WO2021009865A1 - High-density multilayer substrate and method for manufacturing same - Google Patents
High-density multilayer substrate and method for manufacturing same Download PDFInfo
- Publication number
- WO2021009865A1 WO2021009865A1 PCT/JP2019/028058 JP2019028058W WO2021009865A1 WO 2021009865 A1 WO2021009865 A1 WO 2021009865A1 JP 2019028058 W JP2019028058 W JP 2019028058W WO 2021009865 A1 WO2021009865 A1 WO 2021009865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- multilayer substrate
- chip component
- density multilayer
- pair
- electrode terminals
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
Definitions
- the present invention relates to a high-density multilayer substrate and a method for manufacturing the same.
- Circuit boards used in electrical and electronic equipment are laminated with a plurality of wiring layers due to the recent increase in functionality and miniaturization, and penetrate through a plurality of conductive vias and boards connecting the wiring layers to each other.
- a plurality of through holes to be provided to be formed at a gorge pitch.
- the through hole penetrating the multilayer board has a larger diameter of the through hole according to the length of the through hole formed in the multilayer board, which presses the mounting area. Therefore, in a multilayer board that requires a gorgeous pitch, through holes can be replaced with through holes to save space by making the outer layer wiring layers on both sides of each other via a plurality of via holes that connect each wiring layer. Often formed.
- the interlayer connection can be performed by laser vias, but when the spacing is relatively large, the laser via cannot be formed due to the limitation of the aspect ratio.
- through holes are formed in the insulating layer by mechanical means such as drilling, and the wiring layers on both sides of the insulating layer are made conductive with each other.
- IVH Interstitial Via Hole
- a hole is drilled in a double-sided plate by drilling, and the inner wall of the hole is plated to be conductive with the wiring layers on both sides. At the same time, it is formed by filling the inside of the hole with a resin. Further, in IVH, by forming a lid plating that seals the resin inside the pores, the conductive vias provided in the adjacent insulating layers can be arranged side by side in the stacking direction.
- IVH eliminates the need for lid plating and reduces the manufacturing cost by arranging the conductive vias connected via the insulating layer laminated on the double-sided plate in a staggered manner. It can be suppressed.
- the present invention has been made in view of such a situation, and an object of the present invention is to replace a multilayer substrate on which a penetrating via containing IVH is formed with a gorge pitch while suppressing the occurrence of migration. It is an object of the present invention to provide a possible high-density multilayer substrate and a method for manufacturing the same.
- the high-density multilayer substrate according to the present invention is a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and is a multilayer wiring board in which a plurality of insulating layers and a plurality of wiring layers are alternately laminated.
- a pair of electrode terminals are provided at both ends, and a chip component embedded in the insulating layer in a direction in which the pair of electrode terminals are separated in a direction perpendicular to the stacking direction of the multilayer wiring board, and both sides of the multilayer wiring board.
- Each of the outer layer wiring layers formed in the above is conductive with at least one of the pair of electrode terminals, and a stack via is formed in which a plurality of laser vias are overlapped.
- the method for manufacturing a high-density multilayer substrate according to the present invention is a method for manufacturing a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and is formed by being laminated on a first wiring layer.
- a chip component having a pair of electrode terminals provided at both ends is embedded in the insulating layer in a direction in which the pair of electrode terminals are separated in a direction perpendicular to the stacking direction, and a second wiring layer is provided on the surface of the insulating layer.
- the double-sided plate forming step of forming the double-sided plate and the multi-layering step of forming the multi-layer wiring board by multi-layering the double-sided plate are included, and in the multi-layering step, the outer layers formed on both sides of the multi-layer wiring board are included.
- a stack via is formed by stacking a plurality of laser vias so that each of the wiring layers conducts with at least one of the pair of electrode terminals.
- the present invention instead of the multilayer substrate on which the through via containing IVH is formed, it is possible to provide a high-density multilayer substrate capable of forming a gorge pitch while suppressing the occurrence of migration, and a method for manufacturing the same.
- IVH Interstitial Via Hole: non-penetrating via hole
- IVH Interstitial Via Hole: non-penetrating via hole
- FIG. 1 is a cross-sectional view of the high-density multilayer substrate 1 according to the first embodiment of the present invention.
- the high-density multilayer board 1 includes a multilayer wiring board 10, chip components 20, and stack vias 30.
- the high-density multilayer board 1 can be used, for example, as an in-vehicle printed wiring board having excellent mechanical strength by mounting various electronic components (not shown) and appropriately forming a wiring circuit and a solder resist.
- the multilayer wiring board 10 is formed by alternately laminating a plurality of insulating layers R1 to R5 and a plurality of wiring layers L1 to L6, but the number of layers is limited to this. It is not a thing and various changes are possible. Further, in the multilayer wiring board 10 of the present embodiment, the central insulating layer R3 is formed thicker than the others among the plurality of insulating layers R1 to R5.
- the chip component 20 is a square chip component for burying a substrate embedded in the insulating layer R3 of the multilayer wiring board 10.
- it is a multilayer ceramic capacitor (MLCC: Multi-Layer Ceramic Capacitor).
- MLCC Multi-Layer Ceramic Capacitor
- the dimensions of the chip component 20 are selected from standard products. For example, the so-called “0402" having a dimension of 0.4 mm x 0.2 mm or a so-called “0402” having a dimension of 0.3 mm x 0.15 mm when viewed in a plan view. "03015" can be adopted.
- the stack via 30 is formed by stacking a plurality of laser vias on a straight line to form an interlayer connection in the multilayer wiring board 10.
- the stack via 30 in the present embodiment includes a first stack via 30a, a second stack via 30b, a third stack via 30c, and a fourth stack via 30d, and includes a pair of electrode terminals of the chip component 20 and a multilayer wiring board 10. It conducts with the outer layer wiring layer formed on both sides.
- the first stack via 30a connects one electrode terminal of the chip component 20 and a first land 31 provided at a position facing the one electrode terminal in the wiring layer L1 to each other.
- the second stack via 30b connects one electrode terminal of the chip component 20 and a second land 32 provided at a position facing the one electrode terminal in the wiring layer L6 to each other. That is, in the high-density multilayer board 1, the wiring layer L1 and the wiring layer L6 as the outer layer wiring layer are electrically conducted with each other via the first stack via 30a, one electrode terminal, and the second stack via 30b.
- the third stack via 30c connects the other electrode terminal of the chip component 20 and the third land 33 provided at a position facing the other electrode terminal in the wiring layer L1 to each other.
- the fourth stack via 30d connects the other electrode terminal of the chip component 20 and the fourth land 34 provided at a position facing the other electrode terminal in the wiring layer L6 to each other. That is, in the high-density multilayer board 1, the wiring layer L1 and the wiring layer L6 as the outer layer wiring layer are electrically conducted with each other via the third stack via 30c, the other electrode terminal, and the fourth stack via 30d.
- the high-density multilayer substrate 1 has a through hole that linearly connects the first land 31 and the second land 32 and a through hole that linearly connects the third land 33 and the fourth land 34 adjacent to each other.
- the structure of FIG. 1 composed of the chip component 20 and the stack via 30 is formed on the multilayer wiring board 10, so that the conductive paths corresponding to the two through holes are formed at a gorge pitch. .. The reason why the gorge pitching is possible will be described in detail later.
- FIG. 2 is a cross-sectional view showing a component mounting process of the high-density multilayer substrate 1 according to the first embodiment.
- the chip component 20 is mounted on the copper foil 11 via an adhesive 12 printed on the surface of the copper foil 11 as a "first wiring layer".
- the adhesive 12 is made of an insulating material such as resin, and is provided on the surface of the copper foil 11 at a place where the chip component 20 is arranged with a predetermined thickness.
- the chip component 20 is composed of a component body 21 and a first electrode terminal 22 and a second electrode terminal 23 as "a pair of electrode terminals" formed of copper plating on both ends of the component body 21. To. Then, the chip component 20 is mounted so that both the first electrode terminal 22 and the second electrode terminal 23 are in contact with the adhesive 12.
- FIG. 3 is a cross-sectional view showing a double-sided plate forming step of the high-density multilayer substrate 1 according to the first embodiment.
- the chip component 20 mounted on the copper foil 11 is embedded by the insulating layer R3, and the copper foil 13 as the "second wiring layer” is provided on the surface of the insulating layer R3.
- a double-sided plate having a copper foil 11 and a copper foil 13 is formed on both sides of the insulating layer R3.
- the insulating layer R3 is, for example, a glass epoxy resin formed by impregnating a glass cloth with an epoxy resin, but a prepreg that does not contain the glass cloth may be adopted. Further, the insulating layer R3 may be embedded with an electronic component (not shown) other than the chip component 20.
- FIG. 4 is a cross-sectional view showing a drilling step of the high-density multilayer substrate 1 according to the first embodiment.
- via holes are made from the copper foil 11 and the copper foil 13 toward the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20, for example, by a CO 2 laser. 14 is formed.
- the metal surfaces of the first electrode terminal 22 and the second electrode terminal 23 are exposed.
- each electrode terminal exposed by the formation of the via hole 14 is further subjected to a soft etching treatment to remove oxides and organic substances on the exposed surface.
- the surface of the metal is exposed without forming a coating, and the adhesion with the metal precipitated in the subsequent plating treatment is enhanced, and as a result, the electrical connection reliability is improved.
- FIG. 5 is a cross-sectional view showing a plating process of the high-density multilayer substrate 1 according to the first embodiment.
- the copper foil 11 and the copper foil 13 of the double-sided plate and the via hole 14 are plated with copper to form a filled via 15 in which the via hole 14 is filled with copper plating, and the via hole 14 is electrically connected to the filled via 15.
- the thickness of the copper foil 11 and the copper foil 13 increases.
- FIG. 6 is a cross-sectional view showing a patterning process of the high-density multilayer substrate 1 according to the first embodiment.
- the wiring layer L3 and the wiring layer L4 are formed by processing the conductor layer composed of the copper foil 11 and the copper foil 13 into a desired circuit pattern by, for example, known photolithography. be able to.
- a land 16 is formed in the portion of the wiring layer L3 and the wiring layer L4 connected to the filled via 15 in order to form the stack via 30 in a later step.
- the multilayer wiring board 10 shown in FIG. 1 is formed. That is, a multi-layering step of repeating the addition of wiring layers on both sides of the double-sided wiring board shown in FIG. 6 by a series of steps of laminating resin layers, laminating copper foils, forming laser vias, copper plating treatment, and patterning treatment.
- the multilayer wiring board 10 can be formed. Since a conventional known technique can be adopted for the multi-layered substrate, detailed description thereof will be omitted here.
- the stack via 30 is formed at a position corresponding to the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20 in the multilayering step. More specifically, the high-density multilayer board 1 shown in FIG. 1 conducts linearly with respect to the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20 each time a layer is added by build-up. By forming the field vias 15 on top of each other, four stack vias 30 are formed. As a result, in the high-density multilayer substrate 1, two independent conductive paths conducting the wiring layer L1 and the wiring layer L6 are formed via the first electrode terminal 22 and the second electrode terminal 23, respectively.
- FIG. 7 is a cross-sectional view illustrating the operation and effect of the high-density multilayer substrate 1 according to the first embodiment.
- FIG. 7 the configuration of the high-density multilayer substrate 1 similar to that in FIG. 1 is shown.
- each of the pair of electrode terminals of the chip component 20 is connected to both outer layer wiring layers. That is, in the high-density multilayer board 1, one through via is formed by the first stack via 30a, the first electrode terminal 22, and the second stack via 30b, and the third stack via 30c, the second electrode terminal 23, and the second stack via 30b are formed. The other penetrating via is formed by the four stack vias 30d.
- each of the stack vias 30 can be formed by, for example, a laser via diameter W1 of 75 ⁇ m, a land 16 diameter W2 of 150 ⁇ m, and an adjacent land spacing W3 of 100 ⁇ m by a conventional laser via forming means.
- both penetrating vias formed via the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20 are arranged at intervals according to the dimensions of the chip component 20. It will be.
- both through vias are electrically cut off due to the characteristics of the chip component 20 as a capacitor, they are configured as independent conductive paths without causing a short circuit even when the applied potentials are different from each other. Will be done.
- the capacitor as the chip component 20 is set so that the rated voltage is larger than the maximum potential difference assumed between both through vias, so that a short circuit can be prevented more reliably.
- the pitch P1 of the penetrating vias of each other can be suppressed to about 250 ⁇ m. Further, in the high-density multilayer board 1, for example, when the standard of the chip component 20 is "03015", the pitch P1 of the penetrating vias of each other can be suppressed to about 200 ⁇ m.
- the above-mentioned through via is formed in the high-density multilayer substrate 1 without using IVH formed by mechanical means, damage to the insulating layer R3 in the manufacturing process can be prevented. Therefore, in the high-density multilayer board 1, even if other electronic components or the like are arranged around the chip component 20, the possibility of migration occurring between them can be suppressed, and the possibility of hindering the pitching of the gorge is reduced. can do.
- FIG. 8 is a cross-sectional view of the multilayer substrate 2 according to the prior art in which a through via containing IVH is formed.
- the internal configuration of the multilayer board 2 shown in FIG. 8 is different from the high-density multilayer board 1 of the present invention described above in that the wiring layer L3 and the wiring layer L4 are conducted by IVH.
- one through via is formed through the first non-penetrating via hole IVH1 formed in the insulating layer R3, and the second non-penetrating via is formed in the insulating layer R3.
