Nothing Special   »   [go: up one dir, main page]

WO2021009878A1 - Thermal shrinkage tube and medical instrument - Google Patents

Thermal shrinkage tube and medical instrument Download PDF

Info

Publication number
WO2021009878A1
WO2021009878A1 PCT/JP2019/028140 JP2019028140W WO2021009878A1 WO 2021009878 A1 WO2021009878 A1 WO 2021009878A1 JP 2019028140 W JP2019028140 W JP 2019028140W WO 2021009878 A1 WO2021009878 A1 WO 2021009878A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
shrinkable tube
end side
tube
axis direction
Prior art date
Application number
PCT/JP2019/028140
Other languages
French (fr)
Japanese (ja)
Inventor
文哉 清水
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to PCT/JP2019/028140 priority Critical patent/WO2021009878A1/en
Priority to JP2021532623A priority patent/JP7165268B2/en
Publication of WO2021009878A1 publication Critical patent/WO2021009878A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking

Definitions

  • the present disclosure relates to heat shrink tubing and medical devices.
  • Heat-shrinkable tubes that shrink mainly in the radial direction when heated are used as covering materials or reinforcing materials at joints or ends of electric wires, cables, etc. Heat shrink tubing is also used in the field of medical devices.
  • Patent Document 1 describes a technique in which a heat-shrinkable tube is placed on the outside of an outer layer and heated to pressurize the outer layer, the coil layer, the inner layer, and the hollow tube in the radial direction of the inner layer, and melt the outer layer. It is disclosed.
  • Patent Document 2 discloses a technique for producing an outer layer coating body by using a heat-shrinkable tube.
  • the heat-shrinkable tube is only used for coating or reinforcement, or temporarily used as a jig, and is used as a resin structural material for gradually changing the rigidity in the long axis direction. Absent.
  • the present disclosure provides a technique that can be used as a resin structural material for gradually changing the rigidity in the long axis direction.
  • the weight of the material per unit length in the major axis direction is heavier on the proximal end side than on the distal end side.
  • the thickness dimension may gradually change toward the tip in the long axis direction.
  • It may be formed in a tapered shape whose diameter gradually changes toward the tip in the major axis direction.
  • FIG. 5 is a cross-sectional view showing a part of a catheter shaft according to a sixth embodiment.
  • FIG. 5 is a cross-sectional view showing a part of a catheter shaft according to a seventh embodiment.
  • FIG. 5 is a cross-sectional view showing a part of a catheter shaft according to an eighth embodiment. It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 9th Example. It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 10th Example.
  • the heat-shrinkable tube in which the weight of the material per unit length in the major axis direction is larger on the proximal end side than on the distal end side will be described.
  • FIG. 1 is a cross-sectional view (longitudinal cross-sectional view) of the heat-shrinkable tube 1 in the longitudinal direction.
  • FIG. 2 is a cross-sectional view (cross-sectional view) seen from the direction of arrow II-II in FIG.
  • the heat shrink tube 1 is formed in a tapered long cylindrical shape.
  • the inner diameter ⁇ of the heat-shrinkable tube 1 is gradually reduced from the base end portion 11 through the intermediate portion 12 to the tip end portion 13. That is, the inner diameter dimension ⁇ 1 of the base end portion 11 is larger than the inner diameter dimension ⁇ 2 of the intermediate portion 12 ( ⁇ 1> ⁇ 2), and the inner diameter dimension ⁇ 2 of the intermediate portion 12 is larger than the inner diameter dimension ⁇ 3 of the tip portion 13 ( ⁇ 2> ⁇ 3). .
  • the base end portion 11 may be referred to as a base end side
  • the tip end portion 13 may be referred to as a tip end side.
  • the thickness dimension t of the heat-shrinkable tube 1 is also gradually reduced from the base end portion 11 through the intermediate portion 12 to the tip end portion 13. That is, the thickness dimension t1 of the base end portion 11 is larger than the thickness dimension t2 of the intermediate portion 12 (t1> t2), and the thickness dimension t2 of the intermediate portion 12 is larger than the thickness dimension t3 of the tip portion 13 ( t2> t3).
  • the resin material of the heat-shrinkable tube 1 is not particularly limited, and examples thereof include biocompatible resin materials such as polyamide resin and fluororesin.
  • a resin having a relatively high melting point for example, PEEK (polyetheretherketone), FEP (fluorinated ethylenepropylene), PTFE (polytetrafluoroethylene)
  • PEEK polyetheretherketone
  • FEP fluorinated ethylenepropylene
  • PTFE polytetrafluoroethylene
  • the heat-shrinkable tube 1 of this embodiment is formed so that the values of both the inner diameter dimension ⁇ and the thickness dimension t decrease from the proximal end side to the distal end side. Therefore, not only the outer peripheral surface 14 of the heat-shrinkable tube 1 is formed in a tapered shape, but also the inner peripheral surface of the heat-shrinkable tube 1 is formed in a tapered shape.
  • a long object such as a catheter is provided in the space 16 formed in the long axis direction of the heat-shrinkable tube 1.
  • FIG. 3 is an external view showing how a plurality of heat-shrinkable tubes 1 (1), 1 (2), and 1 (3) are continuous.
  • the heat-shrinkable tube 1 can be manufactured as a single product or as a continuous product as shown in FIG. At the time of use, the required number of heat-shrinkable tubes may be separated from the continuous product with a cutter or the like.
  • the weight of the material per unit length in the major axis direction is heavier on the proximal end side than on the distal end side. Therefore, the rigidity of the heat-shrinkable tube 1 gradually decreases from the proximal end side to the distal end side.
  • the thickness of the outer layer provided on the outside of the object can be easily controlled in the long axis direction by covering the long flexible object with the heat-shrinkable tube 1 of the present embodiment and heating it.
  • the rigidity of the object can be changed in the longitudinal direction. That is, the rigidity of the object having the heat-shrinkable tube 1 as the structural material of the outer layer gradually decreases from the proximal end side to the distal end side. In other words, the rigidity of this object gradually increases from the tip end side to the base end side.
  • the object having the heat-shrinkable tube 1 according to the present embodiment can increase the rigidity on the proximal end side, while decreasing the rigidity on the distal end side to obtain flexibility.
  • Example 2 will be described with reference to FIGS. 4 to 7.
  • Each of the following examples including this embodiment corresponds to a modified example included in the concept of the first embodiment. Therefore, the differences from the first embodiment will be mainly described below.
  • FIG. 4 is a cross-sectional view of the heat-shrinkable tube 1A according to this embodiment in the longitudinal direction.
  • FIG. 5 is a cross-sectional view of the heat shrink tube 1A.
  • the inner diameter dimension ⁇ and the thickness dimension t are uniform from the base end portion 11 through the intermediate portion 12 to the tip portion 13, that is, over the entire length.
  • the heat-shrinkable tube 1A of this embodiment is formed with a plurality of pores 17 penetrating from the outer peripheral surface 14 toward the inner peripheral surface 15 separated in the circumferential direction and the axial direction. That is, the pores 17 are formed so as to be separated from each other in the circumferential direction of the heat-shrinkable tube 1A and also to be separated from each other in the long axis direction of the heat-shrinkable tube 1A.
  • the rigidity of the heat-shrinkable tube 1A is changed in the long-axis direction by changing the formation density of the pores 17 along the long-axis direction of the heat-shrinkable tube 1A.
  • the formation pitch pha1 of the pores 17 in the longitudinal direction at the base end portion 11 is made larger than the formation pitch pha2 of the intermediate portion 12 (pha1> pha2), and the intermediate portion 12
  • the formation pitch pha2 of the above is made larger than the formation pitch pha3 at the tip portion 13 (pha2> pha3).
  • the formation pitch pha may be gradually changed along the long axis direction of the heat shrink tube 1A, or may be changed for each predetermined section that divides the heat shrink tube 1A in the long axis direction.
  • the formation pitch phc in the circumferential direction of the pores 17 may be uniform over the entire length of the heat-shrinkable tube 1A, or may be changed in the major axis direction. That is, the value of the formation pitch phc in the circumferential direction may be gradually lowered from the base end portion 11 to the tip end portion 13 via the intermediate portion 12.
  • the formation density of the pores 17 penetrating the outer peripheral surface 14 to the inner peripheral surface 15 is gradually changed from the proximal end side to the distal end side, so that the same as in the first embodiment.
  • the rigidity of the heat-shrinkable tube 1A can be gradually changed. Therefore, the object having the heat-shrinkable tube 1A of this embodiment can obtain flexibility by ensuring high rigidity on the proximal end side and lowering the rigidity toward the distal end side.
  • FIG. 6 is an external view of the heat shrinkable tube 1A showing the first modification of this embodiment.
  • the pores 17 may be formed by being separated in a spiral shape centered on the long axis direction.
  • FIG. 7 is an external view of the heat shrink tube 1A showing the second modification of this embodiment.
