WO2021024535A1 - Automatic analysis device - Google Patents
Automatic analysis device Download PDFInfo
- Publication number
- WO2021024535A1 WO2021024535A1 PCT/JP2020/010994 JP2020010994W WO2021024535A1 WO 2021024535 A1 WO2021024535 A1 WO 2021024535A1 JP 2020010994 W JP2020010994 W JP 2020010994W WO 2021024535 A1 WO2021024535 A1 WO 2021024535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scattered light
- section
- light
- limit threshold
- threshold value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
Definitions
- the present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine.
- the automatic analyzer irradiates a reaction solution obtained by reacting a biological sample such as blood or urine with a reagent, and determines the presence or absence and concentration of a target component based on the data obtained by measuring transmitted light or scattered light. It is a thing.
- the reaction vessels containing the reaction solution are continuously arranged on the circumference of the rotatable reaction disk, and the measurement is performed while moving the optical axis of light to be detected as the reaction disk rotates. ..
- Patent Document 1 describes a technique for measuring transmitted light over the entire section from one end to the other end of a reaction vessel containing a reaction solution, and detecting a foreign substance based on a decrease in luminous intensity in the obtained photometric data. It is disclosed.
- Patent Document 2 measures the photometry of the reaction solution in one cell for a predetermined time, divides the photometric range into a plurality of regions, and calculates and compares the integrated value of the photometric quantity corresponding to the region.
- the measuring unit discloses a technique for detecting an abnormality in the reaction solution or an abnormality in the cell from the result of comparison.
- Patent Document 3 describes a plurality of detection values for the same sample of each luminosity detector for each luminosity detector of a plurality of luminosity detectors in an automatic analyzer having a plurality of luminosity detectors for analyzing a sample in a reaction vessel. Calculate the concentration of the sample from, calculate the fluctuation range of the calculated concentration, determine whether the calculated fluctuation range is within the predetermined allowable fluctuation range, and use one of the multiple luminosity detectors. A technique for displaying that the reaction process is abnormal unless the fluctuation range of the concentration calculated from the detected value of is within the permissible fluctuation range is disclosed.
- Patent Document 1 makes it possible to determine the position of foreign matter such as air bubbles from the decrease in the amount of transmitted light.
- the automatic analyzer measures the scattered light
- the scattered light has the possibility of both decreasing or increasing due to the influence of foreign substances such as bubbles as described later, so that the position cannot be detected by the same technique. ..
- Patent Document 2 it is not possible to determine which section of the division has an abnormality such as air bubbles, but only the presence or absence of air bubbles can be determined.
- Patent Document 3 the presence or absence of an abnormality such as a bubble is detected from the variation of the measurement data at the same measurement position for the measurement target, and the position of the bubble cannot be determined.
- the detector that measures the scattered light of the measurement target is affected by the change in the amount of light caused by the bubbles generated in the measurement target, which causes the measurement error. If the waveform section affected by bubbles can be grasped from the scattered light waveform data to be measured, the waveform data including the influence of bubbles that causes an error can be excluded, and the waveform data in a state where there are virtually no bubbles can be obtained. Obtainable. As a result, the accuracy and reliability of the analysis can be improved. Furthermore, if the reanalysis of the sample becomes unnecessary, the time required for the analysis can be shortened.
- An automated analyzer includes a reaction disk in which a plurality of reaction vessels are arranged in the circumferential direction and can rotate intermittently, a light source and a photometer, and reacts between the light source and the photometer. It has a light detection system arranged so that the reaction container arranged on the disk can pass through, and a photometer data processing unit. The light detection system irradiates the measurement target housed in the reaction container with light from a light source. A transmitted light detector that receives transmitted light transmitted through the measurement target and a scattered light detector that irradiates the measurement target housed in the reaction vessel with light from a light source and receives the scattered light scattered by the measurement target.
- the photometer data processing unit scans the light from the light source with respect to the measurement target by rotating the reaction disk, and obtains the first scanning waveform data from the transmitted light detector and the scattered light detector.
- the waveform acquisition unit that acquires the second scanning waveform data, the first scanning waveform data, and the second scanning waveform data, the presence or absence of bubbles in the measurement target and the presence or absence of bubbles, the second It has a data processing unit that specifies a section affected by bubbles in the scanned waveform data.
- the amount of scattered light to be measured can be measured excluding the influence of bubbles, and the accuracy and reliability of analysis can be improved.
- This is a configuration example of a photodetector system and a photometer data processing unit.
- This is an example of a scanning waveform (scattered light) when bubbles are present in the reaction vessel.
- This is an example of a scanning waveform (scattered light) when bubbles are present in the reaction vessel.
- This is an example of a scanning waveform (scattered light and transmitted light) when bubbles are present in the reaction vessel.
- It is a flowchart for determining the waveform section without a bubble. It is a figure for demonstrating the threshold value setting method for determining the waveform section in which a bubble exists.
- FIGS. 11A to 11C are diagrams for explaining a procedure for determining a bubble-free waveform section from scanning waveforms (scattered light and transmitted light) according to the flowcharts of FIGS. 11A to 11C.
- 11 is a diagram for explaining a procedure for determining a bubble-free waveform section from scanning waveforms (scattered light and transmitted light) according to the flowcharts of FIGS. 11A to 11C.
- FIG. 1 is an overall configuration diagram of the automatic analyzer.
- the automatic analyzer 1 mainly includes a reaction disk (reaction vessel holding mechanism) 30, a sample disk 10, a reagent disk (reagent container holding mechanism) 20, a light source 40, a photometer 41, and a computer 54. Be prepared.
- the reaction disk 30 is rotatable intermittently, and a large number of reaction vessels 31 made of a translucent material are arranged along the circumferential direction on the reaction disk 30.
- the reaction vessel 31 is maintained at a predetermined temperature (for example, 37 ° C.) by the constant temperature bath 32.
- sample dispensing mechanism 16 is arranged in the vicinity of the sample disk 10.
- the sample dispensing mechanism 16 includes a movable arm 15 and a pipette nozzle 17 attached to the movable arm 15.
- the sample dispensing mechanism 16 moves the pipette nozzle 17 to the dispensing position by the movable arm 15 at the time of sample dispensing, and sucks a predetermined amount of the sample from the sample container 11 located at the suction position of the sample disk 10. Then, the sample is discharged into the reaction vessel 31 at the discharge position on the reaction disk 30.
- the reagent cold storage 22 is arranged along the circumferential direction.
- a plurality of reagent bottles 21 to which labels displaying reagent identification information such as barcodes are affixed are placed along the circumferential direction of the reagent disc 20.
- the reagent bottle 21 contains a reagent solution corresponding to an analysis item that can be analyzed by the automatic analyzer 1.
- a barcode reading device 27 is attached to each reagent cold storage 22, and the barcode reading device 27 reads the barcode displayed on the outer wall of each reagent bottle 21 at the time of reagent registration. The read reagent information is registered in the memory 53 together with the position on the reagent disk 20.
- a reagent dispensing mechanism 25 having a mechanism substantially similar to that of the sample dispensing mechanism 16 is arranged in the vicinity of the reagent disc 20. At the time of reagent dispensing, the reagent solution is sucked from the reagent bottle 21 according to the inspection item of the reaction vessel 31 positioned at the reagent receiving position on the reaction disk 30 by the pipette nozzle provided in the reagent dispensing mechanism 25, and the corresponding reaction vessel is used. Discharge into 31.
- the stirring mechanism 36 is arranged at a position surrounded by the reaction disk 30, the reagent disk 20, and the reagent dispensing mechanism 25.
- the mixture of the sample and the reagent contained in the reaction vessel 31 is stirred by the stirring mechanism 36 to promote the reaction.
- the photometer 41 composed of the scattered light detector 43 and the transmitted light detector 42 is arranged on the outer peripheral side of the reaction disk 30, and the light source 40 is arranged near the center of the reaction disk 30.
- the row of reaction vessels 31 after stirring rotates so as to pass through the photometric position sandwiched between the light source 40 and the photometer 41.
- the light source 40 and the photometer 41 constitute a photodetection system.
- the reaction solution of the sample and the reagent in each reaction vessel 31 is photometrically measured each time it crosses in front of the photometer 41 during the rotation operation of the reaction disk 30.
- the analog signals of the transmitted light and the scattered light measured for each sample are input to the photometer data processing unit 2.
- the photometer data processing unit 2 has a waveform acquisition unit 49, a data processing unit 48, and a data storage unit 47.
- the reaction vessel 31 whose measurement has been completed can be used repeatedly by cleaning the inside thereof by the reaction vessel cleaning mechanism 38 arranged in the vicinity of the reaction disk 30.
- the computer 54 is connected to the sample dispensing control unit 19, the reagent dispensing control unit 29, and the photometer data processing unit 2 via the interface 50.
- the computer 54 sends a command to the sample dispensing control unit 19 to control the sample dispensing operation. Further, the computer 54 sends a command to the reagent dispensing control unit 29 to control the reagent dispensing operation.
- a printer 56 for printing, a memory 53 as a storage device, an external output medium 55, an input device 52 for inputting an operation command, etc., and a display device 51 for displaying on a screen are connected to the interface 50.
- the memory 53 is composed of, for example, a hard disk memory or an external memory. Information such as a password of each operator, a display level of each screen, analysis parameters, analysis item request contents, calibration result, and analysis result is stored in the memory 53.
- the analysis parameters related to the items that can be analyzed by the automatic analyzer 1 are input in advance via the input device 52 such as a keyboard, and are stored in the memory 53.
- the operator selects the inspection item requested for each sample by using the operation function screen of the display device 51.
- information such as the patient ID is also input from the input device 52.
- the pipette nozzle 17 of the sample dispensing mechanism 16 dispenses a predetermined amount of the sample from the sample container 11 to the reaction vessel 31 according to the analysis parameters.
- the reaction vessel 31 into which the sample (sample) has been dispensed is transferred by the rotation of the reaction disk 30 and stops at the reagent receiving position.
- the pipette nozzle of the reagent dispensing mechanism 25 dispenses a predetermined amount of the reagent solution into the reaction vessel 31 according to the analysis parameters of the corresponding test items.
- the order of dispensing the sample and the reagent may be opposite to that of this example, and the reagent may precede the sample. After that, the sample and the reagent are stirred by the stirring mechanism 36 and mixed.
- the transmitted light and scattered light of the reaction solution are measured by the photometer 41.
- the metered transmitted light and scattered light are converted into numerical data proportional to the amount of light by the waveform acquisition unit 49 of the photometer data processing unit 2, and after the data processing unit 48 extracts the light amount data to be measured, the interface 50 is used. It is taken into the computer 54 via.
- the numerical data acquired by the waveform acquisition unit 49 can also be stored in the data storage unit 47 via the data processing unit 48.
- the processing in the data processing unit 48 and the data storage unit 47 may be performed by the computer 54 and the memory 53.
- the concentration data is calculated based on the calibration curve measured in advance by the analysis method specified for each inspection item.
- the component concentration data as the analysis result of each inspection item is output to the screen of the printer 56 or the display device 51.
- FIG. 2 is a schematic diagram showing a configuration example of a photodetector system and a photometer data processing unit 2 in the automatic analyzer 1.
- the irradiation light from the light source 40 irradiates the measurement target 132, which is a mixed solution of the sample and the reagent contained in the reaction vessel 31.
- the transmitted transmitted light to be irradiated is received by the transmitted light detector 42 arranged on the optical axis 121.
- the scattered light from the measurement target 132 is received by the scattered light detector 43 arranged at an angle different from that of the transmitted light detector 42 with respect to the optical axis 121.
- the transmitted light detector 42 and the scattered light detector 43 are synchronized so that the scanning positions with respect to the measurement target 132 are the same, and the waveform acquisition unit 49 acquires the respective scanning waveforms.
- the transmitted light detector 42 is arranged on the vertical line of the scattered light detector 43, or the transmitted light detector 42 is arranged with respect to the scattered light detector 43 in the scanning orbit direction of the optical axis 121. If so, data processing may be performed to compensate for the deviation.
- the data processing unit 48 executes data processing for determining a section in which bubbles exist from the data (scanning waveform) captured by the waveform acquisition unit 49. Further, the data acquired by the waveform acquisition unit 49 is arbitrarily stored in the data storage unit 47, and in this case, the data processing unit 48 can access the past waveform data from the data storage unit 47.
- the automatic analyzer may have a transmitted light detector for performing analysis based on transmitted light, but in general, what is light used for analysis based on transmitted light and light used for analysis based on scattered light? It is different and the light source is usually another light source.
- the transmitted light detector 42 in this embodiment is a transmitted light detector provided so as to receive light from the light source 40 for the scattered light detector 43.
- FIG. 3 shows an example of the case where the bubble 101 exists on the right side of the reaction vessel 31 and on the optical axis orbit 122 when viewed from the detector in the measurement target 132.
- the trajectory in which the optical axis 121 of the light source 40 scans on the reaction vessel 31 by the rotation of the reaction disk 30 is referred to as an optical axis trajectory 122.
- the upper row is a side view
- the middle row is a front view
- the lower row is a scanning waveform (scattered light) 151 acquired by the scattered light detector 43.
- the bubbles 101 are not present, the light transmitted on the optical axis 121 is scattered in the other direction due to the presence of the bubbles 101.
- the scanning waveform 151 of the scattered light detector 43 a region where the intensity of the scattered light increases due to the influence of the scattered light by the bubbles 101 appears.
- the scanning waveform 151 if the region where the influence of the bubble 101 appears is section B and the other area is section A, the scattered light intensity of section B is larger than that of section A.