- the other penetrating via is configured through the via hole IVH2.
- a hole is formed by a drill in the insulating layer R3 in which the wiring layer L3 and the wiring layer L4 are formed on both sides, copper plating is applied to the inner wall of the hole, and the internal space is filled with resin. It is formed by doing.
- the IVH can directly connect the conductive via through the lid plating by forming the lid plating that seals the resin inside the hole.
- the multilayer substrate 2 according to the prior art has a hole diameter of about 100 ⁇ m due to mechanical fangs being drilled in the formation of the first non-penetrating via hole IVH1 and the second non-penetrating via hole IVH2.
- the land diameter W2 at both ends of the IVH becomes about 300 ⁇ m.
- the multilayer substrate 2 migration is likely to occur due to damage to the insulating layer R3 due to the formation of IVH, and when the insulating layer R3 is formed of a general material, the first non-penetrating via hole In order to prevent a short circuit between the IVH1 and the second non-penetrating via hole IVH2, it is necessary to set the distance W4 between the two to 0.4 mm or more. Even when the insulating layer R3 is formed of a highly reliable material to improve the insulating property, it is necessary to set the distance W4 between the two to 0.25 mm or more.
- the pitch P2 of the penetrating vias of each other is set to about 350 ⁇ m in order to ensure reliability against a short circuit. It must be set, and other electronic components and the like cannot be arranged in the vicinity of the first non-penetrating via hole IVH1 and the second non-penetrating via hole IVH2, which hinders the pitching of the gorge.
- the chip component 20 is embedded in the insulating layer R3 of the multilayer wiring board 10, and each electrode terminal of the chip component 20 and the stack via 30 connected to the electrode terminal are provided.
- the outer layer wiring layers formed on both sides of the multilayer wiring board 10 are made conductive with each other. Therefore, in the high-density multilayer board 1, the pitch of two stack vias 30 arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards 10 can be set according to the dimensions of the chip component 20. ..
- the above-mentioned through via is formed in the high-density multilayer substrate 1 without using IVH formed by mechanical means, damage to the insulating layer R3 in which the chip component 20 is embedded is prevented. be able to.
- the high-density multilayer board 1 even if other electronic components or the like are arranged around the chip component 20 constituting the penetrating via, the possibility of migration occurring between them can be suppressed, and the gorge pitch can be increased. The risk of being hindered can be reduced. Therefore, according to the present invention, it is possible to provide a high-density multilayer substrate 1 capable of forming a gorge pitch while suppressing the occurrence of migration, instead of the multilayer substrate 2 on which the through vias containing IVH are formed.
- the chip component 40 incorporated in the high-density multilayer board 1 of the first embodiment described above is a resistor, and the second stack via 30b and the third stack via 30b and the third.
- the area of the wiring layers L1 to L6 is expanded instead of not providing the stack via 30c.
- the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted. Since each step in the manufacturing method of the high-density multilayer substrate 3 is almost the same as that of the high-density multilayer substrate 1 of the first embodiment described above, detailed description of the manufacturing method will be omitted.
- FIG. 9 is a cross-sectional view of the high-density multilayer substrate 3 according to the second embodiment of the present invention.
- the chip component 40 in the high-density multilayer substrate 3 of the second embodiment is a square chip component for embedding a substrate, like the chip component 20 according to the first embodiment described above, and has the same component shape as the chip component 20. doing.
- the chip component 40 in the second embodiment is a resistor, energization between the first electrode terminal 22 and the second electrode terminal 23 is permitted.
- the first land 31 formed on the wiring layer L1 and the fourth land 34 formed on the wiring layer L6 have a first stack via 30a and a chip component 40. , And a through via that conducts through the fourth stack via 30d. That is, the high-density multilayer board 3 is formed with through vias that are used to conduct conduction between the first land 31 and the fourth land 34 that are not aligned in a straight line in the substrate stacking direction.
- the resistance value of the chip component 40 is set as low as possible as a conduction path corresponding to a part of the through via, and in the present embodiment, a zero ohm resistor is adopted. There is.
- the size of the chip component 40 is selected from the standard products also in this embodiment. Therefore, in the high-density multilayer board 3 according to the second embodiment, the distance between the first stack via 30a and the fourth stack via 30d can be set according to the dimensions of the chip component 40. As a result, the high-density multilayer board 3 according to the second embodiment has the same as the first embodiment described above, for example, when the standard of the chip component 40 is "0402", the first stack via 30a and the fourth stack via 30a.
- the pitch P3 with the stack via 30d can be suppressed to about 250 ⁇ m. For example, when the standard of the chip component 40 is “03015”, the pitch P3 can be suppressed to about 200 ⁇ m.
- the penetrating via is formed without using IVH formed by mechanical means, as in the first embodiment described above. Damage to the insulating layer R3 in the manufacturing process can be prevented. Therefore, in the high-density multilayer board 3, even if other electronic components or the like are arranged around the chip component 40, the possibility of migration occurring between them can be suppressed, and the pitch can be increased.
- the wiring layer L3 and the wiring layer are located at positions facing the portions. It is also possible to extend L4 and use it effectively.
- FIG. 10 is a cross-sectional view of the multilayer substrate 4 according to the prior art in which a through via containing IVH is formed.
- the internal configuration of the multilayer board 4 shown in FIG. 10 is different from the high-density multilayer board 3 of the present invention described above in that the wiring layer L3 and the wiring layer L4 are conducted by IVH.
- the wiring layer L3 and the wiring layer L4 are conducted through the third non-penetrating via hole IVH3 formed in the insulating layer R3, and are insulated from the insulating layer R1.
- the stack vias formed on the layer R2, the third non-penetrating via hole IVH3, and the stack vias formed on the insulating layer R4 and the insulating layer R5 are all arranged in a straight line with respect to the stacking direction of the multilayer wiring board 10. There is no arrangement.
- a hole is formed by a drill in the insulating layer R3 in which the wiring layer L3 and the wiring layer L4 are formed on both sides, and the inner wall of the hole is plated with copper and the internal space is formed. It is formed by filling with resin without performing lid plating. That is, since the third non-penetrating via hole IVH3 has a configuration in which the conductive via is not directly connected, the manufacturing cost is suppressed by not forming the lid plating.
- the multilayer substrate 4 according to the prior art is formed in the insulating layer R1 and the insulating layer R2 because the vicinity of both ends of the third non-penetrating via hole IVH3 is a wiring prohibited region as shown by two broken line ellipses in FIG. It becomes necessary to separate the stack via and the third non-penetrating via hole IVH3, and the distance between the stack via formed on the insulating layer R4 and the insulating layer R5 and the third non-penetrating via hole IVH3, and the pitch P2 of both is set. It will have to be set to about 450 ⁇ m.
- the multilayer board 4 according to the prior art migration is likely to occur due to damage to the insulating layer R3 due to the formation of IVH, so that other electronic components or the like are arranged in the vicinity of the third non-penetrating via hole IVH3. It cannot be done and the pitching of the gorge is hindered. Further, in the multilayer board 4 according to the prior art, the areas of the wiring layer L3 and the wiring layer L4 are limited by the wiring prohibition region described above.
- the chip component 40 is embedded in the insulating layer R3 of the multilayer wiring board 10, and each electrode terminal of the chip component 40 and the stack via 30 connected to the electrode terminal are provided.
- the outer layer wiring layers formed on both sides of the multilayer wiring board 10 are made conductive with each other. Therefore, in the high-density multilayer board 3, the pitch of two stack vias 30 arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards 10 can be set according to the dimensions of the chip component 40. ..
- the above-mentioned through via is formed in the high-density multilayer substrate 3 without using IVH formed by mechanical means, damage to the insulating layer R3 in which the chip component 40 is embedded is prevented. be able to.
- the present invention it is possible to provide a high-density multilayer substrate 3 capable of forming a gorge pitch while suppressing the occurrence of migration, instead of the multilayer substrate 4 on which a through via containing IVH is formed.
- the present invention is not limited to each of the above-described embodiments.
- the case where a capacitor or a resistor is adopted as the "chip component" is illustrated, but in the case of a square chip component for burying a substrate having electrode terminals at both ends, the through vias are multi-layer wiring.
- Various electronic components can be adopted as long as the circuit configuration of the plate 10 is not impaired.
- the embodiment in which one or two penetrating vias are formed through one chip component is illustrated, but more penetrating vias are formed through a plurality of chip components, which is more complicated.
- a circuit configuration may be constructed.
- a first aspect of the present invention is a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and comprises a multilayer wiring board in which a plurality of insulating layers and a plurality of wiring layers are alternately laminated.
- a pair of electrode terminals are provided at both ends, and the pair of electrode terminals are embedded in the insulating layer in a direction perpendicular to the stacking direction of the multilayer wiring board, and on both sides of the multilayer wiring board.
- It is a high-density multilayer substrate including each of the formed outer layer wiring layers and a stack via which conducts at least one of the pair of electrode terminals and is formed by stacking a plurality of laser vias.
- a chip component is embedded in an insulating layer in a multilayer wiring board, and a through via is formed through an electrode terminal of the chip component and a stack via connected thereto.
- the outer layer wiring layers formed on both sides of the multilayer wiring board are made conductive with each other. Therefore, in the high-density multilayer board, the pitch of two stack vias arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards can be set according to the dimensions of the chip component.
- the above-mentioned through via is formed in the high-density multilayer substrate without using IVH formed by mechanical means, it is possible to prevent damage to the insulating layer in which the chip component is embedded. ..
- the high-density multilayer board according to the first aspect of the present invention even if other electronic components or the like are arranged around the chip components constituting the penetrating vias, migration occurs between them. The risk can be suppressed, and the risk of hindering the pitching of the gorge can be reduced.
- the second aspect of the present invention is, in the first aspect of the present invention described above, the chip component is a high-density multilayer substrate whose dimensions are selected from standard products.
- the second aspect of the present invention for example, by adopting an existing chip component conforming to an industrial standard, a cost advantage can be obtained because it is a mass-produced product, and in mounting the chip component and conducting with a laser via. By patterning the manufacturing process, it is possible to provide a high-density multilayer substrate in which the manufacturing cost is reduced and the yield is also improved.
- a third aspect of the present invention is that in the first or second aspect of the present invention described above, the chip component is a capacitor, and each of the pair of electrode terminals is connected to both outer layer wiring layers. It is a high-density multilayer board.
- two electrically independent penetrating vias connecting the outer layer wiring layers formed on both sides of the multilayer wiring board are arranged at a gorge pitch without short-circuiting. Can be done.
- a fourth aspect of the present invention is, in the third aspect of the present invention described above, the capacitor is set so that the rated voltage is larger than the maximum potential difference assumed for the pair of electrode terminals. It is a multilayer board.
- a capacitor having a rated voltage larger than the maximum potential difference assumed between the two is selected.
- the chip component is a resistor, and each of the outer layer wiring layers is connected to one of the pair of electrode terminals. It is a high-density multilayer substrate.
- connection position of the through via formed on the multilayer wiring board with the outer layer wiring layer is different from each other on both sides of the multilayer wiring board, it depends on the dimensions of the chip component.
- the route of the penetrating via can be set, and the interval between the connection positions can be set to the gorge pitch.
- the resistor is a high-density multilayer substrate which is a zero-ohm resistor.
- the sixth aspect of the present invention it is possible to prevent a voltage drop due to a chip component in a penetrating via that conducts the outer layer wiring layers on both sides of the multilayer wiring board.
- a seventh aspect of the present invention is a method for manufacturing a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and is a pair of insulating layers formed by being laminated on a first wiring layer. Chip components provided with electrode terminals at both ends are embedded in a direction in which the pair of electrode terminals are separated in a direction perpendicular to the stacking direction, and a second wiring layer is provided on the surface of the insulating layer to form a double-sided plate.
- Each of the outer layer wiring layers formed on both sides of the multilayer wiring board is said to include a plate forming step and a multilayering step of forming the multilayer wiring board by multilayering the double-sided plates.
- This is a method for manufacturing a high-density multilayer substrate in which a stack via is formed by stacking a plurality of laser vias so as to be conductive with at least one of a pair of electrode terminals.
- a chip component is embedded in an insulating layer in a multilayer wiring board, via an electrode terminal of the chip component and a stack via connected to the chip component.
- the through vias the outer layer wiring layers formed on both sides of the multilayer wiring board are made conductive with each other. Therefore, in the high-density multilayer board, the pitch of two stack vias arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards can be set according to the dimensions of the chip component.
- the eighth aspect of the present invention is the method for manufacturing a high-density multilayer substrate in which the dimensions of the chip component are selected from standard products in the seventh aspect of the present invention described above.
- the eighth aspect of the present invention for example, by adopting an existing chip component conforming to an industrial standard, a cost advantage can be obtained because it is a mass-produced product, and in mounting the chip component and conducting with a laser via.
- By patterning the manufacturing process it is possible to provide a method for manufacturing a high-density multilayer substrate in which the manufacturing cost is reduced and the yield is also improved.
- a ninth aspect of the present invention is that in the seventh or eighth aspect of the present invention described above, the chip component is a capacitor, and each of the pair of electrode terminals is connected to both outer layer wiring layers. This is a method for manufacturing a high-density multilayer substrate.
- two electrically independent penetrating vias connecting the outer layer wiring layers formed on both sides of the multilayer wiring board are arranged at a gorge pitch without short-circuiting. Can be done.
- a tenth aspect of the present invention is a high density in which the rated voltage of the capacitor is set to be larger than the maximum potential difference assumed for the pair of electrode terminals in the ninth aspect of the present invention described above. This is a method for manufacturing a multilayer substrate.