  • the pores 17 can be formed so as to be separated in the circumferential direction of the heat-shrinkable tube 1A and also in the major axis direction.
  • Example 3 will be described with reference to FIG.
  • the outer diameter of the heat-shrinkable tube 1B according to this embodiment is gradually reduced from the base end portion 11 to the tip end portion 13. That is, the heat-shrinkable tube 1B is formed in a stepped tubular shape whose diameter is reduced toward the tip portion 13.
  • the outer peripheral surface 14B of the heat-shrinkable tube 1B is, for example, the outer peripheral surfaces 14B (1), 14B (2), 14B (3), 14B (4), 14B (5) in order from the proximal end side to the distal end side.
  • the diameter is reduced. That is, the thickness dimension of the heat-shrinkable tube 1B gradually decreases from the proximal end side to the distal end side to the thickness dimensions t1b, t2b, t3b, t4b, t5b.
  • the inner diameter dimension ⁇ of the heat-shrinkable tube 1B is the same over the entire length of the heat-shrinkable tube 1B.
  • the inner diameter dimension ⁇ may also be formed so as to gradually or continuously decrease from the proximal end side toward the distal end side.
  • Example 4 will be described with reference to FIGS. 9 and 10.
  • the recess 17C is adopted instead of the pore 17 described in the second embodiment.
  • FIG. 9 is a cross-sectional view of the heat-shrinkable tube 1C according to this embodiment in the longitudinal direction.
  • the heat-shrinkable tube 1C according to this embodiment has a uniform inner diameter dimension ⁇ and thickness dimension t from the base end portion 11 through the intermediate portion 12 to the tip portion 13.
  • a plurality of recesses 17C recessed from the outer peripheral surface 14 toward the inner peripheral surface 15 are formed in the heat-shrinkable tube 1C so as to be separated in the circumferential direction and the axial direction.
  • the recesses 17C are formed so as to be separated from each other in the circumferential direction of the heat-shrinkable tube 1C, and are also formed so as to be separated from each other in the long axis direction of the heat-shrinkable tube 1C.
  • the rigidity of the heat-shrinkable tube 1C is changed in the long-axis direction by changing the formation density of the recess 17C along the long-axis direction of the heat-shrinkable tube 1C.
  • the formation pitch pha1 of the recess 17C in the longitudinal direction at the base end portion 11 is made larger than the formation pitch pha2 of the intermediate portion 12 (pha1> pha2), and the formation pitch pha2 of the intermediate portion 12 is set.
  • the formation pitch at the tip portion 13 is made larger than the pha3 (pha2> pha3).
  • the formation pitch of the recess 17C in the circumferential direction may be uniform over the entire length of the heat-shrinkable tube 1C, or may be changed in the major axis direction. That is, the value of the formation pitch in the circumferential direction may be gradually lowered from the base end portion 11 to the tip end portion 13 via the intermediate portion 12.
  • the formation density of the recess 17C recessed from the outer peripheral surface 14 to the inner peripheral surface 15 is gradually changed from the proximal end side to the distal end side. Therefore, the rigidity of the heat-shrinkable tube 1C can be gradually changed as in the first embodiment. Therefore, the object having the heat-shrinkable tube 1CA of this embodiment can obtain flexibility by ensuring high rigidity on the proximal end side and lowering the rigidity toward the distal end side.
  • FIG. 10 shows a modified example of this embodiment.
  • the heat-shrinkable tube 1C does not have a recess 17C on the proximal end side. That is, recesses 17C are formed in the tip portion 13 and the intermediate portion 12 of the heat-shrinkable tube 1C. By not forming the recess 17C near the base end portion 11, the rigidity on the base end side can be further increased. Similarly, in the second embodiment, the rigidity of the heat-shrinkable tube 1A on the proximal end side can be increased by eliminating the pores 17 on the proximal end side.
  • Example 5 will be described with reference to FIGS. 11 and 12.
  • the heat-shrinkable tube 1 described in the first embodiment is applied to the catheter 2 as a medical device will be described. It can be used not only for the catheter 2 but also for a balloon catheter and the like.
  • Catheter 2 is, for example, a catheter used for diagnosing or treating a stenosis or an obstruction.
  • the catheter 2 mainly includes a catheter shaft 21, a tip 22 joined to the tip of the catheter shaft 21, and a connector 23 joined to the rear end of the catheter shaft 21.
  • the entire catheter shaft 21 may be covered with the heat-shrinkable tube 1, or a part of the catheter shaft 21 may be covered with the heat-shrinkable tube 1.
  • the heat-shrinkable tube 1 may cover a range of a predetermined length from the tip of the catheter shaft 21.
  • the region of the catheter shaft 21 excluding the tip portion may be covered with the heat shrink tube 1.
  • the catheter shaft 21 may be covered with a plurality of heat-shrinkable tubes 1 which are separated from each other in the long axis direction.
  • FIG. 12 is an enlarged vertical sectional view showing a part of the catheter 2 covered with the heat shrink tube 1.
  • the catheter shaft 21 includes, for example, a coil body 211 and a heat-shrinkable tube 1 that covers the outside of the coil body 211.
  • a lumen 212 through which a guide wire or another catheter can be inserted is formed over the longitudinal direction of the coil body 211.
  • the heat shrink tube 1 functions as a resin structure forming an outer layer.
  • the heat-shrinkable tube 1 is formed so that the amount of resin per unit length in the major axis direction is larger on the proximal end side than on the distal end side.
  • the rigidity of the catheter shaft 21 formed by covering the coil body 211 with the heat-shrinkable tube 1 gradually changes from the proximal end side to the distal end side. In other words, the rigidity of the catheter shaft 21 gradually increases from the distal end side to the proximal end side.
  • the inner peripheral surface 15 of the heat-shrinkable tube 1 is located outside the coil body 211 and is in close contact with the coil body 211.
  • a resin layer (not shown) may be provided inside the coil body 211. Further, another resin layer (not shown) may be provided on the outside of the heat-shrinkable tube 1.
  • the heat-shrinkable tube 1 whose rigidity gradually decreases from the proximal end side to the distal end side is used as the outer layer structural material of the catheter shaft 21 to obtain the proximal end. It is possible to achieve both rigidity on the side and flexibility on the tip side, and it is possible to improve operability and manufacturing cost.
  • Example 6 will be described with reference to FIG.
  • the catheter 2A of this example the heat-shrinkable tube 1A of Example 2 described in FIG. 4 is used.
  • the outside of the coil body 211 is covered with the heat shrink tube 1A and heated, so that the heat shrink tube 1A is contracted and brought into close contact with the coil body 211.
  • the catheter shaft 21A is formed.
  • the present embodiment configured in this way also has the same effect as that of the fifth embodiment.
  • This embodiment can also be applied to the modified examples of the heat-shrinkable tube 1A and the heat-shrinkable tube 1C described in FIGS. 5 to 7 and 10.
  • Example 7 will be described with reference to FIG.
  • the catheter 2B of this embodiment uses the heat-shrinkable tube 1B described in FIG.
  • the catheter shaft 21B is formed by covering the outside of the coil body 211 with the heat shrink tube 1B and heating the coil body 211.
  • the present embodiment configured in this way also has the same effect as that of the fifth embodiment.
  • Example 8 will be described with reference to FIG.
  • a resin tube 213 is used instead of the coil body 211.
  • the resin tube 213 is formed of, for example, PTFE or the like in a long tubular shape, and a lumen 212 extending in the axial direction is formed inside the resin tube 213.
  • Example 5 the same action and effect as in Example 5 is obtained by covering the outside of the resin tube 213 with the heat-shrinkable tube 1 and heating the resin tube 213.
  • the rigidity of the resin tube 213 itself can be changed in the long axis direction.
  • Example 9 will be described with reference to FIG.
  • the amount of resin material gradually decreases from the central portion in the axial direction to both ends in the axial direction, and the thickness dimension and the inner diameter dimension ⁇ are also both ends in the axial direction from the central portion in the axial direction. It decreases as you go to the club.
  • the rigidity of the heat-shrinkable tube 1E is highest in the central portion in the axial direction and gradually decreases toward both ends in the axial direction.
  • the heat-shrinkable tube 1 described in Example 1 can also be obtained by cutting at the center of the heat-shrinkable tube 1E.
  • Example 10 will be described with reference to FIG. Also in the heat-shrinkable tube 1F of this embodiment, the amount of the resin material gradually decreases from the central portion in the axial direction to both ends in the axial direction. However, the thickness dimension of the heat-shrinkable tube 1F gradually decreases from the central portion in the axial direction toward both ends in the axial direction, but the inner diameter dimension does not change.
  • Two heat-shrinkable tubes can be obtained by cutting at the center of the heat-shrinkable tube 1F.
  • 1,1A, 1B, 1C, 1E, 1F Heat shrink tubing
  • 2,2A, 2B, 2D Catheter
  • 17 Pore
  • 17C Recess
  • 21 Catheter shaft
  • Tip 23
  • Connector 211: Coil body