- FIG. 4 shows an example in which the bubble 102 is present on the left side of the reaction vessel 31 as viewed from the detector and at a position shifted upward from the optical axis orbit 122 in the measurement target 132.
- the upper row is a side view
- the middle row is a front view
- the lower row is a scanning waveform (scattered light) 153 acquired by the scattered light detector 43. If the bubbles 102 are not present, the light incident on the scattered light detector 43 is scattered in the other direction due to the presence of the bubbles 102.
- the scanning waveform 153 of the scattered light detector 43 a region where the intensity of the scattered light is reduced due to the influence of the scattered light by the bubbles 102 appears.
- the scanning waveform 153 if the region where the influence of the bubble 102 appears is the section C and the other area is the section D, the scattered light intensity of the section C is smaller than that of the section D.
- the scanning waveform 151 and the scanning waveform 153 acquired by the scattered light detector 43 show the same light amount transition even though the positions of the bubbles are different in the cases of FIGS. 3 and 4.
- FIG. 5 shows the measurement target 132 as the measurement target 132x at the concentration X while keeping the bubble position in FIG. 3
- FIG. 6 shows the measurement target 132 at the concentration Y (concentration Y> concentration X) while keeping the bubble position in FIG. 4 as it is.
- An example when the measurement target is changed to 132y is shown.
- the upper left of FIG. 5 is a side view
- the lower left is a front view
- the upper right is a scanning waveform (scattered light) 151x acquired by the scattered light detector 43
- the lower right is acquired by the transmitted light detector 42. Scanning waveform (transmitted light) 161.
- the upper left of FIG. 5 is a side view
- the lower left is a front view
- the upper right is a scanning waveform (scattered light) 151x acquired by the scattered light detector 43
- the lower right is acquired by the transmitted light detector 42. Scanning waveform (transmitted light) 161.
- FIG. 6 is a side view
- the lower left is a front view
- the upper right is a scanning waveform (scattered light) 153y acquired by the scattered light detector 43
- the lower right is a transmitted light detector 42. It is the acquired scanning waveform (transmitted light) 163.
- the scan waveform (scattered light) 151x and the scanning waveform (scattered light) 153y each cause a shift in the amount of scattered light corresponding to the change in density.
- the scanning waveform (scattered light) 151x and the scanning waveform (scattered light) 153y have not only the waveform transition but also the magnitude of the scattered light amount, and as a result, both have almost the same waveform in this example. It has been done. As described above, it is not possible to determine the section in which the bubble exists only from the scanning waveform of the scattered light detector 43.
- the light incident on the scattered photodetector 43 if the bubble 102 does not exist is scattered in the other direction due to the presence of the bubble 102, and a part of the light is incident on the transmitted photodetector 42.
- the amount of light incident on the transmitted photodetector 42 along the optical axis 121 is larger than the amount of light incident on the transmitted photodetector 42 due to scattering by the bubbles 102, and the region (section C) in which the bubbles 102 exist.
- section D There is almost no difference between the amount of light received by the transmitted photodetector 42 and the amount of light received by the transmitted photodetector 42 in the nonexistent region (section D).
- the incident light on the transmitted light detector 42 is scattered by the air bubbles, so that the amount of light is reduced as compared with the section without air bubbles, but the scattered light.
- the incident light on the detector 43 is affected by the scattered light by the bubbles, and the amount of light increases as compared with the section without bubbles.
- the incident light on the scattered light detector 43 is scattered by the air bubbles, so that the amount of light is reduced as compared with the section without air bubbles, while the transmitted light is transmitted.
- the transmitted light is extremely large as the incident light to the detector 42, and the influence of scattered light by bubbles can be ignored.
- the region where the bubbles exist in the reaction vessel 31 is determined based on the difference in the waveform transition between the scanning waveform of the transmitted photodetector 42 and the scanning waveform of the scattered light detector 43.
- FIG. 7 shows a flowchart for determining a waveform section from the scanning waveform that is not affected by bubbles for a measurement target having a known concentration.
- the determination of the increase or decrease in the amount of light due to the bubbles is performed using a predetermined threshold value.
- the data processing unit 48 stores these threshold values in advance. Examples of the case where the concentration to be measured is known include the case of calibration or blank measurement. In the case of calibration, measurement is performed on a standard substance having a known concentration in order to prepare a calibration curve, and in blank measurement, pure water is put into the reaction vessel 31 for measurement. An example of threshold setting is shown below.
- FIG. 8A is a scanning waveform 171 of the scattered photodetector 43 for a measurement object without bubbles
- FIG. 8A is a scanning waveform 171 of the scattered photodetector 43 for a measurement object without bubbles
- the fluctuation width V is calculated in the scanning waveform of each detector.
- the difference between the maximum value of the fluctuation range V A of the scattered light amount detected by the scattered light detector 43 and the average value A A is tripled, and the value added to the average value A A is the upper limit threshold Th AU , the fluctuation range V A.
- the difference between the minimum value and the average value A A is tripled, and the value subtracted from the average value A A is defined as the lower limit threshold Th AL .
- Th AL the value subtracted from the average value A A
- the upper threshold Th BU and lower threshold Th BL based on the variation of the quantity of transmitted light detected by the transmitted light detector 42 width V B and the average value A B.
- the above is an example, and may be determined based on the upper and lower limits of the amplitude of the amount of light caused by the bubbles that are actually desired to be detected.
- Figure 9 is the scanning waveform shown in FIG. 5, the average value A A (A B) of the amount of scattered light at a concentration X (the amount of transmitted light), the upper threshold Th AU (Th BU), the lower limit threshold value Th AL (Th BL ) Is added.
- the data processing unit 48 starts determining the waveform section without bubbles (S100).
- the scanning waveform 161 of the transmitted light amount is compared with the lower limit threshold value Th BL (S101), and since the section B is equal to or less than the lower limit threshold value Th BL , the transmitted light amount reduction flag Flg1 is given to the section B (S102).
- the scanning waveform 151x amount of scattered light compared to the lower threshold Th AL (S103)
- the process proceeds to step S105 since there is no lower threshold Th AL following section.
- the scanning waveform 151x is compared with the upper limit threshold value Th AU, and since the section B is equal to or larger than the upper limit threshold value Th AU , the scattered light amount increase flag Flg4 is given to the section B (S106).
- step S107 since the section B is a section to which both the transmitted light amount decrease flag Flg1 and the scattered light amount increase flag Flg4 are given, the section B is extracted as a waveform section in which bubbles are present, and is obtained from the scanned waveform data. , The data of the corresponding waveform section (here, section B) is removed (S108).
- section B the section to which the transmitted light amount decrease flag Flg1 is given and the section to which the scattered light amount increase flag Flg4 is given substantially overlap, but in reality, if both ends of the section are displaced. Conceivable.
- step S109 the process proceeds to step S111, and the remaining waveform section A is determined as a waveform section without bubbles.
- Figure 10 is the scanning waveform shown in FIG. 6, the average value A A (A B) of the amount of scattered light at a concentration Y (transmitted light amount), the upper threshold Th AU (Th BU), the lower limit threshold value Th AL (Th BL ) Is added.
- the data processing unit 48 starts determining the waveform section without bubbles (S100).
- step S103 the scanning waveform 153y amount of scattered light compared to the lower threshold Th AL, section C is because it is below the lower threshold value Th AL, imparts scattered light intensity decrease flag Flg3 in section C (S104).
- step S105 the scanning waveform 153y compared to upper threshold Th AU (S105)
- step S107 the scanning waveform 153y compared to upper threshold Th AU more sections.
- step S107 since there is no section to which both the transmitted light amount reduction flag Flg1 and the scattered light amount increase flag Flg4 are given, the process proceeds to step S109, and the section C is a section to which the scattered light amount reduction flag Flg3 is given. Extracts as a waveform section in which bubbles exist, removes the data of the corresponding waveform section (here, section C) from the scanned waveform data (S110), and determines the remaining waveform section D as a waveform section without bubbles (S110). S111).
- FIGS. 11A to 11C show a flowchart for determining a waveform section without bubbles from the scanning waveform for the measurement target whose density is unknown.
- the threshold value cannot be set in advance. Therefore, in addition to the flow of FIG. 7, a flow for setting a threshold value for determining a waveform section without bubbles is included. Examples of cases where the concentration to be measured is unknown include the case of measurement in analysis of a sample.
- the difference d of the scattered light amount at the sampling positions before and after is calculated, and the difference waveform 272 shown in FIG. 12B is obtained.
- the light amount transition of the difference waveform 272 is almost constant regardless of the position and the density of the measurement target, so that the difference is extremely small in the data of the front and back positions of the received light waveform.
- the value obtained by multiplying the maximum value of the fluctuation width DV A of the difference in the scattered light amount detected by the scattered light detector 43 by 3 is the difference upper limit threshold value DTh AU
- the value obtained by multiplying the minimum value of the fluctuation width DV A by 3 is the difference lower limit threshold value. Let it be DTh AL .
- the data processing unit 48 stores these threshold values in advance prior to the analysis of the sample.
- the cause of the difference d in the amount of scattered light is considered to be the distortion and scratches of the reaction vessel 31 in addition to the background noise. While the background noise is assumed to be substantially constant, the distortion and scratches of the reaction vessel 31 appear as abnormal values, so the threshold value may be obtained by excluding the influence of these abnormal values. Further, it is desirable to calculate these threshold values based on the result of blank measurement for each reaction vessel 31. For example, by calculating and updating these threshold values for each blank measurement, the determination can be maintained with high accuracy. Further, by storing these threshold values for each reaction vessel 31, the determination can be maintained with high accuracy.
- the data processing unit 48 starts determining the waveform section without bubbles (S200).
- the difference waveform 152 is calculated from the scanning waveform 151 of the scattered light detector 43 (S201).
- the obtained difference waveform 152 is shown in the upper right corner of FIG.
- the difference waveform of the scattered light is compared with the difference upper limit threshold DTh AU and the difference lower limit threshold DTh AL, and a section exceeding this is obtained and used as a waveform data removal section.
- the removal section is shaded. The same applies to the scattered light waveform and the transmitted light waveform in the middle right and lower right of FIG.
- the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the transmitted light (S203). This state is shown in the lower right of FIG.
- the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the scattered light (S204).
- the scanning waveform of the scattered light from which the removed section has been removed is shown in the middle right of FIG.
- the average value is calculated for each continuous waveform section in the scanning waveform of the transmitted light from which the removal section has been removed (S205).
- the average values 203 and 204 are calculated.
- the lower limit threshold value Th BL of the transmitted light amount is set (S207). Specifically, as in FIG. 8B, calculated fluctuation range V in the continuous wave segment of the mean value A B and the calculated average value 203 transmitted light, based on the average value A B and fluctuation width V, the transmitted light quantity The lower limit threshold Th BL can be set.
- the scanning waveform 161 of the transmitted light (lower left column of FIG. 13) is compared with the lower limit threshold value Th BL (S208), and since the section B is equal to or less than the lower limit threshold value Th BL , the transmitted light amount reduction flag Flg1 is given to the section B. (S209).
- the section to which the transmitted light amount reduction flag Flg1 is given is removed (S210). In this case, the continuous section included in the section B is excluded from the subsequent processing.
- the average value was calculated for each of the continuous waveform sections in the scanned waveform of the scattered light from which the removed section and the section to which the transmitted light amount reduction flag Flg1 was added were removed (S211), and the highest value among the calculated average values was calculated.
- Let a large average value be the average value A A of the scanning waveforms of scattered light (S212). This is because the amount of scattered light decreases if bubbles are present so as to block between the light source and the scattered light detector 43.
- the average value 201 of the continuous section is the average value A A of the scanning waveform of the scattered light.
- the upper limit threshold Th AU and the lower limit threshold Th AL of the scattered light amount are set (S213). Specifically, as in FIG. 8A, obtains the variation width V in the continuous wave segment of the mean value A A and the calculated average value 201 scattered light, based on the average value A A and variation width V, the amount of scattered light
- the upper limit threshold Th AU and the lower limit threshold Th AL can be set.
- the average value A A of the scattered light intensity to be measured (the amount of transmitted light) (A B), the upper threshold value Th AU, the lower threshold Th AL (Th BL) was calculated.
- the scanning waveform 151 of the scattered light (upper left in FIG. 13) is compared with the lower limit threshold Th AL, and since there is no waveform section below the lower limit threshold Th AL, the process proceeds to step S216, and section B is equal to or higher than the upper limit threshold Th AU. Therefore, the scattered light amount increase flag Flg4 is added to the section B (S217).
- step S218 since the section B is a section to which both the transmitted light amount decrease flag Flg1 and the scattered light amount increase flag Flg4 are given, the section B is extracted as a waveform section in which bubbles exist, and is obtained from the scanned waveform data. , The data of the corresponding waveform section (here, section B) is removed (S219). Subsequently, since there is no section to which the scattered light amount reduction flag Flg3 is given in step S220, the process proceeds to step S222, and the remaining waveform section A is determined as a waveform section without bubbles.
- the data processing unit 48 starts determining the waveform section without bubbles (S200).
- the difference waveform 154 is calculated from the scanning waveform 153 of the scattered light detector 43 (S201).
- the obtained difference waveform 154 is shown in the upper right corner of FIG.
- the difference waveform of the scattered light is compared with the difference upper limit threshold DTh AU and the difference lower limit threshold DTh AL, and a section exceeding this is obtained and used as a waveform data removal section.
- the removal section is shaded. The same applies to the scattered light waveform and the transmitted light waveform in the middle right and lower right of FIG.
