WO2021002407A1 - Fluoroalkyl group-containing compound and production method therefor - Google Patents
Fluoroalkyl group-containing compound and production method therefor Download PDFInfo
- Publication number
- WO2021002407A1 WO2021002407A1 PCT/JP2020/025910 JP2020025910W WO2021002407A1 WO 2021002407 A1 WO2021002407 A1 WO 2021002407A1 JP 2020025910 W JP2020025910 W JP 2020025910W WO 2021002407 A1 WO2021002407 A1 WO 2021002407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- group
- compound represented
- formula
- following general
- Prior art date
Links
- 0 CNC(*)C(O)=O Chemical compound CNC(*)C(O)=O 0.000 description 16
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/14—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
- C07C227/18—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/14—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
- C07C227/18—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
- C07C227/20—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters by hydrolysis of N-acylated amino-acids or derivatives thereof, e.g. hydrolysis of carbamates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/20—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C269/00—Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C269/06—Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/10—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C271/22—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/317—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
- C07C67/327—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/67—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
- C07C69/716—Esters of keto-carboxylic acids or aldehydo-carboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a method for producing a fluoroalkyl group-containing compound, which is an amino acid in which a fluoroalkyl group is introduced into a side chain, and an intermediate thereof.
- Fluorine-containing amino acids have been reported to exhibit unique bioactivity and are attracting attention. For example, 3,3,3-trifluoroalanine and its derivatives have been reported to act as a suicide inhibitor of pyridoxal enzyme (Non-Patent Document 1). In addition, it has been reported that alanine racemase of Gram-negative bacterium Salmonella typhimurium and Gram-positive bacterium Bacillus stearothermophilus is inactivated by 3,3,3-trifluoroalanine (Non-Patent Document 2). Fluorine-containing amino acids and peptides containing them are expected to be used in the pharmaceutical field as physiologically active substances.
- Non-Patent Documents 3 and 4 A method for synthesizing optically active perfluoroalkylalanine by introducing a perfluoroalkyl group into optically active acrylamide.
- Non-Patent Document 6 A method for synthesizing perfluoroalkylglycine via an oxazolone (Non-Patent Document 6).
- Non-Patent Document 7 A method for synthesizing perfluoroalkylglycine via an oxazole ring (Non-Patent Document 7).
- CAN cerium ammonium nitrate
- the methods capable of stereoselectively synthesizing various fluorine-containing amino acids having optical activity by the conventional method are the method of Non-Patent Document 5 and the method of Non-Patent Document 1, 8 or 9.
- Non-Patent Document 5 is useful as a method for synthesizing optically active perfluoroalkylalanine.
- an equivalent amount of the optically active site of the substrate is required to obtain the optically active substance.
- the perfluoroalkyl group has a long chain, the stereoselectivity is not high, and in order to carry out the reaction with good yield, a large excess amount of 10 equivalents of perfluoroalkyl iodide is required.
- Non-Patent Document 1 The method of Non-Patent Document 1, 8 or 9 is useful as a method for synthesizing perfluoroalkylglycine.
- the raw material imideyl iodide must be synthesized from perfluoroalkyl iodide and isonitrile, which is complicated (Non-Patent Document 10).
- the synthesis of the optically active substance by the reported method is before deprotection by CAN, and it is unclear whether the optically active substance can be deprotected while maintaining the optical activity.
- An object of the present invention is to provide a novel production method and an intermediate thereof capable of efficiently synthesizing a fluoroalkyl group-containing compound which is an amino acid in which a fluoroalkyl group is introduced into a side chain.
- the present inventors have found a method for synthesizing a fluoroalkyl group-containing compound by a simple method using an oxalic acid diester as a starting material, and completed the present invention. That is, the present invention is as follows.
- Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 When it is a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
- R 1 is the following general formula (p-1).
- R 3 is a optionally substituted C 6-14 aryl group
- R 4 and R 5 are independently hydrogen atoms or optionally substituted C 6-14 aryl groups, respectively.
- the black circle means a bond), and is a protecting group selected from 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl group).
- the C 1-30 alkyl group (in which Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom) in the general formula (3) (in the formula).
- the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
- R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl.
- a method for producing a compound represented by (which is a protecting group selected from the groups).
- Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 When it is a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
- R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl.
- a method for producing a compound represented by (which is a protecting group selected from the groups).
- the compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
- the compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
- R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are independently C 6-14 aryl groups).
- the following general formula (4) In the formula, R 1 and R f are the same as the general formula (3), and R 2 is the same as the general formula (9) or (10)).
- the compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5) is applied.
- R 1 , Rf, and R 2 are the same as those in the general formula (4).
- Manufacture the compound represented by The protecting group R 2 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-1), the production method of the fluoroalkyl group-containing compound .. [7] The method for producing [6], wherein the R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
- Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 In the case of a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms))), which is a method for producing a compound represented by.
- the compound represented by the general formula (6-1) is produced by the production method of [6] or [7].
- the protecting group R 1 of the compound represented by the general formula (6-1) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound ..
- Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 In the case of a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms), and R 2 is a protective group for amino groups).
- the compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
- the compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (9) or (10)).
- the compound represented by the general formula (4) is subjected to a reduction reaction, and the general formula (5) (in the formula, R 1 , Rf, and R 2 are the same as the general formula (4)).
- the C 1-30 alkyl group (in which Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom) in the general formula (7) (in the formula).
- the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms), and R 2 is amino.
- the compound represented by the general formula (6-2) is produced by the production method of [9] or [10].
- the protecting group R 2 of the compound represented by the general formula (6-2) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound ..
- the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-3), optically active A method for producing a fluoroalkyl group-containing compound.
- the general formula (6-3) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf and R 1 are the general formula (6).
- -1) is a method for producing an optically active compound represented by).
- the compound represented by the general formula (6-1) is produced by the production method according to the above [6].
- An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-1) to produce an optically active compound represented by the general formula (6-3). Manufacturing method.
- R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (6-4)).
- the compound represented by the general formula (4) is subjected to a reduction reaction, and the general formula (5-1) (in the formula, the asterisk has an asymmetric carbon atom with an asterisk in which the absolute configuration is S or R. Representing the above, R 1 , R f, and R 2 are the same as those in the general formula (4)) to produce an optically active compound.
- Formula (5-1) the protecting group R 1 of a compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-4), optically active A method for producing a fluoroalkyl group-containing compound.
- the general formula (6-4) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the general formula (6-2).
- R 2 is a method for producing an optically active compound represented by (), which is a protecting group for an amino group.
- the compound represented by the general formula (6-2) is produced by the production method of the above [9].
- An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-2) to produce an optically active compound represented by the general formula (6-4). Manufacturing method.
- the general formula (7-1) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the general formula (6-4).
- An optically active compound represented by the general formula (6-4) is produced by the method of the above [15] or [16].
- Formula (6-4) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (7-1), optically active A method for producing a fluoroalkyl group-containing compound.
- the general formula (7-1) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the same as the general formula (7).
- the compound represented by the general formula (7) is produced by the method according to the above [8] or [11].
- Rf 1 is substituted with at least two fluorine atoms, and more optionally substituted C 1-10 alkyl group (said C 1-10 alkyl group by a halogen atom other than a fluorine atom C When it is a 2-10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
- R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl.
- Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-10 alkyl group by a halogen atom other than a fluorine atom (the C 1-10 alkyl group carbon atoms It may have 1 to 5 ether-bonding oxygen atoms in between).
- R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. It is a protecting group selected from the groups, R 2A is the following general formula (p-2). (In the formula, R 10 is a optionally substituted C 1-6 alkyl group or an optionally substituted C 6-14 aryl-C 1-6 alkyl group, with black circles meaning binders). A compound represented by (which is a protecting group of an amino group represented by).
- Rf 2 is -CF 3 , -CF 2 R 11 or -CFHR 11
- R 11 is substituted with at least two fluorine atoms and further substituted with a halogen atom other than the fluorine atom.
- C 1-9 alkyl group which may be used (when the C 1-9 alkyl group is a C 2-9 alkyl group, it has 1 to 5 ether-bonding oxygen atoms between carbon atoms.
- R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. It is a protecting group selected from the groups, R 2A is the above-mentioned general formula (p-2) (in the formula, R 10 is a C 1-6 alkyl group which may be substituted or a C 6-14 aryl-C 1-6 alkyl which may be substituted. It is a group, and the black circle means a bonder), which is a protecting group for the amino group).
- Rf 3 is -CF 2 R 11 or -CFHR 11
- R 11 is substituted with at least two fluorine atoms, even if it is further substituted with a halogen atom other than the fluorine atom.
- a good C 1-9 alkyl group when the C 1-9 alkyl group is a C 2-9 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms.
- R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl.
- Rf 3 is -CF 2 R 11 or -CFHR 11
- R 11 is substituted with at least two fluorine atoms, even if it is further substituted with a halogen atom other than the fluorine atom.
- a good C 1-9 alkyl group when the C 1-9 alkyl group is a C 2-9 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms.
- R 2A is the above-mentioned general formula (p-2) (in the formula, R 10 is a C 1-6 alkyl group which may be substituted or a C 6-14 aryl-C 1-6 alkyl which may be substituted. It is a group, and the black circle means a bonder), which is a protecting group for the amino group).
- the deprotection of the carboxy group and the deprotection of the amino group proceed easily, so that the fluoroalkyl group-containing compound can be efficiently synthesized. Also, according to the present invention, there is provided a novel intermediate used in the above method.
- C p1-p2 (p1 and p2 are positive integers satisfying p1 ⁇ p2) means that the group has p1 to p2 carbon atoms.
- C 1-10 alkyl group is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain.
- the "C 2-10 alkyl group” is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain.
- C 1-10 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
- C 1-30 alkyl group is an alkyl group having 1 to 30 carbon atoms, and may be a straight chain or a branched chain.
- the "C 2-30 alkyl group” is an alkyl group having 2 to 30 carbon atoms, and may be a straight chain or a branched chain.
- C 1-30 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group, eicosyl group, heneicosyl group.
- Docosyl group tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
- C 1-6 alkyl group is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain.
- Examples of C 1-6 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples include a pentyl group and a hexyl group.
- the "C 6-14 aryl group” is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable.
- Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
- the "optionally substituted C 6-14 aryl group” is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1.
- the substituents may be the same kind or different from each other. Examples of the substituent include a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a C 1-6 alkyl group, a C 1-6 alkoxy group, and a methylenedioxy group (-O-CH). 2- O-) and the like can be mentioned.
- optionally substituted C 6-14 aryl groups are phenyl group, naphthyl group, anthryl group, 4-nitrophenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3, Examples thereof include 4-dimethoxyphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3-chlorophenyl group, 1,3-benzodioxol-5-yl group and the like.
- the "C 6-14 aryl-C 1-6 alkyl group” is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is a C 6-14 aryl group. It is a group substituted with.
- the C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group, a phenyl group, a naphthyl group, an anthryl group can be exemplified a 9-fluorenyl group, a phenyl group or a 9-fluorenyl group is particularly preferred ..
- C 1-6 alkyl group in the C 6-14 aryl -C 1-6 alkyl group C 1-4 alkyl groups are preferred.
- Examples of C 6-14 aryl-C 1-6 alkyl groups include benzyl group, diphenylmethyl group, triphenylmethyl group, 2-phenylethyl group, 9-anthrylmethyl group, 9-fluorenylmethyl group and the like. Can be mentioned.
- halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
- the "halogen atom other than the fluorine atom” means a chlorine atom, a bromine atom, or an iodine atom.
- a chlorine atom or a bromine atom is preferable, and a chlorine atom is particularly preferable.
- C 1-6 alkoxy group refers to a group in which an oxygen atom is bonded to the bond end of a C 1-6 alkyl group having 1 to 6 carbon atoms.
- the C 1-6 alkoxy group may be a straight chain or a branched chain.
- Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and the like.
- the "ether-bonded oxygen atom” is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series.
- An alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have a maximum of Nc-1 ether-bonding oxygen atoms.
- Compound n means a compound represented by the formula (n).
- the method for producing a fluoroalkyl group-containing compound according to the present invention is a method for producing a compound (fluorine-containing amino acid) in which a fluoroalkyl group is introduced into the side chain of an amino acid.
- a fluoroalkyl group-containing compound one aspect of synthesizing from compound 2 is shown below.
- Rf is a group in which at least two hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms among C 1-30 alkyl groups, and one or more hydrogen atoms bonded to carbon atoms are present. , It may be further substituted with a halogen atom other than the fluorine atom.
- a C 1-30 alkyl group of Rf a C 1-20 alkyl group is preferable, a C 1-10 alkyl group is more preferable, a C 2-10 alkyl group is further preferable, and a C 2-8 alkyl group is preferable. Even more preferable.
- the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms.
- the number of hydrogen atoms substituted with fluorine atoms is not particularly limited as long as it is 2 or more, for example, 3 or more is preferable, 6 or more is more preferable, and 7 or more is further. preferable.
- Rf examples include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, Difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,2,2,3,3-hexafluorohexyl group, 1,1,2,2,3,3-hexafluorooctyl group , 1,1,2,2,3,3-hexafluorodecyl group, 1,1,2,2,3,
- R 1 is a protecting group for a carboxy group, and specifically, a group represented by the following general formula (p-1), a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, And a protecting group selected from the phenacyl group.
- R 3 is a optionally substituted C 6-14 aryl group
- R 4 and R 5 are independently hydrogen atoms or optionally substituted C. It is a 6-14 aryl group.
- the black circle means a bond.
- Examples of the protective group for the carboxy group represented by R 1 include a benzyl group, a diphenylmethyl group, a triphenylmethyl group, a 4-nitrobenzyl group, a 4-methoxybenzyl group, a 2,4-dimethoxybenzyl group, and 3,4-. Dimethoxybenzyl group, 4-methylbenzyl group, 2,6-dimethylbenzyl group, 3-chlorobenzyl group, 9-anthrylmethyl group, piperonyl group, 2- (9,10-dioxo) anthrylmethyl group, benzyloxy Examples thereof include a methyl group and a phenacyl group.
- R 1 is preferably a benzyl group, a triphenylmethyl group, and more preferably a benzyl group in that it can be deprotected under mild conditions.
- R 1 can be deprotected under mild conditions by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the carboxy protecting group R 1 , and the functional group of the amino acid is decomposed. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide without having to do so.
- an aralkyl protecting group such as a benzyl group or a triphenylmethyl group
- R 6 is a silyl protecting group.
- R 6 include a trimethylsilyl (TMS) group, a triethylsilyl (TES) group, a triisopropylsilyl (TIPS) group, a tert-butyldimethylsilyl (TBDMS) group, a tert-butyldiphenylsilyl (TBDPS) group and the like.
- TMS trimethylsilyl
- TES triethylsilyl
- TIPS triisopropylsilyl
- TDMS tert-butyldimethylsilyl
- TDPS tert-butyldiphenylsilyl
- R 6 is trimethylsilyl (TMS) groups.
- R 2 is an amino protecting group.
- As the protecting group of the amino group tert-butoxycarbonyl (Boc) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyloxycarbonyl (Cbz) group, allyloxycarbonyl (Allloc) group, 2,2 Carbamate protecting groups such as 2-trichloroethoxycarbonyl (Troc) group can be mentioned.
- R 2 is preferably a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group in that it can be deprotected under mild conditions.
- Step 1 Compound 2-2 can be obtained by reacting compound 2 and compound 8 in the presence of metal fluoride. Since the compound 8 represented by the general formula (8) Rf-R 6 can be synthesized from easily available Rf-I (fluoroalkyl iodide) in one step, the range of Rf groups that can be introduced is wide.
- alkali metal fluorides such as cesium fluoride, lithium fluoride and sodium fluoride can be used, and cesium fluoride is preferable.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable.
- the amount of compound 8 is preferably 0.5 to 10 mol with respect to 1 mol of compound 2.
- the amount of metal fluoride is preferably 0.01 to 2 mol with respect to 1 mol of compound 2.
- the reaction in step 1 is preferably carried out at a temperature of 10 ° C. or lower. By carrying out the reaction at a temperature of 10 ° C. or lower, compound 2-2 can be produced in high yield.
- the reaction temperature is preferably ⁇ 78 ° C. to 10 ° C., more preferably ⁇ 50 ° C. to ⁇ 10 ° C., and particularly preferably ⁇ 40 ° C. to ⁇ 20 ° C.
- the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
- Compound 2 can be produced by diesterizing oxalic acid by a known method, or a commercially available product may be used.
- Step 1-1 In the reaction of step 1, (one compound protected with R 6 hydroxy groups) Compound 2-1, or a mixture of compounds 2-2 and compound 2-1 may be obtained. In that case, the silyl protecting group R 6 of compound 2-1 by deprotection, to give compound 2-2.
- the reaction of step 1-1 can be carried out in the same manner as in step 1.
- Step 1-2 The silyl protecting group R 6 of compound 2-1 by deprotection, to give compound 2-2.
- Deprotection can be performed in the presence of fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride and hydrofluoride salts, or acids such as hydrochloric acid, acetic acid and paratoluenesulfonic acid.
- fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride and hydrofluoride salts
- acids such as hydrochloric acid, acetic acid and paratoluenesulfonic acid.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable. It is preferable to add acetic acid.
- the amount of the fluoride salt is preferably 0.1 to 10 mol with respect to 1 mol of compound 2-1 (in the case of a mixture of compound 2-2 and compound 2-1).
- the amount of acid is preferably 0.1 to 10 mol with respect to 1 mol of Compound 2-1 (in the case of a mixture of Compound 2-2 and Compound 2-1).
- the reaction in step 1-2 is preferably carried out at a temperature of 50 ° C. or lower. By carrying out the reaction at a temperature of 50 ° C. or lower, compound 2-2 can be produced in high yield.
- the reaction temperature is preferably ⁇ 80 ° C. to 50 ° C., more preferably ⁇ 40 ° C. to 30 ° C., and particularly preferably ⁇ 20 ° C. to 30 ° C.
- the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
- Step 2 Compound 3 can be obtained by subjecting compound 2-2 to a dehydration reaction.
- the dehydration reaction can be carried out in the presence of a dehydrating agent such as diphosphorus pentoxide, concentrated sulfuric acid, calcium chloride, sodium sulfate, magnesium sulfate, calcium sulfate, molecular sieve (synthetic zeolite), and silica gel.
- a dehydrating agent such as diphosphorus pentoxide, concentrated sulfuric acid, calcium chloride, sodium sulfate, magnesium sulfate, calcium sulfate, molecular sieve (synthetic zeolite), and silica gel.
- diphosphorus pentoxide is preferable.
- the amount of the dehydrating agent is preferably 10 to 100% by weight based on 100% by weight of compound 2-2.
- the dehydration reaction can be carried out by distilling compound 2-2 in the presence of a dehydrating agent.
- Distillation is preferably carried out at a temperature of 30 ° C. to 150 ° C. If the distillation temperature is too high, compound 3 may decompose. If the distillation temperature is too low, compound 3 cannot be condensed and the recovery rate may decrease. Distillation can be carried out at any pressure of reduced pressure, normal pressure and pressure, and can be appropriately determined so that the boiling point of compound 3 falls within the above-mentioned preferable temperature range.
- the pressure is preferably 0.1 mmHg to 5 atm (3800 mmHg).
- Compound 4 can be obtained by reacting compound 3 with compound 9 or compound 10.
- R 2 is a protecting group for an amino group as described above.
- R 7 , R 8 and R 9 are independently C 6-14 aryl groups. Examples of the C 6-14 aryl group represented by R 7 , R 8 or R 9 include a phenyl group and a naphthyl group. Preferably, R 7 , R 8 and R 9 are phenyl groups, respectively.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and diethyl ether is preferable.
- the amount of compound 9 or compound 10 is preferably 0.5 to 10 mol with respect to 1 mol of compound 3.
- the reaction temperature is preferably ⁇ 78 ° C. to 100 ° C., more preferably 0 ° C. to 40 ° C.
- the reaction time is preferably 1 minute to 24 hours, more preferably 10 minutes to 4 hours.
- the protecting group R 2 of the amino group, tert- butoxycarbonyl group by the use of carbamate protecting groups such as 9-fluorenylmethyloxycarbonyl group, the deprotection of R 2 under mild conditions It is possible to synthesize fluorine-containing amino acids while suppressing decomposition and racemization of compounds.
- Compound 5 can be obtained by subjecting compound 4 to a reduction reaction.
- the reduction reaction can be carried out by a method using a reducing agent or a method of reducing in the presence of a metal catalyst.
- a reducing agent examples include sodium borohydride, zinc borohydride, sodium cyanoborohydride, lithium triethylborohydride, lithium borohydride (sec-butyl), and try hydride.
- a boron borohydride reagent such as potassium boron (sec-butyl), lithium boron borohydride, and sodium triacetoxyborohydride can be used.
- sodium borohydride or zinc borohydride is preferable, and sodium borohydride is more preferable.
- the amount of the reducing agent is preferably 0.5 to 10 mol with respect to 1 mol of the compound 4.
- the reaction can be carried out in a solvent inert to the reaction.
- Solvents include diethyl ether, dichloromethane, hydrochlorofluorocarbon (HCFC) (eg, Asahiclin® AK-225 (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,1). 3-Dichloro-1,1,2,2,3-pentafluoropropane mixture, AGC Co., Ltd.)), dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, etc.
- Inert solvent is mentioned, and diethyl ether is preferable.
- the reaction temperature is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 40 ° C.