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided is a technology that can be used as a resin structural material configured for gradually changing rigidity in the longitudinal direction. This heat contraction tube has a weight per unit of length, in the longitudinal direction, that is greater on the proximal side than on the distal side.

Description

熱収縮チューブおよび医療器具Heat shrink tubing and medical devices
 本開示は、熱収縮チューブおよび医療器具に関する。 The present disclosure relates to heat shrink tubing and medical devices.
 加熱することで主に径方向に収縮する熱収縮チューブは、電線、ケーブル等の接合部または端部に被覆材または補強材として使用される。熱収縮チューブは、医療機器の分野でも使用されている。 Heat-shrinkable tubes that shrink mainly in the radial direction when heated are used as covering materials or reinforcing materials at joints or ends of electric wires, cables, etc. Heat shrink tubing is also used in the field of medical devices.
 特許文献1には、外層の外側に熱収縮チューブを被せて加熱することにより、外層とコイル層と内層と中空管とを内層の径方向へ向けて加圧すると共に、外層を溶融させる技術が開示されている。 Patent Document 1 describes a technique in which a heat-shrinkable tube is placed on the outside of an outer layer and heated to pressurize the outer layer, the coil layer, the inner layer, and the hollow tube in the radial direction of the inner layer, and melt the outer layer. It is disclosed.
 特許文献2には、熱収縮チューブを用いることにより外層被膜体を製造する技術が開示されている。 Patent Document 2 discloses a technique for producing an outer layer coating body by using a heat-shrinkable tube.
特開2013-165926号公報Japanese Unexamined Patent Publication No. 2013-165926 特開2014-100322号公報Japanese Unexamined Patent Publication No. 2014-100322
 従来技術は、熱収縮チューブを被覆もしくは補強のために利用したり、または治具として一時的に利用したりするにとどまり、長軸方向で剛性を徐変させるための樹脂構造材として使用していない。 In the prior art, the heat-shrinkable tube is only used for coating or reinforcement, or temporarily used as a jig, and is used as a resin structural material for gradually changing the rigidity in the long axis direction. Absent.
 そこで本開示は、長軸方向で剛性を徐変させるための樹脂構造材として使用することができる技術を提供する。 Therefore, the present disclosure provides a technique that can be used as a resin structural material for gradually changing the rigidity in the long axis direction.
 かかる目的を達成するために、本開示の一態様に係る熱収縮チューブは、長軸方向の単位長さ当たりの材料の重量が先端側よりも基端側の方が多くなっている。 In order to achieve such an object, in the heat-shrinkable tube according to one aspect of the present disclosure, the weight of the material per unit length in the major axis direction is heavier on the proximal end side than on the distal end side.
 長軸方向の先端に向かうほど厚さ寸法が徐変してもよい。 The thickness dimension may gradually change toward the tip in the long axis direction.
 長軸方向の先端に向かうほど縮径が徐変するテーパ状に形成されてもよい。 It may be formed in a tapered shape whose diameter gradually changes toward the tip in the major axis direction.
  本開示によれば、長軸方向で剛性を徐変させる技術を提供することができる。 According to the present disclosure, it is possible to provide a technique for gradually changing the rigidity in the long axis direction.
本開示の実施形態に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on embodiment of this disclosure. 図1中の矢示II-II方向に沿って切断した断面図である。It is sectional drawing which cut along the direction of arrow II-II in FIG. 熱収縮チューブが複数連続している状態を示す外観図である。It is an external view which shows the state which a plurality of heat shrink tubes are continuous. 第2実施例に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 2nd Example. 熱収縮チューブの横断面図である。It is a cross-sectional view of a heat shrink tube. 変形例に係る熱収縮チューブの外観図である。It is an external view of the heat shrink tube which concerns on the modification. 他の変形例に係る熱収縮チューブの外観図である。It is an external view of the heat shrink tube which concerns on another modification. 第3実施例に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 3rd Example. 第4実施例に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 4th Example. 変形例に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on the modification. 第5実施例に係るカテーテルの概略図である。It is the schematic of the catheter which concerns on 5th Example. カテーテルシャフトの一部を示す断面図である。It is sectional drawing which shows a part of the catheter shaft. 第6実施例に係り、カテーテルシャフトの一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a catheter shaft according to a sixth embodiment. 第7実施例に係り、カテーテルシャフトの一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a catheter shaft according to a seventh embodiment. 第8実施例に係り、カテーテルシャフトの一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a catheter shaft according to an eighth embodiment. 第9実施例に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 9th Example. 第10実施例に係る熱収縮チューブの長手方向の断面図である。It is sectional drawing in the longitudinal direction of the heat shrink tube which concerns on 10th Example.
 以下、本開示の実施形態について説明する。本実施形態では、長軸方向の単位長さ当たりの材料の重量が先端側よりも基端側の方が多い熱収縮チューブを説明する。この熱収縮チューブを、例えばカテーテルのような長尺な医療器具の外層として用いることにより、簡単に医療器具の長軸方向で剛性を徐変させることができる。 Hereinafter, embodiments of the present disclosure will be described. In the present embodiment, the heat-shrinkable tube in which the weight of the material per unit length in the major axis direction is larger on the proximal end side than on the distal end side will be described. By using this heat-shrinkable tube as an outer layer of a long medical device such as a catheter, the rigidity can be easily gradually changed in the long axis direction of the medical device.
 図1~図3を用いて実施例1を説明する。図1は、熱収縮チューブ1の長手方向の断面図(縦断面図)である。図2は、図1中の矢示II-II方向から見た断面図(横断面図)である。 Example 1 will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view (longitudinal cross-sectional view) of the heat-shrinkable tube 1 in the longitudinal direction. FIG. 2 is a cross-sectional view (cross-sectional view) seen from the direction of arrow II-II in FIG.
 熱収縮チューブ1は、テーパ状の長尺な円筒状に形成されている。熱収縮チューブ1の内径寸法Φは、基端部11から中間部12を経て先端部13に至るまでに徐々に縮径している。すなわち、基端部11の内径寸法Φ1は中間部12の内径寸法Φ2よりも大きく(Φ1>Φ2)、中間部12の内径寸法Φ2は先端部13の内径寸法Φ3よりも大きい(Φ2>Φ3)。以下、基端部11を基端側と、先端部13を先端側と呼ぶことがある。 The heat shrink tube 1 is formed in a tapered long cylindrical shape. The inner diameter Φ of the heat-shrinkable tube 1 is gradually reduced from the base end portion 11 through the intermediate portion 12 to the tip end portion 13. That is, the inner diameter dimension Φ1 of the base end portion 11 is larger than the inner diameter dimension Φ2 of the intermediate portion 12 (Φ1> Φ2), and the inner diameter dimension Φ2 of the intermediate portion 12 is larger than the inner diameter dimension Φ3 of the tip portion 13 (Φ2> Φ3). .. Hereinafter, the base end portion 11 may be referred to as a base end side, and the tip end portion 13 may be referred to as a tip end side.
 さらに、熱収縮チューブ1の厚さ寸法tも、基端部11から中間部12を経て先端部13に至るまでに徐々に小さくなっている。すなわち、基端部11の厚さ寸法t1は中間部12の厚さ寸法t2よりも大きく(t1>t2)、中間部12の厚さ寸法t2は先端部13の厚さ寸法t3よりも大きい(t2>t3)。 Further, the thickness dimension t of the heat-shrinkable tube 1 is also gradually reduced from the base end portion 11 through the intermediate portion 12 to the tip end portion 13. That is, the thickness dimension t1 of the base end portion 11 is larger than the thickness dimension t2 of the intermediate portion 12 (t1> t2), and the thickness dimension t2 of the intermediate portion 12 is larger than the thickness dimension t3 of the tip portion 13 ( t2> t3).
 熱収縮チューブ1の樹脂材料としては、特に限定されるものではないが、例えば、ポリアミド樹脂やフッ素樹脂等の生体適合性を有する樹脂材料が挙げられる。好ましくは、当該樹脂材料の中で融点が比較的高い樹脂(例えば、PEEK(ポリエーテルエーテルケトン)、FEP(フッ化エチレンプロピレン)、PTFE(ポリテトラフルオロエチレン))が挙げられる。 The resin material of the heat-shrinkable tube 1 is not particularly limited, and examples thereof include biocompatible resin materials such as polyamide resin and fluororesin. Preferably, among the resin materials, a resin having a relatively high melting point (for example, PEEK (polyetheretherketone), FEP (fluorinated ethylenepropylene), PTFE (polytetrafluoroethylene)) can be mentioned.
