WO2021025458A1 - 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 - Google Patents
멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 Download PDFInfo
- Publication number
- WO2021025458A1 WO2021025458A1 PCT/KR2020/010329 KR2020010329W WO2021025458A1 WO 2021025458 A1 WO2021025458 A1 WO 2021025458A1 KR 2020010329 W KR2020010329 W KR 2020010329W WO 2021025458 A1 WO2021025458 A1 WO 2021025458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vitro diagnostic
- diagnostic kit
- multimedia information
- change
- reading unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B2010/0003—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements including means for analysis by an unskilled person
Definitions
- the present invention relates to a portable in vitro diagnostic kit analysis apparatus using multimedia information, and more particularly, a change in shape or color change using a deep learning model for multimedia information of an in vitro diagnostic kit photographed through a camera. Determining any one or more in vitro diagnostic methods among the reading methods, calculating labels and output values for each sample location where no change has occurred using a deep learning model, and reading the labels and output values for each sample location where changes have occurred It relates to a portable in vitro diagnostic kit analysis device using multimedia information for displaying or transmitting to a user terminal.
- machine learning has been applied to various fields ranging from software technology to finance and economy, and is positioned as a key technology leading the rapid development of computer vision and image processing in particular.
- machine learning technology is widely used in the medical diagnosis field including medical image analysis and the overall medical image analysis field such as extraction and segmentation of organs or cancer parts from medical images, image matching, and image search.
- This machine learning technology is a field of artificial intelligence (AI), which refers to algorithms and related fields that enable new data to be analyzed by learning patterns or characteristics from given data.
- AI artificial intelligence
- the deep learning technique is a model of an artificial neural network that mimics the nervous system of an organism. If the existing artificial neural network model consists of a connection of thin layers of neuron models, the deep learning technique stacks the layers of the neuron model deeply. It is a technology that applies a model that increases the learning ability of neural networks by raising.
- the data-based artificial intelligence system generated by applying all data used by doctors for diagnosis in the medical field that is, various clinical information other than medical images, has improved diagnostic performance compared to medical machine learning algorithms learned only with medical images. Can be expected.
- the in vitro diagnosis related to the present invention is a medical technology capable of confirming the infection or treatment effect of a disease using substances derived from the human body such as blood, manure, body fluids, saliva, such as a urine test or a blood test.
- Representative in vitro diagnostic kits include blood glucose meters, pregnancy diagnostics, and urine test kits.
- the most representative diagnosis of the in vitro diagnosis is an immunochemical diagnosis, and the immunochemical diagnosis is a method based on an antigen-antibody reaction.
- antigens Harmful substances that enter the body, such as bacteria or viruses, are called antigens, and the body produces antibodies to remove the antigen. When the antigen and the antibody meet, an immune reaction occurs.
- the enzyme immunoassay method is widely used in pregnancy diagnosis and urine test sticks, and changes color in response to body fluids.
- the agglutination method is a method used in a blood type test sheet, and the blood aggregates and changes its shape.
- the present invention is intended to provide a user with portability and to provide a diagnosis result with high accuracy.
- Patent Document 0001 Korean Laid-Open Patent Publication No. 10-2015-0026166 (2015.03.11)
- Patent Document 0002 Republic of Korea Patent Publication No. 10-2018-0057220 (2018.05.30)
- a first object of the present invention is a method of reading changes in shape using a deep learning model for multimedia information of an in vitro diagnostic kit photographed through a camera. Or, determine any one or more in vitro diagnostic methods among the color change reading methods, calculate the label and output value for each sample location where no change has occurred using a deep learning model, and read the label and output value for each sample location where the change has occurred. The result is to be displayed or transmitted to the user terminal.
- an in vitro diagnostic method to determine at least one of the in vitro diagnostic methods of the shape change reading method or the color change reading method using a deep learning model With the determination unit 100,
- a sample location recognition unit 200 for recognizing the location of one or more samples in the multimedia information
- the in vitro diagnosis method is a method of reading changes in shape
- a deep learning model is used to calculate the label and output value for each sample location where no change has occurred, and the shape change to read the label and output value for each sample location where the change has occurred.
- a deep learning model is used to calculate the label and output value for each sample location where no change has occurred, and the color change to read the label and output value for each sample location where the change has occurred. It includes a reading unit 500.
- the multimedia information of the in vitro diagnostic kit captured by the camera is used to determine any one or more of the in vitro diagnosis method, either the shape change reading method or the color change reading method, and the change is changed using the deep learning model.
- 1 is a diagram showing the types of general immunochemical diagnosis.
- Figure 2 is a configuration diagram of a portable in vitro diagnostic kit analysis apparatus using multimedia information according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating an example of an image in which position recognition and labeling are completed when a blood test is performed by a portable in vitro diagnostic kit analyzing apparatus using multimedia information according to an embodiment of the present invention.
- FIG. 4 is a diagram illustrating an example of an image in which location recognition and labeling are completed when a urine test of a portable in vitro diagnostic kit analysis device using multimedia information according to an embodiment of the present invention is performed.
- FIG. 5 is a result table showing output values and label values for each sample location during a blood test of a portable in vitro diagnostic kit analyzing apparatus using multimedia information according to an embodiment of the present invention.
- FIG. 6 is an exemplary view of a result table showing output values and label values for each sample location during a urine test of a portable in vitro diagnostic kit analyzing apparatus using multimedia information according to an embodiment of the present invention.
- FIG. 7 is a diagram showing change result table information for a shape referenced when a deep learning model of a shape change reading unit 400 of a portable in vitro diagnostic kit analysis apparatus using multimedia information according to an embodiment of the present invention performs basic learning.
- FIG. 8 is an exemplary view showing metadata added when a deep learning model of a color change reading unit 500 of a portable in vitro diagnostic kit analyzing apparatus using multimedia information according to an embodiment of the present invention performs basic learning.
- 9 is an exemplary diagram of a result color table of 10 kinds of kits used for a urine test.
- FIG. 10 is a diagram showing a color containing a urine test result and a specified value for basic learning by a deep learning model of a color change reading unit 500 of a portable in vitro diagnostic kit analysis apparatus using multimedia information according to an embodiment of the present invention.
- Figure 11 is the effectiveness of the basic learning of the deep learning model used in the shape change reading unit 400 and the color change reading unit 500 of the portable in vitro diagnostic kit analysis device using multimedia information according to an embodiment of the present invention.