- the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
- metal catalyst examples include palladium catalysts (eg, palladium carbon, palladium hydroxide, Pearlman catalyst, Lindler catalyst, silica gel-supported palladium catalyst, alumina-supported palladium catalyst, palladium oxide) and nickel.
- palladium catalysts eg, palladium carbon, palladium hydroxide, Pearlman catalyst, Lindler catalyst, silica gel-supported palladium catalyst, alumina-supported palladium catalyst, palladium oxide
- nickel nickel
- Catalyst eg, lane nickel
- platinum catalyst eg, platinum carbon, platinum oxide, silica gel-supported platinum catalyst, alumina-supported platinum catalyst
- rhodium catalyst eg, rhodium carbon, alumina-supported rhodium catalyst, rhodium oxide
- ruthenium catalyst eg, rhodium oxide
- Luthenium carbon alumina-supported ruthenium catalyst, ruthenium oxide
- cobalt catalyst eg, lane cobalt
- palladium catalyst is preferable.
- the amount of the metal catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
- the reduction reaction is carried out in the presence of hydrogen gas.
- the reduction reaction may be carried out under normal pressure or under pressure.
- the pressure of hydrogen gas is preferably 0.5 atm to 10 atm.
- the reaction temperature is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 50 ° C.
- the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
- Step 5-1 The protecting group R 2 of Compound 5 by deprotection, to give compound 6-1.
- Deprotection can be carried out according to the type of the protecting group R 2.
- R 2 is a Boc group, it can be deprotected under acidic conditions.
- the acid used include trifluoroacetic acid and hydrochloric acid.
- the amount of acid is preferably 1 to 1000 mol with respect to 1 mol of Compound 5.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and dichloromethane, N, N. -Dimethylformamide is preferred.
- An acid can also be used as a solvent.
- the solvent include inorganic acids such as hydrochloric acid, acetic acid and trifluoroacetic acid, and organic acids, and trifluoroacetic acid is preferable.
- the reaction temperature is preferably ⁇ 78 ° C. to 50 ° C., more preferably 0 ° C. to 40 ° C.
- the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
- R 2 When R 2 is an Fmoc group, it can be deprotected under basic conditions.
- the base used include secondary amines such as piperidine, morpholine and pyrrolidine.
- the amount of base is preferably 1 to 100 mol with respect to 1 mol of compound 5.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide.
- the reaction temperature is preferably ⁇ 20 ° C. to 80 ° C., more preferably 0 ° C. to 40 ° C.
- the reaction time is preferably 1 minute to 24 hours, more preferably 5 minutes to 2 hours.
- Step 6-1 The protecting group R 1 of the compound 6-1 by deprotection to give compound 7.
- Deprotection can be carried out according to the type of the protecting group R 1.
- R 1 is a benzyl group, a triphenylmethyl group, a 9-anthrylmethyl group, a piperonyl group, a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, or a phenacyl group
- Deprotection can be achieved by the method of reducing with.
- the reduction reaction can be carried out in the same manner as the method of reducing in the presence of the metal catalyst in step 4.
- Step 5-2 The protecting group R 1 of Compound 5 by deprotection, to give compound 6-2. Deprotection can be performed in the same manner as in step 6-1.
- Step 6-2 The protecting group R 2 of the compound 6-2 by deprotection to give compound 7. Deprotection can be performed in the same manner as in step 5-1.
- R 1 In the production method, by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the carboxy protecting group R 1 , R 1 can be deprotected under mild conditions and the optical activity is maintained. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide.
- an aralkyl protecting group such as a benzyl group or a triphenylmethyl group
- Compound 5-1 can be obtained by subjecting compound 4 to an asymmetric reduction reaction.
- the asymmetric reduction reaction can be carried out by reducing compound 4 in the presence of an asymmetric reduction catalyst.
- a transition metal complex in which an asymmetric ligand is coordinated with the transition metal can be used.
- the transition metal include palladium, rhodium, ruthenium, iridium, nickel, cobalt, platinum, iron and the like.
- the transition metal complex include a palladium complex, a rhodium complex, a ruthenium complex, an iridium complex, and a nickel complex.
- Asymmetric ligands include dpen (1,2-diphenylethylenediamine), daipen (1,1-di (4-anicil) -2-isopropyl-1,2-ethylenediamine), and optically active phosphine ligands. Can be mentioned.
- the amount of the asymmetric reduction catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
- the reaction can be carried out in a solvent inert to the reaction.
- the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
- the reduction reaction is carried out in the presence of hydrogen gas.
- the reduction reaction may be carried out under normal pressure or under pressure.
- the pressure of hydrogen gas is preferably 0.5 atm to 10 atm.
- the reaction temperature is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 50 ° C.
- the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
- Step 8-1 The protecting group R 2 of the compound 5-1 by deprotection to give compound 6-3. Deprotection can be performed in the same manner as in step 5-1.
- Step 9-1 The protecting group R 1 of the compound 6-3 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 6-1.
- Step 8-2 The protecting group R 1 of the compound 5-1 by deprotection to give compound 6-4. Deprotection can be performed in the same manner as in step 6-1.
- Step 9-2 The protecting group R 2 of the compound 6-4 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 5-1.
- Compound 6-3 can be obtained by optically resolving compound 6-1.
- the optical resolution can be performed by a known method. For example, it can be carried out by a method using a chiral column, a method by crystallization, a diastereomer method or the like.
- a racemate can be divided into optically active substances by liquid chromatography or supercritical fluid chromatography (SFC) using a chiral column.
- SFC supercritical fluid chromatography
- CHIRALPAK registered trademark
- CHIRALCEL registered trademark
- a salt of a racemate and an optically active amine or an optically active acid is formed and induced into a crystalline diastereomer salt for fractional crystallization. By repeating recrystallization, a single diastereomer salt can be obtained. If necessary, the diastereomeric salt is neutralized to obtain a free optically active substance.
- optically active amines include brucine, cinchonidine, cinchonine, 1-phenethylamine and the like.
- optically active acids include camphorsulfonic acid, tartaric acid, mandelic acid and the like.
- Diastereomer method A racemic mixture is reacted with an optically active reagent to obtain a mixture of diastereomers, which is separated by fractional crystallization and chromatography to separate a single diastereomer. The optically active reagent moiety is removed from the resulting single diastereomer to obtain the desired optical isomer.
- Step 11-1 The protecting group R 1 of the compound 6-3 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 6-1.
- Step 10-2 Compound 6-4 can be obtained by optically resolving compound 6-2.
- the optical resolution can be performed in the same manner as in step 10-1.
- Step 11-2 The protecting group R 2 of the compound 6-4 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 5-1.
- Step 12 Compound 7-1 can be obtained by optically resolving compound 7.
- the optical resolution can be performed in the same manner as in step 10-1.
- the present invention relates to the general formula (3a), the general formula (4a), the general formula (5a), the general formula (5-1a), the general formula (6-1a), the general formula (6-3a), and the general formula (6).
- -2a) or a novel compound represented by the general formula (6-4a) is provided.
- the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R.
- These compounds are useful as intermediates in the method for producing the fluoroalkyl group-containing compound.
- the compound represented by the general formula (6-1a), the general formula (6-3a), the general formula (6-2a), or the general formula (6-4a) produces a peptide containing a fluorine-containing amino acid. Can be used to
- Rf 1 is a C 1-10 alkyl group in which at least two hydrogen atoms bonded to a carbon atom are substituted with a fluorine atom, and one or more hydrogen atoms bonded to the carbon atom. However, it may be further substituted with a halogen atom other than the fluorine atom.
- the C 1-10 alkyl group is a C 2-10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms.
- a C 2-10 alkyl group is preferable, and a C 2-8 alkyl group is preferable.
- Rf 1 examples include pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, 1,1- Difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3 Examples thereof include a 3,3-hexafluoropropyl group.
- Rf 2 is -CF 3 , -CF 2 R 11 , or -CFHR 11 .
- R 11 is a group in which at least two of the hydrogen atoms bonded to the carbon atom of the C 1-9 alkyl group are substituted with a fluorine atom, and one or more of the C 1-9 alkyl groups are bonded to the carbon atom.
- the hydrogen atom of is further substituted with a halogen atom other than the fluorine atom.
- the C 1-9 alkyl group is a C 2-9 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms.
- a C 1-7 alkyl group is more preferable.
- Rf 2 examples include -CF 3 , pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, Examples thereof include 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group and the like. ..
- Rf 3 is -CF 2 R 11 or -CFHR 11 .
- -CF 2 R 11 and -CFHR 11 are the same as Rf 2, and the C 1-9 alkyl group in R 11 is more preferably the C 1-7 alkyl group.
- Rf 3 include pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, 1,1 Examples thereof include 2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group and 1,1,2,3,3,3-hexafluoropropyl group.
- R 2A is a protecting group for an amino group represented by the following general formula (p-2).
- R 10 is a optionally substituted C 1-6 alkyl group or an optionally substituted C 6-14 aryl-C 1-6 alkyl group.
- the black circle means a bond.
- the "optionally substituted C 1-6 alkyl group" represented by R 10 is composed of a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), and a C 1-6 alkoxy group. It means a C 1-6 alkyl group which may be substituted with 1 to 3 substituents of choice.
- Examples of the "optionally substituted C 1-6 alkyl group” represented by R 10 include a tert-butyl group and a 2,2,2-trichloroethyl group.
- the "optionally substituted C 6-14 aryl-C 1-6 alkyl group” represented by R 10 is a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), C 1 C 6-14 aryl-which may be substituted with 1 to 3 substituents selected from -6 alkyl groups, C 1-6 alkoxy groups, and methylenedioxy groups (-O-CH 2- O-). It means a C 1-6 alkyl group.
- Examples of the "optionally substituted C 6-14 aryl-C 1-6 alkyl group” represented by R 10 include a 9-fluorenylmethyl group and a benzyl group.
- the amino protecting group represented by R 2A is preferably a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group in that it can be deprotected under mild conditions.
- the NMR apparatus used for the analysis of Examples and Comparative Examples was JNM-ECZ400S (400 MHz) manufactured by JEOL Ltd., and tetramethylsilane was set to 0 PPM in 1 H NMR and C 6 F 6 was set to 162 PPM in 19 F NMR. did.
- Step 1 Benzyl 3,3,4,4,5,5,6,6,6-nonafluoro-2-oxohexanoate was added in the same manner as in Steps 1 and 2, except that the temperature in Step 1 was changed to 0 ° C. Obtained as a colorless liquid. The yield from step 1 to step 2 was 69%.
- AK225 refers to "Asahiclean® AK-225" (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1, A mixture of 2,2,3-pentafluoropropane, AGC Inc.).
- the present invention provides a novel production method capable of efficiently synthesizing a fluoroalkyl group-containing compound such as a fluorine-containing amino acid.
- a fluoroalkyl group-containing compound such as a fluorine-containing amino acid.
- the deprotection of the carboxy group and the deprotection of the amino group proceed easily, so that the fluoroalkyl group-containing compound can be efficiently synthesized.
- a novel intermediate used in the above-mentioned production method is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Provided is a novel production method by which a fluoroalkyl group-containing compound can be efficiently synthesized. This method is for producing a compound represented by general formula (3) (Rf represents a C1-30 alkyl group substituted with at least two fluorine atoms, and R1 represents a protecting group selected from a group represented by –C(R4)(R5)-R3 (R3 represents a C6-14 aryl group which may be substituted, and R4 and R5 each independently represent a hydrogen atom or a C6-14 aryl group which may be substituted), a 2-(9,10-dioxo)anthrylmethyl group, a benzyloxymethyl group, and a phenacyl group, the method comprising: reacting a compound represented by general formula (2) with a compound represented by Rf-R6 (R6 represents a silyl protecting group) in the presence of a metal fluoride; and then subjecting the reactant to a dehydration reaction.
Description
本発明は、フルオロアルキル基が側鎖に導入されたアミノ酸であるフルオロアルキル基含有化合物の製造方法及びその中間体に関する。
The present invention relates to a method for producing a fluoroalkyl group-containing compound, which is an amino acid in which a fluoroalkyl group is introduced into a side chain, and an intermediate thereof.
含フッ素アミノ酸は特異な生理活性を示すことが報告され、注目を集めている。例えば、3,3,3-トリフルオロアラニン及びその誘導体は、ピリドキサール酵素の自殺型阻害剤(suicide inhibitor)として作用することが報告されている(非特許文献1)。また、グラム陰性菌Salmonella typhimurium及びグラム陽性菌Bacillus stearothermophilusのアラニンラセマーゼが、3,3,3-トリフルオロアラニンで不活性化されることが報告されている(非特許文献2)。含フッ素アミノ酸及びそれを含有するペプチドは、生理活性物質として、医薬分野での利用が期待される。
Fluorine-containing amino acids have been reported to exhibit unique bioactivity and are attracting attention. For example, 3,3,3-trifluoroalanine and its derivatives have been reported to act as a suicide inhibitor of pyridoxal enzyme (Non-Patent Document 1). In addition, it has been reported that alanine racemase of Gram-negative bacterium Salmonella typhimurium and Gram-positive bacterium Bacillus stearothermophilus is inactivated by 3,3,3-trifluoroalanine (Non-Patent Document 2). Fluorine-containing amino acids and peptides containing them are expected to be used in the pharmaceutical field as physiologically active substances.
含フッ素アミノ酸の合成法としては、以下の方法が知られている。
(1)フッ素を含有する側鎖を導入する方法(非特許文献3、4)。
(2)光学活性アクリルアミドへペルフルオロアルキル基を導入して、光学活性なペルフルオロアルキルアラニンを合成する方法(非特許文献5)。 The following methods are known as methods for synthesizing fluorine-containing amino acids.
(1) A method for introducing a side chain containing fluorine (Non-Patent Documents 3 and 4).
(2) A method for synthesizing optically active perfluoroalkylalanine by introducing a perfluoroalkyl group into optically active acrylamide (Non-Patent Document 5).
(1)フッ素を含有する側鎖を導入する方法(非特許文献3、4)。
(2)光学活性アクリルアミドへペルフルオロアルキル基を導入して、光学活性なペルフルオロアルキルアラニンを合成する方法(非特許文献5)。 The following methods are known as methods for synthesizing fluorine-containing amino acids.
(1) A method for introducing a side chain containing fluorine (Non-Patent Documents 3 and 4).
(2) A method for synthesizing optically active perfluoroalkylalanine by introducing a perfluoroalkyl group into optically active acrylamide (Non-Patent Document 5).
(3)オキサゾロンを経由して、ペルフルオロアルキルグリシンを合成する方法(非特許文献6)。(4)オキサゾール環を経由して、ペルフルオロアルキルグリシンを合成する方法(非特許文献7)。(5)イミドイルヨージドのカルボニル化を経由して不斉還元後、硝酸セリウムアンモニウム(CAN)で脱保護することにより、光学活性な含フッ素アミノ酸を得る方法(非特許文献1、8、9)。
(3) A method for synthesizing perfluoroalkylglycine via an oxazolone (Non-Patent Document 6). (4) A method for synthesizing perfluoroalkylglycine via an oxazole ring (Non-Patent Document 7). (5) A method for obtaining optically active fluorine-containing amino acids by asymmetric reduction via carbonylation of imidoyl iodide and then deprotection with cerium ammonium nitrate (CAN) (Non-Patent Documents 1, 8 and 9). ).
従来の方法で、光学活性の種々の含フッ素アミノ酸を立体選択的に合成できる方法は、非特許文献5の方法と、非特許文献1、8、又は9の方法である。
The methods capable of stereoselectively synthesizing various fluorine-containing amino acids having optical activity by the conventional method are the method of Non-Patent Document 5 and the method of Non-Patent Document 1, 8 or 9.
非特許文献5の方法は、光学活性のペルフルオロアルキルアラニンの合成法として有用である。しかし、光学活性体を得るためには、原理的に基質の光学活性部位が当量必要である。また、ペルフルオロアルキル基が長鎖の場合、立体選択性が高くない上、収率よく反応を行うためには、ペルフルオロアルキルヨージドが10当量という大過剰量必要である。
The method of Non-Patent Document 5 is useful as a method for synthesizing optically active perfluoroalkylalanine. However, in principle, an equivalent amount of the optically active site of the substrate is required to obtain the optically active substance. Further, when the perfluoroalkyl group has a long chain, the stereoselectivity is not high, and in order to carry out the reaction with good yield, a large excess amount of 10 equivalents of perfluoroalkyl iodide is required.
非特許文献1、8、又は9の方法は、ペルフルオロアルキルグリシンの合成法として有用である。しかし、まず原料のイミドイルヨージドをペルフルオロアルキルヨージドとイソニトリルから合成しなければならず、煩雑である(非特許文献10)。報告されている方法(非特許文献9)による光学活性体の合成は、CANによる脱保護前までであり、光学活性を保持したまま脱保護できるかは不明である。
The method of Non-Patent Document 1, 8 or 9 is useful as a method for synthesizing perfluoroalkylglycine. However, first, the raw material imideyl iodide must be synthesized from perfluoroalkyl iodide and isonitrile, which is complicated (Non-Patent Document 10). The synthesis of the optically active substance by the reported method (Non-Patent Document 9) is before deprotection by CAN, and it is unclear whether the optically active substance can be deprotected while maintaining the optical activity.
したがって、フルオロアルキル置換グリシンとフルオロアルキル置換アラニンの両方に適用することができ、かつフルオロアルキル基として種々のものを合成でき、光学活性源が触媒量で高選択的に光学活性な含フッ素アミノ酸が得られる簡便な合成法は、報告されていない。
Therefore, it can be applied to both fluoroalkyl-substituted glycine and fluoroalkyl-substituted alanine, and various fluoroalkyl groups can be synthesized, and the optically active source is a catalytic amount of highly selectively optically active fluorine-containing amino acids. No simple synthetic method has been reported.
本発明は、フルオロアルキル基が側鎖に導入されたアミノ酸であるフルオロアルキル基含有化合物を効率よく合成できる新規な製造方法及びその中間体を提供することを目的とする。
An object of the present invention is to provide a novel production method and an intermediate thereof capable of efficiently synthesizing a fluoroalkyl group-containing compound which is an amino acid in which a fluoroalkyl group is introduced into a side chain.
本発明者らは、シュウ酸ジエステルを出発物質として使用し、簡便な方法でフルオロアルキル基含有化合物を合成する方法を見出し、本発明を完成させた。
すなわち、本発明は以下の通りである。 The present inventors have found a method for synthesizing a fluoroalkyl group-containing compound by a simple method using an oxalic acid diester as a starting material, and completed the present invention.
That is, the present invention is as follows.
すなわち、本発明は以下の通りである。 The present inventors have found a method for synthesizing a fluoroalkyl group-containing compound by a simple method using an oxalic acid diester as a starting material, and completed the present invention.
That is, the present invention is as follows.
[1] 下記一般式(3)
(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-30アルキル基(当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、
R1は、下記一般式(p-1)
(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物を製造する方法であって、
[1] The following general formula (3)
(Wherein, Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 When it is a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
R 1 is the following general formula (p-1).
(In the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independently hydrogen atoms or optionally substituted C 6-14 aryl groups, respectively. (The black circle means a bond), and is a protecting group selected from 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl group). A method for producing a compound
R1は、下記一般式(p-1)
R 1 is the following general formula (p-1).
下記一般式(2)
(式中、R1は前記一般式(3)と同様である。)
で表される化合物と、下記一般式(8)
(式中、Rfは前記一般式(3)と同様であり、R6は、シリル保護基である)
で表される化合物を、金属フッ化物の存在下で反応させて、下記一般式(2-2)
(式中、R1及びRfは前記一般式(3)と同様である。)
で表される化合物を製造し、次いで、
前記一般式(2-2)で表される化合物を脱水反応に付して、前記一般式(3)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (2)
(In the formula, R 1 is the same as the general formula (3).)
The compound represented by and the following general formula (8)
(Wherein, Rf is the same as in the general formula (3), R 6 is a silyl protecting group)
The compound represented by is reacted in the presence of metal fluoride, and the following general formula (2-2)
(Wherein, R 1 and Rf are the same as the general formula (3).)
Produce the compound represented by, and then
A method for producing a fluoroalkyl group-containing compound, which comprises subjecting the compound represented by the general formula (2-2) to a dehydration reaction to produce the compound represented by the general formula (3).
で表される化合物と、下記一般式(8)
で表される化合物を、金属フッ化物の存在下で反応させて、下記一般式(2-2)
で表される化合物を製造し、次いで、
前記一般式(2-2)で表される化合物を脱水反応に付して、前記一般式(3)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (2)
The compound represented by and the following general formula (8)
The compound represented by is reacted in the presence of metal fluoride, and the following general formula (2-2)
Produce the compound represented by, and then
A method for producing a fluoroalkyl group-containing compound, which comprises subjecting the compound represented by the general formula (2-2) to a dehydration reaction to produce the compound represented by the general formula (3).
[2] 前記一般式(3)(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-30アルキル基(当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物を製造する方法であって、 [2] The C 1-30 alkyl group (in which Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom) in the general formula (3) (in the formula). When the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A method for producing a compound represented by (which is a protecting group selected from the groups).
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物を製造する方法であって、 [2] The C 1-30 alkyl group (in which Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom) in the general formula (3) (in the formula). When the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A method for producing a compound represented by (which is a protecting group selected from the groups).