 本実施例の熱収縮チューブ1は、内径寸法Φおよび厚さ寸法tの両方ともに、基端側から先端側へ向かうにつれてその値が低下するように形成されている。したがって、熱収縮チューブ1の外周面14がテーパ状に形成されているだけでなく、熱収縮チューブ1の内周面もテーパ状に形成されている。熱収縮チューブ1の長軸方向に形成される空間部16には、例えば、カテーテルなどの長尺な被物体が設けられる。 The heat-shrinkable tube 1 of this embodiment is formed so that the values of both the inner diameter dimension Φ and the thickness dimension t decrease from the proximal end side to the distal end side. Therefore, not only the outer peripheral surface 14 of the heat-shrinkable tube 1 is formed in a tapered shape, but also the inner peripheral surface of the heat-shrinkable tube 1 is formed in a tapered shape. A long object such as a catheter is provided in the space 16 formed in the long axis direction of the heat-shrinkable tube 1.
 図3は、複数の熱収縮チューブ1(1),1(2),1(3)が連続している様子を示す外観図である。熱収縮チューブ1は、単体製品として製造することもできるし、図3に示すように連続した製品として製造することもできる。使用時には、連続した製品から必要な数の熱収縮チューブをカッター等で切り離せばよい。 FIG. 3 is an external view showing how a plurality of heat-shrinkable tubes 1 (1), 1 (2), and 1 (3) are continuous. The heat-shrinkable tube 1 can be manufactured as a single product or as a continuous product as shown in FIG. At the time of use, the required number of heat-shrinkable tubes may be separated from the continuous product with a cutter or the like.
 このように構成される本実施例に係る熱収縮チューブ1では、長軸方向の単位長さ当たりの材料の重量が先端側よりも基端側の方が多くなっている。したがって、熱収縮チューブ1は、基端側から先端側へ向かうにつれて剛性が徐々に低下する。 In the heat-shrinkable tube 1 according to the present embodiment configured as described above, the weight of the material per unit length in the major axis direction is heavier on the proximal end side than on the distal end side. Therefore, the rigidity of the heat-shrinkable tube 1 gradually decreases from the proximal end side to the distal end side.
 この結果、可撓性を有する長尺な被物体を本実施例の熱収縮チューブ1で被って加熱することにより、被物体の外側に設けられる外層の厚みを長軸方向で容易に制御することができ、被物体の剛性を長手方向で変化させることができる。すなわち、熱収縮チューブ1を外層の構造材として備える被物体は、基端側から先端側へ向かうにつれて剛性が徐々に低下する。換言すれば、この被物体は、先端側から基端側へ向かうにつれて剛性が徐々に増大する。 As a result, the thickness of the outer layer provided on the outside of the object can be easily controlled in the long axis direction by covering the long flexible object with the heat-shrinkable tube 1 of the present embodiment and heating it. The rigidity of the object can be changed in the longitudinal direction. That is, the rigidity of the object having the heat-shrinkable tube 1 as the structural material of the outer layer gradually decreases from the proximal end side to the distal end side. In other words, the rigidity of this object gradually increases from the tip end side to the base end side.
 したがって、本実施例に係る熱収縮チューブ1を有する被物体は、基端側の剛性を高くできる一方で、先端側の剛性を低下させて柔軟性を得ることができる。 Therefore, the object having the heat-shrinkable tube 1 according to the present embodiment can increase the rigidity on the proximal end side, while decreasing the rigidity on the distal end side to obtain flexibility.
 図4~図7を用いて実施例2を説明する。本実施例を含む以下の各実施例は、実施例1の概念に含まれる変形例に該当する。したがって、以下、実施例1との相違を中心に説明する。 Example 2 will be described with reference to FIGS. 4 to 7. Each of the following examples including this embodiment corresponds to a modified example included in the concept of the first embodiment. Therefore, the differences from the first embodiment will be mainly described below.
 図4は、本実施例に係る熱収縮チューブ1Aの長手方向の断面図である。図5は、熱収縮チューブ1Aの横断面図である。本実施例に係る熱収縮チューブ1Aは、基端部11から中間部12を経て先端部13まで、つまり全長にわたって、内径寸法Φおよび厚さ寸法tは均一になっている。 FIG. 4 is a cross-sectional view of the heat-shrinkable tube 1A according to this embodiment in the longitudinal direction. FIG. 5 is a cross-sectional view of the heat shrink tube 1A. In the heat-shrinkable tube 1A according to the present embodiment, the inner diameter dimension Φ and the thickness dimension t are uniform from the base end portion 11 through the intermediate portion 12 to the tip portion 13, that is, over the entire length.
 本実施例の熱収縮チューブ1Aには、外周面14から内周面15へ向けて貫通する細孔17が周方向および軸方向に離間して、複数形成されている。すなわち、細孔17は、熱収縮チューブ1Aの周方向に離間して形成されていると共に、熱収縮チューブ1Aの長軸方向にも離間して形成されている。 The heat-shrinkable tube 1A of this embodiment is formed with a plurality of pores 17 penetrating from the outer peripheral surface 14 toward the inner peripheral surface 15 separated in the circumferential direction and the axial direction. That is, the pores 17 are formed so as to be separated from each other in the circumferential direction of the heat-shrinkable tube 1A and also to be separated from each other in the long axis direction of the heat-shrinkable tube 1A.
 本実施例では、細孔17の形成密度を熱収縮チューブ1Aの長軸方向に沿って変えることにより、熱収縮チューブ1Aの剛性を長軸方向で変化させている。例えば、本実施例の熱収縮チューブ1Aでは、基端部11における長軸方向での細孔17の形成ピッチpha1を中間部12の形成ピッチpha2よりも大きくし(pha1>pha2)、中間部12の形成ピッチpha2を先端部13における形成ピッチpha3よりも大きくしている(pha2>pha3)。形成ピッチphaは、熱収縮チューブ1Aの長軸方向に沿って徐々に変化させてもよいし、熱収縮チューブ1Aを長軸方向に区切る所定区間ごとに変化させてもよい。 In this embodiment, the rigidity of the heat-shrinkable tube 1A is changed in the long-axis direction by changing the formation density of the pores 17 along the long-axis direction of the heat-shrinkable tube 1A. For example, in the heat-shrinkable tube 1A of the present embodiment, the formation pitch pha1 of the pores 17 in the longitudinal direction at the base end portion 11 is made larger than the formation pitch pha2 of the intermediate portion 12 (pha1> pha2), and the intermediate portion 12 The formation pitch pha2 of the above is made larger than the formation pitch pha3 at the tip portion 13 (pha2> pha3). The formation pitch pha may be gradually changed along the long axis direction of the heat shrink tube 1A, or may be changed for each predetermined section that divides the heat shrink tube 1A in the long axis direction.
 細孔17の周方向の形成ピッチphcは、熱収縮チューブ1Aの全長にわたって均一であってもよいし、長軸方向で変化させてもよい。すなわち、基端部11から中間部12を経て先端部13へ向かうにつれて、周方向の形成ピッチphcの値を徐々に低下させてもよい。 The formation pitch phc in the circumferential direction of the pores 17 may be uniform over the entire length of the heat-shrinkable tube 1A, or may be changed in the major axis direction. That is, the value of the formation pitch phc in the circumferential direction may be gradually lowered from the base end portion 11 to the tip end portion 13 via the intermediate portion 12.
 このように構成される本実施例では、基端側から先端側へ向かうにつれて、外周面14から内周面15を貫く細孔17の形成密度を徐々に変化させるため、実施例1と同様に、熱収縮チューブ1Aの剛性を徐変させることができる。したがって、本実施例の熱収縮チューブ1Aを有する被物体は、基端側では高い剛性を確保しつつ、先端側へ向かうほど剛性を低くして柔軟性を得ることができる。 In the present embodiment configured in this way, the formation density of the pores 17 penetrating the outer peripheral surface 14 to the inner peripheral surface 15 is gradually changed from the proximal end side to the distal end side, so that the same as in the first embodiment. , The rigidity of the heat-shrinkable tube 1A can be gradually changed. Therefore, the object having the heat-shrinkable tube 1A of this embodiment can obtain flexibility by ensuring high rigidity on the proximal end side and lowering the rigidity toward the distal end side.
 図6は、本実施例の第1変形例を示す熱収縮チューブ1Aの外観図である。細孔17は、長軸方向を旋回中心とする螺旋状に離間させて形成してもよい。 FIG. 6 is an external view of the heat shrinkable tube 1A showing the first modification of this embodiment. The pores 17 may be formed by being separated in a spiral shape centered on the long axis direction.
 図7は、本実施例の第2変形例を示す熱収縮チューブ1Aの外観図である。細孔17は、熱収縮チューブ1Aの周方向に離間させると共に、長軸方向に離間させて形成することもできる。 FIG. 7 is an external view of the heat shrink tube 1A showing the second modification of this embodiment. The pores 17 can be formed so as to be separated in the circumferential direction of the heat-shrinkable tube 1A and also in the major axis direction.