- an in vitro diagnostic method to determine at least one of the in vitro diagnostic methods of the shape change reading method or the color change reading method using a deep learning model With the determination unit 100,
- a sample location recognition unit 200 for recognizing the location of one or more samples in the multimedia information
- the in vitro diagnosis method is a method of reading changes in shape
- a deep learning model is used to calculate the label and output value for each sample location where no change has occurred, and the shape change to read the label and output value for each sample location where the change has occurred.
- the in vitro diagnostic method is a color change reading method
- a deep learning model is used to calculate the label and output value for each sample location where no change has occurred, and the color change to read the label and output value for each sample location where the change has occurred. Characterized in that it is configured to include a reading unit (500).
- the configuration further comprises a read result output processing unit 600 for displaying the result value read through the shape change reading unit 400 and the color change reading unit 500 or transmitting it to the user terminal. .
- CNN Convolutional Neural Network
- the CNN uses the change result table information for shape and the change result table information for color to perform basic learning.
- sensitivity and specificity are measured through the Confusion Matrix to determine the effectiveness.
- the multimedia information of the in vitro diagnostic kit is labeled and stored in the user labeling information storage module, and the result values read through the shape change reading unit 400 and the color change reading unit 500 are stored in the corresponding user labeling information storage module. It is characterized in that the stored labeling information is referred to and transmitted to the corresponding user terminal 2000.
- the in vitro diagnostic kit In order to obtain multimedia information of the in vitro diagnostic kit, it is a device that is connected to a camera to receive a direct input image, or to receive and input from a wireless network or an Internet network.
- the output value of the sample with the shape change is characterized in that it is a learning result value learned in advance using the deep learning model.
- the output value of the sample with color change is characterized in that it is a learning result value learned in advance using a deep learning model.
- FIG. 2 is a block diagram of a portable in vitro diagnostic kit analyzing apparatus using multimedia information according to an embodiment of the present invention.
- the present inventors portable in vitro diagnostic kit analysis device using multimedia information is in vitro diagnostic method determination unit 100, sample location recognition unit 200, labeling unit 300, shape change reading unit ( 400), it is configured to include a color change reading unit 500.
- the analysis apparatus of the present invention provides the advantage of being able to analyze with only an in vitro diagnostic kit without a colorimetric table without the need to visually check through a colorimetric table, which is a conventional general method, using a deep learning model.
- the in vitro diagnosis method determination unit 100 reads a change in shape or color change by using a deep learning model when acquiring multimedia information of an in vitro diagnosis kit photographed through a camera. It performs a function of determining any one or more in vitro diagnostic methods among the methods.
- the deep learning model described above uses a pre-trained convolutional neural network (CNN) algorithm, and the convolutional neural network (CNN) algorithm creates a feature map by extracting main features from a multimedia image. It is a neural network algorithm that determines an image by giving a weight to a map.
- CNN convolutional neural network
- a deep learning model that determines at least one in vitro diagnosis method among a shape change reading method or a color change reading method is to learn from images of in vitro diagnosis kits.
- the deep learning model can change the shape change reading method or color according to the input multimedia image. Any one or more of the in vitro diagnostic methods of the change reading method of the patient are determined.
- the shape change in vitro diagnostic kit means, for example, a pregnancy test kit, a blood test kit, and the like, and the color change in vitro diagnostic kit means, for example, a urine test kit.
- the specimen location recognition unit 200 performs a function of recognizing the location of one or more specimens in the multimedia information.
- the labeling unit 300 performs a function of assigning a label for each recognized sample location.
- a location is recognized for an image part required for the image, and a sample-specific number (labeling) is assigned to the recognized location.
- the location of the Anti-A sample is given as 1 number
- the location of the Anti-B sample is given as 2 number
- the location of the Anti-D sample is given as 3 number
- the location of the control sample is assigned 4 number.
- the position of the image part required for the image is recognized, and the number of each sample is assigned to the recognized position.
- the location is given as 1 number, the location of sample 2 is assigned the number 2,..., and the location of sample 10 is assigned the number 10.
- the shape change reading unit 400 calculates a label and output value for each sample location where no change has occurred using a deep learning model when the in vitro diagnosis method is a shape change reading method, and the sample location where the change occurs. It performs a function to read the star label and output value.
- the shape change reading method is a detection that checks when agglutination occurs when blood, body fluid, etc. meets a sample, and outputs the result by determining when aggregation has occurred or does not occur through a deep learning model. .
- the deep learning model sets an image in which coagulation occurs and an image that does not occur as a class to perform learning, and compares the image with the currently input image and outputs the result.
- the output value and the label value for each sample location are as shown in FIG. 5, and the final result is output by comparing it with the blood type result table information.
- the final result is output by comparing it with the blood type result table information.
- FIG. 5 it can be seen that it is'RH+O'.
- the color change reading unit 500 calculates the label and output value for each sample location where no change has occurred by using a deep learning model when the in vitro diagnosis method is a color change reading method, and the sample location where the change occurs. It performs a function to read the star label and output value.
- the deep learning model sets an image in which color change occurs and an image that does not occur as a class to perform learning, and compares the image with the currently input image to output a result.
- the output value and the label value for each sample location are as shown in FIG. 6, and the final result is output by comparing it with the urine test result table information.
- CNN Convolutional Neural Network
- the deep learning model of the shape change reading unit 400 is initially trained with images in which the shape of the in vitro diagnostic kit changes.
- ANTI-A and ANTI-B react to types A and B, and no reaction occurs to type O.
- ANTI-D is a sample related to RH blood type. If an agglutination reaction occurs, it is RH+, and if it does not, it is RH-.
- the CONTROL sample is a sample that checks whether there are any other abnormalities in the blood. If this sample aggregates, the blood type cannot be confirmed.
- the deep learning model of the shape change reading unit 400 performs basic learning by using the change result table information for the shape as shown in FIG. 7.
- the deep learning model of the color change reading unit 500 performs learning with colors of color tables as a result of the in vitro diagnosis kit.
- the deep learning model of the color change reading unit 500 confirms that the color changes due to an enzyme immune reaction when body fluids, urine, etc. meet the sample, and compares the color with the color of the change result table information to the color. Determine the value and print the result.
- the deep learning model of the color change reading unit 500 performs learning by adding metadata as shown in FIG. 8.
- Metadata is stored in the form of a label value, a location, and a value (RGB), and is color and location data for an image.
- the in vitro diagnosis result of the urine test has a color change, and the result color table of the 10 kinds of kits is shown in FIG. 9.
- the deep learning model of the color change reading unit 500 performs basic learning using the change result table information for the color, and then determines the color most similar to the currently input image and outputs a result value. .
- the deep learning model of the color change reading unit 500 of the present invention refers to the urine test result and the color change result table information including the specified value, and then basic learning, The color most similar to the input video image is determined, and the result value is outputted as a label for each sample location and a designated value for each sample location as shown in FIG.