前記一般式(2)(式中、R1は前記一般式(3)と同様である)で表される化合物と、前記一般式(8)(式中、Rfは前記一般式(3)と同様であり、R6は、シリル保護基である)で表される化合物を、金属フッ化物の存在下で反応させて、下記一般式(2-1)
(式中、R1及びRfは前記一般式(3)と同様であり、R6は、シリル保護基である)で表される化合物を製造し、次いで、
前記一般式(2-1)で表される化合物を脱水反応に付して、前記一般式(3)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The compound represented by the general formula (2) (in the formula, R 1 is the same as the general formula (3)) and the general formula (8) (in the formula, R f is the general formula (3)). the same, R 6 is a compound represented by a silyl protecting group) is reacted in the presence of a metal fluoride, the following general formula (2-1)
(In the formula, R 1 and R f are the same as those in the general formula (3), and R 6 is a silyl protecting group), and then the compound represented by the formula is produced.
A method for producing a fluoroalkyl group-containing compound, which comprises subjecting the compound represented by the general formula (2-1) to a dehydration reaction to produce the compound represented by the general formula (3).
前記一般式(2-1)で表される化合物を脱水反応に付して、前記一般式(3)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The compound represented by the general formula (2) (in the formula, R 1 is the same as the general formula (3)) and the general formula (8) (in the formula, R f is the general formula (3)). the same, R 6 is a compound represented by a silyl protecting group) is reacted in the presence of a metal fluoride, the following general formula (2-1)
A method for producing a fluoroalkyl group-containing compound, which comprises subjecting the compound represented by the general formula (2-1) to a dehydration reaction to produce the compound represented by the general formula (3).
[3] 前記R1が、ベンジル基である、前記[1]又は[2]の製造方法。
[4] 前記Rfが、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-10アルキル基(当該C1-10アルキル基がC2-10アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である、前記[1]~[3]のいずれかの製造方法。
[5] 前記一般式(2)で表される化合物と、前記一般式(8)で表される化合物を、金属フッ化物の存在下で反応させて、前記一般式(2-1)又は前記一般式(2-2)で表される化合物を製造する反応を、10℃以下の温度で行う、前記[1]~[4]のいずれかの製造方法。 [3] The method for producing [1] or [2], wherein R 1 is a benzyl group.
[4] The C 1-10 alkyl group in which the Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom (the C 1-10 alkyl group is C 2). In the case of a -10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms)), which is the production method according to any one of [1] to [3] above. ..
[5] The compound represented by the general formula (2) and the compound represented by the general formula (8) are reacted in the presence of a metal fluoride to form the general formula (2-1) or the above. The production method according to any one of [1] to [4] above, wherein the reaction for producing the compound represented by the general formula (2-2) is carried out at a temperature of 10 ° C. or lower.
[4] 前記Rfが、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-10アルキル基(当該C1-10アルキル基がC2-10アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である、前記[1]~[3]のいずれかの製造方法。
[5] 前記一般式(2)で表される化合物と、前記一般式(8)で表される化合物を、金属フッ化物の存在下で反応させて、前記一般式(2-1)又は前記一般式(2-2)で表される化合物を製造する反応を、10℃以下の温度で行う、前記[1]~[4]のいずれかの製造方法。 [3] The method for producing [1] or [2], wherein R 1 is a benzyl group.
[4] The C 1-10 alkyl group in which the Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom (the C 1-10 alkyl group is C 2). In the case of a -10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms)), which is the production method according to any one of [1] to [3] above. ..
[5] The compound represented by the general formula (2) and the compound represented by the general formula (8) are reacted in the presence of a metal fluoride to form the general formula (2-1) or the above. The production method according to any one of [1] to [4] above, wherein the reaction for producing the compound represented by the general formula (2-2) is carried out at a temperature of 10 ° C. or lower.
[6] 下記一般式(6-1)
(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-30アルキル基(当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物を製造する方法であって、 [6] The following general formula (6-1)
(Wherein, Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 When it is a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A method for producing a compound represented by (which is a protecting group selected from the groups).
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物を製造する方法であって、 [6] The following general formula (6-1)
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A method for producing a compound represented by (which is a protecting group selected from the groups).
前記[1]~[5]のいずれかの製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、下記一般式(9)又は(10)
(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、下記一般式(4)
(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(9)又は(10)と同様である)で表される化合物を製造し、
The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
(In the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are independently C 6-14 aryl groups). The following general formula (4)
(In the formula, R 1 and R f are the same as the general formula (3), and R 2 is the same as the general formula (9) or (10)).
前記一般式(3)で表される化合物を、下記一般式(9)又は(10)
The compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5)
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5) is applied.
(式中、R1、Rf、及びR2は、前記一般式(4)と同様である)
で表される化合物を製造し、
前記一般式(5)で表される化合物の保護基R2を脱保護して、前記一般式(6-1)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。
[7] 前記R2が、tert-ブトキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基である、前記[6]の製造方法。 (In the formula, R 1 , Rf, and R 2 are the same as those in the general formula (4)).
Manufacture the compound represented by
The protecting group R 2 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-1), the production method of the fluoroalkyl group-containing compound ..
[7] The method for producing [6], wherein the R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
で表される化合物を製造し、
前記一般式(5)で表される化合物の保護基R2を脱保護して、前記一般式(6-1)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。
[7] 前記R2が、tert-ブトキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基である、前記[6]の製造方法。 (In the formula, R 1 , Rf, and R 2 are the same as those in the general formula (4)).
Manufacture the compound represented by
The protecting group R 2 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-1), the production method of the fluoroalkyl group-containing compound ..
[7] The method for producing [6], wherein the R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
[8] 下記一般式(7)
(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-30アルキル基(当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である)で表される化合物を製造する方法であって、
前記[6]又は[7]の製造方法により、前記一般式(6-1)で表される化合物を製造し、
前記一般式(6-1)で表される化合物の保護基R1を脱保護して、前記一般式(7)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 [8] The following general formula (7)
(Wherein, Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 In the case of a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms))), which is a method for producing a compound represented by.
The compound represented by the general formula (6-1) is produced by the production method of [6] or [7].
The protecting group R 1 of the compound represented by the general formula (6-1) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound ..
前記[6]又は[7]の製造方法により、前記一般式(6-1)で表される化合物を製造し、
前記一般式(6-1)で表される化合物の保護基R1を脱保護して、前記一般式(7)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 [8] The following general formula (7)
The compound represented by the general formula (6-1) is produced by the production method of [6] or [7].
The protecting group R 1 of the compound represented by the general formula (6-1) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound ..
[9] 下記一般式(6-2)
(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-30アルキル基(当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、R2は、アミノ基の保護基である)で表される化合物を製造する方法であって、
[9] The following general formula (6-2)
(Wherein, Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-30 alkyl group (said C 1-30 alkyl group by a halogen atom other than a fluorine atom is C 2 In the case of a -30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms), and R 2 is a protective group for amino groups). Is a method of producing a compound
前記[1]~[5]のいずれかの製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、前記一般式(9)又は(10)(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、前記一般式(4)(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(9)又は(10)と同様である)で表される化合物を製造し、
前記一般式(4)で表される化合物を還元反応に付して、前記一般式(5)(式中、R1、Rf、及びR2は、前記一般式(4)と同様である)で表される化合物を製造し、
前記一般式(5)で表される化合物の保護基R1を脱保護して、前記一般式(6-2)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。
[10] 前記R2がtert-ブトキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基である、前記[9]の製造方法。 The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (9) or (10)).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the general formula (5) (in the formula, R 1 , Rf, and R 2 are the same as the general formula (4)). Manufacture the compound represented by
The protecting group R 1 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-2), the production method of the fluoroalkyl group-containing compound ..
[10] The production method according to the above [9], wherein R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
前記一般式(3)で表される化合物を、前記一般式(9)又は(10)(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、前記一般式(4)(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(9)又は(10)と同様である)で表される化合物を製造し、
前記一般式(4)で表される化合物を還元反応に付して、前記一般式(5)(式中、R1、Rf、及びR2は、前記一般式(4)と同様である)で表される化合物を製造し、
前記一般式(5)で表される化合物の保護基R1を脱保護して、前記一般式(6-2)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。
[10] 前記R2がtert-ブトキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基である、前記[9]の製造方法。 The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (9) or (10)).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the general formula (5) (in the formula, R 1 , Rf, and R 2 are the same as the general formula (4)). Manufacture the compound represented by
The protecting group R 1 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-2), the production method of the fluoroalkyl group-containing compound ..
[10] The production method according to the above [9], wherein R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
[11] 前記一般式(7)(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-30アルキル基(当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、R2は、アミノ基の保護基である)で表される化合物を製造する方法であって、
前記[9]又は[10]の製造方法により、前記一般式(6-2)で表される化合物を製造し、
前記一般式(6-2)で表される化合物の保護基R2を脱保護して、前記一般式(7)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 [11] The C 1-30 alkyl group (in which Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom) in the general formula (7) (in the formula). When the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms), and R 2 is amino. A method for producing a compound represented by (which is a protective group of an atom).
The compound represented by the general formula (6-2) is produced by the production method of [9] or [10].
The protecting group R 2 of the compound represented by the general formula (6-2) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound ..
前記[9]又は[10]の製造方法により、前記一般式(6-2)で表される化合物を製造し、
前記一般式(6-2)で表される化合物の保護基R2を脱保護して、前記一般式(7)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 [11] The C 1-30 alkyl group (in which Rf is substituted with at least two fluorine atoms and may be further substituted with a halogen atom other than the fluorine atom) in the general formula (7) (in the formula). When the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms), and R 2 is amino. A method for producing a compound represented by (which is a protective group of an atom).
The compound represented by the general formula (6-2) is produced by the production method of [9] or [10].
The protecting group R 2 of the compound represented by the general formula (6-2) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound ..
[12] 下記一般式(6-3)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rf及びR1は、前記一般式(3)と同様である)で表される光学活性な化合物を製造する方法であって、
前記[1]~[5]のいずれかの製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、前記一般式(9)又は(10)(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、前記一般式(4)(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(9)又は(10)と同様である)で表される化合物を製造し、
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5-1)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、R1、Rf、及びR2は、前記一般式(4)と同様である)で表される光学活性な化合物を製造し、
前記一般式(5-1)で表される化合物の保護基R2を脱保護して、前記一般式(6-3)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [12] The following general formula (6-3)
Optical (wherein asterisk denotes that the absolute configuration of the asymmetric carbon atoms marked with an asterisk is S or R, Rf and R 1 are, for the general formula (3) the same as) represented by A method of producing an active compound
The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (9) or (10)).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5-1) is applied.
In (wherein asterisk denotes that the absolute configuration of the asymmetric carbon atoms marked with an asterisk is S or R, R 1, Rf, and R 2 are the same as the general formula (4)) Manufacture the optically active compound represented
Formula (5-1) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-3), optically active A method for producing a fluoroalkyl group-containing compound.
前記[1]~[5]のいずれかの製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、前記一般式(9)又は(10)(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、前記一般式(4)(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(9)又は(10)と同様である)で表される化合物を製造し、
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5-1)
前記一般式(5-1)で表される化合物の保護基R2を脱保護して、前記一般式(6-3)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [12] The following general formula (6-3)
The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (9) or (10)).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5-1) is applied.
Formula (5-1) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-3), optically active A method for producing a fluoroalkyl group-containing compound.
[13] 前記一般式(6-3)(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rf及びR1は、前記一般式(6-1)と同様である)で表される光学活性な化合物を製造する方法であって、
前記[6]に記載の製造方法により、前記一般式(6-1)で表される化合物を製造し、
前記一般式(6-1)で表される化合物を光学分割して、前記一般式(6-3)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [13] The general formula (6-3) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf and R 1 are the general formula (6). -1) is a method for producing an optically active compound represented by).
The compound represented by the general formula (6-1) is produced by the production method according to the above [6].
An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-1) to produce an optically active compound represented by the general formula (6-3). Manufacturing method.
前記[6]に記載の製造方法により、前記一般式(6-1)で表される化合物を製造し、
前記一般式(6-1)で表される化合物を光学分割して、前記一般式(6-3)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [13] The general formula (6-3) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf and R 1 are the general formula (6). -1) is a method for producing an optically active compound represented by).
The compound represented by the general formula (6-1) is produced by the production method according to the above [6].
An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-1) to produce an optically active compound represented by the general formula (6-3). Manufacturing method.
[14] 下記一般式(7-1)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rfは、前記一般式(6-3)と同様である)で表される光学活性な化合物を製造する方法であって、
前記[12]又は[13]の製造方法により、前記一般式(6-3)で表される光学活性な化合物を製造し、
前記一般式(6-3)で表される光学活性な化合物の保護基R1を脱保護して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [14] The following general formula (7-1)
(In the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the same as the general formula (6-3)). A method for producing various compounds
An optically active compound represented by the general formula (6-3) is produced by the production method of [12] or [13].
The protecting group R 1 of the optically active compound represented by the general formula (6-3) by deprotecting comprises producing an optically active compound represented by the general formula (7-1), A method for producing an optically active fluoroalkyl group-containing compound.
前記[12]又は[13]の製造方法により、前記一般式(6-3)で表される光学活性な化合物を製造し、
前記一般式(6-3)で表される光学活性な化合物の保護基R1を脱保護して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [14] The following general formula (7-1)
An optically active compound represented by the general formula (6-3) is produced by the production method of [12] or [13].
The protecting group R 1 of the optically active compound represented by the general formula (6-3) by deprotecting comprises producing an optically active compound represented by the general formula (7-1), A method for producing an optically active fluoroalkyl group-containing compound.
[15] 下記一般式(6-4)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rfは、前記一般式(3)と同様であり、R2は、アミノ基の保護基である)で表される光学活性な化合物を製造する方法であって、
前記[1]~[5]のいずれかの製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、前記一般式(9)又は(10)(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、前記一般式(4)(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(6-4)と同様である)で表される化合物を製造し、
前記一般式(4)で表される化合物を還元反応に付して、前記一般式(5-1)(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、R1、Rf、及びR2は、前記一般式(4)と同様である)で表される光学活性な化合物を製造し、
前記一般式(5-1)で表される化合物の保護基R1を脱保護して、前記一般式(6-4)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [15] The following general formula (6-4)
(Wherein the asterisk denotes that the absolute configuration of the asymmetric carbon atoms marked with an asterisk is S or R, Rf is the same as the general formula (3), R 2 is, protection of the amino group A method for producing an optically active compound represented by (based).
The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (6-4)).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the general formula (5-1) (in the formula, the asterisk has an asymmetric carbon atom with an asterisk in which the absolute configuration is S or R. Representing the above, R 1 , R f, and R 2 are the same as those in the general formula (4)) to produce an optically active compound.
Formula (5-1) the protecting group R 1 of a compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-4), optically active A method for producing a fluoroalkyl group-containing compound.
前記[1]~[5]のいずれかの製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、前記一般式(9)又は(10)(式中、R2は、アミノ基の保護基であり、R7、R8及びR9は、それぞれ独立して、C6-14アリール基である)で表される化合物と反応させて、前記一般式(4)(式中、R1及びRfは前記一般式(3)と同様であり、R2は、前記一般式(6-4)と同様である)で表される化合物を製造し、
前記一般式(4)で表される化合物を還元反応に付して、前記一般式(5-1)(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、R1、Rf、及びR2は、前記一般式(4)と同様である)で表される光学活性な化合物を製造し、
前記一般式(5-1)で表される化合物の保護基R1を脱保護して、前記一般式(6-4)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [15] The following general formula (6-4)
The compound represented by the general formula (3) is produced by the production method according to any one of [1] to [5].
The compound represented by the general formula (3) is the compound represented by the general formula (9) or (10) (in the formula, R 2 is a protecting group for an amino group, and R 7 , R 8 and R 9 are respectively. independently, is reacted with a compound represented by C 6-14 aryl group), (4) (wherein, R 1 and Rf are the general formula (3) wherein the general formula is the same as, R 2 is the same as the general formula (6-4)).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the general formula (5-1) (in the formula, the asterisk has an asymmetric carbon atom with an asterisk in which the absolute configuration is S or R. Representing the above, R 1 , R f, and R 2 are the same as those in the general formula (4)) to produce an optically active compound.
Formula (5-1) the protecting group R 1 of a compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-4), optically active A method for producing a fluoroalkyl group-containing compound.
[16] 前記一般式(6-4)(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rfは、前記一般式(6-2)と同様であり、R2は、アミノ基の保護基である)で表される光学活性な化合物を製造する方法であって、
前記[9]の製造方法により、前記一般式(6-2)で表される化合物を製造し、
前記一般式(6-2)で表される化合物を光学分割して、前記一般式(6-4)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [16] The general formula (6-4) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the general formula (6-2). R 2 is a method for producing an optically active compound represented by (), which is a protecting group for an amino group.
The compound represented by the general formula (6-2) is produced by the production method of the above [9].
An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-2) to produce an optically active compound represented by the general formula (6-4). Manufacturing method.
前記[9]の製造方法により、前記一般式(6-2)で表される化合物を製造し、
前記一般式(6-2)で表される化合物を光学分割して、前記一般式(6-4)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [16] The general formula (6-4) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the general formula (6-2). R 2 is a method for producing an optically active compound represented by (), which is a protecting group for an amino group.
The compound represented by the general formula (6-2) is produced by the production method of the above [9].
An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-2) to produce an optically active compound represented by the general formula (6-4). Manufacturing method.
[17] 前記一般式(7-1)(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rfは、前記一般式(6-4)と同様である)で表される光学活性な化合物を製造する方法であって、
前記[15]又は[16]の方法により、前記一般式(6-4)で表される光学活性な化合物を製造し、
前記一般式(6-4)で表される化合物の保護基R2を脱保護して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [17] The general formula (7-1) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the general formula (6-4). A method for producing an optically active compound represented by (similar to).
An optically active compound represented by the general formula (6-4) is produced by the method of the above [15] or [16].
Formula (6-4) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (7-1), optically active A method for producing a fluoroalkyl group-containing compound.
前記[15]又は[16]の方法により、前記一般式(6-4)で表される光学活性な化合物を製造し、
前記一般式(6-4)で表される化合物の保護基R2を脱保護して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [17] The general formula (7-1) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the general formula (6-4). A method for producing an optically active compound represented by (similar to).
An optically active compound represented by the general formula (6-4) is produced by the method of the above [15] or [16].
Formula (6-4) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (7-1), optically active A method for producing a fluoroalkyl group-containing compound.
[18] 前記一般式(7-1)(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rfは、前記一般式(7)と同様である)で表される光学活性な化合物を製造する方法であって、
前記[8]又は[11]に記載の方法により、前記一般式(7)で表される化合物を製造し、
前記一般式(7)で表される化合物を光学分割して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [18] The general formula (7-1) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the same as the general formula (7). Is a method for producing an optically active compound represented by).
The compound represented by the general formula (7) is produced by the method according to the above [8] or [11].
Production of an optically active fluoroalkyl group-containing compound, which comprises optically resolving the compound represented by the general formula (7) to produce an optically active compound represented by the general formula (7-1). Method.
前記[8]又は[11]に記載の方法により、前記一般式(7)で表される化合物を製造し、
前記一般式(7)で表される化合物を光学分割して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 [18] The general formula (7-1) (in the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf is the same as the general formula (7). Is a method for producing an optically active compound represented by).
The compound represented by the general formula (7) is produced by the method according to the above [8] or [11].
Production of an optically active fluoroalkyl group-containing compound, which comprises optically resolving the compound represented by the general formula (7) to produce an optically active compound represented by the general formula (7-1). Method.
[19] 下記一般式(3a)
(式中、Rf1は、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-10アルキル基(当該C1-10アルキル基がC2-10アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物。 [19] The following general formula (3a)
(Wherein, Rf 1 is substituted with at least two fluorine atoms, and more optionally substituted C 1-10 alkyl group (said C 1-10 alkyl group by a halogen atom other than a fluorine atom C When it is a 2-10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A compound represented by (which is a protecting group selected from the groups).
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物。 [19] The following general formula (3a)
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A compound represented by (which is a protecting group selected from the groups).
[20] 下記一般式(4a)
(式中、Rfは、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-10アルキル基(当該C1-10アルキル基は炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)であり、
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基であり、
R2Aは、下記一般式(p-2)
(式中、R10は、置換されていてもよいC1-6アルキル基又は置換されていてもよいC6-14アリール-C1-6アルキル基であり、黒丸は結合手を意味する)で表されるアミノ基の保護基である)で表される化合物。
[20] The following general formula (4a)
(Wherein, Rf is selected from the group consisting of at least two fluorine atoms are substituted with a further optionally substituted C 1-10 alkyl group by a halogen atom other than a fluorine atom (the C 1-10 alkyl group carbon atoms It may have 1 to 5 ether-bonding oxygen atoms in between).
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. It is a protecting group selected from the groups,
R 2A is the following general formula (p-2).
(In the formula, R 10 is a optionally substituted C 1-6 alkyl group or an optionally substituted C 6-14 aryl-C 1-6 alkyl group, with black circles meaning binders). A compound represented by (which is a protecting group of an amino group represented by).
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基であり、
R2Aは、下記一般式(p-2)
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. It is a protecting group selected from the groups,
R 2A is the following general formula (p-2).
[21] 下記一般式(5a)
(式中、Rf2は、-CF3、-CF2R11又は-CFHR11(式中、R11は、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-9アルキル基(当該C1-9アルキル基がC2-9アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である)であり、
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基であり、
R2Aは、前記一般式(p-2)(式中、R10は、置換されていてもよいC1-6アルキル基又は置換されていてもよいC6-14アリール-C1-6アルキル基であり、黒丸は結合手を意味する)で表されるアミノ基の保護基である)で表される化合物。 [21] The following general formula (5a)
(In the formula, Rf 2 is -CF 3 , -CF 2 R 11 or -CFHR 11 (In the formula, R 11 is substituted with at least two fluorine atoms and further substituted with a halogen atom other than the fluorine atom. C 1-9 alkyl group which may be used (when the C 1-9 alkyl group is a C 2-9 alkyl group, it has 1 to 5 ether-bonding oxygen atoms between carbon atoms. It may be)) and
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. It is a protecting group selected from the groups,
R 2A is the above-mentioned general formula (p-2) (in the formula, R 10 is a C 1-6 alkyl group which may be substituted or a C 6-14 aryl-C 1-6 alkyl which may be substituted. It is a group, and the black circle means a bonder), which is a protecting group for the amino group).