 図8を用いて実施例3を説明する。本実施例に係る熱収縮チューブ1Bは、基端部11から先端部13へ向けて外径寸法が段階的に縮小している。すなわち、熱収縮チューブ1Bは、先端部13へ向けて縮径する段付筒状に形成されている。 Example 3 will be described with reference to FIG. The outer diameter of the heat-shrinkable tube 1B according to this embodiment is gradually reduced from the base end portion 11 to the tip end portion 13. That is, the heat-shrinkable tube 1B is formed in a stepped tubular shape whose diameter is reduced toward the tip portion 13.
 熱収縮チューブ1Bの外周面14Bは、例えば、基端側から先端側に向けて順に、外周面14B(1),14B(2),14B(3),14B(4),14B(5)と縮径している。すなわち、熱収縮チューブ1Bの厚さ寸法は、基端側から先端側へ向かうにつれて、厚さ寸法t1b,t2b,t3b,t4b,t5bと段階的に低下している。 The outer peripheral surface 14B of the heat-shrinkable tube 1B is, for example, the outer peripheral surfaces 14B (1), 14B (2), 14B (3), 14B (4), 14B (5) in order from the proximal end side to the distal end side. The diameter is reduced. That is, the thickness dimension of the heat-shrinkable tube 1B gradually decreases from the proximal end side to the distal end side to the thickness dimensions t1b, t2b, t3b, t4b, t5b.
 なお、熱収縮チューブ1Bの内径寸法Φは、熱収縮チューブ1Bの全長にわたって同一である。これに限らず、内径寸法Φも基端側から先端側へ向かうにつれて、段階的にまたは連続的に低下するように形成してもよい。 The inner diameter dimension Φ of the heat-shrinkable tube 1B is the same over the entire length of the heat-shrinkable tube 1B. Not limited to this, the inner diameter dimension Φ may also be formed so as to gradually or continuously decrease from the proximal end side toward the distal end side.
 図9および図10を用いて実施例4を説明する。本実施例に係る熱収縮チューブ1Cでは、実施例2で述べた細孔17に代えて、凹部17Cを採用する。 Example 4 will be described with reference to FIGS. 9 and 10. In the heat-shrinkable tube 1C according to the present embodiment, the recess 17C is adopted instead of the pore 17 described in the second embodiment.
 図9は、本実施例に係る熱収縮チューブ1Cの長手方向の断面図である。本実施例に係る熱収縮チューブ1Cは、基端部11から中間部12を経て先端部13まで、内径寸法Φおよび厚さ寸法tは均一である。 FIG. 9 is a cross-sectional view of the heat-shrinkable tube 1C according to this embodiment in the longitudinal direction. The heat-shrinkable tube 1C according to this embodiment has a uniform inner diameter dimension Φ and thickness dimension t from the base end portion 11 through the intermediate portion 12 to the tip portion 13.
 熱収縮チューブ1Cには、外周面14から内周面15へ向けて凹設された凹部17Cが周方向および軸方向に離間して、複数形成されている。凹部17Cは、熱収縮チューブ1Cの周方向に離間して形成されていると共に、熱収縮チューブ1Cの長軸方向にも離間して形成されている。 A plurality of recesses 17C recessed from the outer peripheral surface 14 toward the inner peripheral surface 15 are formed in the heat-shrinkable tube 1C so as to be separated in the circumferential direction and the axial direction. The recesses 17C are formed so as to be separated from each other in the circumferential direction of the heat-shrinkable tube 1C, and are also formed so as to be separated from each other in the long axis direction of the heat-shrinkable tube 1C.
 本実施例では、凹部17Cの形成密度を熱収縮チューブ1Cの長軸方向に沿って変えることにより、熱収縮チューブ1Cの剛性を長軸方向で変化させる。例えば、熱収縮チューブ1Cでは、基端部11における長軸方向での凹部17Cの形成ピッチpha1を中間部12の形成ピッチpha2よりも大きくし(pha1>pha2)、中間部12の形成ピッチpha2を先端部13における形成ピッチpha3よりも大きくしている(pha2>pha3)。 In this embodiment, the rigidity of the heat-shrinkable tube 1C is changed in the long-axis direction by changing the formation density of the recess 17C along the long-axis direction of the heat-shrinkable tube 1C. For example, in the heat-shrinkable tube 1C, the formation pitch pha1 of the recess 17C in the longitudinal direction at the base end portion 11 is made larger than the formation pitch pha2 of the intermediate portion 12 (pha1> pha2), and the formation pitch pha2 of the intermediate portion 12 is set. The formation pitch at the tip portion 13 is made larger than the pha3 (pha2> pha3).
 図示は省略するが、凹部17Cの周方向の形成ピッチは、熱収縮チューブ1Cの全長にわたって均一であってもよいし、長軸方向で変化させてもよい。すなわち、基端部11から中間部12を経て先端部13へ向かうにつれて、周方向の形成ピッチの値を徐々に低下させてもよい。 Although not shown, the formation pitch of the recess 17C in the circumferential direction may be uniform over the entire length of the heat-shrinkable tube 1C, or may be changed in the major axis direction. That is, the value of the formation pitch in the circumferential direction may be gradually lowered from the base end portion 11 to the tip end portion 13 via the intermediate portion 12.
 このように構成される本実施例は、実施例2で述べたと同様に、基端側から先端側へ向かうにつれて、外周面14から内周面15へ凹む凹部17Cの形成密度を徐々に変化させるため、実施例1と同様に、熱収縮チューブ1Cの剛性を徐変させることができる。したがって、本実施例の熱収縮チューブ1CAを有する被物体は、基端側では高い剛性を確保しつつ、先端側へ向かうほど剛性を低くして柔軟性を得ることができる。 In the present embodiment configured in this way, as described in the second embodiment, the formation density of the recess 17C recessed from the outer peripheral surface 14 to the inner peripheral surface 15 is gradually changed from the proximal end side to the distal end side. Therefore, the rigidity of the heat-shrinkable tube 1C can be gradually changed as in the first embodiment. Therefore, the object having the heat-shrinkable tube 1CA of this embodiment can obtain flexibility by ensuring high rigidity on the proximal end side and lowering the rigidity toward the distal end side.
 図10は、本実施例の変形例を示す。熱収縮チューブ1Cでは、基端側に凹部17Cを設けていない。すなわち、熱収縮チューブ1Cの先端部13および中間部12に凹部17Cが形成されている。基端部11付近に凹部17Cを形成しないことにより、基端側の剛性をより一層高めることができる。なお、実施例2においても同様に、基端側の細孔17を廃止することにより、熱収縮チューブ1Aの基端側の剛性を高めることができる。 FIG. 10 shows a modified example of this embodiment. The heat-shrinkable tube 1C does not have a recess 17C on the proximal end side. That is, recesses 17C are formed in the tip portion 13 and the intermediate portion 12 of the heat-shrinkable tube 1C. By not forming the recess 17C near the base end portion 11, the rigidity on the base end side can be further increased. Similarly, in the second embodiment, the rigidity of the heat-shrinkable tube 1A on the proximal end side can be increased by eliminating the pores 17 on the proximal end side.
 図11および図12を用いて実施例5を説明する。本実施例では、実施例1で述べた熱収縮チューブ1を医療器具としてのカテーテル2に適用する場合を説明する。カテーテル2に限らず、バルーンカテーテル等にも用いることができる。 Example 5 will be described with reference to FIGS. 11 and 12. In this embodiment, a case where the heat-shrinkable tube 1 described in the first embodiment is applied to the catheter 2 as a medical device will be described. It can be used not only for the catheter 2 but also for a balloon catheter and the like.
 カテーテル2は、例えば、狭窄部又は閉塞部を診断又は治療するために用いられるカテーテルである。カテーテル2は、主に、カテーテルシャフト21と、カテーテルシャフト21の先端に接合されたチップ22と、カテーテルシャフト21の後端に接合されたコネクタ23とを備える。 Catheter 2 is, for example, a catheter used for diagnosing or treating a stenosis or an obstruction. The catheter 2 mainly includes a catheter shaft 21, a tip 22 joined to the tip of the catheter shaft 21, and a connector 23 joined to the rear end of the catheter shaft 21.
 カテーテルシャフト21の全体を熱収縮チューブ1で被ってもよいし、カテーテルシャフト21の一部を熱収縮チューブ1で被ってもよい。カテーテルシャフト21の一部を熱収縮チューブ1で被う場合は、カテーテルシャフト21の先端から所定長さの範囲を熱収縮チューブ1で被ってもよい。カテーテルシャフト21のうち先端部分を除いた領域を熱収縮チューブ1で被ってもよい。カテーテルシャフト21を長軸方向に離間する複数の熱収縮チューブ1で被ってもよい。 The entire catheter shaft 21 may be covered with the heat-shrinkable tube 1, or a part of the catheter shaft 21 may be covered with the heat-shrinkable tube 1. When a part of the catheter shaft 21 is covered with the heat-shrinkable tube 1, the heat-shrinkable tube 1 may cover a range of a predetermined length from the tip of the catheter shaft 21. The region of the catheter shaft 21 excluding the tip portion may be covered with the heat shrink tube 1. The catheter shaft 21 may be covered with a plurality of heat-shrinkable tubes 1 which are separated from each other in the long axis direction.
 図12は、熱収縮チューブ1で被われたカテーテル2の一部を拡大して示す縦断面図である。 FIG. 12 is an enlarged vertical sectional view showing a part of the catheter 2 covered with the heat shrink tube 1.