- 1 label is'LN',..., 10 label outputs information such as'G100'.
- the deep learning model used in the shape change reading unit 400 and the color change reading unit 500 is the deep learning model used in the shape change reading unit 400 and the color change reading unit 500.
- Fig. 11 in order to determine the effectiveness of completing basic learning, the sensitivity and specificity are measured through the Confusion Matrix to determine the effectiveness, but continuous images are required to reduce the error. Re-learning is required.
- Sensitivity refers to the rate at which a disease is actually present and the test result determines that there is a disease
- specificity refers to the rate at which it is determined that the test result does not contain a disease
- Sensitivity and specificity are essential criteria when developing an in vitro diagnostic kit, and the higher the value, the higher the effectiveness.
- the sensitivity is measured with reference to Equation 1 below.
- the A, B, C, D refers to the alphabet shown in Fig. 11, for example, in the case of A, it means test -positive, confirming -positive, and in the case of B, the test -positive, confirming -negative it means.
- the configuration further comprises a read result output processing unit 600 for displaying the result value read through the shape change reading unit 400 and the color change reading unit 500 or transmitting it to the user terminal. .
- the read result output processing unit 600 displays the result value read through the shape change reading unit 400 and the color change reading unit 500, or transmits it to the user terminal, for example, multimedia information. If the portable in vitro diagnostic kit analysis device used constitutes a display panel, the read result value is displayed, and if it does not exist, it means that it is transmitted to the user terminal using a wired or wireless network.
- the multimedia information of the obtained in vitro diagnostic kit is labeled and stored in the user labeling information storage module.
- the result values read through the shape change reading unit 400 and the color change reading unit 500 are transmitted to a corresponding user terminal with reference to the labeling information stored in the user labeling information storage module.
- an external terminal assigns labeling in advance to transmit the user's diagnosis result value to the user terminal, and transmits and processes the read result value to the corresponding user terminal based on the assigned labeling information.
- the in vitro diagnostic method determination unit 100 determines whether the in vitro diagnostic method is a diagnosis of the in vitro diagnostic method determination unit 100.
- the in vitro diagnostic kit In order to obtain multimedia information of the in vitro diagnostic kit, it is a device that is connected to a camera to receive a direct input image, or to receive and input from a wireless network or an Internet network.
- direct input images may be received through the camera by interlocking with the camera, and various image images may be acquired using a wireless network or an Internet network.
- the multimedia information of the in vitro diagnostic kit photographed through the camera is determined by using a deep learning model to determine at least one in vitro diagnosis method among a change reading method for shape or a change reading method for color, and a deep learning model Calculate the label and output value for each sample location where no change has occurred, and display the read result value by reading the label and output value for each sample location where change has occurred, or send it to the user terminal so that you can stick with it anytime, anywhere. It provides convenience that anyone can easily check the results of the in vitro diagnostic kit without receiving it.
- the portable in vitro diagnostic kit analysis apparatus using multimedia information is one of a method of reading changes in shape or a change in color by using a deep learning model for multimedia information of the in vitro diagnostic kit photographed through a camera. Determine the above in vitro diagnosis method, calculate the label and output value for each sample location where no change has occurred using a deep learning model, read the label and output value for each sample location where the change has occurred, and display the read result, or Since it provides the convenience that anyone can easily check the results of the in vitro diagnostic kit anytime, anywhere by sending it to a user terminal, regardless of time, it has high industrial applicability.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Data Mining & Analysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Veterinary Medicine (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
Abstract
본 발명은 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치에 관한 것으로서, 더욱 상세하게는 카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하고, 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하여 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하기 위한 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치에 관한 것이다.
Description
본 발명은 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치에 관한 것으로서, 더욱 상세하게는 카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하고, 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하여 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하기 위한 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치에 관한 것이다.
최근 기계학습 또는 머신러닝(machine learning)이라는 기술이 소프트웨어 기술로부터 금융, 경제에 이르기까지 다양한 분야에 응용되고 있으며 특히 컴퓨터 비전 및 영상처리 분야의 비약적인 발전을 선도하는 핵심 기술로 자리 잡고 있다.
또한, 근래에 들어 의료영상 분석을 포함한 의료진단 분야와 의료영상에서 기관이나 암 부위 등의 추출 및 분할이나 영상 정합, 영상 검색 등 전반적인 의료영상 분석 분야에서도 기계학습 기술이 널리 활용되고 있다.
이러한 기계학습 기술은 인공지능(AI)의 한 분야로 주어진 데이터로부터 패턴이나 특성을 학습하여 새로운 데이터에 대해 분석을 수행해낼 수 있도록 하는 알고리즘 및 관련 분야를 의미한다.
그리고, 최근 들어 딥러닝(deep learning)이라는 기계학습 기법이 핵심 기술로 대두되면서 관련 기술 및 응용 분야에 대한 관심이 높아지고 있다.
딥러닝 기법이란 생물의 신경계를 모방한 인공신경망(artificial neural network)의 모델로서, 기존의 인공신경망 모델이 얇은 층의 뉴런 모델들의 연결로 구성되어 있다면, 딥러닝 기법은 뉴런 모델의 층을 깊게 쌓아 올림으로써 신경망의 학습 능력을 높이는 모델을 적용하는 기술이다.
여러 층으로 이루어진 인공신경망으로서의 딥러닝의 개념은 1970년대에 제안되었으나, 학습 계산의 복잡성 등으로 인해 정체되어 있다가 최근 여러 가지 연구를 통해 그 성능이 개선되고 관련 연구들이 음성인식 및 영상인식 등의 분야에서 뛰어난 결과를 보이면서 그 수요가 빠르게 증가하고 있다.
일례로 MRI 검사 시 환자당 수십개의 의료 영상 슬라이스를 분석함에 있어서 영상 판독의 효율성을 높이고 진단 과정의 생산성 향상을 위하여, 실제 데이터를 기반으로 기계 학습하여 활용이 가능한 의료영상 진단 보조 시스템이 요구되고 있다.
또한, 의료현장에서 의사가 진단에 활용하는 모든 데이터, 즉, 의료영상 이외의 다양한 임상정보를 모두 적용하여 생성된 데이터 기반 인공지능 시스템은 의료영상만으로 학습된 의료용 기계학습 알고리즘에 비해 더 향상된 진단 성능을 기대할 수 있다.
한편, 본 발명과 관련있는 체외진단이란, 소변검사, 혈액검사처럼 혈액, 분뇨, 체액, 침 등 인체에서 유래한 물질을 이용해 병의 감염 여부나 치료 효과를 확인할 수 있는 의료기술이다.