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基であり、
R2Aは、前記一般式(p-2)(式中、R10は、置換されていてもよいC1-6アルキル基又は置換されていてもよいC6-14アリール-C1-6アルキル基であり、黒丸は結合手を意味する)で表されるアミノ基の保護基である)で表される化合物。 [21] The following general formula (5a)
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. It is a protecting group selected from the groups,
R 2A is the above-mentioned general formula (p-2) (in the formula, R 10 is a C 1-6 alkyl group which may be substituted or a C 6-14 aryl-C 1-6 alkyl which may be substituted. It is a group, and the black circle means a bonder), which is a protecting group for the amino group).
[22] 下記一般式(5-1a)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rf2は、前記一般式(5a)と同様である)で表される化合物である、前記[21]の化合物。
[22] The following general formula (5-1a)
(In the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf 2 is the same as the general formula (5a)). , The compound of the above [21].
[23] 下記一般式(6-1a)
(式中、Rf3は、-CF2R11又は-CFHR11(式中、R11は、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-9アルキル基(当該C1-9アルキル基がC2-9アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である)であり、
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物。 [23] The following general formula (6-1a)
(In the formula, Rf 3 is -CF 2 R 11 or -CFHR 11 (In the formula, R 11 is substituted with at least two fluorine atoms, even if it is further substituted with a halogen atom other than the fluorine atom. A good C 1-9 alkyl group (when the C 1-9 alkyl group is a C 2-9 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. ) Is)
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A compound represented by (which is a protecting group selected from the groups).
R1は、前記一般式(p-1)(式中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基であり、黒丸は結合手を意味する)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である)で表される化合物。 [23] The following general formula (6-1a)
R 1 is the general formula (p-1) (in the formula, R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independent hydrogen atoms or C 6-14 aryl group which may be substituted, black circle means bonder), 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl group, and phenacyl. A compound represented by (which is a protecting group selected from the groups).
[24] 下記一般式(6-3a)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rf3及びR1は、前記一般式(6-1a)と同様である)で表される化合物である、前記[23]の化合物。
[24] The following general formula (6-3a)
(In the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf 3 and R 1 are the same as those in the general formula (6-1a)). The compound of the above [23], which is a compound to be used.
[25] 下記一般式(6-2a)
(式中、Rf3は、-CF2R11又は-CFHR11(式中、R11は、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-9アルキル基(当該C1-9アルキル基がC2-9アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である)であり、
R2Aは、前記一般式(p-2)(式中、R10は、置換されていてもよいC1-6アルキル基又は置換されていてもよいC6-14アリール-C1-6アルキル基であり、黒丸は結合手を意味する)で表されるアミノ基の保護基である)で表される化合物。 [25] The following general formula (6-2a)
(In the formula, Rf 3 is -CF 2 R 11 or -CFHR 11 (In the formula, R 11 is substituted with at least two fluorine atoms, even if it is further substituted with a halogen atom other than the fluorine atom. A good C 1-9 alkyl group (when the C 1-9 alkyl group is a C 2-9 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. ) Is)
R 2A is the above-mentioned general formula (p-2) (in the formula, R 10 is a C 1-6 alkyl group which may be substituted or a C 6-14 aryl-C 1-6 alkyl which may be substituted. It is a group, and the black circle means a bonder), which is a protecting group for the amino group).
R2Aは、前記一般式(p-2)(式中、R10は、置換されていてもよいC1-6アルキル基又は置換されていてもよいC6-14アリール-C1-6アルキル基であり、黒丸は結合手を意味する)で表されるアミノ基の保護基である)で表される化合物。 [25] The following general formula (6-2a)
R 2A is the above-mentioned general formula (p-2) (in the formula, R 10 is a C 1-6 alkyl group which may be substituted or a C 6-14 aryl-C 1-6 alkyl which may be substituted. It is a group, and the black circle means a bonder), which is a protecting group for the amino group).
[26] 下記一般式(6-4a)
(式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表し、Rf3及びR2Aは、前記一般式(6-2a)と同様である)で表される化合物である、前記[25]の化合物。
[26] The following general formula (6-4a)
(In the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R, and Rf 3 and R 2A are the same as those in the general formula (6-2a)). The compound of the above-mentioned [25], which is a compound to be used.
本発明に係る方法によれば、カルボキシ基の脱保護及びアミノ基の脱保護が容易に進行するため、フルオロアルキル基含有化合物を、効率よく合成できる。また、本発明によれば、上記方法で使用される新規な中間体が提供される。
According to the method according to the present invention, the deprotection of the carboxy group and the deprotection of the amino group proceed easily, so that the fluoroalkyl group-containing compound can be efficiently synthesized. Also, according to the present invention, there is provided a novel intermediate used in the above method.
本発明及び本願明細書において、「Cp1-p2」(p1及びp2は、p1<p2を満たす正の整数である)は、炭素数がp1~p2の基であることを意味する。
In the present invention and the present specification, "C p1-p2 " (p1 and p2 are positive integers satisfying p1 <p2) means that the group has p1 to p2 carbon atoms.
本発明及び本願明細書において、「C1-10アルキル基」は、炭素数1~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-10アルキル基」は、炭素数2~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-10アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
In the present invention and the present specification, the "C 1-10 alkyl group" is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain. The "C 2-10 alkyl group" is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-10 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
本発明及び本願明細書において、「C1-30アルキル基」は、炭素数1~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-30アルキル基」は、炭素数2~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-30アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基等が挙げられる。
In the present invention and the specification of the present application, the "C 1-30 alkyl group" is an alkyl group having 1 to 30 carbon atoms, and may be a straight chain or a branched chain. The "C 2-30 alkyl group" is an alkyl group having 2 to 30 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-30 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group, eicosyl group, heneicosyl group. , Docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
本発明及び本願明細書において、「C1-6アルキル基」は、炭素数1~6のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-6アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基等が挙げられる。
In the present invention and the present specification, the "C 1-6 alkyl group" is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-6 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples include a pentyl group and a hexyl group.
本発明及び本願明細書において、「C6-14アリール基」は、炭素数6~14の芳香族炭化水素基であり、C6-12アリール基が特に好ましい。C6-14アリール基の例としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等が挙げられ、フェニル基が特に好ましい。
In the present invention and the present specification, the "C 6-14 aryl group" is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable. Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
本発明及び本願明細書において、「置換されていてもよいC6-14アリール基」は、C6-14アリール基の炭素原子に結合している水素原子の1又は複数個、好ましくは1~3個が、他の官能基に置換されている基である。2個以上の置換基を有する場合、置換基同士は互いに同種であってもよく、異種であってよい。当該置換基としては、ニトロ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、C1-6アルキル基、C1-6アルコキシ基、及びメチレンジオキシ基(-O-CH2-O-)等が挙げられる。「置換されていてもよいC6-14アリール基」の例としては、フェニル基、ナフチル基、アントリル基、4-ニトロフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、3,4-ジメトキシフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3-クロロフェニル基、1,3-ベンゾジオキソール-5-イル基等が挙げられる。
In the present invention and the present specification, the "optionally substituted C 6-14 aryl group" is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1. Three are groups substituted with other functional groups. When having two or more substituents, the substituents may be the same kind or different from each other. Examples of the substituent include a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a C 1-6 alkyl group, a C 1-6 alkoxy group, and a methylenedioxy group (-O-CH). 2- O-) and the like can be mentioned. Examples of " optionally substituted C 6-14 aryl groups" are phenyl group, naphthyl group, anthryl group, 4-nitrophenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3, Examples thereof include 4-dimethoxyphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3-chlorophenyl group, 1,3-benzodioxol-5-yl group and the like.
本発明及び本願明細書において、「C6-14アリール-C1-6アルキル基」は、C1-6アルキル基の炭素原子に結合している1個の水素原子がC6-14アリール基に置換された基である。C6-14アリール-C1-6アルキル基におけるC6-14アリール基としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等を例示でき、フェニル基又は9-フルオレニル基が特に好ましい。C6-14アリール-C1-6アルキル基におけるC1-6アルキル基としては、C1-4アルキル基が好ましい。C6-14アリール-C1-6アルキル基の例としては、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、2-フェニルエチル基、9-アントリルメチル基、9-フルオレニルメチル基等が挙げられる。
In the present invention and the present specification, the "C 6-14 aryl-C 1-6 alkyl group" is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is a C 6-14 aryl group. It is a group substituted with. The C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group, a phenyl group, a naphthyl group, an anthryl group, can be exemplified a 9-fluorenyl group, a phenyl group or a 9-fluorenyl group is particularly preferred .. As the C 1-6 alkyl group in the C 6-14 aryl -C 1-6 alkyl group, C 1-4 alkyl groups are preferred. Examples of C 6-14 aryl-C 1-6 alkyl groups include benzyl group, diphenylmethyl group, triphenylmethyl group, 2-phenylethyl group, 9-anthrylmethyl group, 9-fluorenylmethyl group and the like. Can be mentioned.
本発明及び本願明細書において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子をいう。「フッ素原子以外のハロゲン原子」とは、塩素原子、臭素原子、又はヨウ素原子をいう。「フッ素原子以外のハロゲン原子」の例としては、塩素原子又は臭素原子が好ましく、塩素原子が特に好ましい。
In the present invention and the present specification, the "halogen atom" means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. The "halogen atom other than the fluorine atom" means a chlorine atom, a bromine atom, or an iodine atom. As an example of the "halogen atom other than the fluorine atom", a chlorine atom or a bromine atom is preferable, and a chlorine atom is particularly preferable.
本発明及び本願明細書において、「C1-6アルコキシ基」とは、炭素数1~6のC1-6アルキル基の結合末端に酸素原子が結合した基をいう。C1-6アルコキシ基は直鎖であっても分岐鎖であってもよい。C1-6アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。
In the present invention and the specification of the present application, the "C 1-6 alkoxy group" refers to a group in which an oxygen atom is bonded to the bond end of a C 1-6 alkyl group having 1 to 6 carbon atoms. The C 1-6 alkoxy group may be a straight chain or a branched chain. Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and the like.
本発明及び本願明細書において、「エーテル結合性の酸素原子」とは、炭素原子間を連結する酸素原子であり、酸素原子同士が直列に連結された酸素原子は含まれない。炭素数Nc(Ncは2以上の整数)のアルキル基が有し得るエーテル結合性の酸素原子は、最大Nc-1個である。
In the present invention and the present specification, the "ether-bonded oxygen atom" is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series. An alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have a maximum of Nc-1 ether-bonding oxygen atoms.
また、以降において、「化合物n」は式(n)で表される化合物を意味する。
In the following, "Compound n" means a compound represented by the formula (n).
<化合物2から化合物7の合成反応>
本発明に係るフルオロアルキル基含有化合物の製造方法は、アミノ酸の側鎖に、フルオロアルキル基が導入された化合物(含フッ素アミノ酸)の製造方法である。フルオロアルキル基含有化合物である化合物7の合成経路のうち、化合物2から合成する一態様を下記に示す。 <Synthetic reaction of compound 2 to compound 7>
The method for producing a fluoroalkyl group-containing compound according to the present invention is a method for producing a compound (fluorine-containing amino acid) in which a fluoroalkyl group is introduced into the side chain of an amino acid. Among the synthetic routes of compound 7 which is a fluoroalkyl group-containing compound, one aspect of synthesizing from compound 2 is shown below.
本発明に係るフルオロアルキル基含有化合物の製造方法は、アミノ酸の側鎖に、フルオロアルキル基が導入された化合物(含フッ素アミノ酸)の製造方法である。フルオロアルキル基含有化合物である化合物7の合成経路のうち、化合物2から合成する一態様を下記に示す。 <Synthetic reaction of compound 2 to compound 7>
The method for producing a fluoroalkyl group-containing compound according to the present invention is a method for producing a compound (fluorine-containing amino acid) in which a fluoroalkyl group is introduced into the side chain of an amino acid. Among the synthetic routes of compound 7 which is a fluoroalkyl group-containing compound, one aspect of synthesizing from compound 2 is shown below.
Rfは、C1-30アルキル基のうち、炭素原子に結合している水素原子の少なくとも2個がフッ素原子で置換された基であり、炭素原子に結合している1個以上の水素原子が、フッ素原子以外のハロゲン原子でさらに置換されていてもよい。ここで、RfのC1-30アルキル基としては、C1-20アルキル基が好ましく、C1-10アルキル基がより好ましく、C2-10アルキル基がさらに好ましく、C2-8アルキル基がよりさらに好ましい。当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。Rfにおいて、フッ素原子に置換されている水素原子の数は、2個以上であれば特に限定されるものではなく、例えば、3個以上が好ましく、6個以上がより好ましく、7個以上がさらに好ましい。
Rf is a group in which at least two hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms among C 1-30 alkyl groups, and one or more hydrogen atoms bonded to carbon atoms are present. , It may be further substituted with a halogen atom other than the fluorine atom. Here, as the C 1-30 alkyl group of Rf, a C 1-20 alkyl group is preferable, a C 1-10 alkyl group is more preferable, a C 2-10 alkyl group is further preferable, and a C 2-8 alkyl group is preferable. Even more preferable. When the C 1-30 alkyl group is a C 2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. In Rf, the number of hydrogen atoms substituted with fluorine atoms is not particularly limited as long as it is 2 or more, for example, 3 or more is preferable, 6 or more is more preferable, and 7 or more is further. preferable.
Rfの例としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基、ジフルオロメチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,2,2,3,3-ヘキサフルオロヘキシル基、1,1,2,2,3,3-ヘキサフルオロオクチル基、1,1,2,2,3,3-ヘキサフルオロデシル基、1,1,2,2,3,3-ヘキサフルオロオクタデシル基、1,1,2,2,3,3-ヘキサフルオロヘキサコシル基等が挙げられる。
Examples of Rf include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, Difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,2,2,3,3-hexafluorohexyl group, 1,1,2,2,3,3-hexafluorooctyl group , 1,1,2,2,3,3-hexafluorodecyl group, 1,1,2,2,3,3-hexafluorooctadecyl group, 1,1,2,2,3,3-hexafluorohexa Examples include a cosyl group.
R1は、カルボキシ基の保護基であり、具体的には、下記一般式(p-1)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である。一般式(p-1)中、R3は、置換されていてもよいC6-14アリール基であり、R4及びR5は、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基である。また、黒丸は結合手を意味する。
R 1 is a protecting group for a carboxy group, and specifically, a group represented by the following general formula (p-1), a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, And a protecting group selected from the phenacyl group. In the general formula (p-1), R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independently hydrogen atoms or optionally substituted C. It is a 6-14 aryl group. The black circle means a bond.
R1で表されるカルボキシ基の保護基としては、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、4-ニトロベンジル基、4-メトキシベンジル基、2,4-ジメトキシベンジル基、3,4-ジメトキシベンジル基、4-メチルベンジル基、2,6-ジメチルベンジル基、3-クロロベンジル基、9-アントリルメチル基、ピペロニル基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、フェナシル基等が挙げられる。穏やかな条件で脱保護できる点で、R1は、好ましくはベンジル基、トリフェニルメチル基であり、より好ましくはベンジル基である。
Examples of the protective group for the carboxy group represented by R 1 include a benzyl group, a diphenylmethyl group, a triphenylmethyl group, a 4-nitrobenzyl group, a 4-methoxybenzyl group, a 2,4-dimethoxybenzyl group, and 3,4-. Dimethoxybenzyl group, 4-methylbenzyl group, 2,6-dimethylbenzyl group, 3-chlorobenzyl group, 9-anthrylmethyl group, piperonyl group, 2- (9,10-dioxo) anthrylmethyl group, benzyloxy Examples thereof include a methyl group and a phenacyl group. R 1 is preferably a benzyl group, a triphenylmethyl group, and more preferably a benzyl group in that it can be deprotected under mild conditions.
当該製造方法は、カルボキシ基の保護基R1として、ベンジル基、トリフェニルメチル基等のアラルキル保護基を使用することにより、穏やかな条件でR1を脱保護でき、アミノ酸の官能基を分解することなく、含フッ素アミノ酸の合成や含フッ素ペプチドの合成を行うことができる点で有利である。
In the production method, R 1 can be deprotected under mild conditions by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the carboxy protecting group R 1 , and the functional group of the amino acid is decomposed. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide without having to do so.
R6は、シリル保護基である。R6としては、トリメチルシリル(TMS)基、トリエチルシリル(TES)基、トリイソプロピルシリル(TIPS)基、tert-ブチルジメチルシリル(TBDMS)基、tert-ブチルジフェニルシリル(TBDPS)基等が挙げられる。好ましくは、R6は、トリメチルシリル(TMS)基である。
R 6 is a silyl protecting group. Examples of R 6 include a trimethylsilyl (TMS) group, a triethylsilyl (TES) group, a triisopropylsilyl (TIPS) group, a tert-butyldimethylsilyl (TBDMS) group, a tert-butyldiphenylsilyl (TBDPS) group and the like. Preferably, R 6 is trimethylsilyl (TMS) groups.
R2は、アミノ基の保護基である。R2としては、ペプチド合成で使用されるアミノ基の保護基であれば、特に限定されない。アミノ基の保護基としては、tert-ブトキシカルボニル(Boc)基、9-フルオレニルメチルオキシカルボニル(Fmoc)基、ベンジルオキシカルボニル(Cbz)基、アリルオキシカルボニル(Alloc)基、2,2,2-トリクロロエトキシカルボニル(Troc)基等のカルバメート系保護基が挙げられる。穏やかな条件で脱保護できる点で、R2は、好ましくは、tert-ブトキシカルボニル(Boc)基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基である。
R 2 is an amino protecting group. The R 2, if a protecting group for amino groups used in peptide synthesis is not particularly limited. As the protecting group of the amino group, tert-butoxycarbonyl (Boc) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyloxycarbonyl (Cbz) group, allyloxycarbonyl (Allloc) group, 2,2 Carbamate protecting groups such as 2-trichloroethoxycarbonyl (Troc) group can be mentioned. R 2 is preferably a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group in that it can be deprotected under mild conditions.
[工程1]
化合物2と化合物8を、金属フッ化物の存在下で反応させることにより、化合物2-2を得ることができる。一般式(8)であるRf-R6で表される化合物8は、入手容易なRf-I(フルオロアルキルヨージド)から1工程で合成できるため、導入できるRf基の範囲が広い。 [Step 1]
Compound 2-2 can be obtained by reacting compound 2 and compound 8 in the presence of metal fluoride. Since the compound 8 represented by the general formula (8) Rf-R 6 can be synthesized from easily available Rf-I (fluoroalkyl iodide) in one step, the range of Rf groups that can be introduced is wide.
化合物2と化合物8を、金属フッ化物の存在下で反応させることにより、化合物2-2を得ることができる。一般式(8)であるRf-R6で表される化合物8は、入手容易なRf-I(フルオロアルキルヨージド)から1工程で合成できるため、導入できるRf基の範囲が広い。 [Step 1]
Compound 2-2 can be obtained by reacting compound 2 and compound 8 in the presence of metal fluoride. Since the compound 8 represented by the general formula (8) Rf-R 6 can be synthesized from easily available Rf-I (fluoroalkyl iodide) in one step, the range of Rf groups that can be introduced is wide.
金属フッ化物としては、フッ化セシウム、フッ化リチウム、フッ化ナトリウム等のアルカリ金属フッ化物を使用することができ、フッ化セシウムが好ましい。
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、ジエチルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、テトラヒドロフランが好ましい。 As the metal fluoride, alkali metal fluorides such as cesium fluoride, lithium fluoride and sodium fluoride can be used, and cesium fluoride is preferable.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、ジエチルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、テトラヒドロフランが好ましい。 As the metal fluoride, alkali metal fluorides such as cesium fluoride, lithium fluoride and sodium fluoride can be used, and cesium fluoride is preferable.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable.
化合物8の量は、1モルの化合物2に対して、0.5~10モルが好ましい。金属フッ化物の量は、1モルの化合物2に対して、0.01~2モルが好ましい。工程1の反応は、10℃以下の温度で行うことが好ましい。10℃以下の温度で反応を行うことにより、高収率で化合物2-2を製造できる。反応温度は、好ましくは-78℃~10℃、より好ましくは-50℃~-10℃、特に好ましくは-40℃~-20℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。
The amount of compound 8 is preferably 0.5 to 10 mol with respect to 1 mol of compound 2. The amount of metal fluoride is preferably 0.01 to 2 mol with respect to 1 mol of compound 2. The reaction in step 1 is preferably carried out at a temperature of 10 ° C. or lower. By carrying out the reaction at a temperature of 10 ° C. or lower, compound 2-2 can be produced in high yield. The reaction temperature is preferably −78 ° C. to 10 ° C., more preferably −50 ° C. to −10 ° C., and particularly preferably −40 ° C. to −20 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
化合物2は、シュウ酸を公知の方法でジエステル化することにより製造することができ、又は市販品を使用してもよい。
Compound 2 can be produced by diesterizing oxalic acid by a known method, or a commercially available product may be used.