 カテーテルシャフト21は、例えばコイル体211と、コイル体211の外側を被う熱収縮チューブ1とを備えている。コイル体211の内周側には、ガイドワイヤまたは他のカテーテルを挿通可能なルーメン212がコイル体211の長手方向にわたって形成されている。 The catheter shaft 21 includes, for example, a coil body 211 and a heat-shrinkable tube 1 that covers the outside of the coil body 211. On the inner peripheral side of the coil body 211, a lumen 212 through which a guide wire or another catheter can be inserted is formed over the longitudinal direction of the coil body 211.
 熱収縮チューブ1は、外層を形成する樹脂製の構造体として機能する。実施例1で述べたように、熱収縮チューブ1は、長軸方向の単位長さ当たりの樹脂量が先端側よりも基端側の方が多くなるように形成されている。これにより、熱収縮チューブ1でコイル体211を被って成るカテーテルシャフト21も、基端側から先端側へ向かうにつれて剛性が徐変する。換言すれば、カテーテルシャフト21は、先端側から基端側へ向かうにつれて、剛性が徐々に増大する。 The heat shrink tube 1 functions as a resin structure forming an outer layer. As described in the first embodiment, the heat-shrinkable tube 1 is formed so that the amount of resin per unit length in the major axis direction is larger on the proximal end side than on the distal end side. As a result, the rigidity of the catheter shaft 21 formed by covering the coil body 211 with the heat-shrinkable tube 1 gradually changes from the proximal end side to the distal end side. In other words, the rigidity of the catheter shaft 21 gradually increases from the distal end side to the proximal end side.
 熱収縮チューブ1の内周面15は、コイル体211の外側に位置してコイル体211に密着している。収縮前の熱収縮チューブ1の空間部16へコイル体211を挿通して加熱することにより、熱収縮チューブ1は軟化し、コイル体211の外側に密着する。 The inner peripheral surface 15 of the heat-shrinkable tube 1 is located outside the coil body 211 and is in close contact with the coil body 211. By inserting the coil body 211 into the space 16 of the heat-shrinkable tube 1 before shrinkage and heating the coil body 211, the heat-shrinkable tube 1 is softened and adheres to the outside of the coil body 211.
 なお、コイル体211の内側に図示せぬ樹脂層を設けてもよい。さらに、熱収縮チューブ1の外側に図示せぬ他の樹脂層を設けてもよい。 A resin layer (not shown) may be provided inside the coil body 211. Further, another resin layer (not shown) may be provided on the outside of the heat-shrinkable tube 1.
 このように構成される本実施例のカテーテル2によれば、基端側から先端側に向けて剛性が徐々に低下する熱収縮チューブ1をカテーテルシャフト21の外層構造材として用いることにより、基端側の剛性と先端側の柔軟性とを両立させることができ、操作性と製造コストを改善することができる。 According to the catheter 2 of the present embodiment configured as described above, the heat-shrinkable tube 1 whose rigidity gradually decreases from the proximal end side to the distal end side is used as the outer layer structural material of the catheter shaft 21 to obtain the proximal end. It is possible to achieve both rigidity on the side and flexibility on the tip side, and it is possible to improve operability and manufacturing cost.
 図13を用いて実施例6を説明する。本実施例のカテーテル2Aは、図4で述べた実施例2の熱収縮チューブ1Aを用いる。本実施例では、コイル体211の外側を熱収縮チューブ1Aで被って加熱することにより、熱収縮チューブ1Aを収縮させてコイル体211に密着させる。これにより、カテーテルシャフト21Aが形成される。 Example 6 will be described with reference to FIG. As the catheter 2A of this example, the heat-shrinkable tube 1A of Example 2 described in FIG. 4 is used. In this embodiment, the outside of the coil body 211 is covered with the heat shrink tube 1A and heated, so that the heat shrink tube 1A is contracted and brought into close contact with the coil body 211. As a result, the catheter shaft 21A is formed.
 このように構成される本実施例も、実施例5と同様の作用効果を奏する。なお、本実施例は、図5~図7、図10で述べた熱収縮チューブ1Aの変形例と熱収縮チューブ1C とにも適用することができる。 The present embodiment configured in this way also has the same effect as that of the fifth embodiment. This embodiment can also be applied to the modified examples of the heat-shrinkable tube 1A and the heat-shrinkable tube 1C described in FIGS. 5 to 7 and 10.
 図14を用いて実施例7を説明する。本実施例のカテーテル2Bは、図8で述べた熱収縮チューブ1Bを用いる。本実施例では、コイル体211の外側を熱収縮チューブ1Bで被って加熱することにより、カテーテルシャフト21Bが形成される。 Example 7 will be described with reference to FIG. The catheter 2B of this embodiment uses the heat-shrinkable tube 1B described in FIG. In this embodiment, the catheter shaft 21B is formed by covering the outside of the coil body 211 with the heat shrink tube 1B and heating the coil body 211.
 このように構成される本実施例も、実施例5と同様の作用効果を奏する。 The present embodiment configured in this way also has the same effect as that of the fifth embodiment.
 図15を用いて実施例8を説明する。本実施例のカテーテル2Dは、コイル体211に代えて樹脂チューブ213を用いる。樹脂チューブ213は、例えば、PTFEなどから長尺な筒状に形成されており、その内部には軸方向に延びるルーメン212が形成されている。 Example 8 will be described with reference to FIG. In the catheter 2D of this embodiment, a resin tube 213 is used instead of the coil body 211. The resin tube 213 is formed of, for example, PTFE or the like in a long tubular shape, and a lumen 212 extending in the axial direction is formed inside the resin tube 213.
 このように構成される本実施例では、樹脂チューブ213の外側を熱収縮チューブ1で被って加熱することにより、実施例5と同様の作用効果を奏する。なお、樹脂チューブ213を剛性の異なる複数の材料から形成することにより、樹脂チューブ213自体の剛性も長軸方向で変化させることができる。 In this embodiment configured in this way, the same action and effect as in Example 5 is obtained by covering the outside of the resin tube 213 with the heat-shrinkable tube 1 and heating the resin tube 213. By forming the resin tube 213 from a plurality of materials having different rigidity, the rigidity of the resin tube 213 itself can be changed in the long axis direction.
 図16を用いて実施例9を説明する。本実施例の熱収縮チューブ1Eは、軸方向中央部から軸方向両端部へ向けて樹脂材料の量が徐々に減少しており、厚さ寸法および内径寸法Φも軸方向中央部から軸方向両端部へ向かうにつれて低下する。これにより、熱収縮チューブ1Eの剛性は、軸方向中央部が最も高く、軸方向両端部へ向かうにつれて徐々に低下する。 Example 9 will be described with reference to FIG. In the heat-shrinkable tube 1E of this embodiment, the amount of resin material gradually decreases from the central portion in the axial direction to both ends in the axial direction, and the thickness dimension and the inner diameter dimension Φ are also both ends in the axial direction from the central portion in the axial direction. It decreases as you go to the club. As a result, the rigidity of the heat-shrinkable tube 1E is highest in the central portion in the axial direction and gradually decreases toward both ends in the axial direction.
 熱収縮チューブ1Eの中心部で切断することにより、実施例1で述べた熱収縮チューブ1を得ることもできる。 The heat-shrinkable tube 1 described in Example 1 can also be obtained by cutting at the center of the heat-shrinkable tube 1E.
 図17を用いて実施例10を説明する。本実施例の熱収縮チューブ1Fも、軸方向中央部から軸方向両端部へ向けて樹脂材料の量が徐々に減少する。ただし、熱収縮チューブ1Fの厚さ寸法は軸方向中央部から軸方向両端部へ向かうにつれて徐々に低下するが、内径寸法は変化しない。 Example 10 will be described with reference to FIG. Also in the heat-shrinkable tube 1F of this embodiment, the amount of the resin material gradually decreases from the central portion in the axial direction to both ends in the axial direction. However, the thickness dimension of the heat-shrinkable tube 1F gradually decreases from the central portion in the axial direction toward both ends in the axial direction, but the inner diameter dimension does not change.
 熱収縮チューブ1Fの中心部で切断することにより、2つの熱収縮チューブを得ることもできる。 Two heat-shrinkable tubes can be obtained by cutting at the center of the heat-shrinkable tube 1F.
 以上、本開示の実施形態について述べてきたが、本開示は、これらの実施形態に限られるものではなく、種々の変形が可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments, and various modifications are possible.
 上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることもできる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の構成を追加・削除・置換することもできる。 The above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is also possible to replace a part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, other configurations can be added / deleted / replaced with respect to a part of the configurations of each embodiment.
 また、上述した実施形態に含まれる技術的特徴は、特許請求の範囲に明示された組み合わせに限らず、適宜組み合わせることができる。 Further, the technical features included in the above-described embodiment are not limited to the combinations specified in the claims, and can be appropriately combined.
1,1A,1B,1C,1E,1F:熱収縮チューブ、2,2A,2B,2D:カテーテル、17:細孔、17C:凹部、21:カテーテルシャフト、チップ、23:コネクタ、211:コイル体、212:ルーメン 1,1A, 1B, 1C, 1E, 1F: Heat shrink tubing, 2,2A, 2B, 2D: Catheter, 17: Pore, 17C: Recess, 21: Catheter shaft, Tip, 23: Connector, 211: Coil body , 212: Lumen

