソース単位でもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る送信装置は、第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定する制御回路と、決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの送信処理を行う送信回路と、を具備する。
 本開示の一実施例において、前記時間リソース量は、前記第1の時間区間において前記第1チャネルが配置されるシンボル数である。
 本開示の一実施例において、前記時間リソース量は、前記第2の時間区間において前記第1チャネルが配置されるシンボル数である。
 本開示の一実施例において、前記時間リソース量は、前記第1の時間区間及び前記第2の時間区間の何れか一方の時間区間において前記第1チャネルが配置されるシンボル数であり、前記一方の時間区間は、前記送信装置に通知される、又は、前記送信装置に設定される。
 本開示の一実施例において、前記制御回路は、前記送信サイズに基づいて、前記第1チャネルに対応するバッファのバッファサイズを決定する。
 本開示の一実施例において、前記第1チャネルは、前記第1の時間区間及び前記第2の時間区間において繰り返し送信されるデータチャネル、又は、前記第1の時間区間及び前記第2の時間区間のうち一方における送信に対して他方において再送されるデータチャネルである。
 本開示の一実施例に係る受信装置は、第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定する制御回路と、決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの受信処理を行う受信回路と、を具備する。
 本開示の一実施例に係る送信方法において、送信装置は、第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定し、決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの送信処理を行う。
 本開示の一実施例に係る受信方法において、受信装置は、第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定し、決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの受信処理を行う。
 2019年8月15日出願の特願2019-149143の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、移動通信システムに有用である。
 100 端末
 101 PSFCH設定部
 102 リソースプール設定部
 103 SCI生成部
 104 ACK/NACK生成部
 105 TBS決定部
 106 送信データバッファ部
 107 誤り訂正符号化部
 108 変調部
 109 信号割当部
 110 送信部
 111 受信部
 112 信号分離部
 113 SCI受信部
 114 復調部
 115 誤り訂正復号部
 116 TBS算出部
 117 受信データバッファ部

Claims (9)

  1.  第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定する制御回路と、
     決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの送信処理を行う送信回路と、
     を具備する送信装置。
  2.  前記時間リソース量は、前記第1の時間区間において前記第1チャネルが配置されるシンボル数である、
     請求項1に記載の送信装置。
  3.  前記時間リソース量は、前記第2の時間区間において前記第1チャネルが配置されるシンボル数である、
     請求項1に記載の送信装置。
  4.  前記時間リソース量は、前記第1の時間区間及び前記第2の時間区間の何れか一方の時間区間において前記第1チャネルが配置されるシンボル数であり、
     前記一方の時間区間は、前記送信装置に通知される、又は、前記送信装置に設定される、
     請求項1に記載の送信装置。
  5.  前記制御回路は、前記送信サイズに基づいて、前記第1チャネルに対応するバッファのバッファサイズを決定する、
     請求項1に記載の送信装置。
  6.  前記第1チャネルは、前記第1の時間区間及び前記第2の時間区間において繰り返し送信されるデータチャネル、又は、前記第1の時間区間及び前記第2の時間区間のうち一方における送信に対して他方において再送されるデータチャネルである、
     請求項1に記載の送信装置。
  7.  第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定する制御回路と、
     決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの受信処理を行う受信回路と、
     を具備する受信装置。
  8.  送信装置は、
     第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定し、
     決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの送信処理を行う、
     送信方法。
  9.  受信装置は、
     第1チャネルおよび第2チャネルが配置される第1の時間区間、及び、前記第1チャネルが配置される第2の時間区間の何れか一方の時間区間について前記第1チャネルの送信サイズの決定に用いた時間リソース量に基づいて、他方の時間区間における前記送信サイズを決定し、
     決定した前記送信サイズに基づいて、前記第1の時間区間及び前記第2の時間区間における前記第1チャネルの受信処理を行う、
     受信方法。
PCT/JP2020/021938 2019-08-15 2020-06-03 送信装置、受信装置、送信方法及び受信方法 WO2021029124A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021539822A JP7558950B2 (ja) 2019-08-15 2020-06-03 送信装置、受信装置、送信方法、受信方法、及び、集積回路
MX2022000833A MX2022000833A (es) 2019-08-15 2020-06-03 Dispositivo de transmision, dispositivo de recepcion, metodo de transmision, y metodo de recepcion.
BR112022002511A BR112022002511A2 (pt) 2019-08-15 2020-06-03 Dispositivo de transmissão, dispositivo de recepção, método de transmissão e método de recepção
KR1020227003793A KR20220047764A (ko) 2019-08-15 2020-06-03 송신 장치, 수신 장치, 송신 방법 및 수신 방법
EP20852252.4A EP4017171A4 (en) 2019-08-15 2020-06-03 TRANSMISSION DEVICE, RECEIVING DEVICE, TRANSMISSION METHOD AND RECEIVING METHOD
US17/633,911 US20220294553A1 (en) 2019-08-15 2020-06-03 Transmission device, reception device, transmission method, and reception method
CN202080057152.9A CN114223249A (zh) 2019-08-15 2020-06-03 发送装置、接收装置、发送方法及接收方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149143 2019-08-15
JP2019-149143 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021029124A1 true WO2021029124A1 (ja) 2021-02-18