- a capacitor having a rated voltage larger than the maximum potential difference assumed between the two is selected.
- the chip component is a resistor, and each of the outer layer wiring layers is connected to one of the pair of electrode terminals. This is a method for manufacturing a high-density multilayer substrate.
- connection position of the through via formed on the multilayer wiring board with the outer layer wiring layer is different from each other on both sides of the multilayer wiring board, it depends on the dimensions of the chip component.
- the route of the penetrating via can be set, and the interval between the connection positions can be set to the gorge pitch.
- the twelfth aspect of the present invention is the method for manufacturing a high-density multilayer substrate in which the resistor is a zero-ohm resistor in the eleventh aspect of the present invention described above.
- the twelfth aspect of the present invention it is possible to prevent a voltage drop due to a chip component in a penetrating via that conducts the outer layer wiring layers on both sides of the multilayer wiring board.
- Multilayer wiring board 10
- Chip parts 22
- 1st electrode terminal 23
- 2nd electrode terminal 30
- Stack vias R1 to R5 Insulation layer L1 to L6 Wiring layer
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
A high-density multilayer substrate 1, which replaces a multilayer substrate 2 having through-vias including an interstitial via hole (IVH), is provided with: a multilayer wiring board 10 in which a plurality of insulating layers R1 to R5 and a plurality of wiring layers L1 to L6 are stacked alternately; a chip component 20 which has a first electrode terminal 22 and a second electrode terminal 23 on both ends and is embedded in an insulating layer R3 in an orientation such that the electrode terminals are spaced apart from each other in a direction perpendicular to a stacking direction of the multilayer wiring board 10; and a stack via 30 which provides electrical continuity between each of the wiring layers L1 and L6 formed on both sides of the multilayer wiring board 10 and at least one of the first electrode terminal 22 and the second electrode terminal 23, and which is formed of a plurality of laser vias stacked upon one another.
Description
本発明は、高密度多層基板、及びその製造方法に関する。
The present invention relates to a high-density multilayer substrate and a method for manufacturing the same.
電気・電子機器に使用される回路基板は、近年の多機能化及び小型化に伴い、複数の配線層により積層化されると共に、各配線層を互いに接続する複数の導通ビアや基板を貫通して設けられる複数のスルーホールが峡ピッチで形成される傾向にある。ここで、多層基板を貫通するスルーホールは、多層基板に穿設される貫通孔の長さに応じて貫通孔の径が太くなり、実装面積を圧迫することになる。そのため、峡ピッチ化が必要な多層基板においては、各配線層を層間接続する複数のビアホールを介して両面の外層配線層を互いにさせることにより、スルーホールに替えて省スペース化された貫通ビアが形成されることが多い。
Circuit boards used in electrical and electronic equipment are laminated with a plurality of wiring layers due to the recent increase in functionality and miniaturization, and penetrate through a plurality of conductive vias and boards connecting the wiring layers to each other. There is a tendency for a plurality of through holes to be provided to be formed at a gorge pitch. Here, the through hole penetrating the multilayer board has a larger diameter of the through hole according to the length of the through hole formed in the multilayer board, which presses the mounting area. Therefore, in a multilayer board that requires a gorgeous pitch, through holes can be replaced with through holes to save space by making the outer layer wiring layers on both sides of each other via a plurality of via holes that connect each wiring layer. Often formed.
上記のような高密度多層基板は、各配線層の間隔が比較的小さいときにはレーザビアによる層間接続を行うことができるが、間隔が比較的大きいときにはアスペクト比の制約によりレーザビアを形成することができない場合がある。このため、比較的厚みのある絶縁層を有する多層基板においては、当該絶縁層にドリルによる孔あけ等の機械的な手段で貫通孔を形成し、絶縁層の両面の各配線層を互いに導通させる非貫通ビアホール(IVH:Interstitial Via Hole)を設けることにより、両面の外層配線層に導電路を形成することができる。
In the high-density multilayer board as described above, when the spacing between the wiring layers is relatively small, the interlayer connection can be performed by laser vias, but when the spacing is relatively large, the laser via cannot be formed due to the limitation of the aspect ratio. There is. Therefore, in a multilayer substrate having a relatively thick insulating layer, through holes are formed in the insulating layer by mechanical means such as drilling, and the wiring layers on both sides of the insulating layer are made conductive with each other. By providing a non-penetrating via hole (IVH: Interstitial Via Hole), a conductive path can be formed in the outer layer wiring layers on both sides.
より具体的には、IVHは、例えば特許文献1に開示されているように、ドリル加工により両面板に孔を穿設し、当該孔の内壁にめっき加工を施して両面の配線層と導通させると共に、孔内部に樹脂を充填することにより形成される。また、IVHは、孔内部の樹脂を封止する蓋めっきを形成することにより、隣接する絶縁層に設けられる導通ビアを積層方向に並べて配置することができる。
More specifically, in IVH, for example, as disclosed in Patent Document 1, a hole is drilled in a double-sided plate by drilling, and the inner wall of the hole is plated to be conductive with the wiring layers on both sides. At the same time, it is formed by filling the inside of the hole with a resin. Further, in IVH, by forming a lid plating that seals the resin inside the pores, the conductive vias provided in the adjacent insulating layers can be arranged side by side in the stacking direction.
さらに、IVHは、特許文献1に開示されているように、両面板に積層された絶縁層を介して接続される導通ビアをずらして配置することにより、蓋めっきの形成が不要となり製造コストを抑制することができる。
Further, as disclosed in Patent Document 1, IVH eliminates the need for lid plating and reduces the manufacturing cost by arranging the conductive vias connected via the insulating layer laminated on the double-sided plate in a staggered manner. It can be suppressed.
しかしながら、上記のように機械的な穿設孔によりIVHを形成した場合には、絶縁層に負荷が掛かることになるため、絶縁層に含まれるガラスクロスに沿って微小なクラックが発生し、IVHの近傍に配置される内蔵部品又は導通ビア等の隣接部品と当該IVHとが短絡するマイグレーションに繋がる虞が生じる。そのため、IVHが形成される高密度多層基板は、短絡を抑制するためにIVHと隣接部品とを離間して配置しなければならず、峡ピッチ化が妨げられる虞が生じる。特に、2つのIVHを隣接して配置する場合には、両者の間でマイグレーションが発生する虞がより高まることになる。
However, when IVH is formed by the mechanical drilling holes as described above, a load is applied to the insulating layer, so that minute cracks are generated along the glass cloth contained in the insulating layer, and IVH is generated. There is a risk of leading to migration in which the IVH is short-circuited with an adjacent component such as a built-in component or a conductive via placed in the vicinity of the IVH. Therefore, in the high-density multilayer substrate on which the IVH is formed, the IVH and the adjacent component must be arranged apart from each other in order to suppress a short circuit, which may hinder the pitching of the gorge. In particular, when two IVHs are arranged adjacent to each other, the possibility of migration occurring between the two IVHs increases.
本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、IVHを含む貫通ビアが形成された多層基板に代えて、マイグレーションの発生を抑制しつつ峡ピッチ化が可能な高密度多層基板、及びその製造方法を提供することにある。
The present invention has been made in view of such a situation, and an object of the present invention is to replace a multilayer substrate on which a penetrating via containing IVH is formed with a gorge pitch while suppressing the occurrence of migration. It is an object of the present invention to provide a possible high-density multilayer substrate and a method for manufacturing the same.
本発明に係る高密度多層基板は、IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板であって、複数の絶縁層及び複数の配線層が交互に積層された多層配線板と、一対の電極端子が両端に設けられ、前記一対の電極端子が前記多層配線板の積層方向に垂直な方向に離間する向きで前記絶縁層に埋設されるチップ部品と、前記多層配線板の両面に形成された外層配線層のそれぞれと前記一対の電極端子の少なくとも一方とを導通し、複数のレーザビアが重ねて形成されるスタックビアと、を備える。
The high-density multilayer substrate according to the present invention is a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and is a multilayer wiring board in which a plurality of insulating layers and a plurality of wiring layers are alternately laminated. , A pair of electrode terminals are provided at both ends, and a chip component embedded in the insulating layer in a direction in which the pair of electrode terminals are separated in a direction perpendicular to the stacking direction of the multilayer wiring board, and both sides of the multilayer wiring board. Each of the outer layer wiring layers formed in the above is conductive with at least one of the pair of electrode terminals, and a stack via is formed in which a plurality of laser vias are overlapped.
また、本発明に係る高密度多層基板の製造方法は、IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板の製造方法であって、第1配線層に積層して形成される絶縁層に、一対の電極端子が両端に設けられるチップ部品を、前記一対の電極端子が積層方向に垂直な方向に離間する向きで埋設し、前記絶縁層の表面に第2配線層を設けて両面板を形成する両面板形成工程と、前記両面板を多層化して多層配線板を形成する多層化工程と、を含み、前記多層化工程においては、前記多層配線板の両面に形成された外層配線層のそれぞれが前記一対の電極端子の少なくとも一方と導通するように、複数のレーザビアを重ねてスタックビアが形成される。
Further, the method for manufacturing a high-density multilayer substrate according to the present invention is a method for manufacturing a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and is formed by being laminated on a first wiring layer. A chip component having a pair of electrode terminals provided at both ends is embedded in the insulating layer in a direction in which the pair of electrode terminals are separated in a direction perpendicular to the stacking direction, and a second wiring layer is provided on the surface of the insulating layer. The double-sided plate forming step of forming the double-sided plate and the multi-layering step of forming the multi-layer wiring board by multi-layering the double-sided plate are included, and in the multi-layering step, the outer layers formed on both sides of the multi-layer wiring board are included. A stack via is formed by stacking a plurality of laser vias so that each of the wiring layers conducts with at least one of the pair of electrode terminals.
本発明によれば、IVHを含む貫通ビアが形成された多層基板に代えて、マイグレーションの発生を抑制しつつ峡ピッチ化が可能な高密度多層基板、及びその製造方法を提供することができる。
According to the present invention, instead of the multilayer substrate on which the through via containing IVH is formed, it is possible to provide a high-density multilayer substrate capable of forming a gorge pitch while suppressing the occurrence of migration, and a method for manufacturing the same.
以下、図面を参照し、本発明の実施の形態について詳細に説明する。尚、本発明は、以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described below, and the present invention can be arbitrarily modified and implemented without changing the gist thereof. In addition, the drawings used for explaining the embodiments are all schematically showing the constituent members, and are partially emphasized, enlarged, reduced, or omitted in order to deepen the understanding of the constituent members. It may not accurately represent the scale or shape.
また、本願におけるIVH(Interstitial Via Hole:非貫通ビアホール)とは、ドリルによる孔あけ等の機械的な手段により形成される導通ビアを意味し、レーザビア等の層間接続を含まないものとして説明する。
Further, IVH (Interstitial Via Hole: non-penetrating via hole) in the present application means a conductive via formed by mechanical means such as drilling with a drill, and will be described as not including an interlayer connection such as a laser via.
<第1実施形態>
図1は、本発明の第1実施形態に係る高密度多層基板1の断面図である。高密度多層基板1は、多層配線板10、チップ部品20、及びスタックビア30を備える。高密度多層基板1は、図示しない各種電子部品が実装されると共に、配線回路及びソルダレジストが適宜形成されることにより、例えば機械的強度に優れた車載用プリント配線板として使用することができる。 <First Embodiment>
FIG. 1 is a cross-sectional view of the high-density multilayer substrate 1 according to the first embodiment of the present invention. The high-density multilayer board 1 includes a multilayer wiring board 10, chip components 20, and stack vias 30. The high-density multilayer board 1 can be used, for example, as an in-vehicle printed wiring board having excellent mechanical strength by mounting various electronic components (not shown) and appropriately forming a wiring circuit and a solder resist.
図1は、本発明の第1実施形態に係る高密度多層基板1の断面図である。高密度多層基板1は、多層配線板10、チップ部品20、及びスタックビア30を備える。高密度多層基板1は、図示しない各種電子部品が実装されると共に、配線回路及びソルダレジストが適宜形成されることにより、例えば機械的強度に優れた車載用プリント配線板として使用することができる。 <First Embodiment>
FIG. 1 is a cross-sectional view of the high-
多層配線板10は、本実施形態においては、複数の絶縁層R1~R5及び複数の配線層L1~L6が交互に積層されて形成されるものとしているが、層数についてはこれに限定されるものではなく種々の変更が可能である。また、本実施形態における多層配線板10は、複数の絶縁層R1~R5のうち、中央の絶縁層R3が他と比較して厚く形成されている。
In the present embodiment, the multilayer wiring board 10 is formed by alternately laminating a plurality of insulating layers R1 to R5 and a plurality of wiring layers L1 to L6, but the number of layers is limited to this. It is not a thing and various changes are possible. Further, in the multilayer wiring board 10 of the present embodiment, the central insulating layer R3 is formed thicker than the others among the plurality of insulating layers R1 to R5.