대표적인 체외진단키트는 혈당계, 임신진단기, 소변검사키트 등이 있다.
최근에는 암, 치매 등 진단이 어려웠던 질병에 대해서도 다양한 체외진단키트가 개발되어 상용화를 위한 연구가 이뤄지고 있다.
이에 따라 지금은 진단하기 어려운 질병도 미래에는 더 간편하고 부담없는 진단이 가능할 것으로 예상한다.
상기한 체외진단에 대하여 구체적으로 설명하도록 한다.
상기 체외진단 중 가장 대표적인 진단은 면역화학적 진단이며, 면역화학적 진단은 항원-항체반응을 기본으로 하는 방법이다.
세균이나 바이러스처럼 몸에 들어오는 해로운 물질을 항원이라고 하며, 항원을 제거하기 위해 몸에서 항체를 생산하게 되는데, 항원과 항체가 만나게 되면 면역반응이 일어나게 된다.
이러한 면역화학적 진단의 종류는 도 1과 같이, 다양하며, 제일 많이 사용되는 방법은 효소면역 측정법과 응집법이다.
효소면역 측정법은 임신 진단기나 소변 검사스틱에 많이 사용되고, 체액에 반응하여 색상에 변화를 준다.
응집법은 혈액형을 검사하는 시트에서 사용하는 방법이며 혈액이 응집하여 형태에 변화를 준다.
이처럼 언제 어디서나 일반인의 건강 상태를 검사하고 모니터링할 수 있는 새로운 개념 진단 및 판독 리더기의 개발이 절실히 요구되고 있는데, 발광소자와 광학 소자 및 마이크로프로세서에서 검출된 신호를 분석 판정하는데 있어 판정 측정치 값 근처에서 정확도가 떨어지는 점과 개인이 구매하기에는 매우 고가이며 비전문가로써 사용에 어려움이 존재해 활성화되지 못하는 문제점이 존재하고 있다.
그에 따라 효율적인 개인 맞춤형 건강관리 서비스를 위해서는 건강 이상이 인정되는 증상을 효과적으로 진단하고 관리할 수 있는 고감도, 고선택성의 센서 개발과, 소변이나 땀과 같이 채취가 쉬우며 고통이 없고, 개인의 사용이 편리한 시스템의 개발이 시급하다 할 수 있다.
따라서, 본 발명에서는 사용자에게 휴대성을 제공하며 정확도 높은 진단 결과를 제공하고자 한다.
<선행기술문헌>
(특허문헌 0001) 대한민국공개특허공보 제10-2015-0026166호(2015.03.11)
(특허문헌 0002) 대한민국공개특허공보 제10-2018-0057220호(2018.05.30)
따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 감안하여 제안된 것으로서, 본 발명의 제1 목적은 카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하고, 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하여 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하는데 있다.
본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는,
카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 획득할 경우에, 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하기 위한 체외진단방식판단부(100)와,
상기 멀티미디어 정보에서 1개 이상의 시료 위치를 인식하기 위한 시료위치인식부(200)와,
상기 인식된 시료 위치별 라벨을 부여하기 위한 라벨부여부(300)와,
상기 체외진단방식이 형상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 형상변화판독부(400)와,
상기 체외진단방식이 색상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 색상변화판독부(500)를 포함한다.
본 발명에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는,
카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하고, 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하여 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하여 언제 어디서든지 시간에 구애받지 않고 누구나 쉽게 체외진단키트의 결과를 확인할 수 있는 편리성을 제공하게 된다.
또한, 체외진단키트의 진단 결과 판단을 딥러닝 모델을 이용함으로써, 새로운 이미지들을 재학습할 수 있기 때문에 체외진단키트의 판별 성능을 더욱 더 향상시키는 효과를 발휘하게 된다.
즉, 사전에 인공지능 학습을 통해 학습시킨 후, 새로운 이미지들을 지속적으로 학습시켜 진단 정확성을 지속적으로 향상시키는 효과를 발휘한다.
도 1은 일반적인 면역 화학적 진단의 종류를 나타낸 도면.
도 2는 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 구성도.
도 3은 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 혈액 검사시, 위치 인식과 라벨링이 종료된 이미지 예시도.
도 4는 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 소변 검사시, 위치 인식과 라벨링이 종료된 이미지 예시도.
도 5는 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 혈액 검사시, 출력값과 시료 위치별 라벨값을 나타낸 결과표.
도 6은 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 소변 검사시, 출력값과 시료 위치별 라벨값을 나타낸 결과표 예시도.
도 7은 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 형상변화판독부(400)의 딥러닝 모델이 기초 학습을 진행할 경우에 참조하는 형상에 대한 변화 결과표 정보를 나타낸 예시도.
도 8은 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 색상변화판독부(500)의 딥러닝 모델이 기초 학습을 진행할 경우에 추가되는 메타데이터를 나타낸 예시도.
도 9는 소변 검사에 사용되는 10종 키트의 결과 색상표 예시도.
도 10은 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 색상변화판독부(500)의 딥러닝 모델이 기초 학습에 사용할 소변 검사 결과 및 지정값을 포함하고 있는 색상에 대한 변화 결과표 정보를 나타낸 예시도.
도 11은 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 형상변화판독부(400)와 색상변화판독부(500)에서 사용되는 딥러닝모델이 기초 학습이 완료되는 유효성을 판단하기 위하여 사용하는 Confusion Matrix를 나타낸 예시도.
<부호의 설명>
100 : 체외진단방식판단부
200 : 시료위치인식부
300 : 라벨부여부
400 : 형상변화판독부
500 : 색상변화판독부
600 : 판독결과출력처리부
이하의 내용은 단지 본 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만, 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다.
또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 본 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는,
카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 획득할 경우에, 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하기 위한 체외진단방식판단부(100)와,
상기 멀티미디어 정보에서 1개 이상의 시료 위치를 인식하기 위한 시료위치인식부(200)와,
상기 인식된 시료 위치별 라벨을 부여하기 위한 라벨부여부(300)와,
상기 체외진단방식이 형상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 형상변화판독부(400)와,
상기 체외진단방식이 색상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 색상변화판독부(500)를 포함하여 구성되는 것을 특징으로 한다.
또한, 상기 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는,
형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송시키기 위한 판독결과출력처리부(600);를 더 포함하여 구성되는 것을 특징으로 한다.
