Nothing Special   »   [go: up one dir, main page]

WO2021006350A1 - 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法 - Google Patents

金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2021006350A1
WO2021006350A1 PCT/JP2020/027120 JP2020027120W WO2021006350A1 WO 2021006350 A1 WO2021006350 A1 WO 2021006350A1 JP 2020027120 W JP2020027120 W JP 2020027120W WO 2021006350 A1 WO2021006350 A1 WO 2021006350A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
metal terminals
power storage
storage device
layer
Prior art date
Application number
PCT/JP2020/027120
Other languages
English (en)
French (fr)
Inventor
貴大 加藤
田中 潤
望月 洋一
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US17/624,708 priority Critical patent/US20220290011A1/en
Priority to JP2020564276A priority patent/JP6885521B1/ja
Priority to CN202080050216.2A priority patent/CN114096628A/zh
Priority to EP20837256.5A priority patent/EP3998649A4/en
Priority to KR1020217039619A priority patent/KR20220032001A/ko
Publication of WO2021006350A1 publication Critical patent/WO2021006350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • C09J7/243Ethylene or propylene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • B32B7/028Heat-shrinkability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2410/00Agriculture-related articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • C09J2301/162Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/101Presence of homo or copolymers of propene in the barrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/106Presence of homo or copolymers of propene in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to an adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, a power storage device using the adhesive film for metal terminals, and a method for manufacturing the power storage device.
  • the exterior material for the power storage device is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • metal exterior materials for power storage devices have been widely used as exterior materials for power storage devices, but in recent years, with the increase in performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc. , Various shapes are required, and thinning and weight reduction are required.
  • the metal exterior material for a power storage device which has been widely used in the past, has a drawback that it is difficult to keep up with the diversification of shapes and there is a limit to weight reduction.
  • a base material layer / adhesive layer / barrier layer / thermosetting resin layer have been sequentially laminated as an exterior material for a power storage device that can be easily processed into various shapes and can be made thinner and lighter.
  • Laminated sheets have been proposed.
  • the peripheral edge of the exterior material for the power storage device is heated with the thermosetting resin layers located in the innermost layer of the exterior material for the power storage device facing each other. By heat-sealing with a seal, the power storage device element is sealed by the exterior material for the power storage device.
  • a metal terminal protrudes from the heat-sealed portion of the exterior material for the power storage device, and the power storage device element sealed by the exterior material for the power storage device is externally connected by the metal terminal electrically connected to the electrode of the power storage device element. Is electrically connected to. That is, among the heat-sealed portions of the exterior material for the power storage device, the portion where the metal terminal exists is heat-sealed with the metal terminal sandwiched between the thermosetting resin layers. Since the metal terminal and the thermosetting resin layer are made of different materials, the adhesion tends to decrease at the interface between the metal terminal and the thermosetting resin layer.
  • an adhesive film may be arranged between the metal terminal and the thermosetting resin layer for the purpose of enhancing their adhesion.
  • Such an adhesive film is required to have high adhesion to an exterior material for a power storage device and a metal terminal.
  • heating and pressurization are performed a plurality of times, for example, a temporary bonding step and a main bonding step to the metal terminal.
  • the temporary bonding process is a process of temporarily fixing to an adhesive film to a metal terminal and removing air bubbles
  • the main bonding process is performed by heating and pressurizing once or multiple times under higher temperature conditions than the temporary bonding process. This is the process of adhering the adhesive film to the metal terminals.
  • the adhesive film is heated and pressurized by the main bonding step, and further heated and pressurized in the main bonding step, the adhesive film is heated and pressed a plurality of times. It has been clarified that the adhesive strength of the adhesive film to the metal terminal may be lowered due to the influence of. Depending on the degree of decrease in the adhesion strength, the adhesion strength between the exterior material for the power storage device and the metal terminal via the adhesive film becomes insufficient.
  • the present disclosure provides an adhesive film for metal terminals that exhibits high adhesion strength to metal terminals when it is heated and pressurized a plurality of times before being adhered to the metal terminals.
  • the main purpose is to provide.
  • Another object of the present disclosure is to provide a metal terminal with an adhesive film for a metal terminal, a power storage device using the adhesive film for the metal terminal, and a method for manufacturing the power storage device.
  • the inventors of the present disclosure have made diligent studies to solve the above problems.
  • the tension measured in an environment of 25 ° C. is measured after being allowed to stand for 12 seconds in a heating and pressurizing environment having a temperature of 180 ° C. and a surface pressure of 0.0067 MPa and further standing for 1 hour in an environment of 25 ° C.
  • An adhesive film for a metal terminal having an elastic modulus of a predetermined value or more exhibits high adhesion strength to the metal terminal when it is heated and pressurized multiple times before being adhered to the metal terminal. I found.
  • the present disclosure has been completed by further studies based on such findings.
  • An adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element.
  • the adhesive film for metal terminals is allowed to stand for 12 seconds in a heating and pressurizing environment having a temperature of 180 ° C. and a surface pressure of 0.0067 MPa, and further standing for 1 hour in an environment having a temperature of 25 ° C., and then having a temperature of 25 ° C.
  • an adhesive film for a metal terminal that exhibits high adhesion strength to the metal terminal when it is heated and pressurized a plurality of times before being adhered to the metal terminal. it can. Further, according to the present disclosure, it is also possible to provide a metal terminal with an adhesive film for the metal terminal, a power storage device using the adhesive film for the metal terminal, and a method for manufacturing the power storage device.
  • a laminate of adhesive film / metal terminal / adhesive film obtained by sandwiching a metal terminal between two adhesive films and heat-sealing them (metal terminal with adhesive film for metal terminals).
  • metal terminal with adhesive film for metal terminals Is a schematic cross-sectional view. It is a schematic diagram for demonstrating the evaluation method of the water vapor barrier property (moisture content) in an Example. It is a schematic diagram which shows MD, TD, and the thickness direction (y) in the manufacturing line of the adhesive film for metal terminals.
  • the adhesive film for metal terminals of the present disclosure is for metal terminals, which is interposed between the metal terminals electrically connected to the electrodes of the power storage device element and the exterior material for the power storage device that seals the power storage device element. It is an adhesive film.
  • the adhesive film for metal terminals of the present disclosure is allowed to stand for 12 seconds in a heating and pressurizing environment having a temperature of 180 ° C. and a surface pressure of 0.0067 MPa, and further standing for 1 hour in an environment having a temperature of 25 ° C., and then having a temperature of 25.
  • the tensile elastic modulus A measured in an environment of ° C. is 490 MPa or more.
  • the process of allowing to stand for 12 seconds in a heating and pressurizing environment at a temperature of 180 ° C. and a surface pressure of 0.0067 MPa is a process assuming the heat and pressure applied in the temporary bonding step and the main bonding step.
  • the adhesive film for metal terminals of the present disclosure since the tensile elastic modulus after the heating and pressurizing environment is set to 490 MPa or more, it is possible to heat and pressurize a plurality of times before being adhered to the metal terminals. When done, it can exhibit high adhesion strength to metal terminals.
  • the power storage device of the present disclosure includes, at least, a power storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and electrical to each of the positive electrode and the negative electrode.
  • the adhesive film for metal terminals of the present disclosure, the power storage device using the adhesive film for metal terminals, and the manufacturing method of the power storage device will be described in detail.
  • the numerical range indicated by “-” means “greater than or equal to” and “less than or equal to”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • Adhesive film for metal terminals The adhesive film for metal terminals of the present disclosure is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element. Is to be done.
  • the adhesive film 1 for metal terminals of the present disclosure includes a metal terminal 2 electrically connected to an electrode of a power storage device element 4 and a power storage device. It is interposed between the exterior material 3 for a power storage device that seals the element 4.
  • the metal terminal 2 projects to the outside of the power storage device exterior material 3, and is used for the power storage device at the peripheral edge portion 3a of the heat-sealed power storage device exterior material 3 via the metal terminal adhesive film 1. It is sandwiched between the exterior materials 3.
  • the heating temperature when heat-sealing the exterior material for a power storage device is usually in the range of about 160 to 190 ° C.
  • the pressure is usually in the range of about 1.0 to 2.0 MPa.
  • the temporary bonding process of the adhesive film for metal terminals to metal terminals is, for example, a temperature of about 140 to 160 ° C., a pressure of about 0.01 to 1.0 MPa, a time of about 3 to 15 seconds, and a number of times of about 3 to 6 times.
  • the main bonding step is carried out under the conditions of, for example, a temperature of about 160 to 240 ° C., a pressure of about 0.01 to 1.0 MPa, a time of about 3 to 15 seconds, and a number of times of about 1 to 3 times. ..
  • the adhesive film 1 for metal terminals of the present disclosure is provided to enhance the adhesion between the metal terminal 2 and the exterior material 3 for a power storage device.
  • the sealing property of the power storage device element 4 is improved.
  • the metal terminal 2 formed of metal and the thermosetting resin layer 35 layer formed of a thermosetting resin such as polyolefin located in the innermost layer of the exterior material 3 for a power storage device are different from each other. Since it is formed of a material, when such an adhesive film is not used, the sealing property of the power storage device element tends to be low at the interface between the metal terminal 2 and the thermosetting resin layer 35.
  • the adhesive film 1 for metal terminals of the present disclosure may be a single layer as shown in FIG. 4 as long as the tensile elastic modulus A described later is 490 MPa or more, or as shown in FIGS. 5 to 7. It may be multi-layered.
  • the adhesive film 1 for metal terminals of the present disclosure preferably has a plurality of layers.
  • the adhesive film 1 for metal terminals of the present disclosure has a plurality of layers, as shown in FIGS. 5 to 7, at least the base material 11 and the first polyolefin layer 12a may be laminated.
  • the first polyolefin layer 12a and the second polyolefin layer 12b are located on the surfaces on both sides, respectively.
  • the first polyolefin layer 12a and the second polyolefin layer 12b preferably contains an acid-modified polyolefin, and the first polyolefin layer 12a and the second polyolefin layer 12a. It is more preferred that 12b contains an acid-modified polyolefin.
  • the base material 11 preferably contains polyolefin. As will be described later, it is preferable that the first polyolefin layer 12a and the second polyolefin layer 12b are acid-modified polypropylene layers formed of acid-modified polypropylene, respectively. Further, the base material 11 is preferably a polypropylene layer formed of polypropylene.
  • a two-layer structure of an acid-modified polypropylene layer / polypropylene layer; an acid-modified polypropylene layer / polypropylene layer / acid-modified polypropylene layer are laminated in this order.
  • Three-layer structure A five-layer structure in which an acid-modified polypropylene layer / polypropylene layer / acid-modified polypropylene layer / polypropylene layer / acid-modified polypropylene layer is laminated in this order, and among these, an acid-modified polypropylene layer / polypropylene layer
  • Two-layer structure A three-layer structure in which an acid-modified polypropylene layer / polypropylene layer / acid-modified polypropylene layer is laminated in this order is more preferable, and a three-layer structure in which an acid-modified polypropylene layer / polypropylene layer / acid-modified polypropylene layer is laminated in this order. Is particularly preferable.
  • the adhesive film 1 for metal terminals of the present disclosure is arranged between the metal terminal 2 of the power storage device 10 and the exterior material 3 for the power storage device, the surface of the metal terminal 2 made of metal and the power storage device
  • the heat-sealing resin layer 35 layer formed of a heat-sealing resin such as polyolefin
  • the adhesive film 1 for metal terminals of the present disclosure is allowed to stand for 12 seconds in a heating and pressurizing environment having a temperature of 180 ° C. and a surface pressure of 0.0067 MPa, and further standing for 1 hour in an environment having a temperature of 25 ° C.
  • the tensile elastic modulus A measured in an environment of 25 ° C. is 490 MPa or more.
  • the tensile elastic modulus A is preferably about 520 MPa or more from the viewpoint of exhibiting higher adhesion strength to the metal terminal when it is heated and pressurized a plurality of times before being adhered to the metal terminal. More preferably, it is about 550 MPa or more, further preferably about 569 MPa or more, still more preferably about 573 MPa or more.
  • the upper limit of the tensile elastic modulus A is about 850 MPa or less, preferably about 800 MPa or less from the viewpoint of enhancing the impact-resistant absorption energy described later, and further excellent in flexibility (evaluation of the bending test described later). From the viewpoint of making the adhesive film 1 for metal terminals (good), preferably about 680 MPa or less, more preferably about 610 MPa or less.
  • the preferable range of the tensile elastic modulus A is about 490 to 850 MPa, about 490 to 800 MPa, about 490 to 680 MPa, about 490 to 610 MPa, about 520 to 850 MPa, about 520 to 800 MPa, about 520 to 680 MPa, about 520 to 610 MPa, and so on.
  • the elastic modulus A is about 500 to 550 MPa.
  • the method for measuring the tensile elastic modulus A is as follows.
  • the tensile elastic modulus after heating and pressurizing is measured by the following procedure for 12 seconds under the conditions of a temperature of 180 ° C. and a surface pressure of 0.0067 MPa.
  • the adhesive film for metal terminals is cut into strips having a width (TD) of 15 mm and a length (MD) of 50 mm.
  • the MD and TD of the adhesive film for metal terminals can be determined by observing the sea-island structure of the cross section of the adhesive film for metal terminals in the thickness direction.
  • the shape of the island observed in the cross section in the MD direction is generally elongated as compared with the cross section in the TD direction.
  • the adhesive film for metal terminals is sandwiched between two tetrafluoroethylene-ethylene copolymer films (ETFE film, thickness 100 ⁇ m), and the film is placed on a hot plate heated to 180 ° C.
  • a 500 g weight with a sponge is placed on the film and allowed to stand for 12 seconds, and then immediately left to stand in an environment of 25 ° C. under atmospheric pressure for 1 hour to obtain a test piece.
  • a Tencilon universal material tester for example, RTG-1210 manufactured by A & D Co., Ltd. was used under the conditions of a tensile speed of 300 mm / min and a chuck distance of 30 mm.
  • the stress-strain curve of the test piece is obtained, and the tensile elastic modulus A of the adhesive film for metal terminals after heating and pressurizing is obtained from the slope of a straight line connecting two points of strain 0.05% and 0.25%.
  • the adhesive film 1 for metal terminals of the present disclosure has an tensile elastic modulus B of, for example, about 900 MPa or less, which is measured in an environment of a temperature of 25 ° C. before being exposed to a heating and pressurizing environment, and is excellent in flexibility. From the viewpoint of making the adhesive film 1 for metal terminals (which is well evaluated in the bending test described later), it is preferably about 700 MPa or less. Further, the tensile elastic modulus B is preferably about 400 MPa or more from the viewpoint of increasing the stiffness of the adhesive film 1 for metal terminals and facilitating the alignment with the metal terminals.
  • the preferred range of the tensile elastic modulus B is about 400 to 900 MPa and about 400 to 700 MPa, and among these, about 400 to 700 MPa is particularly preferable.
  • Overall preferable tension from the viewpoint of making an adhesive film 1 for metal terminals that exhibits high adhesion strength to metal terminals and has overall good flexibility, thickness change rate, and shock absorption energy, which will be described later.
  • the elastic modulus B is 420 to 600 MPa, and further 420 to 480 MPa.
  • the method for measuring the tensile elastic modulus B is as follows.
  • ⁇ Tension elastic modulus B before heating and pressurizing> In accordance with JIS K7161-1 (ISO527-1), the adhesive film for metal terminals in a 25 ° C environment (metal terminals before heating and pressurizing in the above-mentioned ⁇ tensile elastic modulus A after heating and pressurizing>> The tensile elastic modulus B of the adhesive film) is measured. Specifically, the adhesive film for metal terminals is cut into strips having a width (TD) of 15 mm and a length (MD) of 50 mm.
  • TD width
  • MD length
  • a tensile speed of 300 mm / min and a chuck-to-chuck distance of 30 mm were used in a 25 ° C environment using a Tencilon universal material tester (for example, RTG-1210 manufactured by A & D).
  • a Tencilon universal material tester for example, RTG-1210 manufactured by A & D.
  • the stress-strain curve of the test piece was obtained, and the tensile elastic modulus of the adhesive film for metal terminals before heating and pressurization was obtained from the slope of the straight line connecting the two points of strain 0.05% and 0.25%.
  • the tensile elastic modulus of the adhesive film 1 for metal terminals of the present disclosure includes conditions such as a laminated structure, melting point of each layer, MFR, thickness, thickness ratio, and T-die, inflation, etc. in the production of the adhesive film 1 for metal terminals. (For example, the extrusion width from the T-die, the stretching ratio, the stretching speed, the heat treatment temperature, etc.) can be adjusted.
  • the adhesive film 1 for metal terminals of the present disclosure has a tensile elastic modulus based on the value of the tensile elastic modulus A.
  • the difference in tensile modulus calculated by subtracting the value of B is, for example, -250 to 200 MPa, and when the metal terminal is heated and pressurized a plurality of times before being adhered to the metal terminal, the metal terminal is heated and pressurized.
  • the difference is preferably large, preferably 5 MPa or more, more preferably 20 MPa or more, and further preferably 40 MPa or more.
  • the upper limit of the difference in tensile modulus is generally 120 MPa or less.
  • the preferable range of the difference in tensile elastic modulus is about 5 to 120 MPa, about 20 to 120 MPa, and about 40 to 120 MPa.
  • the difference in tensile elastic modulus is that while exhibiting high adhesion strength to the metal terminal, From the viewpoint of obtaining the adhesive film 1 for metal terminals which is comprehensively good in terms of flexibility, thickness change rate, and shock absorption energy, which will be described later, the overall preferable range is about 40 to 75 MPa.