[工程1-1]
工程1の反応において、化合物2-1(ヒドロキシ基の一方がR6で保護された化合物)、又は化合物2-2と化合物2-1の混合物が得られることがある。その場合、化合物2-1のシリル保護基R6を脱保護することにより、化合物2-2を得ることができる。
工程1-1の反応は、工程1と同様の方法で行うことができる。 [Step 1-1]
In the reaction of step 1, (one compound protected with R 6 hydroxy groups) Compound 2-1, or a mixture of compounds 2-2 and compound 2-1 may be obtained. In that case, the silyl protecting group R 6 of compound 2-1 by deprotection, to give compound 2-2.
The reaction of step 1-1 can be carried out in the same manner as in step 1.
工程1の反応において、化合物2-1(ヒドロキシ基の一方がR6で保護された化合物)、又は化合物2-2と化合物2-1の混合物が得られることがある。その場合、化合物2-1のシリル保護基R6を脱保護することにより、化合物2-2を得ることができる。
工程1-1の反応は、工程1と同様の方法で行うことができる。 [Step 1-1]
In the reaction of step 1, (one compound protected with R 6 hydroxy groups) Compound 2-1, or a mixture of compounds 2-2 and compound 2-1 may be obtained. In that case, the silyl protecting group R 6 of compound 2-1 by deprotection, to give compound 2-2.
The reaction of step 1-1 can be carried out in the same manner as in step 1.
[工程1-2]
化合物2-1のシリル保護基R6を脱保護することにより、化合物2-2を得ることができる。
脱保護は、フッ化テトラブチルアンモニウム(TBAF)、フッ化セシウム、フッ化水素酸塩等のフッ化物塩、又は塩酸、酢酸、パラトルエンスルホン酸等の酸の存在下で行うことができる。 [Step 1-2]
The silyl protecting group R 6 of compound 2-1 by deprotection, to give compound 2-2.
Deprotection can be performed in the presence of fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride and hydrofluoride salts, or acids such as hydrochloric acid, acetic acid and paratoluenesulfonic acid.
化合物2-1のシリル保護基R6を脱保護することにより、化合物2-2を得ることができる。
脱保護は、フッ化テトラブチルアンモニウム(TBAF)、フッ化セシウム、フッ化水素酸塩等のフッ化物塩、又は塩酸、酢酸、パラトルエンスルホン酸等の酸の存在下で行うことができる。 [Step 1-2]
The silyl protecting group R 6 of compound 2-1 by deprotection, to give compound 2-2.
Deprotection can be performed in the presence of fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride and hydrofluoride salts, or acids such as hydrochloric acid, acetic acid and paratoluenesulfonic acid.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、ジエチルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、テトラヒドロフランが好ましい。酢酸を添加して行うことが好ましい。
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable. It is preferable to add acetic acid.
フッ化物塩の量は、1モルの化合物2-1(化合物2-2と化合物2-1の混合物の場合は、混合物1モル)に対して、0.1~10モルが好ましい。酸の量は、1モルの化合物2-1(化合物2-2と化合物2-1の混合物の場合は、混合物1モル)に対して、0.1~10モルが好ましい。工程1-2の反応は、50℃以下の温度で行うことが好ましい。50℃以下の温度で反応を行うことにより、高収率で化合物2-2を製造できる。反応温度は、好ましくは-80℃~50℃、より好ましくは-40℃~30℃、特に好ましくは-20℃~30℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。
The amount of the fluoride salt is preferably 0.1 to 10 mol with respect to 1 mol of compound 2-1 (in the case of a mixture of compound 2-2 and compound 2-1). The amount of acid is preferably 0.1 to 10 mol with respect to 1 mol of Compound 2-1 (in the case of a mixture of Compound 2-2 and Compound 2-1). The reaction in step 1-2 is preferably carried out at a temperature of 50 ° C. or lower. By carrying out the reaction at a temperature of 50 ° C. or lower, compound 2-2 can be produced in high yield. The reaction temperature is preferably −80 ° C. to 50 ° C., more preferably −40 ° C. to 30 ° C., and particularly preferably −20 ° C. to 30 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
[工程2]
化合物2-2を脱水反応に付すことにより、化合物3を得ることができる。
脱水反応は、五酸化二リン、濃硫酸、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、モレキュラーシーブ(合成ゼオライト)、シリカゲル等の脱水剤の存在下で、行うことができる。脱水剤としては、五酸化二リンが好ましい。脱水剤の量は、化合物2-2の100重量%に対して、10~100重量%が好ましい。脱水反応は、化合物2-2を、脱水剤の存在下で蒸留することにより行うことができる。蒸留は、30℃~150℃の温度で行うことが好ましい。蒸留温度が高すぎると、化合物3が分解する可能性がある。蒸留温度が低すぎると、化合物3を凝縮できず、回収率が低下する可能性がある。蒸留は、減圧、常圧、加圧のいずれの圧力でも実施でき、化合物3の沸点が上記の好ましい温度の範囲に入るように適宜決定できる。圧力は、好ましくは0.1mmHgから5気圧(3800mmHg)である。 [Step 2]
Compound 3 can be obtained by subjecting compound 2-2 to a dehydration reaction.
The dehydration reaction can be carried out in the presence of a dehydrating agent such as diphosphorus pentoxide, concentrated sulfuric acid, calcium chloride, sodium sulfate, magnesium sulfate, calcium sulfate, molecular sieve (synthetic zeolite), and silica gel. As the dehydrating agent, diphosphorus pentoxide is preferable. The amount of the dehydrating agent is preferably 10 to 100% by weight based on 100% by weight of compound 2-2. The dehydration reaction can be carried out by distilling compound 2-2 in the presence of a dehydrating agent. Distillation is preferably carried out at a temperature of 30 ° C. to 150 ° C. If the distillation temperature is too high, compound 3 may decompose. If the distillation temperature is too low, compound 3 cannot be condensed and the recovery rate may decrease. Distillation can be carried out at any pressure of reduced pressure, normal pressure and pressure, and can be appropriately determined so that the boiling point of compound 3 falls within the above-mentioned preferable temperature range. The pressure is preferably 0.1 mmHg to 5 atm (3800 mmHg).
化合物2-2を脱水反応に付すことにより、化合物3を得ることができる。
脱水反応は、五酸化二リン、濃硫酸、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、モレキュラーシーブ(合成ゼオライト)、シリカゲル等の脱水剤の存在下で、行うことができる。脱水剤としては、五酸化二リンが好ましい。脱水剤の量は、化合物2-2の100重量%に対して、10~100重量%が好ましい。脱水反応は、化合物2-2を、脱水剤の存在下で蒸留することにより行うことができる。蒸留は、30℃~150℃の温度で行うことが好ましい。蒸留温度が高すぎると、化合物3が分解する可能性がある。蒸留温度が低すぎると、化合物3を凝縮できず、回収率が低下する可能性がある。蒸留は、減圧、常圧、加圧のいずれの圧力でも実施でき、化合物3の沸点が上記の好ましい温度の範囲に入るように適宜決定できる。圧力は、好ましくは0.1mmHgから5気圧(3800mmHg)である。 [Step 2]
Compound 3 can be obtained by subjecting compound 2-2 to a dehydration reaction.
The dehydration reaction can be carried out in the presence of a dehydrating agent such as diphosphorus pentoxide, concentrated sulfuric acid, calcium chloride, sodium sulfate, magnesium sulfate, calcium sulfate, molecular sieve (synthetic zeolite), and silica gel. As the dehydrating agent, diphosphorus pentoxide is preferable. The amount of the dehydrating agent is preferably 10 to 100% by weight based on 100% by weight of compound 2-2. The dehydration reaction can be carried out by distilling compound 2-2 in the presence of a dehydrating agent. Distillation is preferably carried out at a temperature of 30 ° C. to 150 ° C. If the distillation temperature is too high, compound 3 may decompose. If the distillation temperature is too low, compound 3 cannot be condensed and the recovery rate may decrease. Distillation can be carried out at any pressure of reduced pressure, normal pressure and pressure, and can be appropriately determined so that the boiling point of compound 3 falls within the above-mentioned preferable temperature range. The pressure is preferably 0.1 mmHg to 5 atm (3800 mmHg).
[工程3]
化合物3を、化合物9又は化合物10と反応させることにより、化合物4を得ることができる。 [Step 3]
Compound 4 can be obtained by reacting compound 3 with compound 9 or compound 10.
化合物3を、化合物9又は化合物10と反応させることにより、化合物4を得ることができる。 [Step 3]
Compound 4 can be obtained by reacting compound 3 with compound 9 or compound 10.
一般式(9)中、R2は、前記の通り、アミノ基の保護基である。R7、R8及びR9は、それぞれ独立して、C6-14アリール基である。R7、R8又はR9で表されるC6-14アリール基としては、フェニル基、ナフチル基等が挙げられる。好ましくは、R7、R8及びR9は、それぞれフェニル基である。
In the general formula (9), R 2 is a protecting group for an amino group as described above. R 7 , R 8 and R 9 are independently C 6-14 aryl groups. Examples of the C 6-14 aryl group represented by R 7 , R 8 or R 9 include a phenyl group and a naphthyl group. Preferably, R 7 , R 8 and R 9 are phenyl groups, respectively.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、ジエチルエーテルが好ましい。
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and diethyl ether is preferable.
化合物9又は化合物10の量は、1モルの化合物3に対して、0.5~10モルが好ましい。反応温度は、好ましくは-78℃~100℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1分間~24時間、より好ましくは10分間~4時間である。
The amount of compound 9 or compound 10 is preferably 0.5 to 10 mol with respect to 1 mol of compound 3. The reaction temperature is preferably −78 ° C. to 100 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 minute to 24 hours, more preferably 10 minutes to 4 hours.
好適な態様において、アミノ基の保護基R2として、tert-ブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基等のカルバメート系保護基を使用することにより、穏やかな条件でR2を脱保護でき、化合物の分解やラセミ化を抑制しながら含フッ素アミノ酸の合成を行うことができる。
In a preferred embodiment, the protecting group R 2 of the amino group, tert- butoxycarbonyl group, by the use of carbamate protecting groups such as 9-fluorenylmethyloxycarbonyl group, the deprotection of R 2 under mild conditions It is possible to synthesize fluorine-containing amino acids while suppressing decomposition and racemization of compounds.
[工程4]
化合物4を還元反応に付すことにより、化合物5を得ることができる。
還元反応は、還元剤を使用する方法、又は金属触媒の存在下で還元する方法で行うことができる。 [Step 4]
Compound 5 can be obtained by subjecting compound 4 to a reduction reaction.
The reduction reaction can be carried out by a method using a reducing agent or a method of reducing in the presence of a metal catalyst.
化合物4を還元反応に付すことにより、化合物5を得ることができる。
還元反応は、還元剤を使用する方法、又は金属触媒の存在下で還元する方法で行うことができる。 [Step 4]
Compound 5 can be obtained by subjecting compound 4 to a reduction reaction.
The reduction reaction can be carried out by a method using a reducing agent or a method of reducing in the presence of a metal catalyst.
(1)還元剤を使用する方法
還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素亜鉛、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(sec-ブチル)ホウ素リチウム、水素化トリ(sec-ブチル)ホウ素カリウム、水素化ホウ素リチウム、トリアセトキシ水素化ホウ素ナトリウム等の水素化ホウ素試薬を使用できる。還元剤としては、水素化ホウ素ナトリウム又は水素化ホウ素亜鉛が好ましく、水素化ホウ素ナトリウムがより好ましい。還元剤の量は、1モルの化合物4に対して、0.5~10モルが好ましい。 (1) Method using a reducing agent Examples of the reducing agent include sodium borohydride, zinc borohydride, sodium cyanoborohydride, lithium triethylborohydride, lithium borohydride (sec-butyl), and try hydride. A boron borohydride reagent such as potassium boron (sec-butyl), lithium boron borohydride, and sodium triacetoxyborohydride can be used. As the reducing agent, sodium borohydride or zinc borohydride is preferable, and sodium borohydride is more preferable. The amount of the reducing agent is preferably 0.5 to 10 mol with respect to 1 mol of the compound 4.
還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素亜鉛、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(sec-ブチル)ホウ素リチウム、水素化トリ(sec-ブチル)ホウ素カリウム、水素化ホウ素リチウム、トリアセトキシ水素化ホウ素ナトリウム等の水素化ホウ素試薬を使用できる。還元剤としては、水素化ホウ素ナトリウム又は水素化ホウ素亜鉛が好ましく、水素化ホウ素ナトリウムがより好ましい。還元剤の量は、1モルの化合物4に対して、0.5~10モルが好ましい。 (1) Method using a reducing agent Examples of the reducing agent include sodium borohydride, zinc borohydride, sodium cyanoborohydride, lithium triethylborohydride, lithium borohydride (sec-butyl), and try hydride. A boron borohydride reagent such as potassium boron (sec-butyl), lithium boron borohydride, and sodium triacetoxyborohydride can be used. As the reducing agent, sodium borohydride or zinc borohydride is preferable, and sodium borohydride is more preferable. The amount of the reducing agent is preferably 0.5 to 10 mol with respect to 1 mol of the compound 4.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ハイドロクロロフルオロカーボン(HCFC)(例、アサヒクリン(登録商標)AK-225(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンと1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンの混合物、AGC株式会社))、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、ジエチルエーテルが好ましい。
反応温度は、好ましくは-78℃~100℃、より好ましくは-10℃~40℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The reaction can be carried out in a solvent inert to the reaction. Solvents include diethyl ether, dichloromethane, hydrochlorofluorocarbon (HCFC) (eg, Asahiclin® AK-225 (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,1). 3-Dichloro-1,1,2,2,3-pentafluoropropane mixture, AGC Co., Ltd.)), dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, etc. Inert solvent is mentioned, and diethyl ether is preferable.
The reaction temperature is preferably −78 ° C. to 100 ° C., more preferably −10 ° C. to 40 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
反応温度は、好ましくは-78℃~100℃、より好ましくは-10℃~40℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The reaction can be carried out in a solvent inert to the reaction. Solvents include diethyl ether, dichloromethane, hydrochlorofluorocarbon (HCFC) (eg, Asahiclin® AK-225 (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,1). 3-Dichloro-1,1,2,2,3-pentafluoropropane mixture, AGC Co., Ltd.)), dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, etc. Inert solvent is mentioned, and diethyl ether is preferable.
The reaction temperature is preferably −78 ° C. to 100 ° C., more preferably −10 ° C. to 40 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
(2)金属触媒の存在下で還元する方法
金属触媒としては、パラジウム触媒(例、パラジウム炭素、水酸化パラジウム、パールマン触媒、リンドラー触媒、シリカゲル担持パラジウム触媒、アルミナ担持パラジウム触媒、酸化パラジウム)、ニッケル触媒(例、ラネーニッケル)、白金触媒(例、白金炭素、酸化白金、シリカゲル担持白金触媒、アルミナ担持白金触媒)、ロジウム触媒(例、ロジウム炭素、アルミナ担持ロジウム触媒、酸化ロジウム)、ルテニウム触媒(例、ルテニウム炭素、アルミナ担持ルテニウム触媒、酸化ルテニウム)、コバルト触媒(例、ラネーコバルト)等が挙げられ、パラジウム触媒が好ましい。金属触媒の量は、1モルの化合物4に対して、0.0001~0.1モルが好ましく、0.0005~0.02モルがより好ましい。 (2) Method of reduction in the presence of a metal catalyst Examples of the metal catalyst include palladium catalysts (eg, palladium carbon, palladium hydroxide, Pearlman catalyst, Lindler catalyst, silica gel-supported palladium catalyst, alumina-supported palladium catalyst, palladium oxide) and nickel. Catalyst (eg, lane nickel), platinum catalyst (eg, platinum carbon, platinum oxide, silica gel-supported platinum catalyst, alumina-supported platinum catalyst), rhodium catalyst (eg, rhodium carbon, alumina-supported rhodium catalyst, rhodium oxide), ruthenium catalyst (eg, rhodium oxide) , Luthenium carbon, alumina-supported ruthenium catalyst, ruthenium oxide), cobalt catalyst (eg, lane cobalt) and the like, and palladium catalyst is preferable. The amount of the metal catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
金属触媒としては、パラジウム触媒(例、パラジウム炭素、水酸化パラジウム、パールマン触媒、リンドラー触媒、シリカゲル担持パラジウム触媒、アルミナ担持パラジウム触媒、酸化パラジウム)、ニッケル触媒(例、ラネーニッケル)、白金触媒(例、白金炭素、酸化白金、シリカゲル担持白金触媒、アルミナ担持白金触媒)、ロジウム触媒(例、ロジウム炭素、アルミナ担持ロジウム触媒、酸化ロジウム)、ルテニウム触媒(例、ルテニウム炭素、アルミナ担持ルテニウム触媒、酸化ルテニウム)、コバルト触媒(例、ラネーコバルト)等が挙げられ、パラジウム触媒が好ましい。金属触媒の量は、1モルの化合物4に対して、0.0001~0.1モルが好ましく、0.0005~0.02モルがより好ましい。 (2) Method of reduction in the presence of a metal catalyst Examples of the metal catalyst include palladium catalysts (eg, palladium carbon, palladium hydroxide, Pearlman catalyst, Lindler catalyst, silica gel-supported palladium catalyst, alumina-supported palladium catalyst, palladium oxide) and nickel. Catalyst (eg, lane nickel), platinum catalyst (eg, platinum carbon, platinum oxide, silica gel-supported platinum catalyst, alumina-supported platinum catalyst), rhodium catalyst (eg, rhodium carbon, alumina-supported rhodium catalyst, rhodium oxide), ruthenium catalyst (eg, rhodium oxide) , Luthenium carbon, alumina-supported ruthenium catalyst, ruthenium oxide), cobalt catalyst (eg, lane cobalt) and the like, and palladium catalyst is preferable. The amount of the metal catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
還元反応は、水素ガスの存在下で行われる。還元反応は常圧で行っても、加圧下で行ってもよい。水素ガスの圧力は、好ましくは0.5気圧~10気圧である。反応温度は、好ましくは0℃~100℃、より好ましくは10℃~50℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。
The reduction reaction is carried out in the presence of hydrogen gas. The reduction reaction may be carried out under normal pressure or under pressure. The pressure of hydrogen gas is preferably 0.5 atm to 10 atm. The reaction temperature is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 50 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
[工程5-1]
化合物5の保護基R2を脱保護することにより、化合物6-1を得ることができる。
脱保護は、保護基R2の種類に応じて行うことができる。
R2がBoc基の場合、酸性条件下で脱保護できる。使用する酸としては、トリフルオロ酢酸、塩酸等が挙げられる。酸の量は、1モルの化合物5に対して、1~1000モルが好ましい。 [Step 5-1]
The protecting group R 2 of Compound 5 by deprotection, to give compound 6-1.
Deprotection can be carried out according to the type of the protecting group R 2.
When R 2 is a Boc group, it can be deprotected under acidic conditions. Examples of the acid used include trifluoroacetic acid and hydrochloric acid. The amount of acid is preferably 1 to 1000 mol with respect to 1 mol of Compound 5.
化合物5の保護基R2を脱保護することにより、化合物6-1を得ることができる。
脱保護は、保護基R2の種類に応じて行うことができる。
R2がBoc基の場合、酸性条件下で脱保護できる。使用する酸としては、トリフルオロ酢酸、塩酸等が挙げられる。酸の量は、1モルの化合物5に対して、1~1000モルが好ましい。 [Step 5-1]
The protecting group R 2 of Compound 5 by deprotection, to give compound 6-1.
Deprotection can be carried out according to the type of the protecting group R 2.
When R 2 is a Boc group, it can be deprotected under acidic conditions. Examples of the acid used include trifluoroacetic acid and hydrochloric acid. The amount of acid is preferably 1 to 1000 mol with respect to 1 mol of Compound 5.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、ジクロロメタン、N,N-ジメチルホルムアミドが好ましい。酸を溶媒として使用することもできる。溶媒としては、塩酸、酢酸、トリフルオロ酢酸等の無機酸、有機酸が挙げられ、トリフルオロ酢酸が好ましい。反応温度は、好ましくは-78℃~50℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and dichloromethane, N, N. -Dimethylformamide is preferred. An acid can also be used as a solvent. Examples of the solvent include inorganic acids such as hydrochloric acid, acetic acid and trifluoroacetic acid, and organic acids, and trifluoroacetic acid is preferable. The reaction temperature is preferably −78 ° C. to 50 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
R2がFmoc基の場合、塩基性条件下で脱保護できる。使用する塩基としては、ピペリジン、モルホリン、ピロリジン等の二級アミンが挙げられる。塩基の量は、1モルの化合物5に対して、1~100モルが好ましい。
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。反応温度は、好ましくは-20℃~80℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1分間~24時間、より好ましくは5分間~2時間である。 When R 2 is an Fmoc group, it can be deprotected under basic conditions. Examples of the base used include secondary amines such as piperidine, morpholine and pyrrolidine. The amount of base is preferably 1 to 100 mol with respect to 1 mol of compound 5.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide. The reaction temperature is preferably −20 ° C. to 80 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 minute to 24 hours, more preferably 5 minutes to 2 hours.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。反応温度は、好ましくは-20℃~80℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1分間~24時間、より好ましくは5分間~2時間である。 When R 2 is an Fmoc group, it can be deprotected under basic conditions. Examples of the base used include secondary amines such as piperidine, morpholine and pyrrolidine. The amount of base is preferably 1 to 100 mol with respect to 1 mol of compound 5.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide. The reaction temperature is preferably −20 ° C. to 80 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 minute to 24 hours, more preferably 5 minutes to 2 hours.