- the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the transmitted light (S203). This state is shown in the lower right of FIG.
- the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the scattered light (S204).
- the scanning waveform of the scattered light from which the removed section has been removed is shown in the middle right of FIG.
- the average value is calculated for each continuous waveform section in the scanning waveform of the transmitted light from which the removal section has been removed (S205).
- the average values 207 and 208 are calculated.
- step S207 set the lower threshold Th BL transmission light (S207), the scan waveform 163 of the transmitted light (left lower column of FIG. 14) compared to the lower threshold Th BL (S208), the lower limit threshold value Th BL following waveform segment Since there is no such thing, the process proceeds to step S211.
- the average value was calculated for each of the continuous waveform sections in the scanned waveform of the scattered light from which the removed section and the section to which the transmitted light amount reduction flag Flg1 was added were removed (S211), and the highest value among the calculated average values was calculated.
- Let a large average value be the average value A A of the scanning waveforms of scattered light (S212). This is because the amount of scattered light decreases if bubbles are present so as to block between the light source and the scattered light detector 43.
- the average values 205 and 206 are calculated, and the average value 206 having the largest value among the average values 205 and 206 is scattered.
- the average value of the light scanning waveforms is A A.
- the upper limit threshold Th AU and the lower limit threshold Th AL of the scattered light amount are set (S213).
- the average value A A of the scattered light intensity to be measured (the amount of transmitted light) (A B)
- the upper threshold value Th AU the lower threshold Th AL (Th BL) was calculated.
- step S214 Scan waveform 153 of the scattered light in step S214 (left upper part of FIG. 14) compared to the lower threshold Th AL, section C is because it is below the lower threshold value Th AL, imparts scattered light intensity decrease flag Flg3 in section C (S215 ).
- the process proceeds to step S218.
- step S2128 since there is no section to which both the transmitted light amount reduction flag Flg1 and the scattered light amount increase flag Flg4 are given, the process proceeds to step S220, and since the section C is a section to which the scattered light amount reduction flag Flg3 is given, the section C Is extracted as a waveform section in which bubbles are present, and the data of the corresponding waveform section (here, section C) is removed from the scanning waveform data (S221). Subsequently, the process proceeds to step S222, and the remaining waveform section D is determined as a waveform section without bubbles.
- the automatic analyzer 1 extracts a section not affected by bubbles from the scanned waveform of the scattered light detected by the scattered light detector 43 in this way, and performs an analysis based on the amount of scattered light using the extracted waveform data. This makes it possible to improve the accuracy and reliability of the analysis by performing the analysis without the influence of bubbles.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Provided is an automatic analysis device that can measure the amount of scattered light of a measurement object while removing the influence of bubbles and can improve the accuracy and reliability of analysis. This automatic analysis device has: an optical detection system provided with a transmitted light detector (42) for receiving transmitted light having transmitted through a measurement object (132) and a scattered light detector (43) for receiving scattered light scattered by the measurement object (132); a waveform acquisition unit (49) for acquiring first scan waveform data from the transmitted light detector (42) and second scan waveform data from the scattered light detector (43); and a data processing unit (48) for, by using the first scan waveform data and the second scan waveform data, specifying the presence/absence of bubbles in the measurement object (132) and a section subjected to the influence of bubbles in the second scan waveform data when there are bubbles.
Description
本発明は、血液、尿等の生体サンプルの定性・定量分析を行う自動分析装置に関する。
The present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine.
自動分析装置は、血液、尿等の生体サンプルを試薬と反応させた反応液に光を照射し、透過光あるいは散乱光を測定して得られるデータに基づいて、目的成分の有無や濃度を求めるものである。反応液を収容する反応容器は、回転可能な反応ディスクの円周上に連続的に並べられており、反応ディスクの回転に伴って、検出すべき光の光軸を移動させながら測定が行われる。
The automatic analyzer irradiates a reaction solution obtained by reacting a biological sample such as blood or urine with a reagent, and determines the presence or absence and concentration of a target component based on the data obtained by measuring transmitted light or scattered light. It is a thing. The reaction vessels containing the reaction solution are continuously arranged on the circumference of the rotatable reaction disk, and the measurement is performed while moving the optical axis of light to be detected as the reaction disk rotates. ..
近年、自動分析装置には、ますます高精度で信頼性の高い分析結果を高速に提供することが求められている。ここで、例えば、分析に用いられる反応容器に気泡が発生した場合、分析結果の誤差の要因となるおそれがある。以下の先行文献には、このような異常の発生を検出する技術が開示されている。
In recent years, automatic analyzers are required to provide more and more accurate and reliable analysis results at high speed. Here, for example, when bubbles are generated in the reaction vessel used for the analysis, it may cause an error in the analysis result. The following prior art discloses a technique for detecting the occurrence of such anomalies.
特許文献1には、反応液を収容する反応容器の一端から他端までの全区間に亘って透過光の測光を行い、得られた測光データにおける光度の減少に基づいて異物を検出する技術が開示されている。
Patent Document 1 describes a technique for measuring transmitted light over the entire section from one end to the other end of a reaction vessel containing a reaction solution, and detecting a foreign substance based on a decrease in luminous intensity in the obtained photometric data. It is disclosed.
特許文献2は、1つのセル内の反応液の測光を所定時間行うが、その測光範囲を複数の領域に分割して、その領域に対応した測光量の積分値の演算および比較を行う測定部を備え、測定部は比較した結果から、反応液の異常又はセルの異常を検出する技術が開示されている。
Patent Document 2 measures the photometry of the reaction solution in one cell for a predetermined time, divides the photometric range into a plurality of regions, and calculates and compares the integrated value of the photometric quantity corresponding to the region. The measuring unit discloses a technique for detecting an abnormality in the reaction solution or an abnormality in the cell from the result of comparison.
特許文献3には、反応容器内の試料を分析する複数の光度検知器を有する自動分析装置において、複数の光度検知器の各光度検知器について、各光度検知器の同一試料に対する複数の検出値から試料の濃度を演算し、演算した濃度の変動幅を算出し、算出した変動幅が予め定めた許容変動幅以内か否かを判断し、複数の光度検知器のうちのいずれかの光度計の検出値から算出した濃度の変動幅が許容変動幅以内でなければ反応過程異常であることを表示する技術が開示されている。
Patent Document 3 describes a plurality of detection values for the same sample of each luminosity detector for each luminosity detector of a plurality of luminosity detectors in an automatic analyzer having a plurality of luminosity detectors for analyzing a sample in a reaction vessel. Calculate the concentration of the sample from, calculate the fluctuation range of the calculated concentration, determine whether the calculated fluctuation range is within the predetermined allowable fluctuation range, and use one of the multiple luminosity detectors. A technique for displaying that the reaction process is abnormal unless the fluctuation range of the concentration calculated from the detected value of is within the permissible fluctuation range is disclosed.
特許文献1は、透過光量の減少から気泡などの異物の位置を決定可能とするものである。しかしながら、自動分析装置が散乱光を測定する場合、散乱光は、後述するように気泡などの異物の影響により減少または増加双方の可能性を有するため、同様の技術で位置を検出することはできない。
Patent Document 1 makes it possible to determine the position of foreign matter such as air bubbles from the decrease in the amount of transmitted light. However, when the automatic analyzer measures the scattered light, the scattered light has the possibility of both decreasing or increasing due to the influence of foreign substances such as bubbles as described later, so that the position cannot be detected by the same technique. ..
特許文献2では、分割した、いずれの区間に気泡などの異常があるか判定することはできず、気泡の有無を判定できるに過ぎない。
In Patent Document 2, it is not possible to determine which section of the division has an abnormality such as air bubbles, but only the presence or absence of air bubbles can be determined.
特許文献3では、測定対象を同一の測定位置における測定データのばらつきから気泡などの異常の有無を検知するものであり、気泡の位置を決定することはできない。
In Patent Document 3, the presence or absence of an abnormality such as a bubble is detected from the variation of the measurement data at the same measurement position for the measurement target, and the position of the bubble cannot be determined.
測定対象の散乱光を測定する検知器は、測定対象に発生した気泡により生じる光量変化の影響が測定誤差の要因となる。測定対象の散乱光波形データから気泡の影響を受けている波形区間の把握ができれば、誤差となる気泡の影響が含まれる波形区間を除外して、実質的に気泡のない状態での波形データを得ることができる。これにより、分析の精度や信頼性を向上されることができる。さらに、検体の再分析が不要になれば、分析に要する時間を短縮することも可能になる。
The detector that measures the scattered light of the measurement target is affected by the change in the amount of light caused by the bubbles generated in the measurement target, which causes the measurement error. If the waveform section affected by bubbles can be grasped from the scattered light waveform data to be measured, the waveform data including the influence of bubbles that causes an error can be excluded, and the waveform data in a state where there are virtually no bubbles can be obtained. Obtainable. As a result, the accuracy and reliability of the analysis can be improved. Furthermore, if the reanalysis of the sample becomes unnecessary, the time required for the analysis can be shortened.
本発明の一実施の態様である自動分析装置は、複数の反応容器が周方向に配置され、間欠回転可能な反応ディスクと、光源と光度計とを含み、光源と光度計との間を反応ディスクに配置された反応容器が通過するように配置された光検出系と、光度計データ処理部とを有し、光検出系は、反応容器に収容された測定対象に光源より光を照射し、測定対象を透過した透過光を受光する透過光検知器と、反応容器に収容された測定対象に光源より光を照射し、測定対象により散乱した散乱光を受光する散乱光検知器とを備え、光度計データ処理部は、反応ディスクが回転することにより光源からの光を測定対象に対して走査して得られる、透過光検知器からの第1の走査波形データ及び散乱光検知器からの第2の走査波形データを取得する波形取得部と、第1の走査波形データ及び第2の走査波形データを用いて、測定対象中の気泡の有無、及び気泡が存在する場合に、第2の走査波形データにおける気泡の影響を受ける区間を特定するデータ処理部とを有する。
An automated analyzer according to an embodiment of the present invention includes a reaction disk in which a plurality of reaction vessels are arranged in the circumferential direction and can rotate intermittently, a light source and a photometer, and reacts between the light source and the photometer. It has a light detection system arranged so that the reaction container arranged on the disk can pass through, and a photometer data processing unit. The light detection system irradiates the measurement target housed in the reaction container with light from a light source. A transmitted light detector that receives transmitted light transmitted through the measurement target and a scattered light detector that irradiates the measurement target housed in the reaction vessel with light from a light source and receives the scattered light scattered by the measurement target. The photometer data processing unit scans the light from the light source with respect to the measurement target by rotating the reaction disk, and obtains the first scanning waveform data from the transmitted light detector and the scattered light detector. Using the waveform acquisition unit that acquires the second scanning waveform data, the first scanning waveform data, and the second scanning waveform data, the presence or absence of bubbles in the measurement target and the presence or absence of bubbles, the second It has a data processing unit that specifies a section affected by bubbles in the scanned waveform data.
測定対象の散乱光量を気泡の影響を除いて測定し、分析の精度および信頼性を向上することができる。
The amount of scattered light to be measured can be measured excluding the influence of bubbles, and the accuracy and reliability of analysis can be improved.
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
Other issues and new features will become apparent from the description and accompanying drawings herein.
図1は自動分析装置の全体構成図である。自動分析装置1は、主要な構成として反応ディスク(反応容器保持機構)30と、サンプルディスク10と、試薬ディスク(試薬容器保持機構)20と、光源40と、光度計41と、コンピュータ54とを備える。
FIG. 1 is an overall configuration diagram of the automatic analyzer. The automatic analyzer 1 mainly includes a reaction disk (reaction vessel holding mechanism) 30, a sample disk 10, a reagent disk (reagent container holding mechanism) 20, a light source 40, a photometer 41, and a computer 54. Be prepared.
反応ディスク30は間欠回転可能であり、この反応ディスク30上に透光性材料からなる多数の反応容器31が周方向に沿って配置されている。反応容器31は、恒温槽32により所定温度(例えば37℃)に維持されている。
The reaction disk 30 is rotatable intermittently, and a large number of reaction vessels 31 made of a translucent material are arranged along the circumferential direction on the reaction disk 30. The reaction vessel 31 is maintained at a predetermined temperature (for example, 37 ° C.) by the constant temperature bath 32.
サンプルディスク10上には、血液、尿等の生体サンプルを収容する多数の検体容器11が、図示の例では二重に周方向に沿って載置されている。また、サンプルディスク10の近傍には、サンプル分注機構(試料分注機構)16が配置されている。このサンプル分注機構16は、可動アーム15とこれに取り付けられたピペットノズル17とを備えている。上記構成により、サンプル分注機構16は、サンプル分注時にはピペットノズル17が可動アーム15により分注位置に移動して、サンプルディスク10の吸入位置に位置する検体容器11から所定量のサンプルを吸入し、そのサンプルを反応ディスク30上の吐出位置にある反応容器31内に吐出する。
On the sample disk 10, a large number of sample containers 11 for accommodating biological samples such as blood and urine are doubly placed along the circumferential direction in the illustrated example. Further, a sample dispensing mechanism (sample dispensing mechanism) 16 is arranged in the vicinity of the sample disk 10. The sample dispensing mechanism 16 includes a movable arm 15 and a pipette nozzle 17 attached to the movable arm 15. With the above configuration, the sample dispensing mechanism 16 moves the pipette nozzle 17 to the dispensing position by the movable arm 15 at the time of sample dispensing, and sucks a predetermined amount of the sample from the sample container 11 located at the suction position of the sample disk 10. Then, the sample is discharged into the reaction vessel 31 at the discharge position on the reaction disk 30.