チップ部品20は、多層配線板10の絶縁層R3に埋設される基板埋設用の角型チップ部品であり、例えば本実施形態では積層セラミックコンデンサ(MLCC: Multi-Layer Ceramic Capacitor)である。そして、チップ部品20は、寸法が規格品の中から選択され、例えば、平面視した場合に0.4mm×0.2mmの寸法を有する所謂「0402」や、0.3mm×0.15mmの寸法を有する所謂「03015」を採用することができる。
The chip component 20 is a square chip component for burying a substrate embedded in the insulating layer R3 of the multilayer wiring board 10. For example, in this embodiment, it is a multilayer ceramic capacitor (MLCC: Multi-Layer Ceramic Capacitor). The dimensions of the chip component 20 are selected from standard products. For example, the so-called "0402" having a dimension of 0.4 mm x 0.2 mm or a so-called "0402" having a dimension of 0.3 mm x 0.15 mm when viewed in a plan view. "03015" can be adopted.
スタックビア30は、複数のレーザビアが直線上に重ねて形成されることにより多層配線板10における層間接続を行う。本実施形態におけるスタックビア30は、第1スタックビア30a、第2スタックビア30b、第3スタックビア30c、及び第4スタックビア30dを含み、チップ部品20の一対の電極端子と多層配線板10の両面に形成された外層配線層とを導通している。
The stack via 30 is formed by stacking a plurality of laser vias on a straight line to form an interlayer connection in the multilayer wiring board 10. The stack via 30 in the present embodiment includes a first stack via 30a, a second stack via 30b, a third stack via 30c, and a fourth stack via 30d, and includes a pair of electrode terminals of the chip component 20 and a multilayer wiring board 10. It conducts with the outer layer wiring layer formed on both sides.
より具体的には、第1スタックビア30aは、チップ部品20の一方の電極端子、及び配線層L1において当該一方の電極端子に対向する位置に設けられる第1ランド31を互いに接続する。第2スタックビア30bは、チップ部品20の一方の電極端子、及び配線層L6において当該一方の電極端子に対向する位置に設けられる第2ランド32を互いに接続する。すなわち、高密度多層基板1は、第1スタックビア30a、一方の電極端子、及び第2スタックビア30bを介して、外層配線層としての配線層L1と配線層L6とが互いに導通される。
More specifically, the first stack via 30a connects one electrode terminal of the chip component 20 and a first land 31 provided at a position facing the one electrode terminal in the wiring layer L1 to each other. The second stack via 30b connects one electrode terminal of the chip component 20 and a second land 32 provided at a position facing the one electrode terminal in the wiring layer L6 to each other. That is, in the high-density multilayer board 1, the wiring layer L1 and the wiring layer L6 as the outer layer wiring layer are electrically conducted with each other via the first stack via 30a, one electrode terminal, and the second stack via 30b.
また、第3スタックビア30cは、チップ部品20の他方の電極端子、及び配線層L1において当該他方の電極端子に対向する位置に設けられる第3ランド33を互いに接続する。第4スタックビア30dは、チップ部品20の他方の電極端子、及び配線層L6において当該他方の電極端子に対向する位置に設けられる第4ランド34を互いに接続する。すなわち、高密度多層基板1は、第3スタックビア30c、他方の電極端子、及び第4スタックビア30dを介して、外層配線層としての配線層L1と配線層L6とが互いに導通される。
Further, the third stack via 30c connects the other electrode terminal of the chip component 20 and the third land 33 provided at a position facing the other electrode terminal in the wiring layer L1 to each other. The fourth stack via 30d connects the other electrode terminal of the chip component 20 and the fourth land 34 provided at a position facing the other electrode terminal in the wiring layer L6 to each other. That is, in the high-density multilayer board 1, the wiring layer L1 and the wiring layer L6 as the outer layer wiring layer are electrically conducted with each other via the third stack via 30c, the other electrode terminal, and the fourth stack via 30d.
すなわち、高密度多層基板1は、第1ランド31と第2ランド32とを直線的に結ぶスルーホール、及び第3ランド33と第4ランド34とを直線的に結ぶスルーホールを互いに隣接して形成する必要がある場合に、チップ部品20及びスタックビア30からなる図1の構造を多層配線板10に形成することで、2つのスルーホールに相当する導電路を峡ピッチで形成するものである。峡ピッチ化が可能となる理由については詳細を後述する。
That is, the high-density multilayer substrate 1 has a through hole that linearly connects the first land 31 and the second land 32 and a through hole that linearly connects the third land 33 and the fourth land 34 adjacent to each other. When it is necessary to form the structure, the structure of FIG. 1 composed of the chip component 20 and the stack via 30 is formed on the multilayer wiring board 10, so that the conductive paths corresponding to the two through holes are formed at a gorge pitch. .. The reason why the gorge pitching is possible will be described in detail later.
続いて、上記した高密度多層基板1の製造方法の一例について、図2乃至6を参照しながら説明する。高密度多層基板1の作成においては、まず、後の工程で配線層L4となる銅箔11にチップ部品20を実装する部品実装工程が行われる。図2は、第1実施形態に係る高密度多層基板1の部品実装工程を表す断面図である。
Subsequently, an example of the above-mentioned manufacturing method of the high-density multilayer substrate 1 will be described with reference to FIGS. 2 to 6. In the production of the high-density multilayer board 1, first, a component mounting step of mounting the chip component 20 on the copper foil 11 to be the wiring layer L4 is performed in a later step. FIG. 2 is a cross-sectional view showing a component mounting process of the high-density multilayer substrate 1 according to the first embodiment.
図2に示すように、チップ部品20は、「第1配線層」としての銅箔11の表面に印刷された接着剤12を介して銅箔11に実装される。ここで、接着剤12は、例えば樹脂などの絶縁性を有する材料からなり、銅箔11の表面においてチップ部品20が配置される場所に所定の厚みで設けられる。
As shown in FIG. 2, the chip component 20 is mounted on the copper foil 11 via an adhesive 12 printed on the surface of the copper foil 11 as a "first wiring layer". Here, the adhesive 12 is made of an insulating material such as resin, and is provided on the surface of the copper foil 11 at a place where the chip component 20 is arranged with a predetermined thickness.
チップ部品20は、より詳しくは、部品本体21と、部品本体21の両端にそれぞれ銅めっきで形成された「一対の電極端子」としての第1電極端子22及び第2電極端子23とから構成される。そして、チップ部品20は、第1電極端子22及び第2電極端子23の両方が接着剤12に接する向きで実装される。
More specifically, the chip component 20 is composed of a component body 21 and a first electrode terminal 22 and a second electrode terminal 23 as "a pair of electrode terminals" formed of copper plating on both ends of the component body 21. To. Then, the chip component 20 is mounted so that both the first electrode terminal 22 and the second electrode terminal 23 are in contact with the adhesive 12.
次に、チップ部品20が実装された銅箔11に樹脂層及び金属層を積層することにより、チップ部品20を内蔵する両面板を形成する。図3は、第1実施形態に係る高密度多層基板1の両面板形成工程を表す断面図である。
Next, a double-sided plate containing the chip component 20 is formed by laminating a resin layer and a metal layer on the copper foil 11 on which the chip component 20 is mounted. FIG. 3 is a cross-sectional view showing a double-sided plate forming step of the high-density multilayer substrate 1 according to the first embodiment.
両面板形成工程においては、銅箔11に実装されたチップ部品20が絶縁層R3により埋設されると共に、絶縁層R3の表面に「第2配線層」としての銅箔13が設けられることにより、絶縁層R3の両面に銅箔11及び銅箔13をそれぞれ備える両面板が形成される。
In the double-sided plate forming step, the chip component 20 mounted on the copper foil 11 is embedded by the insulating layer R3, and the copper foil 13 as the "second wiring layer" is provided on the surface of the insulating layer R3. A double-sided plate having a copper foil 11 and a copper foil 13 is formed on both sides of the insulating layer R3.
ここで、絶縁層R3は、例えばガラスクロスにエポキシ樹脂を含浸して形成されるガラスエポキシ樹脂であるが、ガラスクロスを含まないプリプレグを採用してもよい。また、絶縁層R3は、チップ部品20以外の図示しない電子部品等を埋設してもよい。
Here, the insulating layer R3 is, for example, a glass epoxy resin formed by impregnating a glass cloth with an epoxy resin, but a prepreg that does not contain the glass cloth may be adopted. Further, the insulating layer R3 may be embedded with an electronic component (not shown) other than the chip component 20.
次に、両面板に内蔵されるチップ部品20の導電路を確保するための孔あけ工程が行われる。図4は、第1実施形態に係る高密度多層基板1の孔あけ工程を表す断面図である。
Next, a drilling process is performed to secure a conductive path for the chip component 20 built in the double-sided plate. FIG. 4 is a cross-sectional view showing a drilling step of the high-density multilayer substrate 1 according to the first embodiment.
孔あけ工程においては、図4に示すように、銅箔11及び銅箔13のそれぞれからチップ部品20の第1電極端子22及び第2電極端子23のそれぞれに向けて、例えばCO2レーザによりビアホール14が形成される。これにより、第1電極端子22及び第2電極端子23の金属面が露出することになる。尚、ビアホール14の形成においては、適宜デスミア処理を施し、孔内部に残留している絶縁樹脂を除去することが好ましい。また、ビアホール14の形成によって露出した各電極端子には更にソフトエッチング処理を施し、露出面の酸化物や有機物を除去することが好ましい。これにより、被覆形成が無く金属の表面が露出することになり、その後のめっき処理において析出する金属との密着性が高まり、結果として電気的な接続信頼性が向上する。
In the drilling step, as shown in FIG. 4, via holes are made from the copper foil 11 and the copper foil 13 toward the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20, for example, by a CO 2 laser. 14 is formed. As a result, the metal surfaces of the first electrode terminal 22 and the second electrode terminal 23 are exposed. In forming the via hole 14, it is preferable to appropriately perform a desmear treatment to remove the insulating resin remaining inside the hole. Further, it is preferable that each electrode terminal exposed by the formation of the via hole 14 is further subjected to a soft etching treatment to remove oxides and organic substances on the exposed surface. As a result, the surface of the metal is exposed without forming a coating, and the adhesion with the metal precipitated in the subsequent plating treatment is enhanced, and as a result, the electrical connection reliability is improved.
次に、銅箔11及び銅箔13と第1電極端子22及び第2電極端子23とを導通させると共に、銅箔11及び銅箔13をそれぞれ配線層L3及び配線層L4にするためのめっき処理が行われる。図5は、第1実施形態に係る高密度多層基板1のめっき処理工程を表す断面図である。
Next, the copper foil 11 and the copper foil 13 are made conductive with the first electrode terminal 22 and the second electrode terminal 23, and the copper foil 11 and the copper foil 13 are plated to form the wiring layer L3 and the wiring layer L4, respectively. Is done. FIG. 5 is a cross-sectional view showing a plating process of the high-density multilayer substrate 1 according to the first embodiment.
めっき処理工程においては、両面板の銅箔11及び銅箔13とビアホール14とに銅めっきを施すことで、ビアホール14が銅めっきで充填されたフィルドビア15が形成されると共に、フィルドビア15と導通する銅箔11及び銅箔13の厚みが増加する。
In the plating process, the copper foil 11 and the copper foil 13 of the double-sided plate and the via hole 14 are plated with copper to form a filled via 15 in which the via hole 14 is filled with copper plating, and the via hole 14 is electrically connected to the filled via 15. The thickness of the copper foil 11 and the copper foil 13 increases.
そして、厚みが増加した銅箔11及び銅箔13に回路を形成して配線層L3及び配線層L4とするためのパターニング処理が行われる。図6は、第1実施形態に係る高密度多層基板1のパターニング工程を表す断面図である。
Then, a patterning process is performed to form a circuit on the thickened copper foil 11 and the copper foil 13 to form the wiring layer L3 and the wiring layer L4. FIG. 6 is a cross-sectional view showing a patterning process of the high-density multilayer substrate 1 according to the first embodiment.
パターニング工程においては、図6に示すように、銅箔11及び銅箔13からなる導体層を例えば公知のフォトリソグラフィにより所望の回路パターンに加工することで、配線層L3及び配線層L4を形成することができる。
In the patterning step, as shown in FIG. 6, the wiring layer L3 and the wiring layer L4 are formed by processing the conductor layer composed of the copper foil 11 and the copper foil 13 into a desired circuit pattern by, for example, known photolithography. be able to.
このとき、配線層L3及び配線層L4におけるフィルドビア15と接続される部分には、後の工程でスタックビア30を形成するためにランド16が形成される。
At this time, a land 16 is formed in the portion of the wiring layer L3 and the wiring layer L4 connected to the filled via 15 in order to form the stack via 30 in a later step.
そして、図6に示す両面配線板に対して、複数の樹脂層及び複数の金属層を積層する公知のビルドアップ工法を適用することで、図1に示す多層配線板10が形成される。すなわち、図6に示す両面配線板の両面に対して、樹脂層の積層、銅箔の積層、レーザビアの形成、銅めっき処理、及びパターニング処理の一連の工程による配線層の追加を繰り返す多層化工程により多層配線板10を形成することができる。尚、基板の多層化については従来の公知技術を採用することができるため、ここでは詳細な説明を省略する。
Then, by applying a known build-up method of laminating a plurality of resin layers and a plurality of metal layers to the double-sided wiring board shown in FIG. 6, the multilayer wiring board 10 shown in FIG. 1 is formed. That is, a multi-layering step of repeating the addition of wiring layers on both sides of the double-sided wiring board shown in FIG. 6 by a series of steps of laminating resin layers, laminating copper foils, forming laser vias, copper plating treatment, and patterning treatment. The multilayer wiring board 10 can be formed. Since a conventional known technique can be adopted for the multi-layered substrate, detailed description thereof will be omitted here.