[工程6-1]
化合物6-1の保護基R1を脱保護することにより、化合物7を得ることができる。
脱保護は、保護基R1の種類に応じて行うことができる。R1がベンジル基、トリフェニルメチル基、9-アントリルメチル基、ピペロニル基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、フェナシル基の場合、金属触媒の存在下で還元する方法により、脱保護できる。還元反応は、工程4の金属触媒の存在下で還元する方法と同様の方法で行うことができる。 [Step 6-1]
The protecting group R 1 of the compound 6-1 by deprotection to give compound 7.
Deprotection can be carried out according to the type of the protecting group R 1. When R 1 is a benzyl group, a triphenylmethyl group, a 9-anthrylmethyl group, a piperonyl group, a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, or a phenacyl group, in the presence of a metal catalyst. Deprotection can be achieved by the method of reducing with. The reduction reaction can be carried out in the same manner as the method of reducing in the presence of the metal catalyst in step 4.
化合物6-1の保護基R1を脱保護することにより、化合物7を得ることができる。
脱保護は、保護基R1の種類に応じて行うことができる。R1がベンジル基、トリフェニルメチル基、9-アントリルメチル基、ピペロニル基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、フェナシル基の場合、金属触媒の存在下で還元する方法により、脱保護できる。還元反応は、工程4の金属触媒の存在下で還元する方法と同様の方法で行うことができる。 [Step 6-1]
The protecting group R 1 of the compound 6-1 by deprotection to give compound 7.
Deprotection can be carried out according to the type of the protecting group R 1. When R 1 is a benzyl group, a triphenylmethyl group, a 9-anthrylmethyl group, a piperonyl group, a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, or a phenacyl group, in the presence of a metal catalyst. Deprotection can be achieved by the method of reducing with. The reduction reaction can be carried out in the same manner as the method of reducing in the presence of the metal catalyst in step 4.
[工程5-2]
化合物5の保護基R1を脱保護することにより、化合物6-2を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 5-2]
The protecting group R 1 of Compound 5 by deprotection, to give compound 6-2. Deprotection can be performed in the same manner as in step 6-1.
化合物5の保護基R1を脱保護することにより、化合物6-2を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 5-2]
The protecting group R 1 of Compound 5 by deprotection, to give compound 6-2. Deprotection can be performed in the same manner as in step 6-1.
[工程6-2]
化合物6-2の保護基R2を脱保護することにより、化合物7を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 6-2]
The protecting group R 2 of the compound 6-2 by deprotection to give compound 7. Deprotection can be performed in the same manner as in step 5-1.
化合物6-2の保護基R2を脱保護することにより、化合物7を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 6-2]
The protecting group R 2 of the compound 6-2 by deprotection to give compound 7. Deprotection can be performed in the same manner as in step 5-1.
<化合物4から化合物7-1の合成反応>
一般式(4)で表されるイミン(化合物4)の不斉還元を行うことにより、光学活性な含フッ素アミノ酸(フルオロアルキル基含有化合物)を合成できる。下記反応式中、アスタリスク(*)は、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。また、Rf、R1、及びR2は、前記で定義した通りである。 <Synthetic reaction of compound 4 to compound 7-1>
An optically active fluorine-containing amino acid (fluoroalkyl group-containing compound) can be synthesized by performing asymmetric reduction of imine (compound 4) represented by the general formula (4). In the following reaction formula, an asterisk (*) indicates that the absolute configuration of the asymmetric carbon atom with an asterisk is S or R. Further, Rf, R 1 , and R 2 are as defined above.
一般式(4)で表されるイミン(化合物4)の不斉還元を行うことにより、光学活性な含フッ素アミノ酸(フルオロアルキル基含有化合物)を合成できる。下記反応式中、アスタリスク(*)は、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。また、Rf、R1、及びR2は、前記で定義した通りである。 <Synthetic reaction of compound 4 to compound 7-1>
An optically active fluorine-containing amino acid (fluoroalkyl group-containing compound) can be synthesized by performing asymmetric reduction of imine (compound 4) represented by the general formula (4). In the following reaction formula, an asterisk (*) indicates that the absolute configuration of the asymmetric carbon atom with an asterisk is S or R. Further, Rf, R 1 , and R 2 are as defined above.
当該製造方法においては、カルボキシ基の保護基R1として、ベンジル基、トリフェニルメチル基等のアラルキル保護基を使用することにより、穏やかな条件でR1を脱保護でき、光学活性を保持したまま含フッ素アミノ酸の合成や含フッ素ペプチドの合成を行うことができる点で有利である。
In the production method, by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the carboxy protecting group R 1 , R 1 can be deprotected under mild conditions and the optical activity is maintained. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide.
[工程7]
化合物4を不斉還元反応に付すことにより、化合物5-1を得ることができる。
不斉還元反応は、化合物4を不斉還元触媒の存在下で還元することにより、行うことができる。 [Step 7]
Compound 5-1 can be obtained by subjecting compound 4 to an asymmetric reduction reaction.
The asymmetric reduction reaction can be carried out by reducing compound 4 in the presence of an asymmetric reduction catalyst.
化合物4を不斉還元反応に付すことにより、化合物5-1を得ることができる。
不斉還元反応は、化合物4を不斉還元触媒の存在下で還元することにより、行うことができる。 [Step 7]
Compound 5-1 can be obtained by subjecting compound 4 to an asymmetric reduction reaction.
The asymmetric reduction reaction can be carried out by reducing compound 4 in the presence of an asymmetric reduction catalyst.
不斉還元触媒としては、遷移金属に不斉配位子が配位した遷移金属錯体を使用できる。遷移金属としては、パラジウム、ロジウム、ルテニウム、イリジウム、ニッケル、コバルト、白金、鉄等が挙げられる。遷移金属錯体としては、パラジウム錯体、ロジウム錯体、ルテニウム錯体、イリジウム錯体、ニッケル錯体等が挙げられる。
As the asymmetric reduction catalyst, a transition metal complex in which an asymmetric ligand is coordinated with the transition metal can be used. Examples of the transition metal include palladium, rhodium, ruthenium, iridium, nickel, cobalt, platinum, iron and the like. Examples of the transition metal complex include a palladium complex, a rhodium complex, a ruthenium complex, an iridium complex, and a nickel complex.
不斉配位子としては、dpen(1,2-ジフェニルエチレンジアミン)、daipen(1,1-ジ(4-アニシル)-2-イソプロピル-1,2-エチレンジアミン)、光学活性なホスフィン配位子が挙げられる。光学活性なホスフィン配位子としては、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、2,2’-ビス(ジフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル(H8-BINAP)、2,2’-ビス(ジ-p-トリルホスフィノ)-1,1’-ビナフチル(Tol-BINAP)、2,2’-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1’-ビナフチル(Xyl-BINAP)、2,2’-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1’-ビナフチル(DTBM-BINAP)、1,2-ビス(アニシルホスフィノ)エタン(DIPAMP)、2,3-ビス(ジフェニルホスフィノ)ブタン(CHIRAPHOS)、1-シクロヘキシル-1,2-ビス(ジフェニルホスフィノ)エタン(CYCPHOS)、1,2-ビス(ジフェニルホスフィノ)プロパン(PROPHOS)、2,3-ビス(ジフェニルホスフィノ)-5-ノルボルネン(NORPHOS)、2,3-O-イソプロピリデン-2,3-ジヒドロキシ-1,4-ビス(ジフェニルホスフィノ)ブタン(DIOP)、1-[1’,2-ビス(ジフェニルホスフィノ)フェロセニル]エチルアミン(BPPFA)、1-[1’,2-ビス(ジフェニルホスフィノ)フェロセニル]エチルアルコール(BPPFOH)、2,4-ビス-(ジフェニルホスフィノ)ペンタン(SKEWPHOS)、1,2-ビス(置換ホスホラノ)ベンゼン(DuPHOS)、5,5’-ビス(ジフェニルホスフィノ)-4,4’-ビ-1,3-ベンゾジオキソール(SEGPHOS)、5,5’-ビス[ジ(3,5-キシリル)ホスフィノ]-4,4’-ビ-1,3-ベンゾジオキソール(DM-SEGPHOS)、5,5’-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-4,4’-ビ-1,3-ベンゾジオキソール(DTBM-SEGPHOS)、1-[2-(2置換ホスフィノ)フェロセニル]エチル-2置換ホスフィン(Josiphos)、1-[2-(2’-2置換ホスフィノフェニル)フェロセニル]エチル-2置換ホスフィン(Walphos)等が挙げられる。
Asymmetric ligands include dpen (1,2-diphenylethylenediamine), daipen (1,1-di (4-anicil) -2-isopropyl-1,2-ethylenediamine), and optically active phosphine ligands. Can be mentioned. As optically active phosphine ligands, 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis (diphenylphosphino) -5,5', 6 , 6 ', 7,7', 8,8'-octahydro-1,1'-binaphthyl (H 8 -BINAP), 2,2'-bis (di -p- tolylphosphino) -1,1'-binaphthyl ( Tol-BINAP), 2,2'-bis [bis (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl (Xyl-BINAP), 2,2'-bis [bis (3,5-di) -Tert-Butyl-4-methoxyphenyl) phosphino] -1,1'-binaphthyl (DTBM-BINAP), 1,2-bis (anicil phosphino) ethane (DIPAMP), 2,3-bis (diphenylphosphino) ) Butane (CHIRAPHOS), 1-cyclohexyl-1,2-bis (diphenylphosphino) ethane (CYCPHOS), 1,2-bis (diphenylphosphino) propane (PROPHOS), 2,3-bis (diphenylphosphino) -5-Norbornene (NORPHOS), 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis (diphenylphosphino) butane (DIOP), 1- [1', 2-bis (diphenylphos) Fino) ferrocenyl] ethylamine (BPPFA), 1- [1', 2-bis (diphenylphosphino) ferrocenyl] ethyl alcohol (BPPFOH), 2,4-bis- (diphenylphosphino) pentane (SKEWPHOS), 1,2 -Bis (substituted phosphorano) benzene (DuPHOS), 5,5'-bis (diphenylphosphino) -4,4'-bi-1,3-benzodioxol (SEGPHOS), 5,5'-bis [di (3,5-kisilyl) Phosphino] -4,4'-bi-1,3-benzodioxol (DM-SEGPHOS), 5,5'-bis [bis (3,5-di-tert-butyl-) 4-methoxyphenyl) phosphino] -4,4'-bi-1,3-benzodioxol (DTBM-SEGPHOS), 1- [2- (2-substituted phosphino) ferrocenyl] ethyl-2-substituted phosphin (Josiphos), Examples thereof include 1- [2- (2'-2 substituted phosphinophenyl) ferrocenyl] ethyl-2-substituted phosphin (Walphos).
不斉還元触媒の量は、1モルの化合物4に対して、0.0001~0.1モルが好ましく、0.0005~0.02モルがより好ましい。
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。
還元反応は、水素ガスの存在下で行われる。還元反応は常圧で行ってもよく、加圧下で行ってもよい。水素ガスの圧力は、好ましくは0.5気圧~10気圧である。反応温度は、好ましくは0℃~100℃、より好ましくは10℃~50℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The amount of the asymmetric reduction catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
The reduction reaction is carried out in the presence of hydrogen gas. The reduction reaction may be carried out under normal pressure or under pressure. The pressure of hydrogen gas is preferably 0.5 atm to 10 atm. The reaction temperature is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 50 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。
還元反応は、水素ガスの存在下で行われる。還元反応は常圧で行ってもよく、加圧下で行ってもよい。水素ガスの圧力は、好ましくは0.5気圧~10気圧である。反応温度は、好ましくは0℃~100℃、より好ましくは10℃~50℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The amount of the asymmetric reduction catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
The reduction reaction is carried out in the presence of hydrogen gas. The reduction reaction may be carried out under normal pressure or under pressure. The pressure of hydrogen gas is preferably 0.5 atm to 10 atm. The reaction temperature is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 50 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
[工程8-1]
化合物5-1の保護基R2を脱保護することにより、化合物6-3を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 8-1]
The protecting group R 2 of the compound 5-1 by deprotection to give compound 6-3. Deprotection can be performed in the same manner as in step 5-1.
化合物5-1の保護基R2を脱保護することにより、化合物6-3を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 8-1]
The protecting group R 2 of the compound 5-1 by deprotection to give compound 6-3. Deprotection can be performed in the same manner as in step 5-1.
[工程9-1]
化合物6-3の保護基R1を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 9-1]
The protecting group R 1 of the compound 6-3 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 6-1.
化合物6-3の保護基R1を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 9-1]
The protecting group R 1 of the compound 6-3 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 6-1.
[工程8-2]
化合物5-1の保護基R1を脱保護することにより、化合物6-4を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 8-2]
The protecting group R 1 of the compound 5-1 by deprotection to give compound 6-4. Deprotection can be performed in the same manner as in step 6-1.
化合物5-1の保護基R1を脱保護することにより、化合物6-4を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 8-2]
The protecting group R 1 of the compound 5-1 by deprotection to give compound 6-4. Deprotection can be performed in the same manner as in step 6-1.
[工程9-2]
化合物6-4の保護基R2を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 9-2]
The protecting group R 2 of the compound 6-4 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 5-1.
化合物6-4の保護基R2を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 9-2]
The protecting group R 2 of the compound 6-4 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 5-1.
<化合物6-1又は化合物6-2から化合物7-1の合成反応>
光学活性な含フッ素アミノ酸(フルオロアルキル基含有化合物)の合成は、下記反応によっても行うことができる。下記反応式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。また、Rf、R1、及びR2は、前記で定義した通りである。 <Synthetic reaction of compound 6-1 or compound 6-2 to compound 7-1>
The synthesis of optically active fluorine-containing amino acids (fluoroalkyl group-containing compounds) can also be carried out by the following reaction. In the following reaction formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R. Further, Rf, R 1 , and R 2 are as defined above.
光学活性な含フッ素アミノ酸(フルオロアルキル基含有化合物)の合成は、下記反応によっても行うことができる。下記反応式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。また、Rf、R1、及びR2は、前記で定義した通りである。 <Synthetic reaction of compound 6-1 or compound 6-2 to compound 7-1>
The synthesis of optically active fluorine-containing amino acids (fluoroalkyl group-containing compounds) can also be carried out by the following reaction. In the following reaction formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R. Further, Rf, R 1 , and R 2 are as defined above.
[工程10-1]
化合物6-1を光学分割することにより、化合物6-3を得ることができる。
光学分割は、公知の手法で行うことができる。例えば、キラルカラムを使用する方法、結晶化による方法、ジアステレオマー法等で行うことができる。 [Step 10-1]
Compound 6-3 can be obtained by optically resolving compound 6-1.
The optical resolution can be performed by a known method. For example, it can be carried out by a method using a chiral column, a method by crystallization, a diastereomer method or the like.
化合物6-1を光学分割することにより、化合物6-3を得ることができる。
光学分割は、公知の手法で行うことができる。例えば、キラルカラムを使用する方法、結晶化による方法、ジアステレオマー法等で行うことができる。 [Step 10-1]
Compound 6-3 can be obtained by optically resolving compound 6-1.
The optical resolution can be performed by a known method. For example, it can be carried out by a method using a chiral column, a method by crystallization, a diastereomer method or the like.
(1)キラルカラムを使用する方法
キラルカラムを使用する液体クロマトグラフィー、超臨界流体クロマトグラフィー(SFC)により、ラセミ体を光学活性体に分割できる。キラルカラムは、CHIRALPAK(登録商標)(株式会社ダイセル)、CHIRALCEL(登録商標)(株式会社ダイセル)等を使用できる。 (1) Method using a chiral column A racemate can be divided into optically active substances by liquid chromatography or supercritical fluid chromatography (SFC) using a chiral column. As the chiral column, CHIRALPAK (registered trademark) (Daicel Co., Ltd.), CHIRALCEL (registered trademark) (Daicel Co., Ltd.) and the like can be used.
キラルカラムを使用する液体クロマトグラフィー、超臨界流体クロマトグラフィー(SFC)により、ラセミ体を光学活性体に分割できる。キラルカラムは、CHIRALPAK(登録商標)(株式会社ダイセル)、CHIRALCEL(登録商標)(株式会社ダイセル)等を使用できる。 (1) Method using a chiral column A racemate can be divided into optically active substances by liquid chromatography or supercritical fluid chromatography (SFC) using a chiral column. As the chiral column, CHIRALPAK (registered trademark) (Daicel Co., Ltd.), CHIRALCEL (registered trademark) (Daicel Co., Ltd.) and the like can be used.
(2)結晶化による方法
ラセミ体と光学活性なアミン又は光学活性な酸との塩を形成させ、結晶性のジアステレマー塩に誘導して分別結晶する。再結晶を繰り返すことにより、単一のジアステレマー塩を得ることができる。必要に応じて、ジアステレオマー塩を中和して、遊離体の光学活性体を得る。光学活性なアミンとしては、ブルシン、シンコニジン、シンコニン、1-フェネチルアミン等が挙げられる。光学活性な酸としては、カンファースルホン酸、酒石酸、マンデル酸等が挙げられる。 (2) Method by crystallization A salt of a racemate and an optically active amine or an optically active acid is formed and induced into a crystalline diastereomer salt for fractional crystallization. By repeating recrystallization, a single diastereomer salt can be obtained. If necessary, the diastereomeric salt is neutralized to obtain a free optically active substance. Examples of optically active amines include brucine, cinchonidine, cinchonine, 1-phenethylamine and the like. Examples of optically active acids include camphorsulfonic acid, tartaric acid, mandelic acid and the like.
ラセミ体と光学活性なアミン又は光学活性な酸との塩を形成させ、結晶性のジアステレマー塩に誘導して分別結晶する。再結晶を繰り返すことにより、単一のジアステレマー塩を得ることができる。必要に応じて、ジアステレオマー塩を中和して、遊離体の光学活性体を得る。光学活性なアミンとしては、ブルシン、シンコニジン、シンコニン、1-フェネチルアミン等が挙げられる。光学活性な酸としては、カンファースルホン酸、酒石酸、マンデル酸等が挙げられる。 (2) Method by crystallization A salt of a racemate and an optically active amine or an optically active acid is formed and induced into a crystalline diastereomer salt for fractional crystallization. By repeating recrystallization, a single diastereomer salt can be obtained. If necessary, the diastereomeric salt is neutralized to obtain a free optically active substance. Examples of optically active amines include brucine, cinchonidine, cinchonine, 1-phenethylamine and the like. Examples of optically active acids include camphorsulfonic acid, tartaric acid, mandelic acid and the like.
(3)ジアステレオマー法
ラセミ体に光学活性な試薬を反応させて、ジアステオマーの混合物を得て、これを分別結晶、クロマトグラフィーにより、単一のジアステオマーを分離する。得られた単一のジアステレオマーから光学活性な試薬部分を除去して、目的の光学異性体を得る。 (3) Diastereomer method A racemic mixture is reacted with an optically active reagent to obtain a mixture of diastereomers, which is separated by fractional crystallization and chromatography to separate a single diastereomer. The optically active reagent moiety is removed from the resulting single diastereomer to obtain the desired optical isomer.
ラセミ体に光学活性な試薬を反応させて、ジアステオマーの混合物を得て、これを分別結晶、クロマトグラフィーにより、単一のジアステオマーを分離する。得られた単一のジアステレオマーから光学活性な試薬部分を除去して、目的の光学異性体を得る。 (3) Diastereomer method A racemic mixture is reacted with an optically active reagent to obtain a mixture of diastereomers, which is separated by fractional crystallization and chromatography to separate a single diastereomer. The optically active reagent moiety is removed from the resulting single diastereomer to obtain the desired optical isomer.
[工程11-1]
化合物6-3の保護基R1を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 11-1]
The protecting group R 1 of the compound 6-3 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 6-1.
化合物6-3の保護基R1を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。 [Step 11-1]
The protecting group R 1 of the compound 6-3 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 6-1.
[工程10-2]
化合物6-2を光学分割することにより、化合物6-4を得ることができる。光学分割は、工程10-1と同様の方法で行うことができる。 [Step 10-2]
Compound 6-4 can be obtained by optically resolving compound 6-2. The optical resolution can be performed in the same manner as in step 10-1.
化合物6-2を光学分割することにより、化合物6-4を得ることができる。光学分割は、工程10-1と同様の方法で行うことができる。 [Step 10-2]
Compound 6-4 can be obtained by optically resolving compound 6-2. The optical resolution can be performed in the same manner as in step 10-1.
[工程11-2]
化合物6-4の保護基R2を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 11-2]
The protecting group R 2 of the compound 6-4 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 5-1.
化合物6-4の保護基R2を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。 [Step 11-2]
The protecting group R 2 of the compound 6-4 by deprotection to give compound 7-1. Deprotection can be performed in the same manner as in step 5-1.
[工程12]
化合物7を光学分割することにより、化合物7-1を得ることができる。光学分割は、工程10-1と同様の方法で行うことができる。 [Step 12]
Compound 7-1 can be obtained by optically resolving compound 7. The optical resolution can be performed in the same manner as in step 10-1.
化合物7を光学分割することにより、化合物7-1を得ることができる。光学分割は、工程10-1と同様の方法で行うことができる。 [Step 12]
Compound 7-1 can be obtained by optically resolving compound 7. The optical resolution can be performed in the same manner as in step 10-1.