또한, 상기 형상변화판독부(400)와 색상변화판독부(500)에서 사용되는 딥러닝모델은,
미리 학습된 심층 신경망(CNN: Convolutional Neural Network) 알고리즘을 이용하는 것으로서, 심층 신경망(CNN: Convolutional Neural Network) 알고리즘은, 형상에 대한 변화 결과표 정보, 색상에 대한 변화 결과표 정보를 활용하여 기초 학습을 진행하되, 기초 학습이 완료되는 유효성을 판단하기 위하여 Confusion Matrix를 통해서 민감도, 특이도를 측정하여 유효성을 판단하는 것을 특징으로 한다.
또한, 상기 판독결과출력처리부(600)는,
체외진단키트의 멀티미디어 정보에 라벨링을 수행하여 사용자라벨링정보저장모듈에 저장 처리하며, 형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 해당 사용자라벨링정보저장모듈에 저장된 라벨링 정보를 참조하여 해당 사용자단말기(2000)로 전송하는 것을 특징으로 한다.
또한, 상기 체외진단방식판단부(100)는,
체외진단키트의 멀티미디어 정보를 획득하기 위하여 카메라와 연결되어 직접적인 입력 영상을 수신하거나, 무선 네트워크 또는 인터넷 네트워크로부터 수신받아 입력 가능한 장치인 것을 특징으로 한다.
또한, 상기 형상변화판독부(400)는,
형상 변화가 발생한 시료의 출력값은 사전에 딥러닝모델을 이용하여 학습한 학습 결과값인 것을 특징으로 한다.
또한, 상기 색상변화판독부(500)는,
색상 변화가 발생한 시료의 출력값은 사전에 딥러닝모델을 이용하여 학습한 학습 결과값인 것을 특징으로 한다.
이하, 본 발명에 의한 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 실시예를 통해 상세히 설명하도록 한다.
도 2는 본 발명의 일실시예에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치의 구성도이다.
도 2에 도시한 바와 같이, 본 발명인 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는 체외진단방식판단부(100), 시료위치인식부(200), 라벨부여부(300), 형상변화판독부(400), 색상변화판독부(500)를 포함하여 구성하게 된다.
상기와 같이, 구성하게 되면 본 발명의 해석장치는 딥러닝 모델을 이용하여 종래의 일반적인 방식인 비색표를 통해 육안으로 확인할 필요없이, 비색표없이 체외진단키트만으로도 해석이 가능한 장점을 제공하게 된다.
예를 들어, 소변 검사지라는 체외진단키트만으로도 현재 건강 상태를 쉽게 확인할 수 있게 되는 것이다.
구체적으로 설명하면, 상기 체외진단방식판단부(100)는 카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 획득할 경우에, 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하기 위한 기능을 수행하게 된다.
상기한 딥러닝 모델은 미리 학습된 심층 신경망(CNN: Convolutional Neural Network) 알고리즘을 이용하는 것으로서, 심층 신경망(CNN: Convolutional Neural Network) 알고리즘은, 멀티미디어 이미지에서 주요 특징을 추출하여 특징 맵을 만들고, 만들어진 특징 맵에 가중치를 부여하여 이미지를 판단하는 신경망 알고리즘이다.
따라서, 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하는 딥러닝 모델은 체외진단키트들의 이미지로 학습하는 것이다.
예를 들어, 체외진단키트의 생김새에 따라 형상 변화를 하는 체외진단키트인지, 색상 변화를 하는 체외진단키트인지를 학습시켜서 입력되는 멀티미디어 영상에 따라서 딥러닝 모델이 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하게 된다.
형상 변화의 체외진단키트는 예를 들어, 임신 테스트 키트, 혈액 검삭 키트 등을 의미하며, 색상 변화의 체외진단키트는 예를 들어, 소변 검사 키트 등을 의미한다.
그리고, 상기 시료위치인식부(200)는 상기 멀티미디어 정보에서 1개 이상의 시료 위치를 인식하기 위한 기능을 수행하게 된다.
예를 들어, 소변 검사 키트의 경우, 10개 정도의 시료가 형성되어 있게 되는데, 각각의 시료 위치를 인식하는 과정이 필요하며, 시료가 있는 위치 이외에는 형상 혹은 색상을 비교하기에 불필요한 부분이기 때문에 제외시키기 위한 것이다.
그리고, 상기 라벨부여부(300)는 상기 인식된 시료 위치별 라벨을 부여하기 위한 기능을 수행하게 된다.
예를 들어, 도 3에 도시한 바와 같이, 실제 혈액형 검사 이미지를 촬영하게 되면 해당 영상에 대하여 필요한 이미지 부분에 대하여 위치를 인식하고, 인식된 위치에 대하여 시료별 번호(라벨링)를 부여하게 된다.
예시에서는 Anti-A 시료 위치는 ① 번호, Anti-B 시료 위치는 ② 번호, Anti-D 시료 위치는 ③ 번호, control 시료 위치는 ④ 번호를 부여하게 된다.
다른 예로서, 도 4에 도시한 바와 같이, 실제 소변 검사 이미지를 촬영하게 되면 해당 영상에 대하여 필요한 이미지 부분에 대하여 위치를 인식하고, 인식된 위치에 대하여 시료별 번호를 부여하게 되는데, 1번 시료 위치는 ① 번호, 2번 시료 위치는 ② 번호,..., 10번 시료 위치는 ⑩ 번호를 부여하게 된다.
그리고, 상기 형상변화판독부(400)는 체외진단방식이 형상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 기능을 수행하게 된다.
예를 들어, 형상에 대한 변화 판독 방식은 혈액, 체액 등이 시료와 만나 응집현상이 일어날 경우를 확인하는 검출로서 딥 러닝 모델을 통해서 응집이 일어났을 경우와 일어나지 않았을 경우를 판단해서 결과를 출력한다.
이때, 딥러닝 모델은 응고가 발생한 이미지와 발생하지 않는 이미지를 클래스로 설정하여 학습을 진행하게 되며, 현재 입력되는 이미지와 비교하여 결과를 출력한다.
즉, 각각의 시료별 위치 이미지를 딥러닝 모델에 입력하면 각 위치에 대해서 형상이 변화했을 경우에는 '1', 아닐 경우 '0'을 출력하도록 한다.
출력값과 시료 위치별 라벨값은 도 5와 같으며, 혈액형 결과표 정보와 비교하여 최종 결과를 출력하는데, 도 5의 경우에는 'RH+ O' 라는 것을 확인할 수 있다.
그리고, 상기 색상변화판독부(500)는 체외진단방식이 색상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 기능을 수행하게 된다.
이때, 딥러닝 모델은 색상 변화가가 발생한 이미지와 발생하지 않는 이미지를 클래스로 설정하여 학습을 진행하게 되며, 현재 입력되는 이미지와 비교하여 결과를 출력한다.
