Nothing Special   »   [go: up one dir, main page]

WO2021085000A1 - Optical laminate and display device - Google Patents

Optical laminate and display device Download PDF

Info

Publication number
WO2021085000A1
WO2021085000A1 PCT/JP2020/036643 JP2020036643W WO2021085000A1 WO 2021085000 A1 WO2021085000 A1 WO 2021085000A1 JP 2020036643 W JP2020036643 W JP 2020036643W WO 2021085000 A1 WO2021085000 A1 WO 2021085000A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pressure
sensitive adhesive
adhesive layer
optical laminate
Prior art date
Application number
PCT/JP2020/036643
Other languages
French (fr)
Japanese (ja)
Inventor
大山 姜
ボラム 片
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080075221.9A priority Critical patent/CN114641814A/en
Priority to KR1020227011207A priority patent/KR20220088414A/en
Publication of WO2021085000A1 publication Critical patent/WO2021085000A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to an optical laminate and a display device, and more particularly to an optical laminate that covers the display surface of a flexible display panel, and a flexible display device having the optical laminate.
  • the flexibility display device can be installed on a non-planar surface such as a curved surface and a bending surface. Further, the flexibility display device can be folded or shaped into a scroll to improve portability. In such a flexibility display device, the optical laminate covering the display surface is also required to have flexibility.
  • Patent Document 1 includes a first base film, a hard coat layer located on one surface of the first base film, and a second base film located on the other surface. Laminated films that are preferably applicable to cover window substrates are described (summary). The laminated film of Patent Document 1 has a high surface hardness and excellent scratch resistance.
  • Patent Document 2 describes a transparent window that covers the display surface of the flexible display.
  • the window has a bendable glass layer and a functional coating layer that is located between the glass layer and the display panel and has a lower elastic modulus than the glass layer (summary). Since the window of Patent Document 2 has a glass layer, the surface hardness is high and the scratch resistance is excellent.
  • the functional coating layer cancels out the tensile stress generated in the glass layer when an impact is applied to a part of the glass layer to prevent the glass layer from being damaged (paragraph [0086]).
  • Patent Document 3 describes a cover window in which a folding pattern having a large number of concave shapes is formed in a bent portion (claim 1). Since the bendable portion of the cover window is provided with such a bend pattern, it can be thinly deformed and easily bends. In the cover window of Patent Document 3, the bendability is ensured by the presence of the bend pattern in the bendable portion, so that the non-foldable portion can be formed relatively thick with a material having high rigidity, and has high resistance. Impact resistance can also be ensured (paragraph [0009]).
  • the touch panel is operated by touching the surface of the display device.
  • the surface of the display device may not only be rubbed but also struck.
  • the display device is required to have impact resistance that can withstand not only friction against the surface but also a force suddenly applied in the vertical direction from the viewing side.
  • the laminated film of Patent Document 1 does not take into consideration the force applied in the vertical direction from the viewing side to the display device, and the impact resistance is still insufficient.
  • the glass used for the window of Patent Document 2 is a material having inferior flexibility, and as long as it has a glass layer, the window of Patent Document 2 has insufficient flexibility.
  • Patent Document 3 the work of specifying a portion where the film is bent and forming a large number of concave shapes is complicated, and the manufacturing cost is high.
  • the light transmittance of that part changes, and the versatility as a film material also decreases.
  • the rigidity of the material cannot be increased so much, and it is difficult to realize sufficiently high impact resistance.
  • the present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an optical laminate having excellent flexibility and excellent impact resistance. It is also an object of the present invention to provide a display device having the optical laminate and having excellent flexibility and excellent impact resistance.
  • the present invention is an optical laminate including a front plate, a third pressure-sensitive adhesive layer, a protective film, a second pressure-sensitive adhesive layer, a polarizing layer, a first pressure-sensitive adhesive layer, and a touch sensor layer in this order from the viewing side.
  • t n is the thickness of the n-th of the pressure-sensitive adhesive layer from the touch sensor layer represents ([mu] m)
  • G 'n is a storage modulus at 25 ° C. for n-th of the pressure-sensitive adhesive layer from the touch sensor layer ( represents MPa)
  • a n denotes a value distance ([mu] m) divided by t n from the touch sensor layer top surface to the n-th of the pressure-sensitive adhesive layer lower surface.
  • an optical laminate having an impact resistance index A represented by.
  • the optical laminate has an impact resistance index A of 2000 or more.
  • the first, second and third pressure-sensitive adhesive layers have a thickness of 3-100 ⁇ m.
  • the first, second and third pressure-sensitive adhesive layers have a storage elastic modulus at a temperature of 0.005 to 1.0 MPa at 25 ° C.
  • the first, second and third pressure-sensitive adhesive layers include a pressure-sensitive adhesive composition using a (meth) acrylic resin as a base polymer.
  • the first, second and third pressure-sensitive adhesive layers further include a cross-linking agent.