<新規中間体化合物>
本発明は、一般式(3a)、一般式(4a)、一般式(5a)、一般式(5-1a)、一般式(6-1a)、一般式(6-3a)、一般式(6-2a)、又は一般式(6-4a)で表される新規化合物を提供する。式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。これらの化合物は、前記フルオロアルキル基含有化合物の製造方法における中間体として有用である。また、一般式(6-1a)、一般式(6-3a)、一般式(6-2a)、又は一般式(6-4a)で表される化合物は、含フッ素アミノ酸を含有するペプチドを製造するために使用できる。 <New intermediate compound>
The present invention relates to the general formula (3a), the general formula (4a), the general formula (5a), the general formula (5-1a), the general formula (6-1a), the general formula (6-3a), and the general formula (6). -2a) or a novel compound represented by the general formula (6-4a) is provided. In the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R. These compounds are useful as intermediates in the method for producing the fluoroalkyl group-containing compound. Further, the compound represented by the general formula (6-1a), the general formula (6-3a), the general formula (6-2a), or the general formula (6-4a) produces a peptide containing a fluorine-containing amino acid. Can be used to
本発明は、一般式(3a)、一般式(4a)、一般式(5a)、一般式(5-1a)、一般式(6-1a)、一般式(6-3a)、一般式(6-2a)、又は一般式(6-4a)で表される新規化合物を提供する。式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。これらの化合物は、前記フルオロアルキル基含有化合物の製造方法における中間体として有用である。また、一般式(6-1a)、一般式(6-3a)、一般式(6-2a)、又は一般式(6-4a)で表される化合物は、含フッ素アミノ酸を含有するペプチドを製造するために使用できる。 <New intermediate compound>
The present invention relates to the general formula (3a), the general formula (4a), the general formula (5a), the general formula (5-1a), the general formula (6-1a), the general formula (6-3a), and the general formula (6). -2a) or a novel compound represented by the general formula (6-4a) is provided. In the formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R. These compounds are useful as intermediates in the method for producing the fluoroalkyl group-containing compound. Further, the compound represented by the general formula (6-1a), the general formula (6-3a), the general formula (6-2a), or the general formula (6-4a) produces a peptide containing a fluorine-containing amino acid. Can be used to
Rf1は、C1-10アルキル基のうち、炭素原子に結合している水素原子の少なくとも2個がフッ素原子で置換された基であり、炭素原子に結合している1個以上の水素原子が、フッ素原子以外のハロゲン原子でさらに置換されていてもよい。当該C1-10アルキル基がC2-10アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。ここで、C1-10アルキル基としては、C2-10アルキル基が好ましく、C2-8アルキル基が好ましい。Rf1の例としては、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基等が挙げられる。
Rf 1 is a C 1-10 alkyl group in which at least two hydrogen atoms bonded to a carbon atom are substituted with a fluorine atom, and one or more hydrogen atoms bonded to the carbon atom. However, it may be further substituted with a halogen atom other than the fluorine atom. When the C 1-10 alkyl group is a C 2-10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. Here, as the C 1-10 alkyl group, a C 2-10 alkyl group is preferable, and a C 2-8 alkyl group is preferable. Examples of Rf 1 include pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, 1,1- Difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3 Examples thereof include a 3,3-hexafluoropropyl group.
Rf2は、-CF3、-CF2R11、又は-CFHR11である。ここで、R11は、C1-9アルキル基のうち、炭素原子に結合している水素原子の少なくとも2個がフッ素原子で置換された基であり、炭素原子に結合している1個以上の水素原子が、フッ素原子以外のハロゲン原子でさらに置換されていてもよい。当該C1-9アルキル基がC2-9アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。R11におけるC1-9アルキル基としては、C1-7アルキル基がより好ましい。Rf2の例としては、-CF3、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基等が挙げられる。
Rf 2 is -CF 3 , -CF 2 R 11 , or -CFHR 11 . Here, R 11 is a group in which at least two of the hydrogen atoms bonded to the carbon atom of the C 1-9 alkyl group are substituted with a fluorine atom, and one or more of the C 1-9 alkyl groups are bonded to the carbon atom. The hydrogen atom of is further substituted with a halogen atom other than the fluorine atom. When the C 1-9 alkyl group is a C 2-9 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. As the C 1-9 alkyl group in R 11 , a C 1-7 alkyl group is more preferable. Examples of Rf 2 include -CF 3 , pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, Examples thereof include 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group and the like. ..
Rf3は、-CF2R11又は-CFHR11である。-CF2R11及び-CFHR11は、Rf2と同様であり、R11におけるC1-9アルキル基としては、C1-7アルキル基がより好ましい。Rf3の例としては、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基等が挙げられる。
Rf 3 is -CF 2 R 11 or -CFHR 11 . -CF 2 R 11 and -CFHR 11 are the same as Rf 2, and the C 1-9 alkyl group in R 11 is more preferably the C 1-7 alkyl group. Examples of Rf 3 include pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, 1,1 Examples thereof include 2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group and 1,1,2,3,3,3-hexafluoropropyl group.
R2Aは、下記一般式(p-2)で表されるアミノ基の保護基である。式中、R10は、置換されていてもよいC1-6アルキル基又は置換されていてもよいC6-14アリール-C1-6アルキル基である。黒丸は結合手を意味する。
R 2A is a protecting group for an amino group represented by the following general formula (p-2). In the formula, R 10 is a optionally substituted C 1-6 alkyl group or an optionally substituted C 6-14 aryl-C 1-6 alkyl group. The black circle means a bond.
R10で表される「置換されていてもよいC1-6アルキル基」は、ニトロ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、及びC1-6アルコキシ基から選ばれる1~3個の置換基で置換されていてもよいC1-6アルキル基を意味する。R10で表される「置換されていてもよいC1-6アルキル基」としては、tert-ブチル基、2,2,2-トリクロロエチル基等が挙げられる。
The "optionally substituted C 1-6 alkyl group" represented by R 10 is composed of a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), and a C 1-6 alkoxy group. It means a C 1-6 alkyl group which may be substituted with 1 to 3 substituents of choice. Examples of the "optionally substituted C 1-6 alkyl group" represented by R 10 include a tert-butyl group and a 2,2,2-trichloroethyl group.
R10で表される「置換されていてもよいC6-14アリール-C1-6アルキル基」は、ニトロ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、C1-6アルキル基、C1-6アルコキシ基、及びメチレンジオキシ基(-O-CH2-O-)から選ばれる1~3個の置換基で置換されていてもよいC6-14アリール-C1-6アルキル基を意味する。R10で表される「置換されていてもよいC6-14アリール-C1-6アルキル基」としては、9-フルオレニルメチル基、ベンジル基等が挙げられる。
The "optionally substituted C 6-14 aryl-C 1-6 alkyl group" represented by R 10 is a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), C 1 C 6-14 aryl-which may be substituted with 1 to 3 substituents selected from -6 alkyl groups, C 1-6 alkoxy groups, and methylenedioxy groups (-O-CH 2- O-). It means a C 1-6 alkyl group. Examples of the "optionally substituted C 6-14 aryl-C 1-6 alkyl group" represented by R 10 include a 9-fluorenylmethyl group and a benzyl group.
穏やかな条件で脱保護できる点で、R2Aで表されるアミノ保護基は、好ましくは、tert-ブトキシカルボニル(Boc)基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基である。
The amino protecting group represented by R 2A is preferably a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group in that it can be deprotected under mild conditions.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
実施例、比較例の分析に使用したNMR装置は日本電子製JNM-ECZ400S(400MHz)であり、1H NMRではテトラメチルシランを0PPM、19F NMRではC6F6を-162PPMの基準値とした。
The NMR apparatus used for the analysis of Examples and Comparative Examples was JNM-ECZ400S (400 MHz) manufactured by JEOL Ltd., and tetramethylsilane was set to 0 PPM in 1 H NMR and C 6 F 6 was set to 162 PPM in 19 F NMR. did.
本明細書において、以下の略号を使用する。
Bn:ベンジル
Boc:t-ブトキシカルボニル
Et2O:ジエチルエーテル
Fmoc:9-フルオレニルメチルオキシカルボニル
THF:テトラヒドロフラン
TMS:トリメチルシリル
C4F9:1,1,2,2,3,3,4,4,4-ノナフルオロブチル The following abbreviations are used herein.
Bn: Benzyl Boc: t-butoxycarbonyl Et 2 O: Diethyl ether Fmoc: 9-Fluorenylmethyloxycarbonyl THF: Tetrahydrofuran TMS: Trimethylsilyl C 4 F 9 : 1,1,2,2,3,3,4 4,4-Nonafluorobutyl
Bn:ベンジル
Boc:t-ブトキシカルボニル
Et2O:ジエチルエーテル
Fmoc:9-フルオレニルメチルオキシカルボニル
THF:テトラヒドロフラン
TMS:トリメチルシリル
C4F9:1,1,2,2,3,3,4,4,4-ノナフルオロブチル The following abbreviations are used herein.
Bn: Benzyl Boc: t-butoxycarbonyl Et 2 O: Diethyl ether Fmoc: 9-Fluorenylmethyloxycarbonyl THF: Tetrahydrofuran TMS: Trimethylsilyl C 4 F 9 : 1,1,2,2,3,3,4 4,4-Nonafluorobutyl
[実施例1]
トリメチル(ノナフルオロブチル)シランとシュウ酸ジベンジルから、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸を合成した。 [Example 1]
2-((T-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,6-nonafluorocaproic acid was synthesized from trimethyl (nonafluorobutyl) silane and dibenzyl oxalate. ..
トリメチル(ノナフルオロブチル)シランとシュウ酸ジベンジルから、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸を合成した。 [Example 1]
2-((T-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,6-nonafluorocaproic acid was synthesized from trimethyl (nonafluorobutyl) silane and dibenzyl oxalate. ..
[工程1]
[Step 1]
オーブンで乾燥した100mL容の二口フラスコに撹拌子を入れ、窒素雰囲気下、シュウ酸ジベンジル(5.41g,20.0mmol)、フッ化セシウム(255mg,1.68mmol)、及びTHF(54mL)を加えて撹拌し、-30℃に冷却してからトリメチル(ノナフルオロブチル)シラン(4.50mL,20.2mmol)を加えて-30℃で24時間撹拌を続けた。反応液に飽和塩化アンモニウム水溶液(30mL)を加えて、酢酸エチル(3×50mL)で抽出した。合わせた有機相を硫酸ナトリウムで乾燥した後、ろ別し、ろ液を減圧留去して2-(ベンジロキシ)-3,3,4,4,5,5,6,6,6-ノナフルオロ-2-((トリメチルシリル)オキシ)ヘキサン酸ベンジルと3,3,4,4,5,5,6,6,6-ノナフルオロ-2,2-ジヒドロキシヘキサン酸ベンジルの混合粗体を得た。得られた粗体は精製することなく次工程に用いた。
Place the stir bar in an oven-dried 100 mL two-necked flask and add dibenzyl oxalate (5.41 g, 20.0 mmol), cesium fluoride (255 mg, 1.68 mmol), and THF (54 mL) under a nitrogen atmosphere. In addition, the mixture was stirred, cooled to −30 ° C., trimethyl (nonafluorobutyl) silane (4.50 mL, 20.2 mmol) was added, and stirring was continued at −30 ° C. for 24 hours. A saturated aqueous ammonium chloride solution (30 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic phases are dried over sodium sulfate, filtered off, and the filtrate is evaporated under reduced pressure to 2- (benzyloxy) -3,3,4,4,5,5,6,6,6-nonafluoro-. A mixed crude product of benzyl 2-((trimethylsilyl) oxy) caproate and benzyl 3,3,4,4,5,5,6,6-nonafluoro-2,2-dihydroxycaproate was obtained. The obtained crude product was used in the next step without purification.
[工程1-2]
[Step 1-2]
オーブンで乾燥した100mL容の二口フラスコに撹拌子を入れ、窒素雰囲気下、工程1で得られた粗体全量とフッ化テトラブチルアンモニウム(TBAF)1mol/L THF溶液(10.5mL,10.5mmol)、酢酸(1mL)、及びTHF(50mL)を加えて0℃で撹拌した。その後、室温に昇温して24時間撹拌後に飽和重曹水(30mL)を加えてクエンチし、酢酸エチル(3×50mL)で抽出した。合わせた有機相を水(50mL)及び飽和食塩水(50mL)で洗浄後に硫酸ナトリウムで乾燥した後、ろ別し、ろ液を減圧留去して3,3,4,4,5,5,6,6,6-ノナフルオロ-2,2-ジヒドロキシヘキサン酸ベンジルの粗体を得た。得られた粗体は精製することなく次工程に用いた。
Put the stir bar in a 100 mL two-necked flask dried in an oven, and under a nitrogen atmosphere, the total amount of the crude material obtained in step 1 and tetrabutylammonium fluoride (TBAF) 1 mol / L THF solution (10.5 mL, 10. 5 mmol), acetic acid (1 mL), and THF (50 mL) were added and stirred at 0 ° C. Then, the temperature was raised to room temperature, and after stirring for 24 hours, saturated aqueous sodium hydrogen carbonate (30 mL) was added for quenching, and the mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic phases were washed with water (50 mL) and saturated brine (50 mL), dried over sodium sulfate, filtered off, and the filtrate was evaporated under reduced pressure to 3,3,4,5,4,5,5. A crude product of benzyl 6,6,6-nonafluoro-2,2-dihydroxyhexanoate was obtained. The obtained crude product was used in the next step without purification.
1H NMR(400MHz,CDCl3) δ7.39(brs,5H),5.37(s,2H).19F NMR(376MHz,CDCl3) δ-80.79(brs,3F),-121.09(brs,2F),-121.24-121.26(m,2F),-126.12-126.21(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.39 (brs, 5H), 5.37 (s, 2H). 19 F NMR (376 MHz, CDCl 3 ) δ-80.79 (brs, 3F), -121.09 (brs, 2F), -121.24-121.26 (m, 2F), -126.12-126 .21 (m, 2F).
[工程2]
[Step 2]
オーブンで乾燥した20mL容フラスコに撹拌子を入れ、窒素雰囲気下、工程2で得られた粗体全量と五酸化リン(粗体の22重量%)を加え、減圧蒸留を行った。2mmHg、77℃で得られた留分を集め、3,3,4,4,5,5,6,6,6-ノナフルオロ-2-オキソヘキサン酸ベンジルを無色の液体として得た(工程1から工程3まで通して収率73%)。
The stirrer was placed in a 20 mL flask dried in an oven, and the total amount of the crude material obtained in step 2 and phosphorus pentoxide (22% by weight of the crude material) were added under a nitrogen atmosphere, and distillation was performed under reduced pressure. Fractions obtained at 2 mmHg, 77 ° C. were collected to give benzyl 3,3,4,4,5,5,6,6,6-nonafluoro-2-oxohexanoate as a colorless liquid (from step 1). Yield 73% through step 3).
1H NMR(400MHz,CDCl3) δ7.41(brs,5H),5.40(s,2H).19F NMR(376MHz,CDCl3) δ-80.79(brs,3F),-117.78-117.850(t,2F,JF-F=13Hz),-122.01(brs,2F),-125.58(brs,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.41 (brs, 5H), 5.40 (s, 2H). 19 F NMR (376MHz, CDCl 3 ) δ-80.79 (brs, 3F), - 117.78-117.850 (t, 2F, J F-F = 13Hz), - 122.01 (brs, 2F) , -125.58 (brs, 2F).
工程1の温度を0℃に変更した以外は、工程1~工程2と同様にして、3,3,4,4,5,5,6,6,6-ノナフルオロ-2-オキソヘキサン酸ベンジルを無色の液体として得た。工程1から工程2まで通しての収率は69%であった。
Benzyl 3,3,4,4,5,5,6,6,6-nonafluoro-2-oxohexanoate was added in the same manner as in Steps 1 and 2, except that the temperature in Step 1 was changed to 0 ° C. Obtained as a colorless liquid. The yield from step 1 to step 2 was 69%.
[工程3]
[Step 3]
オーブンで乾燥した30mL容のシュレンクフラスコに撹拌子を入れ、窒素雰囲気下、3,3,4,4,5,5,6,6,6-ノナフルオロ-2-オキソヘキサン酸ベンジル(1g,2.6mmol)、t-ブチル(トリフェニルホスファネイリデン)カルバメート(2.6mmol)、及びEt2O(10mL)を加えた。反応液を室温で1時間撹拌後に濾過し、ろ物をEt2O(2×2mL)で洗浄した。合わせた有機相を減圧留去して2-((t-ブトキシカルボニル)イミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルの粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(Et2O/ヘキサン=1/4)で精製し、2-((t-ブトキシカルボニル)イミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルを無色液体として得た(収率87%)。
Place the stir bar in an oven-dried 30 mL Schlenk flask and place in a nitrogen atmosphere under benzyl 3,3,4,4,5,6,6,6-nonafluoro-2-oxohexanoate (1 g, 2. 6 mmol), t-butyl (triphenylphosphaneiraidene) carbamate (2.6 mmol), and Et 2 O (10 mL) were added. The reaction mixture was stirred at room temperature for 1 hour, filtered, and the filtrate was washed with Et 2 O (2 × 2 mL). The combined organic phases were distilled off under reduced pressure to obtain a crude product of benzyl 2-((t-butoxycarbonyl) imino) -3,3,4,5,5,6,6,6-nonafluorohexaneate. It was. The obtained crude product was purified by silica gel chromatography (Et 2 O / hexane = 1/4) and 2-((t-butoxycarbonyl) imino) -3,3,4,4,5,5,6. Benzyl 6,6-nonafluorohexaneate was obtained as a colorless liquid (yield 87%).
1H NMR(400MHz,CDCl3) δ7.410-7.352(m,5H),5.350(s,2H),1.504(s,9H).19F NMR(376MHz,CDCl3) δ-80.76-80.78(t,3F,JF-F=9Hz),-112.37(brs,2F),-121.0(brs,2F),-125.36(brs,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.410-7.352 (m, 5H), 5.350 (s, 2H), 1.504 (s, 9H). 19 F NMR (376MHz, CDCl 3 ) δ-80.76-80.78 (t, 3F, J F-F = 9Hz), - 112.37 (brs, 2F), - 121.0 (brs, 2F) , -125.36 (brs, 2F).
[工程4]
[Step 4]
オーブンで乾燥した30mL容のシュレンクフラスコに撹拌子を入れ、窒素雰囲気下、2-((t-ブトキシカルボニル)イミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジル(0.2g,0.42mmol)をEt2O(15mL)に溶解して0℃で撹拌した。水素化ホウ素ナトリウム(0.46mmol)を3回に分けて0℃で加え、その後、室温に昇温して24時間撹拌した。氷水を加えてクエンチし、1mol/Lの塩酸を加えてpHを7未満にした。水相をEt2O(2×10mL)で抽出し、合わせた有機相を減圧留去して2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルの粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/4)で精製し、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルを無色液体として得た(収率61%)。
Place the stir bar in an oven-dried 30 mL Schlenk flask and place in a nitrogen atmosphere, 2-((t-butoxycarbonyl) imino) -3,3,4,5,5,6,6-nona. Benzyl fluorohexanoate (0.2 g, 0.42 mmol) was dissolved in Et 2 O (15 mL) and stirred at 0 ° C. Sodium borohydride (0.46 mmol) was added in 3 portions at 0 ° C., then the temperature was raised to room temperature and the mixture was stirred for 24 hours. Ice water was added for quenching, and 1 mol / L hydrochloric acid was added to bring the pH below 7. The aqueous phase was extracted with Et 2 O (2 × 10 mL), and the combined organic phase was distilled off under reduced pressure to 2-((t-butoxycarbonyl) amino) -3,3,4,5,4,5,6. , 6,6-Nonafluorocaproate benzyl crude was obtained. The obtained crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/4) and 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6. , Benzyl 6-Nonafluorohexaneate was obtained as a colorless liquid (yield 61%).
1H NMR(400MHz,CDCl3) δ7.40-7.33(m,5H),5.41-5.39(d,2H,JH-H=10Hz),5.28-5.20(m,3H),1.45(s,9H).19F NMR(376MHz,CDCl3) δ-80.86-80.89(t,3F,JF-F=9Hz),-115.36-118.55(m,2F),-121.50-123.17(m,2F),-125.00-126.77(m,2F).
1 H NMR (400MHz, CDCl 3 ) δ7.40-7.33 (m, 5H), 5.41-5.39 (d, 2H, J H-H = 10Hz), 5.28-5.20 ( m, 3H), 1.45 (s, 9H). 19 F NMR (376MHz, CDCl 3 ) δ-80.86-80.89 (t, 3F, J F-F = 9Hz), - 115.36-118.55 (m, 2F), - 121.50- 123.17 (m, 2F), -125.00-126.77 (m, 2F).
Et2O及び水素化ホウ素ナトリウムの代わりに、表1に記載の溶媒及び還元剤(当量)を使用して、前記工程4と同様の反応を行った。収率を表1に示す。表中、「AK225」は、「アサヒクリン(登録商標)AK-225」(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンと1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンの混合物、AGC株式会社)である。
The same reaction as in Step 4 was carried out using the solvent and reducing agent (equivalent) shown in Table 1 instead of Et 2 O and sodium borohydride. The yields are shown in Table 1. In the table, "AK225" refers to "Asahiclean® AK-225" (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1, A mixture of 2,2,3-pentafluoropropane, AGC Inc.).