  • the adhesive film 1 for metal terminals of the present disclosure is JIS.
  • stress (MPa) and strain (mm) obtained by performing a tensile test under the conditions of a temperature of 25 ° C., a tensile speed of 175 mm / min, and a distance between chucks of 30 mm, which is a method conforming to the regulation of K7127, is shown.
  • the descending yield stress obtained from the graph is preferably 17.0 MPa or more, more preferably 18.0 MPa or more, and preferably 28.0 MPa or less, more preferably 26.0 MPa or less. is there.
  • Preferred ranges of the descending yield point stress include about 17.0 to 28.0 MPa, about 17.0 to 26.0 MPa, about 18.0 to 28.0 MPa, and about 18.0 to 26.0 MPa. Of these, about 18.0 to 26.0 MPa is particularly preferable.
  • the range of the descending yield stress which is generally preferable in terms of adhesion, flexibility, and followability, is about 17.0 to 18.0 MPa.
  • the method for measuring the descending yield stress is as follows.
  • the descending yield stress of the adhesive film 1 for metal terminals of the present disclosure includes the laminated structure, the melting point of each layer, the MFR, the thickness, the thickness ratio, and the T-die, inflation, etc. in the production of the adhesive film 1 for metal terminals. It can be adjusted according to conditions (for example, extrusion width from T-die, stretching ratio, stretching speed, heat treatment temperature, etc.).
  • the adhesive film 1 for metal terminals of the present disclosure has a thickness change rate close to 100% before and after heating and pressurizing for 12 seconds under the conditions of a temperature of 180 ° C. and a surface pressure of 0.0067 MPa (that is, heating and pressurizing). It is preferable that the change in thickness before and after is small or does not change), specifically, it is preferably 90 to 100%, more preferably 95 to 100%, and 96 to 100%. More preferred. When the rate of change in the thickness is within these ranges, the thickness of the adhesive film 1 for the metal terminal changes significantly when the adhesive film 1 for the metal terminal and the exterior material 10 for the power storage device are heat-sealed. The formation of voids between them is suppressed.
  • the rate of change in the thickness is calculated by the formula of (thickness of adhesive film for metal terminals after heating and pressurization) / (thickness of adhesive film for metal terminals before heating and pressurizing) ⁇ 100.
  • the shock absorption energy calculated from the area of the portion surrounded by the stress-strain curve obtained in the above ⁇ tensile elastic modulus A after heating and pressurization> is preferably about 90 MPa or more, more preferably about. It is 140 MPa or more, preferably about 400 MPa or less, more preferably about 300 MPa or less, and a preferable range is about 90 to 400 MPa.
  • a material having a small impact absorption energy value is easily broken without being accompanied by a large deformation, and a material having a large impact absorption energy value is a material that is tenacious and does not easily break after being greatly deformed.
  • the total thickness of the adhesive film 1 for metal terminals of the present disclosure is, for example, about 120 ⁇ m or more, preferably about 140 ⁇ m or more, and more preferably about 150 ⁇ m or more from the viewpoint of enhancing the followability to the shape of the metal terminal 2.
  • the upper limit of the total thickness of the adhesive film 1 for metal terminals of the present disclosure is, for example, about 200 ⁇ m.
  • Preferred ranges of the total thickness of the adhesive film 1 for metal terminals of the present disclosure include about 120 to 200 ⁇ m, about 140 to 200 ⁇ m, and about 150 to 200 ⁇ m.
  • 145 is particularly preferable. It is about 155 ⁇ m.
  • the adhesive film 1 for metal terminals of the present disclosure is composed of the first polyolefin layer 12a so that the adhesive film 1 for metal terminals has the above-mentioned physical properties. It is preferable that it is.
  • the adhesive film 1 for metal terminals of the present disclosure includes at least a structure in which the base material 11 and the first polyolefin layer 12a are laminated, and will be described above. It is preferable that the laminate has the characteristics, and at least the first polyolefin layer 12a, the base material 11, and the second polyolefin layer 12b are laminated in this order, and the laminate has the above-mentioned characteristics. Is preferable.
  • the base material 11 is a layer that functions as a support for the adhesive film 1 for metal terminals, and is provided as needed.
  • the material forming the base material 11 is not particularly limited.
  • the material forming the base material 11 include polyolefins, polyamides, polyesters, epoxy resins, acrylic resins, fluororesins, silicon resins, phenol resins, polyetherimides, polyimides, polycarbonates, mixtures and copolymers thereof, and the like.
  • polyolefin is particularly preferable. That is, the material forming the base material 11 is preferably a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin.
  • the fact that the resin constituting the base material 11 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like.
  • polystyrene resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other polyethylene; homopolypropylene, polypropylene block copolymer (for example, propylene and ethylene block copolymer), and polypropylene. Crystalline or amorphous polypropylenes such as random copolymers (eg, random copolymers of propylene and ethylene); ethylene-butene-propylene tarpolymers; and the like. Among these polyolefins, polyethylene and polypropylene are preferable, and polypropylene is more preferable.
  • polyamide examples include an aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; derived from terephthalic acid and / or isophthalic acid.
  • Hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I stands for isophthalic acid, T stands for terephthalic acid), polymethoxylylen adipamide, which contains the constituent units.
  • Polyamide containing aromatics such as (MXD6); alicyclic polyamide such as polyaminomethylcyclohexylazipamide (PACM6); and a polyamide obtained by copolymerizing a lactam component and an isocyanate component such as 4,4'-diphenylmethane-diisocyanate.
  • Polyamide copolymer and polyether ester amide copolymer which are copolymers of copolymerized polyamide and polyester or polyalkylene ether glycol; these copolymers and the like can be mentioned. These polyamides may be used alone or in combination of two or more.
  • polyester a copolymerized polyester containing polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and ethylene terephthalate as the main body of the repeating unit, and butylene terephthalate as the main body of the repeating unit.
  • examples thereof include the copolymerized polyester.
  • copolymerized polyester having ethylene terephthalate as the main body of the repeating unit specifically, a copolymer polyester having ethylene terephthalate as the main body of the repeating unit and polymerizing with ethylene isophthalate (hereinafter, polyethylene (terephthalate / isophthalate)).
  • the copolymerized polyester having butylene terephthalate as the main body of the repeating unit specifically, a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating unit (hereinafter, polybutylene (terephthalate / isophthalate)).
  • polybutylene (terephthalate / adipate) a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating unit
  • polybutylene (terephthalate / isophthalate) a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating unit
  • polybutylene (terephthalate / isophthalate) a copolymer polyester which polymerizes with butylene isophthalate using butylene terephthalate as the main body of the repeating
  • the base material 11 may be formed of a non-woven fabric formed of the above resin.
  • the base material 11 is preferably composed of the above-mentioned polyolefin, polyamide or the like.
  • the base material 11 can be made into a layer containing the colorant. It is also possible to select a resin having low transparency and adjust the light transmittance.
  • a resin having low transparency can be used, or a film having low transparency can be used.
  • the base material 11 is a non-woven fabric, a non-woven fabric using fibers or binders containing a colorant or a non-woven fabric having low transparency can be used.
  • the melt mass flow rate (MFR) of the base material 11 at 230 ° C. satisfies the above-mentioned characteristics and is applied to the metal terminals a plurality of times before being adhered to the metal terminals. From the viewpoint of exhibiting higher adhesion strength, it is preferably 8 g / 10 minutes or less, more preferably 4 g / 10 minutes or less, and for metal terminals having excellent flexibility (good evaluation of bending test described later).
  • the adhesive film 1 is preferably 1 g / 10 minutes or more, more preferably 2 g / 10 minutes or more, and the preferable range is about 1 to 8 g / 10 minutes, about 1 to 4 g / 10 minutes, 2 About 8 g / 10 minutes and about 2 to 4 g / 10 minutes can be mentioned.
  • the base material layer 11 is a polyolefin layer (a layer formed of polyolefin)
  • the melt mass flow rate (MFR) of the base material 11 is a value (g / 10 minutes) at 230 ° C. measured in accordance with JIS K7210-1: 2014 (ISO 1133-1: 2011). ..
  • the melting point of the base material 11 exhibits higher adhesion strength to the metal terminal when it is heated and pressurized a plurality of times before being adhered to the metal terminal while satisfying the above-mentioned characteristics.
  • the adhesive film 1 for metal terminals which is preferably 130 ° C. or higher, more preferably 150 ° C. or higher, and has excellent flexibility (the evaluation of the bending test described later is good), is preferable.
  • the melting point of the base material 11 is measured by the method described in Examples.
  • the surface of the base material 11 may be subjected to known easy-adhesion means such as corona discharge treatment, ozone treatment, and plasma treatment, if necessary.
  • the thickness of the base material 11 is preferably about 50 ⁇ m from the viewpoint of exhibiting higher adhesion strength to the metal terminals when heated and pressurized a plurality of times before being adhered to the metal terminals. As described above, it is more preferably about 60 ⁇ m or more, further preferably about 80 ⁇ m or more, further preferably about 90 ⁇ m or more, and preferably about 150 ⁇ m or less, more preferably about 130 ⁇ m or less, still more preferably about 120 ⁇ m or less.
  • the range is about 50 to 150 ⁇ m, about 50 to 130 ⁇ m, about 50 to 120 ⁇ m, about 60 to 150 ⁇ m, about 60 to 130 ⁇ m, about 60 to 120 ⁇ m, about 80 to 150 ⁇ m, about 80 to 130 ⁇ m, about 80 to 120 ⁇ m, 90.
  • Examples thereof include about 150 ⁇ m, about 90 to 130 ⁇ m, and about 90 to 120 ⁇ m. Among these, about 90 to 120 ⁇ m is particularly preferable.
  • the adhesive film 1 for metal terminals of the present disclosure preferably includes a first polyolefin layer 12a.
  • the adhesive film 1 for metal terminals of the present disclosure is composed of a single layer, it is preferable that the adhesive film 1 for metal terminals is composed of a first polyolefin layer 12a as shown in FIG.
  • the adhesive film 1 for metal terminals of the present disclosure has a plurality of layers, it is preferable that the base material 11 and the first polyolefin layer 12a are laminated at least, and are shown in FIGS. 6 and 7.
  • the first polyolefin layer 12a, the base material 11, and the second polyolefin layer 12b are laminated in this order. Further, in the adhesive film 1 for metal terminals of the present disclosure, it is preferable that the first polyolefin layer 12a and the second polyolefin layer 12b are located on the surfaces on both sides, respectively.
  • At least one of the first polyolefin layer 12a and the second polyolefin layer 12b preferably contains an acid-modified polyolefin, and the first polyolefin layer 12a and the second polyolefin layer 12b contain an acid-modified polyolefin. Is even more preferable.
  • one of the first and second polyolefin layers 12a and 12b is formed of acid-modified polyolefin
  • one of the first and second polyolefin layers 12a and 12b is formed of acid-modified polyolefin.
  • the other may be formed of polyolefin, or both the first and second polyolefin layers 12a and 12b may be formed of acid-modified polyolefin.
  • Acid-modified polyolefins have a high affinity for thermosetting resins such as metals and polyolefins.
  • polyolefin has a high affinity with thermosetting resins such as polyolefin. Therefore, in the adhesive film 1 for metal terminals of the present disclosure, by arranging the layer formed of the acid-modified polyolefin on the side of the metal terminal 2, the adhesive film 1 for metal terminals, the metal terminal 2, and the heat-sealing property Excellent adhesion can be exhibited at the interface with the resin layer 35.
  • the layer formed of polyolefin on the heat-sealing resin layer 35 side of the exterior material 10 for the power storage device, at the interface between the adhesive film 1 for metal terminals and the heat-sealing resin layer 35, It is possible to exhibit even better adhesion.
  • the adhesive film 1 for metal terminals is preferably a laminate in which a first polyolefin layer 12a, a base material 11, and a second polyolefin layer 12b are sequentially provided. As shown in FIGS. 6 and 7, for example, the adhesive film 1 for metal terminals has a laminated structure in which the first polyolefin layer 12a / the base material 11 / the second polyolefin layer 12b are laminated in this order.
  • the adhesive film 1 for metal terminals has a three-layer structure in which an acid-modified polypropylene layer / polypropylene layer / acid-modified polypropylene layer is laminated in this order, or a polypropylene layer / polypropylene layer / acid-modified polypropylene layer in this order.
  • a laminated three-layer structure is particularly preferable.
  • the adhesive film 1 for metal terminals has a three-layer structure in which polypropylene layer / polypropylene layer / acid-modified polypropylene layer are laminated in this order, the acid-modified polypropylene layer constituting one surface is placed on the metal terminal 2 side.
  • the adhesive film 1 for the metal terminal is made of the power storage device exterior material 10 and the metal. It can be brought into close contact with the terminal 2 particularly preferably.
  • the acid-modified polyolefin is not particularly limited as long as it is an acid-modified polyolefin, but preferably an unsaturated carboxylic acid or a polyolefin graft-modified with an anhydride thereof. ..
  • the acid-modified polyolefin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; homopolypropylene and polypropylene block copolymers (for example, propylene and ethylene block copolymers). ), Polypropylene random copolymers (eg, propylene and ethylene random copolymers) and other crystalline or amorphous polypropylenes; ethylene-butene-propylene tarpolymers and the like.
  • polyethylene and polypropylene are preferable.
  • the acid-modified polyolefin may be a cyclic polyolefin.
  • the carboxylic acid-modified cyclic polyolefin means that a part of the monomer constituting the cyclic polyolefin is copolymerized in place of ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or ⁇ , with respect to the cyclic polyolefin. It is a polymer obtained by block-polymerizing or graft-polymerizing ⁇ -unsaturated carboxylic acid or its anhydride.
  • the acid-modified cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene.
  • Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specific examples thereof include cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • Styrene is also mentioned as a constituent monomer.
  • Examples of the carboxylic acid or its anhydride used for acid modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
  • a peak derived from maleic anhydride is detected.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • first and second polyolefin layers 12a and 12b are layers composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the polyolefin is the same as that exemplified as the above-mentioned acid-modified polyolefin or acid-modified cyclic polyolefin. Can be exemplified.
  • the first and second polyolefin layers 12a and 12b may be formed by one kind of resin component alone, or may be formed by a blend polymer in which two or more kinds of resin components are combined. Further, the first and second polyolefin layers 12a and 12b may be formed of only one layer, respectively, or may be formed of two or more layers with the same or different resin components.
  • first and second polyolefin layers 12a and 12b may each contain a filler, if necessary. Since the first and second polyolefin layers 12a and 12b contain the filler, the filler functions as a spacer, so that the metal terminal 2 and the barrier layer 33 of the exterior material 3 for the power storage device are short-circuited. Can be effectively suppressed.
  • the particle size of the filler may be in the range of about 0.1 to 35 ⁇ m, preferably about 5.0 to 30 ⁇ m, and more preferably about 10 to 25 ⁇ m.
  • the content of the filler is about 5 to 30 parts by mass, more preferably about 10 to 20 parts by mass, respectively, with respect to 100 parts by mass of the resin components forming the first and second polyolefin layers 12a and 12b. Can be mentioned.
  • the filler either an inorganic type or an organic type can be used.
  • the inorganic filler include carbon (carbon, graphite), silica, aluminum oxide, barium titanate, iron oxide, silicon carbide, zirconium oxide, zirconium silicate, magnesium oxide, titanium oxide, calcium aluminate, and calcium hydroxide.
  • the organic filler include fluororesin, phenol resin, urea resin, epoxy resin, acrylic resin, benzoguanamine / formaldehyde condensate, melamine / formaldehyde condensate, polymethylmethacrylate crosslinked product, polyethylene crosslinked product and the like. Can be mentioned.
  • aluminum oxide, silica, fluororesin, acrylic resin, and benzoguanamine / formaldehyde condensate are preferable, and among these, spherical aluminum oxide and silica are more preferable.
  • a method of mixing the filler with the resin components forming the first and second polyolefin layers 12a and 12b a method of melt-blending both of them with a Banbury mixer or the like in advance and making a masterbatch into a predetermined mixing ratio.
  • a direct mixing method with a resin component or the like can be adopted.
  • the first and second polyolefin layers 12a and 12b may each contain a pigment, if necessary.
  • the pigment various inorganic pigments can be used.
  • carbon (carbon, graphite) exemplified in the above-mentioned filler can be preferably exemplified.
  • Carbon (carbon, graphite) is a material generally used inside a power storage device, and there is no risk of elution into an electrolytic solution.
  • a sufficient coloring effect can be obtained with an addition amount having a large coloring effect and not hindering the adhesiveness, and the added resin can be increased in apparent melt viscosity without being melted by heat.
  • the amount of the pigment added is, for example, when carbon black having a particle size of about 0.03 ⁇ m is used, the first and second polyolefin layers 12a and 12b are added. About 0.05 to 0.3 parts by mass, preferably about 0.1 to 0.2 parts by mass, respectively, with respect to 100 parts by mass of the resin component forming the above.
  • the filler and the pigment When the filler and the pigment are added to the first and second polyolefin layers 12a and 12b, the filler and the pigment may be added to the same first and second polyolefin layers 12a and 12b, but the metal terminal From the viewpoint of not impairing the heat-sealing property of the adhesive film 1, the filler and the pigment are preferably added separately in the first and second polyolefin layers 12a and 12b.
  • the first and second polyolefin layers 12a and 12b can be made of a polyolefin film or an acid-modified polyolefin film, respectively.
  • the resin film formed of the above-mentioned polyolefin or acid-modified polyolefin is used as a base material 11 by using, for example, a dry laminating method.
  • an adhesive film for metal terminals can be suitably manufactured.
  • the adhesive film for metal terminals can be suitably produced by extruding the resins constituting the first and second polyolefin layers 12a and 12b onto the base material 11.
  • the melt mass flow rate (MFR) of the first and second polyolefin layers 12a and 12b at 230 ° C. is preferably about 5 g / 10 minutes from the viewpoint of enhancing the followability to the shape of the metal terminal while satisfying the above-mentioned characteristics.
  • the above is more preferably about 7 g / 10 minutes or more, further preferably about 8 g / 10 minutes or more, preferably about 11 g / 10 minutes or less, more preferably about 10 g / 10 minutes or less, and the preferred range is 5 to 11 g / 10 minutes, 5 to 10 g / 10 minutes, 7 to 11 g / 10 minutes, 7 to 10 g / 10 minutes, 8 to 11 g / 10 minutes, 8 to 10 g / 10 minutes.
  • MFRs melt mass flow rates