출력값과 시료 위치별 라벨값은 도 6과 같으며, 소변 검사 결과표 정보와 비교하여 최종 결과를 출력하는 것이다.
또한, 상기 형상변화판독부(400)와 색상변화판독부(500)에서 사용되는 딥러닝모델은,
미리 학습된 심층 신경망(CNN: Convolutional Neural Network) 알고리즘을 이용하는 것으로서, 심층 신경망(CNN: Convolutional Neural Network) 알고리즘은, 형상에 대한 변화 결과표 정보, 색상에 대한 변화 결과표 정보를 활용하여 기초 학습을 진행하게 된다.
상기 형상변화판독부(400)의 딥러닝 모델은 최초 체외진단키트의 형상의 변화가 생기는 이미지들로 학습을 진행한다.
입력되는 이미지에 대해서 최초의 체외진단키트 이미지와 다른 변화가 나타나면 이에 맞는 결과를 출력한다.
예를 들어, 혈액형의 경우, 혈액을 체외진단키트에 넣으면 키트와 반응하여 응집 현상이 일어난다.
각 시료에 따라 응집현상이 나타나는 것을 확인하고 혈액을 확인할 수 있다.
ANTI-A와 ANTI-B는 A형과 B형에 대해서 반응이 일어나며, O형은 아무런 반응이 일어나지 않는다.
ANTI-D는 RH혈액형에 관련된 시료로서 응집 반응이 일어나면 RH+, 일어나지 않으면 RH-이다.
CONTROL 시료는 혈액에 다른 이상이 없는지 확인하는 시료로서 이 시료가 응집하면 혈액형을 확인할 수 없다.
이때, 형상변화판독부(400)의 딥러닝 모델은 도 7과 같은 형상에 대한 변화 결과표 정보를 이용하여 기초 학습을 진행하게 되는 것이다.
상기 색상변화판독부(500)의 딥러닝 모델은 체외진단 키트의 결과 색상표들의 색상으로 학습을 진행한다.
입력되는 이미지의 색상을 확인하고 학습한 색상과 비교하여 결과를 출력한다.
예를 들어, 상기 색상변화판독부(500)의 딥러닝 모델은 체액, 소변 등이 시료와 만나 효소면역 반응이 일어나서 색상이 변화하는 것을 확인하고 색상에 대한 변화 결과표 정보의 색상과 비교하여 가장 유사한 값을 판단해서 결과를 출력한다.
이때, 부가적인 양태에 따라, 상기 색상변화판독부(500)의 딥러닝 모델은 도 8과 같은 메타데이터를 추가하여 학습을 진행한다.
메타데이터는 도 8에 도시한 바와 같이, 라벨값, 위치, 값(RGB) 형태로 저장하며, 이미지에 대한 색상과 위치 데이터이다.
학습을 통해서 입력된 이미지의 색상 값을 검출하여 상위 5개의 1차 결과데이터를 출력하며, 출력된 값들 중에 위치까지 일치하는 데이터를 2차 결과데이터로 선택하고, 최종결과는 색상표의 값과 2차 결과데이터를 비교하여 해당 병명에 맞는 등급을 최종 결과로 출력한다.
상기와 같이, 색상에 대한 변화 결과표 정보를 활용하여 기초 학습을 진행한다.
소변 검사의 체외진단 결과는 색상의 변화가 일어나며, 10종 키트의 결과 색상표는 도 9와 같다.
일반적으로 소변 검사 스틱에 소변을 묻히고 나타나는 색상을 도 9의 결과 색상표와 비교하여 자신의 상태를 육안으로 확인할 수 있다.
소변 검사로 확인할 수 있는 종류는 모두 10가지로 백혈구, 잠혈, 아질산염, 단백질, 산도, 비중, 케톤체, 빌리루빈, 포도당, 우르빌리노겐이다.
각 시료에 따라 변하는 색상이 다르며 이를 확인하여 자신의 몸 상태를 확인할 수 있다.
그러나, 본 발명에서는 색상변화판독부(500)의 딥러닝 모델은 상기 색상에 대한 변화 결과표 정보를 활용하여 기초 학습한 후, 현재 입력된 영상 이미지와 가장 유사한 색상을 판단하여 결과값을 출력하는 것이다.
특히, 본 발명의 색상변화판독부(500)의 딥러닝 모델은 도 10에 도시한 바와 같이, 소변 검사 결과 및 지정값을 포함하고 있는 색상에 대한 변화 결과표 정보를 참조하여 기초 학습한 후, 현재 입력된 영상 이미지와 가장 유사한 색상을 판단하여 결과값을 도 6과 같이, 시료 위치별 라벨, 시료 위치별 지정값을 출력하는 것이다.
도 10의 예시와 같이, ① 라벨은 'LN',..., ⑩ 라벨은 'G100' 이라는 정보를 출력하는 것이다.
또한, 필요에 따라, 출력된 값을 확인해서 어느 부분에 이상이 있는지 사용자에게 출력한다.
한편, 형상변화판독부(400)와 색상변화판독부(500)에서 사용되는 딥러닝모델은,
기초 학습이 완료되는 유효성을 판단하기 위하여 Confusion Matrix를 통해서 민감도, 특이도를 측정하여 유효성을 판단하는 것을 특징으로 한다.
구체적으로 설명하면, 도 11에 도시한 바와 같이, 기초 학습이 완료되는 유효성을 판단하기 위해서 Confusion Matrix를 통해서 민감도, 특이도를 측정하여 유효성을 판단하되, 오차를 줄이기 위하여 지속적인 이미지들이 필요하며 반복적으로 재학습이 필요하다.
최종 결과표에 출력되는 이미지들에 대한 값과 색상에 대해서 재학습을 하기위해서 메타데이터로 변화시켜서 재학습을 진행한다.
민감도란, 질병이 실제로 있는데 검사 결과에서도 질병이 있다고 판단하는 비율을 의미하고, 특이도는 질병이 실제로 없는데 검사 결과에서도 질병이 없다고 판단하는 비율을 의미한다.
민감도와 특이도는 체외진단 키트를 개발할 때 필수로 제시하는 기준이며, 값이 높을수록 유효성이 높다는 기준이다.
민감도는 하기의 수식 1을 참조하여 측정하게 된다.
특이도는 하기의 수식 2를 참조하여 측정하게 된다.
상기 A,B,C,D는 도 11에 도시한 알파벳을 의미하며, 예를 들어, A의 경우에는 검사 -양성, 확진 -양성을 의미하며, B의 경우에는 검사 -양성, 확진 -음성을 의미한다.