ただし、本発明の高密度多層基板1は、上記の多層化工程において、チップ部品20の第1電極端子22及び第2電極端子23に対応する位置において上記のスタックビア30が形成される。より具体的には、図1に示す高密度多層基板1は、ビルドアップにより層を追加するごとに、チップ部品20の第1電極端子22及び第2電極端子23に対して直線上に導通するフィルドビア15を重ねて形成することで、4つのスタックビア30が構成される。これにより、高密度多層基板1は、第1電極端子22及び第2電極端子23をそれぞれ介して、配線層L1と配線層L6とを導通する互いに独立した2つの導電路が形成される。
However, in the high-density multilayer substrate 1 of the present invention, the stack via 30 is formed at a position corresponding to the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20 in the multilayering step. More specifically, the high-density multilayer board 1 shown in FIG. 1 conducts linearly with respect to the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20 each time a layer is added by build-up. By forming the field vias 15 on top of each other, four stack vias 30 are formed. As a result, in the high-density multilayer substrate 1, two independent conductive paths conducting the wiring layer L1 and the wiring layer L6 are formed via the first electrode terminal 22 and the second electrode terminal 23, respectively.
続いて、本発明の作用効果について説明する。図7は、第1実施形態に係る高密度多層基板1の作用効果を説明する断面図である。図7においては、図1と同様の高密度多層基板1の構成が示されている。
Subsequently, the action and effect of the present invention will be described. FIG. 7 is a cross-sectional view illustrating the operation and effect of the high-density multilayer substrate 1 according to the first embodiment. In FIG. 7, the configuration of the high-density multilayer substrate 1 similar to that in FIG. 1 is shown.
本発明の第1実施形態に係る高密度多層基板1は、上記したように、チップ部品20の一対の電極端子のそれぞれが両方の外層配線層にそれぞれ接続されている。すなわち、高密度多層基板1は、第1スタックビア30a、第1電極端子22、及び第2スタックビア30bにより一方の貫通ビアが構成され、第3スタックビア30c、第2電極端子23、及び第4スタックビア30dにより他方の貫通ビアが構成される。
In the high-density multilayer substrate 1 according to the first embodiment of the present invention, as described above, each of the pair of electrode terminals of the chip component 20 is connected to both outer layer wiring layers. That is, in the high-density multilayer board 1, one through via is formed by the first stack via 30a, the first electrode terminal 22, and the second stack via 30b, and the third stack via 30c, the second electrode terminal 23, and the second stack via 30b are formed. The other penetrating via is formed by the four stack vias 30d.
ここで、スタックビア30のそれぞれは、従来のレーザビア形成手段により、例えばレーザビアの直径W1を75μm、ランド16の直径W2を150μm、隣接するランド間隔W3を100μmとして形成することができる。
Here, each of the stack vias 30 can be formed by, for example, a laser via diameter W1 of 75 μm, a land 16 diameter W2 of 150 μm, and an adjacent land spacing W3 of 100 μm by a conventional laser via forming means.
そして、高密度多層基板1は、チップ部品20の第1電極端子22及び第2電極端子23を介して構成される2つの貫通ビアが、チップ部品20の寸法に応じた離間間隔で配置されることになる。このとき、双方の貫通ビアは、コンデンサとしてのチップ部品20の特性により電気的に遮断されているため、印加される電位が互いに異なる場合であっても短絡が生じることなく独立した導電路として構成されることになる。尚、チップ部品20としてのコンデンサは、定格電圧が双方の貫通ビアの間に想定される最大電位差よりも大きくなるように設定されることで、より確実に短絡を防止することができる。
Then, in the high-density multilayer board 1, two penetrating vias formed via the first electrode terminal 22 and the second electrode terminal 23 of the chip component 20 are arranged at intervals according to the dimensions of the chip component 20. It will be. At this time, since both through vias are electrically cut off due to the characteristics of the chip component 20 as a capacitor, they are configured as independent conductive paths without causing a short circuit even when the applied potentials are different from each other. Will be done. The capacitor as the chip component 20 is set so that the rated voltage is larger than the maximum potential difference assumed between both through vias, so that a short circuit can be prevented more reliably.
これにより、高密度多層基板1は、例えばチップ部品20の規格が「0402」である場合には、互いの貫通ビアのピッチP1を約250μmに抑えることができる。また、高密度多層基板1は、例えばチップ部品20の規格が「03015」である場合には、互いの貫通ビアのピッチP1を約200μmに抑えることができる。
As a result, in the high-density multilayer board 1, for example, when the standard of the chip component 20 is "0402", the pitch P1 of the penetrating vias of each other can be suppressed to about 250 μm. Further, in the high-density multilayer board 1, for example, when the standard of the chip component 20 is "03015", the pitch P1 of the penetrating vias of each other can be suppressed to about 200 μm.
また、高密度多層基板1は、機械的な手段で形成されるIVHを使用することなく上記の貫通ビアが形成されているため、製造過程における絶縁層R3の損傷を防止することができる。このため、高密度多層基板1は、チップ部品20の周囲に他の電子部品等が配置されていても、これらの間にマイグレーションが発生する虞を抑制でき、峡ピッチ化が妨げられる虞を低減することができる。
Further, since the above-mentioned through via is formed in the high-density multilayer substrate 1 without using IVH formed by mechanical means, damage to the insulating layer R3 in the manufacturing process can be prevented. Therefore, in the high-density multilayer board 1, even if other electronic components or the like are arranged around the chip component 20, the possibility of migration occurring between them can be suppressed, and the possibility of hindering the pitching of the gorge is reduced. can do.
次に、本発明に係る高密度多層基板1に対する比較例として、IVHを利用した2つの貫通ビアを隣接して配置する従来技術について説明する。図8は、IVHを含む貫通ビアが形成された従来技術に係る多層基板2の断面図である。図8に示す多層基板2の内部構成は、配線層L3と配線層L4とがIVHにより導通されている点において上記した本発明の高密度多層基板1と異なる。
Next, as a comparative example with respect to the high-density multilayer substrate 1 according to the present invention, a conventional technique in which two penetrating vias using IVH are arranged adjacent to each other will be described. FIG. 8 is a cross-sectional view of the multilayer substrate 2 according to the prior art in which a through via containing IVH is formed. The internal configuration of the multilayer board 2 shown in FIG. 8 is different from the high-density multilayer board 1 of the present invention described above in that the wiring layer L3 and the wiring layer L4 are conducted by IVH.
より具体的には、従来技術に係る多層基板2は、絶縁層R3に形成された第1非貫通ビアホールIVH1を介して一方の貫通ビアが構成され、絶縁層R3に形成された第2非貫通ビアホールIVH2を介して他方の貫通ビアが構成されている。ここで、それぞれのIVHは、両面に配線層L3及び配線層L4がそれぞれ形成された絶縁層R3にドリルで孔を形成し、当該孔の内壁に銅めっきを施すと共に、内部空間に樹脂を充填することにより形成される。また、IVHは、図8で示すように、孔内部の樹脂を封止する蓋めっきを形成することにより、当該蓋めっきを介して導通ビアを直接接続することができる。
More specifically, in the multilayer substrate 2 according to the prior art, one through via is formed through the first non-penetrating via hole IVH1 formed in the insulating layer R3, and the second non-penetrating via is formed in the insulating layer R3. The other penetrating via is configured through the via hole IVH2. Here, in each IVH, a hole is formed by a drill in the insulating layer R3 in which the wiring layer L3 and the wiring layer L4 are formed on both sides, copper plating is applied to the inner wall of the hole, and the internal space is filled with resin. It is formed by doing. Further, as shown in FIG. 8, the IVH can directly connect the conductive via through the lid plating by forming the lid plating that seals the resin inside the hole.
しかしながら、従来技術に係る多層基板2は、第1非貫通ビアホールIVH1及び第2非貫通ビアホールIVH2の形成において、ドリルによる機械的な牙設が行われることにより孔の径が約100μmに達し、これに伴いIVHの両端におけるランドの直径W2が約300μmとなってしまう。
However, the multilayer substrate 2 according to the prior art has a hole diameter of about 100 μm due to mechanical fangs being drilled in the formation of the first non-penetrating via hole IVH1 and the second non-penetrating via hole IVH2. As a result, the land diameter W2 at both ends of the IVH becomes about 300 μm.
また、従来技術に係る多層基板2は、IVHの形成に伴い絶縁層R3が損傷されることでマイグレーションが発生し易く、絶縁層R3が一般材料で形成される場合には、第1非貫通ビアホールIVH1と第2非貫通ビアホールIVH2との短絡を防止するために両者の間隔W4を0.4mm以上に設定する必要が生じる。尚、絶縁層R3を高信頼性材料で形成して絶縁性を向上させる場合であっても、両者の間隔W4を0.25mm以上に設定する必要がある。
Further, in the multilayer substrate 2 according to the prior art, migration is likely to occur due to damage to the insulating layer R3 due to the formation of IVH, and when the insulating layer R3 is formed of a general material, the first non-penetrating via hole In order to prevent a short circuit between the IVH1 and the second non-penetrating via hole IVH2, it is necessary to set the distance W4 between the two to 0.4 mm or more. Even when the insulating layer R3 is formed of a highly reliable material to improve the insulating property, it is necessary to set the distance W4 between the two to 0.25 mm or more.
このため、従来技術に係る多層基板2は、たとえIVHの両端におけるランドの間隔W3を50μmに抑えたとしても、短絡に対する信頼性を確保するために、互いの貫通ビアのピッチP2を約350μmに設定しなければならず、また、第1非貫通ビアホールIVH1及び第2非貫通ビアホールIVH2の近傍には他の電子部品等を配置できず、峡ピッチ化が妨げられてしまう。
Therefore, in the multilayer board 2 according to the prior art, even if the land spacing W3 at both ends of the IVH is suppressed to 50 μm, the pitch P2 of the penetrating vias of each other is set to about 350 μm in order to ensure reliability against a short circuit. It must be set, and other electronic components and the like cannot be arranged in the vicinity of the first non-penetrating via hole IVH1 and the second non-penetrating via hole IVH2, which hinders the pitching of the gorge.
以上のように、本発明に係る高密度多層基板1は、多層配線板10における絶縁層R3にチップ部品20が埋設され、チップ部品20の各電極端子、及びこれに接続されるスタックビア30を介した貫通ビアが形成されることにより、多層配線板10の両面に形成された外層配線層同士が導通される。このため、高密度多層基板1は、チップ部品20の寸法に応じて、多層配線板10の積層方向に垂直な方向に離間して配置される2つのスタックビア30のピッチを設定することができる。このとき、高密度多層基板1は、機械的な手段で形成されるIVHを使用することなく上記の貫通ビアが形成されているため、チップ部品20が埋設される絶縁層R3の損傷を防止することができる。
As described above, in the high-density multilayer board 1 according to the present invention, the chip component 20 is embedded in the insulating layer R3 of the multilayer wiring board 10, and each electrode terminal of the chip component 20 and the stack via 30 connected to the electrode terminal are provided. By forming the penetrating vias through the layers, the outer layer wiring layers formed on both sides of the multilayer wiring board 10 are made conductive with each other. Therefore, in the high-density multilayer board 1, the pitch of two stack vias 30 arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards 10 can be set according to the dimensions of the chip component 20. .. At this time, since the above-mentioned through via is formed in the high-density multilayer substrate 1 without using IVH formed by mechanical means, damage to the insulating layer R3 in which the chip component 20 is embedded is prevented. be able to.
これにより、高密度多層基板1は、貫通ビアを構成するチップ部品20の周囲に他の電子部品等が配置されていても、これらの間にマイグレーションが発生する虞を抑制でき、峡ピッチ化が妨げられる虞を低減することができる。従って、本発明によれば、IVHを含む貫通ビアが形成された多層基板2に代えて、マイグレーションの発生を抑制しつつ峡ピッチ化が可能な高密度多層基板1を提供することができる。
As a result, in the high-density multilayer board 1, even if other electronic components or the like are arranged around the chip component 20 constituting the penetrating via, the possibility of migration occurring between them can be suppressed, and the gorge pitch can be increased. The risk of being hindered can be reduced. Therefore, according to the present invention, it is possible to provide a high-density multilayer substrate 1 capable of forming a gorge pitch while suppressing the occurrence of migration, instead of the multilayer substrate 2 on which the through vias containing IVH are formed.
<第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態に係る高密度多層基板3は、上記した第1実施形態の高密度多層基板1に対して、内蔵されるチップ部品40が抵抗器であり、且つ第2スタックビア30b及び第3スタックビア30cを備えない代わりに配線層L1~L6の面積が拡張されている。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。尚、高密度多層基板3は、製造方法における各工程が上記した第1実施形態の高密度多層基板1とほぼ共通するため、製法についての詳細な説明は省略する。 <Second Embodiment>
Next, the second embodiment of the present invention will be described. In the high-density multilayer board 3 according to the second embodiment, the chip component 40 incorporated in the high-density multilayer board 1 of the first embodiment described above is a resistor, and the second stack via 30b and the third stack via 30b and the third. The area of the wiring layers L1 to L6 is expanded instead of not providing the stack via 30c. Hereinafter, the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted. Since each step in the manufacturing method of the high-density multilayer substrate 3 is almost the same as that of the high-density multilayer substrate 1 of the first embodiment described above, detailed description of the manufacturing method will be omitted.