試薬ディスク20は、試薬保冷庫22が周方向に沿って配置されている。この試薬保冷庫22には、バーコードのような試薬識別情報を表示したラベルが貼られた複数の試薬ボトル21が、試薬ディスク20の周方向に沿って載置されている。試薬ボトル21には、自動分析装置1により分析され得る分析項目に対応する試薬液が収容されている。また、各試薬保冷庫22にはバーコード読み取り装置27が付属されており、バーコード読み取り装置27が試薬登録時に各試薬ボトル21の外壁に表示されているバーコードを読み取る。読み取られた試薬情報は、試薬ディスク20上のポジションとともにメモリ53に登録される。
In the reagent disc 20, the reagent cold storage 22 is arranged along the circumferential direction. In the reagent cold storage 22, a plurality of reagent bottles 21 to which labels displaying reagent identification information such as barcodes are affixed are placed along the circumferential direction of the reagent disc 20. The reagent bottle 21 contains a reagent solution corresponding to an analysis item that can be analyzed by the automatic analyzer 1. A barcode reading device 27 is attached to each reagent cold storage 22, and the barcode reading device 27 reads the barcode displayed on the outer wall of each reagent bottle 21 at the time of reagent registration. The read reagent information is registered in the memory 53 together with the position on the reagent disk 20.
試薬ディスク20の近傍には、サンプル分注機構16と概ね同様の機構を有する試薬分注機構25が配置されている。試薬分注時には、試薬分注機構25が備えるピペットノズルにより、反応ディスク30上の試薬受け入れ位置に位置付けられる反応容器31の検査項目に応じた試薬ボトル21から試薬液を吸入し、該当する反応容器31内へ吐出する。
A reagent dispensing mechanism 25 having a mechanism substantially similar to that of the sample dispensing mechanism 16 is arranged in the vicinity of the reagent disc 20. At the time of reagent dispensing, the reagent solution is sucked from the reagent bottle 21 according to the inspection item of the reaction vessel 31 positioned at the reagent receiving position on the reaction disk 30 by the pipette nozzle provided in the reagent dispensing mechanism 25, and the corresponding reaction vessel is used. Discharge into 31.
反応ディスク30、試薬ディスク20および試薬分注機構25に囲まれる位置に、攪拌機構36が配置されている。反応容器31内に収容されたサンプルと試薬との混合液は、この攪拌機構36により攪拌されて反応が促進される。
The stirring mechanism 36 is arranged at a position surrounded by the reaction disk 30, the reagent disk 20, and the reagent dispensing mechanism 25. The mixture of the sample and the reagent contained in the reaction vessel 31 is stirred by the stirring mechanism 36 to promote the reaction.
散乱光検知器43および透過光検知器42から構成される光度計41は反応ディスク30の外周側に配置され、光源40は反応ディスク30の中心部付近に配置されている。攪拌を終えた反応容器31の列は、光源40と光度計41とによって挟まれた測光位置を通るように回転移動する。光源40と光度計41とにより、光検出系が構成される。各反応容器31内のサンプルと試薬との反応液は、反応ディスク30の回転動作中に光度計41の前を横切る度に測光される。サンプル毎に測定された透過光と散乱光のアナログ信号は、光度計データ処理部2に入力される。光度計データ処理部2は波形取得部49、データ処理部48、データ記憶部47を有している。測定が終了した反応容器31は、反応ディスク30の近傍に配置された反応容器洗浄機構38により、その内部が洗浄されることにより繰り返しの使用が可能にされている。
The photometer 41 composed of the scattered light detector 43 and the transmitted light detector 42 is arranged on the outer peripheral side of the reaction disk 30, and the light source 40 is arranged near the center of the reaction disk 30. The row of reaction vessels 31 after stirring rotates so as to pass through the photometric position sandwiched between the light source 40 and the photometer 41. The light source 40 and the photometer 41 constitute a photodetection system. The reaction solution of the sample and the reagent in each reaction vessel 31 is photometrically measured each time it crosses in front of the photometer 41 during the rotation operation of the reaction disk 30. The analog signals of the transmitted light and the scattered light measured for each sample are input to the photometer data processing unit 2. The photometer data processing unit 2 has a waveform acquisition unit 49, a data processing unit 48, and a data storage unit 47. The reaction vessel 31 whose measurement has been completed can be used repeatedly by cleaning the inside thereof by the reaction vessel cleaning mechanism 38 arranged in the vicinity of the reaction disk 30.
次に、自動分析装置1の制御系及び信号処理系について簡単に説明する。コンピュータ54は、インターフェース50を介して、サンプル分注制御部19、試薬分注制御部29、光度計データ処理部2に接続されている。コンピュータ54は、サンプル分注制御部19に対して指令を送り、サンプルの分注動作を制御する。また、コンピュータ54は、試薬分注制御部29に対して指令を送り、試薬の分注動作を制御する。
Next, the control system and signal processing system of the automatic analyzer 1 will be briefly described. The computer 54 is connected to the sample dispensing control unit 19, the reagent dispensing control unit 29, and the photometer data processing unit 2 via the interface 50. The computer 54 sends a command to the sample dispensing control unit 19 to control the sample dispensing operation. Further, the computer 54 sends a command to the reagent dispensing control unit 29 to control the reagent dispensing operation.
インターフェース50には、印字するためのプリンタ56、記憶装置であるメモリ53や外部出力メディア55、操作指令等を入力するための入力装置52、画面表示するための表示装置51が接続されている。メモリ53は、例えばハードディスクメモリまたは外部メモリにより構成される。メモリ53には、各操作者のパスワード、各画面の表示レベル、分析パラメータ、分析項目依頼内容、キャリブレーション結果、分析結果等の情報が記憶される。
A printer 56 for printing, a memory 53 as a storage device, an external output medium 55, an input device 52 for inputting an operation command, etc., and a display device 51 for displaying on a screen are connected to the interface 50. The memory 53 is composed of, for example, a hard disk memory or an external memory. Information such as a password of each operator, a display level of each screen, analysis parameters, analysis item request contents, calibration result, and analysis result is stored in the memory 53.
次に、自動分析装置1におけるサンプルの分析動作を説明する。自動分析装置1によって分析可能な項目に関する分析パラメータは、予めキーボード等の入力装置52を介して入力されておリ、メモリ53に記憶されている。操作者は、表示装置51の操作機能画面を用いて各サンプルに依頼されている検査項目を選択する。この際に、患者IDなどの情報も入力装置52から入力される。各サンプルに対して指示された検査項目を分析するため、サンプル分注機構16のピペットノズル17は、分析パラメータに従って、検体容器11から反応容器31へ所定量のサンプルを分注する。
Next, the sample analysis operation in the automatic analyzer 1 will be described. The analysis parameters related to the items that can be analyzed by the automatic analyzer 1 are input in advance via the input device 52 such as a keyboard, and are stored in the memory 53. The operator selects the inspection item requested for each sample by using the operation function screen of the display device 51. At this time, information such as the patient ID is also input from the input device 52. In order to analyze the inspection items indicated for each sample, the pipette nozzle 17 of the sample dispensing mechanism 16 dispenses a predetermined amount of the sample from the sample container 11 to the reaction vessel 31 according to the analysis parameters.
サンプル(試料)が分注された反応容器31は、反応ディスク30の回転によって移送され、試薬受け入れ位置に停止する。試薬分注機構25のピペットノズルは、該当する検査項目の分析パラメータに従って、反応容器31に所定量の試薬液を分注する。サンプルと試薬の分注順序は、この例とは逆に、サンプルより試薬が先であってもよい。その後、攪拌機構36により、サンプルと試薬との攪拌が行われ、混合される。
The reaction vessel 31 into which the sample (sample) has been dispensed is transferred by the rotation of the reaction disk 30 and stops at the reagent receiving position. The pipette nozzle of the reagent dispensing mechanism 25 dispenses a predetermined amount of the reagent solution into the reaction vessel 31 according to the analysis parameters of the corresponding test items. The order of dispensing the sample and the reagent may be opposite to that of this example, and the reagent may precede the sample. After that, the sample and the reagent are stirred by the stirring mechanism 36 and mixed.
この反応容器31が、測光位置を横切る時、光度計41により反応液の透過光と散乱光が測光される。測光された透過光と散乱光は、光度計データ処理部2の波形取得部49により光量に比例した数値データに変換され、データ処理部48にて測定対象の光量データを抽出後、インターフェース50を経由して、コンピュータ54に取り込まれる。波形取得部49により取得された数値データは、データ処理部48を介してデータ記憶部47に保存することもできる。データ処理部48とデータ記憶部47における処理はコンピュータ54およびメモリ53にておこなってもよい。
When the reaction vessel 31 crosses the photometric position, the transmitted light and scattered light of the reaction solution are measured by the photometer 41. The metered transmitted light and scattered light are converted into numerical data proportional to the amount of light by the waveform acquisition unit 49 of the photometer data processing unit 2, and after the data processing unit 48 extracts the light amount data to be measured, the interface 50 is used. It is taken into the computer 54 via. The numerical data acquired by the waveform acquisition unit 49 can also be stored in the data storage unit 47 via the data processing unit 48. The processing in the data processing unit 48 and the data storage unit 47 may be performed by the computer 54 and the memory 53.
この変換された数値を用い、検査項目毎に指定された分析法により予め測定しておいた検量線に基づき、濃度データが算出される。各検査項目の分析結果としての成分濃度データは、プリンタ56や表示装置51の画面に出力される。
Using this converted numerical value, the concentration data is calculated based on the calibration curve measured in advance by the analysis method specified for each inspection item. The component concentration data as the analysis result of each inspection item is output to the screen of the printer 56 or the display device 51.
図2は自動分析装置1における光検出系と光度計データ処理部2の構成例を示す模式図である。光源40からの照射光は、反応容器31に収容された試料と試薬との混合溶液である測定対象132に照射される。照射される透過光は、光軸121上に配置された透過光検知器42により受光される。測定対象132からの散乱光は、光軸121に対して透過光検知器42とは異なる角度で配置される散乱光検知器43により受光される。透過光検知器42と散乱光検知器43とは、測定対象132に対する走査位置が同じとなるように同期されており、波形取得部49はそれぞれの走査波形を取得する。具体的には、透過光検知器42が散乱光検知器43の鉛直線上に配置される、あるいは透過光検知器42が散乱光検知器43に対して光軸121の走査軌道方向にずれて配置されていれば、そのずれを補償するようデータ処理を行ってもよい。データ処理部48は、波形取得部49が取り込んだデータ(走査波形)から、気泡の存在する区間を判定するデータ処理を実行する。また、波形取得部49にて取得したデータは任意にデータ記憶部47に保存され、この場合、データ処理部48は、データ記憶部47から過去の波形データにアクセスすることが可能である。
FIG. 2 is a schematic diagram showing a configuration example of a photodetector system and a photometer data processing unit 2 in the automatic analyzer 1. The irradiation light from the light source 40 irradiates the measurement target 132, which is a mixed solution of the sample and the reagent contained in the reaction vessel 31. The transmitted transmitted light to be irradiated is received by the transmitted light detector 42 arranged on the optical axis 121. The scattered light from the measurement target 132 is received by the scattered light detector 43 arranged at an angle different from that of the transmitted light detector 42 with respect to the optical axis 121. The transmitted light detector 42 and the scattered light detector 43 are synchronized so that the scanning positions with respect to the measurement target 132 are the same, and the waveform acquisition unit 49 acquires the respective scanning waveforms. Specifically, the transmitted light detector 42 is arranged on the vertical line of the scattered light detector 43, or the transmitted light detector 42 is arranged with respect to the scattered light detector 43 in the scanning orbit direction of the optical axis 121. If so, data processing may be performed to compensate for the deviation. The data processing unit 48 executes data processing for determining a section in which bubbles exist from the data (scanning waveform) captured by the waveform acquisition unit 49. Further, the data acquired by the waveform acquisition unit 49 is arbitrarily stored in the data storage unit 47, and in this case, the data processing unit 48 can access the past waveform data from the data storage unit 47.
なお、自動分析装置では透過光に基づく分析を行うための透過光検知器を有している場合もあるが、一般に、透過光に基づく分析に用いる光と散乱光に基づく分析に用いる光とは異なっており、光源も通常、別の光源が用いられる。本実施例における透過光検知器42は、散乱光検知器43用の光源40からの光を受光するように設けられる透過光検知器である。
The automatic analyzer may have a transmitted light detector for performing analysis based on transmitted light, but in general, what is light used for analysis based on transmitted light and light used for analysis based on scattered light? It is different and the light source is usually another light source. The transmitted light detector 42 in this embodiment is a transmitted light detector provided so as to receive light from the light source 40 for the scattered light detector 43.
まず、自動分析装置1の光検出系において、反応容器31内に気泡が存在することによる、走査波形への影響を説明する。
First, in the photodetector system of the automatic analyzer 1, the influence of the presence of air bubbles in the reaction vessel 31 on the scanning waveform will be described.