한편, 부가적인 양태에 따라, 본 발명인 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는,
형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송시키기 위한 판독결과출력처리부(600);를 더 포함하여 구성되는 것을 특징으로 한다.
즉, 판독결과출력처리부(600)는 형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하게 되는데, 예를 들어, 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치가 디스플레이패널을 구성한다면 판독된 결과값을 디스플레이시키게 되는 것이며, 만약 존재하지 않으면 유무선 네트워크를 이용하여 사용자단말기로 전송하는 것을 의미하는 것이다.
한편, 상기 판독결과출력처리부(600)는,
카메라를 통해 멀티미디어 정보를 촬영하게 되면 획득된 체외진단키트의 멀티미디어 정보에 라벨링을 수행하여 사용자라벨링정보저장모듈에 저장 처리하게 된다.
이후, 형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 상기 사용자라벨링정보저장모듈에 저장된 라벨링 정보를 참조하여 해당 사용자단말기로 전송하는 것이다.
즉, 본 발명의 장치 이외에 외부 단말기이 사용자단말기로 사용자의 진단 결과값을 송출하기 위하여 사전에 라벨링을 부여하고, 부여된 라벨링 정보에 토대로상기 판독된 결과값을 해당 사용자단말기로 전송 처리하는 것이다.
한편, 부가적인 양태에 따라, 상기 체외진단방식판단부(100)는,
체외진단키트의 멀티미디어 정보를 획득하기 위하여 카메라와 연결되어 직접적인 입력 영상을 수신하거나, 무선 네트워크 또는 인터넷 네트워크로부터 수신받아 입력 가능한 장치인 것을 특징으로 한다.
즉, 카메라와 연동시켜 카메라를 통해 직접적인 입력 영상을 수신할 수 있으며, 무선 네트워크 또는 인터넷 네트워크를 이용하여 각종 영상 이미지를 획득할 수 있게 된다.
본 발명에 의하면, 카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하고, 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하여 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하여 언제 어디서든지 시간에 구애받지 않고 누구나 쉽게 체외진단키트의 결과를 확인할 수 있는 편리성을 제공하게 된다.
또한, 체외진단키트의 진단 결과 판단을 딥러닝 모델을 이용함으로써, 새로운 이미지들을 재학습할 수 있기 때문에 체외진단키트의 판별 성능을 더욱 더 향상시키는 효과를 발휘하게 된다.
즉, 사전에 인공지능 학습을 통해 학습시킨 후, 새로운 이미지들을 지속적으로 학습시켜 진단 정확성을 지속적으로 향상시키는 효과를 발휘한다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
본 발명에 따른 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는, 카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하고, 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하여 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송하여 언제 어디서든지 시간에 구애받지 않고 누구나 쉽게 체외진단키트의 결과를 확인할 수 있는 편리성을 제공하게 되므로, 산업상 이용가능성이 높다.
Claims (7)
- 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치에 있어서,카메라를 통해 촬영된 체외진단키트의 멀티미디어 정보를 획득할 경우에, 딥러닝 모델을 이용하여 형상에 대한 변화 판독 방식 혹은 색상에 대한 변화 판독 방식 중 어느 하나 이상의 체외진단 방식을 판단하기 위한 체외진단방식판단부(100)와,상기 멀티미디어 정보에서 1개 이상의 시료 위치를 인식하기 위한 시료위치인식부(200)와,상기 인식된 시료 위치별 라벨을 부여하기 위한 라벨부여부(300)와,상기 체외진단방식이 형상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 형상변화판독부(400)와,상기 체외진단방식이 색상에 대한 변화 판독 방식일 경우에 딥러닝 모델을 이용하여 변화가 발생하지 않은 시료 위치별 라벨과 출력값을 계산하고, 변화가 발생한 시료 위치별 라벨과 출력값을 판독하기 위한 색상변화판독부(500)를 포함하여 구성되는 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
- 제 1항에 있어서,상기 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치는,형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 디스플레이시키거나, 사용자단말기로 전송시키기 위한 판독결과출력처리부(600);를 더 포함하여 구성되는 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
- 제 1항에 있어서,상기 형상변화판독부(400)와 색상변화판독부(500)에서 사용되는 딥러닝모델은,미리 학습된 심층 신경망(CNN: Convolutional Neural Network) 알고리즘을 이용하는 것으로서, 심층 신경망(CNN: Convolutional Neural Network) 알고리즘은, 형상에 대한 변화 결과표 정보, 색상에 대한 변화 결과표 정보를 활용하여 기초 학습을 진행하되, 기초 학습이 완료되는 유효성을 판단하기 위하여 Confusion Matrix를 통해서 민감도, 특이도를 측정하여 유효성을 판단하는 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
- 제 2항에 있어서,상기 판독결과출력처리부(600)는,체외진단키트의 멀티미디어 정보에 라벨링을 수행하여 사용자라벨링정보저장모듈에 저장 처리하며, 형상변화판독부(400)와 색상변화판독부(500)를 통해 판독된 결과값을 해당 사용자라벨링정보저장모듈에 저장된 라벨링 정보를 참조하여 해당 사용자단말기(2000)로 전송하는 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
- 제 1항에 있어서,체외진단방식판단부(100)는,체외진단키트의 멀티미디어 정보를 획득하기 위하여 카메라와 연결되어 직접적인 입력 영상을 수신하거나, 무선 네트워크 또는 인터넷 네트워크로부터 수신받아 입력 가능한 장치인 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
- 제 1항에 있어서,형상변화판독부(400)는,형상 변화가 발생한 시료의 출력값은 사전에 딥러닝모델을 이용하여 학습한 학습 결과값인 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
- 제 1항에 있어서,색상변화판독부(500)는,색상 변화가 발생한 시료의 출력값은 사전에 딥러닝모델을 이용하여 학습한 학습 결과값인 것을 특징으로 하는 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190094873A KR102091832B1 (ko) | 2019-08-05 | 2019-08-05 | 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 |
KR10-2019-0094873 | 2019-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021025458A1 true WO2021025458A1 (ko) | 2021-02-11 |
Family
ID=69958137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/010329 WO2021025458A1 (ko) | 2019-08-05 | 2020-08-05 | 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102091832B1 (ko) |
WO (1) | WO2021025458A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102091832B1 (ko) * | 2019-08-05 | 2020-03-20 | 주식회사 에프앤디파트너스 | 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 |