  • the MFR value of the acid-modified polyolefin layer satisfies the above value.
  • the melting points of the first and second polyolefin layers 12a and 12b are preferably about 120 ° C. or higher, more preferably about 130 ° C., from the viewpoint of enhancing the followability to the shape of the metal terminal while satisfying the above-mentioned characteristics.
  • the above is more preferably about 160 ° C. or lower, more preferably about 150 ° C. or lower, and the preferred ranges are about 120 to 160 ° C., about 120 to 150 ° C., about 130 to 160 ° C., and 130 to 150 ° C. Degree.
  • the melting points of the first and second polyolefin layers 12a and 12b are measured by the method described in Examples.
  • the surface of the first and second polyolefin layers 12a and 12b composed of the resin film is required. Therefore, known easy-adhesion means such as corona discharge treatment, ozone treatment, and plasma treatment may be applied.
  • the corona discharge treatment enhances the adhesion between the base material 11 and the first polyolefin layer 12a and the second polyolefin layer 12b, and provides excellent sealing performance between the exterior material for the power storage device and the metal terminal. Can be granted.
  • the thicknesses of the first and second polyolefin layers 12a and 12b are from the viewpoint of exhibiting higher adhesion strength to the metal terminals when they are heated and pressed a plurality of times before being adhered to the metal terminals. Therefore, it is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more, and preferably about 50 ⁇ m or less, more preferably about 45 ⁇ m or less, still more preferably 30 ⁇ m or less.
  • the preferable ranges of the thicknesses of the first and second polyolefin layers 12a and 12b are about 10 to 50 ⁇ m, about 10 to 45 ⁇ m, about 10 to 30 ⁇ m, about 15 to 50 ⁇ m, about 15 to 45 ⁇ m, and about 10 to 30 ⁇ m, respectively. Of these, 10 to 30 ⁇ m is particularly preferable.
  • the ratio of the thickness of the base material 11 to the total thickness of the first and second polyolefin layers 12a and 12b heating and pressurization are performed a plurality of times until they are adhered to the metal terminals while satisfying the above-mentioned characteristics.
  • it is preferably about 0.7 or more, more preferably about 1.0 or more, and preferably about 4.0 or less, from the viewpoint of exhibiting higher adhesion strength to the metal terminal. It is preferably about 2.0 or less, and the preferred ranges are about 0.7 to 4.0, about 0.7 to 2.0, about 1.0 to 4.0, and about 1.0 to 2.0. Among these, about 1.0 to 4.0 is particularly preferable.
  • the ratio of the thickness of the acid-modified polypropylene layer in the adhesive film 1 for metal terminals satisfies these values.
  • the decrease in water vapor barrier property is suppressed. If the decrease in water vapor barrier property is suppressed, the life of the power storage device is expected to be extended and the long-term stability is expected. From this point of view, the ratio is preferably the upper limit.
  • the total thickness of the adhesive film 1 for metal terminals is 100%, and the ratio of the total thickness of the first and second polyolefin layers 12a and 12b is preferably about 15 to 60%, more preferably 20 to 40%. Degree.
  • the adhesion accelerator layer 13 is a layer provided as needed for the purpose of firmly adhering the base material 11 and the first and second polyolefin layers 12a and 12b (see FIG. 7).
  • the adhesion accelerator layer 13 may be provided only on one side between the base material 11 and the first and second polyolefin layers 12a and 12b, or may be provided on both sides.
  • the adhesion accelerator layer 13 can be formed by using a known adhesion accelerator such as isocyanate-based, polyethyleneimine-based, polyester-based, polyurethane-based, and polybutadiene-based. From the viewpoint of further improving the electrolytic solution resistance, among these, it is preferably formed by an isocyanate-based adhesion accelerator.
  • a known adhesion accelerator such as isocyanate-based, polyethyleneimine-based, polyester-based, polyurethane-based, and polybutadiene-based. From the viewpoint of further improving the electrolytic solution resistance, among these, it is preferably formed by an isocyanate-based adhesion accelerator.
  • an isocyanate-based adhesion accelerator one composed of an isocyanate component selected from a triisocyanate monomer and a polymeric MDI has excellent lamination strength and little decrease in lamination strength after immersion in an electrolytic solution.
  • triphenylmethane-4,4', 4 "-triisocyanate which is a triisocyanate monomer and polymethylene polyphenyl polyisocyanate which is a polymeric MDI (NCO content is about 30%, viscosity is 200 to 700 mPa ⁇ s).
  • NCO content is about 30%, viscosity is 200 to 700 mPa ⁇ s.
  • the adhesion accelerator layer 13 can be formed by applying and drying by a known coating method such as a bar coating method, a roll coating method, or a gravure coating method.
  • the amount of the adhesion accelerator applied is about 20 to 100 mg / m 2 in the case of the adhesion accelerator made of triisocyanate, preferably about 40 to 60 mg / m 2 and in the case of the adhesion accelerator made of polypeptide MDI. , 40 to 150 mg / m 2 , preferably about 60 to 100 mg / m 2 , and in the case of a two-component curing type adhesion accelerator containing polyethyleneimine as a main agent and polycarbodiimide as a cross-linking agent, 5 to 50 mg.
  • the triisocyanate monomer is a monomer having three isocyanate groups in one molecule
  • the polypeptide MDI is a mixture of MDI and an MDI oligomer obtained by polymerizing MDI, and is represented by the following formula.
  • the adhesive film 1 for metal terminals of the present disclosure can be produced, for example, by laminating the first and second polyolefin layers 12a and 12b on both surfaces of the base material 11.
  • the base material 11 and the first and second polyolefin layers 12a and 12b can be laminated by a known method such as an extrusion lamination method or a thermal lamination method.
  • the adhesion promoter constituting the adhesion promoter layer 13 can be used in the above method.
  • the first and second polyolefin layers 12a and 12b may be laminated on the adhesion accelerator layer 13 by coating and drying on the base material 11.
  • the method of interposing the adhesive film 1 for the metal terminal between the metal terminal 2 and the exterior material 3 for the power storage device is not particularly limited.
  • the metal terminal 2 is the power storage device.
  • the adhesive film 1 for metal terminals may be wound around the metal terminals 2 at the portion sandwiched by the exterior material 3.
  • both sides of the metal terminal 2 are formed so that the adhesive film 1 for the metal terminal crosses the two metal terminals 2 at the portion where the metal terminal 2 is sandwiched by the exterior material 3 for the power storage device. It may be placed on the side.
  • the adhesive film 1 for metal terminals of the present disclosure is used by interposing it between the metal terminal 2 and the exterior material 3 for a power storage device.
  • the metal terminal 2 (tab) is a conductive member electrically connected to an electrode (positive electrode or negative electrode) of the power storage device element 4, and is made of a metal material.
  • the metal material constituting the metal terminal 2 is not particularly limited, and examples thereof include aluminum, nickel, and copper.
  • the metal terminal 2 connected to the positive electrode of the lithium ion power storage device is usually made of aluminum or the like.
  • the metal terminal 2 connected to the negative electrode of the lithium ion power storage device is usually made of copper, nickel or the like.
  • the surface of the metal terminal 2 is preferably subjected to chemical conversion treatment from the viewpoint of enhancing the electrolyte resistance.
  • specific examples of the chemical conversion treatment include known methods for forming a corrosion-resistant film such as a phosphate, a chromate, a fluoride, and a triazine thiol compound.
  • a phosphoric acid chromate treatment using a method composed of three components of a phenol resin, a chromium (III) fluoride compound, and phosphoric acid is preferable.
  • the size of the metal terminal 2 may be appropriately set according to the size of the power storage device used and the like.
  • the thickness of the metal terminal 2 is preferably about 50 to 1000 ⁇ m, more preferably about 70 to 800 ⁇ m.
  • the length of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
  • the width of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
  • Examples of the exterior material 3 for a power storage device include those having a laminated structure composed of at least a laminated body having a base material layer 31, a barrier layer 33, and a thermosetting resin layer 35 in this order.
  • FIG. 8 shows, as an example of the cross-sectional structure of the exterior material 3 for a power storage device, a base material layer 31, an adhesive layer 32 provided as needed, a barrier layer 33, an adhesive layer 34 provided as needed, and thermosetting. The mode in which the adhesive resin layer 35 is laminated in this order is shown.
  • the base material layer 31 is on the outer layer side
  • the thermosetting resin layer 35 is the innermost layer.
  • FIGS. 1 to 3 show the power storage device 10 when the embossed type exterior material 3 for the power storage device is used, the exterior material 3 for the power storage device is molded. It may be an embossed pouch type.
  • the pouch type includes a three-way seal, a four-way seal, a pillow type, and the like, but any type may be used.
  • the thickness of the laminate constituting the exterior material 3 for the power storage device is not particularly limited, but the upper limit is preferably about 180 ⁇ m or less, about 160 ⁇ m or less, and about 155 ⁇ m or less from the viewpoint of cost reduction, energy density improvement, and the like. , About 140 ⁇ m or less, about 130 ⁇ m or less, about 120 ⁇ m or less, and the lower limit is preferably about 35 ⁇ m or more, about 35 ⁇ m or more, from the viewpoint of maintaining the function of the exterior material 3 for the power storage device of protecting the power storage device element 4.
  • 45 ⁇ m or more, about 60 ⁇ m or more, and about 80 ⁇ m or more are mentioned, and preferable ranges are, for example, about 35 to 180 ⁇ m, about 35 to 160 ⁇ m, about 35 to 155 ⁇ m, about 35 to 140 ⁇ m, about 35 to 130 ⁇ m, and about 35 to 120 ⁇ m.
  • the base material layer 31 is a layer that functions as a base material for the power storage device exterior material, and is a layer that forms the outermost layer side.
  • the material forming the base material layer 31 is not particularly limited as long as it has an insulating property.
  • Examples of the material forming the base material layer 31 include polyester, polyamide, epoxy, acrylic, fluororesin, polyurethane, silicon resin, phenol, polyetherimide, polyimide, and a mixture or copolymer thereof.
  • Polyesters such as polyethylene terephthalate and polybutylene terephthalate are excellent in electrolytic solution resistance and have an advantage that whitening or the like is unlikely to occur due to adhesion of the electrolytic solution, and are preferably used as a material for forming the base material layer 31.
  • the polyamide film has excellent stretchability, can prevent whitening due to resin cracking of the base material layer 31 during molding, and is suitably used as a material for forming the base material layer 31.
  • the base material layer 31 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, particularly a biaxially stretched resin film, is preferably used as a base material layer 31 because its heat resistance is improved by orientation crystallization.
  • examples of the resin film forming the base material layer 31 include nylon and polyester, and more preferably biaxially stretched nylon and biaxially stretched polyester.
  • the base material layer 31 can be laminated with resin films of different materials in order to improve pinhole resistance and insulation when used as a packaging for a power storage device.
  • resin films of different materials include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated.
  • the resin films may be bonded via an adhesive, or may be directly laminated without an adhesive.
  • a method of bonding in a heat-melted state such as a coextrusion method, a sandrami method, and a thermal laminating method can be mentioned.
  • the base material layer 31 may have low friction in order to improve moldability.
  • the friction coefficient of the base material layer 31 is not particularly limited, and examples thereof include 1.0 or less.
  • Examples of reducing the friction of the base material layer 31 include matting treatment, formation of a thin film layer of a slip agent, and a combination thereof.
  • the thickness of the base material layer 31 is, for example, about 10 to 50 ⁇ m, preferably about 15 to 30 ⁇ m.
  • the adhesive layer 32 is a layer arranged on the base material layer 31 as needed in order to impart adhesion to the base material layer 31. That is, the adhesive layer 32 is provided between the base material layer 31 and the barrier layer 33.
  • the adhesive layer 32 is formed by an adhesive capable of adhering the base material layer 31 and the barrier layer 33.
  • the adhesive used to form the adhesive layer 32 may be a two-component curable adhesive or a one-component curable adhesive.
  • the adhesive mechanism used for forming the adhesive layer 32 is not particularly limited, and may be any of chemical reaction type, solvent volatilization type, heat melting type, thermal pressure type and the like.
  • the resin component of the adhesive that can be used for forming the adhesive layer 32, it is excellent in spreadability, durability under high humidity conditions, yellowing suppressing action, heat deterioration suppressing action at the time of heat sealing, etc. From the viewpoint of suppressing a decrease in the lamination strength between the barrier layer 33 and effectively suppressing the occurrence of delamination, a polyurethane-based two-component curable adhesive is preferably used; a polyamide, polyester, or a modified polyolefin thereof. Blended resin can be mentioned.
  • the adhesive layer 32 may be multi-layered with different adhesive components.
  • the adhesive component arranged on the base layer 31 side is used as the base layer from the viewpoint of improving the lamination strength between the base layer 31 and the barrier layer 33. It is preferable to select a resin having excellent adhesiveness to 31 and select an adhesive component having excellent adhesiveness to the barrier layer 33 as the adhesive component arranged on the barrier layer 33 side.
  • the adhesive component arranged on the barrier layer 33 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a polyester and an acid-modified polyolefin. Examples thereof include a mixed resin with and a resin containing a copolymerized polyester.
  • the thickness of the adhesive layer 32 is, for example, about 2 to 50 ⁇ m, preferably about 3 to 25 ⁇ m.
  • the barrier layer 33 is a layer having a function of improving the strength of the exterior material for the power storage device and preventing water vapor, oxygen, light, etc. from entering the inside of the power storage device.
  • the barrier layer 33 is preferably a metal layer, that is, a layer made of metal. Specific examples of the metal constituting the barrier layer 33 include aluminum, stainless steel, titanium, and the like, preferably aluminum.
  • the barrier layer 33 can be formed of, for example, a metal foil, a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, a film provided with these vapor deposition films, or the like, and is formed of a metal foil.
  • the barrier layer is, for example, annealed aluminum (JIS H4160: 1994 A8021HO, JIS H4160). : 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferably formed from soft aluminum foil.
  • the thickness of the barrier layer 33 is preferably about 10 to 200 ⁇ m, more preferably about 20 to 100 ⁇ m, from the viewpoint of making the exterior material for the power storage device thinner and making it difficult for pinholes to occur even by molding. Be done.
  • the barrier layer 33 is subjected to chemical conversion treatment in order to stabilize adhesion and prevent dissolution and corrosion.
  • the chemical conversion treatment refers to a treatment for forming a corrosion-resistant film on the surface of the barrier layer.
  • the adhesive layer 34 In the exterior material 3 for a power storage device, the adhesive layer 34 is provided as necessary between the barrier layer 33 and the thermosetting resin layer 35 in order to firmly bond the thermosetting resin layer 35. Is.
  • the adhesive layer 34 is formed by an adhesive capable of adhering the barrier layer 33 and the thermosetting resin layer 35.
  • the composition of the adhesive used to form the adhesive layer is not particularly limited, and examples thereof include a resin composition containing an acid-modified polyolefin.
  • the acid-modified polyolefin the same ones as those exemplified in the first and second polyolefin layers 12a and 12b can be exemplified.
  • the thickness of the adhesive layer 34 is, for example, about 1 to 40 ⁇ m, preferably about 2 to 30 ⁇ m.
  • thermosetting resin layer 35 In the exterior material 3 for a power storage device, the thermosetting resin layer 35 corresponds to the innermost layer, and is a layer in which the heat-sealing resin layers are heat-sealed to each other when the power storage device is assembled to seal the power storage device element. ..
  • the resin component used in the thermosetting resin layer 35 is not particularly limited as long as it can be heat-fused, and examples thereof include polyolefins and cyclic polyolefins.
  • polystyrene resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other polyethylene; homopolypropylene, polypropylene block copolymer (for example, propylene and ethylene block copolymer), and polypropylene. Random polypropylene (eg, random copolymer of propylene and ethylene) and other crystalline or amorphous polypropylene; ethylene-butene-propylene tarpolymer and the like. Among these polyolefins, polyethylene and polypropylene are preferable.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, isoprene, and the like. Be done.
  • examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specific examples thereof include cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • Styrene is also mentioned as a constituent monomer.
  • these resin components preferably crystalline or amorphous polyolefins, cyclic polyolefins, and blend polymers thereof; more preferably polyethylene, polypropylene, copolymers of ethylene and norbornene, and two or more of them. Blended polymers of.
  • thermosetting resin layer 35 may be formed by one kind of resin component alone, or may be formed by a blend polymer in which two or more kinds of resin components are combined. Further, the thermosetting resin layer 35 may be formed of only one layer, or may be formed of two or more layers with the same or different resin components.
  • the thickness of the thermosetting resin layer 35 is not particularly limited, but may be about 2 to 2000 ⁇ m, preferably about 5 to 1000 ⁇ m, and more preferably about 10 to 500 ⁇ m.
  • the power storage device 10 of the present disclosure includes at least a power storage device element 4 having a positive electrode, a negative electrode, and an electrolyte, an exterior material 3 for a power storage device that seals the power storage device element 4, and an electric positive electrode and a negative electrode, respectively. It is provided with a metal terminal 2 which is connected to and protrudes to the outside of the exterior material 3 for a power storage device.
  • the power storage device 10 of the present disclosure is characterized in that the adhesive film 1 for metal terminals of the present disclosure is interposed between the metal terminal 2 and the exterior material 3 for the power storage device. That is, the power storage device 10 of the present disclosure can be manufactured by a method including a step of interposing the adhesive film 1 for the metal terminal of the present disclosure between the metal terminal 2 and the exterior material 3 for the power storage device.
  • the power storage device element 4 having at least a positive electrode, a negative electrode, and an electrolyte is provided with an exterior material 3 for the power storage device, with metal terminals 2 connected to each of the positive electrode and the negative electrode protruding outward.
  • the adhesive film 1 for metal terminals of the present disclosure is interposed between the metal terminals 2 and the thermosetting resin layer 35, and the flange portion (thermosetting resin) of the exterior material for the power storage device is placed on the peripheral edge of the power storage device element 4. It is a region where the layers 35 are in contact with each other, and is covered so that the peripheral edge portion 3a) of the exterior material for the power storage device can be formed, and the thermosetting resin layers 35 of the flange portion are heat-sealed and sealed.