次に、本発明の第2実施形態について説明する。第2実施形態に係る高密度多層基板3は、上記した第1実施形態の高密度多層基板1に対して、内蔵されるチップ部品40が抵抗器であり、且つ第2スタックビア30b及び第3スタックビア30cを備えない代わりに配線層L1~L6の面積が拡張されている。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。尚、高密度多層基板3は、製造方法における各工程が上記した第1実施形態の高密度多層基板1とほぼ共通するため、製法についての詳細な説明は省略する。 <Second Embodiment>
Next, the second embodiment of the present invention will be described. In the high-
図9は、本発明の第2実施形態に係る高密度多層基板3の断面図である。第2実施形態の高密度多層基板3におけるチップ部品40は、上記した第1実施形態に係るチップ部品20と同様に、基板埋設用の角型チップ部品であり、部品形状がチップ部品20と共通している。一方、第2実施形態におけるチップ部品40は、抵抗器であるため、第1電極端子22と第2電極端子23との間における通電が許容されている。
FIG. 9 is a cross-sectional view of the high-density multilayer substrate 3 according to the second embodiment of the present invention. The chip component 40 in the high-density multilayer substrate 3 of the second embodiment is a square chip component for embedding a substrate, like the chip component 20 according to the first embodiment described above, and has the same component shape as the chip component 20. doing. On the other hand, since the chip component 40 in the second embodiment is a resistor, energization between the first electrode terminal 22 and the second electrode terminal 23 is permitted.
そのため、第2実施形態に係る高密度多層基板3は、配線層L1に形成される第1ランド31と配線層L6に形成される第4ランド34とが、第1スタックビア30a、チップ部品40、及び第4スタックビア30dを介して導通する貫通ビアを備えることになる。すなわち、高密度多層基板3は、基板積層方向において直線上に並ばない第1ランド31と第4ランド34との導通を図る場合に採用される貫通ビアが形成されている。
Therefore, in the high-density multilayer board 3 according to the second embodiment, the first land 31 formed on the wiring layer L1 and the fourth land 34 formed on the wiring layer L6 have a first stack via 30a and a chip component 40. , And a through via that conducts through the fourth stack via 30d. That is, the high-density multilayer board 3 is formed with through vias that are used to conduct conduction between the first land 31 and the fourth land 34 that are not aligned in a straight line in the substrate stacking direction.
ここで、チップ部品40は、貫通ビアの一部の区間に相当する導通路として、その抵抗値が出来るだけ低く設定されるのが好適であり、本実施形態においてはゼロオーム抵抗器が採用されている。
Here, it is preferable that the resistance value of the chip component 40 is set as low as possible as a conduction path corresponding to a part of the through via, and in the present embodiment, a zero ohm resistor is adopted. There is.
また、チップ部品40は、本実施形態においても寸法が規格品の中から選択される。このため、第2実施形態に係る高密度多層基板3は、第1スタックビア30aと第4スタックビア30dとの間隔をチップ部品40の寸法に応じて設定することができる。これにより、第2実施形態に係る高密度多層基板3は、上記した第1実施形態と同様に、例えばチップ部品40の規格が「0402」である場合には、第1スタックビア30aと第4スタックビア30dとのピッチP3を約250μmに抑えることができ、例えばチップ部品40の規格が「03015」である場合には、ピッチP3を約200μmに抑えることができる。
Further, the size of the chip component 40 is selected from the standard products also in this embodiment. Therefore, in the high-density multilayer board 3 according to the second embodiment, the distance between the first stack via 30a and the fourth stack via 30d can be set according to the dimensions of the chip component 40. As a result, the high-density multilayer board 3 according to the second embodiment has the same as the first embodiment described above, for example, when the standard of the chip component 40 is "0402", the first stack via 30a and the fourth stack via 30a. The pitch P3 with the stack via 30d can be suppressed to about 250 μm. For example, when the standard of the chip component 40 is “03015”, the pitch P3 can be suppressed to about 200 μm.
また、第2実施形態に係る高密度多層基板3は、上記した第1実施形態と同様に、機械的な手段で形成されるIVHを使用することなく上記の貫通ビアが形成されているため、製造過程における絶縁層R3の損傷を防止することができる。このため、高密度多層基板3は、チップ部品40の周囲に他の電子部品等が配置されていても、これらの間にマイグレーションが発生する虞を抑制でき、峡ピッチ化することができる。
Further, in the high-density multilayer substrate 3 according to the second embodiment, the penetrating via is formed without using IVH formed by mechanical means, as in the first embodiment described above. Damage to the insulating layer R3 in the manufacturing process can be prevented. Therefore, in the high-density multilayer board 3, even if other electronic components or the like are arranged around the chip component 40, the possibility of migration occurring between them can be suppressed, and the pitch can be increased.
さらに、第2実施形態に係る高密度多層基板3は、チップ部品40の各電極端子の上面又は下面の一方がレーザビアにより接続されていないため、この部分に対向する位置において配線層L3及び配線層L4を拡張して有効に利用することもできる。
Further, in the high-density multilayer board 3 according to the second embodiment, since one of the upper surface or the lower surface of each electrode terminal of the chip component 40 is not connected by the laser via, the wiring layer L3 and the wiring layer are located at positions facing the portions. It is also possible to extend L4 and use it effectively.
次に、本発明に係る高密度多層基板3に対する比較例として、IVHを介して形成される貫通ビアと配線層L1及び配線層L6との接続位置が多層配線板10の両面で対向しない場合の従来技術について説明する。図10は、IVHを含む貫通ビアが形成された従来技術に係る多層基板4の断面図である。図10に示す多層基板4の内部構成は、配線層L3と配線層L4とがIVHにより導通されている点において上記した本発明の高密度多層基板3と異なる。
Next, as a comparative example with respect to the high-density multilayer substrate 3 according to the present invention, there is a case where the connection positions of the through via formed via the IVH and the wiring layer L1 and the wiring layer L6 do not face each other on both sides of the multilayer wiring board 10. The prior art will be described. FIG. 10 is a cross-sectional view of the multilayer substrate 4 according to the prior art in which a through via containing IVH is formed. The internal configuration of the multilayer board 4 shown in FIG. 10 is different from the high-density multilayer board 3 of the present invention described above in that the wiring layer L3 and the wiring layer L4 are conducted by IVH.
より具体的には、従来技術に係る多層基板4は、絶縁層R3に形成された第3非貫通ビアホールIVH3を介して配線層L3と配線層L4とが導通されており、絶縁層R1と絶縁層R2とに形成されたスタックビア、第3非貫通ビアホールIVH3、及び絶縁層R4と絶縁層R5とに形成されたスタックビアが、いずれも多層配線板10の積層方向に対して直線上に並ばない配置となっている。
More specifically, in the multilayer board 4 according to the prior art, the wiring layer L3 and the wiring layer L4 are conducted through the third non-penetrating via hole IVH3 formed in the insulating layer R3, and are insulated from the insulating layer R1. The stack vias formed on the layer R2, the third non-penetrating via hole IVH3, and the stack vias formed on the insulating layer R4 and the insulating layer R5 are all arranged in a straight line with respect to the stacking direction of the multilayer wiring board 10. There is no arrangement.
ここで、第3非貫通ビアホールIVH3は、両面に配線層L3及び配線層L4がそれぞれ形成された絶縁層R3にドリルで孔を形成し、当該孔の内壁に銅めっきを施すと共に、内部空間に樹脂を充填することにより、蓋めっきを行うことなく形成されている。すなわち、第3非貫通ビアホールIVH3は、導通ビアを直接接続しない構成であることから、蓋めっきの形成を行わないことで製造コストを抑制している。
Here, in the third non-penetrating via hole IVH3, a hole is formed by a drill in the insulating layer R3 in which the wiring layer L3 and the wiring layer L4 are formed on both sides, and the inner wall of the hole is plated with copper and the internal space is formed. It is formed by filling with resin without performing lid plating. That is, since the third non-penetrating via hole IVH3 has a configuration in which the conductive via is not directly connected, the manufacturing cost is suppressed by not forming the lid plating.
しかしながら、従来技術に係る多層基板4は、図10において2つの破線楕円で示すように、第3非貫通ビアホールIVH3の両端付近が配線禁止領域となるため、絶縁層R1及び絶縁層R2に形成されるスタックビアと第3非貫通ビアホールIVH3との間隔、及び絶縁層R4及び絶縁層R5に形成されるスタックビアと第3非貫通ビアホールIVH3との間隔を離間させる必要が生じ、両者のピッチP2を約450μmに設定しなければならなくなる。
However, the multilayer substrate 4 according to the prior art is formed in the insulating layer R1 and the insulating layer R2 because the vicinity of both ends of the third non-penetrating via hole IVH3 is a wiring prohibited region as shown by two broken line ellipses in FIG. It becomes necessary to separate the stack via and the third non-penetrating via hole IVH3, and the distance between the stack via formed on the insulating layer R4 and the insulating layer R5 and the third non-penetrating via hole IVH3, and the pitch P2 of both is set. It will have to be set to about 450 μm.
また、従来技術に係る多層基板4は、IVHの形成に伴い絶縁層R3が損傷されることでマイグレーションが発生し易くなるため、第3非貫通ビアホールIVH3の近傍には他の電子部品等を配置できず峡ピッチ化が妨げられてしまう。さらに、従来技術に係る多層基板4は、上記した配線禁止領域により配線層L3及び配線層L4の面積が制限されることにもなる。
Further, in the multilayer board 4 according to the prior art, migration is likely to occur due to damage to the insulating layer R3 due to the formation of IVH, so that other electronic components or the like are arranged in the vicinity of the third non-penetrating via hole IVH3. It cannot be done and the pitching of the gorge is hindered. Further, in the multilayer board 4 according to the prior art, the areas of the wiring layer L3 and the wiring layer L4 are limited by the wiring prohibition region described above.
以上のように、本発明に係る高密度多層基板3は、多層配線板10における絶縁層R3にチップ部品40が埋設され、チップ部品40の各電極端子、及びこれに接続されるスタックビア30を介した貫通ビアが形成されることにより、多層配線板10の両面に形成された外層配線層同士が導通される。このため、高密度多層基板3は、チップ部品40の寸法に応じて、多層配線板10の積層方向に垂直な方向に離間して配置される2つのスタックビア30のピッチを設定することができる。このとき、高密度多層基板3は、機械的な手段で形成されるIVHを使用することなく上記の貫通ビアが形成されているため、チップ部品40が埋設される絶縁層R3の損傷を防止することができる。
As described above, in the high-density multilayer board 3 according to the present invention, the chip component 40 is embedded in the insulating layer R3 of the multilayer wiring board 10, and each electrode terminal of the chip component 40 and the stack via 30 connected to the electrode terminal are provided. By forming the penetrating vias through the layers, the outer layer wiring layers formed on both sides of the multilayer wiring board 10 are made conductive with each other. Therefore, in the high-density multilayer board 3, the pitch of two stack vias 30 arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards 10 can be set according to the dimensions of the chip component 40. .. At this time, since the above-mentioned through via is formed in the high-density multilayer substrate 3 without using IVH formed by mechanical means, damage to the insulating layer R3 in which the chip component 40 is embedded is prevented. be able to.
これにより、高密度多層基板3は、貫通ビアを構成するチップ部品40の周囲に他の電子部品等が配置されていても、これらの間にマイグレーションが発生する虞を抑制でき、峡ピッチ化が妨げられる虞を低減することができる。従って、本発明によれば、IVHを含む貫通ビアが形成された多層基板4に代えて、マイグレーションの発生を抑制しつつ峡ピッチ化が可能な高密度多層基板3を提供することができる。
As a result, in the high-density multilayer board 3, even if other electronic components or the like are arranged around the chip component 40 constituting the through via, the possibility of migration occurring between them can be suppressed, and the gorge pitch can be increased. The risk of being hindered can be reduced. Therefore, according to the present invention, it is possible to provide a high-density multilayer substrate 3 capable of forming a gorge pitch while suppressing the occurrence of migration, instead of the multilayer substrate 4 on which a through via containing IVH is formed.
以上で実施形態の説明を終えるが、本発明は上記した各実施形態に限定されるものではない。例えば、上記の各実施形態では、「チップ部品」としてコンデンサ又は抵抗器を採用する場合を例示したが、両端に電極端子を備える基板埋設用の角型チップ部品であれば、貫通ビアが多層配線板10の回路構成を阻害しない限りにおいて、種々の電子部品を採用することができる。また、上記の各実施形態では、1つのチップ部品を介した1又は2の貫通ビアを形成する形態を例示したが、複数のチップ部品を介して更に多くの貫通ビアを形成し、より複雑な回路構成を構築してもよい。
Although the description of the embodiment is completed above, the present invention is not limited to each of the above-described embodiments. For example, in each of the above embodiments, the case where a capacitor or a resistor is adopted as the "chip component" is illustrated, but in the case of a square chip component for burying a substrate having electrode terminals at both ends, the through vias are multi-layer wiring. Various electronic components can be adopted as long as the circuit configuration of the plate 10 is not impaired. Further, in each of the above embodiments, the embodiment in which one or two penetrating vias are formed through one chip component is illustrated, but more penetrating vias are formed through a plurality of chip components, which is more complicated. A circuit configuration may be constructed.
<本発明の実施態様>
本発明の第1の態様は、IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板であって、複数の絶縁層及び複数の配線層が交互に積層された多層配線板と、一対の電極端子が両端に設けられ、前記一対の電極端子が前記多層配線板の積層方向に垂直な方向に離間する向きで前記絶縁層に埋設されるチップ部品と、前記多層配線板の両面に形成された外層配線層のそれぞれと前記一対の電極端子の少なくとも一方とを導通し、複数のレーザビアが重ねて形成されるスタックビアと、を備える高密度多層基板である。 <Embodiment of the present invention>
A first aspect of the present invention is a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and comprises a multilayer wiring board in which a plurality of insulating layers and a plurality of wiring layers are alternately laminated. A pair of electrode terminals are provided at both ends, and the pair of electrode terminals are embedded in the insulating layer in a direction perpendicular to the stacking direction of the multilayer wiring board, and on both sides of the multilayer wiring board. It is a high-density multilayer substrate including each of the formed outer layer wiring layers and a stack via which conducts at least one of the pair of electrode terminals and is formed by stacking a plurality of laser vias.
本発明の第1の態様は、IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板であって、複数の絶縁層及び複数の配線層が交互に積層された多層配線板と、一対の電極端子が両端に設けられ、前記一対の電極端子が前記多層配線板の積層方向に垂直な方向に離間する向きで前記絶縁層に埋設されるチップ部品と、前記多層配線板の両面に形成された外層配線層のそれぞれと前記一対の電極端子の少なくとも一方とを導通し、複数のレーザビアが重ねて形成されるスタックビアと、を備える高密度多層基板である。 <Embodiment of the present invention>
A first aspect of the present invention is a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and comprises a multilayer wiring board in which a plurality of insulating layers and a plurality of wiring layers are alternately laminated. A pair of electrode terminals are provided at both ends, and the pair of electrode terminals are embedded in the insulating layer in a direction perpendicular to the stacking direction of the multilayer wiring board, and on both sides of the multilayer wiring board. It is a high-density multilayer substrate including each of the formed outer layer wiring layers and a stack via which conducts at least one of the pair of electrode terminals and is formed by stacking a plurality of laser vias.
本発明の第1の態様に係る高密度多層基板は、多層配線板における絶縁層にチップ部品が埋設され、当該チップ部品の電極端子及びこれに接続されるスタックビアを介した貫通ビアが形成されることにより、多層配線板の両面に形成された外層配線層同士が導通される。このため、高密度多層基板は、当該チップ部品の寸法に応じて、多層配線板の積層方向に垂直な方向に離間して配置される2つのスタックビアのピッチを設定することができる。このとき、高密度多層基板は、機械的な手段で形成されるIVHを使用することなく上記の貫通ビアが形成されているため、チップ部品が埋設される絶縁層の損傷を防止することができる。これにより、本発明の第1の態様に係る高密度多層基板によれば、貫通ビアを構成するチップ部品の周囲に他の電子部品等が配置されていても、これらの間にマイグレーションが発生する虞を抑制でき、峡ピッチ化が妨げられる虞を低減することができる。
In the high-density multilayer substrate according to the first aspect of the present invention, a chip component is embedded in an insulating layer in a multilayer wiring board, and a through via is formed through an electrode terminal of the chip component and a stack via connected thereto. As a result, the outer layer wiring layers formed on both sides of the multilayer wiring board are made conductive with each other. Therefore, in the high-density multilayer board, the pitch of two stack vias arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards can be set according to the dimensions of the chip component. At this time, since the above-mentioned through via is formed in the high-density multilayer substrate without using IVH formed by mechanical means, it is possible to prevent damage to the insulating layer in which the chip component is embedded. .. As a result, according to the high-density multilayer board according to the first aspect of the present invention, even if other electronic components or the like are arranged around the chip components constituting the penetrating vias, migration occurs between them. The risk can be suppressed, and the risk of hindering the pitching of the gorge can be reduced.
本発明の第2の態様は、上記した本発明の第1の態様において、前記チップ部品は、寸法が規格品の中から選択される、高密度多層基板である。
The second aspect of the present invention is, in the first aspect of the present invention described above, the chip component is a high-density multilayer substrate whose dimensions are selected from standard products.
本発明の第2の態様によれば、例えば工業規格に準拠した既存のチップ部品を採用することにより、量産品であることによるコストメリットを得られるほか、チップ部品の実装やレーザビアとの導通における製造プロセスがパターン化されることで製造コストが低減され歩留まりも改善される高密度多層基板を提供することができる。
According to the second aspect of the present invention, for example, by adopting an existing chip component conforming to an industrial standard, a cost advantage can be obtained because it is a mass-produced product, and in mounting the chip component and conducting with a laser via. By patterning the manufacturing process, it is possible to provide a high-density multilayer substrate in which the manufacturing cost is reduced and the yield is also improved.
本発明の第3の態様は、上記した本発明の第1又は2の態様において、前記チップ部品は、コンデンサであり、前記一対の電極端子のそれぞれが両方の前記外層配線層にそれぞれ接続されている、高密度多層基板である。
A third aspect of the present invention is that in the first or second aspect of the present invention described above, the chip component is a capacitor, and each of the pair of electrode terminals is connected to both outer layer wiring layers. It is a high-density multilayer board.
本発明の第3の態様によれば、多層配線板の両面に形成されたそれぞれの外層配線層を接続する電気的に互いに独立した2つの貫通ビアを、短絡させることなく峡ピッチで配置することができる。
According to the third aspect of the present invention, two electrically independent penetrating vias connecting the outer layer wiring layers formed on both sides of the multilayer wiring board are arranged at a gorge pitch without short-circuiting. Can be done.
本発明の第4の態様は、上記した本発明の第3の態様において、前記コンデンサは、定格電圧が前記一対の電極端子に想定される最大電位差よりも大きくなるように設定される、高密度多層基板である。
A fourth aspect of the present invention is, in the third aspect of the present invention described above, the capacitor is set so that the rated voltage is larger than the maximum potential difference assumed for the pair of electrode terminals. It is a multilayer board.
本発明の第4の態様によれば、2つの貫通ビアの電位が独立に変化する場合であっても、両者の間に想定される最大電位差よりも定格電圧が大きいコンデンサが選定されているため、当該コンデンサの充電量に応じて両者の電位差を保持することで2つの導電路の独立性を確実に担保することができる。
According to the fourth aspect of the present invention, even when the potentials of the two penetrating vias change independently, a capacitor having a rated voltage larger than the maximum potential difference assumed between the two is selected. By maintaining the potential difference between the two according to the charge amount of the capacitor, the independence of the two conductive paths can be reliably ensured.
本発明の第5の態様は、上記した本発明の第1又は2の態様において、前記チップ部品は、抵抗器であり、前記外層配線層のそれぞれが前記一対の電極端子のいずれか一方に接続されている、高密度多層基板である。
In a fifth aspect of the present invention, in the first or second aspect of the present invention described above, the chip component is a resistor, and each of the outer layer wiring layers is connected to one of the pair of electrode terminals. It is a high-density multilayer substrate.
本発明の第5の態様によれば、多層配線板に形成される貫通ビアの外層配線層との接続位置が多層配線板の両面でそれぞれ互いに異なる場合であっても、チップ部品の寸法に応じて貫通ビアの経路を設定することができ、当該接続位置の間隔を峡ピッチに設定することができる。
According to the fifth aspect of the present invention, even when the connection position of the through via formed on the multilayer wiring board with the outer layer wiring layer is different from each other on both sides of the multilayer wiring board, it depends on the dimensions of the chip component. The route of the penetrating via can be set, and the interval between the connection positions can be set to the gorge pitch.
本発明の第6の態様は、上記した本発明の第5の態様において、前記抵抗器は、ゼロオーム抵抗器である、高密度多層基板である。
In the sixth aspect of the present invention, in the fifth aspect of the present invention described above, the resistor is a high-density multilayer substrate which is a zero-ohm resistor.
本発明の第6の態様によれば、多層配線板の両面の外層配線層を導通する貫通ビアにおいて、チップ部品による電圧降下を防止することができる。
According to the sixth aspect of the present invention, it is possible to prevent a voltage drop due to a chip component in a penetrating via that conducts the outer layer wiring layers on both sides of the multilayer wiring board.
本発明の第7の態様は、IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板の製造方法であって、第1配線層に積層して形成される絶縁層に、一対の電極端子が両端に設けられるチップ部品を、前記一対の電極端子が積層方向に垂直な方向に離間する向きで埋設し、前記絶縁層の表面に第2配線層を設けて両面板を形成する両面板形成工程と、前記両面板を多層化して多層配線板を形成する多層化工程と、を含み、前記多層化工程においては、前記多層配線板の両面に形成された外層配線層のそれぞれが前記一対の電極端子の少なくとも一方と導通するように、複数のレーザビアを重ねてスタックビアが形成される、高密度多層基板の製造方法である。
A seventh aspect of the present invention is a method for manufacturing a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed, and is a pair of insulating layers formed by being laminated on a first wiring layer. Chip components provided with electrode terminals at both ends are embedded in a direction in which the pair of electrode terminals are separated in a direction perpendicular to the stacking direction, and a second wiring layer is provided on the surface of the insulating layer to form a double-sided plate. Each of the outer layer wiring layers formed on both sides of the multilayer wiring board is said to include a plate forming step and a multilayering step of forming the multilayer wiring board by multilayering the double-sided plates. This is a method for manufacturing a high-density multilayer substrate in which a stack via is formed by stacking a plurality of laser vias so as to be conductive with at least one of a pair of electrode terminals.
本発明の第7の態様に係る高密度多層基板の製造方法によれば、多層配線板における絶縁層にチップ部品が埋設され、当該チップ部品の電極端子及びこれに接続されるスタックビアを介した貫通ビアが形成されることにより、多層配線板の両面に形成された外層配線層同士が導通される。このため、高密度多層基板は、当該チップ部品の寸法に応じて、多層配線板の積層方向に垂直な方向に離間して配置される2つのスタックビアのピッチを設定することができる。このとき、高密度多層基板は、機械的な手段で形成されるIVHを使用することなく上記の貫通ビアが形成されているため、チップ部品が埋設される絶縁層の損傷を防止することができる。これにより、本発明の第7の態様に係る高密度多層基板の製造方法によれば、貫通ビアを構成するチップ部品の周囲に他の電子部品等が配置されていても、これらの間にマイグレーションが発生する虞を抑制でき、峡ピッチ化が妨げられる虞を低減することができる。
According to the method for manufacturing a high-density multilayer substrate according to a seventh aspect of the present invention, a chip component is embedded in an insulating layer in a multilayer wiring board, via an electrode terminal of the chip component and a stack via connected to the chip component. By forming the through vias, the outer layer wiring layers formed on both sides of the multilayer wiring board are made conductive with each other. Therefore, in the high-density multilayer board, the pitch of two stack vias arranged apart from each other in the direction perpendicular to the stacking direction of the multilayer wiring boards can be set according to the dimensions of the chip component. At this time, since the above-mentioned through via is formed in the high-density multilayer substrate without using IVH formed by mechanical means, it is possible to prevent damage to the insulating layer in which the chip component is embedded. .. As a result, according to the method for manufacturing a high-density multilayer substrate according to the seventh aspect of the present invention, even if other electronic components or the like are arranged around the chip components constituting the penetrating vias, migration is performed between them. Can be suppressed, and the risk of hindering the pitching of the gorge can be reduced.
本発明の第8の態様は、上記した本発明の第7の態様において、前記チップ部品は、寸法が規格品の中から選択される、高密度多層基板の製造方法である。
The eighth aspect of the present invention is the method for manufacturing a high-density multilayer substrate in which the dimensions of the chip component are selected from standard products in the seventh aspect of the present invention described above.
本発明の第8の態様によれば、例えば工業規格に準拠した既存のチップ部品を採用することにより、量産品であることによるコストメリットを得られるほか、チップ部品の実装やレーザビアとの導通における製造プロセスがパターン化されることで製造コストが低減され歩留まりも改善される高密度多層基板の製造方法を提供することができる。
According to the eighth aspect of the present invention, for example, by adopting an existing chip component conforming to an industrial standard, a cost advantage can be obtained because it is a mass-produced product, and in mounting the chip component and conducting with a laser via. By patterning the manufacturing process, it is possible to provide a method for manufacturing a high-density multilayer substrate in which the manufacturing cost is reduced and the yield is also improved.
本発明の第9の態様は、上記した本発明の第7又は8の態様において、前記チップ部品は、コンデンサであり、前記一対の電極端子のそれぞれが両方の前記外層配線層にそれぞれ接続されている、高密度多層基板の製造方法である。
A ninth aspect of the present invention is that in the seventh or eighth aspect of the present invention described above, the chip component is a capacitor, and each of the pair of electrode terminals is connected to both outer layer wiring layers. This is a method for manufacturing a high-density multilayer substrate.
本発明の第9の態様によれば、多層配線板の両面に形成されたそれぞれの外層配線層を接続する電気的に互いに独立した2つの貫通ビアを、短絡させることなく峡ピッチで配置することができる。
According to the ninth aspect of the present invention, two electrically independent penetrating vias connecting the outer layer wiring layers formed on both sides of the multilayer wiring board are arranged at a gorge pitch without short-circuiting. Can be done.
本発明の第10の態様は、上記した本発明の第9の態様において、前記コンデンサは、定格電圧が前記一対の電極端子に想定される最大電位差よりも大きくなるように設定される、高密度多層基板の製造方法である。
A tenth aspect of the present invention is a high density in which the rated voltage of the capacitor is set to be larger than the maximum potential difference assumed for the pair of electrode terminals in the ninth aspect of the present invention described above. This is a method for manufacturing a multilayer substrate.
本発明の第10の態様によれば、2つの貫通ビアの電位が独立に変化する場合であっても、両者の間に想定される最大電位差よりも定格電圧が大きいコンデンサが選定されているため、当該コンデンサの充電量に応じて両者の電位差を保持することで2つの導電路の独立性を確実に担保することができる。
According to the tenth aspect of the present invention, even when the potentials of the two penetrating vias change independently, a capacitor having a rated voltage larger than the maximum potential difference assumed between the two is selected. By maintaining the potential difference between the two according to the charge amount of the capacitor, the independence of the two conductive paths can be ensured.
本発明の第11の態様は、上記した本発明の第7又は8の態様において、前記チップ部品は、抵抗器であり、前記外層配線層のそれぞれが前記一対の電極端子のいずれか一方に接続されている、高密度多層基板の製造方法である。
In the eleventh aspect of the present invention, in the seventh or eighth aspect of the present invention described above, the chip component is a resistor, and each of the outer layer wiring layers is connected to one of the pair of electrode terminals. This is a method for manufacturing a high-density multilayer substrate.
本発明の第11の態様によれば、多層配線板に形成される貫通ビアの外層配線層との接続位置が多層配線板の両面でそれぞれ互いに異なる場合であっても、チップ部品の寸法に応じて貫通ビアの経路を設定することができ、当該接続位置の間隔を峡ピッチに設定することができる。
According to the eleventh aspect of the present invention, even when the connection position of the through via formed on the multilayer wiring board with the outer layer wiring layer is different from each other on both sides of the multilayer wiring board, it depends on the dimensions of the chip component. The route of the penetrating via can be set, and the interval between the connection positions can be set to the gorge pitch.
本発明の第12の態様は、上記した本発明の第11の態様において、前記抵抗器は、ゼロオーム抵抗器である、高密度多層基板の製造方法である。
The twelfth aspect of the present invention is the method for manufacturing a high-density multilayer substrate in which the resistor is a zero-ohm resistor in the eleventh aspect of the present invention described above.
本発明の第12の態様によれば、多層配線板の両面の外層配線層を導通する貫通ビアにおいて、チップ部品による電圧降下を防止することができる。
According to the twelfth aspect of the present invention, it is possible to prevent a voltage drop due to a chip component in a penetrating via that conducts the outer layer wiring layers on both sides of the multilayer wiring board.
1 高密度多層基板
10 多層配線板
20 チップ部品
22 第1電極端子
23 第2電極端子
30 スタックビア
R1~R5 絶縁層
L1~L6 配線層 1 High-density multilayer board 10 Multilayer wiring board 20 Chip parts 22 1st electrode terminal 23 2nd electrode terminal 30 Stack vias R1 to R5 Insulation layer L1 to L6 Wiring layer
10 多層配線板
20 チップ部品
22 第1電極端子
23 第2電極端子
30 スタックビア
R1~R5 絶縁層
L1~L6 配線層 1 High-
Claims (12)
- IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板であって、
複数の絶縁層及び複数の配線層が交互に積層された多層配線板と、
一対の電極端子が両端に設けられ、前記一対の電極端子が前記多層配線板の積層方向に垂直な方向に離間する向きで前記絶縁層に埋設されるチップ部品と、
前記多層配線板の両面に形成された外層配線層のそれぞれと前記一対の電極端子の少なくとも一方とを導通し、複数のレーザビアが重ねて形成されるスタックビアと、を備える高密度多層基板。 A high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed.
A multi-layer wiring board in which a plurality of insulating layers and a plurality of wiring layers are alternately laminated,
A chip component in which a pair of electrode terminals are provided at both ends and the pair of electrode terminals are embedded in the insulating layer in a direction perpendicular to the stacking direction of the multilayer wiring board.
A high-density multilayer substrate comprising each of the outer layer wiring layers formed on both sides of the multilayer wiring board and a stack via that conducts at least one of the pair of electrode terminals and is formed by stacking a plurality of laser vias. - 前記チップ部品は、寸法が規格品の中から選択される、請求項1に記載の高密度多層基板。 The high-density multilayer substrate according to claim 1, wherein the chip component has dimensions selected from standard products.
- 前記チップ部品は、コンデンサであり、前記一対の電極端子のそれぞれが両方の前記外層配線層にそれぞれ接続されている、請求項1又は2に記載の高密度多層基板。 The high-density multilayer substrate according to claim 1 or 2, wherein the chip component is a capacitor, and each of the pair of electrode terminals is connected to both outer layer wiring layers, respectively.
- 前記コンデンサは、定格電圧が前記一対の電極端子に想定される最大電位差よりも大きくなるように設定される、請求項3に記載の高密度多層基板。 The high-density multilayer substrate according to claim 3, wherein the capacitor is set so that the rated voltage is set to be larger than the maximum potential difference assumed for the pair of electrode terminals.
- 前記チップ部品は、抵抗器であり、前記外層配線層のそれぞれが前記一対の電極端子のいずれか一方に接続されている、請求項1又は2に記載の高密度多層基板。 The high-density multilayer substrate according to claim 1 or 2, wherein the chip component is a resistor, and each of the outer layer wiring layers is connected to either one of the pair of electrode terminals.
- 前記抵抗器は、ゼロオーム抵抗器である、請求項5に記載の高密度多層基板。 The high-density multilayer substrate according to claim 5, wherein the resistor is a zero-ohm resistor.
- IVHを含む貫通ビアが形成された多層基板に代わる高密度多層基板の製造方法であって、
第1配線層に積層して形成される絶縁層に、一対の電極端子が両端に設けられるチップ部品を、前記一対の電極端子が積層方向に垂直な方向に離間する向きで埋設し、前記絶縁層の表面に第2配線層を設けて両面板を形成する両面板形成工程と、
前記両面板を多層化して多層配線板を形成する多層化工程と、を含み、
前記多層化工程においては、前記多層配線板の両面に形成された外層配線層のそれぞれが前記一対の電極端子の少なくとも一方と導通するように、複数のレーザビアを重ねてスタックビアが形成される、高密度多層基板の製造方法。 A method for manufacturing a high-density multilayer substrate that replaces a multilayer substrate on which a through via containing IVH is formed.
A chip component having a pair of electrode terminals provided at both ends is embedded in an insulating layer formed by being laminated on the first wiring layer in a direction in which the pair of electrode terminals are separated from each other in a direction perpendicular to the stacking direction. A double-sided plate forming step of providing a second wiring layer on the surface of the layer to form a double-sided plate,
Including a multi-layering step of forming a multi-layer wiring board by multi-layering the double-sided plate.
In the multi-layering step, a stack via is formed by stacking a plurality of laser vias so that each of the outer layer wiring layers formed on both sides of the multilayer wiring board conducts with at least one of the pair of electrode terminals. A method for manufacturing a high-density multilayer substrate. - 前記チップ部品は、寸法が規格品の中から選択される、請求項7に記載の高密度多層基板の製造方法。 The method for manufacturing a high-density multilayer substrate according to claim 7, wherein the chip component has dimensions selected from standard products.
- 前記チップ部品は、コンデンサであり、前記一対の電極端子のそれぞれが両方の前記外層配線層にそれぞれ接続されている、請求項7又は8に記載の高密度多層基板の製造方法。 The method for manufacturing a high-density multilayer substrate according to claim 7 or 8, wherein the chip component is a capacitor, and each of the pair of electrode terminals is connected to both outer layer wiring layers, respectively.
- 前記コンデンサは、定格電圧が前記一対の電極端子に想定される最大電位差よりも大きくなるように設定される、請求項9に記載の高密度多層基板の製造方法。 The method for manufacturing a high-density multilayer substrate according to claim 9, wherein the capacitor is set so that the rated voltage is set to be larger than the maximum potential difference assumed for the pair of electrode terminals.
- 前記チップ部品は、抵抗器であり、前記外層配線層のそれぞれが前記一対の電極端子のいずれか一方に接続されている、請求項7又は8に記載の高密度多層基板の製造方法。 The method for manufacturing a high-density multilayer substrate according to claim 7 or 8, wherein the chip component is a resistor, and each of the outer layer wiring layers is connected to one of the pair of electrode terminals.
- 前記抵抗器は、ゼロオーム抵抗器である、請求項11に記載の高密度多層基板の製造方法。 The method for manufacturing a high-density multilayer substrate according to claim 11, wherein the resistor is a zero-ohm resistor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019562434A JPWO2021009865A1 (en) | 2019-07-17 | 2019-07-17 | High-density multilayer substrate and its manufacturing method |
PCT/JP2019/028058 WO2021009865A1 (en) | 2019-07-17 | 2019-07-17 | High-density multilayer substrate and method for manufacturing same |
TW109118873A TW202110293A (en) | 2019-07-17 | 2020-06-05 | High-density multilayer substrate and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/028058 WO2021009865A1 (en) | 2019-07-17 | 2019-07-17 | High-density multilayer substrate and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021009865A1 true WO2021009865A1 (en) | 2021-01-21 |
Family
ID=74210360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028058 WO2021009865A1 (en) | 2019-07-17 | 2019-07-17 | High-density multilayer substrate and method for manufacturing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021009865A1 (en) |
TW (1) | TW202110293A (en) |
WO (1) | WO2021009865A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023286552A1 (en) * | 2021-07-14 | 2023-01-19 | Koa株式会社 | Chip-type resistor for integration in substrate, module having integrated resistor, method for producing module having integrated resistor, and trimming method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09213552A (en) * | 1996-01-31 | 1997-08-15 | Hitachi Media Electron:Kk | Fly-back transformer |
JP2013211431A (en) * | 2012-03-30 | 2013-10-10 | Nec Toppan Circuit Solutions Inc | Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board |
JP2015201594A (en) * | 2014-04-10 | 2015-11-12 | イビデン株式会社 | printed circuit board |
JP2016076656A (en) * | 2014-10-08 | 2016-05-12 | イビデン株式会社 | Electronic component built-in wiring board and method of manufacturing the same |
JP2016152258A (en) * | 2015-02-16 | 2016-08-22 | Koa株式会社 | Chip resistor for board inner layer and component built-in circuit board |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4541753B2 (en) * | 2004-05-10 | 2010-09-08 | 新光電気工業株式会社 | Manufacturing method of electronic component mounting structure |
-
2019
- 2019-07-17 WO PCT/JP2019/028058 patent/WO2021009865A1/en active Application Filing
- 2019-07-17 JP JP2019562434A patent/JPWO2021009865A1/en active Pending
-
2020
- 2020-06-05 TW TW109118873A patent/TW202110293A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09213552A (en) * | 1996-01-31 | 1997-08-15 | Hitachi Media Electron:Kk | Fly-back transformer |
JP2013211431A (en) * | 2012-03-30 | 2013-10-10 | Nec Toppan Circuit Solutions Inc | Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board |
JP2015201594A (en) * | 2014-04-10 | 2015-11-12 | イビデン株式会社 | printed circuit board |
JP2016076656A (en) * | 2014-10-08 | 2016-05-12 | イビデン株式会社 | Electronic component built-in wiring board and method of manufacturing the same |
JP2016152258A (en) * | 2015-02-16 | 2016-08-22 | Koa株式会社 | Chip resistor for board inner layer and component built-in circuit board |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023286552A1 (en) * | 2021-07-14 | 2023-01-19 | Koa株式会社 | Chip-type resistor for integration in substrate, module having integrated resistor, method for producing module having integrated resistor, and trimming method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021009865A1 (en) | 2021-09-13 |
TW202110293A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5056080B2 (en) | Multilayer printed wiring board and manufacturing method thereof | |
KR20030088357A (en) | Metal core substrate and process for manufacturing same | |
JP5182448B2 (en) | Component built-in board | |
JP2008028188A (en) | Printed wiring board, method for manufacturing the same, and electronic apparatus | |
JP2006080248A (en) | Ceramic electronic component and manufacturing method therefor | |
WO2021009865A1 (en) | High-density multilayer substrate and method for manufacturing same | |
JP4705400B2 (en) | Manufacturing method of multilayer printed wiring board | |
JP2017028024A (en) | Component mounted board, component built-in board, manufacturing method of component mounted board and manufacturing method of component built-in board | |
JP2009004457A (en) | Multi-layer substrate having capacitor therein | |
US20060175081A1 (en) | method for electrical interconnection between printed wiring board layers using through holes with solid core conductive material | |
TWI615075B (en) | Flexible circuit board and manufacturing method for same | |
JP2007081166A (en) | Capacitor for built-in wiring board and wiring board | |
US11910540B2 (en) | Circuit board with solder mask on internal copper pad | |
JPH06204664A (en) | Multilayer substrate | |
JP4653402B2 (en) | Flex-rigid wiring board and manufacturing method thereof | |
JP4963495B2 (en) | Laminated wiring board and manufacturing method thereof | |
KR102571586B1 (en) | Embedded multilayer ceramic electronic component, manufacturing method thereof and print circuit board having embedded multilayer ceramic electronic component | |
JP2009027044A (en) | Multi-layer capacitor and wiring board with built-in capacitor | |
JP6875942B2 (en) | Manufacturing method of printed wiring board | |
JP4069097B2 (en) | Electronic component for embedded board, electronic component-embedded substrate, and method of manufacturing electronic component-embedded substrate | |
US20050269013A1 (en) | Method for manufacturing monolithic ceramic electronic component | |
KR100567088B1 (en) | Component inserting hole processing method from printed circuit board | |
KR20020065261A (en) | ceramic piled components and method of manufacturing thereof | |
JP2006294944A (en) | Circuit board | |
JP2021052046A (en) | Multilayer printed board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019562434 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19938054 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19938054 Country of ref document: EP Kind code of ref document: A1 |