KR20220109334A (ko) | 2021-01-28 | 2022-08-04 | (주)제이엘케이 | 진단키드 결과 이미지 내 스팟 검출 장치 및 방법 |
KR20220109335A (ko) | 2021-01-28 | 2022-08-04 | (주)제이엘케이 | 인공지능 기반 진단키트 검사 결과 이미지에서 비정형 이물질 배제를 통한 진단 검사 장치 및 방법 |
KR102651688B1 (ko) * | 2021-04-20 | 2024-03-27 | 김송환 | 허가형 블록체인에 기반하여 암 검진 데이터를 공유하기 위한 방법 및 장치 |
KR102613633B1 (ko) * | 2021-07-09 | 2023-12-14 | 블록체인랩스 주식회사 | 진단 키트의 검사 결과를 판독하는 ai 모델 학습 장치 및 그 동작 방법 |
KR20230009651A (ko) * | 2021-07-09 | 2023-01-17 | 블록체인랩스 주식회사 | 복수의 진단 키트의 검사 결과를 자동으로 판독하는 ai 장치 및 그 방법 |
KR102509538B1 (ko) | 2022-08-19 | 2023-03-16 | 주식회사 마크헬츠 | 센서를 구비한 휴대용 비대면 진단 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5131431B2 (ja) * | 2007-01-26 | 2013-01-30 | 日本電気株式会社 | 病理画像評価装置、病理画像評価方法、及び病理画像評価プログラム |
KR101352876B1 (ko) * | 2013-02-26 | 2014-01-20 | 여희경 | 진단 장치 |
KR20190048733A (ko) * | 2017-10-31 | 2019-05-09 | 전자부품연구원 | 모바일 기기를 이용한 부착형 광학계를 구비하는 체외 진단 시스템 |
JP2019095853A (ja) * | 2017-11-17 | 2019-06-20 | シスメックス株式会社 | 画像解析方法、装置、プログラムおよび学習済み深層学習アルゴリズムの製造方法 |
KR102091832B1 (ko) * | 2019-08-05 | 2020-03-20 | 주식회사 에프앤디파트너스 | 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6019017B2 (ja) * | 2010-06-25 | 2016-11-02 | シレカ セラノスティクス エルエルシーCireca Theranostics,Llc | 生物学的試片をスペクトル画像により分析する方法 |
KR101536287B1 (ko) | 2013-09-02 | 2015-07-14 | 주식회사좋은물산 | 스마트폰을 이용하여 피검사, 소변검사, 임신진단검사, dna검사, 초음파검사, 엑스레이검사, ct촬영검사, mri촬영검사가 가능한 건강 검사 시스템 |
KR101881223B1 (ko) | 2016-11-22 | 2018-07-23 | (주)에스티엠 | 이미지 센서 기반 휴대용 의료진단장치와 그를 이용한 의료정보 관리 방법 |
-
2019
- 2019-08-05 KR KR1020190094873A patent/KR102091832B1/ko active IP Right Grant
-
2020
- 2020-08-05 WO PCT/KR2020/010329 patent/WO2021025458A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5131431B2 (ja) * | 2007-01-26 | 2013-01-30 | 日本電気株式会社 | 病理画像評価装置、病理画像評価方法、及び病理画像評価プログラム |
KR101352876B1 (ko) * | 2013-02-26 | 2014-01-20 | 여희경 | 진단 장치 |
KR20190048733A (ko) * | 2017-10-31 | 2019-05-09 | 전자부품연구원 | 모바일 기기를 이용한 부착형 광학계를 구비하는 체외 진단 시스템 |
JP2019095853A (ja) * | 2017-11-17 | 2019-06-20 | シスメックス株式会社 | 画像解析方法、装置、プログラムおよび学習済み深層学習アルゴリズムの製造方法 |
KR102091832B1 (ko) * | 2019-08-05 | 2020-03-20 | 주식회사 에프앤디파트너스 | 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 |
Also Published As
Publication number | Publication date |
---|---|
KR102091832B1 (ko) | 2020-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021025458A1 (ko) | 멀티미디어 정보를 이용한 휴대용 체외진단키트 해석장치 | |
WO2019190016A1 (ko) | 인지 기능 재활 훈련 방법 및 장치 | |
WO2021049729A1 (ko) | 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 분석 장치 | |
Kobori | Home testing for male factor infertility: a review of current options | |
CN103926241B (zh) | 一种新型检测试纸条及其制备与应用 | |
WO2019054638A1 (ko) | 영상 분석 방법, 장치 및 컴퓨터 프로그램 | |
WO2019107666A1 (ko) | 타이머를 포함하는 소변 검사용 스트립, 소변 검사용 스트립 검출 및 분석 방법 | |
WO2015041451A1 (ko) | 촉각 영상 및 근적외선 영상의 정합을 이용한 유방촬영용 영상진단기기 및 유방조직 영상획득방법 | |
WO2019235828A1 (ko) | 투 페이스 질병 진단 시스템 및 그 방법 | |
WO2021153858A1 (ko) | 비정형 피부질환 영상데이터를 활용한 판독보조장치 | |
WO2016159726A1 (ko) | 의료 영상으로부터 병변의 위치를 자동으로 감지하는 장치 및 그 방법 | |
CN108593643A (zh) | 基于智能移动终端的尿液检测方法 | |
WO2018097585A1 (ko) | 체액 검사장치용 시료부 및 이를 구비하는 체액 검사장치 | |
WO2022158843A1 (ko) | 조직 검체 이미지 정제 방법, 및 이를 수행하는 컴퓨팅 시스템 | |
Intra et al. | Detection of intestinal parasites by use of the cuvette-based automated microscopy analyser sediMAX® | |
WO2019045480A1 (ko) | 딥러닝 기반 결핵 검사 방법 | |
WO2014157796A1 (ko) | 진단 보조용 내시경 시스템 및 그 제어 방법 | |
KR20190112099A (ko) | 휴대용 디지털 진단 장치 | |
WO2018097566A2 (ko) | 휴대용 체액 검사장치 | |
WO2017010612A1 (ko) | 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법 | |
WO2023063772A1 (ko) | 딥 러닝을 이용한 이미지 분석 기반의 피부 진단 시스템 및 방법 | |
Pohanka | Current trends in digital camera-based bioassays for point-of-care tests | |
WO2019235827A1 (ko) | 듀얼 클래스를 지원하는 질병 진단 시스템 및 그 방법 | |
WO2021096279A1 (ko) | 내시경 검사 중 병변이 발견된 위치에서의 데이터 입력 방법 및 상기 데이터 입력 방법을 수행하는 컴퓨팅 장치 | |
AlAgha et al. | PalAST: A Cross-Platform Mobile Application for Automated Disk Diffusion Antimicrobial Susceptibility Testing. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20849183 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20849183 Country of ref document: EP Kind code of ref document: A1 |