  • thermosetting resin layer 35 of the power storage device exterior material 3 is set to be inside (the surface in contact with the power storage device element 4). Used.
  • the exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for the power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, and a nickel / hydrogen storage battery.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the exterior materials for power storage devices of the present disclosure.
  • Example 1-16 and Comparative Example 1-6 Manufacturing of adhesive film for metal terminals>
  • PP layer maleic anhydride-modified polypropylene having the melting point and melt mass flow rate (MFR) shown in Table 1 (hereinafter, may be referred to as “PPa”) is used as a first polyolefin layer (PPa layer) and a second polyolefin layer. (PPa layer).
  • Example 1 to 12 and Comparative Example 3 the PPa layer / PP layer / PPa layer were laminated in order by extruding polypropylene and maleic anhydride-modified polypropylene in two types and three layers using a T-die extruder. An adhesive film for metal terminals was obtained. Further, in Examples 13 to 16 and Comparative Examples 4 to 6, an adhesive film for metal terminals in which a PPa layer / PP layer / PPa layer was laminated in this order was obtained by an inflation method.
  • Physical properties such as tensile elastic modulus, yield stress, water vapor barrier property, and thickness change rate of the adhesive film for metal terminals shown in Table 2 include the melting point, MFR, thickness, and thickness ratio of the PPa layer and the PP layer.
  • the melting points of the PP layer and the PPa layer shown in Table 1 are values measured by the following methods, respectively.
  • the melting peak temperature was measured twice with a differential scanning calorimeter (DSC, differential scanning calorimeter Q200 manufactured by TA Instruments). Specifically, according to the procedure of JIS K7121: 2012 (Plastic transition temperature measurement method (Appendix 1 of JIS K7121: 1987)), the PP layer or PPa layer was subjected to -20 ° C by differential scanning calorimetry (DSC).
  • melt mass flow rates (MFRs) of the PP layer and the PPa layer shown in Table 1 are values at 230 ° C. measured in accordance with JIS K7210-1: 2014 (ISO 1133-1: 2011), respectively. g / 10 minutes).
  • ⁇ Tension elastic modulus B before heating and pressurizing> In accordance with JIS K7161-1 (ISO527-1), the adhesive film for metal terminals in a 25 ° C environment (metal terminals before heating and pressurizing in ⁇ tensile elastic modulus A after heating and pressurizing> described later). The tensile elastic modulus B of the adhesive film) was measured. Specifically, the adhesive films for metal terminals obtained in Examples and Comparative Examples were cut into strips having a width (TD) of 15 mm and a length (MD) of 50 mm.
  • the adhesive film for metal terminals was subjected to the conditions of a tensile speed of 300 mm / min and a chuck distance of 30 mm using a Tencilon universal material tester (RTG-1210 manufactured by A & D Co., Ltd.) in an environment of 25 ° C. Then, the stress-strain curve of the test piece was obtained, and the tensile elastic modulus B of the adhesive film for metal terminals before heating and pressurization was calculated from the slope of the straight line connecting the two points of strain 0.05% and 0.25%. I asked. The results are shown in Table 2.
  • ⁇ Tension elastic modulus A after heating and pressurizing> The tensile elastic modulus after heating and pressurizing was measured by the following procedure for 12 seconds under the conditions of a temperature of 180 ° C. and a surface pressure of 0.0067 MPa.
  • the adhesive films for metal terminals obtained in Examples and Comparative Examples were cut into strips having a width (TD) of 15 mm and a length (MD) of 50 mm.
  • the adhesive film for metal terminals is sandwiched between two tetrafluoroethylene-ethylene copolymer films (ETFE film, thickness 100 ⁇ m), and the film is placed on a hot plate heated to 180 ° C.
  • ETFE film tetrafluoroethylene-ethylene copolymer films
  • an exterior material for a power storage device (hereinafter, may be simply referred to as "exterior material”) was produced by the following procedure.
  • An aluminum alloy foil (thickness 35 ⁇ m) was laminated on a base material layer (thickness 25 ⁇ m) made of a nylon film by a dry laminating method.
  • a two-component urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one surface of a barrier layer made of an aluminum alloy foil, and an adhesive layer (thickness 3 ⁇ m) is applied on the aluminum alloy foil.
  • a two-component urethane adhesive polyol compound and aromatic isocyanate compound
  • an aging treatment was carried out to prepare a laminated body of the base material layer / adhesive layer / barrier layer.
  • an adhesive layer made of maleic anhydride-modified polypropylene resin (thickness 20 ⁇ m, arranged on the metal layer side) and a thermosetting resin layer made of random polypropylene resin (thickness 15 ⁇ m).
  • the innermost layer was extruded together to laminate an adhesive layer / thermosetting resin layer on the barrier layer.
  • a base material layer, an adhesive layer, a barrier layer, an adhesive layer, and a thermosetting resin layer are laminated in this order as an exterior material for a power storage device.
  • the obtained exterior material 3 was cut into squares having a length (MD) of 120 mm and a width (TD) of 120 mm (FIG. 11a).
  • the adhesive film 1 for each metal terminal (hereinafter, may be simply referred to as "adhesive film") obtained in Examples and Comparative Examples is formed into a rectangle having a length (MD) of 120 mm and a width (TD) of 10 mm. I cut it.
  • the exterior material 10 is bent in half in the vertical direction so that the thermosetting resin layer is on the inside, and two adhesive films for metal terminals are arranged between them so that the vertical and horizontal directions match.
  • FIG. 11b A laminate in which the exterior material / adhesive film / adhesive film / exterior material was laminated in this order was obtained (FIG. 11b).
  • the adhesive film is arranged between the exterior materials 10 along the long side to be heat-sealed, which will be described later.
  • a heat seal bar stainless steel plate
  • each layer of the laminate is heat-sealed at the positions of the long side and the short side of the laminate, and one short side is not heat-sealed. And said.
  • the conditions for heat fusion were set to a temperature of 190 ° C., a surface pressure of 1.0 MPa, and once for 3 seconds using a heat seal bar having a width of 10 mm for the long side (s1 in FIG. 11c).
  • a heat seal bar with a width of 7 m, heat seal once under the conditions of a temperature of 190 ° C., a surface pressure of 2.0 MPa, and 3 seconds, and then further, at a position 3 mm inside from the short side, the width.
  • heat seal was performed once under the conditions of a temperature of 190 ° C. and a surface pressure of 2.0 MPa for 3 seconds. That is, the short side 2 was heat-sealed twice so as to have a width of 10 mm by shifting the position by 3 mm (s2 in FIG. 11c).
  • the heat-sealed portion was cut off along the long-side direction so that the width of the heat-sealed portion on the long side was 3 mm, and the heat-sealed portion was dried in a dry room for one day (FIG. 11d).
  • the short side that was not heat-sealed was also heat-sealed in the same manner as the short side to form a sealed bag (FIG. 11f).
  • This sealed bag was allowed to stand in an environment of a temperature of 60 ° C. and a relative humidity of 90% for 30 days, and then the moisture content of the liquid taken out from the sealed bag was measured by the Karl Fischer method in a dry room. The results are shown in Table 2.
  • ⁇ Rate of change in thickness> In the above ⁇ tensile elastic modulus A after heating and pressurizing>, the adhesive films for each metal terminal before and after heating and pressurizing for 12 seconds under the conditions of a temperature of 180 ° C. and a surface pressure of 0.0067 MPa (metal after heating and pressurizing).
  • the rate of change in thickness was calculated from the formula of (thickness of adhesive film for terminals) / (thickness of adhesive film for metal terminals before heating and pressurization) ⁇ 100.
  • the rate of change in thickness is an average value measured at three points in the MD direction of the adhesive film for metal terminals. The results are shown in Table 2.
  • metal terminals aluminum (JIS H4160: 1994 A8079H-O) having a length of 50 mm, a width of 22.5 mm, and a thickness of 0.2 mm was prepared. Further, the adhesive films for metal terminals obtained in Examples and Comparative Examples were cut into a length of 45 mm and a width of 15 mm. Next, an adhesive film for metal terminals was placed on the metal terminals to obtain a laminate of metal terminals / adhesive films.
  • the vertical direction and the horizontal direction of the metal terminal coincide with the length direction and the width direction of the adhesive film for the metal terminal, respectively, and the centers of the metal terminal and the adhesive film for the metal terminal coincide with each other.
  • a tetrafluoroethylene-ethylene copolymer film (ETFE film, thickness 100 ⁇ m) was placed on the adhesive film for metal terminals of the laminate (the surface of the adhesive film for metal terminals was covered with the ETFE film).
  • ETFE film tetrafluoroethylene-ethylene copolymer film
  • the process of allowing to stand for 12 seconds in a heating and pressurizing environment at a temperature of 180 ° C. and a surface pressure of 0.016 MPa is a process assuming the heat and pressure applied in the temporary bonding step and the main bonding step.
  • the results are shown in Table 2.
  • ⁇ Followability evaluation 1 (adhesive film / metal terminal)>
  • a metal terminal an aluminum foil (JIS H4160: 1994 A8079HO) having a thickness of 200 ⁇ m was prepared.
  • the adhesive films for each metal terminal obtained in Examples and Comparative Examples were prepared.
  • a metal terminal was sandwiched between the two adhesive films to obtain a laminate of the adhesive film / metal terminal / adhesive film.
  • two tetrafluoroethylene-ethylene copolymer films (ETFE film, thickness 100 ⁇ m) are placed on a hot plate heated to 180 ° C. with the laminate sandwiched between them, and a sponge is used.
  • a 500 g weight of the film was placed on the film and allowed to stand for 12 seconds to heat-fuse the adhesive film to the metal terminals (surface pressure 0.0067 MPa, contact area 300 mm 2 ).
  • the metal terminals are sandwiched by the adhesive film, so that the periphery of the metal terminals is covered with the adhesive film, and the two adhesive films are heat-sealed to each other. Formed the part that is.
  • the laminate after heat fusion is naturally cooled to 25 ° C., the cross section in the thickness direction is observed with a laser microscope, and the followability of the adhesive film for metal terminals to the shape of the metal terminals is evaluated according to the following criteria. It was. The results are shown in Table 2.
  • A There are no bubbles between the adhesive film for metal terminals and the metal terminals B: There are no bubbles at the interface between the adhesive film for metal terminals and the metal terminals, but in the vicinity of the interface, the adhesive film for metal terminals There are air bubbles C: There are air bubbles at the interface between the adhesive film for metal terminals and the metal terminals, and there are air bubbles in the adhesive film for metal terminals even near the interface.
  • ⁇ Followability evaluation 2 (adhesive film / exterior material)>
  • a laminate of an adhesive film / metal terminal / adhesive film was produced in the same manner as in the procedure described in the followability evaluation 1 described above.
  • the obtained laminate is sandwiched between the two exterior materials, and in this state, the exterior is sealed by using a heat seal tester at 180 ° C. and a surface pressure of 1.0 MPa for 3 seconds.
  • a laminate was obtained by heat-sealing between the material and the adhesive film.
  • the obtained laminate is naturally cooled to 25 ° C., and the cross section in the thickness direction is observed with a laser microscope to evaluate the followability of the adhesive film for metal terminals to the shape of the exterior material for the power storage device according to the following criteria. went.
  • the shock absorption energy was calculated from the area of the portion surrounded by the stress-strain curve obtained by the ⁇ tensile elastic modulus A after heating and pressurization>. The results are shown in Table 2.
  • the adhesive film for metal terminals of Examples 1 to 16 is interposed between the metal terminal electrically connected to the electrode of the power storage device element and the exterior material for the power storage device that seals the power storage device element.
  • the adhesive films for metal terminals of Examples 1 to 16 having the above configuration are heated and pressurized a plurality of times before being adhered to the metal terminals. Demonstrates high adhesion strength to metal terminals.
  • the adhesive films for metal terminals of Examples 1 and 2 have a sufficient adhesive strength of 45 N / 15 mm or more, and further, flexibility (bending test), thickness change rate, and impact. It was an adhesive film for metal terminals that was excellent in absorption energy, had good adhesion, flexibility, rate of change in thickness, and shock absorption energy, and had an excellent balance of overall characteristics. That is, in the adhesive film for metal terminals of the present disclosure, the tensile elastic modulus A is about 500 to 550 MPa, the tensile elastic modulus B is 420 to 480 MPa, and the difference between the tensile elastic moduli A and B is 40 to 75 MPa.
  • the total thickness of the adhesive film for metal terminals is 145 to 155 ⁇ m, the thickness of the base material is 90 to 120 ⁇ m, and the thickness of the first polyolefin layer and the second polyolefin layer is 10 to 30 ⁇ m, respectively. Since the ratio of the thickness of the base material to the total thickness of the second polyolefin layer is 1.0 to 4.0, the adhesiveness, flexibility, rate of change in thickness, and shock absorption energy are good, and the overall thickness is comprehensive. An adhesive film for metal terminals with an excellent balance of characteristics.
  • Example 17 Manufacturing of adhesive film for metal terminals>
  • polypropylene (PP) having the melting point and melt mass flow rate (MFR) shown in Table 3 is used as the first polyolefin layer (PP layer), and maleic anhydride-modified polypropylene (PPa) is used as the second polyolefin layer (PPa).
  • PP polypropylene
  • MFR melt mass flow rate
  • PPa maleic anhydride-modified polypropylene
  • PPa second polyolefin layer
  • Polypropylene (PP) and maleic anhydride-modified polypropylene (PPa) are extruded on both sides of a base material made of unstretched polypropylene film (CPP layer) with a T-die extruder, and the PP layer / CPP layer / PPa layer are sequentially extruded. A laminated adhesive film for metal terminals was obtained. The thickness of each layer of the PP layer / CPP layer / PPa layer is as shown in Table 4.
  • the physical properties such as tensile elastic modulus, yield point stress, water vapor barrier property, and thickness change rate of the adhesive film for metal terminals shown in Table 4 are the same as in Examples 1 to 16, and the PP layer, PPa layer, and CPP layer are the same. Adjusted according to the melting point, MFR, thickness, thickness ratio, and T-die conditions (for example, extrusion width from T-die, draw ratio, draw rate, heat treatment temperature, etc.) in the production of the adhesive film 1 for metal terminals. did.
  • the metal terminals electrically connected to the electrodes of the power storage device element and the exterior material for the power storage device that seals the power storage device element. It is an adhesive film for metal terminals interposed between and, and has a tensile elastic modulus A of 490 MPa or more. As is clear from the results shown in Table 4, the adhesive film for metal terminals of Example 17 having this configuration is made of metal when it is heated and pressed a plurality of times before being adhered to the metal terminals. Demonstrates high adhesion to terminals.
  • Item 1 An adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of a power storage device element and an exterior material for a power storage device that seals the power storage device element.
  • the adhesive film for metal terminals is allowed to stand for 12 seconds in a heating and pressurizing environment having a temperature of 180 ° C. and a surface pressure of 0.0067 MPa, and further standing for 1 hour in an environment having a temperature of 25 ° C., and then having a temperature of 25 ° C.
  • Item 2. Item 2.
  • Adhesion for metal terminals according to Item 1 wherein the adhesive film for metal terminals has a tensile elastic modulus B of 700 MPa or less measured in an environment of a temperature of 25 ° C. before being exposed to the heating and pressurizing environment. Sex film.
  • Item 3. Item 2. The adhesive film for metal terminals according to Item 2, wherein the difference in tensile elastic modulus is 5 MPa or more, which is calculated by subtracting the value of the tensile elastic modulus B from the value of the tensile elastic modulus A.
  • Item 4. Item 2. The adhesive film for metal terminals according to any one of Items 1 to 3, wherein the adhesive film for metal terminals has a tensile elastic modulus A of 680 MPa or less.
  • the adhesive film for metal terminals is a stress (MPa) obtained by performing a tensile test under the conditions of a temperature of 25 ° C., a tensile speed of 175 mm / min, and a distance between chucks of 30 mm by a method in accordance with JIS K7127.
  • Item 2 The adhesive film for a metal terminal according to any one of Items 1 to 4, wherein the descending yield stress obtained from the graph showing the relationship between the strain (mm) and the strain (mm) is 17.0 MPa or more.
  • Adhesive film for metal terminals according to the section. Rate of change in thickness (thickness of adhesive film for metal terminals after heating and pressurization / thickness of adhesive film for metal terminals before heating and pressurizing) x 100 Item 7.
  • Item 9 The adhesive film for metal terminals according to Item 8, wherein the ratio of the thickness of the base material to the total thickness of the first polyolefin layer and the second polyolefin layer is 0.7 or more and 4.0 or less.
  • Item 10. The adhesive film for metal terminals according to Item 8 or 9, wherein the thickness of the base material is 50 ⁇ m or more and 150 ⁇ m or less.
  • Item 11. Item 2. The adhesive film for metal terminals according to any one of Items 8 to 10, wherein the thickness of the first polyolefin layer and the second polyolefin layer are 10 ⁇ m or more and 50 ⁇ m or less, respectively.
  • Item 2 to any one of Items 8 to 11, wherein the melt mass flow rate at at least one of the first polyolefin layer and the second polyolefin layer at 230 ° C. is 7.2 g / 10 minutes or more and 9.8 g / 10 minutes or less.
  • the described adhesive film for metal terminals Item 13.
  • Item 2. The adhesive film for metal terminals according to any one of Items 8 to 12, wherein the melt mass flow rate of the base material at 230 ° C. is 1.8 g / 10 minutes or more and 5.0 g / 10 minutes or less.
  • Item 14. Item 2.
  • the exterior material for a power storage device is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in this order.
  • Item 2. The adhesive film for metal terminals according to any one of Items 1 to 15, wherein the adhesive film for metal terminals is interposed between the thermosetting resin layer and the metal terminals.
  • Item 17. A metal terminal with an adhesive film for a metal terminal, wherein the adhesive film for the metal terminal according to any one of Items 1 to 16 is attached to the metal terminal.
  • the power storage device element provided with at least a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode are electrically connected to each other.
  • Item 19 The power storage device element provided with at least a positive electrode, a negative electrode, and an electrolyte, an exterior material for the power storage device that seals the power storage device element, and the positive electrode and the negative electrode are electrically connected to each other.
  • the metal terminal adhesive film according to any one of Items 1 to 16 is interposed between the metal terminal and the exterior material for the power storage device, and the power storage device element is sealed with the exterior material for the power storage device.
  • a method of manufacturing a power storage device which comprises a step of performing.
  • Adhesive film for metal terminals Metal terminals 3 Exterior material for power storage device 3a Peripheral part of exterior material for power storage device 4 Power storage device element 10 Power storage device 11 Base material 12a First polyolefin layer 12b Second polyolefin layer 13 Adhesive accelerator layer 31 Base material layer 32 Adhesive layer 33 Barrier layer 34 Adhesive layer 35 Heat-sealing resin layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Laminated Bodies (AREA)