図3は、測定対象132において、気泡101が検知器から見て反応容器31の右側、かつ光軸軌道122上に存在する場合の例を示している。ここでは光源40の光軸121が反応ディスク30の回転により反応容器31上を走査する軌道を、光軸軌道122と称している。上段が側面図であり、中段が正面図、下段が散乱光検知器43において取得される走査波形(散乱光)151である。この場合、気泡101が存在しなければ光軸121上を透過する光が、気泡101の存在により他方向へ散乱する。これにより、散乱光検知器43の走査波形151において、気泡101による散乱光の影響を受けて散乱光の強度が増大する領域が表れる。走査波形151において、気泡101の影響が表れている領域を区間B、それ以外の領域を区間Aとすると、区間Bの散乱光強度は区間Aよりも大きい。
FIG. 3 shows an example of the case where the bubble 101 exists on the right side of the reaction vessel 31 and on the optical axis orbit 122 when viewed from the detector in the measurement target 132. Here, the trajectory in which the optical axis 121 of the light source 40 scans on the reaction vessel 31 by the rotation of the reaction disk 30 is referred to as an optical axis trajectory 122. The upper row is a side view, the middle row is a front view, and the lower row is a scanning waveform (scattered light) 151 acquired by the scattered light detector 43. In this case, if the bubbles 101 are not present, the light transmitted on the optical axis 121 is scattered in the other direction due to the presence of the bubbles 101. As a result, in the scanning waveform 151 of the scattered light detector 43, a region where the intensity of the scattered light increases due to the influence of the scattered light by the bubbles 101 appears. In the scanning waveform 151, if the region where the influence of the bubble 101 appears is section B and the other area is section A, the scattered light intensity of section B is larger than that of section A.
図4は、測定対象132において、気泡102が検知器から見て反応容器31の左側、かつ光軸軌道122から上方向にずれた位置に存在する場合の例を示している。上段が側面図であり、中段が正面図、下段が散乱光検知器43において取得される走査波形(散乱光)153である。気泡102が存在しなければ散乱光検知器43に入射する光が、気泡102の存在により他方向へ散乱する。これにより、散乱光検知器43の走査波形153において、気泡102による散乱光の影響を受けて散乱光の強度が減少する領域が表れる。走査波形153において、気泡102の影響が表れている領域を区間C、それ以外の領域を区間Dとすると、区間Cの散乱光強度は区間Dよりも小さい。
FIG. 4 shows an example in which the bubble 102 is present on the left side of the reaction vessel 31 as viewed from the detector and at a position shifted upward from the optical axis orbit 122 in the measurement target 132. The upper row is a side view, the middle row is a front view, and the lower row is a scanning waveform (scattered light) 153 acquired by the scattered light detector 43. If the bubbles 102 are not present, the light incident on the scattered light detector 43 is scattered in the other direction due to the presence of the bubbles 102. As a result, in the scanning waveform 153 of the scattered light detector 43, a region where the intensity of the scattered light is reduced due to the influence of the scattered light by the bubbles 102 appears. In the scanning waveform 153, if the region where the influence of the bubble 102 appears is the section C and the other area is the section D, the scattered light intensity of the section C is smaller than that of the section D.
このように、図3と図4の場合で気泡の位置が異なるにも関わらず、散乱光検知器43において取得される走査波形151と走査波形153とは、同様の光量推移を示す。
As described above, the scanning waveform 151 and the scanning waveform 153 acquired by the scattered light detector 43 show the same light amount transition even though the positions of the bubbles are different in the cases of FIGS. 3 and 4.
図5に、図3の気泡位置はそのままに測定対象132を濃度Xの測定対象132xに、図6に、図4の気泡位置はそのままに測定対象132を濃度Y(濃度Y>濃度X)の測定対象132yに変更した場合の例を示す。図5の左上段が側面図であり、左下段が正面図、右上段が散乱光検知器43において取得される走査波形(散乱光)151xであり、右下段が透過光検知器42において取得される走査波形(透過光)161である。また、図6の左上段が側面図であり、左下段が正面図、右上段が散乱光検知器43において取得される走査波形(散乱光)153yであり、右下段が透過光検知器42において取得される走査波形(透過光)163である。
5 shows the measurement target 132 as the measurement target 132x at the concentration X while keeping the bubble position in FIG. 3, and FIG. 6 shows the measurement target 132 at the concentration Y (concentration Y> concentration X) while keeping the bubble position in FIG. 4 as it is. An example when the measurement target is changed to 132y is shown. The upper left of FIG. 5 is a side view, the lower left is a front view, the upper right is a scanning waveform (scattered light) 151x acquired by the scattered light detector 43, and the lower right is acquired by the transmitted light detector 42. Scanning waveform (transmitted light) 161. The upper left of FIG. 6 is a side view, the lower left is a front view, the upper right is a scanning waveform (scattered light) 153y acquired by the scattered light detector 43, and the lower right is a transmitted light detector 42. It is the acquired scanning waveform (transmitted light) 163.
測定対象の濃度が変化することにより、走査波形(散乱光)151x、走査波形(散乱光)153yはそれぞれ濃度変化に対応する散乱光量のシフトが生じる。この結果、走査波形(散乱光)151xと走査波形(散乱光)153yとは、波形推移のみでなく、散乱光量の大きさも同程度となり、その結果、この例では両者はほぼ同等の波形となってしまっている。このように、散乱光検知器43の走査波形のみから、気泡の存在する区間を決定することはできない。
As the density of the measurement target changes, the scan waveform (scattered light) 151x and the scanning waveform (scattered light) 153y each cause a shift in the amount of scattered light corresponding to the change in density. As a result, the scanning waveform (scattered light) 151x and the scanning waveform (scattered light) 153y have not only the waveform transition but also the magnitude of the scattered light amount, and as a result, both have almost the same waveform in this example. It has been done. As described above, it is not possible to determine the section in which the bubble exists only from the scanning waveform of the scattered light detector 43.
一方、図5、図6のように散乱光検知器43の走査波形がほぼ同様な場合であっても、透過光検知器42の走査波形には違いが現れる。図5の場合、気泡101が存在しなければ透過光検知器42へ入射される光が、気泡101の存在により他方向へ散乱する。これにより、透過光検知器42の走査波形161において、気泡101の存在する領域(区間B)においては、気泡の存在しない領域(区間A)に比べて、気泡101による散乱の影響を受けて透過光の強度が減少する。これに対して、図6の場合、気泡102が存在しなければ散乱光検知器43に入射する光が、気泡102の存在により他方向へ散乱され、その一部が透過光検知器42に入射する。しかし、光軸121に沿って透過光検知器42に入射される光量は、気泡102による散乱によって透過光検知器42に入射する光量に比較して大きく、気泡102の存在する領域(区間C)における透過光検知器42の受光量と存在しない領域(区間D)における透過光検知器42の受光量にはほとんど変化がない。
On the other hand, even when the scanning waveforms of the scattered light detector 43 are substantially the same as in FIGS. 5 and 6, differences appear in the scanning waveforms of the transmitted light detector 42. In the case of FIG. 5, if the bubble 101 is not present, the light incident on the transmitted photodetector 42 is scattered in the other direction due to the presence of the bubble 101. As a result, in the scanning waveform 161 of the transmitted light detector 42, in the region where the bubbles 101 exist (section B), the light is transmitted under the influence of scattering by the bubbles 101 as compared with the region where the bubbles do not exist (section A). Light intensity is reduced. On the other hand, in the case of FIG. 6, the light incident on the scattered photodetector 43 if the bubble 102 does not exist is scattered in the other direction due to the presence of the bubble 102, and a part of the light is incident on the transmitted photodetector 42. To do. However, the amount of light incident on the transmitted photodetector 42 along the optical axis 121 is larger than the amount of light incident on the transmitted photodetector 42 due to scattering by the bubbles 102, and the region (section C) in which the bubbles 102 exist. There is almost no difference between the amount of light received by the transmitted photodetector 42 and the amount of light received by the transmitted photodetector 42 in the nonexistent region (section D).
以上をまとめると、透過光検知器42の前方に気泡がある場合、透過光検知器42への入射光は気泡により散乱することで、気泡がない区間と比べて光量は減少する一方、散乱光検知器43への入射光は気泡による散乱光の影響を受け、気泡がない区間と比べて光量は増加する。これに対して、散乱光検知器43の前方に気泡がある場合、散乱光検知器43への入射光は気泡により散乱することで、気泡がない区間と比べて光量は減少する一方、透過光検知器42への入射光は透過光が極めて大きく、気泡による散乱光による影響は無視できる。本実施例では、透過光検知器42の走査波形と散乱光検知器43のこの走査波形との波形推移の違いに基づき、反応容器31内の気泡の存在する領域を決定する。
To summarize the above, when there are air bubbles in front of the transmitted light detector 42, the incident light on the transmitted light detector 42 is scattered by the air bubbles, so that the amount of light is reduced as compared with the section without air bubbles, but the scattered light. The incident light on the detector 43 is affected by the scattered light by the bubbles, and the amount of light increases as compared with the section without bubbles. On the other hand, when there are air bubbles in front of the scattered light detector 43, the incident light on the scattered light detector 43 is scattered by the air bubbles, so that the amount of light is reduced as compared with the section without air bubbles, while the transmitted light is transmitted. The transmitted light is extremely large as the incident light to the detector 42, and the influence of scattered light by bubbles can be ignored. In this embodiment, the region where the bubbles exist in the reaction vessel 31 is determined based on the difference in the waveform transition between the scanning waveform of the transmitted photodetector 42 and the scanning waveform of the scattered light detector 43.
図7に濃度が既知である測定対象に対して、走査波形から気泡の影響がない波形区間を決定するフローチャートを示す。このためには、気泡に起因する光量の増加もしくは減少の判定を、あらかじめ定めた閾値を用いて行う。データ処理部48は、これら閾値をあらかじめ記憶しておく。測定対象の濃度が既知である場合としては、キャリブレーションあるいはブランク測定の場合が挙げられる。キャリブレーションの場合は、検量線を作成するため既知濃度の標準物質についての測定を行い、ブランク測定では反応容器31に純水を入れて測定を行う。閾値設定の例を以下に示す。図8Aは気泡のない測定対象に対する散乱光検知器43の走査波形171であり、図8Bは気泡のない測定対象に対する透過光検知器42の走査波形173である。まず、各検知器の走査波形において変動幅Vを計算する。散乱光検知器43で検知した散乱光量の変動幅VAの最大値と平均値AAとの差を3倍して、平均値AAに足した値を上限閾値ThAU、変動幅VAの最小値と平均値AAとの差を3倍し、平均値AAから引いた値を下限閾値ThALとする。同様に、透過光検知器42で検知した透過光量の変動幅VB及び平均値ABに基づき、上限閾値ThBUおよび下限閾値ThBLを決定する。なお、上記は一例であり、実際に検出したい気泡に起因する光量の振幅の上限、下限に基づき決定してもよい。
FIG. 7 shows a flowchart for determining a waveform section from the scanning waveform that is not affected by bubbles for a measurement target having a known concentration. For this purpose, the determination of the increase or decrease in the amount of light due to the bubbles is performed using a predetermined threshold value. The data processing unit 48 stores these threshold values in advance. Examples of the case where the concentration to be measured is known include the case of calibration or blank measurement. In the case of calibration, measurement is performed on a standard substance having a known concentration in order to prepare a calibration curve, and in blank measurement, pure water is put into the reaction vessel 31 for measurement. An example of threshold setting is shown below. FIG. 8A is a scanning waveform 171 of the scattered photodetector 43 for a measurement object without bubbles, and FIG. 8B is a scanning waveform 173 of the transmitted photodetector 42 for a measurement object without bubbles. First, the fluctuation width V is calculated in the scanning waveform of each detector. The difference between the maximum value of the fluctuation range V A of the scattered light amount detected by the scattered light detector 43 and the average value A A is tripled, and the value added to the average value A A is the upper limit threshold Th AU , the fluctuation range V A. The difference between the minimum value and the average value A A is tripled, and the value subtracted from the average value A A is defined as the lower limit threshold Th AL . Similarly, based on the variation of the quantity of transmitted light detected by the transmitted light detector 42 width V B and the average value A B, to determine the upper threshold Th BU and lower threshold Th BL. The above is an example, and may be determined based on the upper and lower limits of the amplitude of the amount of light caused by the bubbles that are actually desired to be detected.
反応容器31において図5に示した位置に気泡が存在した場合を例に、図7のフローチャートにより気泡の存在する波形区間を決定する手順を説明する。図9は図5に示した走査波形に対して、濃度Xでの散乱光量(透過光量)の平均値AA(AB)、上限閾値ThAU(ThBU)、下限閾値ThAL(ThBL)を追記したものである。
Taking the case where bubbles are present at the positions shown in FIG. 5 in the reaction vessel 31, a procedure for determining the waveform section in which the bubbles are present will be described with reference to the flowchart of FIG. 7. Figure 9 is the scanning waveform shown in FIG. 5, the average value A A (A B) of the amount of scattered light at a concentration X (the amount of transmitted light), the upper threshold Th AU (Th BU), the lower limit threshold value Th AL (Th BL ) Is added.
はじめに、波形取得部49により透過光検知器42および散乱光検知器43により測定対象の走査波形が取得されると、データ処理部48は気泡のない波形区間の決定を開始する(S100)。
First, when the waveform acquisition unit 49 acquires the scanning waveform to be measured by the transmitted photodetector 42 and the scattered light detector 43, the data processing unit 48 starts determining the waveform section without bubbles (S100).