Claims (5)

  1.  長軸方向の単位長さ当たりの材料の重量が先端側よりも基端側の方が多い熱収縮チューブ。 A heat-shrinkable tube in which the weight of the material per unit length in the long axis direction is heavier on the proximal end side than on the distal end side.
  2.  長軸方向の先端に向かうほど厚さ寸法が徐変する、
    請求項1に記載の熱収縮チューブ。
    The thickness dimension gradually changes toward the tip in the long axis direction.
    The heat shrinkable tube according to claim 1.
  3.  長軸方向の先端に向かうほど径寸法が徐変するテーパ状に形成される、
    請求項1に記載の熱収縮チューブ。
    It is formed in a tapered shape whose diameter gradually changes toward the tip in the long axis direction.
    The heat shrinkable tube according to claim 1.
  4.  請求項1~請求項3のいずれか一項に記載の熱収縮チューブを有する医療器具。 A medical device having the heat-shrinkable tube according to any one of claims 1 to 3.
  5.  請求項1~請求項3のいずれか一項に記載の熱収縮チューブを外層樹脂として用いる長尺な医療器具。 A long medical device that uses the heat-shrinkable tube according to any one of claims 1 to 3 as an outer layer resin.
PCT/JP2019/028140 2019-07-17 2019-07-17 Thermal shrinkage tube and medical instrument WO2021009878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/028140 WO2021009878A1 (en) 2019-07-17 2019-07-17 Thermal shrinkage tube and medical instrument
JP2021532623A JP7165268B2 (en) 2019-07-17 2019-07-17 medical instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028140 WO2021009878A1 (en) 2019-07-17 2019-07-17 Thermal shrinkage tube and medical instrument