Family

ID=74571001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021938 WO2021029124A1 (ja) 2019-08-15 2020-06-03 送信装置、受信装置、送信方法及び受信方法

Country Status (8)

Country Link
US (1) US20220294553A1 (ja)
EP (1) EP4017171A4 (ja)
JP (1) JP7558950B2 (ja)
KR (1) KR20220047764A (ja)
CN (1) CN114223249A (ja)
BR (1) BR112022002511A2 (ja)
MX (1) MX2022000833A (ja)
WO (1) WO2021029124A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162917A1 (en) * 2020-02-12 2021-08-19 Qualcomm Incorporated Transport block size determination for sidelink communications

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777529B2 (en) * 2021-12-14 2023-10-03 Qualcomm Incorporated Binned feedback from receiving device to network encoder
US20230292189A1 (en) * 2022-03-09 2023-09-14 Qualcomm Incorporated Rsu initiated inter-rsu handover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185945A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 基地局及びユーザ端末
WO2018204635A2 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Sounding reference signal configuration and transport block size scaling in low latency systems
WO2019138511A1 (ja) * 2018-01-11 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019149143A (ja) 2018-02-27 2019-09-05 パナソニックIpマネジメント株式会社 画像合成装置、及び、制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11324007B2 (en) * 2017-03-24 2022-05-03 Samsung Electronics Co., Ltd. Method and device for transmitting data
WO2019022587A1 (en) * 2017-07-28 2019-01-31 Lg Electronics Inc. METHOD AND APPARATUS FOR DOUBLE CONNECTIVITY SOFTWARE BUFFER SIZE MANAGEMENT IN A WIRELESS COMMUNICATION SYSTEM
KR102397950B1 (ko) * 2019-03-29 2022-05-13 엘지전자 주식회사 Nr v2x에서 전송 블록 사이즈를 결정하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185945A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 基地局及びユーザ端末
WO2018204635A2 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Sounding reference signal configuration and transport block size scaling in low latency systems
WO2019138511A1 (ja) * 2018-01-11 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019149143A (ja) 2018-02-27 2019-09-05 パナソニックIpマネジメント株式会社 画像合成装置、及び、制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"NR; Physical layer procedures for data (Release 15", 3GPP TS 38.214, June 2019 (2019-06-01)
See also references of EP4017171A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162917A1 (en) * 2020-02-12 2021-08-19 Qualcomm Incorporated Transport block size determination for sidelink communications
US11616626B2 (en) 2020-02-12 2023-03-28 Qualcomm Incorporated Transport block size determination for sidelink communications

Also Published As

Publication number Publication date
EP4017171A4 (en) 2022-10-12
US20220294553A1 (en) 2022-09-15
JPWO2021029124A1 (ja) 2021-02-18
MX2022000833A (es) 2022-02-10
JP7558950B2 (ja) 2024-10-01
CN114223249A (zh) 2022-03-22
KR20220047764A (ko) 2022-04-19
EP4017171A1 (en) 2022-06-22
BR112022002511A2 (pt) 2022-05-03

Similar Documents

Publication Publication Date Title
EP3949226B1 (en) Method and apparatus for downlink resource allocation for multi-transmission and reception point transmission
RU2725159C1 (ru) Способы и узлы для определения размера блока данных передачи
KR102278389B1 (ko) 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
CN109565760B (zh) 终端及通信方法
JP7460628B2 (ja) 端末、送信方法及び集積回路
CN111699645B (zh) 通信方法及装置
CN113691356B (zh) 通信装置、通信方法、基站和集成电路
US11863478B2 (en) Base station, terminal, and communication method
JP7558950B2 (ja) 送信装置、受信装置、送信方法、受信方法、及び、集積回路
CN112470536A (zh) 终端、基站及通信方法
CN113785608A (zh) 终端及通信方法
US20240171312A1 (en) Transmission device, reception device, transmission method, and reception method
JP7389109B2 (ja) 端末、基地局、送信方法及び受信方法
US11528100B2 (en) HARQ-ACK handling with multiple PUCCH in multi-TRP transmission in NR
JP7315771B2 (ja) 基地局、通信方法及び集積回路
RU2809493C2 (ru) Устройство передачи, устройство приема, способ передачи и способ приема
CN116964969A (zh) 用于基于仅nack的harq-ack反馈复用的方法及设备
CN109565850B (zh) 用于在无线蜂窝通信中减少等待时间的发射方法和设备
WO2017217182A1 (ja) 基地局、端末及び通信方法
JP7095009B2 (ja) 基地局、通信方法及び集積回路
JP2022123091A (ja) 端末、通信方法及び集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002511

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022100718

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020852252

Country of ref document: EP

Effective date: 20220315

ENP Entry into the national phase

Ref document number: 112022002511

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220209