まず、透過光量の走査波形161を下限閾値ThBLと比較し(S101)、区間Bが下限閾値ThBL以下であるので、区間Bに透過光量減少フラグFlg1を付与する(S102)。続いて、散乱光量の走査波形151xを下限閾値ThALと比較し(S103)、下限閾値ThAL以下の区間はないのでステップS105に移行する。走査波形151xを上限閾値ThAUと比較し、区間Bが上限閾値ThAU以上であるので、区間Bに散乱光量増加フラグFlg4を付与する(S106)。
First, the scanning waveform 161 of the transmitted light amount is compared with the lower limit threshold value Th BL (S101), and since the section B is equal to or less than the lower limit threshold value Th BL , the transmitted light amount reduction flag Flg1 is given to the section B (S102). Subsequently, the scanning waveform 151x amount of scattered light compared to the lower threshold Th AL (S103), the process proceeds to step S105 since there is no lower threshold Th AL following section. The scanning waveform 151x is compared with the upper limit threshold value Th AU, and since the section B is equal to or larger than the upper limit threshold value Th AU , the scattered light amount increase flag Flg4 is given to the section B (S106).
続いて、ステップS107において、区間Bが透過光量減少フラグFlg1と散乱光量増加フラグFlg4の両者が付与された区間であるので、区間Bが気泡の存在する波形区間として抽出し、走査波形のデータより、該当波形区間(ここでは区間B)のデータを除去する(S108)。なお、ステップS107において、透過光量減少フラグFlg1が付与された区間と散乱光量増加フラグFlg4が付与された区間とは、ほぼ重なることが期待されるが、実際には区間の両端にはずれが生じると考えられる。この場合は、透過光量減少フラグFlg1または散乱光量増加フラグFlg4のいずれかが付与された区間は気泡の影響が表れているといえるため、いずれかのフラグが付与されていれば除去の対象とすることが望ましい。続いて、ステップS109において散乱光量減少フラグFlg3が付与された区間はないため、ステップS111に移行し、残った波形区間Aを気泡のない波形区間として決定する。
Subsequently, in step S107, since the section B is a section to which both the transmitted light amount decrease flag Flg1 and the scattered light amount increase flag Flg4 are given, the section B is extracted as a waveform section in which bubbles are present, and is obtained from the scanned waveform data. , The data of the corresponding waveform section (here, section B) is removed (S108). In step S107, it is expected that the section to which the transmitted light amount decrease flag Flg1 is given and the section to which the scattered light amount increase flag Flg4 is given substantially overlap, but in reality, if both ends of the section are displaced. Conceivable. In this case, it can be said that the effect of air bubbles appears in the section where either the transmitted light amount decrease flag Flg1 or the scattered light amount increase flag Flg4 is given, so if either flag is given, it is targeted for removal. Is desirable. Subsequently, since there is no section to which the scattered light amount reduction flag Flg3 is given in step S109, the process proceeds to step S111, and the remaining waveform section A is determined as a waveform section without bubbles.
これに対し、反応容器31において図6に示した位置に気泡が存在した場合を例に、図7のフローチャートにより気泡の存在する波形区間を決定する手順を説明する。図10は図6に示した走査波形に対して、濃度Yでの散乱光量(透過光量)の平均値AA(AB)、上限閾値ThAU(ThBU)、下限閾値ThAL(ThBL)を追記したものである。
On the other hand, the procedure for determining the corrugated section in which the bubbles are present will be described from the flowchart of FIG. 7 by taking the case where the bubbles are present at the positions shown in FIG. 6 in the reaction vessel 31 as an example. Figure 10 is the scanning waveform shown in FIG. 6, the average value A A (A B) of the amount of scattered light at a concentration Y (transmitted light amount), the upper threshold Th AU (Th BU), the lower limit threshold value Th AL (Th BL ) Is added.
はじめに、波形取得部49により透過光検知器42および散乱光検知器43により測定対象の走査波形が取得されると、データ処理部48は気泡のない波形区間の決定を開始する(S100)。
First, when the waveform acquisition unit 49 acquires the scanning waveform to be measured by the transmitted photodetector 42 and the scattered light detector 43, the data processing unit 48 starts determining the waveform section without bubbles (S100).
まず、透過光量の走査波形163を下限閾値ThBLと比較し(S101)、上限閾値ThBL以下の区間はないので、ステップS103に移行する。ステップS103では、散乱光量の走査波形153yを下限閾値ThALと比較し、区間Cが下限閾値ThAL以下であるので、区間Cに散乱光量減少フラグFlg3を付与する(S104)。続いて、走査波形153yを上限閾値ThAUと比較し(S105)、上限閾値ThAU以上の区間はないのでステップS107に移行する。
First, the scanning waveform 163 of the transmitted light amount is compared with the lower limit threshold value Th BL (S101), and since there is no section below the upper limit threshold value Th BL , the process proceeds to step S103. In step S103, the scanning waveform 153y amount of scattered light compared to the lower threshold Th AL, section C is because it is below the lower threshold value Th AL, imparts scattered light intensity decrease flag Flg3 in section C (S104). Subsequently, the scanning waveform 153y compared to upper threshold Th AU (S105), the process proceeds to step S107 since there is no upper limit threshold Th AU more sections.
ステップS107において、透過光量減少フラグFlg1と散乱光量増加フラグFlg4の両者が付与された区間がないためステップS109に移行し、区間Cが散乱光量減少フラグFlg3の付与された区間であるので、区間Cが気泡の存在する波形区間として抽出し、走査波形のデータより、該当波形区間(ここでは区間C)のデータを除去し(S110)、残った波形区間Dを気泡のない波形区間として決定する(S111)。
In step S107, since there is no section to which both the transmitted light amount reduction flag Flg1 and the scattered light amount increase flag Flg4 are given, the process proceeds to step S109, and the section C is a section to which the scattered light amount reduction flag Flg3 is given. Extracts as a waveform section in which bubbles exist, removes the data of the corresponding waveform section (here, section C) from the scanned waveform data (S110), and determines the remaining waveform section D as a waveform section without bubbles (S110). S111).
図11A~Cに濃度が未知である測定対象に対して、走査波形から気泡がない波形区間を決定するフローチャートを示す。この場合、図7のフローと異なり、濃度が未知であるためにあらかじめ閾値を定めておくことができない。このため、図7のフローに加えて、気泡がない波形区間を判定するための閾値を設定するフローが含まれている。測定対象の濃度が未知である場合としては、検体に対する分析における測定の場合が挙げられる。
FIGS. 11A to 11C show a flowchart for determining a waveform section without bubbles from the scanning waveform for the measurement target whose density is unknown. In this case, unlike the flow of FIG. 7, since the concentration is unknown, the threshold value cannot be set in advance. Therefore, in addition to the flow of FIG. 7, a flow for setting a threshold value for determining a waveform section without bubbles is included. Examples of cases where the concentration to be measured is unknown include the case of measurement in analysis of a sample.
図12Aに示す気泡がない測定対象に対する散乱光検知器43の走査波形271において、前後のサンプリング位置における散乱光量の差分dを計算し、図12Bに示す差分波形272を求める。測定対象において気泡がない場合、差分波形272の光量推移は位置や測定対象の濃度によらずほぼ一定であるため、受光波形の前後位置のデータで差分は極めて小さくなる。そこで、散乱光検知器43で検知した散乱光量の差分の変動幅DVAの最大値を3倍した値を差分上限閾値DThAU、変動幅DVAの最小値を3倍した値を差分下限閾値DThALとする。
In the scanning waveform 271 of the scattered light detector 43 for the measurement target without bubbles shown in FIG. 12A, the difference d of the scattered light amount at the sampling positions before and after is calculated, and the difference waveform 272 shown in FIG. 12B is obtained. When there are no bubbles in the measurement target, the light amount transition of the difference waveform 272 is almost constant regardless of the position and the density of the measurement target, so that the difference is extremely small in the data of the front and back positions of the received light waveform. Therefore, the value obtained by multiplying the maximum value of the fluctuation width DV A of the difference in the scattered light amount detected by the scattered light detector 43 by 3 is the difference upper limit threshold value DTh AU , and the value obtained by multiplying the minimum value of the fluctuation width DV A by 3 is the difference lower limit threshold value. Let it be DTh AL .
データ処理部48はこれら閾値を検体に対する分析に先立ってあらかじめ記憶しておく。散乱光量の差分dの要因は、バックグラウンドノイズに加えて、反応容器31の歪みや傷によるものと考えられる。バックグラウンドノイズはほぼ一定であると想定される一方、反応容器31の歪みや傷は異常値として現れるため、これら異常値の影響を除いて閾値を求めればよい。さらに、各反応容器31に対してブランク測定を行った結果に基づき、これらの閾値を算出することが望ましい。例えば、ブランク測定ごとにこれらの閾値を算出して更新することにより、判定を高精度に保つことができる。また、これら閾値を反応容器31ごとに記憶することによっても、判定を高精度に保つことができる。
The data processing unit 48 stores these threshold values in advance prior to the analysis of the sample. The cause of the difference d in the amount of scattered light is considered to be the distortion and scratches of the reaction vessel 31 in addition to the background noise. While the background noise is assumed to be substantially constant, the distortion and scratches of the reaction vessel 31 appear as abnormal values, so the threshold value may be obtained by excluding the influence of these abnormal values. Further, it is desirable to calculate these threshold values based on the result of blank measurement for each reaction vessel 31. For example, by calculating and updating these threshold values for each blank measurement, the determination can be maintained with high accuracy. Further, by storing these threshold values for each reaction vessel 31, the determination can be maintained with high accuracy.
反応容器31において図5に示した位置に気泡が存在した場合(ただし、測定対象の濃度は未知)を例に、図11A~Cのフローチャートにより気泡の存在する波形区間を決定する手順を説明する。図13の左上段に散乱光検知器43の走査波形151、図13の左下段に透過光検知器42の走査波形161を示している。それぞれに対して、測定対象の濃度での散乱光量(透過光量)の平均値AA(AB)、上限閾値ThAU(ThBU)、下限閾値ThAL(ThBL)を付記している。ただし、この場合、測定対象の濃度が未知であるため、これらの値も未知である。
Taking the case where bubbles are present at the positions shown in FIG. 5 in the reaction vessel 31 (however, the concentration to be measured is unknown) as an example, the procedure for determining the waveform section in which the bubbles are present will be described by the flowcharts of FIGS. 11A to 11C. .. The scanning waveform 151 of the scattered light detector 43 is shown in the upper left of FIG. 13, and the scanning waveform 161 of the transmitted light detector 42 is shown in the lower left of FIG. For each, the average value A A of the scattered light intensity at a concentration of the measurement target (the amount of transmitted light) (A B), the upper threshold Th AU (Th BU), which are indicated by the lower threshold Th AL (Th BL). However, in this case, since the concentration to be measured is unknown, these values are also unknown.
はじめに、波形取得部49により透過光検知器42および散乱光検知器43により測定対象の走査波形が取得されると、データ処理部48は気泡のない波形区間の決定を開始する(S200)。
First, when the waveform acquisition unit 49 acquires the scanning waveform to be measured by the transmitted photodetector 42 and the scattered light detector 43, the data processing unit 48 starts determining the waveform section without bubbles (S200).
散乱光検知器43の走査波形151から差分波形152を計算する(S201)。得られた差分波形152を図13の右上段に示す。散乱光の差分波形を差分上限閾値DThAUおよび差分下限閾値DThALと比較し、これを超える区間を求め、波形データの除去区間とする。図13の右上段の差分波形152において、除去区間は網掛けして示している。なお、図13の右中段、右下段の散乱光波形、透過光波形についても同様である。
The difference waveform 152 is calculated from the scanning waveform 151 of the scattered light detector 43 (S201). The obtained difference waveform 152 is shown in the upper right corner of FIG. The difference waveform of the scattered light is compared with the difference upper limit threshold DTh AU and the difference lower limit threshold DTh AL, and a section exceeding this is obtained and used as a waveform data removal section. In the difference waveform 152 in the upper right of FIG. 13, the removal section is shaded. The same applies to the scattered light waveform and the transmitted light waveform in the middle right and lower right of FIG.
続いて、透過光の走査波形から差分上限閾値・下限を超える波形区間(除去区間)を除去する(S203)。この状態を図13の右下段に示す。同様に散乱光の走査波形から差分上限閾値・下限を超える波形区間(除去区間)を除去する(S204)。除去区間が除去された散乱光の走査波形を図13の右中段に示す。
Subsequently, the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the transmitted light (S203). This state is shown in the lower right of FIG. Similarly, the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the scattered light (S204). The scanning waveform of the scattered light from which the removed section has been removed is shown in the middle right of FIG.
除去区間が除去された透過光の走査波形における連続する波形区間について、それぞれ平均値を計算する(S205)。この例では、2箇所の連続する波形区間を有するため、平均値203,204が計算される。計算された平均値203,204の中で最も値の大きな平均値203を透過光の走査波形の平均値ABとする(S206)。光源と透過光検知器42との間を遮るように気泡が存在していれば透過光量は低下するためである。
The average value is calculated for each continuous waveform section in the scanning waveform of the transmitted light from which the removal section has been removed (S205). In this example, since it has two continuous waveform sections, the average values 203 and 204 are calculated. The large average value 203 of the most value among the calculated average value 203 and the average value A B scan waveform of the transmitted light (S206). This is because the amount of transmitted light decreases if air bubbles are present so as to block between the light source and the transmitted light detector 42.
続いて、透過光量の下限閾値ThBLを設定する(S207)。具体的には、図8Bと同様に、平均値ABとした平均値203を算出した透過光の連続波形区間における変動幅Vを求め、平均値AB及び変動幅Vに基づき、透過光量の下限閾値ThBLを設定することができる。
Subsequently, the lower limit threshold value Th BL of the transmitted light amount is set (S207). Specifically, as in FIG. 8B, calculated fluctuation range V in the continuous wave segment of the mean value A B and the calculated average value 203 transmitted light, based on the average value A B and fluctuation width V, the transmitted light quantity The lower limit threshold Th BL can be set.
続いて、透過光の走査波形161(図13の左下欄)を下限閾値ThBLと比較し(S208)、区間Bが下限閾値ThBL以下であるので区間Bに透過光量減少フラグFlg1を付与する(S209)。続いて、散乱光の残った連続区間のうち、透過光量減少フラグFlg1の付与された区間を除去する(S210)。この場合は、区間Bに含まれる連続区間が以降の処理から除外される。
Subsequently, the scanning waveform 161 of the transmitted light (lower left column of FIG. 13) is compared with the lower limit threshold value Th BL (S208), and since the section B is equal to or less than the lower limit threshold value Th BL , the transmitted light amount reduction flag Flg1 is given to the section B. (S209). Subsequently, of the continuous sections in which the scattered light remains, the section to which the transmitted light amount reduction flag Flg1 is given is removed (S210). In this case, the continuous section included in the section B is excluded from the subsequent processing.
除去区間及び透過光量減少フラグFlg1の付与された区間が除去された散乱光の走査波形における連続する波形区間について、それぞれ平均値を計算し(S211)、計算された平均値の中で最も値の大きな平均値を散乱光の走査波形の平均値AAとする(S212)。光源と散乱光検知器43との間を遮るように気泡が存在していれば散乱光量は低下するためである。この例では、図13の右中段に示すように、残る連続区間は1箇所であるので、当該連続区間の平均値201が散乱光の走査波形の平均値AAとなる。
The average value was calculated for each of the continuous waveform sections in the scanned waveform of the scattered light from which the removed section and the section to which the transmitted light amount reduction flag Flg1 was added were removed (S211), and the highest value among the calculated average values was calculated. Let a large average value be the average value A A of the scanning waveforms of scattered light (S212). This is because the amount of scattered light decreases if bubbles are present so as to block between the light source and the scattered light detector 43. In this example, as shown in the middle right of FIG. 13, since there is only one continuous section remaining, the average value 201 of the continuous section is the average value A A of the scanning waveform of the scattered light.
続いて、散乱光量の上限閾値ThAUおよび下限閾値ThALを設定する(S213)。具体的には、図8Aと同様に、平均値AAとした平均値201を算出した散乱光の連続波形区間における変動幅Vを求め、平均値AA及び変動幅Vに基づき、散乱光量の上限閾値ThAUおよび下限閾値ThALを設定することができる。
Subsequently, the upper limit threshold Th AU and the lower limit threshold Th AL of the scattered light amount are set (S213). Specifically, as in FIG. 8A, obtains the variation width V in the continuous wave segment of the mean value A A and the calculated average value 201 scattered light, based on the average value A A and variation width V, the amount of scattered light The upper limit threshold Th AU and the lower limit threshold Th AL can be set.
以上により、測定対象の散乱光量(透過光量)の平均値AA(AB)、上限閾値ThAU、下限閾値ThAL(ThBL)が算出された。ステップS214において散乱光の走査波形151(図13の左上段)を下限閾値ThALと比較し、下限閾値ThAL以下の波形区間はないのでステップS216に移行し、区間Bが上限閾値ThAU以上であるので、区間Bに散乱光量増加フラグFlg4を付与する(S217)。
Thus, the average value A A of the scattered light intensity to be measured (the amount of transmitted light) (A B), the upper threshold value Th AU, the lower threshold Th AL (Th BL) was calculated. In step S214, the scanning waveform 151 of the scattered light (upper left in FIG. 13) is compared with the lower limit threshold Th AL, and since there is no waveform section below the lower limit threshold Th AL, the process proceeds to step S216, and section B is equal to or higher than the upper limit threshold Th AU. Therefore, the scattered light amount increase flag Flg4 is added to the section B (S217).
続いて、ステップS218において、区間Bが透過光量減少フラグFlg1と散乱光量増加フラグFlg4の両者が付与された区間であるので、区間Bが気泡の存在する波形区間として抽出し、走査波形のデータより、該当波形区間(ここでは区間B)のデータを除去する(S219)。続いて、ステップS220において散乱光量減少フラグFlg3が付与された区間はないため、ステップS222に移行し、残った波形区間Aを気泡のない波形区間として決定する。
Subsequently, in step S218, since the section B is a section to which both the transmitted light amount decrease flag Flg1 and the scattered light amount increase flag Flg4 are given, the section B is extracted as a waveform section in which bubbles exist, and is obtained from the scanned waveform data. , The data of the corresponding waveform section (here, section B) is removed (S219). Subsequently, since there is no section to which the scattered light amount reduction flag Flg3 is given in step S220, the process proceeds to step S222, and the remaining waveform section A is determined as a waveform section without bubbles.
これに対し、反応容器31において図6に示した位置に気泡が存在した場合を例に、図11A~Cのフローチャートにより気泡の存在する波形区間を決定する手順を説明する。図14の左上段に散乱光検知器43の走査波形153、図14の左下段に透過光検知器42の走査波形163を示している。それぞれに対して、測定対象の濃度での散乱光量(透過光量)の平均値AA(AB)、上限閾値ThAU(ThBU)、下限閾値ThAL(ThBL)を付記している。ただし、この場合、測定対象の濃度が未知であるため、これらの値も未知である。
On the other hand, the procedure for determining the waveform section in which the bubbles are present will be described by the flowcharts of FIGS. 11A to 11C, taking as an example the case where the bubbles are present at the positions shown in FIG. 6 in the reaction vessel 31. The scanning waveform 153 of the scattered light detector 43 is shown in the upper left of FIG. 14, and the scanning waveform 163 of the transmitted light detector 42 is shown in the lower left of FIG. For each, the average value A A of the scattered light intensity at a concentration of the measurement target (the amount of transmitted light) (A B), the upper threshold Th AU (Th BU), which are indicated by the lower threshold Th AL (Th BL). However, in this case, since the concentration to be measured is unknown, these values are also unknown.
はじめに、波形取得部49により透過光検知器42および散乱光検知器43により測定対象の走査波形が取得されると、データ処理部48は気泡のない波形区間の決定を開始する(S200)。
First, when the waveform acquisition unit 49 acquires the scanning waveform to be measured by the transmitted photodetector 42 and the scattered light detector 43, the data processing unit 48 starts determining the waveform section without bubbles (S200).
散乱光検知器43の走査波形153から差分波形154を計算する(S201)。得られた差分波形154を図14の右上段に示す。散乱光の差分波形を差分上限閾値DThAUおよび差分下限閾値DThALと比較し、これを超える区間を求め、波形データの除去区間とする。図14の右上段の差分波形154において、除去区間は網掛けして示している。なお、図14の右中段、右下段の散乱光波形、透過光波形についても同様である。
The difference waveform 154 is calculated from the scanning waveform 153 of the scattered light detector 43 (S201). The obtained difference waveform 154 is shown in the upper right corner of FIG. The difference waveform of the scattered light is compared with the difference upper limit threshold DTh AU and the difference lower limit threshold DTh AL, and a section exceeding this is obtained and used as a waveform data removal section. In the difference waveform 154 in the upper right corner of FIG. 14, the removal section is shaded. The same applies to the scattered light waveform and the transmitted light waveform in the middle right and lower right of FIG.
続いて、透過光の走査波形から差分上限閾値・下限を超える波形区間(除去区間)を除去する(S203)。この状態を図14の右下段に示す。同様に散乱光の走査波形から差分上限閾値・下限を超える波形区間(除去区間)を除去する(S204)。除去区間が除去された散乱光の走査波形を図14の右中段に示す。
Subsequently, the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the transmitted light (S203). This state is shown in the lower right of FIG. Similarly, the waveform section (removal section) exceeding the difference upper limit threshold / lower limit is removed from the scanned waveform of the scattered light (S204). The scanning waveform of the scattered light from which the removed section has been removed is shown in the middle right of FIG.
除去区間が除去された透過光の走査波形における連続する波形区間について、それぞれ平均値を計算する(S205)。この例では、2箇所の連続する波形区間を有するため、平均値207,208が計算される。計算された平均値207,208の中で最も値の大きな平均値207を透過光の走査波形の平均値ABとする(S206)。光源と透過光検知器42との間を遮るように気泡が存在していれば透過光量は低下するためである。
The average value is calculated for each continuous waveform section in the scanning waveform of the transmitted light from which the removal section has been removed (S205). In this example, since there are two continuous waveform sections, the average values 207 and 208 are calculated. The large average value 207 of the most value among the calculated average value 207, 208 and the average value A B scan waveform of the transmitted light (S206). This is because the amount of transmitted light decreases if air bubbles are present so as to block between the light source and the transmitted light detector 42.
続いて、透過光量の下限閾値ThBLを設定し(S207)、透過光の走査波形163(図14の左下欄)を下限閾値ThBLと比較し(S208)、下限閾値ThBL以下の波形区間はないのでステップS211に移行する。
Then, set the lower threshold Th BL transmission light (S207), the scan waveform 163 of the transmitted light (left lower column of FIG. 14) compared to the lower threshold Th BL (S208), the lower limit threshold value Th BL following waveform segment Since there is no such thing, the process proceeds to step S211.
除去区間及び透過光量減少フラグFlg1の付与された区間が除去された散乱光の走査波形における連続する波形区間について、それぞれ平均値を計算し(S211)、計算された平均値の中で最も値の大きな平均値を散乱光の走査波形の平均値AAとする(S212)。光源と散乱光検知器43との間を遮るように気泡が存在していれば散乱光量は低下するためである。この例では、図14の右中段に示すように、残る連続区間は2箇所であるので、平均値205,206が計算され、平均値205,206の中で最も値の大きな平均値206が散乱光の走査波形の平均値AAとなる。
The average value was calculated for each of the continuous waveform sections in the scanned waveform of the scattered light from which the removed section and the section to which the transmitted light amount reduction flag Flg1 was added were removed (S211), and the highest value among the calculated average values was calculated. Let a large average value be the average value A A of the scanning waveforms of scattered light (S212). This is because the amount of scattered light decreases if bubbles are present so as to block between the light source and the scattered light detector 43. In this example, as shown in the middle right of FIG. 14, since there are two continuous sections remaining, the average values 205 and 206 are calculated, and the average value 206 having the largest value among the average values 205 and 206 is scattered. The average value of the light scanning waveforms is A A.
続いて、散乱光量の上限閾値ThAUおよび下限閾値ThALを設定する(S213)。以上により、測定対象の散乱光量(透過光量)の平均値AA(AB)、上限閾値ThAU、下限閾値ThAL(ThBL)が算出された。
Subsequently, the upper limit threshold Th AU and the lower limit threshold Th AL of the scattered light amount are set (S213). Thus, the average value A A of the scattered light intensity to be measured (the amount of transmitted light) (A B), the upper threshold value Th AU, the lower threshold Th AL (Th BL) was calculated.
ステップS214において散乱光の走査波形153(図14の左上段)を下限閾値ThALと比較し、区間Cが下限閾値ThAL以下であるので、区間Cに散乱光量減少フラグFlg3を付与する(S215)。一方、上限閾値ThAU以上の波形区間はない(S216)のでステップS218に移行する。
Scan waveform 153 of the scattered light in step S214 (left upper part of FIG. 14) compared to the lower threshold Th AL, section C is because it is below the lower threshold value Th AL, imparts scattered light intensity decrease flag Flg3 in section C (S215 ). On the other hand, since there is no waveform section above the upper limit threshold value Th AU (S216), the process proceeds to step S218.
ステップS218において、透過光量減少フラグFlg1と散乱光量増加フラグFlg4の両者が付与された区間はないためステップS220に移行し、区間Cが散乱光量減少フラグFlg3の付与された区間であるため、区間Cが気泡の存在する波形区間として抽出し、走査波形のデータより、該当波形区間(ここでは区間C)のデータを除去する(S221)。続いて、ステップS222に移行し、残った波形区間Dを気泡のない波形区間として決定する。
In step S218, since there is no section to which both the transmitted light amount reduction flag Flg1 and the scattered light amount increase flag Flg4 are given, the process proceeds to step S220, and since the section C is a section to which the scattered light amount reduction flag Flg3 is given, the section C Is extracted as a waveform section in which bubbles are present, and the data of the corresponding waveform section (here, section C) is removed from the scanning waveform data (S221). Subsequently, the process proceeds to step S222, and the remaining waveform section D is determined as a waveform section without bubbles.
自動分析装置1は、このように散乱光検知器43が検知した散乱光の走査波形から気泡の影響の受けていない区間を抽出し、抽出した波形データを用いて散乱光量に基づく分析を行うことにより、気泡の影響のない分析を行うことにより、分析の精度および信頼性を高めることが可能になる。
The automatic analyzer 1 extracts a section not affected by bubbles from the scanned waveform of the scattered light detected by the scattered light detector 43 in this way, and performs an analysis based on the amount of scattered light using the extracted waveform data. This makes it possible to improve the accuracy and reliability of the analysis by performing the analysis without the influence of bubbles.
1:自動分析装置、2:光度計データ処理部、10:サンプルディスク、11:検体容器、15:可動アーム、16:サンプル分注機構、17:ピペットノズル、19:サンプル分注制御部、20:試薬ディスク、21:試薬ボトル、22:試薬保冷庫、25:試薬分注機構、27:バーコード読み取り装置、29:試薬分注制御部、30:反応ディスク、31:反応容器、32:恒温槽、36:攪拌機構、38:反応容器洗浄機構、40:光源、41:光度計、42:透過光検知器、43:散乱光検知器、47:データ記憶部、48:データ処理部、49:波形取得部、50:インターフェース、51:表示装置、52:入力装置、53:メモリ、54:コンピュータ、55:外部出力メディア、56:プリンタ、101,102:気泡、121:光軸、122:光軸軌道、132:測定対象、151,153,171,271:散乱光走査波形、161,163,173:透過光走査波形、152,154,272:差分波形、201,203,204,205,206,207,208:平均値。
1: Automatic analyzer, 2: Photometer data processing unit, 10: Sample disk, 11: Sample container, 15: Movable arm, 16: Sample dispensing mechanism, 17: Pipet nozzle, 19: Sample dispensing control unit, 20 : Reagent disc, 21: Reagent bottle, 22: Reagent cooler, 25: Reagent dispensing mechanism, 27: Bar code reader, 29: Reagent dispensing control unit, 30: Reaction disc, 31: Reaction vessel, 32: Constant temperature Tank, 36: Stirring mechanism, 38: Reaction vessel cleaning mechanism, 40: Light source, 41: Photometer, 42: Transmitted light detector, 43: Scattered light detector, 47: Data storage unit, 48: Data processing unit, 49 : Wave acquisition unit, 50: Interface, 51: Display device, 52: Input device, 53: Memory, 54: Computer, 55: External output media, 56: Printer, 101, 102: Bubbles, 121: Optical axis, 122: Optical axis orbit, 132: Measurement target, 151,153,171,271: Scattered light scanning waveform, 161,163,173: Transmitted light scanning waveform, 152,154,272: Difference waveform, 201,203,204,205, 206, 207, 208: Average value.
Claims (9)
- 複数の反応容器が周方向に配置され、間欠回転可能な反応ディスクと、
光源と光度計とを含み、前記光源と前記光度計との間を前記反応ディスクに配置された前記反応容器が通過するように配置された光検出系と、
光度計データ処理部とを有し、
前記光検出系は、前記反応容器に収容された測定対象に前記光源より光を照射し、前記測定対象を透過した透過光を受光する透過光検知器と、前記反応容器に収容された前記測定対象に前記光源より光を照射し、前記測定対象により散乱した散乱光を受光する散乱光検知器とを備え、
前記光度計データ処理部は、前記反応ディスクが回転することにより前記光源からの光を前記測定対象に対して走査して得られる、前記透過光検知器からの第1の走査波形データ及び前記散乱光検知器からの第2の走査波形データを取得する波形取得部と、前記第1の走査波形データ及び前記第2の走査波形データを用いて、前記測定対象中の気泡の有無、及び前記気泡が存在する場合に、前記第2の走査波形データにおける前記気泡の影響を受ける区間を特定するデータ処理部とを有する自動分析装置。 Multiple reaction vessels are arranged in the circumferential direction, and a reaction disk that can rotate intermittently and
A photodetector system including a light source and a photometer, which is arranged so that the reaction vessel arranged on the reaction disk passes between the light source and the photometer.
It has a photometer data processing unit and
The light detection system includes a transmitted light detector that irradiates a measurement target housed in the reaction vessel with light from the light source and receives the transmitted light transmitted through the measurement target, and the measurement housed in the reaction vessel. The object is provided with a scattered light detector that irradiates the object with light from the light source and receives the scattered light scattered by the measurement object.
The photometric data processing unit scans the light from the light source with respect to the measurement target by rotating the reaction disk, and obtains the first scanning waveform data from the transmitted light detector and the scattering. Using the waveform acquisition unit that acquires the second scanning waveform data from the optical detector, the first scanning waveform data, and the second scanning waveform data, the presence or absence of bubbles in the measurement target and the bubbles. An automatic analyzer having a data processing unit that identifies a section affected by the bubbles in the second scanning waveform data when is present. - 請求項1において、
前記透過光検知器と前記散乱光検知器とは、前記測定対象に対する走査位置が同じになるよう同期されている自動分析装置。 In claim 1,
The transmitted light detector and the scattered light detector are automatic analyzers that are synchronized so that the scanning positions with respect to the measurement target are the same. - 請求項1において、
前記第2の走査波形データから前記データ処理部が特定した前記区間の走査波形データを除いて、前記測定対象の散乱光量に基づく分析を行う自動分析装置。 In claim 1,
An automatic analyzer that performs analysis based on the amount of scattered light of the measurement target by removing the scanning waveform data of the section specified by the data processing unit from the second scanning waveform data. - 請求項1において、
前記データ処理部は、前記透過光検知器が検知する透過光量の透過光下限閾値、前記散乱光検知器が検知する散乱光量の散乱光上限閾値及び散乱光下限閾値を記憶しており、
前記第1の走査波形データのうち透過光量が前記透過光下限閾値以下である、あるいは前記第2の走査波形データのうち散乱光量が前記散乱光上限閾値以上である第1区間を特定し、
前記第2の走査波形データのうち、散乱光量が前記散乱光下限閾値以下である第2区間を特定し、
前記第1区間と前記第2区間とを、前記気泡の影響を受ける前記区間として特定する自動分析装置。 In claim 1,
The data processing unit stores a transmitted light lower limit of the transmitted light amount detected by the transmitted light detector, a scattered light upper limit threshold of the scattered light amount detected by the scattered light detector, and a scattered light lower limit threshold.
A first section of the first scanning waveform data in which the transmitted light amount is equal to or less than the transmitted light lower limit threshold value or the scattered light amount in the second scanning waveform data is equal to or greater than the scattered light upper limit threshold value is specified.
Among the second scanning waveform data, the second section in which the scattered light amount is equal to or less than the scattered light lower limit threshold value is specified.
An automatic analyzer that identifies the first section and the second section as the sections affected by the bubbles. - 請求項1において、
前記データ処理部は、前記散乱光検知器からの走査波形データから前後のサンプリング位置における散乱光量の差分を算出して得られる差分波形について、差分上限閾値及び差分下限閾値を記憶しており、
前記第2の走査波形データについて求めた前記差分波形が、前記差分上限閾値または前記差分下限閾値を超える区間を除去区間として特定し、
前記第1の走査波形データのうち、前記除去区間を除いた区間の透過光量に基づき、透過光量の透過光下限閾値を設定し、
前記第2の走査波形データのうち、前記除去区間を除いた区間の散乱光量に基づき、散乱光量の散乱光上限閾値及び散乱光下限閾値を設定する自動分析装置。 In claim 1,
The data processing unit stores the difference upper limit threshold value and the difference lower limit threshold value for the difference waveform obtained by calculating the difference in the amount of scattered light at the preceding and following sampling positions from the scanning waveform data from the scattered light detector.
A section in which the difference waveform obtained for the second scanning waveform data exceeds the difference upper limit threshold value or the difference lower limit threshold value is specified as a removal section.
Of the first scanning waveform data, the transmission light lower limit threshold value of the transmitted light amount is set based on the transmitted light amount of the section excluding the removal section.
An automatic analyzer that sets a scattered light upper limit threshold value and a scattered light lower limit threshold value of the scattered light amount based on the scattered light amount of the section excluding the removal section of the second scanning waveform data. - 請求項5において、
前記データ処理部は、前記第1の走査波形データのうち透過光量が前記透過光下限閾値以下である、あるいは前記第2の走査波形データのうち散乱光量が前記散乱光上限閾値以上である第1区間を特定し、
前記第2の走査波形データのうち、散乱光量が前記散乱光下限閾値以下である第2区間を特定し、
前記第1区間と前記第2区間とを、前記気泡の影響を受ける前記区間として特定する自動分析装置。 In claim 5,
The data processing unit has a first scan waveform data in which the amount of transmitted light is equal to or less than the lower limit of transmitted light, or the amount of scattered light in the second scanned waveform data is equal to or greater than the upper limit of scattered light. Identify the section and
Among the second scanning waveform data, the second section in which the scattered light amount is equal to or less than the scattered light lower limit threshold value is specified.
An automatic analyzer that identifies the first section and the second section as the sections affected by the bubbles. - 請求項5において、
前記データ処理部は、前記差分上限閾値及び前記差分下限閾値を前記反応容器ごとに記憶する自動分析装置。 In claim 5,
The data processing unit is an automatic analyzer that stores the difference upper limit threshold value and the difference lower limit threshold value for each reaction vessel. - 請求項5において、
前記データ処理部は、純水を前記測定対象とした前記散乱光検知器からの走査波形データから前記差分波形を求め、前記差分上限閾値及び前記差分下限閾値を設定する自動分析装置。 In claim 5,
The data processing unit is an automatic analyzer that obtains the difference waveform from the scanning waveform data from the scattered light detector using pure water as the measurement target, and sets the difference upper limit threshold value and the difference lower limit threshold value. - 請求項8において、
前記データ処理部は、純水を前記測定対象とするブランク測定が行われる際に、前記差分上限閾値及び前記差分下限閾値を再設定する自動分析装置。 In claim 8.
The data processing unit is an automatic analyzer that resets the difference upper limit threshold value and the difference lower limit threshold value when a blank measurement is performed with pure water as the measurement target.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080054278.0A CN114174800B (en) | 2019-08-05 | 2020-03-13 | Automatic analysis device |
JP2021537571A JP7229363B2 (en) | 2019-08-05 | 2020-03-13 | automatic analyzer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019143579 | 2019-08-05 | ||
JP2019-143579 | 2019-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021024535A1 true WO2021024535A1 (en) | 2021-02-11 |
Family
ID=74503372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010994 WO2021024535A1 (en) | 2019-08-05 | 2020-03-13 | Automatic analysis device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7229363B2 (en) |
CN (1) | CN114174800B (en) |
WO (1) | WO2021024535A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195510A1 (en) * | 2023-03-22 | 2024-09-26 | 株式会社日立ハイテク | Automated analysis device and sample analysis method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09101312A (en) * | 1995-10-05 | 1997-04-15 | Hitachi Ltd | Automatic analyzer and reaction container |
JP2013134139A (en) * | 2011-12-26 | 2013-07-08 | Hitachi High-Technologies Corp | Automatic analyzer and method for detecting abnormality of measurement value |
JP2015102428A (en) * | 2013-11-26 | 2015-06-04 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040142481A1 (en) | 2003-01-21 | 2004-07-22 | Hartlein Thomas M. | Foam detection/prevention in the context of a purge and trap sample concentrator |
US8076154B2 (en) | 2007-06-05 | 2011-12-13 | Ecolab Usa Inc. | Method of calibration for nonlinear optical sensor |
JP2010151519A (en) * | 2008-12-24 | 2010-07-08 | Hitachi High-Technologies Corp | Automatic analyzer |
JP5379044B2 (en) * | 2010-02-25 | 2013-12-25 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
JP5950273B2 (en) * | 2011-11-28 | 2016-07-13 | 株式会社日立製作所 | Bubble detection device |
JP5948173B2 (en) * | 2012-07-20 | 2016-07-06 | 株式会社日立ハイテクノロジーズ | Automatic analyzer and automatic analysis method |
JP6110710B2 (en) * | 2013-04-02 | 2017-04-05 | 株式会社日立ハイテクノロジーズ | Analyzer and automatic analyzer |
CN204988993U (en) * | 2015-10-13 | 2016-01-20 | 爱威科技股份有限公司 | Liquid testing appearance |
JP6904917B2 (en) | 2018-03-28 | 2021-07-21 | 株式会社日立製作所 | Reaction system and reaction method |
-
2020
- 2020-03-13 CN CN202080054278.0A patent/CN114174800B/en active Active
- 2020-03-13 JP JP2021537571A patent/JP7229363B2/en active Active
- 2020-03-13 WO PCT/JP2020/010994 patent/WO2021024535A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09101312A (en) * | 1995-10-05 | 1997-04-15 | Hitachi Ltd | Automatic analyzer and reaction container |
JP2013134139A (en) * | 2011-12-26 | 2013-07-08 | Hitachi High-Technologies Corp | Automatic analyzer and method for detecting abnormality of measurement value |
JP2015102428A (en) * | 2013-11-26 | 2015-06-04 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
Also Published As
Publication number | Publication date |
---|---|
JP7229363B2 (en) | 2023-02-27 |
CN114174800B (en) | 2024-10-15 |
JPWO2021024535A1 (en) | 2021-02-11 |
CN114174800A (en) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6005683B2 (en) | Method and apparatus for determining interfering substances and physical dimensions in liquid samples and containers analyzed by a clinical analyzer | |
US9506942B2 (en) | Automatic analyzer and method for detecting measurement value abnormalities | |
JP6013796B2 (en) | Automatic analyzer and sample measurement method | |
EP2587250B1 (en) | Automatic analysis device | |
EP2293083B1 (en) | Automatic analyzer | |
EP2667182B1 (en) | Automatic analysis device taking into account thermal drift | |
JP5216051B2 (en) | Automatic analyzer and automatic analysis method | |
JP2007322324A (en) | Analyzer | |
EP2075587B1 (en) | Automatic analyzer and dispensing method thereof | |
WO2021024535A1 (en) | Automatic analysis device | |
JPH11142412A (en) | Automatic analyzer | |
JP2020041929A (en) | Automatic analyzer | |
WO2024195510A1 (en) | Automated analysis device and sample analysis method | |
JP4117253B2 (en) | Automatic analyzer | |
WO2023188765A1 (en) | Data processing system and method for automatic analyzer | |
JP2000180368A (en) | Chemical analyser | |
JP2008203008A (en) | Autoanalyzer | |
WO2023037726A1 (en) | Automated analyzing device, data processing device, and precision management method for automated analyzing device | |
JPH06167505A (en) | Automatic biochemical analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20848942 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021537571 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20848942 Country of ref document: EP Kind code of ref document: A1 |