Publications (1)

Publication Number Publication Date
WO2021009878A1 true WO2021009878A1 (en) 2021-01-21

Family

ID=74209778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028140 WO2021009878A1 (en) 2019-07-17 2019-07-17 Thermal shrinkage tube and medical instrument

Country Status (2)

Country Link
JP (1) JP7165268B2 (en)
WO (1) WO2021009878A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188423A (en) * 1982-04-28 1983-11-02 オリンパス光学工業株式会社 Treating tool for endoscope
JPH0316948U (en) * 1989-06-30 1991-02-20
JPH09187513A (en) * 1996-01-11 1997-07-22 Mitsubishi Cable Ind Ltd Catheter tube and its production
JP2001523143A (en) * 1997-05-05 2001-11-20 マイクロ セラピューティクス インコーポレーテッド Single segment microcatheter
JP2008181026A (en) * 2007-01-25 2008-08-07 Sumitomo Electric Ind Ltd Fiber optic protective sleeve
JP2018170093A (en) * 2017-03-29 2018-11-01 株式会社オートネットワーク技術研究所 Wire with cap

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850623B2 (en) * 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
JP2008229160A (en) * 2007-03-22 2008-10-02 Kaneka Corp Catheter
JP5927974B2 (en) * 2012-02-17 2016-06-01 住友ベークライト株式会社 Medical equipment
JP6249544B1 (en) * 2016-11-24 2017-12-20 朝日インテック株式会社 Catheter and balloon catheter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188423A (en) * 1982-04-28 1983-11-02 オリンパス光学工業株式会社 Treating tool for endoscope
JPH0316948U (en) * 1989-06-30 1991-02-20
JPH09187513A (en) * 1996-01-11 1997-07-22 Mitsubishi Cable Ind Ltd Catheter tube and its production
JP2001523143A (en) * 1997-05-05 2001-11-20 マイクロ セラピューティクス インコーポレーテッド Single segment microcatheter
JP2008181026A (en) * 2007-01-25 2008-08-07 Sumitomo Electric Ind Ltd Fiber optic protective sleeve
JP2018170093A (en) * 2017-03-29 2018-11-01 株式会社オートネットワーク技術研究所 Wire with cap

Also Published As

Publication number Publication date
JPWO2021009878A1 (en) 2021-01-21
JP7165268B2 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
KR102118837B1 (en) Steerable medical device with braided structure and method for manufacturing same
CA2652550C (en) Steerable catheter using flat pull wires and method of making same
KR101533556B1 (en) Electrode catheter and method for manufacturing same
US8535292B2 (en) Retractable catheter
JP2005525133A (en) Integrated polymer and braid for intravascular catheters
JP2013198633A (en) Medical instrument, and method for manufacturing medical instrument
US20180360333A1 (en) Electrode catheter
JP4854458B2 (en) Medical multi-lumen tube
JP2001178826A (en) Tube for catheter
JP2021120013A (en) Composite wires for use in medical procedures and associated methods
WO2021009878A1 (en) Thermal shrinkage tube and medical instrument
JP6847274B2 (en) catheter
JP2013192716A (en) Medical instrument
JP6319390B2 (en) Medical device and method for manufacturing medical device
JP7159477B2 (en) heat shrink tubing and catheters
JP2014188216A (en) Medical instrument, and manufacturing method for medical instrument
WO2014203343A1 (en) Medical device and method for manufacturing medical device
WO2024090368A1 (en) Medical shaft and method for producing medical shaft
JP6137380B2 (en) Medical device manufacturing method
JP7330737B2 (en) CATHETER AND CATHETER MANUFACTURING METHOD
JP5957966B2 (en) Medical device and method for manufacturing medical device
JP2018118095A (en) Medical equipment and manufacturing method of medical equipment
JP5923986B2 (en) Medical device and method for manufacturing medical device
JP2006181258A (en) Manufacturing method of microcatheter and microcatheter
JP2024062327A (en) Medical shaft and method for producing medical shaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937852

Country of ref document: EP

Kind code of ref document: A1