[工程5-2]
[Step 5-2]
オーブンで乾燥した25mL容の二口フラスコに撹拌子を入れ、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジル(73.6mg,0.15mmol)、パラジウム/炭素(Pd5%、約55%水湿潤品、20mg)、酢酸エチル(1mL)、及びエタノール(7mL)を加え、常圧の水素雰囲気下、室温で撹拌した。室温で24時間撹拌後にセライト濾過を行い、ろ物をエタノール(3×5mL)で洗浄し、合わせた有機相を減圧留去して2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸の粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/1)で精製し、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸を無色液体として得た(収率86%)。
Place the stir bar in an oven-dried 25 mL two-necked flask and place 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6-nonafluorohexanoic acid. Benzyl (73.6 mg, 0.15 mmol), palladium / carbon (Pd 5%, about 55% water-wet product, 20 mg), ethyl acetate (1 mL), and ethanol (7 mL) were added, and the temperature was room temperature under a hydrogen atmosphere under normal pressure. Was stirred with. After stirring at room temperature for 24 hours, Celite filtration was performed, the filtrate was washed with ethanol (3 x 5 mL), and the combined organic phase was distilled off under reduced pressure to 2-((t-butoxycarbonyl) amino) -3,3 A crude product of 4,4,5,5,6,6,6-nonafluorohexanoic acid was obtained. The obtained crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/1) and 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6. , 6-Nonafluorocaproic acid was obtained as a colorless liquid (yield 86%).
1H NMR(400MHz,CDCl3) δ7.72(br,1H),5.49-5.47(d,2H,JH-H=10Hz),5.24-5.15(m,1H),1.45(s,9H).19F NMR(376MHz,CDCl3) δ-80.30(brs,3F),-114.64-118.03(m,2F),-120.70-122.40(m,2F),-124.52-126.22(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.72 (br, 1H), 5.49-5.47 (d, 2H, JH-H = 10 Hz), 5.24-5.15 (m, 1H) , 1.45 (s, 9H). 19 F NMR (376 MHz, CDCl 3 ) δ-80.30 (brs, 3F), 114.64-118.03 (m, 2F), -120.70-122.40 (m, 2F), -124 .52-126.22 (m, 2F).
[工程5-1]
[Step 5-1]
オーブンで乾燥した25mL容の二口フラスコに撹拌子を入れ、Boc-RfAA-OBn(376mg,0.78mmol)、4M HCl、1,4-ジオキサン溶液(3mL)を0℃で加えた。室温で18時間撹拌後に飽和炭酸ナトリウム水溶液を加えてpHを7より大きくなるように調整し、酢酸エチルで抽出した。有機相を飽和食塩水で洗浄して硫酸ナトリウムで乾燥した。有機相を濾過し、ろ液を減圧留去してH-RfAA-OBnの塩酸塩を白色固体として得た(収率78%)。
A stir bar was placed in a 25 mL two-necked flask dried in an oven, and Boc-RfAA-OBn (376 mg, 0.78 mmol), 4M HCl, and 1,4-dioxane solution (3 mL) were added at 0 ° C. After stirring at room temperature for 18 hours, a saturated aqueous sodium carbonate solution was added to adjust the pH to be higher than 7, and the mixture was extracted with ethyl acetate. The organic phase was washed with saturated brine and dried over sodium sulfate. The organic phase was filtered and the filtrate was evaporated under reduced pressure to give the hydrochloride salt of HRfAA-OBn as a white solid (yield 78%).
1H NMR(400MHz,D2O) δ7.31(brs,2H),6.81-6.77(m,5H),5.27(m,1H),3.71-3.67(m、2H).19F NMR(376MHz,D2O) δ-80.38(t,3F),-118.29-121.00(m,2F),-121.00-123.80(m,2F),-126.12-128.12(m,2F).
1 1 H NMR (400 MHz, D 2 O) δ7.31 (brs, 2H), 6.81-6.77 (m, 5H), 5.27 (m, 1H), 3.71-3.67 (m) , 2H). 19 F NMR (376 MHz, D 2 O) δ-80.38 (t, 3F), 118.29-121.00 (m, 2F), -121.00-123.80 (m, 2F),- 126.12-128.12 (m, 2F).
本発明は、含フッ素アミノ酸等のフルオロアルキル基含有化合物を効率よく合成できる新規な製造方法を提供する。本発明に係る製造方法によれば、カルボキシ基の脱保護及びアミノ基の脱保護が容易に進行するため、フルオロアルキル基含有化合物を効率よく合成できる。また、本発明によれば、前記製造方法で使用される新規な中間体が提供される。
なお、2019年07月02日に出願された日本特許出願2019-124015号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The present invention provides a novel production method capable of efficiently synthesizing a fluoroalkyl group-containing compound such as a fluorine-containing amino acid. According to the production method according to the present invention, the deprotection of the carboxy group and the deprotection of the amino group proceed easily, so that the fluoroalkyl group-containing compound can be efficiently synthesized. Further, according to the present invention, a novel intermediate used in the above-mentioned production method is provided.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-124015 filed on July 02, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.
なお、2019年07月02日に出願された日本特許出願2019-124015号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The present invention provides a novel production method capable of efficiently synthesizing a fluoroalkyl group-containing compound such as a fluorine-containing amino acid. According to the production method according to the present invention, the deprotection of the carboxy group and the deprotection of the amino group proceed easily, so that the fluoroalkyl group-containing compound can be efficiently synthesized. Further, according to the present invention, a novel intermediate used in the above-mentioned production method is provided.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-124015 filed on July 02, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.
Claims (26)
- 下記一般式(3)
R1は、下記一般式(p-1)
下記一般式(2)
で表される化合物と、下記一般式(8)
で表される化合物を、金属フッ化物の存在下で反応させて、下記一般式(2-2)
で表される化合物を製造し、次いで、
前記一般式(2-2)で表される化合物を脱水反応に付して、前記一般式(3)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (3)
R 1 is the following general formula (p-1).
The following general formula (2)
The compound represented by and the following general formula (8)
The compound represented by is reacted in the presence of metal fluoride, and the following general formula (2-2)
Produce the compound represented by, and then
A method for producing a fluoroalkyl group-containing compound, which comprises subjecting the compound represented by the general formula (2-2) to a dehydration reaction to produce the compound represented by the general formula (3). - 下記一般式(3)
R1は、下記一般式(p-1)
下記一般式(2)
で表される化合物と、下記一般式(8)
で表される化合物を、金属フッ化物の存在下で反応させて、下記一般式(2-1)
前記一般式(2-1)で表される化合物を脱水反応に付して、前記一般式(3)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (3)
R 1 is the following general formula (p-1).
The following general formula (2)
The compound represented by and the following general formula (8)
The compound represented by is reacted in the presence of metal fluoride, and the following general formula (2-1)
A method for producing a fluoroalkyl group-containing compound, which comprises subjecting the compound represented by the general formula (2-1) to a dehydration reaction to produce the compound represented by the general formula (3). - 前記R1が、ベンジル基である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein R 1 is a benzyl group.
- 前記Rfが、少なくとも2個のフッ素原子で置換されており、フッ素原子以外のハロゲン原子でさらに置換されていてもよいC1-10アルキル基(当該C1-10アルキル基がC2-10アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)である、請求項1~3のいずれか一項に記載の製造方法。 Wherein Rf is substituted with at least two fluorine atoms, further optionally substituted C 1-10 alkyl group (said C 1-10 alkyl group C 2-10 alkyl with a halogen atom other than a fluorine atom The production method according to any one of claims 1 to 3, wherein when it is a group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms).
- 前記一般式(2)で表される化合物と、前記一般式(8)で表される化合物を、金属フッ化物の存在下で反応させて、前記一般式(2-1)又は前記一般式(2-2)で表される化合物を製造する反応を、10℃以下の温度で行う、請求項1~4のいずれか一項に記載の製造方法。 The compound represented by the general formula (2) and the compound represented by the general formula (8) are reacted in the presence of a metal fluoride to form the general formula (2-1) or the general formula (2). The production method according to any one of claims 1 to 4, wherein the reaction for producing the compound represented by 2-2) is carried out at a temperature of 10 ° C. or lower.
- 下記一般式(6-1)
R1は、下記一般式(p-1)
請求項1~5のいずれか一項に記載の製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、下記一般式(9)又は(10)
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5)
で表される化合物を製造し、
前記一般式(5)で表される化合物の保護基R2を脱保護して、前記一般式(6-1)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (6-1)
R 1 is the following general formula (p-1).
The compound represented by the general formula (3) is produced by the production method according to any one of claims 1 to 5.
The compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5) is applied.
Manufacture the compound represented by
The protecting group R 2 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-1), the production method of the fluoroalkyl group-containing compound .. - 前記R2が、tert-ブトキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基である、請求項6に記載の製造方法。 The production method according to claim 6, wherein R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
- 下記一般式(7)
請求項6又は7に記載の製造方法により、前記一般式(6-1)で表される化合物を製造し、
前記一般式(6-1)で表される化合物の保護基R1を脱保護して、前記一般式(7)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (7)
The compound represented by the general formula (6-1) is produced by the production method according to claim 6 or 7.
The protecting group R 1 of the compound represented by the general formula (6-1) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound .. - 下記一般式(6-2)
請求項1~5のいずれか一項に記載の製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、下記一般式(9)又は(10)
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5)
で表される化合物を製造し、
前記一般式(5)で表される化合物の保護基R1を脱保護して、前記一般式(6-2)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (6-2)
The compound represented by the general formula (3) is produced by the production method according to any one of claims 1 to 5.
The compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5) is applied.
Manufacture the compound represented by
The protecting group R 1 of the compound represented by the general formula (5) is deprotected, which comprises preparing a compound represented by the general formula (6-2), the production method of the fluoroalkyl group-containing compound .. - 前記R2がtert-ブトキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基である、請求項9に記載の製造方法。 The production method according to claim 9, wherein R 2 is a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
- 下記一般式(7)
請求項9又は10に記載の製造方法により、前記一般式(6-2)で表される化合物を製造し、
前記一般式(6-2)で表される化合物の保護基R2を脱保護して、前記一般式(7)で表される化合物を製造することを含む、フルオロアルキル基含有化合物の製造方法。 The following general formula (7)
The compound represented by the general formula (6-2) is produced by the production method according to claim 9 or 10.
The protecting group R 2 of the compound represented by the general formula (6-2) by deprotecting comprises producing a compound represented by the general formula (7), the production method of the fluoroalkyl group-containing compound .. - 下記一般式(6-3)
請求項1~5のいずれか一項に記載の製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、下記一般式(9)又は(10)
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5-1)
前記一般式(5-1)で表される化合物の保護基R2を脱保護して、前記一般式(6-3)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (6-3)
The compound represented by the general formula (3) is produced by the production method according to any one of claims 1 to 5.
The compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5-1) is applied.
Formula (5-1) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-3), optically active A method for producing a fluoroalkyl group-containing compound. - 下記一般式(6-3)
請求項6に記載の製造方法により、前記一般式(6-1)で表される化合物を製造し、
前記一般式(6-1)で表される化合物を光学分割して、前記一般式(6-3)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (6-3)
The compound represented by the general formula (6-1) is produced by the production method according to claim 6.
An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-1) to produce an optically active compound represented by the general formula (6-3). Manufacturing method. - 下記一般式(7-1)
請求項12又は13に記載の製造方法により、前記一般式(6-3)で表される光学活性な化合物を製造し、
前記一般式(6-3)で表される光学活性な化合物の保護基R1を脱保護して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (7-1)
The optically active compound represented by the general formula (6-3) is produced by the production method according to claim 12 or 13.
The protecting group R 1 of the optically active compound represented by the general formula (6-3) by deprotecting comprises producing an optically active compound represented by the general formula (7-1), A method for producing an optically active fluoroalkyl group-containing compound. - 下記一般式(6-4)
請求項1~5のいずれか一項に記載の製造方法により、前記一般式(3)で表される化合物を製造し、
前記一般式(3)で表される化合物を、下記一般式(9)又は(10)
前記一般式(4)で表される化合物を還元反応に付して、下記一般式(5-1)
前記一般式(5-1)で表される化合物の保護基R1を脱保護して、前記一般式(6-4)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (6-4)
The compound represented by the general formula (3) is produced by the production method according to any one of claims 1 to 5.
The compound represented by the general formula (3) is a compound represented by the following general formula (9) or (10).
The compound represented by the general formula (4) is subjected to a reduction reaction, and the following general formula (5-1) is applied.
Formula (5-1) the protecting group R 1 of a compound represented by deprotecting comprises producing an optically active compound represented by the general formula (6-4), optically active A method for producing a fluoroalkyl group-containing compound. - 下記一般式(6-4)
請求項9に記載の製造方法により、前記一般式(6-2)で表される化合物を製造し、
前記一般式(6-2)で表される化合物を光学分割して、前記一般式(6-4)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (6-4)
The compound represented by the general formula (6-2) is produced by the production method according to claim 9.
An optically active fluoroalkyl group-containing compound comprising the optical resolution of the compound represented by the general formula (6-2) to produce an optically active compound represented by the general formula (6-4). Manufacturing method. - 下記一般式(7-1)
請求項15又は16に記載の方法により、前記一般式(6-4)で表される光学活性な化合物を製造し、
前記一般式(6-4)で表される化合物の保護基R2を脱保護して、前記一般式(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (7-1)
The optically active compound represented by the general formula (6-4) is produced by the method according to claim 15 or 16.
Formula (6-4) the protecting group R 2 of the compound represented by deprotecting comprises producing an optically active compound represented by the general formula (7-1), optically active A method for producing a fluoroalkyl group-containing compound. - 下記一般式(7-1)
請求項8又は11に記載の方法により、前記一般式(7)で表される化合物を製造し、
前記一般式(7)で表される化合物を光学分割して、前記(7-1)で表される光学活性な化合物を製造することを含む、光学活性なフルオロアルキル基含有化合物の製造方法。 The following general formula (7-1)
The compound represented by the general formula (7) is produced by the method according to claim 8 or 11.
A method for producing an optically active fluoroalkyl group-containing compound, which comprises optically resolving the compound represented by the general formula (7) to produce an optically active compound represented by the above (7-1). - 下記一般式(3a)
R1は、下記一般式(p-1)
R 1 is the following general formula (p-1).
- 下記一般式(4a)
R1は、下記一般式(p-1)
R2Aは、下記一般式(p-2)
R 1 is the following general formula (p-1).
R 2A is the following general formula (p-2).
- 下記一般式(5a)
R1は、下記一般式(p-1)
R2Aは、下記一般式(p-2)
R 1 is the following general formula (p-1).
R 2A is the following general formula (p-2).
- 下記一般式(5-1a)
- 下記一般式(6-1a)
R1は、下記一般式(p-1)
R 1 is the following general formula (p-1).
- 下記一般式(6-3a)
- 下記一般式(6-2a)
R2Aは、下記一般式(p-2)
R 2A is the following general formula (p-2).
- 下記一般式(6-4a)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124015A JP2022126890A (en) | 2019-07-02 | 2019-07-02 | Fluoroalkyl group-containing compound and method for producing the same |
JP2019-124015 | 2019-07-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021002407A1 true WO2021002407A1 (en) | 2021-01-07 |
Family
ID=74101347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025910 WO2021002407A1 (en) | 2019-07-02 | 2020-07-01 | Fluoroalkyl group-containing compound and production method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022126890A (en) |
WO (1) | WO2021002407A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023048236A1 (en) | 2021-09-22 | 2023-03-30 | Agc株式会社 | Peptide |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004534014A (en) * | 2001-04-16 | 2004-11-11 | ユニバーシティ オブ バージニア パテント ファウンデーション | New oral general anesthetics and metabolic resistant anticonvulsants |
WO2013052393A1 (en) * | 2011-10-05 | 2013-04-11 | Merck Sharp & Dohme Corp. | 3-PYRIDYL CARBOXAMIDE-CONTAINING SPLEEN TYROSINE KINASE (Syk) INHIBITORS |
WO2016132805A1 (en) * | 2015-02-16 | 2016-08-25 | セントラル硝子株式会社 | PRACTICAL PROCESSES FOR PRODUCING FLUORINATED α-KETOCARBOXYLIC ESTERS AND ANALOGUES THEREOF |
WO2018074565A1 (en) * | 2016-10-21 | 2018-04-26 | 塩野義製薬株式会社 | Nitrogen-containing 6-membered heterocycle derivative and pharmaceutical composition containing same |
-
2019
- 2019-07-02 JP JP2019124015A patent/JP2022126890A/en active Pending
-
2020
- 2020-07-01 WO PCT/JP2020/025910 patent/WO2021002407A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004534014A (en) * | 2001-04-16 | 2004-11-11 | ユニバーシティ オブ バージニア パテント ファウンデーション | New oral general anesthetics and metabolic resistant anticonvulsants |
WO2013052393A1 (en) * | 2011-10-05 | 2013-04-11 | Merck Sharp & Dohme Corp. | 3-PYRIDYL CARBOXAMIDE-CONTAINING SPLEEN TYROSINE KINASE (Syk) INHIBITORS |
WO2016132805A1 (en) * | 2015-02-16 | 2016-08-25 | セントラル硝子株式会社 | PRACTICAL PROCESSES FOR PRODUCING FLUORINATED α-KETOCARBOXYLIC ESTERS AND ANALOGUES THEREOF |
WO2018074565A1 (en) * | 2016-10-21 | 2018-04-26 | 塩野義製薬株式会社 | Nitrogen-containing 6-membered heterocycle derivative and pharmaceutical composition containing same |
Non-Patent Citations (2)
Title |
---|
BRAVO PIERFRANCESCO, FUSTERO SANTOS, GUIDETTI MAURIZIA, VOLONTERIO ALESSANDRO, ZANDA MATTEO: "Stereoselective Mannich-type Reaction of an acyclic ketimine with a substituted chlorotitanium enolate: Efficient approach to D-erythro-alpha-trifluoromethyl-beta- hydroxyaspartic units", JOURNAL OF ORGANIC CHEMISTRY, vol. 64, no. 23, 1999, pages 8731 - 8735, XP055784212 * |
CRUCIANELLI MARCELLO, BRAVO PIERFRANCESCO, ARNONE ALBERTO, CORRADI ELEONORA, MEILLE STEFANO V., ZANDA MATTEO: "The "Non-Oxidative" Pummerer Reaction: Conclusive Evidence for SN2-Type Stereoselectivity, Mechanistic Insight, and Synthesis of Enantiopure l-α-Trifluoromethylthreoninate and d-α-Trifluoromethyl-allo-threoninate1", JOURNAL OF ORGANIC CHEMISTRY, vol. 65, no. 10, 2000, pages 2965 - 2971, XP055784215 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023048236A1 (en) | 2021-09-22 | 2023-03-30 | Agc株式会社 | Peptide |
Also Published As
Publication number | Publication date |
---|---|
JP2022126890A (en) | 2022-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Uozumi et al. | Catalytic asymmetric construction of morpholines and piperazines by palladium-catalyzed tandem allylic substitution reactions | |
CN103080072A (en) | New process for the preparation of intermediates useful for the manufacture NEP inhibitors | |
JP7545690B2 (en) | Peptides and methods for producing same | |
JPWO2015037460A1 (en) | Process for producing optically active 3- (biphenyl-4-yl) -2-[(t-butoxycarbonyl) amino] propan-1-ol | |
NZ521265A (en) | Synthesis of 3,3-diarylpropylamine derivatives from 4-hydroxybenzoic acid or its esters | |
JP2007182419A (en) | Proline derivative and optically active anti-selection promoting catalyst | |
WO2021002407A1 (en) | Fluoroalkyl group-containing compound and production method therefor | |
KR100261361B1 (en) | Process of optically active 2-halo-1-(substituted phenyl)ethanol and optically active substituted styrene oxide, and method of promoting the optical purity of production of optically active 2-halo-1-(substituted phenyl)ethanol produced by the process | |
CN103429567A (en) | Process for preparing chiral amino acids | |
KR101871567B1 (en) | METHOD FOR SYNTHESIZING β-AMINO-DITHIOESTER COMPOUND AND β-AMINO-DITHIOESTER COMPOUND SYNTHESIZED BY THE METHOD | |
WO2020064818A1 (en) | Process for the preparation of sphingosine-1-phosphate receptor agonist | |
EP3599234B1 (en) | Stereoselective process | |
WO2008135386A1 (en) | Chiral ligands of the n-heterocyclic carbene type for asymmetrical catalysis | |
US20040030144A1 (en) | Optically active amine derivative and method of synthesis | |
Zhang et al. | Synthesis of Diastereomeric 1, 4‐Diphosphine Ligands Bearing Imidazolidin‐2‐one Backbone and Their Application in Rh (I)‐Catalyzed Asymmetric Hydrogenation of Functionalized Olefins | |
JP2008007457A (en) | POST-TREATMENT METHOD OF beta-HYDROXYCARBONYL COMPOUND | |
WO2011111762A1 (en) | Method for producing diaryl derivative, novel binaphthyl derivative, method for producing arene derivative and novel arene derivative | |
JP4987197B2 (en) | Process for producing optically active trihaloanilino derivative and optically active phosphine ligand | |
CN102933589A (en) | Strecker reagents, their derivatives, methods for forming the same and improved strecker reaction | |
KR101641386B1 (en) | Chiral salicyl aldehydes and chiral naphthol aldehydes for optical conversion of amino acids and optical resolution of amino acids and amino alcohols | |
JP3778843B2 (en) | Optically active amine derivatives and synthetic methods | |
KR20160008873A (en) | Novel beta-sulfinamino malonate derivatives and process for preparing the same, and process for preparing sitagliptin using the same | |
US8013171B2 (en) | Axially asymmetric ester compound and production method thereof | |
JP2004075609A (en) | Optically active amino acid derivative and method for producing the same | |
PL240154B1 (en) | N,O-Disubstituted quinuclidine compounds, method of their preparation and their use as catalysts for PTC processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20834396 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20834396 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |