WO2021090371A1 - Power reception and distribution system - Google Patents
Power reception and distribution system Download PDFInfo
- Publication number
- WO2021090371A1 WO2021090371A1 PCT/JP2019/043332 JP2019043332W WO2021090371A1 WO 2021090371 A1 WO2021090371 A1 WO 2021090371A1 JP 2019043332 W JP2019043332 W JP 2019043332W WO 2021090371 A1 WO2021090371 A1 WO 2021090371A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- control unit
- converter
- command
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/12—Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to a power receiving and distribution system.
- a DC distribution system is formed by using electric power received from an AC system or a storage power source such as a storage battery or a solar cell. Therefore, the power receiving and distribution system forming the DC power distribution system includes a plurality of power converters. If each of the plurality of power converters included in the power receiving and distribution system directly tries to control the voltage of the DC distribution system to a constant value, a control mismatch occurs among the plurality of power converters. This causes problems such as vibration of the voltage of the DC distribution system or cross flow between a plurality of power converters. As a result, the power loss increases and the equipment connected to the DC distribution system may be adversely affected.
- control interference and control mismatch are performed by giving different voltage commands to each power converter and dividing the section in which each power converter performs voltage control. Is suppressed.
- the power receiving and distribution system of Patent Document 1 needs to allocate DC voltage commands as many as the number of power converters. Therefore, when the amount of fluctuation of the voltage of the DC distribution system is controlled to be a certain value, the difference between the voltage commands assigned to each power converter becomes small. As a result, each power converter reacts sensitively to a small voltage fluctuation and tries to control the voltage. As a result, control interference may occur between the plurality of power converters, which may lead to voltage vibration and the like.
- an object of the present invention is to provide a power receiving and distribution system including a plurality of power converters capable of stably supplying electric power to a load via a DC system.
- the present invention is a power receiving and distribution system including at least one AC / DC converter and at least one DC / DC converter.
- the AC / DC converter includes an AC / DC converter main circuit unit connected to an AC system and a DC system, and an AC / DC converter control unit that controls the AC / DC converter main circuit unit.
- the AC / DC converter control unit includes a first DC voltage control unit configured to control the DC voltage of the DC system.
- the DC / DC converter includes a DC / DC converter main circuit unit connected to the DC system and the storage power supply, and a DC / DC converter control unit that controls the DC / DC converter main circuit unit.
- the DC / DC converter control unit includes a second DC voltage control unit configured to control the DC voltage of the DC system. The first DC voltage control unit and the second DC voltage control unit control the DC voltage of the DC system in different periods from each other.
- the electric power to the load is transmitted to the load via the DC system. It can be stably supplied.
- FIG. It is a block diagram of the power receiving and distribution system which concerns on Embodiment 1.
- FIG. It is a figure which shows an example of the control block of the resonance suppression control part 221a and 321a in Embodiment 1.
- FIG. It is a flowchart which shows an example of the processing procedure in the vibration determination part 222a, 322a of Embodiment 1.
- FIG. It is a block diagram of the power receiving and distribution system which concerns on Embodiment 2.
- FIG. It is a block diagram of the power receiving and distribution system which concerns on Embodiment 3.
- FIG. It is a figure which shows the input / output characteristic in the DC voltage control part 323b of the DC / DC converter 3b in Embodiment 3.
- FIG. It is a figure which shows the control block of the resonance suppression control part 221b of the AC / DC converter 2b in Embodiment 3.
- FIG. It is a figure which shows the control block of the resonance suppression control part 321b of the DC / DC converter 3b in Embodiment 3.
- FIG. It is a flowchart which shows the procedure of the process in the vibration determination part 222b, 322b in Embodiment 3. It is a block diagram of the power receiving and distribution system in Embodiment 4.
- FIG. 1 It is a figure which shows the control characteristic of the DC voltage control part 223c of the AC / DC converter 2c in Embodiment 4.
- FIG. 2 It is a figure which shows the control characteristic of the DC voltage control part 323c of the DC / DC converter 3c in Embodiment 4.
- FIG. 1 It is a figure which shows the control characteristic of the DC voltage control part 323c of the DC / DC converter 3c in Embodiment 4.
- FIG. 1 is a configuration diagram of a power receiving and distribution system according to the first embodiment.
- the power receiving and distribution system supplies the power received from the AC system 11 or the plurality of storage power sources 41 to the plurality of loads 51.
- the creation power supply 41 is, for example, a stationary battery such as a lead storage battery, a lithium ion battery (hereinafter referred to as LiB), or an electric vehicle (hereinafter referred to as EV) that is allowed to be charged and discharged from a built-in battery. It is one of a power supply (referred to as), a fuel cell, and a solar cell.
- the power receiving and distribution system includes a plurality of AC / DC converters 2a and a plurality of DC / DC converters 3a.
- the AC / DC converter 2a and the DC / DC converter 3a may be referred to as power converters, respectively.
- the DC voltage of the DC system 61 is controlled by the power receiving and distribution system.
- the DC system 61 supplies DC power to a plurality of loads 51 installed in a building such as an office building or a factory, or in the vicinity of a building.
- the AC / DC converter 2a is a power converter that exchanges power in both directions between the AC system 11 and the DC system 61.
- the presence or absence of insulation in the AC / DC converter 2a does not matter, but in the present embodiment, it will be described as a non-insulated type.
- a transformer is installed either inside or outside the AC / DC converter 2a. Therefore, although not shown in FIG. 1, an isolation transformer may be arranged between the AC system 11 and the AC / DC converter 2a.
- the AC system 11 may include an AC / DC converter 2a.
- the DC / DC converter 3a is a power converter that interchanges power in both directions between the storage power supply 41 and the DC system 61.
- the presence or absence of insulation in the DC / DC converter 3a does not matter, but in the present embodiment, it will be described as an insulated type. This is because when the storage power supply 41 is an EV power supply device, it is preferable to insulate the DC system 61 and the storage power supply 41 from the viewpoint of safety.
- the AC / DC converter 2a includes a sensor unit 23A, a sensor unit 23B, an AC / DC converter main circuit unit 21, and an AC / DC converter control unit 22a.
- the sensor unit 23A measures the voltage and current of the AC system 11 and outputs the voltage information and the current information.
- the sensor unit 23B measures the voltage and current of the DC system 61 and outputs the voltage information and the current information.
- the DC voltage detected by the sensor unit 23B is defined as Vdc_det.
- the AC / DC converter main circuit unit 21 converts the AC power received from the AC system 11 into DC power.
- the AC / DC converter control unit 22a controls the operation of the AC / DC converter main circuit unit 21.
- the AC / DC converter control unit 22a includes an AC system power flow control unit 224, a DC voltage control unit 223a, a resonance suppression control unit 221a, a vibration determination unit 222a, an AC / DC output control unit 225, and a calculation unit 227.
- a select unit 226 is provided.
- the AC system power flow control unit 224 controls the power flow power from the AC system 11 based on the voltage information and current information acquired from the sensor unit 23A and the command acquired from the external control device. Is output.
- the external control device includes an energy management system (EMS), a server for manipulating the state of the equipment of the EV power supply device, an interface for transmitting the user's operation input, and the like.
- EMS energy management system
- the external control device outputs power commands and operation commands while monitoring the states of the power converters 2a and 3a, the load 51, the storage power supply 41, and the like in the power receiving and distribution system.
- the DC voltage control unit 223a controls the DC voltage of the DC system 61 based on the DC voltage command Vdc_ref1 from the external control device and the voltage information and the current information acquired from the sensor unit 23B.
- the command Idc_ref1 is output.
- the resonance suppression control unit 221a extracts the vibration component of the DC voltage of the DC system 61 using the voltage information and the current information acquired from the sensor unit 23B, and outputs a vibration suppression current command Occ_ref1 that cancels the extracted vibration component. To do.
- the vibration determination unit 222a adjusts the parameters of the resonance suppression control unit 221a based on the voltage information and the current information acquired from the sensor unit 23B.
- the calculation unit 227 calculates the DC current command Idc_ref1 from the DC voltage control unit 223a and the vibration suppression current command Occ_ref1 from the resonance suppression control unit 221a, and outputs the combined current command com_ref1 which is the calculation result. This operation includes, for example, addition or subtraction.
- the select unit 226 is output from the power flow current command Tid_ref1 output from the AC system power flow control unit 224 and the calculation unit 227 according to the mode command M1 determined by the external control device or the internal control device of the power receiving and distribution system.
- One of the combined current commands com_ref1 is selected and output to the AC / DC output control unit 225.
- the AC / DC output control unit 225 determines the operation command of the AC / DC converter main circuit unit 21 according to the current command sent from the select unit 226.
- the DC / DC converter 3a includes a sensor unit 33A, a sensor unit 33B, a DC / DC converter main circuit unit 31, and a DC / DC converter control unit 32a.
- the sensor unit 33A measures the state, voltage, and current of the storage power supply 41, and outputs the state information, voltage information, and current information.
- the state information includes the SoC (State of Charge) and the temperature.
- the storage power source 41 is a solar cell
- the state information includes the temperature of the solar cell and the intensity of sunshine applied to the solar cell.
- the sensor unit 33B measures the voltage and current of the DC system 61 and outputs the voltage information and the current information.
- the DC voltage detected by the sensor unit 33B is defined as Vdc_det.
- the DC / DC converter main circuit unit 31 converts the DC power received from the storage power supply 41 into DC power suitable for output to the DC system 61.
- the DC / DC converter control unit 32a controls the operation of the DC / DC converter main circuit unit 31.
- the DC / DC converter control unit 32a includes a storage power supply control unit 324, a DC voltage control unit 323a, a resonance suppression control unit 321a, a vibration determination unit 322a, a DC / DC output control unit 325, and a calculation unit 327. , With a select unit 326.
- the storage power supply control unit 324 controls the output power or output current from the storage power supply 41 based on the state information of the storage power supply 41 acquired from the sensor unit 33A and the command acquired from the external control device. Outputs the creation current command Cha_ref2.
- the DC voltage control unit 323a outputs the DC current command Idc_ref2 necessary for controlling the DC voltage of the DC system 61 based on the DC voltage command Vdc_ref2 and the voltage information and the current information acquired from the sensor unit 33B.
- the resonance suppression control unit 321a extracts the vibration component of the DC voltage of the DC system 61 based on the voltage information and the current information acquired from the sensor unit 33B, and outputs a vibration suppression current command Occ_ref2 that cancels the extracted vibration component. To do.
- the vibration determination unit 322a adjusts the parameters of the resonance suppression control unit 321a based on the voltage information and the current information acquired from the sensor unit 33B.
- the calculation unit 327 calculates the DC current command Idc_ref2 from the DC voltage control unit 323a and the vibration suppression current command Occ_ref2 from the resonance suppression control unit 321a, and outputs the combined current command com_ref2 which is the calculation result. Operations include, for example, addition or subtraction.
- the select unit 326 is output from the storage current command Cha_ref2 output from the storage power supply control unit 324 and the calculation unit 327 according to the mode command M2 determined by the external control device or the internal control device of the power receiving and distribution system.
- One of the combined current commands com_ref2 is selected and output to the DC / DC output control unit 325.
- the DC / DC output control unit 325 determines the operation command of the DC / DC converter main circuit unit 31 according to the current command sent from the select unit 326.
- the sensor units 23A, 23B, 33A, and 33B have sensors that detect the voltage and current at the installation location, and the voltage information representing the detected voltage and the current information representing the detected current are the interface specifications of each power converter. It is converted to an appropriate signal along with and output.
- the DC voltage control unit 223a of the AC / DC converter 2a and the DC voltage control unit 323a of the DC / DC converter 3a adjust their respective output currents while monitoring the voltage of the DC system 61. Controls the DC voltage of the DC system 61.
- the voltage of the DC system 61 diverges or diverges due to the control mismatch between the plurality of power converters. There is a problem of vibration or a problem of cross currents occurring between a plurality of power converters. This may adversely affect other devices connected to the DC system 61.
- the AC / DC converter 2a and the DC / DC converter 3a try to control the voltage of the DC system 61, each detects the voltage difference between the voltage of the DC system 61 and the DC voltage command, and determines the voltage difference. Attempts to output the corresponding current. However, since there is a difference in the rising speed of the current between the AC / DC converter 2a and the DC / DC converter 3a, the difference in the speed causes an overshoot in the voltage of the DC system 61, and the voltage difference remains transiently. .. If such an operation occurs repeatedly, the voltage of the DC system 61 may vibrate.
- one of the plurality of AC / DC converters 2a and the plurality of DC / DC converters 3a controls the DC voltage by the operation of the mode commands M1 and M2 and the select units 226 and 326. Avoids control mismatches.
- the input section of the AC / DC converter 2a and the DC / DC converter 3a includes a filter circuit composed of an inductor and a smoothing capacitor.
- the filter circuit smoothes the ripple components of the voltage and current generated by the switching operation of each power converter.
- a resonant circuit may be formed between the smoothing capacitor and the inductor connected to the same distribution line. If the resonant frequency of the resonant circuit matches or is close to the control response of the power converter, the terminal voltage of the resonant circuit, i.e. the voltage across the smoothing capacitor, can oscillate.
- the voltage vibration of the smoothing capacitor may transiently occur.
- the smoothing capacitor itself or the power converter or load 51 connected to the smoothing capacitor may be damaged by the overvoltage.
- the life of the capacitor may be shortened due to an increase in loss due to the current generated by resonance.
- the AC / DC converter control unit 22a includes the DC voltage control unit 223a and the resonance suppression control unit 221a, and the DC / DC converter control unit 32a has the DC voltage control unit 323a and the resonance suppression control. Includes part 321a.
- the resonance suppression control unit 221a and the resonance suppression are particularly limited.
- the control characteristics of the control unit 321a may not be matched.
- the operation of the resonance suppression control unit 221a and the operation of the resonance suppression control unit 321a may interfere with each other, and the voltage vibration in the DC system 61 may increase.
- each power converter extracts a vibration component of the voltage and tries to output a current that cancels it.
- the phase or amplitude of the current actually output between the plurality of power converters may deviate. Differences in the phase or amplitude of the output current from each power converter cause additional voltage oscillations at different frequencies. When such a phenomenon occurs repeatedly, there is a concern that the voltage vibration expands and the control becomes unstable. Further, when each of the plurality of power converters outputs a current that cancels the voltage vibration, there is a concern that the current flowing through the DC system 61 becomes excessive, and conversely, the voltage vibration is increased.
- the power converter that performs the DC voltage control and the resonance suppression control is only one of the plurality of AC / DC converters 2a and the plurality of DC / DC converters 3a.
- the mode command M1 in the plurality of AC / DC converters 2a and the mode command M2 in the plurality of DC / DC converters 3a are set.
- matching of control characteristics between a plurality of AC / DC converters 2a by parallel operation of the plurality of AC / DC converters 2a can be performed by adjusting the gain or the like.
- matching of control characteristics between a plurality of DC / DC converters 3a by parallel operation of the plurality of DC / DC converters 3a can be performed by adjusting the gain or the like.
- the power converter that performs DC voltage control and resonance suppression control is determined by the initial settings when the power receiving and distribution system is started, and the power receiving and distributing system is operating according to the state of the power receiving and distribution system and the load 51. You may also switch to.
- FIG. 2 is a diagram showing an example of the control blocks of the resonance suppression control units 221a and 321a according to the first embodiment.
- the resonance suppression control units 221a and 321a include a filter unit 910 and a gain unit 912.
- the detection values Vdc_det and Vdc_det of the DC voltage of the DC system 61 are input to the resonance suppression control units 221a and 321a.
- the filter unit 910 is implemented by, for example, a high-pass filter (hereinafter referred to as HPF).
- HPF high-pass filter
- the gain unit 912 transfers the correction power commands Idamp1 and Idamp2 obtained by multiplying the voltage vibration component extracted by the filter unit 910 and the gain to the AC / DC output control unit 225 and the DC / DC output control unit 325. Output. This makes it possible to calculate the correction power that suppresses the voltage vibration.
- the cutoff frequency is specified by the vibration determination units 222a and 322a.
- the cutoff frequency varies depending on the connection state of the load 51 and the power converter in the DC system 61.
- the vibration determination units 222a and 322a extract the vibration components of the voltage of the DC system 61, and among the extracted vibration components, the filter unit 910 responds to the frequency of the vibration component having an amplitude larger than a predetermined value. Set the cutoff frequency.
- the gain unit 912 may also specify the gain from the vibration determination units 222a and 322a. Further, particularly when the resonance suppression control units 221a and 321a are used to control the virtual resistance component, the filter unit 910 may be omitted and the resonance suppression control units 221a and 321a may be configured only by the gain unit 912. is there. In such a case, the vibration determination units 222a and 322a extract the vibration component of the voltage of the DC system 61, and the gain of the gain unit 912 is set so that the extracted vibration component becomes smaller than a predetermined value. Set.
- the AC / DC output control unit 225 outputs a control signal of the AC / DC converter main circuit unit 21 based on the current command output from the select unit 226.
- the AC / DC output control unit 225 outputs the current command by the limiter operation to the output current lower limit value I1min. It is controlled so as to be within the range of the above and the output current upper limit value I1max or less.
- the DC / DC output control unit 325 outputs a control signal of the DC / DC converter main circuit unit 31 based on the current command output from the select unit 326.
- the DC / DC output control unit 325 outputs the current command by the limiter operation to the output current lower limit value I2min. It is controlled so as to be within the range of the above and the output current upper limit value I2max or less.
- the storage power supply control unit 324 of the DC / DC converter 3a is performing the storage power supply control.
- the target or control method of the storage power supply control unit 324 differs depending on the type of the storage power supply 41 to be connected.
- the storage power supply control unit 324 includes a controller that controls the SoC of the storage battery to a constant value or controls the charge / discharge power when a storage battery such as a LiB or a lead storage battery is connected as the storage power supply 41.
- the creation power supply control unit 324 includes an MPPT (Maximum Power Point Tracking) controller that controls the terminal voltage of the solar cell so that the solar cell can generate electricity efficiently when the solar cell is connected as the creation power supply 41.
- MPPT Maximum Power Point Tracking
- the higher-level controller senses the power purchased from the AC system 11 and determines the power command to be taken out from the storage power supply 41. As a result, it is possible to carry out peak cut or peak shift of the purchased power.
- an output power command is transmitted from the host controller to each DC / DC converter 3a, and the storage power supply control unit 324 of each DC / DC converter 3a can charge / discharge the power according to the output power command. It controls the connected storage power supply 41.
- the AC system power flow control unit 224 of the AC / DC converter 2a is performing the AC system power flow control.
- the AC system power flow control unit 224 receives power from the AC system 11 based on the voltage information and current information acquired from the sensor unit 23A and the command acquired from the external control device. And control the reactive power. By this control, the power purchased from the AC system 11 can be adjusted, and functions such as peak cut or peak shift can be realized.
- the upper controller monitors the voltage of the AC system 11, and when an increase or decrease in the voltage is confirmed, the reactive power according to the fluctuation amount of the voltage.
- the command is output to the AC / DC converter 2a.
- the AC / DC converter 2a AC system power flow control unit 224 adjusts the power flow invalid power to the AC system 11 based on the reactive power command.
- the mode command M1 and the mode are implemented so that either of the plurality of AC / DC converters 2a or the plurality of DC / DC converters 3a is executed.
- Command M2 is set.
- the mode command M1 of the plurality of AC / DC converters 2a is common.
- the mode command M2 of the plurality of DC / DC converters 3a is common. That is, the DC voltage control unit 223a and the DC voltage control unit 323a operate in different periods, and the resonance suppression control unit 221a and the resonance suppression control unit 321a operate in different periods.
- the select unit 226 switches between the tidal current power control mode and the voltage control mode based on the mode command M1.
- the select unit 226 selects the output of the AC system power flow control unit 224 so that the AC / DC converter main circuit unit 21 is controlled based on the operation of the AC system power flow control unit 224.
- the select unit 226 selects the output of the calculation unit 227 so that the AC / DC converter main circuit unit 21 is controlled based on the operations of the resonance suppression control unit 221a and the DC voltage control unit 223a. ..
- the select unit 326 switches between the storage power supply control mode and the voltage control mode based on the mode command M2.
- the select unit 326 selects the output of the storage power supply control unit 324 so that the DC / DC converter main circuit unit 31 is controlled based on the operation of the storage power supply control unit 324. ..
- the select unit 326 selects the output of the calculation unit 327 so that the DC / DC converter main circuit unit 31 is controlled based on the operations of the resonance suppression control unit 321a and the DC voltage control unit 323a. ..
- the mode selection in the mode command M1 and the mode command M2 can be initially set according to the desire to control the tidal current power of the AC system 11 or the state of the storage power supply 41.
- the mode command M1 and the mode command M2 may be set by an external control device such as a server, or may be set by an internal control device of the power receiving and distribution system according to the operating state in the power receiving and distribution system. May be.
- the DC / DC converter 3a fails, or the storage power supply 41.
- the SoC of LiB decreases, the output of the DC / DC converter 3a stops.
- the voltage of the DC system 61 cannot be maintained.
- the external control device or the internal control device of the power receiving and distribution system detects the voltage drop of the DC system 61 and switches the mode command M1 from the tidal current power control mode to the voltage control mode.
- the plurality of AC / DC converters 2a also perform DC voltage control and resonance suppression control.
- the load 51 connected to the DC system 61 is AC / DC.
- the voltage Vdc of the DC system 61 becomes smaller than the voltage command Vdc_ref1.
- the external control device or the control device inside the power receiving and distribution system detects a drop or rise in the voltage of the DC system 61 and changes the mode command M2 from the storage power supply control mode to the voltage control mode. Switch.
- the plurality of DC / DC converters 3a also perform DC voltage control and resonance suppression control.
- the mode command M2 of the DC / DC converter 3a is switched to the voltage control mode, it is necessary to saturate the output current of the AC / DC converter 2a so that the resonance suppression control unit 221a does not operate. Therefore, when the voltage of the DC system 61 can be controlled by the DC voltage command Vdc_ref2 of the DC / DC converter 3a, the DC voltage command Vdc_ref2 of the DC / DC converter 3a is set so that the output current of the AC / DC converter 2a continues to be saturated. , It is necessary to set the value smaller than the DC voltage command Vdc_ref1 of the AC / DC converter 2a.
- the DC / DC converter 3a starts voltage control so that the voltage Vdc of the DC system 61 becomes the voltage command Vdc_ref2, and the DC system 61 Output power to.
- the power of the load 51 is the sum of the output of the AC / DC converter 2a and the output of the DC / DC converter 3a, but since Vdc ⁇ Vdc_ref1, the AC / DC converter 2a outputs the maximum output current. to continue.
- the AC / DC converter 2a holds the DC voltage, so that the output current becomes the maximum value. At this time, the AC / DC converter 2a is in a state in which the resonance suppression control unit 221a does not have enough power to output the power for correcting the voltage vibration.
- control interference does not occur between the AC / DC converter 2a and the DC / DC converter 3a, and the voltage of the DC system 61 can be stably controlled including voltage vibration due to resonance.
- the resonance suppression control units 221a and 321a extract the voltage vibration generated by the resonance by the filter unit 910, and calculate the correction power commands Idamp1 and Idamp2 based on the extracted voltage vibration components.
- the type and number of loads 51 connected to the DC system 61 are undefined, and the connection state of the loads 51 may change sequentially according to the operating status.
- the values of the capacitors and inductors connected to the DC system side of the load 51 vary depending on the type of the load 51. Therefore, the resonance frequency of the resonance circuit in the DC system 61 may fluctuate from moment to moment depending on the operating state.
- the vibration determination units 222a and 322a correct the cutoff frequency, which is the control constant of the filter unit 910, in the direction in which the vibration component is reduced by analyzing the amplitude and frequency component of the voltage vibration.
- FIG. 3 is a flowchart showing an example of the processing procedure in the vibration determination units 222a and 322a of the first embodiment.
- This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, every time a start flag for starting processing is generated).
- the behavior of the vibration determination unit 222a is started is set in advance by a user operation.
- the start flag may be generated when the amplitude of the DC voltage of the DC system 61 does not fluctuate beyond the set threshold value during the set period.
- the start flag may be generated after a lapse of a set time after the fluctuations.
- the vibration determination units 222a and 322a perform vibration extraction processing.
- the vibration determination units 222a and 322a extract vibration components included in the DC voltage detection values Vdc_ref1 and Vdc_ref2 output from the sensor units 23B and 33B.
- a digital filter such as HPF is used.
- the digital filter attenuates a frequency component sufficiently lower than the resonance frequency, and extracts a voltage vibration component in which a sufficiently low frequency component such as a DC component is cut off.
- the vibration determination units 222a and 322a perform vibration component analysis processing.
- the vibration determination units 222a and 322a determine the frequency component by frequency-analyzing the voltage vibration component having an amplitude larger than a predetermined value among the voltage vibration components extracted by the vibration extraction process by using the discrete Fourier transform. Extract.
- the vibration determination units 222a and 322a can limit the control operation so as not to sensitize the parameters to the vibration having a small amplitude.
- the vibration determination units 222a and 322a perform parameter update processing.
- the vibration determination units 222a and 322a set the cutoff frequency of the filter unit 910 based on the frequency information of the vibration component extracted by the vibration component analysis process. For example, the vibration determination units 222a and 322a may set a frequency 5 to 10 times or more lower than the frequency of the signal to be extracted as the cutoff frequency.
- the cutoff frequency in the resonance suppression control unit 221a can be automatically set according to the operating state, so that the voltage of the DC system 61 can be stabilized even when the resonance frequency of the DC system 61 fluctuates. Can be controlled.
- the filter unit 910 is implemented by the HPF, but the present invention is not limited to this.
- the filter unit 910 may be implemented by a bandpass filter (hereinafter referred to as BPF) or a discrete Fourier transform (hereinafter referred to as DFT).
- BPF bandpass filter
- DFT discrete Fourier transform
- the filter unit 910 may be implemented by any combination within the HPF, BPF, and discrete Fourier transform.
- the vibration determination unit 222a may set the frequency of the signal to be extracted to the center frequency of the filter unit 910.
- the power receiving and distribution system includes a plurality of AC / DC converters 2a and a plurality of DC / DC converters 3a, but the present invention is not limited to this.
- the power receiving and distribution system may include one AC / DC converter 2a and one DC / DC converter 3a.
- FIG. 4 is a configuration diagram of the power receiving and distribution system according to the second embodiment.
- the second embodiment differs from the first embodiment in that a plurality of DC / DC converters 3a are classified into a plurality of groups according to the type of storage power source connected to each of the plurality of DC / DC converters 3a.
- the plurality of storage power sources are classified into a first group storage power supply 41A that allows only discharge and a second group storage power supply 41B that allows charging and discharging.
- the first group of storage power sources 41A are, for example, solar cells or fuel cells.
- the second group of storage power supply 41B is, for example, a stationary storage battery such as a lithium ion battery (LiB) or an EV power supply device that allows charging and discharging.
- the type of the storage power supply 41A may be further added.
- a third group of storage power sources capable of high-speed charging and discharging, such as electric double layer capacitors, may be added.
- the DC / DC converter 3aA to which the first group storage power supply 41A is connected is the first group DC / DC converter.
- the DC / DC converter 3aB to which the storage power supply 41B of the second group is connected is the DC / DC converter of the second group.
- the DC voltage control unit and the resonance suppression control unit of the DC / DC converters of different groups operate in different periods from each other.
- the mode command M2 of the DC / DC converter 3aA is set to the voltage control mode
- the mode command M3 of the DC / DC converter 3aB is set to the storage power supply mode
- the mode command M1 of the AC / DC converter 2a controls the power flow.
- it is set to mode.
- the output of the DC / DC converter 3aA may stop and the voltage of the DC system 61 may not be maintained.
- An external control device detects a voltage drop in the DC system 61 and switches the mode command M3 of the DC / DC converter 3aB to the voltage control mode. As a result, DC voltage control and resonance suppression control are also performed in the DC / DC converter 3aB. At this time, since the DC / DC converter 3aA cannot control the output current with respect to the operation amount output from the resonance suppression control unit 321a, control interference occurs between the DC / DC converter 3aA and the DC / DC converter 3aB. Does not occur.
- the AC / DC converter 2a having a DC voltage command Vdc_ref1 different from that of both the DC / DC converter 3aA and the DC / DC converter 3aB is DC.
- the mode command M1 is switched to the voltage control mode by detecting a further drop in the voltage of the system 61. As a result, DC voltage control and resonance suppression control are also performed in all AC / DC converters 2a.
- the DC system 61 by setting different DC voltage commands and mode command switching conditions for each power converter group, the DC system 61 The voltage converter group that controls the voltage can be switched.
- a group of power converters composed of a plurality of AC / DC converters or a plurality of DC / DC converters is classified according to the characteristics of the configured power converters. There is no limit to the number of classifications.
- a plurality of DC / DC converters are divided into groups according to the characteristics of the storage power sources connected to the DC / DC converters, and each is created.
- the voltage of the DC system 61 can be stably controlled including the voltage vibration due to resonance.
- FIG. 5 is a block diagram of the power receiving and distribution system according to the third embodiment.
- a plurality of AC / DC converters 2b mainly control the DC voltage of the DC system 61.
- the plurality of DC / DC converters 3b mainly control the state of the storage power supply 41.
- the plurality of AC / DC converters 2b instead of the DC converter 2b, a plurality of DC / DC converters 3b control the DC voltage of the DC system 61.
- the AC / DC converter 2b does not include the AC system power flow control unit 224 and the select unit 226, and the DC / DC converter 3b does not include the select unit 326.
- the DC / DC converter 3b replaces the DC voltage control unit 323a, the resonance suppression control unit 321a, and the vibration determination unit 322a with the DC voltage control unit 323b, the resonance suppression control unit 321b, and the vibration determination unit. 322b is provided.
- the DC / DC converter 3b includes a calculation unit 328.
- the calculation unit 328 calculates the storage current command Cha_ref2 from the storage power supply control unit 324 and the combined current command com_ref2 from the calculation unit 327. Operations include, for example, addition or subtraction.
- a plurality of DC / DC converters 4b are connected to the DC system 61, and mainly the plurality of DC / DC converters 3b are the DC voltages of the DC system 61. Even if a plurality of AC / DC converters 2b control the power flow state of the AC system and a plurality of DC / DC converters 4b control the state of the storage power supply 41 connected to themselves. Good.
- the DC voltage control unit 223b of the AC / DC converter 2b receives the DC voltage detection value Vdc_det output from the sensor unit 23B and outputs the DC current command Idc_ref1 according to the first droop characteristic.
- FIG. 6 is a diagram showing the input / output characteristics of the DC voltage control unit 223b according to the third embodiment.
- the horizontal axis of the graph of FIG. 6 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 223b.
- the vertical axis of the graph of FIG. 6 is the DC current command Idc_ref1 output from the DC voltage control unit 223b.
- the control characteristic in the DC voltage control unit 223b is the first droop characteristic having an inclination around the DC voltage command Vdc_ref1.
- the first droop characteristic is a characteristic in which the DC current command Idc_ref1 decreases as the voltage detection value Vdc_det of the DC system 61 increases. This characteristic is the same as that of general droop control.
- the detected value Vdc_det of the DC voltage is the voltage command Vdc_ref1
- the DC current command Idc_ref1 becomes zero.
- the detected value Vdc_det of the DC voltage is the upper DC voltage command Vdc_ref2_hi
- the DC current command Idc_ref1 becomes the output current lower limit value I1min.
- the detected value Vdc_det of the DC voltage is the lower DC voltage command Vdc_ref2_lo
- the DC current command Idc_ref1 becomes the output current upper limit value I1max.
- the DC voltage control unit 323b of the DC / DC converter 3b receives the DC voltage detection value Vdc_det output from the sensor unit 33B and outputs the DC current command Idc_ref2 according to the second droop characteristic.
- FIG. 7 is a diagram showing the input / output characteristics of the DC voltage control unit 323b of the DC / DC converter 3b according to the third embodiment.
- the horizontal axis of the graph of FIG. 7 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 323b.
- the vertical axis of the graph of FIG. 7 is the DC current command Idc_ref2 output from the DC voltage control unit 323b.
- the control characteristic in the DC voltage control unit 323b is a second droop characteristic having an inclination around the DC voltage command Vdc_ref1.
- the second droop characteristic is a characteristic in which the DC current command Idc_ref2 decreases as the voltage detection value Vdc_det of the DC system 61 increases.
- the detected value Vdc_det of the DC voltage has a dead band between the lower DC voltage command Vdc_ref2 and the upper DC voltage command Vdc_ref2_hi. In the dead zone, the DC current command Idc_ref2 becomes zero.
- the output current command increases, but in reality In the AC / DC output control unit 225, the output current is limited to the output current upper limit value I1max or less and the output current lower limit value I1min or more.
- the DC voltage control unit 323b of the DC / DC converter 3b is restricted in a range in which the detected value Vdc_det of the DC voltage is larger than the upper DC voltage command Vdc_ref2_hi or smaller than the lower DC voltage command Vdc_ref2_lo.
- the DC voltage command and control characteristics are set so that the voltage of the DC system 61 can be controlled by correcting the output current of the DC / DC converter 3b by outputting the DC current command Idc_ref2 without using it.
- the maximum value of the storage current command Cha_ref2 output from the storage power supply control unit 324 is the output current upper limit.
- the value is set to I2max, and the minimum value of the storage current command Cha_ref2 output from the storage power supply control unit 324 is set to the output current lower limit value I2min.
- the control characteristics of the DC voltage control unit 323b are such that the output current of the DC / DC converter 3b is set to the maximum output in the power running direction and the maximum output in the regeneration direction in consideration of the relationship with the current command output from the storage power supply control unit 324. It is necessary to set the control characteristics so that it can be corrected.
- the DC voltage control unit 223b of the AC / DC converter 2b Perform DC voltage control.
- the DC voltage control of the DC / DC converter 3b Unit 323b performs DC voltage control.
- the AC / DC output control unit 225 causes the AC / DC converter 2b to have a DC with a magnitude of the output current lower limit value I1min. Continues to output the current command Idc_ref1.
- the AC / DC output control unit 225 causes the AC / DC converter 2b to have a magnitude of the output current upper limit value I1max. Continue to output the DC current command Idc_ref1. In these ranges, since the AC / DC converter 2b can be regarded as a constant current source, it cannot be said that the AC / DC converter 2b is performing DC voltage control.
- FIG. 8 is a diagram showing a control block of the resonance suppression control unit 221b of the AC / DC converter 2b according to the third embodiment.
- the parameters from the vibration determination unit 222b to the resonance suppression control unit 221b are output to both the filter unit 910b and the gain unit 912b.
- FIG. 9 is a diagram showing a control block of the resonance suppression control unit 321b of the DC / DC converter 3b according to the third embodiment.
- the resonance suppression control unit 321b of the DC / DC converter 3b is subjected to conditional branching using a comparator. , Switch the operation.
- the low-pass filter 813b passes the low frequency component of the DC voltage detection value Vdc_det.
- the comparator 814b compares the magnitude of the DC voltage detection value Vdc_det output from the low-pass filter 813b with the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b. The comparator 814b outputs "1" when Vdc_det> Vdc_ref2_hi. The comparator 814b outputs "0" when Vdc_det ⁇ Vdc_ref2_hi.
- the comparator 815b compares the magnitude of the DC voltage detection value Vdc_det output from the low-pass filter 813b with the lower DC voltage command Vdc_ref2_lo of the DC / DC converter 3b.
- the comparator 815b outputs "1" when Vdc_det ⁇ Vdc_ref2_lo.
- the comparator 814b outputs "0" when Vdc_det ⁇ Vdc_ref2_lo.
- the OR circuit 816b outputs the logical sum of the output of the comparator 814b and the output of the comparator 815b to the multiplier 817b.
- the multiplier 817b multiplies the output of the gain unit 812b and the output of the OR circuit 816b to output the correction power command Idamp2.
- the AC / DC output control unit 225 causes the AC / DC converter 2b to output current lower limit value I1min. Continues to output the DC current command Idc_ref1 of the magnitude of.
- the AC / DC output control unit 225 causes the AC / DC converter 2b to have a magnitude of the output current upper limit value I1max. Continue to output the DC current command Idc_ref1. In these ranges, since the AC / DC converter 2b can be regarded as a constant current source, it cannot be said that the AC / DC converter 2b is performing resonance suppression control.
- the DC voltage detection value Vdc_det is input to the low-pass filter 813b, and the comparators 814b and 815b have hysteresis characteristics. Therefore, due to voltage vibration due to resonance, the output of the resonance suppression control unit 321b of the DC / DC converter 3b Can be suppressed from fluctuating in a short time.
- the DC voltage command according to the number of groups may be set. Good. If the voltage fluctuation cannot be suppressed by the DC / DC converter of the first group having the DC voltage commands Vdc_ref2_hi and Vdc_ref2_lo, another DC / DC converter having the DC voltage commands Vdc_ref3_hi and Vdc_ref3_lo is operated. You may.
- FIG. 10 is a flowchart showing a processing procedure in the vibration determination units 222b and 322b according to the third embodiment.
- the processing procedure of the third embodiment differs from the processing procedure of the first embodiment not only in the cutoff frequencies of the filter units 910b and 810b in the resonance suppression control units 221b and 321b, but also in the gains of the gain units 912b and 812b. By adjusting, the vibration suppression characteristics of the resonance suppression control units 221b and 321b are improved.
- the process of FIG. 10 is repeatedly executed every time the operation condition is satisfied. Since the setting of the operating conditions is the same as that of the first embodiment, the description will not be repeated.
- step S23 the vibration determination units 222b and 322b compare the frequency of the extracted vibration component with the frequency of the previously set vibration target component stored as the current suppression target component. More specifically, the vibration determination units 222b and 322b determine whether or not the ratio of the frequency of the extracted vibration component to the frequency of the current suppression target component is within a preset range.
- the preset range is the minimum frequency ratio value kmin or more and the maximum frequency ratio value kmax or less.
- step S26 If the ratio of the frequency of the extracted vibration component to the frequency of the current suppression target component is within a predetermined range, the process proceeds to step S24. If a valid vibration component has not been extracted in step S12, the process may proceed to step S24 after enabling the gain update prohibition flag.
- step S24 the vibration determination units 222b and 322b execute the effect determination process.
- the vibration determination units 222b and 322b determine whether or not the amplitude of the extracted vibration component is smaller than the previous value.
- the vibration determination units 222b and 322b store the amplitude of the extracted vibration component as a previous value in a memory (not shown).
- step S25 the vibration determination units 222b and 322b execute the gain update processing of the gain units 912b and 812b.
- the vibration determination units 222b and 322b increase the gain by a preset value ⁇ k when the determination result in step S24 is in the decreasing direction.
- the vibration determination units 222b and 322b return the gain to the previous value and set the gain update prohibition flag in order to prevent the gain from being updated.
- the gain update prohibition flag may be released in step S28.
- steps S24 to S25 the gain of the resonance suppression control is adjusted in a direction in which the vibration becomes smaller by gradually increasing the damping gain of the resonance suppression control while monitoring the amplitude of the voltage vibration due to the resonance.
- a search method such as a hill climbing method may be used to search for the gain that minimizes the amplitude. In this method, the minimum amplitude point is searched while increasing or decreasing the gain from a preset initial value.
- step S26 the vibration determination units 222b and 322b execute the suppression target component update process.
- the vibration determination units 222b and 322b store the extracted voltage vibration component as a new suppression target component in a memory (not shown).
- step S27 the vibration determination units 222b and 322b recalculate the cutoff frequencies of the filter units 910b and 810b in the resonance suppression control units 221b and 321b based on the frequencies of the components to be suppressed. Since this recalculation is the same as in step S13, the description will not be repeated.
- step S28 the vibration determination units 222b and 322b reset the gains of the gain units 912b and 812b of the resonance suppression control units 221b and 321b to preset initial values.
- the initial value is set to a somewhat small value (for example, about 0.1) in order to search for a gain that can suppress voltage vibration while gradually increasing the gain.
- the resonance suppression control is performed.
- the cutoff frequency and gain can be adjusted to values according to the state in the DC system 61.
- the voltage of the DC system 61 can be stably controlled.
- FIG. 11 is a configuration diagram of the power receiving and distribution system according to the fourth embodiment.
- the plurality of DC / DC converters 3c mainly carry out the DC voltage control of the DC system 61.
- the plurality of AC / DC converters 2c mainly control the tidal current power in the AC system 11, and perform DC voltage control of the DC system 61 in place of the DC / DC converter 3c in the event of an abnormality or the like.
- the difference between the fourth embodiment and the first embodiment is as follows.
- the AC / DC converter 2c does not include a select unit 226 but includes a calculation unit 228.
- the calculation unit 228 calculates the current command Tid_ref1 from the AC system power flow control unit 224 and the combined current command com_ref1 from the calculation unit 227. Operations include, for example, addition or subtraction.
- the AC / DC converter 2c includes a DC voltage control unit 223c, a resonance suppression control unit 221b, and a vibration determination unit 222b in place of the DC voltage control unit 223a, the resonance suppression control unit 221a, and the vibration determination unit 222a. Since the resonance suppression control unit 221b and the vibration determination unit 222b are the same as those described in the third embodiment, the description will not be repeated.
- the DC / DC converter 3c does not include a storage power supply control unit 324 and a select unit 326.
- the DC / DC converter 3c includes a DC voltage control unit 323c, a resonance suppression control unit 321b, and a vibration determination unit 322b in place of the DC voltage control unit 323a, the resonance suppression control unit 321a, and the vibration determination unit 322a. Since the resonance suppression control unit 321b and the vibration determination unit 322b are the same as those described in the third embodiment, the description will not be repeated.
- the DC voltage control unit 223c of the AC / DC converter 2c receives the DC voltage detection value Vdc_det output from the sensor unit 23B and outputs the DC current command Idc_ref1 according to the first droop characteristic.
- FIG. 12 is a diagram showing the control characteristics of the DC voltage control unit 223c of the AC / DC converter 2c according to the fourth embodiment.
- the horizontal axis of the graph of FIG. 12 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 223c.
- the vertical axis of the graph in FIG. 12 is the DC current command Idc_ref1 output from the DC voltage control unit 223c.
- the control characteristic in the DC voltage control unit 223c is the first droop characteristic having an inclination centered on the DC voltage command Vdc_ref2.
- the first droop characteristic is a characteristic in which the DC current command Idc_ref1 decreases as the voltage detection value Vdc_det of the DC system increases.
- the detected value Vdc_det of the DC voltage has a dead band between the lower DC voltage command Vdc_ref1_lo and the upper DC voltage command Vdc_ref1_hi. In the dead zone, the DC current command Idc_ref1 becomes zero.
- the DC voltage control unit 323c of the DC / DC converter 3c receives the detected value Vdc_det of the DC voltage output from the sensor unit 33B, and outputs the DC current command Idc_ref2 according to the second droop characteristic.
- FIG. 13 is a diagram showing the control characteristics of the DC voltage control unit 323c of the DC / DC converter 3c according to the fourth embodiment.
- the horizontal axis of the graph of FIG. 13 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 323c.
- the vertical axis of the graph in FIG. 13 is the DC current command Idc_ref2 output from the DC voltage control unit 323c.
- the control characteristic in the DC voltage control unit 323c is a second droop characteristic having an inclination centered on the DC voltage command Vdc_ref2.
- the second droop characteristic is a characteristic in which the DC current command Idc_ref2 decreases as the voltage detection value Vdc_det of the DC system increases.
- the detected value Vdc_det of the DC voltage belongs within a certain hysteresis width d centered on the DC voltage command Vdc_ref2
- the DC current command Idc_ref2 becomes zero.
- the DC current command Idc_ref2 is the output current lower limit value I2min.
- the detected value Vdc_det of the DC voltage is the lower DC voltage command Vdc_ref1_lo
- the DC current command Idc_ref2 becomes the output current upper limit value I2max.
- the output current command increases, but in reality In the DC / DC output control unit 325, the output current is limited to the output current upper limit value I1max or less and the output current lower limit value I1min or more.
- the DC voltage control unit 223c of the AC / AC converter 2c is restricted in a range in which the detected value Vdc_det of the DC voltage is larger than the upper DC voltage command Vdc_ref1_hi or smaller than the lower DC voltage command Vdc_ref1_lo.
- the DC voltage command and control characteristics are set so that the voltage of the DC system 61 can be controlled by correcting the output current of the AC / DC converter 2c by outputting the DC current command Idc_ref1 without using it.
- the detected value Vdc_det of the DC voltage is in the range of the lower DC voltage command Vdc_ref1_lo or more of the AC / DC converter 2c and the upper DC voltage command Vdc_ref1_hi or less of the AC / DC converter 2c, and the DC voltage command Vdc_ref2 of the DC / DC converter 3c.
- the DC voltage control unit 323b of the DC / DC converter 3c performs DC voltage control when it belongs to a region excluding a range of a certain width d centered on.
- the DC voltage control of the AC / DC converter 2c Unit 223c performs DC voltage control.
- the DC / DC output control unit 325 causes the DC / DC converter 3c to have a DC with a magnitude of the output current lower limit value I1min. Continues to output the current command Idc_ref2.
- the DC / DC output control unit 325 causes the DC / DC converter 3c to have a magnitude of the output current upper limit value I1max. Continue to output the DC current command Idc_ref2. In these ranges, since the DC / DC converter 3c can be regarded as a constant current source, it cannot be said that the DC / DC converter 3c is performing DC voltage control.
- the control characteristic of the DC voltage control unit 323c has a period in which the current command idc_ref2 becomes zero by the hysteresis width d centered on the DC voltage command Vdc_ref2.
- the characteristics and errors of the sensor unit 33B of each DC / DC converter 3c vary.
- the output direction of the currents of the plurality of DC / DC converters 3c may be the charging direction and the current output direction of the plurality of DC / DC converters 3c may be the discharging direction due to the variation in the error. ..
- the control characteristic of the DC voltage control unit 323c of the DC / DC converter 3c has a hysteresis characteristic in the vicinity of the DC voltage command Vdc_ref2 in consideration of the variation in the characteristic and the error in the sensor unit 33B. Thereby, the cross flow can be suppressed.
- the cross flow between the plurality of power converters mainly performing the voltage control is prevented, and the plurality of AC / DC converters 2c and the plurality of DC / DC converters 3c are arranged.
- it suppresses the execution of DC voltage control and resonance suppression control at the same time. This makes it possible to avoid unstable operation due to unmatched control and to stably control the voltage of the DC system.
- each of the AC / DC converter and the DC / DC converter includes a DC voltage control unit and a resonance suppression control unit, and the DC voltage control and the resonance suppression control are performed in parallel.
- the present invention is not limited to this.
- At least some AC / DC converters and DC / DC converters include only the DC voltage control unit among the DC voltage control unit and the resonance suppression control unit, and may not include the resonance suppression control unit. In this case, while one of the AC / DC converter and the DC / DC converter performs DC voltage control, the other does not perform DC voltage control. This makes it possible to stably control the voltage of the DC system while suppressing control interference between the AC / DC converter and the DC / DC converter.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
An AC/DC converter (2a) is provided with: an AC/DC converter main circuit unit (21) connected to an AC system (11) and a DC system (61); and an AC/DC converter control unit (22a) for controlling the AC/DC converter main circuit unit (21). The AC/DC converter control unit (22a) includes a first DC voltage control unit (223a) configured to control the DC voltage of the DC system (61). A DC/DC converter (3a) is provided with: a DC/DC converter main circuit unit (31) connected to the DC system (61) and a creation/storage power supply (41); and a DC/DC converter control unit (32a) for controlling the DC/DC converter main circuit unit (31). The DC/DC converter control unit (32a) includes a second DC voltage control unit (323a) configured to control the DC voltage of the DC system (61). The first DC voltage control unit (223a) and the second DC voltage control unit (323a) controls the DC voltage of the DC system (61) during mutually different periods.
Description
本発明は、受配電システムに関する。
The present invention relates to a power receiving and distribution system.
近年、停電時のBCP(Business Continuity Planning)に対応するために、蓄電池設備および再生可能エネルギーの需要が増加している。太陽光発電および蓄電池の活用のために用いられる受配電システムとして、例えば、直流電力を給配電する直流受配電システムが知られている。直流給配電システムは、直流電源から出力される直流電力を交流電力に変換する必要がないため、電力変換回数が少なく、経済性を向上できる。
In recent years, the demand for storage battery equipment and renewable energy has been increasing in order to respond to BCP (Business Continuity Planning) in the event of a power outage. As a power receiving and distribution system used for utilizing photovoltaic power generation and storage batteries, for example, a DC power receiving and distributing system that supplies and distributes DC power is known. Since the DC power distribution system does not need to convert the DC power output from the DC power source into AC power, the number of power conversions is small and the economic efficiency can be improved.
一般に、直流配電系統は、交流系統、または蓄電池または太陽電池などの創蓄電源から受電した電力を用いて形成される。そのため、直流配電系統を形成する受配電システムは、複数の電力変換器を含む。受配電システム内に含まれる複数の電力変換器の各々が、直接、直流配電系統の電圧を一定値に制御しようとすると、複数の電力変換器の間で制御のミスマッチングが発生する。これによって、直流配電系統の電圧の振動または複数の電力変換器間における横流等の問題が発生する。その結果、電力損失が増大するとともに、直流配電系統と接続される機器へ悪影響を与えることがある。
Generally, a DC distribution system is formed by using electric power received from an AC system or a storage power source such as a storage battery or a solar cell. Therefore, the power receiving and distribution system forming the DC power distribution system includes a plurality of power converters. If each of the plurality of power converters included in the power receiving and distribution system directly tries to control the voltage of the DC distribution system to a constant value, a control mismatch occurs among the plurality of power converters. This causes problems such as vibration of the voltage of the DC distribution system or cross flow between a plurality of power converters. As a result, the power loss increases and the equipment connected to the DC distribution system may be adversely affected.
このような問題に対して、特許文献1では、それぞれの電力変換器に異なる電圧指令を与え、かつそれぞれの電力変換器が電圧制御を実施する区間を分けることによって、制御干渉および制御のミスマッチングを抑制している。
In response to such a problem, in Patent Document 1, control interference and control mismatch are performed by giving different voltage commands to each power converter and dividing the section in which each power converter performs voltage control. Is suppressed.
特許文献1の受配電システムは、電力変換器の数だけ直流電圧指令を割り振る必要がある。そのため、直流配電系統の電圧の変動量がある一定値となるように制御する場合に、各電力変換器に割り振られる電圧指令の差が小さくなる。その結果、少しの電圧変動に対してそれぞれの電力変換器が過敏に反応して、電圧を制御しようとする。これによって、複数の電力変換器間において制御干渉が発生し、電圧振動等を招くことがある。
The power receiving and distribution system of Patent Document 1 needs to allocate DC voltage commands as many as the number of power converters. Therefore, when the amount of fluctuation of the voltage of the DC distribution system is controlled to be a certain value, the difference between the voltage commands assigned to each power converter becomes small. As a result, each power converter reacts sensitively to a small voltage fluctuation and tries to control the voltage. As a result, control interference may occur between the plurality of power converters, which may lead to voltage vibration and the like.
1台の電力変換器によって担保できないような容量の負荷が接続された場合において、1台の電力変換器によって電力を十分に供給できないため、電圧の変動を抑制できない。そのため、複数の電力変換器が動作することによって、制御干渉が発生することが懸念される。そのような懸念に対して、直流配電系統に接続されるコンデンサを増設する、または電力変換器を大容量化することによって、電圧変動を抑制して制御干渉を防止する対策が考えられる。しかしながら、このような対策では、コストが増加するという問題がある。
When a load with a capacity that cannot be secured by one power converter is connected, the voltage fluctuation cannot be suppressed because sufficient power cannot be supplied by one power converter. Therefore, there is a concern that control interference may occur due to the operation of a plurality of power converters. In response to such concerns, measures can be considered to suppress voltage fluctuations and prevent control interference by adding capacitors connected to the DC distribution system or increasing the capacity of the power converter. However, such measures have the problem of increasing costs.
それゆえに、本発明の目的は、負荷への電力を直流系統を介して安定して供給することができる複数台の電力変換器を備える受配電システムを提供することである。
Therefore, an object of the present invention is to provide a power receiving and distribution system including a plurality of power converters capable of stably supplying electric power to a load via a DC system.
本発明は、少なくとも1つのAC/DCコンバータおよび少なくとも1つのDC/DCコンバータを備える受配電システムである。AC/DCコンバータは、交流系統および直流系統に接続されるAC/DCコンバータ主回路部と、AC/DCコンバータ主回路部を制御するAC/DCコンバータ制御部とを備える。AC/DCコンバータ制御部は、直流系統の直流電圧を制御するように構成された第1の直流電圧制御部を含む。DC/DCコンバータは、直流系統および創蓄電源に接続されるDC/DCコンバータ主回路部と、DC/DCコンバータ主回路部を制御するDC/DCコンバータ制御部とを備える。DC/DCコンバータ制御部は、直流系統の直流電圧を制御するように構成された第2の直流電圧制御部を含む。第1の直流電圧制御部と、第2の直流電圧制御部とは、互いに異なる期間において、直流系統の直流電圧を制御する。
The present invention is a power receiving and distribution system including at least one AC / DC converter and at least one DC / DC converter. The AC / DC converter includes an AC / DC converter main circuit unit connected to an AC system and a DC system, and an AC / DC converter control unit that controls the AC / DC converter main circuit unit. The AC / DC converter control unit includes a first DC voltage control unit configured to control the DC voltage of the DC system. The DC / DC converter includes a DC / DC converter main circuit unit connected to the DC system and the storage power supply, and a DC / DC converter control unit that controls the DC / DC converter main circuit unit. The DC / DC converter control unit includes a second DC voltage control unit configured to control the DC voltage of the DC system. The first DC voltage control unit and the second DC voltage control unit control the DC voltage of the DC system in different periods from each other.
本発明によれば、第1の直流電圧制御部と、第2の直流電圧制御部とは、互いに異なる期間において、直流系統の直流電圧を制御するので、負荷への電力を直流系統を介して安定して供給することができる。
According to the present invention, since the first DC voltage control unit and the second DC voltage control unit control the DC voltage of the DC system in different periods, the electric power to the load is transmitted to the load via the DC system. It can be stably supplied.
本発明の実施の形態について、図面を参照して説明する。
実施の形態1.
図1は、実施の形態1に係る受配電システムの構成図である。 Embodiments of the present invention will be described with reference to the drawings.
Embodiment 1.
FIG. 1 is a configuration diagram of a power receiving and distribution system according to the first embodiment.
実施の形態1.
図1は、実施の形態1に係る受配電システムの構成図である。 Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a power receiving and distribution system according to the first embodiment.
受配電システムは、交流系統11または複数の創蓄電源41から受電した電力を、複数の負荷51に供給する。創蓄電源41は、たとえば、鉛蓄電池、リチウムイオン電池(以降ではLiBと賞する)等のような定置型電池、内蔵されている電池からの充放電が許容されているElectricVehicle(以降ではEVと称する)の電源装置、燃料電池、および太陽電池のうちのいずれかである。
The power receiving and distribution system supplies the power received from the AC system 11 or the plurality of storage power sources 41 to the plurality of loads 51. The creation power supply 41 is, for example, a stationary battery such as a lead storage battery, a lithium ion battery (hereinafter referred to as LiB), or an electric vehicle (hereinafter referred to as EV) that is allowed to be charged and discharged from a built-in battery. It is one of a power supply (referred to as), a fuel cell, and a solar cell.
受配電システムは、複数個のAC/DCコンバータ2aと、複数個のDC/DCコンバータ3aとを備える。AC/DCコンバータ2aおよびDC/DCコンバータ3aをそれぞれ電力変換器と称する場合がある。
The power receiving and distribution system includes a plurality of AC / DC converters 2a and a plurality of DC / DC converters 3a. The AC / DC converter 2a and the DC / DC converter 3a may be referred to as power converters, respectively.
直流系統61の直流電圧は、受配電システムによって制御される。直流系統61は、オフィスビルまたは工場などの建屋内、または建屋付近に設置される複数の負荷51へ直流電力を供給する。
The DC voltage of the DC system 61 is controlled by the power receiving and distribution system. The DC system 61 supplies DC power to a plurality of loads 51 installed in a building such as an office building or a factory, or in the vicinity of a building.
AC/DCコンバータ2aは、交流系統11と直流系統61との間で双方向に電力を融通する電力変換器である。AC/DCコンバータ2a内における絶縁の有無については問わないが、本実施の形態では非絶縁形であるとして説明する。一般には、交流系統11の基準電位と直流系統61の基準電位とが異なるため、AC/DCコンバータ2aの内部または外部のいずれかにトランスが設置される。よって、図1には記載していないが、交流系統11とAC/DCコンバータ2aとの間に、絶縁トランスが配置されるものとしてもよい。交流系統11が、AC/DCコンバータ2aを含むものとしてもよい。
The AC / DC converter 2a is a power converter that exchanges power in both directions between the AC system 11 and the DC system 61. The presence or absence of insulation in the AC / DC converter 2a does not matter, but in the present embodiment, it will be described as a non-insulated type. Generally, since the reference potential of the AC system 11 and the reference potential of the DC system 61 are different, a transformer is installed either inside or outside the AC / DC converter 2a. Therefore, although not shown in FIG. 1, an isolation transformer may be arranged between the AC system 11 and the AC / DC converter 2a. The AC system 11 may include an AC / DC converter 2a.
DC/DCコンバータ3aは、創蓄電源41と直流系統61との間において双方向に電力を融通する電力変換器である。DC/DCコンバータ3a内における絶縁の有無については問わないが、本実施の形態では絶縁形であるとして説明する。これは、創蓄電源41がEVの電源装置の場合に、安全面より直流系統61と創蓄電源41とを絶縁することが好ましいためである。
The DC / DC converter 3a is a power converter that interchanges power in both directions between the storage power supply 41 and the DC system 61. The presence or absence of insulation in the DC / DC converter 3a does not matter, but in the present embodiment, it will be described as an insulated type. This is because when the storage power supply 41 is an EV power supply device, it is preferable to insulate the DC system 61 and the storage power supply 41 from the viewpoint of safety.
AC/DCコンバータ2aは、センサ部23Aと、センサ部23Bと、AC/DCコンバータ主回路部21と、AC/DCコンバータ制御部22aとを備える。
The AC / DC converter 2a includes a sensor unit 23A, a sensor unit 23B, an AC / DC converter main circuit unit 21, and an AC / DC converter control unit 22a.
センサ部23Aは、交流系統11の電圧および電流を測定して、電圧情報および電流情報を出力する。センサ部23Bは、直流系統61の電圧および電流を測定して、電圧情報および電流情報を出力する。センサ部23Bが検出した直流電圧をVdc_detとする。
The sensor unit 23A measures the voltage and current of the AC system 11 and outputs the voltage information and the current information. The sensor unit 23B measures the voltage and current of the DC system 61 and outputs the voltage information and the current information. The DC voltage detected by the sensor unit 23B is defined as Vdc_det.
AC/DCコンバータ主回路部21は、交流系統11から受電した交流電力を直流電力に変換する。
The AC / DC converter main circuit unit 21 converts the AC power received from the AC system 11 into DC power.
AC/DCコンバータ制御部22aは、AC/DCコンバータ主回路部21の動作を制御する。AC/DCコンバータ制御部22aは、交流系統潮流制御部224と、直流電圧制御部223aと、共振抑制制御部221aと、振動判定部222aと、AC/DC出力制御部225と、演算部227と、セレクト部226とを備える。
The AC / DC converter control unit 22a controls the operation of the AC / DC converter main circuit unit 21. The AC / DC converter control unit 22a includes an AC system power flow control unit 224, a DC voltage control unit 223a, a resonance suppression control unit 221a, a vibration determination unit 222a, an AC / DC output control unit 225, and a calculation unit 227. , A select unit 226 is provided.
交流系統潮流制御部224は、センサ部23Aから取得した電圧情報および電流情報と、外部の制御装置から取得した指令とに基づいて、交流系統11からの潮流電力を制御するための潮流電流指令Tid_ref1を出力する。外部の制御装置は、エネルギー管理システム(EMS)、EVの電源装置の機器の状態を操作するためのサーバ、利用者の操作入力を伝送するインタフェースなどを含む。外部の制御装置は、受配電システム内の電力変換器2a,3a、負荷51、および創蓄電源41等の状態を監視しながら、電力指令および動作指令を出力する。
The AC system power flow control unit 224 controls the power flow power from the AC system 11 based on the voltage information and current information acquired from the sensor unit 23A and the command acquired from the external control device. Is output. The external control device includes an energy management system (EMS), a server for manipulating the state of the equipment of the EV power supply device, an interface for transmitting the user's operation input, and the like. The external control device outputs power commands and operation commands while monitoring the states of the power converters 2a and 3a, the load 51, the storage power supply 41, and the like in the power receiving and distribution system.
直流電圧制御部223aは、外部の制御装置からの直流電圧指令Vdc_ref1と、センサ部23Bから取得した電圧情報および電流情報とに基づいて、直流系統61の直流電圧を制御するために必要な直流電流指令Idc_ref1を出力する。
The DC voltage control unit 223a controls the DC voltage of the DC system 61 based on the DC voltage command Vdc_ref1 from the external control device and the voltage information and the current information acquired from the sensor unit 23B. The command Idc_ref1 is output.
共振抑制制御部221aは、センサ部23Bから取得した電圧情報および電流情報を用いて、直流系統61の直流電圧の振動成分を抽出し、抽出した振動成分を打ち消すような振動抑制電流指令Occ_ref1を出力する。
The resonance suppression control unit 221a extracts the vibration component of the DC voltage of the DC system 61 using the voltage information and the current information acquired from the sensor unit 23B, and outputs a vibration suppression current command Occ_ref1 that cancels the extracted vibration component. To do.
振動判定部222aは、センサ部23Bから取得した電圧情報および電流情報に基づいて、共振抑制制御部221aのパラメータを調整する。
The vibration determination unit 222a adjusts the parameters of the resonance suppression control unit 221a based on the voltage information and the current information acquired from the sensor unit 23B.
演算部227は、直流電圧制御部223aからの直流電流指令Idc_ref1と、共振抑制制御部221aからの振動抑制電流指令Occ_ref1とを演算して、演算結果である合成電流指令com_ref1を出力する。この演算には、たとえば、加算または減算が含まれる。
The calculation unit 227 calculates the DC current command Idc_ref1 from the DC voltage control unit 223a and the vibration suppression current command Occ_ref1 from the resonance suppression control unit 221a, and outputs the combined current command com_ref1 which is the calculation result. This operation includes, for example, addition or subtraction.
セレクト部226は、外部の制御装置または受配電システムの内部の制御装置によって決定されるモード指令M1に従って、交流系統潮流制御部224から出力される潮流電流指令Tid_ref1、および演算部227から出力される合成電流指令com_ref1のうちのいずれか1つを選択して、AC/DC出力制御部225に出力する。
The select unit 226 is output from the power flow current command Tid_ref1 output from the AC system power flow control unit 224 and the calculation unit 227 according to the mode command M1 determined by the external control device or the internal control device of the power receiving and distribution system. One of the combined current commands com_ref1 is selected and output to the AC / DC output control unit 225.
AC/DC出力制御部225は、セレクト部226から送られる電流指令に従って、AC/DCコンバータ主回路部21の動作指令を決定する。
The AC / DC output control unit 225 determines the operation command of the AC / DC converter main circuit unit 21 according to the current command sent from the select unit 226.
DC/DCコンバータ3aは、センサ部33Aと、センサ部33Bと、DC/DCコンバータ主回路部31と、DC/DCコンバータ制御部32aとを備える。
The DC / DC converter 3a includes a sensor unit 33A, a sensor unit 33B, a DC / DC converter main circuit unit 31, and a DC / DC converter control unit 32a.
センサ部33Aは、創蓄電源41の状態、電圧および電流を測定して、状態情報、電圧情報および電流情報を出力する。創蓄電源41が蓄電池およびEVの電源装置の場合には、状態情報は、SoC(State of Charge)および温度を含む。創蓄電源41が太陽電池の場合には、状態情報は、太陽電池セルの温度、および太陽電池セルに照射される日照の強さを含む。センサ部33Bは、直流系統61の電圧および電流を測定して、電圧情報および電流情報を出力する。センサ部33Bが検出した直流電圧をVdc_detとする。
The sensor unit 33A measures the state, voltage, and current of the storage power supply 41, and outputs the state information, voltage information, and current information. When the creation power supply 41 is a storage battery and an EV power supply device, the state information includes the SoC (State of Charge) and the temperature. When the storage power source 41 is a solar cell, the state information includes the temperature of the solar cell and the intensity of sunshine applied to the solar cell. The sensor unit 33B measures the voltage and current of the DC system 61 and outputs the voltage information and the current information. The DC voltage detected by the sensor unit 33B is defined as Vdc_det.
DC/DCコンバータ主回路部31は、創蓄電源41から受電した直流電力を直流系統61へ出力するのに適した直流電力に変換する。
The DC / DC converter main circuit unit 31 converts the DC power received from the storage power supply 41 into DC power suitable for output to the DC system 61.
DC/DCコンバータ制御部32aは、DC/DCコンバータ主回路部31の動作を制御する。
The DC / DC converter control unit 32a controls the operation of the DC / DC converter main circuit unit 31.
DC/DCコンバータ制御部32aは、創蓄電源制御部324と、直流電圧制御部323aと、共振抑制制御部321aと、振動判定部322aと、DC/DC出力制御部325と、演算部327と、セレクト部326とを備える。
The DC / DC converter control unit 32a includes a storage power supply control unit 324, a DC voltage control unit 323a, a resonance suppression control unit 321a, a vibration determination unit 322a, a DC / DC output control unit 325, and a calculation unit 327. , With a select unit 326.
創蓄電源制御部324は、センサ部33Aから取得した創蓄電源41の状態情報と外部の制御装置から取得した指令とに基づいて、創蓄電源41からの出力電力または出力電流を制御するための創蓄電流指令Cha_ref2を出力する。
The storage power supply control unit 324 controls the output power or output current from the storage power supply 41 based on the state information of the storage power supply 41 acquired from the sensor unit 33A and the command acquired from the external control device. Outputs the creation current command Cha_ref2.
直流電圧制御部323aは、直流電圧指令Vdc_ref2と、センサ部33Bから取得した電圧情報および電流情報とに基づいて、直流系統61の直流電圧を制御するために必要な直流電流指令Idc_ref2を出力する。
The DC voltage control unit 323a outputs the DC current command Idc_ref2 necessary for controlling the DC voltage of the DC system 61 based on the DC voltage command Vdc_ref2 and the voltage information and the current information acquired from the sensor unit 33B.
共振抑制制御部321aは、センサ部33Bから取得した電圧情報および電流情報に基づいて、直流系統61の直流電圧の振動成分を抽出し、抽出した振動成分を打ち消すような振動抑制電流指令Occ_ref2を出力する。
The resonance suppression control unit 321a extracts the vibration component of the DC voltage of the DC system 61 based on the voltage information and the current information acquired from the sensor unit 33B, and outputs a vibration suppression current command Occ_ref2 that cancels the extracted vibration component. To do.
振動判定部322aは、センサ部33Bから取得した電圧情報および電流情報に基づいて、共振抑制制御部321aのパラメータを調整する。
The vibration determination unit 322a adjusts the parameters of the resonance suppression control unit 321a based on the voltage information and the current information acquired from the sensor unit 33B.
演算部327は、直流電圧制御部323aからの直流電流指令Idc_ref2と、共振抑制制御部321aからの振動抑制電流指令Occ_ref2とを演算して、演算結果である合成電流指令com_ref2を出力する。演算には、たとえば、加算または減算が含まれる。
The calculation unit 327 calculates the DC current command Idc_ref2 from the DC voltage control unit 323a and the vibration suppression current command Occ_ref2 from the resonance suppression control unit 321a, and outputs the combined current command com_ref2 which is the calculation result. Operations include, for example, addition or subtraction.
セレクト部326は、外部の制御装置または受配電システムの内部の制御装置によって決定されるモード指令M2に従って、創蓄電源制御部324から出力される創蓄電流指令Cha_ref2、および演算部327から出力される合成電流指令com_ref2のうちのいずれか1つを選択して、DC/DC出力制御部325に出力する。
The select unit 326 is output from the storage current command Cha_ref2 output from the storage power supply control unit 324 and the calculation unit 327 according to the mode command M2 determined by the external control device or the internal control device of the power receiving and distribution system. One of the combined current commands com_ref2 is selected and output to the DC / DC output control unit 325.
DC/DC出力制御部325は、セレクト部326から送られる電流指令に従って、DC/DCコンバータ主回路部31の動作指令を決定する。
The DC / DC output control unit 325 determines the operation command of the DC / DC converter main circuit unit 31 according to the current command sent from the select unit 326.
センサ部23A、23B、33A、33Bは、設置箇所における電圧と電流を検出するセンサを有し、検出した電圧を表わす電圧情報と、検出した電流を表わす電流情報とを各電力変換器のインタフェース仕様に沿った適切な信号に変換して出力する。
The sensor units 23A, 23B, 33A, and 33B have sensors that detect the voltage and current at the installation location, and the voltage information representing the detected voltage and the current information representing the detected current are the interface specifications of each power converter. It is converted to an appropriate signal along with and output.
(電力変換器の動作)
次に、AC/DCコンバータ2aおよびDC/DCコンバータ3aの動作について説明する。 (Operation of power converter)
Next, the operations of the AC /DC converter 2a and the DC / DC converter 3a will be described.
次に、AC/DCコンバータ2aおよびDC/DCコンバータ3aの動作について説明する。 (Operation of power converter)
Next, the operations of the AC /
受配電システムにおいて負荷51へ安定した電力を供給するためには、直流系統61の直流電圧が予め規定した一定値に安定するように制御する必要がある。そのため、受配電システムでは、AC/DCコンバータ2aの直流電圧制御部223aおよびDC/DCコンバータ3aの直流電圧制御部323aが、直流系統61の電圧を監視しながら、それぞれの出力電流を調整することによって、直流系統61の直流電圧を制御する。しかしながら、複数台の電力変換器の各々が直接、直流系統61の電圧を一定値に制御しようとすると、複数の電力変換器間の制御のミスマッチングによって、直流系統61の電圧が発散する、または振動するという問題、あるいは、複数の電力変換器間において横流が発生するという問題が発生する。これによって、直流系統61に接続される他の機器へ悪影響を与えることが懸念される。
In order to supply stable power to the load 51 in the power receiving and distribution system, it is necessary to control the DC voltage of the DC system 61 so as to stabilize at a predetermined constant value. Therefore, in the power receiving and distribution system, the DC voltage control unit 223a of the AC / DC converter 2a and the DC voltage control unit 323a of the DC / DC converter 3a adjust their respective output currents while monitoring the voltage of the DC system 61. Controls the DC voltage of the DC system 61. However, when each of the plurality of power converters directly tries to control the voltage of the DC system 61 to a constant value, the voltage of the DC system 61 diverges or diverges due to the control mismatch between the plurality of power converters. There is a problem of vibration or a problem of cross currents occurring between a plurality of power converters. This may adversely affect other devices connected to the DC system 61.
例えば、AC/DCコンバータ2aおよびDC/DCコンバータ3aが、直流系統61の電圧を制御しようとした場合、それぞれが、直流系統61の電圧と直流電圧指令との電圧差を検出し、電圧差に対応した電流を出力しようとする。しかしながら、AC/DCコンバータ2aおよびDC/DCコンバータ3aでは、電流の立ち上がり速度に差異があるため、その速度の差異によって、直流系統61の電圧にオーバーシュートが発生し、電圧差が過渡的に残る。このような動作が繰り返し発生すると、直流系統61の電圧が振動することがある。AC/DCコンバータ2aおよびDC/DCコンバータ3aの間における制御特性の差異によっては、電圧振動が次第に減衰する場合もあるが、電圧振動が長い期間残存する場合もある。このような場合には、他の機器への影響が懸念される。そこで、本実施の形態においては、モード指令M1、M2とセレクト部226,326の動作とによって、複数のAC/DCコンバータ2aおよび複数のDC/DCコンバータ3aのどちらかが直流電圧を制御することによって、制御のミスマッチングを回避する。
For example, when the AC / DC converter 2a and the DC / DC converter 3a try to control the voltage of the DC system 61, each detects the voltage difference between the voltage of the DC system 61 and the DC voltage command, and determines the voltage difference. Attempts to output the corresponding current. However, since there is a difference in the rising speed of the current between the AC / DC converter 2a and the DC / DC converter 3a, the difference in the speed causes an overshoot in the voltage of the DC system 61, and the voltage difference remains transiently. .. If such an operation occurs repeatedly, the voltage of the DC system 61 may vibrate. Depending on the difference in control characteristics between the AC / DC converter 2a and the DC / DC converter 3a, the voltage vibration may be gradually attenuated, but the voltage vibration may remain for a long period of time. In such a case, there is concern about the influence on other devices. Therefore, in the present embodiment, one of the plurality of AC / DC converters 2a and the plurality of DC / DC converters 3a controls the DC voltage by the operation of the mode commands M1 and M2 and the select units 226 and 326. Avoids control mismatches.
AC/DCコンバータ2aおよびDC/DCコンバータ3aの入力部は、インダクタおよび平滑コンデンサによって構成されるフィルタ回路を含む。フィルタ回路によって、各電力変換器のスイッチング動作等により発生する電圧および電流のリプル成分が平滑化される。しかしながら、同一の配電線に接続される平滑コンデンサおよびインダクタ間において共振回路が形成される場合がある。共振回路の共振周波数が電力変換器の制御応答と一致するか、または近い場合、共振回路の端子電圧すなわち平滑コンデンサにおける両端電圧が振動する可能性がある。その他にも、負荷51の動作が急変し、直流系統61に流れる電流が変動した場合にも平滑コンデンサの電圧振動が過渡的に発生する場合がある。平滑コンデンサの両端電圧の振動が極端に大きい場合には、平滑コンデンサ自身、または平滑コンデンサに接続される電力変換器または負荷51が過電圧により破損する可能性がある。また、共振により発生する電流によって損失が増加することによってコンデンサの寿命が減少する場合もある。
The input section of the AC / DC converter 2a and the DC / DC converter 3a includes a filter circuit composed of an inductor and a smoothing capacitor. The filter circuit smoothes the ripple components of the voltage and current generated by the switching operation of each power converter. However, a resonant circuit may be formed between the smoothing capacitor and the inductor connected to the same distribution line. If the resonant frequency of the resonant circuit matches or is close to the control response of the power converter, the terminal voltage of the resonant circuit, i.e. the voltage across the smoothing capacitor, can oscillate. In addition, when the operation of the load 51 suddenly changes and the current flowing through the DC system 61 fluctuates, the voltage vibration of the smoothing capacitor may transiently occur. When the vibration of the voltage across the smoothing capacitor is extremely large, the smoothing capacitor itself or the power converter or load 51 connected to the smoothing capacitor may be damaged by the overvoltage. In addition, the life of the capacitor may be shortened due to an increase in loss due to the current generated by resonance.
そのため、本実施の形態では、AC/DCコンバータ制御部22aは、直流電圧制御部223aと共振抑制制御部221aとを含み、DC/DCコンバータ制御部32aは、直流電圧制御部323aと共振抑制制御部321aとを含む。これらの制御部の動作により、直流系統61の電圧の安定化を図ることが可能である。
Therefore, in the present embodiment, the AC / DC converter control unit 22a includes the DC voltage control unit 223a and the resonance suppression control unit 221a, and the DC / DC converter control unit 32a has the DC voltage control unit 323a and the resonance suppression control. Includes part 321a. By the operation of these control units, it is possible to stabilize the voltage of the DC system 61.
しかしながら、AC/DCコンバータ2aとDC/DCコンバータ3aのように異なった制御特性を持つ複数台の電力変換器が同じ直流系統61に接続される場合に、特に、共振抑制制御部221aと共振抑制制御部321aとにおける制御特性のマッチングがとれない場合がある。そのような場合には、共振抑制制御部221aの動作と共振抑制制御部321aの動作とが干渉し、直流系統61における電圧振動が拡大する場合がある。例えば、複数の異なる特性を持つ電力変換器が同一の配電線の電圧振動を検出した場合に、それぞれの電力変換器が電圧の振動成分を抽出し、それを打ち消す電流を出力しようとする。しかしながら、電力変換器の出力特性によって、複数の電力変換器の間で実際に出力される電流の位相または振幅にズレが発生する。各電力変換器からの出力電流の位相または振幅の差異によって、別の周波数の電圧振動が更に発生する。このような現象が繰り返し発生することによって電圧振動が拡大して制御が不安定化する懸念がある。また、複数の電力変換器の各々が、電圧振動を打ち消す電流を出力した場合に、直流系統61に流れる電流が過大になって、逆に電圧振動を増加させる懸念がある。
However, when a plurality of power converters having different control characteristics such as the AC / DC converter 2a and the DC / DC converter 3a are connected to the same DC system 61, the resonance suppression control unit 221a and the resonance suppression are particularly limited. The control characteristics of the control unit 321a may not be matched. In such a case, the operation of the resonance suppression control unit 221a and the operation of the resonance suppression control unit 321a may interfere with each other, and the voltage vibration in the DC system 61 may increase. For example, when a plurality of power converters having different characteristics detect voltage vibration of the same distribution line, each power converter extracts a vibration component of the voltage and tries to output a current that cancels it. However, depending on the output characteristics of the power converter, the phase or amplitude of the current actually output between the plurality of power converters may deviate. Differences in the phase or amplitude of the output current from each power converter cause additional voltage oscillations at different frequencies. When such a phenomenon occurs repeatedly, there is a concern that the voltage vibration expands and the control becomes unstable. Further, when each of the plurality of power converters outputs a current that cancels the voltage vibration, there is a concern that the current flowing through the DC system 61 becomes excessive, and conversely, the voltage vibration is increased.
そこで、本実施の形態では、直流電圧制御と共振抑制制御とを実施する電力変換器が複数のAC/DCコンバータ2aおよび複数のDC/DCコンバータ3aのうちのどちらか一方のみとなるように、複数のAC/DCコンバータ2aにおけるモード指令M1と、複数のDC/DCコンバータ3aにおけるモード指令M2とが設定される。
Therefore, in the present embodiment, the power converter that performs the DC voltage control and the resonance suppression control is only one of the plurality of AC / DC converters 2a and the plurality of DC / DC converters 3a. The mode command M1 in the plurality of AC / DC converters 2a and the mode command M2 in the plurality of DC / DC converters 3a are set.
実施の形態1においては、複数のAC/DCコンバータ2aの並列動作による複数のAC/DCコンバータ2aの間の制御特性のマッチングは、ゲインの調整などにより実施することができる。同様に、複数のDC/DCコンバータ3aの並列動作による複数のDC/DCコンバータ3aの間の制御特性のマッチングは、ゲインの調整などにより実施することができる。
In the first embodiment, matching of control characteristics between a plurality of AC / DC converters 2a by parallel operation of the plurality of AC / DC converters 2a can be performed by adjusting the gain or the like. Similarly, matching of control characteristics between a plurality of DC / DC converters 3a by parallel operation of the plurality of DC / DC converters 3a can be performed by adjusting the gain or the like.
以上によって、AC/DCコンバータ2aの制御特性とDC/DCコンバータ3aの制御特性との差異から発生する干渉、および不安定化を防止することができる。直流電圧制御と共振抑制制御とを実施する電力変換器については、受配電システムの起動時における初期設定で決定することとし、受配電システムおよび負荷51の状態に応じて、受配電システムの動作中にも切り替えることとしてもよい。
From the above, it is possible to prevent interference and instability caused by the difference between the control characteristics of the AC / DC converter 2a and the control characteristics of the DC / DC converter 3a. The power converter that performs DC voltage control and resonance suppression control is determined by the initial settings when the power receiving and distribution system is started, and the power receiving and distributing system is operating according to the state of the power receiving and distribution system and the load 51. You may also switch to.
図2は、実施の形態1における共振抑制制御部221aおよび321aの制御ブロックの一例を示す図である。共振抑制制御部221aおよび321aは、フィルタ部910とゲイン部912とを備える。
FIG. 2 is a diagram showing an example of the control blocks of the resonance suppression control units 221a and 321a according to the first embodiment. The resonance suppression control units 221a and 321a include a filter unit 910 and a gain unit 912.
共振抑制制御部221aおよび321aには、直流系統61の直流電圧の検出値Vdc_det、Vdc_detが入力される。
The detection values Vdc_det and Vdc_det of the DC voltage of the DC system 61 are input to the resonance suppression control units 221a and 321a.
フィルタ部910は、たとえば、ハイパスフィルタ(以降はHPFと称する)によって実装される。フィルタ部910は、センサ部23B,33Bによって検出された直流系統61の直流電圧の検出値Vdc_det,Vdc_detに基づいて、直流系統61の直流電圧の振動成分を抽出する。
The filter unit 910 is implemented by, for example, a high-pass filter (hereinafter referred to as HPF). The filter unit 910 extracts the vibration component of the DC voltage of the DC system 61 based on the detected values Vdc_det and Vdc_det of the DC voltage of the DC system 61 detected by the sensor units 23B and 33B.
ゲイン部912は、フィルタ部910によって抽出された電圧振動成分とゲインとを乗算することによって得られる補正電力指令Idamp1,Idamp2を、AC/DC出力制御部225,DC/DC出力制御部325へと出力する。これによって、電圧振動を抑制するような補正電力を計算することが可能である。
The gain unit 912 transfers the correction power commands Idamp1 and Idamp2 obtained by multiplying the voltage vibration component extracted by the filter unit 910 and the gain to the AC / DC output control unit 225 and the DC / DC output control unit 325. Output. This makes it possible to calculate the correction power that suppresses the voltage vibration.
フィルタ部910においては、振動判定部222a,322aからカットオフ周波数が指定される。カットオフ周波数は、直流系統61内の負荷51および電力変換器の接続状態に応じて変動する。振動判定部222a,322aは、直流系統61の電圧の振動成分を抽出し、抽出した振動成分のうち、予め定められた値よりも大きな振幅を有する振動成分の周波数に応じて、フィルタ部910のカットオフ周波数を設定する。
In the filter unit 910, the cutoff frequency is specified by the vibration determination units 222a and 322a. The cutoff frequency varies depending on the connection state of the load 51 and the power converter in the DC system 61. The vibration determination units 222a and 322a extract the vibration components of the voltage of the DC system 61, and among the extracted vibration components, the filter unit 910 responds to the frequency of the vibration component having an amplitude larger than a predetermined value. Set the cutoff frequency.
ゲイン部912においても振動判定部222aおよび322aからゲインが指定されてもよい。また、特に仮想抵抗成分の制御として、共振抑制制御部221aおよび321aが用いられる場合においては、フィルタ部910が省略されて、ゲイン部912のみによって共振抑制制御部221a,321aが構成される場合がある。このような場合においては、振動判定部222a,322aが、直流系統61の電圧の振動成分を抽出し、抽出した振動成分が予め定められた値よりも小さくなるように、ゲイン部912のゲインを設定する。
The gain unit 912 may also specify the gain from the vibration determination units 222a and 322a. Further, particularly when the resonance suppression control units 221a and 321a are used to control the virtual resistance component, the filter unit 910 may be omitted and the resonance suppression control units 221a and 321a may be configured only by the gain unit 912. is there. In such a case, the vibration determination units 222a and 322a extract the vibration component of the voltage of the DC system 61, and the gain of the gain unit 912 is set so that the extracted vibration component becomes smaller than a predetermined value. Set.
AC/DC出力制御部225は、セレクト部226から出力される電流指令に基づいて、AC/DCコンバータ主回路部21の制御信号を出力する。AC/DC出力制御部225は、入力される電流指令が出力電流上限値I1maxを超えるか、または出力電流下限値I1minよりも小さい場合に、リミッタ動作によって、出力する電流指令を出力電流下限値I1min以上、かつ出力電流上限値I1max以下の範囲となるように制御する。
The AC / DC output control unit 225 outputs a control signal of the AC / DC converter main circuit unit 21 based on the current command output from the select unit 226. When the input current command exceeds the output current upper limit value I1max or is smaller than the output current lower limit value I1min, the AC / DC output control unit 225 outputs the current command by the limiter operation to the output current lower limit value I1min. It is controlled so as to be within the range of the above and the output current upper limit value I1max or less.
DC/DC出力制御部325は、セレクト部326から出力される電流指令に基づいて、DC/DCコンバータ主回路部31の制御信号を出力する。DC/DC出力制御部325は、入力される電流指令が出力電流上限値I2maxを超えるか、または出力電流下限値I2minよりも小さい場合に、リミッタ動作によって、出力する電流指令を出力電流下限値I2min以上、かつ出力電流上限値I2max以下の範囲となるように制御する。
The DC / DC output control unit 325 outputs a control signal of the DC / DC converter main circuit unit 31 based on the current command output from the select unit 326. When the input current command exceeds the output current upper limit value I2max or is smaller than the output current lower limit value I2min, the DC / DC output control unit 325 outputs the current command by the limiter operation to the output current lower limit value I2min. It is controlled so as to be within the range of the above and the output current upper limit value I2max or less.
AC/DCコンバータ2aのAC/DC出力制御部225が直流系統61の直流電圧の制御を実施している期間、DC/DCコンバータ3aの創蓄電源制御部324が創蓄電源制御を実施する。創蓄電源制御部324は、接続される創蓄電源41の種類によって制御する対象あるいは制御方式が異なる。創蓄電源制御部324は、創蓄電源41としてLiBまたは鉛蓄電池等の蓄電池が接続される場合、蓄電池のSoCを一定値に制御する、または充放電電力を制御する制御器を含む。創蓄電源制御部324は、創蓄電源41として太陽電池が接続される場合、太陽電池が効率良く発電できるように太陽電池の端子電圧を制御するMPPT(Maximum Power Point Tracking)制御器を含む。EMS等の上位コントローラが存在する場合は、上位コントローラは、交流系統11からの買電電力をセンシングし、創蓄電源41から取り出す電力指令を決定する。これによって、買電電力のピークカットないしピークシフトを実施することができる。この場合、上位コントローラから各DC/DCコンバータ3aに出力電力指令を送信し、各DC/DCコンバータ3aの創蓄電源制御部324は、出力電力指令に合わせた電力を充放電できるように自身に接続された創蓄電源41を制御する。
While the AC / DC output control unit 225 of the AC / DC converter 2a is controlling the DC voltage of the DC system 61, the storage power supply control unit 324 of the DC / DC converter 3a is performing the storage power supply control. The target or control method of the storage power supply control unit 324 differs depending on the type of the storage power supply 41 to be connected. The storage power supply control unit 324 includes a controller that controls the SoC of the storage battery to a constant value or controls the charge / discharge power when a storage battery such as a LiB or a lead storage battery is connected as the storage power supply 41. The creation power supply control unit 324 includes an MPPT (Maximum Power Point Tracking) controller that controls the terminal voltage of the solar cell so that the solar cell can generate electricity efficiently when the solar cell is connected as the creation power supply 41. When there is a higher-level controller such as EMS, the higher-level controller senses the power purchased from the AC system 11 and determines the power command to be taken out from the storage power supply 41. As a result, it is possible to carry out peak cut or peak shift of the purchased power. In this case, an output power command is transmitted from the host controller to each DC / DC converter 3a, and the storage power supply control unit 324 of each DC / DC converter 3a can charge / discharge the power according to the output power command. It controls the connected storage power supply 41.
DC/DCコンバータ3aのDC/DC出力制御部325が直流系統61の直流電圧の制御を実施している期間、AC/DCコンバータ2aの交流系統潮流制御部224が交流系統潮流制御を実施する。交流系統潮流制御部224は、交流系統潮流制御部224は、センサ部23Aから取得した電圧情報および電流情報と、外部の制御装置から取得した指令とに基づいて、交流系統11から受電する有効電力および無効電力の制御を実施する。この制御によって、交流系統11からの買電電力を調整し、ピークカットまたはピークシフトなどの機能を実現することができる。また、EMS等のような上位コントローラが存在する場合は、上位コントローラが、交流系統11の電圧を監視し、電圧の増加または減少が確認された場合に、その電圧の変動量に応じた無効電力指令をAC/DCコンバータ2aへと出力する。AC/DCコンバータ2aの交流系統潮流制御部224は、無効電力指令に基づいて、交流系統11への潮流無効電力の調整を実施する。
While the DC / DC output control unit 325 of the DC / DC converter 3a is controlling the DC voltage of the DC system 61, the AC system power flow control unit 224 of the AC / DC converter 2a is performing the AC system power flow control. The AC system power flow control unit 224 receives power from the AC system 11 based on the voltage information and current information acquired from the sensor unit 23A and the command acquired from the external control device. And control the reactive power. By this control, the power purchased from the AC system 11 can be adjusted, and functions such as peak cut or peak shift can be realized. In addition, when there is an upper controller such as EMS, the upper controller monitors the voltage of the AC system 11, and when an increase or decrease in the voltage is confirmed, the reactive power according to the fluctuation amount of the voltage. The command is output to the AC / DC converter 2a. The AC / DC converter 2a AC system power flow control unit 224 adjusts the power flow invalid power to the AC system 11 based on the reactive power command.
(制御の切り替え)
実施の形態1において、直流系統61における直流電圧制御と共振抑制制御については、複数のAC/DCコンバータ2aまたは複数のDC/DCコンバータ3aのいずれか一方で実施されるようにモード指令M1とモード指令M2とが設定される。複数のAC/DCコンバータ2aのモード指令M1は、共通である。複数のDC/DCコンバータ3aのモード指令M2は、共通である。つまり、直流電圧制御部223aおよび直流電圧制御部323aは、互いに異なる期間に動作し、共振抑制制御部221aおよび共振抑制制御部321aは、互いに異なる期間に動作する。 (Switching control)
In the first embodiment, regarding the DC voltage control and the resonance suppression control in theDC system 61, the mode command M1 and the mode are implemented so that either of the plurality of AC / DC converters 2a or the plurality of DC / DC converters 3a is executed. Command M2 is set. The mode command M1 of the plurality of AC / DC converters 2a is common. The mode command M2 of the plurality of DC / DC converters 3a is common. That is, the DC voltage control unit 223a and the DC voltage control unit 323a operate in different periods, and the resonance suppression control unit 221a and the resonance suppression control unit 321a operate in different periods.
実施の形態1において、直流系統61における直流電圧制御と共振抑制制御については、複数のAC/DCコンバータ2aまたは複数のDC/DCコンバータ3aのいずれか一方で実施されるようにモード指令M1とモード指令M2とが設定される。複数のAC/DCコンバータ2aのモード指令M1は、共通である。複数のDC/DCコンバータ3aのモード指令M2は、共通である。つまり、直流電圧制御部223aおよび直流電圧制御部323aは、互いに異なる期間に動作し、共振抑制制御部221aおよび共振抑制制御部321aは、互いに異なる期間に動作する。 (Switching control)
In the first embodiment, regarding the DC voltage control and the resonance suppression control in the
AC/DCコンバータ2aにおいては、セレクト部226は、モード指令M1に基づいて、潮流電力制御モードと電圧制御モードとの切り替えを実施する。
In the AC / DC converter 2a, the select unit 226 switches between the tidal current power control mode and the voltage control mode based on the mode command M1.
潮流電力制御モードでは、セレクト部226は、交流系統潮流制御部224の動作に基づいてAC/DCコンバータ主回路部21が制御されるように、交流系統潮流制御部224の出力を選択する。
In the power flow control mode, the select unit 226 selects the output of the AC system power flow control unit 224 so that the AC / DC converter main circuit unit 21 is controlled based on the operation of the AC system power flow control unit 224.
電圧制御モードでは、セレクト部226は、共振抑制制御部221a及び直流電圧制御部223aの動作に基づいて、AC/DCコンバータ主回路部21が制御されるように、演算部227の出力を選択する。
In the voltage control mode, the select unit 226 selects the output of the calculation unit 227 so that the AC / DC converter main circuit unit 21 is controlled based on the operations of the resonance suppression control unit 221a and the DC voltage control unit 223a. ..
DC/DCコンバータ3aにおいては、セレクト部326は、モード指令M2に基づいて、創蓄電源制御モードと電圧制御モードとの切り替えを実施する。
In the DC / DC converter 3a, the select unit 326 switches between the storage power supply control mode and the voltage control mode based on the mode command M2.
創蓄電源制御モードでは、セレクト部326は、創蓄電源制御部324の動作に基づいて、DC/DCコンバータ主回路部31が制御されるように、創蓄電源制御部324の出力を選択する。
In the storage power supply control mode, the select unit 326 selects the output of the storage power supply control unit 324 so that the DC / DC converter main circuit unit 31 is controlled based on the operation of the storage power supply control unit 324. ..
電圧制御モードでは、セレクト部326は、共振抑制制御部321a及び直流電圧制御部323aの動作に基づいて、DC/DCコンバータ主回路部31が制御されるように、演算部327の出力を選択する。
In the voltage control mode, the select unit 326 selects the output of the calculation unit 327 so that the DC / DC converter main circuit unit 31 is controlled based on the operations of the resonance suppression control unit 321a and the DC voltage control unit 323a. ..
モード指令M1とモード指令M2におけるモード選択については、交流系統11の潮流電力の制御または創蓄電源41の状態の制御のいずれを実施したいかの要望により初期設定されるものとすることができる。モード指令M1とモード指令M2は、サーバ等の外部の制御装置によって設定されるものとしてもよいし、受配電システム内の動作状態に応じて、受配電システムの内部の制御装置によって設定されるものとしてもよい。
The mode selection in the mode command M1 and the mode command M2 can be initially set according to the desire to control the tidal current power of the AC system 11 or the state of the storage power supply 41. The mode command M1 and the mode command M2 may be set by an external control device such as a server, or may be set by an internal control device of the power receiving and distribution system according to the operating state in the power receiving and distribution system. May be.
例えば、DC/DCコンバータ3aが電圧制御モードに設定され、AC/DCコンバータ2aが潮流電力制御モードに設定されている場合において、DC/DCコンバータ3aが故障したとき、または創蓄電源41であるLiBのSoCの低下したときには、DC/DCコンバータ3aの出力が停止する。このような場合には、直流系統61の電圧が保持できなくなる。そのような場合において、外部の制御装置または受配電システムの内部の制御装置が、直流系統61の電圧の低下を検出して、モード指令M1を潮流電力制御モードから電圧制御モードに切り替える。これによって、複数のAC/DCコンバータ2aも、直流電圧制御と共振抑制制御とを実施する。この場合、DC/DCコンバータ3aの出力が停止しているため、共振抑制制御部321aから指令が出力されても、DC/DCコンバータ3aの出力はゼロである。よって、複数のAC/DCコンバータ2aと複数のDC/DCコンバータ3aとの間において制御干渉が発生せず、複数のAC/DCコンバータ2aが、共振による電圧振動を含めて、直流系統61の電圧を安定して制御することができる。
For example, when the DC / DC converter 3a is set to the voltage control mode and the AC / DC converter 2a is set to the power flow control mode, the DC / DC converter 3a fails, or the storage power supply 41. When the SoC of LiB decreases, the output of the DC / DC converter 3a stops. In such a case, the voltage of the DC system 61 cannot be maintained. In such a case, the external control device or the internal control device of the power receiving and distribution system detects the voltage drop of the DC system 61 and switches the mode command M1 from the tidal current power control mode to the voltage control mode. As a result, the plurality of AC / DC converters 2a also perform DC voltage control and resonance suppression control. In this case, since the output of the DC / DC converter 3a is stopped, the output of the DC / DC converter 3a is zero even if a command is output from the resonance suppression control unit 321a. Therefore, control interference does not occur between the plurality of AC / DC converters 2a and the plurality of DC / DC converters 3a, and the plurality of AC / DC converters 2a include the voltage vibration due to resonance and the voltage of the DC system 61. Can be controlled stably.
その他の例として、DC/DCコンバータ3aが創蓄電源制御モードに設定され、AC/DCコンバータ2aが電圧制御モードに設定されている場合において、直流系統61に接続される負荷51がAC/DCコンバータ2aの容量よりも大きな電力を消費するような場合、AC/DCコンバータ2aのみでは直流系統61の電圧を制御することが不可能となる。すなわち、直流系統61の電圧Vdcが電圧指令Vdc_ref1よりも小さくなる。このような場合には、外部の制御装置または受配電システムの内部の制御装置が、直流系統61の電圧の低下もしくは上昇を検出して、モード指令M2を創蓄電源制御モードから電圧制御モードに切り替える。これによって、複数のDC/DCコンバータ3aも、直流電圧制御と共振抑制制御とを実施する。
As another example, when the DC / DC converter 3a is set to the storage power supply control mode and the AC / DC converter 2a is set to the voltage control mode, the load 51 connected to the DC system 61 is AC / DC. When the power consumption is larger than the capacity of the converter 2a, it becomes impossible to control the voltage of the DC system 61 only by the AC / DC converter 2a. That is, the voltage Vdc of the DC system 61 becomes smaller than the voltage command Vdc_ref1. In such a case, the external control device or the control device inside the power receiving and distribution system detects a drop or rise in the voltage of the DC system 61 and changes the mode command M2 from the storage power supply control mode to the voltage control mode. Switch. As a result, the plurality of DC / DC converters 3a also perform DC voltage control and resonance suppression control.
ただし、このときには、AC/DCコンバータ2aにおいて共振抑制制御部221aが動作すると、DC/DCコンバータ3aの共振抑制制御部321aと競合してしまう可能性がある。
However, at this time, if the resonance suppression control unit 221a operates in the AC / DC converter 2a, there is a possibility of competing with the resonance suppression control unit 321a of the DC / DC converter 3a.
したがって、DC/DCコンバータ3aのモード指令M2が電圧制御モードに切り替わった場合に、AC/DCコンバータ2aの出力電流が飽和して、共振抑制制御部221aが動作しないようにする必要がある。よって、直流系統61の電圧がDC/DCコンバータ3aの直流電圧指令Vdc_ref2によって制御できるときに、AC/DCコンバータ2aの出力電流が飽和し続けるように、DC/DCコンバータ3aにおける直流電圧指令Vdc_ref2を、AC/DCコンバータ2aの直流電圧指令Vdc_ref1よりも小さな値に設定する必要がある。この場合には、直流系統61の電圧Vdcが電圧指令Vdc_ref2よりも低下すると、DC/DCコンバータ3aが、直流系統61の電圧Vdcが電圧指令Vdc_ref2となるように電圧制御を開始し、直流系統61に電力を出力する。このときには、負荷51の電力は、AC/DCコンバータ2aの出力とDC/DCコンバータ3aの出力の和となるが、Vdc<Vdc_ref1のため、AC/DCコンバータ2aは、最大の出力電流を出力し続ける。
Therefore, when the mode command M2 of the DC / DC converter 3a is switched to the voltage control mode, it is necessary to saturate the output current of the AC / DC converter 2a so that the resonance suppression control unit 221a does not operate. Therefore, when the voltage of the DC system 61 can be controlled by the DC voltage command Vdc_ref2 of the DC / DC converter 3a, the DC voltage command Vdc_ref2 of the DC / DC converter 3a is set so that the output current of the AC / DC converter 2a continues to be saturated. , It is necessary to set the value smaller than the DC voltage command Vdc_ref1 of the AC / DC converter 2a. In this case, when the voltage Vdc of the DC system 61 is lower than the voltage command Vdc_ref2, the DC / DC converter 3a starts voltage control so that the voltage Vdc of the DC system 61 becomes the voltage command Vdc_ref2, and the DC system 61 Output power to. At this time, the power of the load 51 is the sum of the output of the AC / DC converter 2a and the output of the DC / DC converter 3a, but since Vdc <Vdc_ref1, the AC / DC converter 2a outputs the maximum output current. to continue.
以上のように、直流系統61の電圧がDC/DCコンバータ3aのモード指令M2が電圧制御モードに切り替わる域では、AC/DCコンバータ2aでは、直流電圧保持のため、出力電流が最大値となる。このときには、AC/DCコンバータ2aは、共振抑制制御部221aによる電圧振動の補正用の電力を出力する余力がない状態である。
As described above, in the region where the voltage of the DC system 61 switches to the voltage control mode of the mode command M2 of the DC / DC converter 3a, the AC / DC converter 2a holds the DC voltage, so that the output current becomes the maximum value. At this time, the AC / DC converter 2a is in a state in which the resonance suppression control unit 221a does not have enough power to output the power for correcting the voltage vibration.
以上によって、AC/DCコンバータ2aとDC/DCコンバータ3aの間において制御干渉が発生せず、共振による電圧振動を含めて直流系統61の電圧を安定に制御することができる。
As described above, control interference does not occur between the AC / DC converter 2a and the DC / DC converter 3a, and the voltage of the DC system 61 can be stably controlled including voltage vibration due to resonance.
(振動判定部の動作例)
共振抑制制御部221a,321aは、共振によって発生する電圧振動をフィルタ部910によって抽出し、抽出した電圧振動成分に基づいて、補正電力指令Idamp1,Idamp2を計算する。例えば、実施の形態1においては、直流系統61に接続される負荷51の種類とその数は不定であり、負荷51の接続状態も動作状況に応じて逐次変化する可能性がある。また、負荷51の種類によって、負荷51の直流系統側に接続されるコンデンサおよびインダクタの値が様々である。そのため、直流系統61における共振回路の共振周波数は、動作状態に応じて時々刻々と変動する可能性がある。その結果、フィルタ部910に初期設定されているカットオフ周波数では、電圧振動成分を抽出できない可能性がある。そこで、振動判定部222a,322aは、電圧振動の振幅および周波数成分を解析することによって、振動成分が低減される方向にフィルタ部910の制御定数であるカットオフ周波数を補正する。 (Operation example of vibration judgment unit)
The resonance suppression control units 221a and 321a extract the voltage vibration generated by the resonance by the filter unit 910, and calculate the correction power commands Idamp1 and Idamp2 based on the extracted voltage vibration components. For example, in the first embodiment, the type and number of loads 51 connected to the DC system 61 are undefined, and the connection state of the loads 51 may change sequentially according to the operating status. Further, the values of the capacitors and inductors connected to the DC system side of the load 51 vary depending on the type of the load 51. Therefore, the resonance frequency of the resonance circuit in the DC system 61 may fluctuate from moment to moment depending on the operating state. As a result, the voltage vibration component may not be extracted at the cutoff frequency initially set in the filter unit 910. Therefore, the vibration determination units 222a and 322a correct the cutoff frequency, which is the control constant of the filter unit 910, in the direction in which the vibration component is reduced by analyzing the amplitude and frequency component of the voltage vibration.
共振抑制制御部221a,321aは、共振によって発生する電圧振動をフィルタ部910によって抽出し、抽出した電圧振動成分に基づいて、補正電力指令Idamp1,Idamp2を計算する。例えば、実施の形態1においては、直流系統61に接続される負荷51の種類とその数は不定であり、負荷51の接続状態も動作状況に応じて逐次変化する可能性がある。また、負荷51の種類によって、負荷51の直流系統側に接続されるコンデンサおよびインダクタの値が様々である。そのため、直流系統61における共振回路の共振周波数は、動作状態に応じて時々刻々と変動する可能性がある。その結果、フィルタ部910に初期設定されているカットオフ周波数では、電圧振動成分を抽出できない可能性がある。そこで、振動判定部222a,322aは、電圧振動の振幅および周波数成分を解析することによって、振動成分が低減される方向にフィルタ部910の制御定数であるカットオフ周波数を補正する。 (Operation example of vibration judgment unit)
The resonance
図3は、実施の形態1の振動判定部222a,322aにおける処理手順の一例を示すフローチャートである。
FIG. 3 is a flowchart showing an example of the processing procedure in the vibration determination units 222a and 322a of the first embodiment.
このフローチャートは、予め定められた条件が成立するごと(たとえば、処理開始のための開始フラグが発生する毎)に繰り返し実行される。どのような挙動が発生した場合に振動判定部222aの処理が開始されるかは、ユーザー操作により予め設定される。例えば、直流系統61の直流電圧の振幅が設定した周期の間、設定したしきい値以上には変動しなかった場合に開始フラグが発生することとしてもよい。あるいは、負荷51の変動等によって、直流系統61の直流電流ないし直流電圧が一定値以上変動した場合に、変動後設定した時間経過後に開始フラグが発生することとしてもよい。
This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, every time a start flag for starting processing is generated). When the behavior of the vibration determination unit 222a is started is set in advance by a user operation. For example, the start flag may be generated when the amplitude of the DC voltage of the DC system 61 does not fluctuate beyond the set threshold value during the set period. Alternatively, when the DC current or DC voltage of the DC system 61 fluctuates by a certain value or more due to fluctuations in the load 51 or the like, the start flag may be generated after a lapse of a set time after the fluctuations.
ステップS11において、振動判定部222a,322aは、振動抽出処理を行う。振動判定部222a,322aは、センサ部23B,33Bから出力される直流電圧の検出値Vdc_ref1,Vdc_ref2に含まれる振動成分を抽出する。振動成分の抽出には、たとえば、HPF等のディジタルフィルタが用いられる。ディジタルフィルタによって、共振周波数よりも十分に低い周波数成分を減衰させ、直流成分等の十分に低い周波数成分をカットした電圧振動成分が抽出される。
In step S11, the vibration determination units 222a and 322a perform vibration extraction processing. The vibration determination units 222a and 322a extract vibration components included in the DC voltage detection values Vdc_ref1 and Vdc_ref2 output from the sensor units 23B and 33B. For the extraction of the vibration component, for example, a digital filter such as HPF is used. The digital filter attenuates a frequency component sufficiently lower than the resonance frequency, and extracts a voltage vibration component in which a sufficiently low frequency component such as a DC component is cut off.
ステップS12において、振動判定部222a,322aは、振動成分解析処理を行う。振動判定部222a,322aは、振動抽出処理によって抽出した電圧振動成分のうち、予め定められた値よりも大きな振幅を有する電圧振動成分を離散フーリエ変換を用いて周波数解析することによって、周波数成分を抽出する。振動判定部222a,322aは、これにより、振幅の小さい振動に対して過敏にパラメータを補正することのないように制御動作を制限できる。
In step S12, the vibration determination units 222a and 322a perform vibration component analysis processing. The vibration determination units 222a and 322a determine the frequency component by frequency-analyzing the voltage vibration component having an amplitude larger than a predetermined value among the voltage vibration components extracted by the vibration extraction process by using the discrete Fourier transform. Extract. As a result, the vibration determination units 222a and 322a can limit the control operation so as not to sensitize the parameters to the vibration having a small amplitude.
ステップS13において、振動判定部222a,322aは、パラメータ更新処理を行う。振動判定部222a,322aは、振動成分解析処理によって抽出した振動成分の周波数情報に基づいて、フィルタ部910のカットオフ周波数を設定する。たとえば、振動判定部222a,322aは、抽出したい信号の周波数に比べて、5倍から10倍以上低い周波数をカットオフ周波数に設定するものとしてもよい。これらの処理により、共振抑制制御部221aにおけるカットオフ周波数を動作状態に合わせて自動的に設定できるため、直流系統61の共振周波数の変動が発生した場合においても、直流系統61の電圧を安定に制御することができる。
In step S13, the vibration determination units 222a and 322a perform parameter update processing. The vibration determination units 222a and 322a set the cutoff frequency of the filter unit 910 based on the frequency information of the vibration component extracted by the vibration component analysis process. For example, the vibration determination units 222a and 322a may set a frequency 5 to 10 times or more lower than the frequency of the signal to be extracted as the cutoff frequency. By these processes, the cutoff frequency in the resonance suppression control unit 221a can be automatically set according to the operating state, so that the voltage of the DC system 61 can be stabilized even when the resonance frequency of the DC system 61 fluctuates. Can be controlled.
上記の実施形態では、フィルタ部910は、HPFによって実装されるものとしたが、これに限定されるものではない。フィルタ部910は、バンドパスフィルタ(以降はBPFと称する)、または離散フーリエ変換器(以降はDFTと称する)によって実装されるものとしてもよい。あるいは、フィルタ部910は、HPF、BPF、および離散フーリエ変換器の中の任意の組み合わせによって実装されるものとしてもよい。
In the above embodiment, the filter unit 910 is implemented by the HPF, but the present invention is not limited to this. The filter unit 910 may be implemented by a bandpass filter (hereinafter referred to as BPF) or a discrete Fourier transform (hereinafter referred to as DFT). Alternatively, the filter unit 910 may be implemented by any combination within the HPF, BPF, and discrete Fourier transform.
フィルタ部910がBPFによって実装される場合には、振動判定部222aは、抽出したい信号の周波数をフィルタ部910の中心周波数に設定するものとしてもよい。
When the filter unit 910 is mounted by the BPF, the vibration determination unit 222a may set the frequency of the signal to be extracted to the center frequency of the filter unit 910.
上記の実施形態では、受配電システムが複数個のAC/DCコンバータ2aと複数個のDC/DCコンバータ3aとを備えることとしたが、これに限定されるものではない。受配電システムが、1個のAC/DCコンバータ2aと1個のDC/DCコンバータ3aとを備えるものとしてもよい。
In the above embodiment, the power receiving and distribution system includes a plurality of AC / DC converters 2a and a plurality of DC / DC converters 3a, but the present invention is not limited to this. The power receiving and distribution system may include one AC / DC converter 2a and one DC / DC converter 3a.
実施の形態2.
図4は、実施の形態2に係る受配電システムの構成図である。実施の形態2が、実施の形態1と相違する点は、複数のDC/DCコンバータ3aが、それぞれに接続される創蓄電源の種類に応じて、複数のグループに分類されることである。 Embodiment 2.
FIG. 4 is a configuration diagram of the power receiving and distribution system according to the second embodiment. The second embodiment differs from the first embodiment in that a plurality of DC /DC converters 3a are classified into a plurality of groups according to the type of storage power source connected to each of the plurality of DC / DC converters 3a.
図4は、実施の形態2に係る受配電システムの構成図である。実施の形態2が、実施の形態1と相違する点は、複数のDC/DCコンバータ3aが、それぞれに接続される創蓄電源の種類に応じて、複数のグループに分類されることである。 Embodiment 2.
FIG. 4 is a configuration diagram of the power receiving and distribution system according to the second embodiment. The second embodiment differs from the first embodiment in that a plurality of DC /
複数の創蓄電源は、放電のみが許容される第1グループの創蓄電源41Aと、充放電が許容される第2グループの創蓄電源41Bとに分類される。第1グループの創蓄電源41Aは、たとえば、太陽電池または燃料電池である。第2グループの創蓄電源41Bは、たとえば、リチウムイオン電池(LiB)などの定置型蓄電池または充放電が許容されるEVの電源装置である。図4には明示していないが、創蓄電源41Aの種類は、さらに追加されてもよい。例えば電気二重層コンデンサのような高速な充放電が可能な第3グループの創蓄電源が追加されてもよい。
The plurality of storage power sources are classified into a first group storage power supply 41A that allows only discharge and a second group storage power supply 41B that allows charging and discharging. The first group of storage power sources 41A are, for example, solar cells or fuel cells. The second group of storage power supply 41B is, for example, a stationary storage battery such as a lithium ion battery (LiB) or an EV power supply device that allows charging and discharging. Although not explicitly shown in FIG. 4, the type of the storage power supply 41A may be further added. A third group of storage power sources capable of high-speed charging and discharging, such as electric double layer capacitors, may be added.
第1グループの創蓄電源41Aが接続されるDC/DCコンバータ3aAが、第1グループのDC/DCコンバータである。第2グループの創蓄電源41Bが接続されるDC/DCコンバータ3aBが、第2グループのDC/DCコンバータである。
The DC / DC converter 3aA to which the first group storage power supply 41A is connected is the first group DC / DC converter. The DC / DC converter 3aB to which the storage power supply 41B of the second group is connected is the DC / DC converter of the second group.
(電力変換器の動作)
実施の形態2では、異なるグループのDC/DCコンバータの直流電圧制御部および共振抑制制御部が、互いに異なる期間に動作する。 (Operation of power converter)
In the second embodiment, the DC voltage control unit and the resonance suppression control unit of the DC / DC converters of different groups operate in different periods from each other.
実施の形態2では、異なるグループのDC/DCコンバータの直流電圧制御部および共振抑制制御部が、互いに異なる期間に動作する。 (Operation of power converter)
In the second embodiment, the DC voltage control unit and the resonance suppression control unit of the DC / DC converters of different groups operate in different periods from each other.
まず、AC/DCコンバータ2aの直流電圧指令Vdc_ref1と、DC/DCコンバータ3aAの直流電圧指令Vdc_ref2と、DC/DCコンバータ3aBの直流電圧指令Vdc_ref3との間には、以下の関係が成立するとする。
First, it is assumed that the following relationship is established between the DC voltage command Vdc_ref1 of the AC / DC converter 2a, the DC voltage command Vdc_ref2 of the DC / DC converter 3aA, and the DC voltage command Vdc_ref3 of the DC / DC converter 3aB.
Vdc_ref2>Vdc_ref3>Vdc_ref1・・・(1)
DC/DCコンバータ3aAに、第1グループの創蓄電源41Aとして太陽電池が接続されているとする。さらに、DC/DCコンバータ3aAのモード指令M2が電圧制御モードに設定され、DC/DCコンバータ3aBのモード指令M3が創蓄電源モードに設定され、AC/DCコンバータ2aのモード指令M1が潮流電力制御モードに設定されているとする。 Vdc_ref2>Vdc_ref3> Vdc_ref1 ... (1)
It is assumed that a solar cell is connected to the DC / DC converter 3aA as astorage power source 41A of the first group. Further, the mode command M2 of the DC / DC converter 3aA is set to the voltage control mode, the mode command M3 of the DC / DC converter 3aB is set to the storage power supply mode, and the mode command M1 of the AC / DC converter 2a controls the power flow. Suppose it is set to mode.
DC/DCコンバータ3aAに、第1グループの創蓄電源41Aとして太陽電池が接続されているとする。さらに、DC/DCコンバータ3aAのモード指令M2が電圧制御モードに設定され、DC/DCコンバータ3aBのモード指令M3が創蓄電源モードに設定され、AC/DCコンバータ2aのモード指令M1が潮流電力制御モードに設定されているとする。 Vdc_ref2>Vdc_ref3> Vdc_ref1 ... (1)
It is assumed that a solar cell is connected to the DC / DC converter 3aA as a
このときに、日照が急に遮られて太陽電池の出力電力が極端に低下した場合には、DC/DCコンバータ3aAの出力が停止して、直流系統61の電圧が保持できなくなる場合がある。
At this time, if the sunlight is suddenly blocked and the output power of the solar cell drops extremely, the output of the DC / DC converter 3aA may stop and the voltage of the DC system 61 may not be maintained.
外部の制御装置が、直流系統61の電圧の低下を検出して、DC/DCコンバータ3aBのモード指令M3を電圧制御モードに切り替える。これによって、DC/DCコンバータ3aBにおいても直流電圧制御と共振抑制制御とが実施される。このときには、DC/DCコンバータ3aAは、共振抑制制御部321aから出力される操作量に対して出力電流を制御できないため、DC/DCコンバータ3aAと、DC/DCコンバータ3aBとの間で制御干渉が発生しない。
An external control device detects a voltage drop in the DC system 61 and switches the mode command M3 of the DC / DC converter 3aB to the voltage control mode. As a result, DC voltage control and resonance suppression control are also performed in the DC / DC converter 3aB. At this time, since the DC / DC converter 3aA cannot control the output current with respect to the operation amount output from the resonance suppression control unit 321a, control interference occurs between the DC / DC converter 3aA and the DC / DC converter 3aB. Does not occur.
DC/DCコンバータ3aBが創蓄電源41BのSoC低下などによって電力を出力できない場合、DC/DCコンバータ3aAとDC/DCコンバータ3aBのいずれとも異なる直流電圧指令Vdc_ref1を有するAC/DCコンバータ2aが、直流系統61の電圧のさらなる低下を検出して、モード指令M1を電圧制御モードに切り替える。これよって、すべてのAC/DCコンバータ2aにおいても直流電圧制御と共振抑制制御とを実施する。
When the DC / DC converter 3aB cannot output power due to a decrease in the SoC of the storage power supply 41B, the AC / DC converter 2a having a DC voltage command Vdc_ref1 different from that of both the DC / DC converter 3aA and the DC / DC converter 3aB is DC. The mode command M1 is switched to the voltage control mode by detecting a further drop in the voltage of the system 61. As a result, DC voltage control and resonance suppression control are also performed in all AC / DC converters 2a.
このように、複数の種類に分類される電力変換器群を有する受配電システムにおいて、各電力変換器群それぞれに異なる直流電圧指令、およびモード指令の切り替え条件を設定することによって、直流系統61の電圧を制御する電圧変換器群を切り替えることができる。
In this way, in a power receiving and distribution system having power converter groups classified into a plurality of types, by setting different DC voltage commands and mode command switching conditions for each power converter group, the DC system 61 The voltage converter group that controls the voltage can be switched.
図4には明示していないが、複数のAC/DCコンバータまたは複数のDC/DCコンバ-タで構成される電力変換器群は、構成される電力変換器の特性に応じて分類され、その分類の数に制限はない。
Although not explicitly shown in FIG. 4, a group of power converters composed of a plurality of AC / DC converters or a plurality of DC / DC converters is classified according to the characteristics of the configured power converters. There is no limit to the number of classifications.
以上説明したように、創蓄電源の種類が増加した場合においても、DC/DCコンバータに接続される創蓄電源の特性に応じて、複数のDC/DCコンバータをグループに分割して、それぞれ創蓄電源の特性が干渉しないようにグループごとの動作期間を分けることによって、共振による電圧振動を含めて直流系統61の電圧を安定に制御することができる。
As described above, even when the types of storage power sources increase, a plurality of DC / DC converters are divided into groups according to the characteristics of the storage power sources connected to the DC / DC converters, and each is created. By dividing the operating period for each group so that the characteristics of the storage power supply do not interfere with each other, the voltage of the DC system 61 can be stably controlled including the voltage vibration due to resonance.
実施の形態3.
図5は、実施の形態3に係る受配電システムの構成図である。 Embodiment 3.
FIG. 5 is a block diagram of the power receiving and distribution system according to the third embodiment.
図5は、実施の形態3に係る受配電システムの構成図である。 Embodiment 3.
FIG. 5 is a block diagram of the power receiving and distribution system according to the third embodiment.
実施の形態3が、実施の形態1と相違する点について説明する。
実施の形態3では、主として複数のAC/DCコンバータ2bが直流系統61の直流電圧の制御を実施する。複数のDC/DCコンバータ3bは、主として創蓄電源41の状態の制御を実施する。ただし、複数のAC/DCコンバータ2bの少なくとも1つが異常等によって出力が停止した場合において、正常なAC/DCコンバータ2bだけでは、直流系統61の直流電圧を制御できない場合には、複数のAC/DCコンバータ2bに代わって、複数のDC/DCコンバータ3bが直流系統61の直流電圧の制御を実施する。 The difference between the third embodiment and the first embodiment will be described.
In the third embodiment, a plurality of AC /DC converters 2b mainly control the DC voltage of the DC system 61. The plurality of DC / DC converters 3b mainly control the state of the storage power supply 41. However, when the output of at least one of the plurality of AC / DC converters 2b is stopped due to an abnormality or the like, and the DC voltage of the DC system 61 cannot be controlled by the normal AC / DC converter 2b alone, the plurality of AC / DC converters 2b Instead of the DC converter 2b, a plurality of DC / DC converters 3b control the DC voltage of the DC system 61.
実施の形態3では、主として複数のAC/DCコンバータ2bが直流系統61の直流電圧の制御を実施する。複数のDC/DCコンバータ3bは、主として創蓄電源41の状態の制御を実施する。ただし、複数のAC/DCコンバータ2bの少なくとも1つが異常等によって出力が停止した場合において、正常なAC/DCコンバータ2bだけでは、直流系統61の直流電圧を制御できない場合には、複数のAC/DCコンバータ2bに代わって、複数のDC/DCコンバータ3bが直流系統61の直流電圧の制御を実施する。 The difference between the third embodiment and the first embodiment will be described.
In the third embodiment, a plurality of AC /
実施の形態3では、AC/DCコンバータ2bは、交流系統潮流制御部224およびセレクト部226を備えず、DC/DCコンバータ3bは、セレクト部326を備えない。
In the third embodiment, the AC / DC converter 2b does not include the AC system power flow control unit 224 and the select unit 226, and the DC / DC converter 3b does not include the select unit 326.
実施の形態3では、DC/DCコンバータ3bは、直流電圧制御部323a、共振抑制制御部321a、および振動判定部322aに代えて、直流電圧制御部323b、共振抑制制御部321b、および振動判定部322bを備える。DC/DCコンバータ3bは、演算部328を備える。演算部328は、創蓄電源制御部324からの創蓄電流指令Cha_ref2と、演算部327からの合成電流指令com_ref2とを演算する。演算には、たとえば、加算または減算が含まれる。
In the third embodiment, the DC / DC converter 3b replaces the DC voltage control unit 323a, the resonance suppression control unit 321a, and the vibration determination unit 322a with the DC voltage control unit 323b, the resonance suppression control unit 321b, and the vibration determination unit. 322b is provided. The DC / DC converter 3b includes a calculation unit 328. The calculation unit 328 calculates the storage current command Cha_ref2 from the storage power supply control unit 324 and the combined current command com_ref2 from the calculation unit 327. Operations include, for example, addition or subtraction.
図5には示されていないが、複数のDC/DCコンバータ3bに加えて複数のDC/DCコンバータ4bが直流系統61に接続され、主として複数のDC/DCコンバータ3bが直流系統61の直流電圧の制御を実施し、複数のAC/DCコンバータ2bが交流系統の潮流状態の制御を実施し、複数のDC/DCコンバータ4bが自身に接続される創蓄電源41の状態制御を実施してもよい。複数のDC/DCコンバータ3bの異常等により出力が停止した場合において、複数のDC/DCコンバータ3bに代わって、予め指定された複数のDC/DCコンバータ4bもしくは複数のAC/DCコンバータ2bの何れか一方が、直流系統61の直流電圧の制御を実施してもよい。使用者による操作または外部装置からの外部指令によりそれらの制御構成を起動時ないし動作中に切り替えてもよい。
Although not shown in FIG. 5, in addition to the plurality of DC / DC converters 3b, a plurality of DC / DC converters 4b are connected to the DC system 61, and mainly the plurality of DC / DC converters 3b are the DC voltages of the DC system 61. Even if a plurality of AC / DC converters 2b control the power flow state of the AC system and a plurality of DC / DC converters 4b control the state of the storage power supply 41 connected to themselves. Good. When the output is stopped due to an abnormality of the plurality of DC / DC converters 3b, whichever of the plurality of DC / DC converters 4b or the plurality of AC / DC converters 2b specified in advance is replaced with the plurality of DC / DC converters 3b. Either one may control the DC voltage of the DC system 61. These control configurations may be switched at startup or during operation by an operation by the user or an external command from an external device.
(電力変換器の動作)
実施の形態3に係るAC/DCコンバータ2bおよびDC/DCコンバータ3bの動作について説明する。 (Operation of power converter)
The operation of the AC /DC converter 2b and the DC / DC converter 3b according to the third embodiment will be described.
実施の形態3に係るAC/DCコンバータ2bおよびDC/DCコンバータ3bの動作について説明する。 (Operation of power converter)
The operation of the AC /
実施の形態3におけるAC/DCコンバータ2bの直流電圧制御部223bは、センサ部23Bから出力される直流電圧の検出値Vdc_detを受けて、第1のドループ特性に従って、直流電流指令Idc_ref1を出力する。
The DC voltage control unit 223b of the AC / DC converter 2b according to the third embodiment receives the DC voltage detection value Vdc_det output from the sensor unit 23B and outputs the DC current command Idc_ref1 according to the first droop characteristic.
図6は、実施の形態3における直流電圧制御部223bにおける入出力特性を表わす図である。図6のグラフの横軸は、直流電圧制御部223bに入力される直流電圧の検出値Vdc_detである。図6のグラフの縦軸は、直流電圧制御部223bから出力される直流電流指令Idc_ref1である。
FIG. 6 is a diagram showing the input / output characteristics of the DC voltage control unit 223b according to the third embodiment. The horizontal axis of the graph of FIG. 6 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 223b. The vertical axis of the graph of FIG. 6 is the DC current command Idc_ref1 output from the DC voltage control unit 223b.
直流電圧制御部223bにおける制御特性は、直流電圧指令Vdc_ref1を中心に傾きを有する第1のドループ特性である。第1のドループ特性は、直流系統61の電圧検出値Vdc_detが増加するに従って、直流電流指令Idc_ref1が減少する特性である。この特性は、一般的なドループ制御と同様の特性である。直流電圧の検出値Vdc_detが電圧指令Vdc_ref1のときには、直流電流指令Idc_ref1がゼロとなる。直流電圧の検出値Vdc_detが上側直流電圧指令Vdc_ref2_hiのときには、直流電流指令Idc_ref1が出力電流下限値I1minとなる。直流電圧の検出値Vdc_detが下側直流電圧指令Vdc_ref2_loのときには、直流電流指令Idc_ref1が出力電流上限値I1maxとなる。
The control characteristic in the DC voltage control unit 223b is the first droop characteristic having an inclination around the DC voltage command Vdc_ref1. The first droop characteristic is a characteristic in which the DC current command Idc_ref1 decreases as the voltage detection value Vdc_det of the DC system 61 increases. This characteristic is the same as that of general droop control. When the detected value Vdc_det of the DC voltage is the voltage command Vdc_ref1, the DC current command Idc_ref1 becomes zero. When the detected value Vdc_det of the DC voltage is the upper DC voltage command Vdc_ref2_hi, the DC current command Idc_ref1 becomes the output current lower limit value I1min. When the detected value Vdc_det of the DC voltage is the lower DC voltage command Vdc_ref2_lo, the DC current command Idc_ref1 becomes the output current upper limit value I1max.
実施の形態3におけるDC/DCコンバータ3bの直流電圧制御部323bは、センサ部33Bから出力される直流電圧の検出値Vdc_detを受けて、第2のドループ特性に従って、直流電流指令Idc_ref2を出力する。
The DC voltage control unit 323b of the DC / DC converter 3b according to the third embodiment receives the DC voltage detection value Vdc_det output from the sensor unit 33B and outputs the DC current command Idc_ref2 according to the second droop characteristic.
図7は、実施の形態3におけるDC/DCコンバータ3bの直流電圧制御部323bにおける入出力特性を表わす図である。図7のグラフの横軸は、直流電圧制御部323bに入力される直流電圧の検出値Vdc_detである。図7のグラフの縦軸は、直流電圧制御部323bから出力される直流電流指令Idc_ref2である。
FIG. 7 is a diagram showing the input / output characteristics of the DC voltage control unit 323b of the DC / DC converter 3b according to the third embodiment. The horizontal axis of the graph of FIG. 7 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 323b. The vertical axis of the graph of FIG. 7 is the DC current command Idc_ref2 output from the DC voltage control unit 323b.
直流電圧制御部323bにおける制御特性は、直流電圧指令Vdc_ref1を中心に傾きを有する第2のドループ特性である。第2のドループ特性は、直流系統61の電圧検出値Vdc_detが増加するに従って、直流電流指令Idc_ref2が減少する特性である。ただし、この制御特性は、直流電圧の検出値Vdc_detが下側直流電圧指令Vdc_ref2と上側直流電圧指令Vdc_ref2_hiとの間で不感帯を有する。不感帯において、直流電流指令Idc_ref2がゼロとなる。
The control characteristic in the DC voltage control unit 323b is a second droop characteristic having an inclination around the DC voltage command Vdc_ref1. The second droop characteristic is a characteristic in which the DC current command Idc_ref2 decreases as the voltage detection value Vdc_det of the DC system 61 increases. However, in this control characteristic, the detected value Vdc_det of the DC voltage has a dead band between the lower DC voltage command Vdc_ref2 and the upper DC voltage command Vdc_ref2_hi. In the dead zone, the DC current command Idc_ref2 becomes zero.
AC/DCコンバータ2bの直流電圧制御の特性上は、出力電流指令が出力電流上限値I1maxよりも大きい、または出力電流下限値I1minよりも小さくても、出力電流指令は増加するが、実際には、AC/DC出力制御部225において、出力電流が出力電流上限値I1max以下、かつ出力電流下限値I1min以上に制限される。
Due to the characteristics of the DC voltage control of the AC / DC converter 2b, even if the output current command is larger than the output current upper limit value I1max or smaller than the output current lower limit value I1min, the output current command increases, but in reality In the AC / DC output control unit 225, the output current is limited to the output current upper limit value I1max or less and the output current lower limit value I1min or more.
これに対して、DC/DCコンバータ3bの直流電圧制御部323bは、直流電圧の検出値Vdc_detが上側直流電圧指令Vdc_ref2_hiよりも大きく、または下側直流電圧指令Vdc_ref2_loよりも小さい範囲において、制限を受けずに直流電流指令Idc_ref2を出力することによって、DC/DCコンバータ3bの出力電流を補正することによって、直流系統61の電圧を制御できるように、直流電圧指令と制御特性が設定される。
On the other hand, the DC voltage control unit 323b of the DC / DC converter 3b is restricted in a range in which the detected value Vdc_det of the DC voltage is larger than the upper DC voltage command Vdc_ref2_hi or smaller than the lower DC voltage command Vdc_ref2_lo. The DC voltage command and control characteristics are set so that the voltage of the DC system 61 can be controlled by correcting the output current of the DC / DC converter 3b by outputting the DC current command Idc_ref2 without using it.
DC/DCコンバータ3bの出力電力が、DC/DCコンバータ3bの装置容量を超えないようにするために、創蓄電源制御部324から出力される創蓄電流指令Cha_ref2の最大値は、出力電流上限値I2maxに設定され、創蓄電源制御部324から出力される創蓄電流指令Cha_ref2の最小値は出力電流下限値I2minに設定される。
In order to prevent the output power of the DC / DC converter 3b from exceeding the device capacity of the DC / DC converter 3b, the maximum value of the storage current command Cha_ref2 output from the storage power supply control unit 324 is the output current upper limit. The value is set to I2max, and the minimum value of the storage current command Cha_ref2 output from the storage power supply control unit 324 is set to the output current lower limit value I2min.
直流電圧制御部323bの制御特性は、創蓄電源制御部324から出力される電流指令との関係を考慮して、DC/DCコンバータ3bの出力電流を力行方向最大出力と回生方向最大出力へと補正できるように、その制御特性を設定する必要がある。
The control characteristics of the DC voltage control unit 323b are such that the output current of the DC / DC converter 3b is set to the maximum output in the power running direction and the maximum output in the regeneration direction in consideration of the relationship with the current command output from the storage power supply control unit 324. It is necessary to set the control characteristics so that it can be corrected.
直流電圧の検出値Vdc_detがDC/DCコンバータ3bの下側直流電圧指令Vdc_ref2_lo以上、かつDC/DCコンバータ3bの上側直流電圧指令Vdc_ref2_hi以下の場合は、AC/DCコンバータ2bの直流電圧制御部223bが直流電圧制御を実施する。
When the DC voltage detection value Vdc_det is equal to or greater than the lower DC voltage command Vdc_ref2_lo of the DC / DC converter 3b and less than or equal to the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b, the DC voltage control unit 223b of the AC / DC converter 2b Perform DC voltage control.
直流電圧の検出値Vdc_detがDC/DCコンバータ3bの下側直流電圧指令Vdc_ref2_loよりも小さく、またはDC/DCコンバータ3bの上側直流電圧指令Vdc_ref2_hiよりも大きい場合は、DC/DCコンバータ3bの直流電圧制御部323bが直流電圧制御を実施する。
If the DC voltage detection value Vdc_det is smaller than the lower DC voltage command Vdc_ref2_lo of the DC / DC converter 3b or larger than the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b, the DC voltage control of the DC / DC converter 3b Unit 323b performs DC voltage control.
直流電圧の検出値Vdc_detがDC/DCコンバータ3bの上側直流電圧指令Vdc_ref2_hiよりも大きいときに、AC/DC出力制御部225によって、AC/DCコンバータ2bは、出力電流下限値I1minの大きさの直流電流指令Idc_ref1を出力し続ける。直流電圧の検出値Vdc_detがDC/DCコンバータ3bの下側直流電圧指令Vdc_ref2_loよりも小さいときに、AC/DC出力制御部225によって、AC/DCコンバータ2bは、出力電流上限値I1maxの大きさの直流電流指令Idc_ref1を出力し続ける。これらの範囲において、AC/DCコンバータ2bは、定電流源と見なせるため、AC/DCコンバータ2bは直流電圧制御を実施しているとは言えない状態となる。
When the DC voltage detection value Vdc_det is larger than the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b, the AC / DC output control unit 225 causes the AC / DC converter 2b to have a DC with a magnitude of the output current lower limit value I1min. Continues to output the current command Idc_ref1. When the detected value Vdc_det of the DC voltage is smaller than the lower DC voltage command Vdc_ref2_lo of the DC / DC converter 3b, the AC / DC output control unit 225 causes the AC / DC converter 2b to have a magnitude of the output current upper limit value I1max. Continue to output the DC current command Idc_ref1. In these ranges, since the AC / DC converter 2b can be regarded as a constant current source, it cannot be said that the AC / DC converter 2b is performing DC voltage control.
図8は、実施の形態3におけるAC/DCコンバータ2bの共振抑制制御部221bの制御ブロックを表わす図である。
FIG. 8 is a diagram showing a control block of the resonance suppression control unit 221b of the AC / DC converter 2b according to the third embodiment.
図8に示すように、振動判定部222bから共振抑制制御部221bへのパラメータは、フィルタ部910bとゲイン部912bの双方へ出力される。
As shown in FIG. 8, the parameters from the vibration determination unit 222b to the resonance suppression control unit 221b are output to both the filter unit 910b and the gain unit 912b.
図9は、実施の形態3におけるDC/DCコンバータ3bの共振抑制制御部321bの制御ブロックを表わす図である。
FIG. 9 is a diagram showing a control block of the resonance suppression control unit 321b of the DC / DC converter 3b according to the third embodiment.
複数のAC/DCコンバータ2bと複数のDC/DCコンバータ3bにおいて同時に共振抑制制御が実行されることを防止するため、DC/DCコンバータ3bの共振抑制制御部321bにおいて比較器を用いた条件分岐によって、動作の切り替えを実施する。
In order to prevent the resonance suppression control from being executed simultaneously in the plurality of AC / DC converters 2b and the plurality of DC / DC converters 3b, the resonance suppression control unit 321b of the DC / DC converter 3b is subjected to conditional branching using a comparator. , Switch the operation.
ローパスフィルタ813bは、直流電圧の検出値Vdc_detの低周波成分を通過させる。
The low-pass filter 813b passes the low frequency component of the DC voltage detection value Vdc_det.
比較器814bは、ローパスフィルタ813bから出力される直流電圧の検出値Vdc_detと、DC/DCコンバータ3bの上側直流電圧指令Vdc_ref2_hiとの大きさとを比較する。比較器814bは、Vdc_det>Vdc_ref2_hiのときには、「1」を出力する。比較器814bは、Vdc_det≦Vdc_ref2_hiのときには、「0」を出力する。
The comparator 814b compares the magnitude of the DC voltage detection value Vdc_det output from the low-pass filter 813b with the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b. The comparator 814b outputs "1" when Vdc_det> Vdc_ref2_hi. The comparator 814b outputs "0" when Vdc_det ≦ Vdc_ref2_hi.
比較器815bは、ローパスフィルタ813bから出力される直流電圧の検出値Vdc_detと、DC/DCコンバータ3bの下側直流電圧指令Vdc_ref2_loとの大きさとを比較する。比較器815bは、Vdc_det<Vdc_ref2_loのときには、「1」を出力する。比較器814bは、Vdc_det≧Vdc_ref2_loのときには、「0」を出力する。
The comparator 815b compares the magnitude of the DC voltage detection value Vdc_det output from the low-pass filter 813b with the lower DC voltage command Vdc_ref2_lo of the DC / DC converter 3b. The comparator 815b outputs "1" when Vdc_det <Vdc_ref2_lo. The comparator 814b outputs "0" when Vdc_det ≧ Vdc_ref2_lo.
OR回路816bは、比較器814bの出力と比較器815bの出力との論理和を乗算器817bへ出力する。
The OR circuit 816b outputs the logical sum of the output of the comparator 814b and the output of the comparator 815b to the multiplier 817b.
乗算器817bは、ゲイン部812bの出力と、OR回路816bの出力とを乗算して、補正電力指令Idamp2を出力する。
The multiplier 817b multiplies the output of the gain unit 812b and the output of the OR circuit 816b to output the correction power command Idamp2.
比較器814b、比較器815b、OR回路816b、および乗算器817bによって、直流電圧の検出値Vdc_detがDC/DCコンバータ3bの上側直流電圧指令Vdc_ref2_hiよりも大きい場合と、直流電圧の検出値Vdc_detがDC/DCコンバータ3bの下側直流電圧指令Vdc_ref2_loよりも小さい場合にのみ、共振抑制制御部321bによる共振抑制制御が実行される。
When the DC voltage detection value Vdc_det is larger than the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b by the comparator 814b, the comparator 815b, the OR circuit 816b, and the multiplier 817b, and when the DC voltage detection value Vdc_det is DC. Only when it is smaller than the lower DC voltage command Vdc_ref2_lo of the / DC converter 3b, the resonance suppression control by the resonance suppression control unit 321b is executed.
前述したように、直流電圧の検出値Vdc_detがDC/DCコンバータ3bの上側直流電圧指令Vdc_ref2_hiよりも大きいときに、AC/DC出力制御部225によって、AC/DCコンバータ2bは、出力電流下限値I1minの大きさの直流電流指令Idc_ref1を出力し続ける。直流電圧の検出値Vdc_detがDC/DCコンバータ3bの下側直流電圧指令Vdc_ref2_loよりも小さいときに、AC/DC出力制御部225によって、AC/DCコンバータ2bは、出力電流上限値I1maxの大きさの直流電流指令Idc_ref1を出力し続ける。これらの範囲において、AC/DCコンバータ2bは、定電流源と見なせるため、AC/DCコンバータ2bは共振抑制制御を実施しているとは言えない状態となる。
As described above, when the DC voltage detection value Vdc_det is larger than the upper DC voltage command Vdc_ref2_hi of the DC / DC converter 3b, the AC / DC output control unit 225 causes the AC / DC converter 2b to output current lower limit value I1min. Continues to output the DC current command Idc_ref1 of the magnitude of. When the detected value Vdc_det of the DC voltage is smaller than the lower DC voltage command Vdc_ref2_lo of the DC / DC converter 3b, the AC / DC output control unit 225 causes the AC / DC converter 2b to have a magnitude of the output current upper limit value I1max. Continue to output the DC current command Idc_ref1. In these ranges, since the AC / DC converter 2b can be regarded as a constant current source, it cannot be said that the AC / DC converter 2b is performing resonance suppression control.
直流電圧の検出値Vdc_detがローパスフィルタ813bに入力されることと、比較器814b、815bがヒステリシス特性を有することとによって、共振による電圧振動によって、DC/DCコンバータ3bの共振抑制制御部321bの出力が短時間で変動することを抑制することができる。
The DC voltage detection value Vdc_det is input to the low-pass filter 813b, and the comparators 814b and 815b have hysteresis characteristics. Therefore, due to voltage vibration due to resonance, the output of the resonance suppression control unit 321b of the DC / DC converter 3b Can be suppressed from fluctuating in a short time.
実施の形態2と同様に、複数のDC/DCコンバータが接続される創蓄電源の種類に応じて複数のグループに分類される場合において、グループの数に応じた直流電圧指令を設定してもよい。直流電圧指令Vdc_ref2_hiおよびVdc_ref2_loを有する第1グループのDC/DCコンバータによって、電圧変動が抑制できない場合には、別の直流電圧指令Vdc_ref3_hiおよびVdc_ref3_loを有する第2グループのDC/DCコンバータが動作するようにしてもよい。
Similar to the second embodiment, when the DC / DC converters are classified into a plurality of groups according to the type of the storage power source to which the plurality of DC / DC converters are connected, the DC voltage command according to the number of groups may be set. Good. If the voltage fluctuation cannot be suppressed by the DC / DC converter of the first group having the DC voltage commands Vdc_ref2_hi and Vdc_ref2_lo, another DC / DC converter having the DC voltage commands Vdc_ref3_hi and Vdc_ref3_lo is operated. You may.
上記の動作により、実施の形態3において、複数のAC/DCコンバータ2bと複数のDC/DCコンバータ3bとが、同時に直流電圧制御と共振抑制制御を実施することを抑制することができる。これによって。制御のマッチングが取れないことによる不安定動作を回避し、かつ、直流系統61の電圧を安定に制御することが可能となる。
By the above operation, it is possible to prevent the plurality of AC / DC converters 2b and the plurality of DC / DC converters 3b from simultaneously performing the DC voltage control and the resonance suppression control in the third embodiment. by this. It is possible to avoid unstable operation due to unmatched control and to stably control the voltage of the DC system 61.
(振動判定部の動作例)
図10は、実施の形態3における振動判定部222b,322bにおける処理の手順を表わすフローチャートである。実施の形態3の処理手順が実施の形態1の処理手順と相違する点は、共振抑制制御部221b,321bにおけるフィルタ部910b,810bのカットオフ周波数だけでなく、ゲイン部912b,812bのゲインも調整することによって、共振抑制制御部221b,321bの振動抑圧特性の改善を図る点である。図10の処理は、動作条件を満たすごとに繰り返し実行される。動作条件の設定については、実施の形態1の場合と同様であるため、説明を繰り返さない。 (Operation example of vibration judgment unit)
FIG. 10 is a flowchart showing a processing procedure in the vibration determination units 222b and 322b according to the third embodiment. The processing procedure of the third embodiment differs from the processing procedure of the first embodiment not only in the cutoff frequencies of the filter units 910b and 810b in the resonance suppression control units 221b and 321b, but also in the gains of the gain units 912b and 812b. By adjusting, the vibration suppression characteristics of the resonance suppression control units 221b and 321b are improved. The process of FIG. 10 is repeatedly executed every time the operation condition is satisfied. Since the setting of the operating conditions is the same as that of the first embodiment, the description will not be repeated.
図10は、実施の形態3における振動判定部222b,322bにおける処理の手順を表わすフローチャートである。実施の形態3の処理手順が実施の形態1の処理手順と相違する点は、共振抑制制御部221b,321bにおけるフィルタ部910b,810bのカットオフ周波数だけでなく、ゲイン部912b,812bのゲインも調整することによって、共振抑制制御部221b,321bの振動抑圧特性の改善を図る点である。図10の処理は、動作条件を満たすごとに繰り返し実行される。動作条件の設定については、実施の形態1の場合と同様であるため、説明を繰り返さない。 (Operation example of vibration judgment unit)
FIG. 10 is a flowchart showing a processing procedure in the
振動抽出処理(S11)と振動成分解析処理(S12)の動作の説明は繰り返しとなるため、説明を繰り返さない。
Since the explanation of the operation of the vibration extraction process (S11) and the vibration component analysis process (S12) is repeated, the explanation is not repeated.
ステップS23において、振動判定部222b,322bは、抽出した振動成分の周波数と、現在の抑制対象成分として記憶されている前回設定した振動対象成分の周波数とを比較する。より具体的には、振動判定部222b,322bは、抽出した振動成分の周波数と現在の抑制対象成分の周波数との比が、予め設定されている範囲内か否かを判定する。予め設定されている範囲とは、周波数比最小値kmin以上、かつ周波数比最大値kmax以下である。
In step S23, the vibration determination units 222b and 322b compare the frequency of the extracted vibration component with the frequency of the previously set vibration target component stored as the current suppression target component. More specifically, the vibration determination units 222b and 322b determine whether or not the ratio of the frequency of the extracted vibration component to the frequency of the current suppression target component is within a preset range. The preset range is the minimum frequency ratio value kmin or more and the maximum frequency ratio value kmax or less.
負荷51の接続条件等が変動し、共振周波数が変化した場合は、抽出した振動成分の周波数と現在の抑制対象成分の周波数との比が予め設定されている範囲外となり、抑制対象成分の再設定のため、処理がステップS26へ進む。抽出した振動成分の周波数と現在の抑制対象成分の周波数との比が予め定められた範囲内であれば、処理がステップS24へ進む。ステップS12において有効な振動成分が抽出されていない場合には、ゲイン更新禁止フラグを有効にした上で、処理がステップS24へと進むものとしてもよい。
When the connection conditions of the load 51 fluctuate and the resonance frequency changes, the ratio of the frequency of the extracted vibration component to the frequency of the current suppression target component is out of the preset range, and the suppression target component is regenerated. For the setting, the process proceeds to step S26. If the ratio of the frequency of the extracted vibration component to the frequency of the current suppression target component is within a predetermined range, the process proceeds to step S24. If a valid vibration component has not been extracted in step S12, the process may proceed to step S24 after enabling the gain update prohibition flag.
ステップS24において、振動判定部222b,322bは、効果判定処理を実行する。振動判定部222b,322bは、抽出した振動成分の振幅が、前回値よりも減少したか否かを判定する。振動判定部222b,322bは、判定後、抽出した振動成分の振幅を前回値として図示しないメモリ内に記憶する。
In step S24, the vibration determination units 222b and 322b execute the effect determination process. The vibration determination units 222b and 322b determine whether or not the amplitude of the extracted vibration component is smaller than the previous value. After the determination, the vibration determination units 222b and 322b store the amplitude of the extracted vibration component as a previous value in a memory (not shown).
ステップS25において、振動判定部222b,322bは、ゲイン部912b,812bのゲイン更新処理を実行する。振動判定部222b,322bは、ステップS24の判定結果が減少方向だった場合は、ゲインを予め設定した値Δkだけ増加させる。振動判定部222b,322bは、ステップS24の判定結果が増加方向だった場合はゲインを前回値に戻し、ゲインが更新されないようにするために、ゲイン更新禁止フラグを設定する。ゲイン更新禁止フラグはステップS28において解除される場合がある。
In step S25, the vibration determination units 222b and 322b execute the gain update processing of the gain units 912b and 812b. The vibration determination units 222b and 322b increase the gain by a preset value Δk when the determination result in step S24 is in the decreasing direction. When the determination result in step S24 is in the increasing direction, the vibration determination units 222b and 322b return the gain to the previous value and set the gain update prohibition flag in order to prevent the gain from being updated. The gain update prohibition flag may be released in step S28.
ステップS24~S25の一連の動作により、共振による電圧振動の振幅を監視しながら、共振抑制制御のダンピングゲインを徐々に増加させることによって、共振抑制制御のゲインを振動が小さくなる方向に調整することが可能となる。ステップS24~S25において、山登り法などの探索法を用いて、振幅が最小となるゲインを探索してもよい。この手法では、予め設定した初期値からゲインを増減させながら振幅の最小点を探索する。
By a series of operations in steps S24 to S25, the gain of the resonance suppression control is adjusted in a direction in which the vibration becomes smaller by gradually increasing the damping gain of the resonance suppression control while monitoring the amplitude of the voltage vibration due to the resonance. Is possible. In steps S24 to S25, a search method such as a hill climbing method may be used to search for the gain that minimizes the amplitude. In this method, the minimum amplitude point is searched while increasing or decreasing the gain from a preset initial value.
ステップS26において、振動判定部222b,322bは、抑制対象成分更新処理を実行する。振動判定部222b,322bは、抽出した電圧振動成分を新たに抑制対象成分として、図示しないメモリに記憶する。
In step S26, the vibration determination units 222b and 322b execute the suppression target component update process. The vibration determination units 222b and 322b store the extracted voltage vibration component as a new suppression target component in a memory (not shown).
ステップS27において、振動判定部222b,322bは、抑抑制対象成分の周波数に基づいて、共振抑制制御部221b,321bにおけるフィルタ部910b,810bのカットオフ周波数を再計算する。この再計算は、ステップS13と同様のため、説明を繰り返さない。
In step S27, the vibration determination units 222b and 322b recalculate the cutoff frequencies of the filter units 910b and 810b in the resonance suppression control units 221b and 321b based on the frequencies of the components to be suppressed. Since this recalculation is the same as in step S13, the description will not be repeated.
ステップS28において、振動判定部222b,322bは、共振抑制制御部221b,321bのゲイン部912b,812bにおけるゲインを、予め設定した初期値に再設定する。実施の形態3では、ゲインを徐々に増加させながら電圧振動の抑制できるゲインを探索するため、初期値はある程度小さい値(例えば0.1程度)に設定されている。
In step S28, the vibration determination units 222b and 322b reset the gains of the gain units 912b and 812b of the resonance suppression control units 221b and 321b to preset initial values. In the third embodiment, the initial value is set to a somewhat small value (for example, about 0.1) in order to search for a gain that can suppress voltage vibration while gradually increasing the gain.
上記のように振動判定部を用いることによって、直流系統61内の負荷51の接続状況が変化して、直流系統61内に存在する共振回路の共振周波数が変動した場合においても、共振抑制制御におけるカットオフ周波数とゲインとを、直流系統61内の状態に応じた値に調整することができる。その結果、直流系統61の電圧を安定に制御することができる。
By using the vibration determination unit as described above, even when the connection status of the load 51 in the DC system 61 changes and the resonance frequency of the resonance circuit existing in the DC system 61 fluctuates, the resonance suppression control is performed. The cutoff frequency and gain can be adjusted to values according to the state in the DC system 61. As a result, the voltage of the DC system 61 can be stably controlled.
実施の形態4.
図11は、実施の形態4における受配電システムの構成図である。実施の形態4では、複数のDC/DCコンバータ3cが直流系統61の直流電圧制御を主に実施する。複数のAC/DCコンバータ2cは、主として交流系統11における潮流電力を制御し、かつ異常時等においてDC/DCコンバータ3cに代わって、直流系統61の直流電圧制御を実施する。 Embodiment 4.
FIG. 11 is a configuration diagram of the power receiving and distribution system according to the fourth embodiment. In the fourth embodiment, the plurality of DC /DC converters 3c mainly carry out the DC voltage control of the DC system 61. The plurality of AC / DC converters 2c mainly control the tidal current power in the AC system 11, and perform DC voltage control of the DC system 61 in place of the DC / DC converter 3c in the event of an abnormality or the like.
図11は、実施の形態4における受配電システムの構成図である。実施の形態4では、複数のDC/DCコンバータ3cが直流系統61の直流電圧制御を主に実施する。複数のAC/DCコンバータ2cは、主として交流系統11における潮流電力を制御し、かつ異常時等においてDC/DCコンバータ3cに代わって、直流系統61の直流電圧制御を実施する。 Embodiment 4.
FIG. 11 is a configuration diagram of the power receiving and distribution system according to the fourth embodiment. In the fourth embodiment, the plurality of DC /
実施の形態4が、実施の形態1と相違する点は、以下である。
AC/DCコンバータ2cは、セレクト部226を備えず、演算部228を備える。演算部228は、交流系統潮流制御部224からの電流指令Tid_ref1と、演算部227からの合成電流指令com_ref1とを演算する。演算には、たとえば、加算または減算が含まれる。 The difference between the fourth embodiment and the first embodiment is as follows.
The AC /DC converter 2c does not include a select unit 226 but includes a calculation unit 228. The calculation unit 228 calculates the current command Tid_ref1 from the AC system power flow control unit 224 and the combined current command com_ref1 from the calculation unit 227. Operations include, for example, addition or subtraction.
AC/DCコンバータ2cは、セレクト部226を備えず、演算部228を備える。演算部228は、交流系統潮流制御部224からの電流指令Tid_ref1と、演算部227からの合成電流指令com_ref1とを演算する。演算には、たとえば、加算または減算が含まれる。 The difference between the fourth embodiment and the first embodiment is as follows.
The AC /
AC/DCコンバータ2cは、直流電圧制御部223a、共振抑制制御部221a、および振動判定部222aに代えて、直流電圧制御部223c、共振抑制制御部221b、および振動判定部222bを備える。共振抑制制御部221b、および振動判定部222bは、実施の形態3で説明したものと同様なので説明を繰り返さない。
The AC / DC converter 2c includes a DC voltage control unit 223c, a resonance suppression control unit 221b, and a vibration determination unit 222b in place of the DC voltage control unit 223a, the resonance suppression control unit 221a, and the vibration determination unit 222a. Since the resonance suppression control unit 221b and the vibration determination unit 222b are the same as those described in the third embodiment, the description will not be repeated.
DC/DCコンバータ3cは、創蓄電源制御部324およびセレクト部326を備えない。DC/DCコンバータ3cは、直流電圧制御部323a、共振抑制制御部321a、および振動判定部322aに代えて、直流電圧制御部323c、共振抑制制御部321b、および振動判定部322bを備える。共振抑制制御部321b、および振動判定部322bは、実施の形態3で説明したものと同様なので説明を繰り返さない。
The DC / DC converter 3c does not include a storage power supply control unit 324 and a select unit 326. The DC / DC converter 3c includes a DC voltage control unit 323c, a resonance suppression control unit 321b, and a vibration determination unit 322b in place of the DC voltage control unit 323a, the resonance suppression control unit 321a, and the vibration determination unit 322a. Since the resonance suppression control unit 321b and the vibration determination unit 322b are the same as those described in the third embodiment, the description will not be repeated.
(電力変換器の動作)
実施の形態4におけるAC/DCコンバータ2cの直流電圧制御部223cは、センサ部23Bから出力される直流電圧の検出値Vdc_detを受けて、第1のドループ特性に従って、直流電流指令Idc_ref1を出力する。 (Operation of power converter)
The DCvoltage control unit 223c of the AC / DC converter 2c according to the fourth embodiment receives the DC voltage detection value Vdc_det output from the sensor unit 23B and outputs the DC current command Idc_ref1 according to the first droop characteristic.
実施の形態4におけるAC/DCコンバータ2cの直流電圧制御部223cは、センサ部23Bから出力される直流電圧の検出値Vdc_detを受けて、第1のドループ特性に従って、直流電流指令Idc_ref1を出力する。 (Operation of power converter)
The DC
図12は、実施の形態4におけるAC/DCコンバータ2cの直流電圧制御部223cの制御特性を表わす図である。図12のグラフの横軸は、直流電圧制御部223cに入力される直流電圧の検出値Vdc_detである。図12のグラフの縦軸は、直流電圧制御部223cから出力される直流電流指令Idc_ref1である。
FIG. 12 is a diagram showing the control characteristics of the DC voltage control unit 223c of the AC / DC converter 2c according to the fourth embodiment. The horizontal axis of the graph of FIG. 12 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 223c. The vertical axis of the graph in FIG. 12 is the DC current command Idc_ref1 output from the DC voltage control unit 223c.
直流電圧制御部223cにおける制御特性は、直流電圧指令Vdc_ref2を中心とし、傾きを有する第1のドループ特性である。第1のドループ特性は、直流系統の電圧検出値Vdc_detが増加するに従って、直流電流指令Idc_ref1が減少する特性である。ただし、この制御特性は、直流電圧の検出値Vdc_detが下側直流電圧指令Vdc_ref1_loと上側直流電圧指令Vdc_ref1_hiとの間で不感帯を有する。不感帯において、直流電流指令Idc_ref1がゼロとなる。
The control characteristic in the DC voltage control unit 223c is the first droop characteristic having an inclination centered on the DC voltage command Vdc_ref2. The first droop characteristic is a characteristic in which the DC current command Idc_ref1 decreases as the voltage detection value Vdc_det of the DC system increases. However, in this control characteristic, the detected value Vdc_det of the DC voltage has a dead band between the lower DC voltage command Vdc_ref1_lo and the upper DC voltage command Vdc_ref1_hi. In the dead zone, the DC current command Idc_ref1 becomes zero.
DC/DCコンバータ3cの直流電圧制御部323cは、センサ部33Bから出力される直流電圧の検出値Vdc_detを受けて、第2のドループ特性に従って、直流電流指令Idc_ref2を出力する。
The DC voltage control unit 323c of the DC / DC converter 3c receives the detected value Vdc_det of the DC voltage output from the sensor unit 33B, and outputs the DC current command Idc_ref2 according to the second droop characteristic.
図13は、実施の形態4におけるDC/DCコンバータ3cの直流電圧制御部323cの制御特性を表わす図である。図13のグラフの横軸は、直流電圧制御部323cに入力される直流電圧の検出値Vdc_detである。図13のグラフの縦軸は、直流電圧制御部323cから出力される直流電流指令Idc_ref2である。
FIG. 13 is a diagram showing the control characteristics of the DC voltage control unit 323c of the DC / DC converter 3c according to the fourth embodiment. The horizontal axis of the graph of FIG. 13 is the detected value Vdc_det of the DC voltage input to the DC voltage control unit 323c. The vertical axis of the graph in FIG. 13 is the DC current command Idc_ref2 output from the DC voltage control unit 323c.
直流電圧制御部323cにおける制御特性は、直流電圧指令Vdc_ref2を中心とし、傾きを有する第2のドループ特性である。第2のドループ特性は、直流系統の電圧検出値Vdc_detが増加するに従って、直流電流指令Idc_ref2が減少する特性である。ただし、直流電圧の検出値Vdc_detが直流電圧指令Vdc_ref2を中心とした一定のヒステリシス幅d内に属するときには、直流電流指令Idc_ref2がゼロとなる。
The control characteristic in the DC voltage control unit 323c is a second droop characteristic having an inclination centered on the DC voltage command Vdc_ref2. The second droop characteristic is a characteristic in which the DC current command Idc_ref2 decreases as the voltage detection value Vdc_det of the DC system increases. However, when the detected value Vdc_det of the DC voltage belongs within a certain hysteresis width d centered on the DC voltage command Vdc_ref2, the DC current command Idc_ref2 becomes zero.
直流電圧の検出値Vdc_detが上側直流電圧指令Vdc_ref1_hiのときには、直流電流指令Idc_ref2が出力電流下限値I2minとなる。直流電圧の検出値Vdc_detが下側直流電圧指令Vdc_ref1_loのときには、直流電流指令Idc_ref2が出力電流上限値I2maxとなる。
When the DC voltage detection value Vdc_det is the upper DC voltage command Vdc_ref1_hi, the DC current command Idc_ref2 is the output current lower limit value I2min. When the detected value Vdc_det of the DC voltage is the lower DC voltage command Vdc_ref1_lo, the DC current command Idc_ref2 becomes the output current upper limit value I2max.
DC/DCコンバータ3cの直流電圧制御の特性上は、出力電流指令が出力電流上限値I1maxよりも大きい、または出力電流下限値I1minよりも小さくても、出力電流指令は増加するが、実際には、DC/DC出力制御部325において、出力電流が出力電流上限値I1max以下、かつ出力電流下限値I1min以上に制限される。
Due to the characteristics of the DC voltage control of the DC / DC converter 3c, even if the output current command is larger than the output current upper limit value I1max or smaller than the output current lower limit value I1min, the output current command increases, but in reality In the DC / DC output control unit 325, the output current is limited to the output current upper limit value I1max or less and the output current lower limit value I1min or more.
これに対して、AC/ACコンバータ2cの直流電圧制御部223cは、直流電圧の検出値Vdc_detが上側直流電圧指令Vdc_ref1_hiよりも大きく、または下側直流電圧指令Vdc_ref1_loよりも小さい範囲において、制限を受けずに直流電流指令Idc_ref1を出力することによって、AC/DCコンバータ2cの出力電流を補正することによって、直流系統61の電圧を制御できるように、直流電圧指令と制御特性が設定される。
On the other hand, the DC voltage control unit 223c of the AC / AC converter 2c is restricted in a range in which the detected value Vdc_det of the DC voltage is larger than the upper DC voltage command Vdc_ref1_hi or smaller than the lower DC voltage command Vdc_ref1_lo. The DC voltage command and control characteristics are set so that the voltage of the DC system 61 can be controlled by correcting the output current of the AC / DC converter 2c by outputting the DC current command Idc_ref1 without using it.
直流電圧の検出値Vdc_detがAC/DCコンバータ2cの下側直流電圧指令Vdc_ref1_lo以上、かつAC/DCコンバータ2cの上側直流電圧指令Vdc_ref1_hi以下の範囲であって、DC/DCコンバータ3cの直流電圧指令Vdc_ref2を中心とした一定の幅dの範囲を除く領域に属するときに、DC/DCコンバータ3cの直流電圧制御部323bが直流電圧制御を実施する。
The detected value Vdc_det of the DC voltage is in the range of the lower DC voltage command Vdc_ref1_lo or more of the AC / DC converter 2c and the upper DC voltage command Vdc_ref1_hi or less of the AC / DC converter 2c, and the DC voltage command Vdc_ref2 of the DC / DC converter 3c. The DC voltage control unit 323b of the DC / DC converter 3c performs DC voltage control when it belongs to a region excluding a range of a certain width d centered on.
直流電圧の検出値Vdc_detがAC/DCコンバータ2cの下側直流電圧指令Vdc_ref1_loよりも小さく、またはAC/DCコンバータ2cの上側直流電圧指令Vdc_ref1_hiよりも大きい場合は、AC/DCコンバータ2cの直流電圧制御部223cが直流電圧制御を実施する。
If the DC voltage detection value Vdc_det is smaller than the lower DC voltage command Vdc_ref1_lo of the AC / DC converter 2c or larger than the upper DC voltage command Vdc_ref1_hi of the AC / DC converter 2c, the DC voltage control of the AC / DC converter 2c Unit 223c performs DC voltage control.
直流電圧の検出値Vdc_detがAC/DCコンバータ2cの上側直流電圧指令Vdc_ref1_hiよりも大きいときに、DC/DC出力制御部325によって、DC/DCコンバータ3cは、出力電流下限値I1minの大きさの直流電流指令Idc_ref2を出力し続ける。直流電圧の検出値Vdc_detがAC/DCコンバータ2cの下側直流電圧指令Vdc_ref1_loよりも小さいときに、DC/DC出力制御部325によって、DC/DCコンバータ3cは、出力電流上限値I1maxの大きさの直流電流指令Idc_ref2を出力し続ける。これらの範囲において、DC/DCコンバータ3cは、定電流源と見なせるため、DC/DCコンバータ3cは直流電圧制御を実施しているとは言えない状態となる。
When the DC voltage detection value Vdc_det is larger than the upper DC voltage command Vdc_ref1_hi of the AC / DC converter 2c, the DC / DC output control unit 325 causes the DC / DC converter 3c to have a DC with a magnitude of the output current lower limit value I1min. Continues to output the current command Idc_ref2. When the detected value Vdc_det of the DC voltage is smaller than the lower DC voltage command Vdc_ref1_lo of the AC / DC converter 2c, the DC / DC output control unit 325 causes the DC / DC converter 3c to have a magnitude of the output current upper limit value I1max. Continue to output the DC current command Idc_ref2. In these ranges, since the DC / DC converter 3c can be regarded as a constant current source, it cannot be said that the DC / DC converter 3c is performing DC voltage control.
上述したように、直流電圧制御部323cの制御特性は、直流電圧指令Vdc_ref2を中心としたヒステリシス幅dだけ電流指令idc_ref2がゼロとなる期間を有する。実施の形態4において、複数のDC/DCコンバータ3cを並列接続する場合、各DC/DCコンバータ3cのセンサ部33Bの特性および誤差にばらつきが発生する。その結果、直流系統61の電圧値がVdc_ref2に近い場合に、誤差のばらつきによって、複数のDC/DCコンバータ3cの電流の出力方向が充電方向となるものと、放電方向になるものとが混在する。これによって、複数のDC/DCコンバータ3c間で電力が循環する横流が発生する懸念がある。横流は直流系統61の直流電圧の保持に寄与せず、損失の増加を招くため抑制する必要がある。そこで、本実施の形態では、DC/DCコンバータ3cの直流電圧制御部323cの制御特性は、直流電圧指令Vdc_ref2付近に、センサ部33Bにおける特性と誤差のバラつきを考慮したヒステリシス特性を有する。これによって、横流の抑制を図ることができる。
As described above, the control characteristic of the DC voltage control unit 323c has a period in which the current command idc_ref2 becomes zero by the hysteresis width d centered on the DC voltage command Vdc_ref2. In the fourth embodiment, when a plurality of DC / DC converters 3c are connected in parallel, the characteristics and errors of the sensor unit 33B of each DC / DC converter 3c vary. As a result, when the voltage value of the DC system 61 is close to Vdc_ref2, the output direction of the currents of the plurality of DC / DC converters 3c may be the charging direction and the current output direction of the plurality of DC / DC converters 3c may be the discharging direction due to the variation in the error. .. As a result, there is a concern that a cross flow in which electric power circulates between the plurality of DC / DC converters 3c may occur. The cross current does not contribute to the maintenance of the DC voltage of the DC system 61 and causes an increase in loss, and therefore needs to be suppressed. Therefore, in the present embodiment, the control characteristic of the DC voltage control unit 323c of the DC / DC converter 3c has a hysteresis characteristic in the vicinity of the DC voltage command Vdc_ref2 in consideration of the variation in the characteristic and the error in the sensor unit 33B. Thereby, the cross flow can be suppressed.
上記の動作により、実施の形態4においては主に電圧制御を実施している複数の電力変換器間での横流を防止すると共に、複数のAC/DCコンバータ2cと複数のDC/DCコンバータ3cとが、同時に直流電圧制御と共振抑制制御とを実施することを抑制する。これによって、制御のマッチングが取れないことによる不安定動作を回避し、かつ、直流系統の電圧を安定に制御することが可能となる。
By the above operation, in the fourth embodiment, the cross flow between the plurality of power converters mainly performing the voltage control is prevented, and the plurality of AC / DC converters 2c and the plurality of DC / DC converters 3c are arranged. However, it suppresses the execution of DC voltage control and resonance suppression control at the same time. This makes it possible to avoid unstable operation due to unmatched control and to stably control the voltage of the DC system.
上記実施の形態1~4では、AC/DCコンバータおよびDC/DCコンバータの各々が直流電圧制御部および共振抑制制御部を含み、直流電圧制御と共振抑制制御とが並行して実施されるが、本発明はこれに限定されない。少なくとも一部のAC/DCコンバータおよびDC/DCコンバータが直流電圧制御部および共振抑制制御部のうち直流電圧制御部のみを含み、共振抑制制御部を含まなくてもよい。この場合、AC/DCコンバータおよびDC/DCコンバータの一方が直流電圧制御を行う期間に、他方は直流電圧制御を行わない。これにより、AC/DCコンバータとDC/DCコンバータとの間における制御干渉を抑制しつつ、直流系統の電圧を安定に制御することが可能となる。
In the above embodiments 1 to 4, each of the AC / DC converter and the DC / DC converter includes a DC voltage control unit and a resonance suppression control unit, and the DC voltage control and the resonance suppression control are performed in parallel. The present invention is not limited to this. At least some AC / DC converters and DC / DC converters include only the DC voltage control unit among the DC voltage control unit and the resonance suppression control unit, and may not include the resonance suppression control unit. In this case, while one of the AC / DC converter and the DC / DC converter performs DC voltage control, the other does not perform DC voltage control. This makes it possible to stably control the voltage of the DC system while suppressing control interference between the AC / DC converter and the DC / DC converter.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
2a,2b,2c AC/DCコンバータ、3a,3aA,3aB,3b,3c DC/DCコンバータ、11 交流系統、21 AC/DCコンバータ主回路部、22a,22b,22c AC/DCコンバータ制御部、23A,23B,33A,33B センサ部、31 DC/DCコンバータ主回路部、32a,32aA,32aB,32b,32c DC/DCコンバータ制御部、41,41A,41B 創蓄電源、51 負荷、221a,221b,321a,321b 共振抑制制御部、222a,222b,322a,322b 振動判定部、223a,223b,223c,323a,323b,323c 直流電圧制御部、224 交流系統潮流制御部、225 AC/DC出力制御部、226,326 セレクト部、227,228,327,328 演算部、324 創蓄電源制御部、325 DC/DC出力制御部、810b,910,910b フィルタ部、812b,912,912b ゲイン部、813b LPF、814b,815b 比較器、816b OR回路、817b 乗算器。
2a, 2b, 2c AC / DC converter, 3a, 3aA, 3aB, 3b, 3c DC / DC converter, 11 AC system, 21 AC / DC converter main circuit section, 22a, 22b, 22c AC / DC converter control section, 23A , 23B, 33A, 33B sensor unit, 31 DC / DC converter main circuit unit, 32a, 32aA, 32aB, 32b, 32c DC / DC converter control unit, 41, 41A, 41B storage power supply, 51 load, 221a, 221b, 321a, 321b Resonance suppression control unit 222a, 222b, 322a, 322b Vibration determination unit 223a, 223b, 223c, 323a, 323b, 323c DC voltage control unit, 224 AC system power flow control unit, 225 AC / DC output control unit, 226,326 Select unit, 227,228,327,328 Calculation unit, 324 Storage power supply control unit, 325 DC / DC output control unit, 810b, 910, 910b Filter unit, 812b, 912,912b Gain unit, 813b LPF, 814b, 815b comparator, 816b OR circuit, 817b multiplier.
Claims (14)
- 少なくとも1つのAC/DCコンバータおよび少なくとも1つのDC/DCコンバータを備える受配電システムであって、
前記AC/DCコンバータは、
交流系統および直流系統に接続されるAC/DCコンバータ主回路部と、
前記AC/DCコンバータ主回路部を制御するAC/DCコンバータ制御部とを備え、
前記AC/DCコンバータ制御部は、
前記直流系統の直流電圧を制御するように構成された第1の直流電圧制御部を含み、
前記DC/DCコンバータは、
前記直流系統および創蓄電源に接続されるDC/DCコンバータ主回路部と、
前記DC/DCコンバータ主回路部を制御するDC/DCコンバータ制御部とを備え、
前記DC/DCコンバータ制御部は、
前記直流系統の直流電圧を制御するように構成された第2の直流電圧制御部を含み、
前記第1の直流電圧制御部と、前記第2の直流電圧制御部とは、互いに異なる期間において、前記直流系統の直流電圧を制御する、受配電システム。 A power receiving and distribution system including at least one AC / DC converter and at least one DC / DC converter.
The AC / DC converter
AC / DC converter main circuit section connected to AC system and DC system,
It is provided with an AC / DC converter control unit that controls the AC / DC converter main circuit unit.
The AC / DC converter control unit
A first DC voltage control unit configured to control the DC voltage of the DC system is included.
The DC / DC converter
The DC / DC converter main circuit section connected to the DC system and the storage power supply,
A DC / DC converter control unit that controls the DC / DC converter main circuit unit is provided.
The DC / DC converter control unit
A second DC voltage control unit configured to control the DC voltage of the DC system is included.
A power receiving and distribution system in which the first DC voltage control unit and the second DC voltage control unit control the DC voltage of the DC system in different periods from each other. - 前記AC/DCコンバータ制御部は、
前記直流系統の直流電圧の振動を抑制するように構成された第1の共振抑制制御部を含み、
前記DC/DCコンバータ制御部は、
前記直流系統の直流電圧の振動を抑制するように構成された第2の共振抑制制御部を含み、
前記第1の共振抑制制御部と、前記第2の共振抑制制御部は、互いに異なる期間において、前記直流系統の直流電圧の振動を抑制する、請求項1に記載の受配電システム。 The AC / DC converter control unit
The first resonance suppression control unit configured to suppress the vibration of the DC voltage of the DC system is included.
The DC / DC converter control unit
The second resonance suppression control unit configured to suppress the vibration of the DC voltage of the DC system is included.
The power receiving and distribution system according to claim 1, wherein the first resonance suppression control unit and the second resonance suppression control unit suppress vibration of the DC voltage of the DC system in different periods from each other. - 前記AC/DCコンバータ制御部は、
前記直流系統の直流電圧に重畳された振動成分を抽出し、前記抽出した前記振動成分が低減される方向に、前記第1の共振抑制制御部の制御定数を変化させる第1の振動判定部を含み、
前記DC/DCコンバータ制御部は、
前記直流系統の直流電圧に重畳された振動成分を抽出し、前記抽出した前記振動成分が低減される方向に、前記第2の共振抑制制御部の制御定数を変化させる第2の振動判定部を含む、請求項2に記載の受配電システム。 The AC / DC converter control unit
A first vibration determination unit that extracts the vibration component superimposed on the DC voltage of the DC system and changes the control constant of the first resonance suppression control unit in the direction in which the extracted vibration component is reduced. Including
The DC / DC converter control unit
A second vibration determination unit that extracts the vibration component superimposed on the DC voltage of the DC system and changes the control constant of the second resonance suppression control unit in the direction in which the extracted vibration component is reduced. The power receiving and distribution system according to claim 2, which includes. - 前記第1の共振抑制制御部および前記第2の共振抑制制御部には、前記直流系統の直流電圧の検出値が入力され、
前記第1の共振抑制制御部は、
第1のフィルタ部を含み、
前記第1の振動判定部は、前記抽出した前記振動成分のうち、予め定められた値よりも大きな振幅を有する振動成分の周波数に応じて、前記第1のフィルタ部のカットオフ周波数を設定し、
前記第2の共振抑制制御部は、
第2のフィルタ部を含み、
前記第2の振動判定部は、前記抽出した前記振動成分のうち、予め定められた値よりも大きな振幅を有する振動成分の周波数に応じて、前記第2のフィルタ部のカットオフ周波数を設定する、請求項3に記載の受配電システム。 The detection value of the DC voltage of the DC system is input to the first resonance suppression control unit and the second resonance suppression control unit.
The first resonance suppression control unit is
Including the first filter part
The first vibration determination unit sets the cutoff frequency of the first filter unit according to the frequency of the vibration component having an amplitude larger than a predetermined value among the extracted vibration components. ,
The second resonance suppression control unit is
Includes a second filter section
The second vibration determination unit sets the cutoff frequency of the second filter unit according to the frequency of the vibration component having an amplitude larger than a predetermined value among the extracted vibration components. , The power receiving and distribution system according to claim 3. - 前記第1の共振抑制制御部および前記第2の共振抑制制御部には、前記直流系統の直流電圧の検出値が入力され、
前記第1の共振抑制制御部は、
第1のゲイン部を含み、
前記第1の振動判定部は、前記抽出した前記振動成分が予め定められた値よりも小さくなるように前記第1のゲイン部のゲインを調整する、
前記第2の共振抑制制御部は、
第2のゲイン部を含み、
前記第1の振動判定部は、前記抽出した前記振動成分が予め定められた値よりも小さくなるように前記第2のゲイン部のゲインを調整する、請求項3に記載の受配電システム。 The detection value of the DC voltage of the DC system is input to the first resonance suppression control unit and the second resonance suppression control unit.
The first resonance suppression control unit is
Including the first gain part
The first vibration determination unit adjusts the gain of the first gain unit so that the extracted vibration component becomes smaller than a predetermined value.
The second resonance suppression control unit is
Including the second gain part
The power receiving and distribution system according to claim 3, wherein the first vibration determining unit adjusts the gain of the second gain unit so that the extracted vibration component becomes smaller than a predetermined value. - 前記AC/DCコンバータ制御部は、
前記第1の直流電圧制御部が前記直流系統の直流電圧を制御しない期間において、前記交流系統から受電する有効電力及び無効電力の制御を実施するように構成された交流系統潮流制御部を含む、請求項2~5のいずれか1項に記載の受配電システム。 The AC / DC converter control unit
The AC system power flow control unit is configured to control the active power and the inactive power received from the AC system during a period in which the first DC voltage control unit does not control the DC voltage of the DC system. The power receiving and distributing system according to any one of claims 2 to 5. - 前記AC/DCコンバータ制御部は、
前記第1の直流電圧制御部からの指令と前記第1の共振抑制制御部からの指令とを演算する第1の演算部と、
前記第1の演算部の出力と、前記交流系統潮流制御部からの指令とを選択する第1のセレクト部とを備える、請求項6記載の受配電システム。 The AC / DC converter control unit
A first calculation unit that calculates a command from the first DC voltage control unit and a command from the first resonance suppression control unit, and
The power receiving and distribution system according to claim 6, further comprising an output of the first arithmetic unit and a first select unit for selecting a command from the AC system power flow control unit. - 前記DC/DCコンバータ制御部は、
前記第2の直流電圧制御部が前記直流系統の直流電圧を制御しない期間において、前記創蓄電源の出力電力または出力電流を制御するように構成された創蓄電源制御部を含む、請求項2~5のいずれか1項に記載の受配電システム。 The DC / DC converter control unit
2. The second DC voltage control unit includes a storage power supply control unit configured to control the output power or output current of the storage power supply during a period in which the DC voltage control unit does not control the DC voltage of the DC system. The power receiving and distribution system according to any one of 5 to 5. - 前記DC/DCコンバータ制御部は、
前記第2の直流電圧制御部からの指令と前記第2の共振抑制制御部からの指令とを演算する第2の演算部と、
前記第2の演算部の出力と、前記創蓄電源制御部からの指令とを選択する第2のセレクト部とを備える、請求項8記載の受配電システム。 The DC / DC converter control unit
A second calculation unit that calculates a command from the second DC voltage control unit and a command from the second resonance suppression control unit, and
The power receiving and distribution system according to claim 8, further comprising an output of the second arithmetic unit and a second select unit for selecting a command from the storage power supply control unit. - 前記受配電システムは、2個以上の前記DC/DCコンバータを備え、
前記2個以上のDC/DCコンバータは、接続される創蓄電源の種類に応じて、複数のグループに分類され、
異なるグループの前記第2の直流電圧制御部および前記第2の共振抑制制御部は、互いに異なる期間において、前記直流系統の直流電圧を制御し、前記直流系統の直流電圧の振動を抑制する、請求項2記載の受配電システム。 The power receiving and distribution system includes two or more DC / DC converters.
The two or more DC / DC converters are classified into a plurality of groups according to the type of storage power source to be connected.
The second DC voltage control unit and the second resonance suppression control unit of different groups control the DC voltage of the DC system and suppress the vibration of the DC voltage of the DC system in different periods. Item 2. The power receiving and distribution system according to item 2. - 前記第1の直流電圧制御部は、前記直流系統の電圧検出値を受けて、第1のドループ特性に従って、第1の直流電流指令を出力し、
前記第1のドループ特性は、前記直流系統の電圧検出値が増加するに従って、前記第1の直流電流指令が減少する特性であり、
前記第2の直流電圧制御部は、前記直流系統の電圧検出値を受けて、第2のドループ特性に従って、第2の直流電流指令を出力し、
前記第2のドループ特性は、前記直流系統の電圧検出値が増加するに従って、前記第2の直流電流指令が減少する特性であり、請求項2に記載の受配電システム。 The first DC voltage control unit receives the voltage detection value of the DC system and outputs a first DC current command according to the first droop characteristic.
The first droop characteristic is a characteristic in which the first DC current command decreases as the voltage detection value of the DC system increases.
The second DC voltage control unit receives the voltage detection value of the DC system and outputs a second DC current command according to the second droop characteristic.
The second droop characteristic is a characteristic in which the second DC current command decreases as the voltage detection value of the DC system increases, and the power receiving and distribution system according to claim 2. - 前記直流系統の電圧検出値が、前記DC/DCコンバータの下側直流電圧指令以上、かつ前記DC/DCコンバータの上側直流電圧指令以下のときに、前記第1の直流電圧制御部が、前記直流系統の直流電圧を制御し、
前記直流系統の電圧検出値が、前記下側直流電圧指令よりも小さい、または前記上側直流電圧指令よりも大きいときに、前記第2の直流電圧制御部が、前記直流系統の直流電圧を制御する、請求項11記載の受配電システム。 When the voltage detection value of the DC system is equal to or higher than the lower DC voltage command of the DC / DC converter and equal to or lower than the upper DC voltage command of the DC / DC converter, the first DC voltage control unit performs the DC. Control the DC voltage of the system,
When the voltage detection value of the DC system is smaller than the lower DC voltage command or larger than the upper DC voltage command, the second DC voltage control unit controls the DC voltage of the DC system. , The power receiving and distribution system according to claim 11. - 前記直流系統の電圧検出値が、前記下側直流電圧指令以上、かつ前記上側直流電圧指令以下のときに、前記第1の共振抑制制御部が、前記直流系統の直流電圧の振動を抑制し、
前記直流系統の電圧検出値が、前記下側直流電圧指令よりも小さい、または前記上側直流電圧指令よりも大きいときに、前記第2の共振抑制制御部が、前記直流系統の直流電圧の振動を抑制する、請求項12記載の受配電システム。 When the voltage detection value of the DC system is equal to or higher than the lower DC voltage command and equal to or lower than the upper DC voltage command, the first resonance suppression control unit suppresses the vibration of the DC voltage of the DC system.
When the voltage detection value of the DC system is smaller than the lower DC voltage command or larger than the upper DC voltage command, the second resonance suppression control unit causes vibration of the DC voltage of the DC system. The power receiving and distribution system according to claim 12, which is suppressed. - 前記直流系統の電圧検出値が、前記AC/DCコンバータの下側直流電圧指令以上、かつ前記AC/DCコンバータの上側直流電圧指令以下の範囲であって、前記DC/DCコンバータの直流電圧指令を中心とした一定の範囲を除く領域に属するときに、前記第2の直流電圧制御部が、前記直流系統の直流電圧を制御し、
前記直流系統の電圧検出値が、前記下側直流電圧指令よりも小さい、または前記上側直流電圧指令よりも大きいときに、前記第1の直流電圧制御部が、前記直流系統の直流電圧を制御する、請求項11記載の受配電システム。 The voltage detection value of the DC system is in the range equal to or higher than the lower DC voltage command of the AC / DC converter and equal to or lower than the upper DC voltage command of the AC / DC converter, and the DC voltage command of the DC / DC converter is issued. When belonging to a region other than a certain central range, the second DC voltage control unit controls the DC voltage of the DC system.
When the voltage detection value of the DC system is smaller than the lower DC voltage command or larger than the upper DC voltage command, the first DC voltage control unit controls the DC voltage of the DC system. , The power receiving and distribution system according to claim 11.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/043332 WO2021090371A1 (en) | 2019-11-05 | 2019-11-05 | Power reception and distribution system |
JP2020512890A JP6813713B1 (en) | 2019-11-05 | 2019-11-05 | Power receiving and distribution system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/043332 WO2021090371A1 (en) | 2019-11-05 | 2019-11-05 | Power reception and distribution system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021090371A1 true WO2021090371A1 (en) | 2021-05-14 |
Family
ID=74096210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043332 WO2021090371A1 (en) | 2019-11-05 | 2019-11-05 | Power reception and distribution system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6813713B1 (en) |
WO (1) | WO2021090371A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005224009A (en) * | 2004-02-05 | 2005-08-18 | My Way Giken Kk | Distributed power supply device |
JP2006129585A (en) * | 2004-10-27 | 2006-05-18 | Hitachi Ltd | Controller for dc distribution system, and transformer controller |
JP2015204652A (en) * | 2014-04-11 | 2015-11-16 | 株式会社明電舎 | power conversion system |
WO2016170811A1 (en) * | 2015-04-22 | 2016-10-27 | 株式会社村田製作所 | Energy management system |
WO2019145997A1 (en) * | 2018-01-23 | 2019-08-01 | Tdk株式会社 | Dc feeding system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060003A (en) * | 1998-08-04 | 2000-02-25 | Toshiba Corp | Control equipment for ac-to-dc converter used in dc power transmission system |
CN103190068B (en) * | 2010-11-05 | 2015-07-01 | 三菱电机株式会社 | Power converter |
JP5423777B2 (en) * | 2011-06-03 | 2014-02-19 | 株式会社デンソー | Converter control device for vehicle |
JP5408326B2 (en) * | 2011-09-26 | 2014-02-05 | ダイキン工業株式会社 | Power converter |
JP5709928B2 (en) * | 2013-05-10 | 2015-04-30 | 三菱電機株式会社 | Power converter |
JP5755307B2 (en) * | 2013-10-09 | 2015-07-29 | 三菱電機株式会社 | Power converter |
JP6601125B2 (en) * | 2015-10-07 | 2019-11-06 | 住友電気工業株式会社 | Power conversion apparatus and control method thereof |
JP6153144B1 (en) * | 2016-03-17 | 2017-06-28 | 三菱電機株式会社 | Control device and control method for DC / DC converter |
JP6230665B1 (en) * | 2016-06-27 | 2017-11-15 | 三菱電機株式会社 | DC power supply |
WO2018185963A1 (en) * | 2017-04-03 | 2018-10-11 | 住友電気工業株式会社 | Power conversion device and control method thereof |
-
2019
- 2019-11-05 WO PCT/JP2019/043332 patent/WO2021090371A1/en active Application Filing
- 2019-11-05 JP JP2020512890A patent/JP6813713B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005224009A (en) * | 2004-02-05 | 2005-08-18 | My Way Giken Kk | Distributed power supply device |
JP2006129585A (en) * | 2004-10-27 | 2006-05-18 | Hitachi Ltd | Controller for dc distribution system, and transformer controller |
JP2015204652A (en) * | 2014-04-11 | 2015-11-16 | 株式会社明電舎 | power conversion system |
WO2016170811A1 (en) * | 2015-04-22 | 2016-10-27 | 株式会社村田製作所 | Energy management system |
WO2019145997A1 (en) * | 2018-01-23 | 2019-08-01 | Tdk株式会社 | Dc feeding system |
Also Published As
Publication number | Publication date |
---|---|
JP6813713B1 (en) | 2021-01-13 |
JPWO2021090371A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9735619B2 (en) | Power conversion device | |
US8716892B2 (en) | Energy storage system and method of controlling the same | |
JP6238107B2 (en) | Storage battery management system | |
US9941727B2 (en) | Electric power control system, battery control system, battery control device, battery control method, and recording medium | |
US8456878B2 (en) | Power storage system and method of controlling the same | |
US9660442B2 (en) | Frequency regulation method | |
JP6549986B2 (en) | Droop compensation using current feedback | |
US8401712B2 (en) | Method for controlling distributed power sources | |
US9583945B2 (en) | Frequency control method and frequency control apparatus | |
EP3069431B1 (en) | Uninterruptible power supply control | |
CN110637403B (en) | Hybrid energy storage system | |
US10916943B2 (en) | Distributed electricity storage system, power control method, and program | |
WO2011122672A1 (en) | Power supply system, power supply method, and control program for power supply system | |
KR102087063B1 (en) | Method and apparatus for improved burst mode during power conversion | |
KR101566296B1 (en) | Frequency Control System in Power System | |
JP2002034162A (en) | Distributed power supply system and its control method | |
JP7275386B2 (en) | power system | |
KR20180062795A (en) | Management system for micro-grid | |
JP6712802B2 (en) | Power storage system, control device, and power storage device | |
JP6126520B2 (en) | Power storage system, power regulator, and method for controlling power storage system | |
JP6813713B1 (en) | Power receiving and distribution system | |
JP6768571B2 (en) | Power controller, method and power generation system | |
JP2016131458A (en) | Power supply system with balance function for float charging | |
CN115882442A (en) | Power parallel system and direct current bus voltage control method thereof | |
KR101633904B1 (en) | Generator operated at high efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020512890 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19951332 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19951332 Country of ref document: EP Kind code of ref document: A1 |