Abstract

金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮する金属端子用接着性フィルムを提供する。 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、 前記金属端子用接着性フィルムは、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率Aが、490MPa以上である、金属端子用接着性フィルム。

Description

金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
 本開示は、金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法に関する。
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて電極や電解質等の蓄電デバイス素子を封止するために蓄電デバイス用外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の蓄電デバイス用外装材が多用されていたが、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/接着層/バリア層/熱融着性樹脂層が順次積層された積層シートが提案されている。このようなフィルム状の蓄電デバイス用外装材を用いる場合、蓄電デバイス用外装材の最内層に位置する熱融着性樹脂層同士を対向させた状態で、蓄電デバイス用外装材の周縁部をヒートシールにて熱融着させることにより、蓄電デバイス用外装材によって蓄電デバイス素子が封止される。
 蓄電デバイス用外装材のヒートシール部分からは、金属端子が突出しており、蓄電デバイス用外装材によって封止された蓄電デバイス素子は、蓄電デバイス素子の電極に電気的に接続された金属端子によって外部と電気的に接続される。すなわち、蓄電デバイス用外装材がヒートシールされた部分のうち、金属端子が存在する部分は、金属端子が熱融着性樹脂層に挟持された状態でヒートシールされている。金属端子と熱融着性樹脂層とは、互いに異種材料により構成されているため、金属端子と熱融着性樹脂層との界面において、密着性が低下しやすい。
 このため、金属端子と熱融着性樹脂層との間には、これらの密着性を高めることなどを目的として、接着性フィルムが配されることがある。
特開2015-79638号公報
 このような接着性フィルムには、蓄電デバイス用外装材及び金属端子との高い密着性が求められる。
 ところで、接着性フィルムを介して金属端子と蓄電デバイス用外装材とを接着する工程では、例えば、金属端子への仮接着工程及び本接着工程というように、複数回の加熱及び加圧が行われることが一般的である。仮接着工程は、金属端子への接着性フィルムへの仮止めや気泡抜きを行う工程であり、本接着工程は、仮接着工程よりも高温条件で1回又は複数回の加熱・加圧を行って接着性フィルムを金属端子に接着させる工程である。本発明者等が検討したところ、本接着工程までに、接着性フィルムに対して加熱及び加圧が行われ、さらに本接着工程で加熱及び加圧が行われると、複数回の加熱及び加圧の影響により、接着性フィルムの金属端子への密着強度が低下することがあることが明らかとなった。密着強度の低下の程度によっては、接着性フィルムを介した蓄電デバイス用外装材と金属端子と密着強度が不十分となる。
 このような状況下、本開示は、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮する金属端子用接着性フィルムを提供することを主な目的とする。さらに、本開示は、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス及び当該蓄電デバイスの製造方法を提供することも目的とする。
 本開示の発明者等は、上記の課題を解決すべく鋭意検討を行った。その結果、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率が所定値以上である金属端子用接着性フィルムは、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮することを見出した。本開示は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本開示は、下記に掲げる態様の発明を提供する。
 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
 前記金属端子用接着性フィルムは、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率Aが、490MPa以上である、金属端子用接着性フィルム。
 本開示によれば、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮する金属端子用接着性フィルムを提供することができる。さらに、本開示によれば、当該金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法を提供することもできる。
本開示の蓄電デバイスの略図的平面図である。 図1の線A-A’における略図的断面図である。 図1の線B-B’における略図的断面図である。 本開示の金属端子用接着性フィルムの略図的断面図である。 本開示の金属端子用接着性フィルムの略図的断面図である。 本開示の金属端子用接着性フィルムの略図的断面図である。 本開示の金属端子用接着性フィルムの略図的断面図である。 本開示の蓄電デバイス用外装材の略図的断面図である。 金属端子用接着性フィルムの引張試験によって取得される応力-ひずみ曲線の模式図である。 実施例において、2枚の接着性フィルムの間に、金属端子を挟み、熱融着させることで得た接着性フィルム/金属端子/接着性フィルムの積層体(金属端子用接着性フィルム付き金属端子)の模式的断面図である。 実施例における、水蒸気バリア性(水分率)の評価方法を説明するための模式図である。 金属端子用接着性フィルムの製造ラインにおけるMD、TD、厚み方向(y)を示す模式図である。
 本開示の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムである。本開示の金属端子用接着性フィルムは、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率Aが、490MPa以上であることを特徴とする。なお、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置する処理は、前記の仮接着工程及び本接着工程で加わる熱と圧力を想定した処理である。
 本開示の金属端子用接着性フィルムによれば、前記加熱加圧環境後における引張弾性率が490MPa以上に設定されていることにより、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮することができる。
 また、本開示の蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した金属端子とを備える蓄電デバイスであって、金属端子と蓄電デバイス用外装材との間に、本開示の金属端子用接着性フィルムが介在されてなることを特徴とする。以下、本開示の金属端子用接着性フィルム、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び当該蓄電デバイスの製造方法について詳述する。
 なお、本明細書において、数値範囲については、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
1.金属端子用接着性フィルム
 本開示の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在されるものである。具体的には、例えば図1から図3に示されるように、本開示の金属端子用接着性フィルム1は、蓄電デバイス素子4の電極に電気的に接続されている金属端子2と、蓄電デバイス素子4を封止する蓄電デバイス用外装材3との間に介在されている。また、金属端子2は、蓄電デバイス用外装材3の外側に突出しており、ヒートシールされた蓄電デバイス用外装材3の周縁部3aにおいて、金属端子用接着性フィルム1を介して、蓄電デバイス用外装材3に挟持されている。なお、本開示において、蓄電デバイス用外装材をヒートシールする際の加熱温度としては、通常160~190℃程度の範囲、圧力としては、通常1.0~2.0MPa程度の範囲である。また、金属端子用接着性フィルムの金属端子への仮接着工程は、例えば、温度140~160℃程度、圧力0.01~1.0MPa程度、時間3~15秒間程度、回数3~6回程度の条件で行われ、また、本接着工程は、例えば、温度160~240℃程度、圧力0.01~1.0MPa程度、時間3~15秒間程度、回数1~3回程度の条件で行われる。
 本開示の金属端子用接着性フィルム1は、金属端子2と蓄電デバイス用外装材3との密着性を高めるために設けられている。金属端子2と蓄電デバイス用外装材3との密着性が高められることにより、蓄電デバイス素子4の密封性が向上する。上述のとおり、蓄電デバイス素子4をヒートシールする際には、蓄電デバイス素子4の電極に電気的に接続された金属端子2が蓄電デバイス用外装材3の外側に突出するようにして、蓄電デバイス素子が封止される。このとき、金属により形成された金属端子2と、蓄電デバイス用外装材3の最内層に位置する熱融着性樹脂層35(ポリオレフィンなどの熱融着性樹脂により形成された層)とは異種材料により形成されているため、このような接着性フィルムを用いない場合には、金属端子2と熱融着性樹脂層35との界面において、蓄電デバイス素子の密封性が低くなりやすい。
 本開示の金属端子用接着性フィルム1は、後述の引張弾性率Aが490MPa以上となれば、図4に示されるように単層であってもよいし、図5から図7に示されるように複層であってもよい。本開示の金属端子用接着性フィルム1は、複層であることが好ましい。本開示の金属端子用接着性フィルム1が複層である場合、図5から図7に示すように、少なくとも、基材11と第1ポリオレフィン層12aとが積層された構成を含んでいることが好ましく、図6,7に示すように、少なくとも、第1ポリオレフィン層12aと、基材11と、第2ポリオレフィン層12bとがこの順に積層された構成を含んでいることがより好ましい。また、本開示の金属端子用接着性フィルム1においては、両面側の表面に、それぞれ第1ポリオレフィン層12a及び第2ポリオレフィン層12bが位置していることが好ましい。
 本開示の金属端子用接着性フィルム1は、第1ポリオレフィン層12a及び第2ポリオレフィン層12bのうち少なくとも一方は、酸変性ポリオレフィンを含んでいることが好ましく、第1ポリオレフィン層12a及び第2ポリオレフィン層12bが酸変性ポリオレフィンを含んでいることがさらに好ましい。また、基材11は、ポリオレフィンを含んでいることが好ましい。後述の通り、第1ポリオレフィン層12a及び第2ポリオレフィン層12bは、それぞれ、酸変性ポリプロピレンにより形成された、酸変性ポリプロピレン層であることが好ましい。また、基材11は、ポリプロピレンにより形成された、ポリプロピレン層であることが好ましい。
 本開示の金属端子用接着性フィルム1の好ましい積層構成の具体例としては、酸変性ポリプロピレン層/ポリプロピレン層の2層構成;酸変性ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された3層構成;酸変性ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された5層構成などが挙げられ、これらの中でも、酸変性ポリプロピレン層/ポリプロピレン層の2層構成;酸変性ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された3層構成がより好ましく、酸変性ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された3層構成が特に好ましい。
 蓄電デバイス10の金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が配置されると、金属により構成された金属端子2の表面と、蓄電デバイス用外装材3の熱融着性樹脂層35(ポリオレフィンなどの熱融着性樹脂により形成された層)とが、金属端子用接着性フィルム1を介して接着される。
 本開示の金属端子用接着性フィルム1は、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率Aが、490MPa以上である。金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、引張弾性率Aとしては、好ましくは約520MPa以上、より好ましくは約550MPa以上、さらに好ましくは約569MPa以上、さらに好ましくは約573MPa以上が挙げられる。また、引張弾性率Aの上限については、約850MPa以下が挙げられ、後述する耐衝撃吸収エネルギーを高める観点からは好ましくは約800MPa以下であり、さらに柔軟性に優れた(後述の曲げ試験の評価が良好な)金属端子用接着性フィルム1とする観点から、好ましくは約680MPa以下、より好ましくは約610MPa以下が挙げられる。引張弾性率Aの好ましい範囲としては、490~850MPa程度、490~800MPa程度、490~680MPa程度、490~610MPa程度、520~850MPa程度、520~800MPa程度、520~680MPa程度、520~610MPa程度、550~850MPa程度、550~800MPa程度、550~680MPa程度、550~610MPa程度、569~850MPa程度、569~800MPa程度、569~680MPa程度、569~610MPa程度、573~850MPa程度、573~800MPa程度、573~680MPa程度、573~610MPa程度が挙げられる。金属端子に対して高い密着強度を発揮しつつ、後述する柔軟性、厚みの変化率、及び衝撃吸収エネルギーについて総合的に良好な金属端子用接着性フィルム1とする観点から、総合的に好ましい引張弾性率Aの範囲としては500~550MPa程度である。引張弾性率Aの測定方法は、以下の通りである。
<加熱加圧後の引張弾性率A>
 温度180℃、面圧0.0067MPaの条件で12秒間、加熱加圧後の引張弾性率を以下の手順により測定する。まず、金属端子用接着性フィルムを幅(TD)15mm、長さ(MD)50mmの短冊状に裁断する。なお、金属端子用接着性フィルムのMD、TDは、金属端子用接着性フィルムの厚み方向の断面の海島構造を観察することで判断することができる。MDの方向の断面に観察される島の形状は、TDの方向の断面と比較すると、一般に細長い形状となる。次に、2枚のテトラフルオロエチレン-エチレン共重合体フィルム(ETFEフィルム、厚さ100μm)で金属端子用接着性フィルムを挟んだ状態で、180℃に加熱されたホットプレート上に載置すると共に、スポンジ付きの500gの錘を載せて、12秒間静置した後、直ちに大気圧下、25℃環境において1時間静置して試験片を得る。次に、大気圧下、25℃環境において、テンシロン万能材料試験機(例えば、エー・アンド・デイ社製のRTG-1210)を用いて、引張速度300mm/分、チャック間距離30mmの条件で、試験片の応力-ひずみ曲線を取得し、ひずみ0.05%と0.25%の2点を結ぶ直線の傾きから、加熱加圧後の金属端子用接着性フィルムの引張弾性率Aを求める。
 本開示の金属端子用接着性フィルム1は、加熱加圧環境に曝される前において、温度25℃の環境で測定される引張弾性率Bが、例えば約900MPa以下であり、柔軟性に優れた(後述の曲げ試験の評価が良好な)金属端子用接着性フィルム1とする観点から、約700MPa以下であることが好ましい。また、金属端子用接着性フィルム1のコシを高めて金属端子との位置合わせを容易にする観点から、引張弾性率Bは、好ましくは約400MPa以上である。引張弾性率Bの好ましい範囲としては、400~900MPa程度、400~700MPa程度が挙げられ、これらの中でも特に400~700MPa程度が好ましい。金属端子に対して高い密着強度を発揮しつつ、後述する柔軟性、厚みの変化率、及び衝撃吸収エネルギーについて総合的に良好な金属端子用接着性フィルム1とする観点から、総合的に好ましい引張弾性率Bの範囲としては420~600MPa、さらには420~480MPaである。引張弾性率Bの測定方法は、以下の通りである。
<加熱加圧前の引張弾性率B>
 JIS K7161-1(ISO527-1)の規定に準拠して、25℃環境における金属端子用接着性フィルム(前述の<加熱加圧後の引張弾性率A>における加熱加圧を行う前の金属端子用接着性フィルム)の引張弾性率Bを測定する。具体的には、金属端子用接着性フィルムを幅(TD)15mm、長さ(MD)50mmの短冊状に裁断する。次に、金属端子用接着性フィルムについて、25℃環境において、テンシロン万能材料試験機(例えば、エー・アンド・デイ社製のRTG-1210)を用いて、引張速度300mm/分、チャック間距離30mmの条件で、試験片の応力-ひずみ曲線を取得し、ひずみ0.05%と0.25%の2点を結ぶ直線の傾きから、加熱加圧前の金属端子用接着性フィルムの引張弾性率Bを求める。
 本開示の金属端子用接着性フィルム1の引張弾性率は、積層構成、各層の融点、MFR、厚み、厚み比、さらには、金属端子用接着性フィルム1の製造におけるTダイ、インフレーション等の条件(例えば、Tダイからの押出幅、延伸倍率、延伸速度、熱処理温度など)などによって調整することができる。
 柔軟性に優れた(後述の曲げ試験の評価が良好な)金属端子用接着性フィルム1とする観点から、本開示の金属端子用接着性フィルム1は、引張弾性率Aの値から引張弾性率Bの値を引いて算出される、引張弾性率の差は、例えば-250~200MPaであり、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点からは、当該差は大きいことが好ましく、好ましくは5MPa以上であり、より好ましくは20MPa以上であり、さらに好ましくは40MPa以上である。引張弾性率の差の上限は、一般には120MPa以下である。引張弾性率の差の好ましい範囲としては、5~120MPa程度、20~120MPa程度、40~120MPa程度が挙げられる当該引張弾性率の差としては、金属端子に対して高い密着強度を発揮しつつ、後述する柔軟性、厚みの変化率、及び衝撃吸収エネルギーについて総合的に良好な金属端子用接着性フィルム1とする観点から、総合的に好ましい範囲としては40~75MPa程度である。
 金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、本開示の金属端子用接着性フィルム1は、JIS K7127の規定に準拠した方法であって、温度25℃、引張速度175mm/分、チャック間距離30mmの条件で引張試験を行い取得される、応力(MPa)とひずみ(mm)との関係を示すグラフ(応力-ひずみ曲線)から求められる下降伏点応力が、好ましくは17.0MPa以上、より好ましくは18.0MPa以上であり、また、好ましくは28.0MPa以下、より好ましくは26.0MPa以下である。当該下降伏点応力の好ましい範囲としては、17.0~28.0MPa程度、17.0~26.0MPa程度、18.0~28.0MPa程度、18.0~26.0MPa程度が挙げられ、これの中でも特に18.0~26.0MPa程度が好ましい。また、密着性、柔軟性、追従性の点で総合的に好ましい下降伏点応力の範囲としては17.0~18.0MPa程度である。当該下降伏点応力の測定方法は、以下の通りである。
<加熱加圧後の下降伏点応力>
 JIS K7127の規定に準拠した方法であって、温度25℃、引張速度175mm/分、チャック間距離30mmの条件で引張試験を行うことで取得された応力-ひずみ曲線から、下降伏点L(図9の模式図参照)における応力(下降伏点応力)を求める。
 本開示の金属端子用接着性フィルム1の下降伏点応力は、積層構成、各層の融点、MFR、厚み、厚み比、さらには、金属端子用接着性フィルム1の製造におけるTダイ、インフレーション等の条件(例えば、Tダイからの押出幅、延伸倍率、延伸速度、熱処理温度など)などによって調整することができる。
 また、本開示の金属端子用接着性フィルム1は、温度180℃、面圧0.0067MPaの条件で12秒間、加熱加圧する前後における厚みの変化率は、100%に近い(すなわち、加熱加圧する前後における厚みの変化が小さいか、変化がない)ことが好ましく、具体的には90~100%であることが好ましく、95~100%であることがより好ましく、96~100%であることがさらに好ましい。当該厚みの変化率がこれらの範囲内にあることにより、金属端子用接着性フィルム1と蓄電デバイス用外装材10との熱融着時に、金属端子用接着性フィルム1の厚みが大きく変化してこれらの間に空隙が生じることが抑制される。当該厚みの変化率は、(加熱加圧後の金属端子用接着性フィルムの厚さ)/(加熱加圧前の金属端子用接着性フィルムの厚さ)×100の計算式で算出される。
 また、前記の<加熱加圧後の引張弾性率A>で得られた応力-ひずみ曲線で囲まれている部分の面積から算出される衝撃吸収エネルギーは、好ましくは約90MPa以上、より好ましくは約140MPa以上であり、また、好ましくは約400MPa以下、より好ましくは約300MPa以下であり、好ましい範囲としては、90~400MPa程度が挙げられる。衝撃吸収エネルギーの値が小さい材料は、大きな変形を伴わずに破断しやすく、衝撃吸収エネルギーの値が大きい材料は、大きく変形した後に破断し、粘り強く簡単には割れない材料といえる。
 本開示の金属端子用接着性フィルム1の総厚みとしては、金属端子2の形状への追従性を高める観点から、例えば約120μm以上、好ましくは約140μm以上、より好ましくは約150μm以上である。なお、本開示の金属端子用接着性フィルム1の総厚みの上限については、例えば、約200μm程度が挙げられる。本開示の金属端子用接着性フィルム1の総厚みの好ましい範囲としては、120~200μm程度、140~200μm程度、150~200μm程度が挙げられる。さらに、金属端子に対して高い密着強度を発揮しつつ、柔軟性、厚みの変化率、及び衝撃吸収エネルギーについて総合的に良好な金属端子用接着性フィルム1とする観点からは、特に好ましくは145~155μm程度が挙げられる。
<本開示の金属端子用接着性フィルムが単層である場合>
 本開示の金属端子用接着性フィルムが単層である場合、本開示の金属端子用接着性フィルム1は、金属端子用接着性フィルム1は、前述する物性を有するに第1ポリオレフィン層12aにより構成されていることが好ましい。
<本開示の金属端子用接着性フィルムが複層である場合>
 本開示の金属端子用接着性フィルムが複層である場合、本開示の金属端子用接着性フィルム1は、少なくとも、基材11と第1ポリオレフィン層12aとが積層された構成を含み、前述する特性を有する積層体であることが好ましく、少なくとも、第1ポリオレフィン層12aと、基材11と、第2ポリオレフィン層12bとがこの順に積層された構成を含み、前述する特性を有する積層体であることが好ましい。
 以下、基材11,第1ポリオレフィン層12a及び第2ポリオレフィン層12bについて詳述する。
[基材11]
 金属端子用接着性フィルム1において、基材11は、金属端子用接着性フィルム1の支持体として機能する層であり、必要に応じて設けられる。
 基材11を形成する素材については、特に制限されるものではない。基材11を形成する素材としては、例えば、ポリオレフィン、ポリアミド、ポリエステル、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂、フェノール樹脂、ポリエーテルイミド、ポリイミド、ポリカーボネート及びこれらの混合物や共重合物等が挙げられ、これらの中でも特にポリオレフィンが好ましい。すなわち、基材11を形成する素材は、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。基材11を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー;等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられ、より好ましくはポリプロピレンが挙げられる。
 ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、基材11は、上記の樹脂で形成された不織布により形成されていてもよい。基材11が不織布である場合、基材11は、前述のポリオレフィン、ポリアミド等で構成されていることが好ましい。
 また、基材11に着色剤を配合することにより、基材11を、着色剤を含む層とすることもできる。また、透明度の低い樹脂を選択して、光透過度を調整することもできる。基材11がフィルムの場合は、着色フィルムを用いることや、透明度の低いフィルムを用いることもできる。また、基材11が不織布の場合は、着色剤を含む繊維やバインダーを用いた不織布や、透明度の低い不織布を用いることができる。
 基材11の230℃におけるメルトマスフローレート(MFR)は、前述する特性を充足させつつ、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、好ましくは8g/10分以下、より好ましくは4g/10分以下であり、また、柔軟性に優れた(後述の曲げ試験の評価が良好な)金属端子用接着性フィルム1とする観点から、好ましくは1g/10分以上、より好ましくは2g/10分以上であり、好ましい範囲としては、1~8g/10分程度、1~4g/10分程度、2~8g/10分程度、2~4g/10分程度が挙げられる。基材層11がポリオレフィン層(ポリオレフィンにより形成された層)である場合に、ポリオレフィン層のMFR値が上記の値を充足することが特に好適である。なお、基材11のメルトマスフローレート(MFR)は、JIS K7210-1:2014(ISO 1133-1:2011)の規定に準拠して測定された230℃での値(g/10分)である。
 また、基材11の融点は、前述する特性を充足させつつ、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、好ましくは130℃以上、より好ましくは150℃以上であり、また、柔軟性に優れた(後述の曲げ試験の評価が良好な)金属端子用接着性フィルム1とする観点から、好ましくは190℃以下、より好ましくは170℃以下であり、好ましい範囲としては、130~190℃程度、150~170℃程度である。基材11の融点は、実施例に記載の方法により測定される。
 基材11が樹脂フィルムにより構成されている場合、基材11の表面には、必要に応じて、コロナ放電処理、オゾン処理、プラズマ処理等の公知の易接着手段が施されていてもよい。
 基材11の厚さについては、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、好ましくは約50μm以上、より好ましくは約60μm以上、さらに好ましくは約80μm以上、さらに好ましくは約90μm以上であり、また、好ましくは約150μm以下、より好ましくは約130μm以下、さらに好ましくは約120μm以下であり、好ましい範囲としては、50~150μm程度、50~130μm程度、50~120μm程度、60~150μm程度、60~130μm程度、60~120μm程度、80~150μm程度、80~130μm程度、80~120μm程度、90~150μm程度、90~130μm程度、90~120μm程度が挙げられる。これらの中でも、90~120μm程度が特に好ましい。
[第1及び第2ポリオレフィン層12a,12b]
 本開示の金属端子用接着性フィルム1は、第1ポリオレフィン層12aを備えていることが好ましい。本開示の金属端子用接着性フィルム1が単層により構成されている場合、金属端子用接着性フィルム1は、図4に示すように第1ポリオレフィン層12aにより構成されていることが好ましい。また、本開示の金属端子用接着性フィルム1が複層である場合、少なくとも、基材11と第1ポリオレフィン層12aとが積層された構成を含んでいることが好ましく、図6,7に示すように、少なくとも、第1ポリオレフィン層12aと、基材11と、第2ポリオレフィン層12bとがこの順に積層された構成を含んでいることがより好ましい。また、本開示の金属端子用接着性フィルム1においては、両面側の表面に、それぞれ第1ポリオレフィン層12a及び第2ポリオレフィン層12bが位置していることが好ましい。
 また、第1ポリオレフィン層12a及び第2ポリオレフィン層12bのうち少なくとも一方は、酸変性ポリオレフィンを含んでいることが好ましく、第1ポリオレフィン層12a及び第2ポリオレフィン層12bが酸変性ポリオレフィンを含んでいることがさらに好ましい。第1及び第2ポリオレフィン層12a,12bのうち少なくとも一方が、酸変性ポリオレフィンにより形成されている場合、第1及び第2ポリオレフィン層12a,12bのうち、一方が酸変性ポリオレフィンにより形成されており、他方がポリオレフィンにより形成されている場合と、第1及び第2ポリオレフィン層12a,12bの両方が酸変性ポリオレフィンにより形成されている場合とがある。酸変性ポリオレフィンは、金属及びポリオレフィンなどの熱融着性樹脂との親和性が高い。また、ポリオレフィンは、ポリオレフィンなどの熱融着性樹脂との親和性が高い。従って、本開示の金属端子用接着性フィルム1においては、酸変性ポリオレフィンにより形成された層を金属端子2側に配置することにより、金属端子用接着性フィルム1と金属端子2及び熱融着性樹脂層35との界面において優れた密着性を発揮することができる。また、ポリオレフィンにより形成された層を蓄電デバイス用外装材10の熱融着性樹脂層35側に配置することにより、金属端子用接着性フィルム1と熱融着性樹脂層35との界面において、より一層優れた密着性を発揮することができる。
 金属端子用接着性フィルム1は、第1ポリオレフィン層12aと基材11と第2ポリオレフィン層12bとを順次備えた積層体であることが好ましい。金属端子用接着性フィルム1は、例えば、図6及び図7に示されるように、第1ポリオレフィン層12a/基材11/第2ポリオレフィン層12bが順に積層された積層構造を有している。前記の通り、金属端子用接着性フィルム1は、酸変性ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された3層構成、又は、ポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された3層構成が特に好ましい。なお、金属端子用接着性フィルム1をポリプロピレン層/ポリプロピレン層/酸変性ポリプロピレン層がこの順に積層された3層構成とする場合には、一方面を構成する酸変性ポリプロピレン層を金属端子2側に配置し、他方面を構成するポリプロピレン層を、蓄電デバイス用外装材10の熱融着性樹脂層35側に配置することにより、金属端子用接着性フィルム1は、蓄電デバイス用外装材10及び金属端子2との間を特に好適に密着させることができる。
 第1及び第2ポリオレフィン層12a,12bにおいて、酸変性ポリオレフィンとしては、酸変性されたポリオレフィンであれば特に制限されないが、好ましくは不飽和カルボン酸またはその無水物でグラフト変性されたポリオレフィンが挙げられる。
 酸変性されるポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。
 また、酸変性されるポリオレフィンは、環状ポリオレフィンであってもよい。例えば、カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。
 酸変性される環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレン等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。構成モノマーとしては、スチレンも挙げられる。
 酸変性に使用されるカルボン酸またはその無水物としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。第1及び第2ポリオレフィン層12a,12bは、それぞれ、赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。第1及び第2ポリオレフィン層12a,12bが無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
 第1及び第2ポリオレフィン層12a,12bのいずれか一方が、ポリオレフィンにより形成されている場合、当該ポリオレフィンとしては、前述の酸変性されるポリオレフィンまたは酸変性される環状ポリオレフィンとして例示したものと同じものが例示できる。
 第1及び第2ポリオレフィン層12a,12bは、それぞれ、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、第1及び第2ポリオレフィン層12a,12bは、それぞれ、1層のみで形成されていてもよく、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。
 さらに、第1及び第2ポリオレフィン層12a,12bは、それぞれ、必要に応じて充填剤を含んでいてもよい。第1及び第2ポリオレフィン層12a,12bが充填剤を含むことにより、充填剤がスペーサー(Spacer)として機能するために、金属端子2と蓄電デバイス用外装材3のバリア層33との間の短絡を効果的に抑制することが可能となる。充填剤の粒径としては、0.1~35μm程度、好ましくは5.0~30μm程度、さらに好ましくは10~25μm程度の範囲が挙げられる。また、充填剤の含有量としては、第1及び第2ポリオレフィン層12a,12bを形成する樹脂成分100質量部に対して、それぞれ、5~30質量部程度、より好ましくは10~20質量部程度が挙げられる。
 充填剤としては、無機系、有機系のいずれも用いることができる。無機系充填剤としては、例えば、炭素(カーボン、グラファイト)、シリカ、酸化アルミニウム、チタン酸バリウム、酸化鉄、シリコンカーバイド、酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウム、酸化チタン、アルミ酸カルシウム、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム等が挙げられる。また、有機系充填剤としては、例えば、フッ素樹脂、フェノール樹脂、ユリア樹脂、エポキシ樹脂、アクリル樹脂、ベンゾグアナミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、ポリメタクリル酸メチル架橋物、ポリエチレン架橋物等が挙げられる。形状の安定性、剛性、内容物耐性の点から、酸化アルミニウム、シリカ、フッ素樹脂、アクリル樹脂、ベンゾグアナミン・ホルムアルデヒド縮合物が好ましく、特にこの中でも球状の酸化アルミニウム、シリカがより好ましい。第1及び第2ポリオレフィン層12a,12bを形成する樹脂成分への充填剤の混合方法としては、予めバンバリーミキサー等で両者をメルトブレンドし、マスターバッチ化したものを所定の混合比にする方法、樹脂成分との直接混合方法などを採用することができる。
 また、第1及び第2ポリオレフィン層12a,12bは、それぞれ、必要に応じて顔料を含んでいてもよい。顔料としては、無機系の各種顔料を用いることができる。顔料の具体例としては、上記充填剤で例示した炭素(カーボン、グラファイト)が好ましく例示できる。炭素(カーボン、グラファイト)は、一般に蓄電デバイスの内部に使用されている材料であり、電解液に対する溶出の虞がない。また、着色効果が大きく接着性を阻害しない程度の添加量で充分な着色効果を得られると共に、熱で溶融することがなく、添加した樹脂の見かけの溶融粘度を高くすることができる。さらに、熱接着時(ヒートシール時)に加圧部が薄肉となることを防止して、蓄電デバイス用外装材と金属端子の間における優れた密封性を付与できる。
 第1及び第2ポリオレフィン層12a,12bに顔料を添加する場合、その添加量としては、たとえば、粒径が約0.03μmのカーボンブラックを使用した場合、第1及び第2ポリオレフィン層12a,12bを形成する樹脂成分100質量部に対して、それぞれ、0.05~0.3質量部程度、好ましくは0.1~0.2質量部程度が挙げられる。第1及び第2ポリオレフィン層12a,12bに顔料を添加することにより、金属端子用接着性フィルム1の有無をセンサーで検知可能なもの、または目視で検査可能なものとすることができる。なお、第1及び第2ポリオレフィン層12a,12bに充填剤と顔料とを添加する場合、同一の第1及び第2ポリオレフィン層12a,12bに充填剤と顔料を添加してもよいが、金属端子用接着性フィルム1の熱融着性を阻害しない観点からは、充填剤及び顔料は、第1及び第2ポリオレフィン層12a,12bに分けて添加することが好ましい。
 第1及び第2ポリオレフィン層12a,12bは、それぞれ、ポリオレフィンフィルム又は酸変性ポリオレフィンフィルムにより構成することができる。第1及び第2ポリオレフィン層12a,12bがポリオレフィンフィルム又は酸変性ポリオレフィンフィルムにより構成されている場合、上記のポリオレフィンまたは酸変性ポリオレフィンにより形成された樹脂フィルムを、例えばドライラミネート法を用いて基材11に積層することにより、金属端子用接着性フィルムを好適に製造することができる。また、第1及び第2ポリオレフィン層12a,12bを構成する樹脂を基材11の上に押出し成形することにより、金属端子用接着性フィルムを好適に製造することができる。
 第1及び第2ポリオレフィン層12a,12bの230℃におけるメルトマスフローレート(MFR)は、前述する特性を充足させつつ、金属端子の形状への追従性を高める観点から、好ましくは約5g/10分以上、より好ましくは約7g/10分以上、さらに好ましくは約8g/10分以上であり、また、好ましくは約11g/10分以下、より好ましくは約10g/10分以下であり、好ましい範囲としては、5~11g/10分程度、5~10g/10分程度、7~11g/10分程度、7~10g/10分程度、8~11g/10分程度、8~10g/10分程度が挙げられる。なお、第1及び第2ポリオレフィン層12a,12bのメルトマスフローレート(MFR)は、それぞれ、JIS K7210-1:2014(ISO 1133-1:2011)の規定に準拠して測定された230℃での値(g/10分)である。第1及び第2ポリオレフィン層12a,12bの少なくとも一方が酸変性ポリオレフィン層である場合に、酸変性ポリオレフィン層のMFR値が上記の値を充足することが特に好適である。
 また、第1及び第2ポリオレフィン層12a,12bの融点は、前述する特性を充足させつつ、金属端子の形状への追従性を高める観点から、好ましくは約120℃以上、より好ましくは約130℃以上であり、また、好ましくは約160℃以下、より好ましくは約150℃以下であり、好ましい範囲としては、120~160℃程度、120~150℃程度、130~160℃程度、130~150℃程度である。第1及び第2ポリオレフィン層12a,12bの融点は、実施例に記載の方法により測定される。
 樹脂フィルムにより構成された第1及び第2ポリオレフィン層12a,12bを基材11の表面に積層する場合、第1及び第2ポリオレフィン層12a,12bの基材11側の表面には、必要に応じて、コロナ放電処理、オゾン処理、プラズマ処理などの公知の易接着手段が施されていてもよい。特に、コロナ放電処理されていることにより、基材11と第1ポリオレフィン層12a及び第2ポリオレフィン層12bとの密着性が高められ、蓄電デバイス用外装材と金属端子の間における優れた密封性を付与できる。
 第1及び第2ポリオレフィン層12a,12bの厚さは、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、好ましくは約10μm以上、より好ましくは約15μm以上であり、また、好ましくは約50μm以下、より好ましくは約45μm以下、さらに好ましくは30μm以下である。第1及び第2ポリオレフィン層12a,12bの厚さの好ましい範囲としては、それぞれ、10~50μm程度、10~45μm程度、10~30μm程度、15~50μm程度、15~45μm程度、10~30μm程度が挙げられ、これらの中でも特に10~30μmが好ましい。
 第1及び第2ポリオレフィン層12a,12bの合計厚みに対する、基材11の厚みの比としては、前述する特性を充足させつつ、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対してより高い密着強度を発揮する観点から、好ましくは約0.7以上、より好ましくは約1.0以上であり、また、好ましくは約4.0以下、より好ましくは約2.0以下であり、好ましい範囲としては、0.7~4.0程度、0.7~2.0程度、1.0~4.0程度、1.0~2.0程度が挙げられ、これらの中でも特に1.0~4.0程度が好ましい。特に、第1及び第2ポリオレフィン層12a,12bの少なくとも一方が、酸変性ポリプロピレン層である場合に、金属端子用接着性フィルム1における酸変性ポリプロピレン層の厚みの割合がこれらの値を充足すると、水蒸気バリア性の低下が抑制される。水蒸気バリア性の低下が抑制されると、蓄電デバイスの長寿命化、長期安定性が期待される。このような観点からも、前記比は、前記上限であることが好ましい。
 また、金属端子用接着性フィルム1の総厚みを100%とし、第1及び第2ポリオレフィン層12a,12bの合計厚みの割合としては、好ましくは15~60%程度、より好ましくは20~40%程度である。
[接着促進剤層13]
 接着促進剤層13は、基材11と第1及び第2ポリオレフィン層12a,12bとを強固に接着することを目的として、必要に応じて設けられる層である(図7を参照)。接着促進剤層13は、基材11と第1及び第2ポリオレフィン層12a,12bとの間の一方側のみに設けられていてもよいし、両側に設けられていてもよい。
 接着促進剤層13は、イソシアネート系、ポリエチレンイミン系、ポリエステル系、ポリウレタン系、ポリブタジエン系等の公知の接着促進剤を用いて形成することができる。耐電解液性をより向上する観点からは、これらの中でも、イソシアネート系の接着促進剤により形成されていることが好ましい。イソシアネート系の接着促進剤としては、トリイソシアネートモノマー、ポリメリックMDIから選ばれたイソシアネート成分からなるものが、ラミネート強度に優れ、かつ、電解液浸漬後のラミネート強度の低下が少ない。特に、トリイソシアネートモノマーであるトリフェニルメタン-4,4’,4”-トリイソシアネートやポリメリックMDIであるポリメチレンポリフェニルポリイソシアネート(NCO含有率が約30%、粘度が200~700mPa・s)からなる接着促進剤によって形成することが特に好ましい。また、トリイソシアネートモノマーであるトリス(p-イソシアネートフェニル)チオホスフェートや、ポリエチレンイミン系を主剤とし、ポリカルボジイミドを架橋剤とした2液硬化型の接着促進剤により形成することも好ましい。
 接着促進剤層13は、バーコート法、ロールコート法、グラビアコート法等の公知の塗布法で塗布・乾燥することにより形成することができる。接着促進剤の塗布量としては、トリイソシアネートからなる接着促進剤の場合は、20~100mg/m2程度、好ましくは40~60mg/m2程度であり、ポリメリックMDIからなる接着促進剤の場合は、40~150mg/m2程度、好ましくは60~100mg/m2程度であり、ポリエチレンイミン系を主剤とし、ポリカルボジイミドを架橋剤とした2液硬化型の接着促進剤の場合は、5~50mg/m2程度、好ましくは10~30mg/m2程度である。なお、トリイソシアネートモノマーは、1分子中にイソシアネート基を3個持つモノマーであり、ポリメリックMDIは、MDIおよびMDIが重合したMDIオリゴマーの混合物であり、下記式で示されるものである。
Figure JPOXMLDOC01-appb-C000001
 本開示の金属端子用接着性フィルム1は、例えば、基材11の両表面上に、それぞれ、第1及び第2ポリオレフィン層12a,12bを積層することにより製造することができる。基材11と第1及び第2ポリオレフィン層12a,12bとの積層は、押出ラミネート法、サーマルラミネート法などの公知の方法により積層することができる。また、基材11と第1及び第2ポリオレフィン層12a,12とを、接着促進剤層13を介して積層する場合には、例えば、接着促進剤層13を構成する接着促進剤を上記の方法で基材11の上に塗布・乾燥し、接着促進剤層13の上から第1及び第2ポリオレフィン層12a,12bをそれぞれ積層すればよい。
 金属端子用接着性フィルム1を金属端子2と蓄電デバイス用外装材3との間に介在させる方法としては、特に制限されず、例えば、図1~3に示すように、金属端子2が蓄電デバイス用外装材3によって挟持される部分において、金属端子2に金属端子用接着性フィルム1を巻き付けてもよい。また、図示を省略するが、金属端子2が蓄電デバイス用外装材3によって挟持される部分において、金属端子用接着性フィルム1が2つの金属端子2を横断するようにして、金属端子2の両面側に配置してもよい。
[金属端子2]
 本開示の金属端子用接着性フィルム1は、金属端子2と蓄電デバイス用外装材3との間に介在させて使用される。金属端子2(タブ)は、蓄電デバイス素子4の電極(正極または負極)に電気的に接続される導電部材であり、金属材料により構成されている。金属端子2を構成する金属材料としては、特に制限されず、例えば、アルミニウム、ニッケル、銅などが挙げられる。例えば、リチウムイオン蓄電デバイスの正極に接続される金属端子2は、通常、アルミニウムなどにより構成されている。また、リチウムイオン蓄電デバイスの負極に接続される金属端子2は、通常、銅、ニッケルなどにより構成されている。
 金属端子2の表面は、耐電解液性を高める観点から、化成処理が施されていることが好ましい。例えば、金属端子2がアルミニウムにより形成されている場合、化成処理の具体例としては、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物などの耐食性皮膜を形成する公知の方法が挙げられる。耐食性皮膜を形成する方法の中でも、フェノール樹脂、フッ化クロム(III)化合物、リン酸の3成分から構成されたものを用いるリン酸クロメート処理が好適である。
 金属端子2の大きさは、使用される蓄電デバイスの大きさなどに応じて適宜設定すればよい。金属端子2の厚さとしては、好ましくは50~1000μm程度、より好ましくは70~800μm程度が挙げられる。また、金属端子2の長さとしては、好ましくは1~200mm程度、より好ましくは3~150mm程度が挙げられる。また、金属端子2の幅としては、好ましくは1~200mm程度、より好ましくは3~150mm程度が挙げられる。
[蓄電デバイス用外装材3]
 蓄電デバイス用外装材3としては、少なくとも、基材層31、バリア層33、及び熱融着性樹脂層35をこの順に有する積層体からなる積層構造を有するものが挙げられる。図8に、蓄電デバイス用外装材3の断面構造の一例として、基材層31、必要に応じて設けられる接着剤層32、バリア層33、必要に応じて設けられる接着層34、及び熱融着性樹脂層35がこの順に積層されている態様について示す。蓄電デバイス用外装材3においては、基材層31が外層側になり、熱融着性樹脂層35が最内層になる。蓄電デバイスの組み立て時に、蓄電デバイス素子4の周縁に位置する熱融着性樹脂層35同士を接面させて熱融着することにより蓄電デバイス素子4が密封され、蓄電デバイス素子4が封止される。なお、図1から図3には、エンボス成形などによって成形されたエンボスタイプの蓄電デバイス用外装材3を用いた場合の蓄電デバイス10を図示しているが、蓄電デバイス用外装材3は成形されていないパウチタイプであってもよい。なお、パウチタイプには、三方シール、四方シール、ピロータイプなどが存在するが、何れのタイプであってもよい。
 蓄電デバイス用外装材3を構成する積層体の厚みとしては、特に制限されないが、上限については、コスト削減、エネルギー密度向上等の観点からは、好ましくは約180μm以下、約160μm以下、約155μm以下、約140μm以下、約130μm以下、約120μm以下が挙げられ、下限については、蓄電デバイス素子4を保護するという蓄電デバイス用外装材3の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上、約80μm以上が挙げられ、好ましい範囲については、例えば、35~180μm程度、35~160μm程度、35~155μm程度、35~140μm程度、35~130μm程度、35~120μm程度、45~180μm程度、45~160μm程度、45~155μm程度、45~140μm程度、45~130μm程度、45~120μm程度、60~180μm程度、60~160μm程度、60~155μm程度、60~140μm程度、60~130μm程度、60~120μm程度、80~180μm程度、80~160μm程度、80~155μm程度、80~140μm程度、80~130μm程度、80~120μm程度が挙げられる。
(基材層31)
 蓄電デバイス用外装材3において、基材層31は、蓄電デバイス用外装材の基材として機能する層であり、最外層側を形成する層である。
 基材層31を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層31を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ、アクリル、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステルは、耐電解液性に優れ、電解液の付着に対して白化等が発生し難いという利点があり、基材層31の形成素材として好適に使用される。また、ポリアミドフィルムは延伸性に優れており、成形時の基材層31の樹脂割れによる白化の発生を防ぐことができ、基材層31の形成素材として好適に使用される。
 基材層31は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層31として好適に使用される。
 これらの中でも、基材層31を形成する樹脂フィルムとして、好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステルが挙げられる。
 基材層31は、耐ピンホール性及び蓄電デバイスの包装体とした時の絶縁性を向上させるために、異なる素材の樹脂フィルムを積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層31を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出し法、サンドラミ法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。
 また、基材層31は、成形性を向上させるために低摩擦化させておいてもよい。基材層31を低摩擦化させる場合、その表面の摩擦係数については特に制限されないが、例えば1.0以下が挙げられる。基材層31を低摩擦化するには、例えば、マット処理、スリップ剤の薄膜層の形成、これらの組み合わせ等が挙げられる。
 基材層31の厚さについては、例えば、10~50μm程度、好ましくは15~30μm程度が挙げられる。
(接着剤層32)
 蓄電デバイス用外装材3において、接着剤層32は、基材層31に密着性を付与させるために、必要に応じて、基材層31上に配置される層である。即ち、接着剤層32は、基材層31とバリア層33の間に設けられる。
 接着剤層32は、基材層31とバリア層33とを接着可能である接着剤によって形成される。接着剤層32の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。また、接着剤層32の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。
 接着剤層32の形成に使用できる接着剤の樹脂成分としては、展延性、高湿度条件下における耐久性や黄変抑制作用、ヒートシール時の熱劣化抑制作用等が優れ、基材層31とバリア層33との間のラミネート強度の低下を抑えてデラミネーションの発生を効果的に抑制するという観点から、好ましくはポリウレタン系2液硬化型接着剤;ポリアミド、ポリエステル、又はこれらと変性ポリオレフィンとのブレンド樹脂が挙げられる。
 また、接着剤層32は異なる接着剤成分で多層化してもよい。接着剤層32を異なる接着剤成分で多層化する場合、基材層31とバリア層33とのラミネート強度を向上させるという観点から、基材層31側に配される接着剤成分を基材層31との接着性に優れる樹脂を選択し、バリア層33側に配される接着剤成分をバリア層33との接着性に優れる接着剤成分を選択することが好ましい。接着剤層32は異なる接着剤成分で多層化する場合、具体的には、バリア層33側に配置される接着剤成分としては、好ましくは、酸変性ポリオレフィン、金属変性ポリオレフィン、ポリエステルと酸変性ポリオレフィンとの混合樹脂、共重合ポリエステルを含む樹脂等が挙げられる。
 接着剤層32の厚さについては、例えば、2~50μm程度、好ましくは3~25μm程度が挙げられる。
(バリア層33)
 蓄電デバイス用外装材において、バリア層33は、蓄電デバイス用外装材の強度向上の他、蓄電デバイス内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層33は、金属層、すなわち、金属で形成されている層であることが好ましい。バリア層33を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムが挙げられる。バリア層33は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム箔により形成することがさらに好ましい。蓄電デバイス用外装材の製造時に、バリア層33にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム箔により形成することがより好ましい。
 バリア層33の厚さについては、蓄電デバイス用外装材を薄型化しつつ、成形によってもピンホールの発生し難いものとする観点から、好ましくは10~200μm程度、より好ましくは20~100μm程度が挙げられる。
 また、バリア層33は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐食性皮膜を形成する処理をいう。
(接着層34)
 蓄電デバイス用外装材3において、接着層34は、熱融着性樹脂層35を強固に接着させるために、バリア層33と熱融着性樹脂層35の間に、必要に応じて設けられる層である。
 接着層34は、バリア層33と熱融着性樹脂層35を接着可能である接着剤によって形成される。接着層の形成に使用される接着剤の組成については、特に制限されないが、例えば、酸変性ポリオレフィンを含む樹脂組成物が挙げられる。酸変性ポリオレフィンとしては、第1及び第2ポリオレフィン層12a,12bで例示したものと同じものが例示できる。
 接着層34の厚さについては、例えば、1~40μm程度、好ましくは2~30μm程度が挙げられる。
(熱融着性樹脂層35)
 蓄電デバイス用外装材3において、熱融着性樹脂層35は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する層である。
 熱融着性樹脂層35に使用される樹脂成分については、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィンが挙げられる。
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。構成モノマーとしては、スチレンも挙げられる。
 これらの樹脂成分の中でも、好ましくは結晶性又は非晶性のポリオレフィン、環状ポリオレフィン、及びこれらのブレンドポリマー;さらに好ましくはポリエチレン、ポリプロピレン、エチレンとノルボルネンの共重合体、及びこれらの中の2種以上のブレンドポリマーが挙げられる。
 熱融着性樹脂層35は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層35は、1層のみで形成されていてもよいが、同一又は異なる樹脂成分によって2層以上形成されていてもよい。
 また、熱融着性樹脂層35の厚さとしては、特に制限されないが、2~2000μm程度、好ましくは5~1000μm程度、さらに好ましくは10~500μm程度が挙げられる。
2.蓄電デバイス10
 本開示の蓄電デバイス10は、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子4と、当該蓄電デバイス素子4を封止する蓄電デバイス用外装材3と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材3の外側に突出した金属端子2とを備えている。本開示の蓄電デバイス10においては、金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が介在されてなることを特徴とする。すなわち、本開示の蓄電デバイス10は、金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が介在する工程を備える方法により製造することができる。
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子4を、蓄電デバイス用外装材3で、正極及び負極の各々に接続された金属端子2が外側に突出させた状態で、本開示の金属端子用接着性フィルム1を金属端子2と熱融着性樹脂層35との間に介在させ、蓄電デバイス素子4の周縁に蓄電デバイス用外装材のフランジ部(熱融着性樹脂層35同士が接触する領域であり、蓄電デバイス用外装材の周縁部3a)が形成できるようにして被覆し、フランジ部の熱融着性樹脂層35同士をヒートシールして密封させることによって、蓄電デバイス用外装材3を使用した蓄電デバイス10が提供される。なお、蓄電デバイス用外装材3を用いて蓄電デバイス素子4を収容する場合、蓄電デバイス用外装材3の熱融着性樹脂層35が内側(蓄電デバイス素子4と接する面)になるようにして用いられる。
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し、本開示は実施例に限定されるものではない。
実施例1-16及び比較例1-6
<金属端子用接着性フィルムの製造>
 それぞれ、表1に記載の融点及びMFRを有し、かつ、表2に記載の厚みを有するポリプロピレン層を、基材(以下、「PP層」と表記することがある)として用いた。また、表1に記載の融点及びメルトマスフローレート(MFR)を有する無水マレイン酸変性ポリプロピレン(以下、「PPa」と表記することがある)を、第1ポリオレフィン層(PPa層)及び第2ポリオレフィン層(PPa層)とした。実施例1~12及び比較例3については、Tダイ押出機を用いて、ポリプロピレン及び無水マレイン酸変性ポリプロピレンを2種3層押し出しすることにより、PPa層/PP層/PPa層が順に積層された金属端子用接着性フィルムを得た。また、実施例13~16及び比較例4~6については、インフレーション法により、PPa層/PP層/PPa層が順に積層された金属端子用接着性フィルムを得た。さらに、比較例1,2については、ポリプロピレンフィルム(PP)からなる基材(PP層)の両面に、片面ずつ、無水マレイン酸変性ポリプロピレン(PPa)をTダイ押出機で押出し、PPa層/PP層/PPa層が順に積層された金属端子用接着性フィルムを得た。なお、PPa層/PP層/PPa層の各層の厚みは、表2に示す通りである。
 表2に記載の金属端子用接着性フィルムの引張弾性率、下降伏点応力、水蒸気バリア性、厚みの変化率などの物性は、PPa層及びPP層の融点、MFR、厚み、厚み比、さらには、金属端子用接着性フィルム1の製造におけるTダイ、インフレーション等の条件(例えば、Tダイからの押出幅、延伸倍率、延伸速度、熱処理温度など)などによって調整した。
<融点の測定>
 表1に記載のPP層及びPPa層の融点は、それぞれ、以下の方法により測定された値である。示差走査熱量計(DSC、ティー・エイ・インスツルメント製の示差走査熱量計Q200)により、融解ピーク温度を2回測定した。具体的には、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の手順にて、示差走査熱量測定(DSC)により、PP層またはPPa層を、-20℃で10分間保持した後、10℃/分の昇温速度で-20℃から250℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、250℃にて10分間保持した。次に、10℃/分の降温速度で250℃から-20℃まで降温させて10分間保持した。さらに、10℃/分の昇温速度で-20℃から250℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定した。なお、窒素ガスの流量は50ml/分とした。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求め、ピークが最大のものを融点とした。
<メルトマスフローレート(MFR)>
 表1に記載のPP層及びPPa層のメルトマスフローレート(MFR)は、それぞれ、JIS K7210-1:2014(ISO 1133-1:2011)の規定に準拠して測定された230℃での値(g/10分)である。
Figure JPOXMLDOC01-appb-T000002
<加熱加圧前の引張弾性率B>
 JIS K7161-1(ISO527-1)の規定に準拠して、25℃環境における金属端子用接着性フィルム(後述の<加熱加圧後の引張弾性率A>における加熱加圧を行う前の金属端子用接着性フィルム)の引張弾性率Bを測定した。具体的には、実施例及び比較例で得られた各金属端子用接着性フィルムを幅(TD)15mm、長さ(MD)50mmの短冊状に裁断した。次に、金属端子用接着性フィルムについて、25℃環境において、テンシロン万能材料試験機(エー・アンド・デイ社製のRTG-1210)を用いて、引張速度300mm/分、チャック間距離30mmの条件で、試験片の応力-ひずみ曲線を取得し、ひずみ0.05%と0.25%の2点を結ぶ直線の傾きから、加熱加圧前の金属端子用接着性フィルムの引張弾性率Bを求めた。結果を表2に示す。
<加熱加圧後の引張弾性率A>
 温度180℃、面圧0.0067MPaの条件で12秒間、加熱加圧後の引張弾性率を以下の手順により測定した。まず、実施例及び比較例で得られた各金属端子用接着性フィルムを幅(TD)15mm、長さ(MD)50mmの短冊状に裁断した。次に、2枚のテトラフルオロエチレン-エチレン共重合体フィルム(ETFEフィルム、厚さ100μm)で金属端子用接着性フィルムを挟んだ状態で、180℃に加熱されたホットプレート上に載置すると共に、スポンジ付きの500gの錘を載せて、12秒間静置した後、直ちに大気圧下、25℃環境において1時間静置して試験片を得た。次に、大気圧下、25℃環境において、テンシロン万能材料試験機(エー・アンド・デイ社製のRTG-1210)を用いて、引張速度300mm/分、チャック間距離30mmの条件で、試験片の応力-ひずみ曲線を取得し、ひずみ0.05%と0.25%の2点を結ぶ直線の傾きから、加熱加圧後の金属端子用接着性フィルムの引張弾性率Aを求めた。結果を表2に示す。
<加熱加圧後の下降伏点応力>
 JIS K7127の規定に準拠した方法であって、温度25℃、引張速度175mm/分、チャック間距離30mmの条件で引張試験を行うことで取得された応力-ひずみ曲線から、下降伏点L(図9の模式図参照)における応力(下降伏点応力)を求めた。結果を表2に示す。
<水蒸気バリア性(水分率)>
 まず、次の手順により、蓄電デバイス用外装材(以下、単に「外装材」と表記することがある)を作製した。ナイロンフィルムからなる基材層(厚さ25μm)の上に、アルミニウム合金箔(厚さ35μm)をドライラミネート法により積層させた。具体的には、アルミニウム合金箔からなるバリア層の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、アルミニウム合金箔上に接着剤層(厚さ3μm)を形成した。次いで、アルミニウム合金箔上の接着剤層と基材層を積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。次に、積層体のバリア層の上に、無水マレイン酸変性ポリプロピレン樹脂からなる接着層(厚さ20μm、金属層側に配置)と、ランダムポリプロピレン樹脂からなる熱融着性樹脂層(厚さ15μm、最内層)を共押し出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体を190℃で2分間加熱することにより、基材層、接着剤層、バリア層、接着層、熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材を得た。
 次に、図11の模式図に示すように、得られた外装材3を、縦(MD)120mm、横(TD)120mmの正方形に裁断した(図11a)。また、実施例及び比較例で得られた各金属端子用接着性フィルム1(以下、単に「接着性フィルム」と表記することがある)を縦(MD)120mm、横(TD)10mmの長方形に裁断した。熱融着性樹脂層が内側になるようにして、外装材10を縦方向に半分に折り曲げ、その間に、縦方向及び横方向が一致するように、金属端子用接着性フィルムを2枚配置して、外装材/接着性フィルム/接着性フィルム/外装材が順に積層された積層体を得た(図11b)。接着性フィルムは、後述のヒートシールされる長辺に沿って、外装材10の間に配置されている。次に、ヒートシールバー(ステンレス鋼板)を用い、積層体の長辺と短辺の位置において、積層体の各層間を熱融着させて、1つの短辺が熱融着されていない袋状とした。熱融着の条件は、長辺については、幅10mmのヒートシールバーを用い、温度190℃、面圧1.0MPa、3秒間、1回とした(図11cのs1)。また、短辺については、幅7mのヒートシールバーを用い、温度190℃、面圧2.0MPa、3秒間の条件で1回ヒートシールした後、さらに、短辺から3mm内側の位置で、幅7mのヒートシールバーを用い、温度190℃、面圧2.0MPa、3秒間の条件で1回ヒートシールした。すなわち、短辺2については、位置を3mmずらして2回ヒートシールすることにより、幅10mmとなるようにヒートシールした(図11cのs2)。次に、長辺の熱融着部の幅が3mmとなるようにして、長辺方向に沿って熱融着部を切り落とし、ドライルーム内にて1日乾燥させた(図11d)。次に、熱融着されていない短辺の位置から、エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1(容積比)の液(水分率0%)を約3.0g注入し(図11e)、熱融着されていない短辺についても、前記の短辺と同様にヒートシールして密封袋とした(図11f)。この密封袋を、温度60℃、相対湿度90%の環境で30日間静置した後、ドライルーム内にて、密封袋から取り出した液の水分率をカールフィッシャー法により測定した。結果を表2に示す。
<厚みの変化率>
 前記<加熱加圧後の引張弾性率A>において、温度180℃、面圧0.0067MPaの条件で12秒間、加熱加圧する前後における各金属端子用接着性フィルムについて、(加熱加圧後の金属端子用接着性フィルムの厚さ)/(加熱加圧前の金属端子用接着性フィルムの厚さ)×100の計算式から、厚みの変化率を算出した。厚みの変化率は、金属端子用接着性フィルムのMDの方向に3点測定した平均値である。結果を表2に示す。
<金属端子用接着性フィルムと金属端子との密着強度の測定>
 金属端子として、縦50mm、横22.5mm、厚み0.2mmのアルミニウム(JIS H4160:1994 A8079H-O)を用意した。また、実施例及び比較例で得られた各金属端子用接着性フィルムを長さ45mm、幅15mmに裁断した。次に、金属端子用接着性フィルムを金属端子の上に置き、金属端子/接着性フィルムの積層体を得た。このとき、金属端子の縦方向及び横方向が、それぞれ、金属端子用接着性フィルムの長さ方向及び幅方向と一致し、かつ、金属端子と金属端子用接着性フィルムの中心が一致するように積層した。次に、テトラフルオロエチレン-エチレン共重合体フィルム(ETFEフィルム、厚さ100μm)を、当該積層体の金属端子用接着性フィルムの上に置いた(ETFEフィルムで金属端子用接着性フィルムの表面を覆った)状態で、180℃に加熱されたホットプレート上に載置する(金属端子がホットプレート側)と共に、スポンジ付きの500gの錘を載せて、12秒間静置して、接着性フィルムを金属端子に熱融着させた(面圧0.0067MPa、接触面積300mm2)。熱融着後の積層体を25℃まで自然冷却した。次に、25℃の環境において、テンシロン万能材料試験機(エー・アンド・デイ社製のRTG-1210)で金属端子用接着性フィルムを金属端子から剥離させた。剥離時の最大強度を金属端子に対する密着強度(N/15mm)とした。剥離速度は175mm/分、剥離角度は180°、チャック間距離は30mmとし、3回測定した平均値とした。なお、温度180℃及び面圧0.016MPaの加熱加圧環境で12秒間静置する処理は、前記の仮接着工程及び本接着工程で加わる熱と圧力を想定した処理である。結果を表2に示す。
<曲げ試験>
 実施例及び比較例で得られた各金属端子用接着性フィルムを、縦(MD)100mm、横(TD)15mmの大きさにカットした。マンドレル試験機(φ2mmの金属棒)を用いて、接着性フィルムに巻きつけた。このとき、金属端子用接着性フィルムのMDと、マンドレル試験機の金属棒とが垂直となるように巻き付けた。この状態で曲げ試験を行い、金属端子用接着性フィルムを目視で観察して、以下の基準により評価した。結果を表2に示す。
A:金属端子用接着性フィルムの巻きつけ部分の白化はなく、巻きつけ後に元の形状に戻る
B:金属端子用接着性フィルムの巻きつけ部分の白化はないが、巻きつけ後に元の形状に戻らずカールしている
C:金属端子用接着性フィルムの巻きつけ部分の白化がある
<追従性評価1(接着性フィルム/金属端子)>
 金属端子として、厚み200μmのアルミニウム箔(JIS H4160:1994 A8079H-O)を用意した。また、実施例及び比較例で得られた各金属端子用接着性フィルムを用意した。次に、2枚の接着性フィルムの間に、金属端子を挟み、接着性フィルム/金属端子/接着性フィルムの積層体を得た。次に、2枚のテトラフルオロエチレン-エチレン共重合体フィルム(ETFEフィルム、厚さ100μm)で、当該積層体を挟んだ状態で、180℃に加熱されたホットプレート上に載置すると共に、スポンジ付きの500gの錘を載せて、12秒間静置して、接着性フィルムを金属端子に熱融着させた(面圧0.0067MPa、接触面積300mm2)。この際、図10の模式図に示すように、金属端子が接着性フィルムによって挟み込まれることで、金属端子の周囲が接着性フィルムで覆われ、かつ、2枚の接着性フィルム同士が熱融着されている部分を形成した。熱融着後の積層体を25℃まで自然冷却して、厚み方向の断面をレーザー顕微鏡で観察して、以下の基準により金属端子用接着性フィルムの金属端子の形状への追従性評価を行った。結果を表2に示す。
A:金属端子用接着性フィルムと金属端子との間に気泡はない
B:金属端子用接着性フィルムと金属端子との界面には気泡はないが、界面付近において、金属端子用接着性フィルムに気泡がある
C:金属端子用接着性フィルムと金属端子との界面に気泡があり、界面付近においても、金属端子用接着性フィルムに気泡がある
<追従性評価2(接着性フィルム/外装材)>
 まず、前記の追従性評価1に記載の手順と同様にして、接着性フィルム/金属端子/接着性フィルムの積層体を作製した。次に、2枚の外装材の間に、得られた積層体を挟み、この状態でヒートシールテスターを用いて、180℃、面圧1.0MPa、3秒間の条件でシールすることで、外装材と接着性フィルムとの間を熱融着させた積層体を得た。得られた積層体を25℃まで自然冷却して、厚み方向の断面をレーザー顕微鏡で観察して、以下の基準により金属端子用接着性フィルムの蓄電デバイス用外装材の形状への追従性評価を行った。結果を表2に示す。
A:金属端子用接着性フィルムと蓄電デバイス用外装材との間に空隙はない
B:金属端子用接着性フィルムと蓄電デバイス用外装材との間に微細な空隙(直径10μm以下)が存在する
C:金属端子用接着性フィルムと蓄電デバイス用外装材との間に空隙(直径10μm超)が存在する
<衝撃吸収エネルギー>
 前記<加熱加圧後の引張弾性率A>で得られた応力-ひずみ曲線で囲まれている部分の面積から、衝撃吸収エネルギーを算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2において、「-」の表記は、測定されていないことを意味する。
 実施例1~16の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、引張弾性率Aが490MPa以上である。表2に示される結果から明らかな通り、当該構成を備える実施例1~16の金属端子用接着性フィルムは、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮する。
 特に、実施例1,2の金属端子用接着性フィルムは、当該密着強度が45N/15mm以上という十分な密着強度を備えており、さらに、柔軟性(曲げ試験)、厚みの変化率、及び衝撃吸収エネルギーについても優れており、密着性、柔軟性、厚みの変化率、及び衝撃吸収エネルギーが良好であり、総合的な特性のバランスに優れた金属端子用接着性フィルムであった。すなわち、本開示の金属端子用接着性フィルムにおいて、引張弾性率Aが500~550MPa程度であり、引張弾性率Bが420~480MPaであり、引張弾性率A,Bの差が40~75MPaであり、金属端子用接着性フィルムの総厚みが145~155μmであり、基材の厚みが90~120μmであり、第1ポリオレフィン層及び第2ポリオレフィン層の厚みがそれぞれ10~30μmであり、第1及び第2ポリオレフィン層の合計厚みに対する基材の厚みの比が1.0~4.0であることにより、密着性、柔軟性、厚みの変化率、及び衝撃吸収エネルギーが良好であり、総合的な特性のバランスに優れた金属端子用接着性フィルムとなる。
実施例17
<金属端子用接着性フィルムの製造>
 表3に記載の融点及びMFRを有し、かつ、表4に記載の厚みを有する未延伸ポリプロピレン層(以下、「CPP層」と表記することがある)を、基材として用いた。また、それぞれ、表3に記載の融点及びメルトマスフローレート(MFR)を有する、ポリプロピレン(PP)を第1ポリオレフィン層(PP層)とし、無水マレイン酸変性ポリプロピレン(PPa)を第2ポリオレフィン層(PPa層)とした。未延伸ポリプロピレンフィルム(CPP層)からなる基材の両面に、片面ずつ、ポリプロピレン(PP)及び無水マレイン酸変性ポリプロピレン(PPa)をTダイ押出機で押出し、PP層/CPP層/PPa層が順に積層された金属端子用接着性フィルムを得た。PP層/CPP層/PPa層の各層の厚みは、表4に示す通りである。
 表4に記載の金属端子用接着性フィルムの引張弾性率、下降伏点応力、水蒸気バリア性、厚みの変化率などの物性は、実施例1~16と同様、PP層、PPa層及びCPP層の融点、MFR、厚み、厚み比、さらには、金属端子用接着性フィルム1の製造におけるTダイの条件(例えば、Tダイからの押出幅、延伸倍率、延伸速度、熱処理温度など)などによって調整した。
 実施例17の金属端子用接着性フィルムについて、実施例1-16と同様にして、引張弾性率、加熱加圧後の降伏点応力、衝撃吸収エネルギー、水蒸気バリア性、厚みの変化率、曲げ試験、追従性評価1,2をそれぞれ行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例17の金属端子用接着性フィルムについても、実施例1~16と同じく、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、引張弾性率Aが490MPa以上である。表4に示される結果から明らかな通り、当該構成を備える実施例17の金属端子用接着性フィルムは、金属端子に接着されるまでに複数回の加熱及び加圧が行われた場合に、金属端子に対して高い密着強度を発揮する。
 以上のとおり、本開示は、下記に掲げる態様の発明を提供する。
項1. 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
 前記金属端子用接着性フィルムは、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率Aが、490MPa以上である、金属端子用接着性フィルム。
項2. 前記金属端子用接着性フィルムは、前記加熱加圧環境に曝される前において、温度25℃の環境で測定される引張弾性率Bが、700MPa以下である、項1に記載の金属端子用接着性フィルム。
項3. 前記引張弾性率Aの値から前記引張弾性率Bの値を引いて算出される、引張弾性率の差が、5MPa以上である、項2に記載の金属端子用接着性フィルム。
項4. 前記金属端子用接着性フィルムは、前記引張弾性率Aが、680MPa以下である、項1~3のいずれか1項に記載の金属端子用接着性フィルム。
項5. 前記金属端子用接着性フィルムは、JIS K7127の規定に準拠した方法であって、温度25℃、引張速度175mm/分、チャック間距離30mmの条件で引張試験を行い取得される、応力(MPa)とひずみ(mm)との関係を示すグラフから求められる下降伏点応力が、17.0MPa以上である、項1~4のいずれか1項に記載の金属端子用接着性フィルム。
項6. 温度180℃、面圧0.0067MPaの条件で12秒間、加熱加圧する前後における、下記式で算出される厚みの変化率が、90%以上100%以下である、項1~5のいずれか1項に記載の金属端子用接着性フィルム。
 厚みの変化率=(加熱加圧後の金属端子用接着性フィルムの厚さ/加熱加圧前の金属端子用接着性フィルムの厚さ)×100
項7. 前記金属端子用接着性フィルムの厚みが、140μm以上である、項1~6のいずれか1項に記載の金属端子用接着性フィルム。
項8. 前記金属端子用接着性フィルムは、第1ポリオレフィン層、基材、及び第2ポリオレフィン層をこの順に備える積層体から構成されている、項1~7のいずれか1項に記載の金属端子用接着性フィルム。
項9. 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の合計厚みに対する、前記基材の厚みの比が、0.7以上4.0以下である、項8に記載の金属端子用接着性フィルム。
項10. 前記基材の厚さが、50μm以上150μm以下である、項8又は9に記載の金属端子用接着性フィルム。
項11. 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の厚さが、それぞれ、10μm以上50μm以下である、項8~10のいずれか1項に記載の金属端子用接着性フィルム。
項12. 前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方の230℃におけるメルトマスフローレートが、7.2g/10分以上9.8g/10分以下である、項8~11のいずれか1項に記載の金属端子用接着性フィルム。
項13. 前記基材の230℃におけるメルトマスフローレートが、1.8g/10分以上5.0g/10分以下である、項8~12のいずれか1項に記載の金属端子用接着性フィルム。
項14. 前記基材に含まれる樹脂が、ポリオレフィン骨格を含む、項8~13のいずれか1項に記載の金属端子用接着性フィルム。
項15. 前記第1ポリオレフィン層及び前記第2ポリオレフィン層が、酸変性ポリオレフィンを含んでいる、項8~14のいずれか1項に記載の金属端子用接着性フィルム。
項16. 前記蓄電デバイス用外装材が、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
 前記熱融着性樹脂層と前記金属端子との間に前記金属端子用接着性フィルムが介在される、項1~15のいずれか1項に記載の金属端子用接着性フィルム。
項17. 金属端子に、項1~16のいずれか1項に記載の金属端子用接着性フィルムが取り付けられてなる、金属端子用接着性フィルム付き金属端子。
項18. 少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
 前記金属端子と前記蓄電デバイス用外装材との間に、項1~16のいずれかに記載の金属端子用接着性フィルムが介在されてなる、蓄電デバイス。
項19. 少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える電池の製造方法であって、
 前記金属端子と前記蓄電デバイス用外装材との間に、項1~16のいずれかに記載の金属端子用接着性フィルムを介在させて、前記蓄電デバイス素子を前記蓄電デバイス用外装材で封止する工程を備える、蓄電デバイスの製造方法。
1 金属端子用接着性フィルム
2 金属端子
3 蓄電デバイス用外装材
3a 蓄電デバイス用外装材の周縁部
4 蓄電デバイス素子
10 蓄電デバイス
11 基材
12a 第1ポリオレフィン層
12b 第2ポリオレフィン層
13 接着促進剤層
31 基材層
32 接着剤層
33 バリア層
34 接着層
35 熱融着性樹脂層

Claims (19)

  1.  蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
     前記金属端子用接着性フィルムは、温度180℃及び面圧0.0067MPaの加熱加圧環境で12秒間静置し、さらに、温度25℃の環境で1時間静置した後において、温度25℃の環境で測定される引張弾性率Aが、490MPa以上である、金属端子用接着性フィルム。
  2.  前記金属端子用接着性フィルムは、前記加熱加圧環境に曝される前において、温度25℃の環境で測定される引張弾性率Bが、700MPa以下である、請求項1に記載の金属端子用接着性フィルム。
  3.  前記引張弾性率Aの値から前記引張弾性率Bの値を引いて算出される、引張弾性率の差が、5MPa以上である、請求項2に記載の金属端子用接着性フィルム。
  4.  前記金属端子用接着性フィルムは、前記引張弾性率Aが、680MPa以下である、請求項1~3のいずれか1項に記載の金属端子用接着性フィルム。
  5.  前記金属端子用接着性フィルムは、JIS K7127の規定に準拠した方法であって、温度25℃、引張速度175mm/分、チャック間距離30mmの条件で引張試験を行い取得される、応力(MPa)とひずみ(mm)との関係を示すグラフから求められる下降伏点応力が、17.0MPa以上である、請求項1~4のいずれか1項に記載の金属端子用接着性フィルム。
  6.  温度180℃、面圧0.0067MPaの条件で12秒間、加熱加圧する前後における、下記式で算出される厚みの変化率が、90%以上100%以下である、請求項1~5のいずれか1項に記載の金属端子用接着性フィルム。
     厚みの変化率=(加熱加圧後の金属端子用接着性フィルムの厚さ/加熱加圧前の金属端子用接着性フィルムの厚さ)×100
  7.  前記金属端子用接着性フィルムの厚みが、140μm以上である、請求項1~6のいずれか1項に記載の金属端子用接着性フィルム。
  8.  前記金属端子用接着性フィルムは、第1ポリオレフィン層、基材、及び第2ポリオレフィン層をこの順に備える積層体から構成されている、請求項1~7のいずれか1項に記載の金属端子用接着性フィルム。
  9.  前記第1ポリオレフィン層及び前記第2ポリオレフィン層の合計厚みに対する、前記基材の厚みの比が、0.7以上4.0以下である、請求項8に記載の金属端子用接着性フィルム。
  10.  前記基材の厚さが、50μm以上150μm以下である、請求項8又は9に記載の金属端子用接着性フィルム。
  11.  前記第1ポリオレフィン層及び前記第2ポリオレフィン層の厚さが、それぞれ、10μm以上50μm以下である、請求項8~10のいずれか1項に記載の金属端子用接着性フィルム。
  12.  前記第1ポリオレフィン層及び前記第2ポリオレフィン層の少なくとも一方の230℃におけるメルトマスフローレートが、7.2g/10分以上9.8g/10分以下である、請求項8~11のいずれか1項に記載の金属端子用接着性フィルム。
  13.  前記基材の230℃におけるメルトマスフローレートが、1.8g/10分以上5.0g/10分以下である、請求項8~12のいずれか1項に記載の金属端子用接着性フィルム。
  14.  前記基材に含まれる樹脂が、ポリオレフィン骨格を含む、請求項8~13のいずれか1項に記載の金属端子用接着性フィルム。
  15.  前記第1ポリオレフィン層及び前記第2ポリオレフィン層が、酸変性ポリオレフィンを含んでいる、請求項8~14のいずれか1項に記載の金属端子用接着性フィルム。
  16.  前記蓄電デバイス用外装材が、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
     前記熱融着性樹脂層と前記金属端子との間に前記金属端子用接着性フィルムが介在される、請求項1~15のいずれか1項に記載の金属端子用接着性フィルム。
  17.  金属端子に、請求項1~16のいずれか1項に記載の金属端子用接着性フィルムが取り付けられてなる、金属端子用接着性フィルム付き金属端子。
  18.  少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
     前記金属端子と前記蓄電デバイス用外装材との間に、請求項1~16のいずれかに記載の金属端子用接着性フィルムが介在されてなる、蓄電デバイス。
  19.  少なくとも、正極、負極、及び電解質を備えた前記蓄電デバイス素子と、当該蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える電池の製造方法であって、
     前記金属端子と前記蓄電デバイス用外装材との間に、請求項1~16のいずれかに記載の金属端子用接着性フィルムを介在させて、前記蓄電デバイス素子を前記蓄電デバイス用外装材で封止する工程を備える、蓄電デバイスの製造方法。
PCT/JP2020/027120 2019-07-10 2020-07-10 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法 WO2021006350A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/624,708 US20220290011A1 (en) 2019-07-10 2020-07-10 Adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, power storage device using said adhesive film for metal terminal, and method for producing power storage device
JP2020564276A JP6885521B1 (ja) 2019-07-10 2020-07-10 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
CN202080050216.2A CN114096628A (zh) 2019-07-10 2020-07-10 金属端子用粘接性膜、带有金属端子用粘接性膜的金属端子、使用了该金属端子用粘接性膜的蓄电器件和蓄电器件的制造方法
EP20837256.5A EP3998649A4 (en) 2019-07-10 2020-07-10 ADHESIVE FILM FOR A METAL TERMINAL, METAL TERMINAL PROVIDED WITH THE ADHESIVE FILM INTENDED FOR A METAL TERMINAL, ENERGY STORAGE DEVICE IMPLEMENTING SUCH ADHESIVE FILM FOR A METAL TERMINAL, AND METHOD FOR PRODUCING ENERGY STORAGE DEVICE
KR1020217039619A KR20220032001A (ko) 2019-07-10 2020-07-10 금속단자용 접착성 필름, 금속단자용 접착성 필름 부착 금속단자, 상기 금속단자용 접착성 필름을 사용한 축전 디바이스, 및 축전 디바이스의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-128632 2019-07-10
JP2019128632 2019-07-10
JP2019184084 2019-10-04
JP2019-184084 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021006350A1 true WO2021006350A1 (ja) 2021-01-14

Family

ID=74114551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027120 WO2021006350A1 (ja) 2019-07-10 2020-07-10 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法

Country Status (6)

Country Link
US (1) US20220290011A1 (ja)
EP (1) EP3998649A4 (ja)
JP (2) JP6885521B1 (ja)
KR (1) KR20220032001A (ja)
CN (1) CN114096628A (ja)
WO (1) WO2021006350A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447851B1 (ko) * 2021-06-24 2022-09-27 나노캡 주식회사 겔전해질을 이용한 고전압의 초박형 전기이중층 커패시터 및 그 제조방법
JP7245570B1 (ja) 2022-08-23 2023-03-24 ビージェイテクノロジーズ株式会社 タブリード封止用フィルム
WO2024080338A1 (ja) * 2022-10-12 2024-04-18 大日本印刷株式会社 蓄電デバイス用樹脂フィルム及び蓄電デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024216463A1 (zh) * 2023-04-17 2024-10-24 宁德时代新能源科技股份有限公司 隔离膜、电池单体、电池和用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132538A (ja) * 2013-01-07 2014-07-17 Toppan Printing Co Ltd 二次電池用金属端子被覆樹脂フィルムおよびその製造方法ならびに電池パック
JP2015079638A (ja) 2013-10-17 2015-04-23 大倉工業株式会社 接着用テープ付き端子、接着用テープ付き端子の製造方法及び薄型電池
JP2017069151A (ja) * 2015-10-02 2017-04-06 大日本印刷株式会社 金属端子用接着性フィルム
WO2018110702A1 (ja) * 2016-12-16 2018-06-21 大日本印刷株式会社 金属端子用接着性フィルム及び電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032691A (ja) * 2006-06-29 2008-02-14 Fuji Electric Systems Co Ltd 水質監視システムおよび水質監視方法
JP5720132B2 (ja) * 2010-07-13 2015-05-20 凸版印刷株式会社 二次電池用金属端子被覆樹脂フィルム
WO2012020721A1 (ja) * 2010-08-11 2012-02-16 大倉工業株式会社 端子接着用テープの製造方法、および端子接着用テープ
WO2012063764A1 (ja) * 2010-11-11 2012-05-18 藤森工業株式会社 封止フィルムの製造方法および封止フィルム
KR101735983B1 (ko) * 2013-03-07 2017-05-15 스미또모 베이크라이트 가부시키가이샤 접착 필름, 다이싱 시트 일체형 접착 필름, 백그라인드 테이프 일체형 접착 필름, 백그라인드 테이프 겸 다이싱 시트 일체형 접착 필름, 적층체, 적층체의 경화물, 및 반도체 장치, 그리고 반도체 장치의 제조 방법
JP6188009B2 (ja) * 2013-03-11 2017-08-30 藤森工業株式会社 電池外装用積層体
KR102507154B1 (ko) * 2013-07-17 2023-03-08 도판 인사츠 가부시키가이샤 이차 전지용 단자 피복 수지 필름, 이차 전지용 탭 부재, 및 이차 전지
JP6648400B2 (ja) * 2014-11-10 2020-02-14 凸版印刷株式会社 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス
JP6143147B1 (ja) * 2015-08-28 2017-06-07 Dic株式会社 ラミネート用接着剤、多層フィルム、及びこれを用いた二次電池
JP2017139121A (ja) * 2016-02-03 2017-08-10 大日本印刷株式会社 金属端子用接着性フィルム
CN110494523B (zh) * 2017-04-05 2022-06-17 大日本印刷株式会社 粘接性保护膜、电池及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132538A (ja) * 2013-01-07 2014-07-17 Toppan Printing Co Ltd 二次電池用金属端子被覆樹脂フィルムおよびその製造方法ならびに電池パック
JP2015079638A (ja) 2013-10-17 2015-04-23 大倉工業株式会社 接着用テープ付き端子、接着用テープ付き端子の製造方法及び薄型電池
JP2017069151A (ja) * 2015-10-02 2017-04-06 大日本印刷株式会社 金属端子用接着性フィルム
WO2018110702A1 (ja) * 2016-12-16 2018-06-21 大日本印刷株式会社 金属端子用接着性フィルム及び電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998649A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447851B1 (ko) * 2021-06-24 2022-09-27 나노캡 주식회사 겔전해질을 이용한 고전압의 초박형 전기이중층 커패시터 및 그 제조방법
JP7245570B1 (ja) 2022-08-23 2023-03-24 ビージェイテクノロジーズ株式会社 タブリード封止用フィルム
JP2024030096A (ja) * 2022-08-23 2024-03-07 ビージェイテクノロジーズ株式会社 タブリード封止用フィルム
WO2024080338A1 (ja) * 2022-10-12 2024-04-18 大日本印刷株式会社 蓄電デバイス用樹脂フィルム及び蓄電デバイス

Also Published As

Publication number Publication date
EP3998649A1 (en) 2022-05-18
JP6885521B1 (ja) 2021-06-16
KR20220032001A (ko) 2022-03-15
EP3998649A4 (en) 2023-07-19
US20220290011A1 (en) 2022-09-15
CN114096628A (zh) 2022-02-25
JP2021132041A (ja) 2021-09-09
JPWO2021006350A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6885521B1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP6950857B2 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP7104136B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JPWO2020085189A1 (ja) アルミニウム合金箔、蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7104137B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP6882617B1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP6892025B1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
WO2021177424A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP7206873B2 (ja) 蓄電デバイスの製造方法及び蓄電デバイスの品質管理方法
WO2021090951A1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP2022175134A (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP7031805B1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
JP7311076B1 (ja) 金属端子用接着性フィルム及びその製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、金属端子用接着性フィルムと蓄電デバイス用外装材を含むキット、並びに蓄電デバイスの製造方法
JP6863541B1 (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、及び蓄電デバイスの製造方法
WO2023140338A1 (ja) 金属端子用接着性フィルム及びその製造方法、金属端子用接着性フィルム付き金属端子、当該金属端子用接着性フィルムを用いた蓄電デバイス、金属端子用接着性フィルムと蓄電デバイス用外装材を含むキット、並びに蓄電デバイスの製造方法
CN118977493A (zh) 金属端子用粘接性膜及制造方法、带有该膜的金属端子、使用了该膜的蓄电器件及制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020564276

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837256

Country of ref document: EP

Effective date: 20220210