  • the present invention also provides any of the above optical laminates applied to the display surface of the display panel.
  • the present invention also provides a display device having a display panel and any of the above optical laminates applied to the display surface of the display panel.
  • an optical laminate and a display device having excellent flexibility and excellent impact resistance are provided.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the optical laminate of the present invention.
  • the optical laminate 100 shown in FIG. 1 visually recognizes the front plate 10, the third adhesive layer 20, the protective film 30, the second adhesive layer 40, the polarizing layer 50, the first adhesive layer 60, and the touch sensor layer 70. Prepare in this order from the side.
  • the optical laminate 100 can be bent at least in the direction in which the front plate 10 is inside. Bendable means that the front plate 10 can be bent in the direction inward without causing cracks.
  • the optical laminate according to the present invention is excellent in impact resistance, and can be considered to be excellent in impact resistance as well as bending resistance.
  • the optical laminate 100 is preferably bendable in the direction in which the front plate 10 is outward. In this case, "flexible" means that the front plate 10 can be bent in the outward direction without causing cracks.
  • the shape of the optical laminate in the plane direction may be, for example, a square shape, preferably a square shape having a long side and a short side, and more preferably a rectangle.
  • the length of the long side may be, for example, 10 to 1400 mm, preferably 50 to 600 mm.
  • the length of the short side is, for example, 5 to 800 mm, preferably 30 to 500 mm, and more preferably 50 to 300 mm.
  • Each layer constituting the optical laminate may have corners R-processed, end portions notched, or perforated.
  • the thickness of the optical laminate is not particularly limited because it varies depending on the function required for the optical laminate, the application of the laminate, and the like, but is, for example, 20 to 1,000 ⁇ m, preferably 50 to 500 ⁇ m.
  • the front plate 10 constitutes the outermost surface of the optical laminate when viewed from the visual side.
  • the material and thickness of the front plate 10 are not limited as long as it is a plate-like body capable of transmitting light, and the front plate 10 may be composed of only one layer or may be composed of two or more layers. Examples thereof include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.) and a glass plate-like body (for example, a glass plate, a glass film, etc.).
  • a resin plate-like body for example, a resin plate, a resin sheet, a resin film, etc.
  • a glass plate-like body for example, a glass plate, a glass film, etc.
  • the thickness of the front plate 10 may be, for example, 30 to 2,000 ⁇ m, preferably 50 to 1,000 ⁇ m, more preferably 50 to 500 ⁇ m, and further preferably 50 to 100 ⁇ m.
  • the tensile elastic modulus of the front plate 10 is preferably 3 GPa or more, more preferably 4 GPa or more, and further preferably 5 GPa or more.
  • the tensile elastic modulus of the front plate 10 is preferably 10 GPa or less, more preferably 9 GPa or less.
  • the tensile elastic modulus may satisfy at least one of MD (Machine Direction, film forming direction) or TD (Transverse Direction, direction perpendicular to MD), and it is preferable that both of them satisfy the above range.
  • the material may be, for example, an acrylic resin such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; and a polyolefin-based material such as polyethylene, polypropylene, polymethylpentene and polystyrene.
  • Resins Cellular resins such as triacetyl cellulose, acetyl cellulose butyrate, propionyl cellulose, butyryl cellulose and acetyl propionyl cellulose; ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, etc.
  • These polymers can be used alone or in admixture of two or more.
  • the thickness of the resin plate-like body may be, for example, 30 to 2,000 ⁇ m, preferably 50 to 1,000 ⁇ m, more preferably 50 to 500 ⁇ m, and may be 100 ⁇ m or less.
  • the front plate 10 may be a film having a hard coat layer provided on at least one surface of the base film to further improve the hardness.
  • a film made of the above resin can be used as the base film.
  • the hard coat layer may be formed on one surface of the base film or may be formed on both surfaces. By providing the hard coat layer, a resin film having improved hardness and scratchability can be obtained.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like.
  • the hard coat layer may contain additives to improve strength. Additives are not limited, and examples thereof include inorganic fine particles, organic fine particles, and mixtures thereof.
  • the front plate 10 is a glass plate
  • tempered glass for a display is preferably used as the glass plate.
  • the thickness of the glass plate may be, for example, 50 to 1,000 ⁇ m.
  • the front plate 10 may have a function as a window film in the display device.
  • the front plate 10 may further have a function as a touch sensor, a blue light cut function, a viewing angle adjusting function, and the like.
  • the pressure-sensitive adhesive layer includes a third pressure-sensitive adhesive layer 20 located between the front plate 10 and the protective film 30, a second pressure-sensitive adhesive layer 40 located between the protective film 30 and the polarizing layer 50, and the polarizing layer 50. It is composed of a first adhesive layer 60 located between the touch sensor layer 70 and the touch sensor layer 70. More specifically, the third adhesive layer 20 is an adhesive layer in contact with the front plate 10 and the protective film 30, and the second adhesive layer 40 is an adhesive in contact with the protective film 30 and the polarizing layer 50.
  • the first pressure-sensitive adhesive layer 60 is a pressure-sensitive adhesive layer that is in contact with the polarizing layer 50 and the touch sensor layer 70. Each pressure-sensitive adhesive layer may be made of the same material or different materials.
  • the pressure-sensitive adhesive layer can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ().
  • Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
  • the pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly.
  • Examples include epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferable.
  • the active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having the property of being able to adhere to an adherend such as, etc., and being cured by irradiation with active energy rays to adjust the adhesion force.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. Further, if necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
  • the pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives may be included.
  • the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
  • the adhesive layer has high viscoelasticity and has a function of alleviating the impact applied to the optical laminate.
  • the impact resistance of the optical laminate to the impact applied to the outermost surface of the optical laminate is improved by appropriately adjusting the characteristics of the pressure-sensitive adhesive layer. That is, even when an impact is applied to the surface of the optical laminate, the wiring and elements of the touch sensor layer and the display panel covered by the optical laminate are less likely to be damaged.
  • the impact mitigation effect of the pressure-sensitive adhesive layer increases as the elastic modulus of the pressure-sensitive adhesive layer decreases. Further, the impact mitigation effect of the pressure-sensitive adhesive layer increases as the pressure-sensitive adhesive layer becomes thicker. The impact mitigation effect of the pressure-sensitive adhesive layer becomes more effective as the position of the pressure-sensitive adhesive layer is closer to the display panel.
  • the elastic modulus of the pressure-sensitive adhesive layer is represented by the storage elastic modulus G'(MPa).
  • the thickness of the pressure-sensitive adhesive layer is represented by an actually measured value t ( ⁇ m).
  • the elastic modulus and thickness of the pressure-sensitive adhesive layer can be specified for each layer using these characteristic values.
  • the position of the pressure-sensitive adhesive layer from the display panel is closest to the first pressure-sensitive adhesive layer, and is farther from the second pressure-sensitive adhesive layer and the third pressure-sensitive adhesive layer in that order.
  • Each pressure-sensitive adhesive layer has its own thickness, and the thickness is independently determined as appropriate. Therefore, it is difficult to indicate the position of the pressure-sensitive adhesive layer with respect to the display panel by determining the reference part and simply comparing the distances from the reference part of the lowest layer to the reference part of each pressure-sensitive adhesive layer.
  • the characteristic value a obtained by dividing the above distance by the thickness t ( ⁇ m) of the target pressure-sensitive adhesive layer is defined.
  • the characteristic value a d / t represents how far it is from the display panel when the target pressure-sensitive adhesive layer having a unit thickness is assumed.
  • the a of the first pressure-sensitive adhesive layer is defined as 1.
  • the adhesive layer may be present inside the polarizing layer and the touch sensor layer, it is considered that the impact resistance of the optical laminate is not affected because the thickness is usually as thin as 5 ⁇ m or less. Therefore, when calculating the impact resistance index A, the pressure-sensitive adhesive layer inside the polarizing layer and the pressure-sensitive adhesive layer inside the touch sensor layer are not taken into consideration.
  • t n is the thickness of the n-th of the pressure-sensitive adhesive layer from the touch sensor layer represents ([mu] m)
  • G 'n is a storage modulus at 25 ° C. for n-th of the pressure-sensitive adhesive layer from the touch sensor layer ( represents MPa)
  • a n denotes a value distance ([mu] m) divided by t n from the touch sensor layer top surface to the n-th of the pressure-sensitive adhesive layer lower surface.
  • the superiority or inferiority of impact mitigation performance is It has a correlation with the value of the impact resistance index A. That is, in a layer structure having a protective film between the front plate and the polarizing layer, the superiority or inferiority of the impact mitigation performance has a correlation with the value of the impact resistance index A.
  • the optical laminate of the present invention has 200 or more A's. As a result, good impact mitigation performance of the optical laminate is achieved while having durability against bending.
  • the A of the optical laminate is preferably 266 or greater, more preferably 500 or greater, more preferably 1500 or greater, even more preferably 2000 or greater, even 2500 or greater. Good.
  • the A of the optical laminate is preferably 250 or more, more preferably 266 or more, more preferably 500 or more, more preferably 1500 or more, and even more preferably 2000 or more. It may be 2500 or more.
  • the A of the optical laminate may be, for example, 6000 or less, preferably 5000 or less, and more preferably 4658 or less. In another embodiment, the A of the optical laminate may be, for example, 6000 or less, preferably 5000 or less, more preferably 4800 or less, more preferably 4658 or less, and 4000 or less. You may.
  • a of the optical laminate is preferably 2013 to 4658. If the amount of A of the optical laminate exceeds 6000, peeling / coagulation failure may occur at the interface between the pressure-sensitive adhesive layer and another member or inside the pressure-sensitive adhesive layer at the time of bending.
  • the thickness of the first, second and third pressure-sensitive adhesive layers is appropriately selected from the range of 3 to 100 ⁇ m. If the pressure-sensitive adhesive layer is too thin, the impact resistance of the optical laminate is reduced. If the pressure-sensitive adhesive layer is too thick, the flexibility of the optical laminate is reduced.
  • the thickness of the first, second and third pressure-sensitive adhesive layers is preferably 5 to 70 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers at a temperature of 25 ° C. is appropriately selected from the range of 0.005 to 1.0 MPa. If the storage elastic modulus is too low, the impact resistance of the optical laminate is reduced. If the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers is too high, the flexibility of the optical laminate is reduced.
  • the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers is preferably 0.01 to 0.5 MPa, more preferably 0.01 to 0.2 MPa. Further, in another embodiment, the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers is preferably 0.01 to 0.1 MPa, more preferably 0.02 to 0.09 MPa. , 0.02 to 0.06 MPa may be used.
  • the protective film 30 is located between the third pressure-sensitive adhesive layer 20 and the second pressure-sensitive adhesive layer 40.
  • the protective film can contribute to the improvement of the impact resistance of the optical laminate.
  • the protective film 30 can also function as a protective layer that protects the polarizing layer 50.
  • the tensile elastic modulus of the protective film 30 is preferably 3 GPa or more, more preferably 4 GPa or more, and further preferably 5 GPa or more.
  • the tensile elastic modulus of the protective film 30 is preferably 10 GPa or less, more preferably 9 GPa or less.
  • the tensile elastic modulus may satisfy at least one of MD (Machine Direction, film forming direction) or TD (Transverse Direction, direction perpendicular to MD), and it is preferable that both of them satisfy the above range.
  • a translucent (preferably optically transparent) thermoplastic resin for example, a chain polyolefin resin (polypropylene resin or the like), a cyclic polyolefin resin (norbornen resin, etc.) Etc.), polyolefin resins such as cellulose triacetate, cellulose ester resins such as cellulose diacetate, polyester resins, polycarbonate resins, (meth) acrylic resins, polystyrene resins, or mixtures and copolymers thereof. Etc. can be used.
  • a translucent (preferably optically transparent) thermoplastic resin for example, a chain polyolefin resin (polypropylene resin or the like), a cyclic polyolefin resin (norbornen resin, etc.) Etc.
  • polyolefin resins such as cellulose triacetate, cellulose ester resins such as cellulose diacetate, polyester resins, polycarbonate resins, (meth) acrylic resins, polystyrene resins, or mixture
  • the protective film 30 may be a protective film having an optical function such as a retardation film or a brightness improving film.
  • a retardation film to which an arbitrary retardation value is imparted by stretching a film made of the thermoplastic resin (uniaxial stretching, biaxial stretching, etc.) or forming a liquid crystal layer or the like on the film. can be.
  • chain polyolefin resin examples include homopolymers of chain olefins such as polyethylene resin and polypropylene resin, and copolymers composed of two or more kinds of chain olefins.
  • Cyclic polyolefin resin is a general term for resins that are polymerized using cyclic olefin as a polymerization unit.
  • Specific examples of the cyclic polyolefin resin include, for example, a ring-opening (co) polymer of a cyclic olefin, an addition polymer of a cyclic olefin, and a copolymer of a cyclic olefin and a chain olefin such as ethylene or propylene (typical). Examples thereof include random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids and derivatives thereof, and hydrides thereof.
  • a norbornene-based resin using a norbornene-based monomer such as norbornene or a polycyclic norbornene-based monomer is preferably used.
  • Cellulose ester-based resins are esters of cellulose and fatty acids. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Further, these copolymers and those in which some of the hydroxyl groups are modified with other substituents can also be used. Of these, cellulose triacetate (triacetyl cellulose: TAC) is particularly preferable.
  • the polyester-based resin is a resin other than the above-mentioned cellulose ester-based resin having an ester bond, and is generally composed of a polyvalent carboxylic acid or a polycondensate of a derivative thereof and a polyhydric alcohol.
  • a polyvalent carboxylic acid or a derivative thereof a dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylic acid.
  • a diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, cyclohexanedimethanol and the like.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylterephthalate, and polycyclohexanedimethylnaphthalate. Can be mentioned.
  • Polycarbonate-based resin consists of a polymer in which monomer units are bonded via a carbonate group.
  • the polycarbonate-based resin may be a resin called modified polycarbonate having a modified polymer skeleton, a copolymerized polycarbonate, or the like.
  • the (meth) acrylic resin is a resin whose main constituent monomer is a compound having a (meth) acryloyl group.
  • Specific examples of the (meth) acrylic resin include poly (meth) acrylic acid esters such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymers, and methyl methacrylate- (meth) acrylic.
  • Acid ester copolymer methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), methyl methacrylate and alicyclic hydrocarbon group (For example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.) is included.
  • a polymer containing a poly (meth) acrylic acid C1-6 alkyl ester as a main component such as methyl poly (meth) acrylate
  • a methyl methacrylate-based resin containing methyl methacrylate as a main component 50 to 100% by weight, preferably 70 to 100% by weight) is used.
  • the thickness of the protective film 30 is preferably 10 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and even more preferably 15 ⁇ m to 95 ⁇ m.
  • the in-plane retardation value Re (550) is, for example, 0 nm to 10 nm
  • the thickness direction retardation value Rth (550) is, for example, ⁇ 80 nm to +80 nm.
  • the polarizing layer 50 is located between the second pressure-sensitive adhesive layer 40 and the first pressure-sensitive adhesive layer 60.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the polarizing layer.
  • the polarizing layer 50 shown in FIG. 2 includes a polarizer 51, an adhesive layer 52, a 1/2 wave plate 53, an adhesive layer 54, and a 1/4 wave plate 55 in this order from the visual side.
  • the polarizing layer may be a so-called circular polarizing plate.
  • the thickness of the circularly polarizing plate can be 10 ⁇ m to 100 ⁇ m, 15 ⁇ m to 70 ⁇ m, and 20 ⁇ m to 50 ⁇ m. Within such a range, it is easy to achieve both bending resistance and impact resistance of the optical laminate.
  • the polarizing layer 50 may have an additional protective film (not displayed) between the polarizing element 51 and the second adhesive layer 40.
  • the additional protective film is composed of a material similar to that exemplified as the material of the protective film 30, and is adhered to the surface of the polarizer 51 via an adhesive layer (hidden).
  • the polarizer 51 passes linearly polarized light having a polarizing surface in a specific direction, and the light passing through the polarizer 51 becomes linearly polarized light that oscillates in the transmission axis direction of the polarizer.
  • the thickness of the polarizer 51 is, for example, about 1 ⁇ m to 80 ⁇ m.
  • the polarizer 51 examples include a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene-vinyl acetate copolymerization system partially saponified film, and two such as iodine and a bicolor dye.
  • a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene-vinyl acetate copolymerization system partially saponified film
  • two such as iodine and a bicolor dye.
  • polyene-based oriented films such as a dehydrated product of polyvinyl alcohol and a dehydrogenated product of polyvinyl chloride can be used.
  • Dyeing with iodine is performed, for example, by immersing a polyvinyl alcohol-based film in an aqueous iodine solution.
  • the draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching.
  • the polyvinyl alcohol-based film is subjected to swelling treatment, cross-linking treatment, cleaning treatment, drying treatment and the like, if necessary. For example, by immersing a polyvinyl alcohol-based film in water and washing it with water before dyeing, not only can the dirt on the surface of the polyvinyl alcohol-based film and the blocking inhibitor be washed, but also the polyvinyl alcohol-based film is swollen and dyed. It is possible to prevent unevenness and the like.
  • a cured film in which a liquid crystal compound is polymerized may be used in which a dichroic dye is oriented.
  • a dichroic dye a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye.
  • the dichroic dye include an azo compound.
  • the liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule.
  • the luminous efficiency correction degree of polarization of the polarizer 51 is preferably 95% or more, and more preferably 97% or more. Further, it may be 99% or more, and may be 99.9% or more.
  • the luminous efficiency correction degree of polarization of the polarizer 51 may be 99.995% or less, and may be 99.99% or less.
  • the luminous efficiency correction polarization degree is a two-degree field of view of "JIS Z 8701" with respect to the obtained polarization degree using an absorptiometer with an integrating sphere ("V7100" (trade name) manufactured by JASCO Corporation). It can be calculated by correcting the visual sensitivity with the C light source).
  • the luminous efficiency correction polarization degree of the polarizer 51 By setting the luminous efficiency correction polarization degree of the polarizer 51 to 99.9% or more, it becomes easy to adjust the initial hue (before bending) to a position away from neutral. Therefore, regarding the hue of the reflected light before and after bending, which will be described later, the sign of the a * b * chromaticity coordinate is less likely to change with the a * coordinate axis and the b * coordinate axis in between. Further, by setting the luminous efficiency correction degree of polarization of the polarizer 51 to 99.9% or more, the durability of the polarizer 51 can be improved. On the other hand, if the luminous efficiency correction polarization degree of the polarizer 51 is less than 95%, the function as an antireflection film may not be achieved.
  • the luminous efficiency correction single transmittance of the polarizer 51 is preferably 42% or more, more preferably 44% or more, preferably 60% or less, and further preferably 50% or less.
  • a absorptiometer with an integrating sphere (“V7100” (trade name) manufactured by JASCO Corporation) was used, and the two-degree field (C light source) of JIS Z8701 was used with respect to the obtained transmittance. ) Can be calculated by correcting the visual sensitivity.
  • the orthogonal hue of the polarizer 51 can be easily adjusted to a position away from the neutral side, so that the color change becomes inconspicuous before and after bending, which will be described later. It is possible to do. If it exceeds 50%, the degree of polarization becomes too low, and the function as antireflection may not be achieved.
  • the pressure-sensitive adhesive layer 52 is formed of, for example, an acrylic pressure-sensitive adhesive.
  • This equation may be achieved at any wavelength in the visible light region (eg, 550 nm).
  • Re (550) which is an in-plane retardation value at a wavelength of 550 nm, satisfies 210 nm ⁇ Re (550) ⁇ 300 nm.
  • Rth (550) which is a retardation value in the thickness direction of the 1/2 wavelength plate 53 measured at a wavelength of 550 nm, is preferably ⁇ 150 to 150 nm, and more preferably -100 to 100 nm.
  • the thickness of the 1/2 wave plate 53 is not particularly limited, but is preferably 0.5 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and more preferably 0.5, from the viewpoint that the effect of preventing wrinkles is likely to be noticeable. It is more preferably ⁇ 3 ⁇ m.
  • the thickness of the 1/2 wave plate 53 is obtained by measuring the thickness of any five points in the plane and arithmetically averaging them.
  • the 1/2 wave plate 53 may include a film made of a resin exemplified as a material of the protective film 51 described later, a layer in which a liquid crystal compound is cured, and the like.
  • the 1/2 wave plate 53 is formed of a resin, a polycarbonate resin, a cyclic olefin resin, a styrene resin, and a cellulosic resin are particularly preferable.
  • the 1/2 wavelength plate 53 preferably includes a layer in which the liquid crystal compound is cured.
  • the type of the liquid crystal compound is not particularly limited, it can be classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (disk-shaped liquid crystal compound, discotic liquid crystal compound) according to its shape.
  • the polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used.
  • two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of disk-shaped liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a disk-shaped liquid crystal compound may be used.
  • rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A-11-513019 or paragraphs [0026] to [00998] of JP-A-2005-289980 are preferably used. it can.
  • disk-shaped liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 are preferable. Can be used.
  • the 1/2 wave plate 53 is more preferably formed by using a liquid crystal compound having a polymerizable group (rod-shaped liquid crystal compound or disk-shaped liquid crystal compound). Thereby, the temperature change and the humidity change of the optical characteristics can be reduced.
  • the liquid crystal compound may be a mixture of two or more kinds. In that case, it is preferable that at least one has two or more polymerizable groups. That is, the 1/2 wave plate 53 is preferably a layer formed by fixing a rod-shaped liquid crystal compound having a polymerizable group or a disk-shaped liquid crystal compound having a polymerizable group by polymerization, and such a layer is a liquid crystal. The compound is contained in the cured layer. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
  • the type of the polymerizable group contained in the rod-shaped liquid crystal compound or the disk-shaped liquid crystal compound is not particularly limited, and is, for example, a functional group capable of an addition polymerization reaction such as a polymerizable ethylenically unsaturated group or a ring-polymerizable group. Is preferable. More specifically, for example, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like can be mentioned. Of these, the (meth) acryloyl group is preferable.
  • the (meth) acryloyl group is a concept that includes both a meta-acryloyl group and an acryloyl group.
  • the method for forming the 1/2 wavelength plate 53 is not particularly limited, and known methods can be mentioned.
  • a composition for forming an optically anisotropic layer (hereinafter, simply referred to as “composition”) containing a liquid crystal compound having a polymerizable group is applied to a predetermined substrate (including a temporary substrate) to form a coating film.
  • the first 1/2 wave plate 53 can be manufactured by subjecting the obtained coating film to a curing treatment (ultraviolet irradiation (light irradiation treatment) or heat treatment).
  • the composition can be applied by a known method, for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • the composition may contain components other than the liquid crystal compounds described above.
  • the composition may contain a polymerization initiator.
  • a polymerization initiator for example, a thermal polymerization initiator or a photopolymerization initiator is selected according to the type of the polymerization reaction.
  • examples of the photopolymerization initiator include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimers and p-aminophenyl ketones.
  • the amount of the polymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the total solid content of the composition.
  • the composition may contain a polymerizable monomer from the viewpoint of the uniformity of the coating film and the strength of the film.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Of these, a polyfunctional radically polymerizable monomer is preferable.
  • the polymerizable monomer is preferably copolymerized with the above-mentioned liquid crystal compound containing a polymerizable group.
  • Specific examples of the polymerizable monomer include those described in paragraphs [0018] to [0020] in JP-A-2002-296423.
  • the amount of the polymerizable monomer used is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the composition may contain a surfactant from the viewpoint of the uniformity of the coating film and the strength of the film.
  • the surfactant include conventionally known compounds. Of these, fluorine-based compounds are particularly preferable.
  • Specific examples of the surfactant include the compounds described in paragraphs [0028] to [0056] in JP 2001-330725, and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212. ], Examples thereof include the compounds described in.
  • the composition may contain a solvent, and an organic solvent is preferably used.
  • organic solvent include amide (eg, N, N-dimethylformamide), sulfoxide (eg, dimethyl sulfoxide), heterocyclic compound (eg, pyridine), hydrocarbon (eg, benzene, hexane), alkyl halide (eg, eg). , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane).
  • alkyl halides and ketones are preferable.
  • two or more kinds of organic solvents may be used in combination.
  • the composition includes a vertical alignment accelerator such as a polarizer interface side vertical alignment agent and an air interface side vertical alignment agent, and a horizontal alignment accelerator such as a polarizer interface side horizontal alignment agent and an air interface side horizontal alignment agent.
  • a vertical alignment accelerator such as a polarizer interface side vertical alignment agent and an air interface side vertical alignment agent
  • a horizontal alignment accelerator such as a polarizer interface side horizontal alignment agent and an air interface side horizontal alignment agent.
  • Various orienting agents such as may be contained.
  • the composition may contain an adhesion improver, a plasticizer, a polymer and the like in addition to the above components.
  • the 1/2 wavelength plate 53 may include an alignment film having a function of defining the orientation direction of the liquid crystal compound.
  • the alignment film generally contains a polymer as a main component.
  • the polymer material for an alignment film has been described in a large number of documents, and a large number of commercially available products are available. Among them, it is preferable to use polyvinyl alcohol or polyimide or a derivative thereof as the polymer material, and it is particularly preferable to use modified or unmodified polyvinyl alcohol.
  • the alignment film is usually subjected to a known alignment treatment.
  • a rubbing treatment, a photo-alignment treatment for applying polarized light, and the like can be mentioned, but the photo-alignment treatment is preferable from the viewpoint of the surface roughness of the alignment film.
  • the thickness of the alignment film is not particularly limited, it is often 20 ⁇ m or less, and more preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 5 ⁇ m, and 0.01 to 0.01 to 5 ⁇ m. It is more preferably 1 ⁇ m.
  • This equation may be achieved at any wavelength in the visible light region (eg, 550 nm).
  • Re (550) which is an in-plane retardation value at a wavelength of 550 nm, satisfies 100 nm ⁇ Re (550) ⁇ 160 nm.
  • Rth (550) which is a retardation value in the thickness direction of the 1/4 wave plate 55 measured at a wavelength of 550 nm, is preferably ⁇ 120 to 120 nm, and more preferably ⁇ 80 to 80 nm.
  • the thickness of the 1/4 wave plate 55 is not particularly limited, but is preferably 0.5 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, from the viewpoint of preventing wrinkles due to differences in dimensional changes on the front and back surfaces of the film during bending. It is preferable, and 0.5 to 3 ⁇ m is more preferable.
  • the thickness of the 1/4 wave plate 55 is obtained by measuring the thickness of any five points in the plane and arithmetically averaging them.
  • the 1/4 wave plate 55 preferably contains a layer in which the liquid crystal compound is cured.
  • the type of the liquid crystal compound is not particularly limited, the same material as that mentioned as the material of the 1/2 wavelength plate 53 can be used. Above all, it is preferable that the layer is formed by fixing a rod-shaped liquid crystal compound having a polymerizable group or a disk-shaped liquid crystal compound having a polymerizable group by polymerization. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
  • the layer other than the polarizer 51 on which the liquid crystal compound is cured is preferably one layer or two layers.
  • the number of layers in which wrinkles may occur increases, and it is considered that wrinkles are likely to occur at the time of bending.
  • the adhesive layer 54 is an active energy ray-curable adhesive (preferably ultraviolet curable) containing, as an adhesive, a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • a water-based adhesive in which an adhesive component such as a sex adhesive) or a polyvinyl alcohol-based resin is dissolved or dispersed in water can be used.
  • the polarizer 51 by laminating the 1/2 wavelength plate 53 and the 1/4 wavelength plate 55 via the adhesive layer 54, it is possible to prevent wrinkles from being generated at the time of bending.
  • an active energy ray-curable adhesive composition containing a cationically polymerizable curable compound and / or a radically polymerizable curable compound is preferably used because it exhibits good adhesiveness. be able to.
  • the active energy ray-curable adhesive may further contain a cationic polymerization initiator and / or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • Examples of the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds), or a combination thereof.
  • Examples of the radically polymerizable curable compound include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule), radically polymerizable double bonds, and others. Vinyl-based compounds, or combinations thereof.
  • a cationically polymerizable curable compound and a radically polymerizable curable compound may be used in combination.
  • Active energy ray-curable adhesives include cationic polymerization accelerators, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow conditioners, plasticizers, and defoamers, as required. It may contain additives such as foaming agents, antistatic agents, leveling agents, and solvents.
  • the 1/2 wave plate 53 and the 1/4 wave plate 55 are bonded together using an active energy ray-curable adhesive
  • the 1/2 wave plate is passed through the active energy ray-curable adhesive that becomes the adhesive layer 54.
  • the adhesive layer is cured by irradiating with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • active energy rays are preferable, and as the light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, or the like can be used.
  • the 1/2 wavelength plate 53 and the 1/4 wavelength plate 55 may be laminated via the water-based adhesive and then heat-dried.
  • the thickness of the adhesive layer 54 is preferably 0.5 to 5 ⁇ m, more preferably 0.5 to 3 ⁇ m.
  • the storage elastic modulus of the adhesive layer 54 at a temperature of 30 ° C. is preferably 600 MPa to 4000 MPa, more preferably 700 MPa to 3500 MPa, further preferably 1000 MPa to 3000 MPa, and 1500 MPa to 3000 MPa. Is the most preferable.
  • the storage elastic modulus of the adhesive layer 54 at a temperature of 30 ° C. shall be the measured value when the storage elastic modulus of the adhesive layer 54 at a temperature of 30 ° C. in the polarizer 51 can be directly measured by the following method.
  • an adhesive layer test piece is formed on the release paper under the same conditions as the formation of the adhesive layer 54 (adhesive type, curing conditions), and the adhesive layer test piece is peeled off from the release paper. It shall be possible to regard the thing as the same value as the storage elasticity measured by the following method.
  • the storage elastic modulus of the adhesive layer 54 or the adhesive layer test piece can be measured by a commercially available dynamic viscoelastic device, for example, measured by "DVA-220" (trade name) manufactured by IT Measurement Control Co., Ltd. can do.
  • FIG. 3 is a cross-sectional view showing an example of the structure of the touch sensor layer.
  • the touch sensor layer 70 shown in FIG. 3 includes a transparent conductive layer 71, a separation layer 72, an adhesive layer 73, and a base material layer 74 in this order from the visual recognition side.
  • the touch sensor layer 70 is a sensor capable of detecting the position touched by the front plate 10, and as long as it has a transparent conductive layer 71, the detection method is not limited, and the resistance film method and the capacitance are used. Examples thereof include touch sensor layers such as a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method. Among them, the capacitance type touch sensor layer is preferably used in terms of low cost, fast reaction speed, and thin film formation.
  • the touch sensor layer 70 includes a base material layer 74 and a transparent conductive layer 71 provided on the surface of the base material layer 74 on the adhesive layer 73 side from the viewpoint of improving impact resistance. It is preferable to have.
  • the base material layer 74 and the transparent conductive layer 71 may be in contact with each other (for example, the first described later).
  • the touch sensor layer manufactured by the method) the base material layer 74 and the transparent conductive layer 71 may not be in contact with each other (for example, the touch sensor layer manufactured by the second method described later).
  • the touch sensor layer 70 may include an adhesive layer, a separation layer, a protective layer, and the like in addition to the base material layer 74 and the transparent conductive layer 71. Examples of the adhesive layer include an adhesive layer and an adhesive layer.
  • the thickness of the touch sensor layer 70 can be 1 ⁇ m to 100 ⁇ m, 5 ⁇ m to 50 ⁇ m, and 10 ⁇ m to 30 ⁇ m. Within such a range, it is easy to achieve both bending resistance and impact resistance of the optical laminate.
  • An example of the capacitance type touch sensor layer is composed of a base material layer, a transparent conductive layer for position detection provided on the surface of the base material layer, and a touch position detection circuit.
  • a display device provided with an optical laminate having a capacitance type touch sensor layer
  • the transparent conductive layer is grounded via the capacitance of the human body at the touched point. Will be done.
  • the touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected.
  • the transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.
  • the separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer.
  • the separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide.
  • a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used as the material for forming the organic material layer.
  • the touch sensor layer 70 may include a protective layer that is in contact with the transparent conductive layer 71 and protects the conductive layer.
  • the protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method or the like.
  • the touch sensor layer 70 can be manufactured, for example, as follows.
  • the base material layer 74 is first laminated on the glass substrate via the adhesive layer.
  • a transparent conductive layer 71 patterned by photolithography is formed on the base material layer 74.
  • the glass substrate and the base material layer 74 are separated to obtain a touch sensor layer 70 composed of the transparent conductive layer 71 and the base material layer 74.
  • a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer.
  • a transparent conductive layer 71 patterned by photolithography is formed on the separation layer (or protective layer).
  • a peelable protective film is laminated on the transparent conductive layer 71, and the transparent conductive layer 71 to the separation layer are transferred to separate the glass substrate.
  • the sensor layer 70 is obtained.
  • the laminated body composed of the transparent conductive layer 71 and the separation layer may be used as the touch sensor layer 70 without being bonded to the base material layer 74.
  • Examples of the base material layer 74 of the touch sensor layer include resin films such as triacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, and polystyrene.
  • Polyethylene terephthalate is preferably used from the viewpoint of easily forming a base material layer having a desired toughness.
  • the base material layer 74 of the touch sensor layer preferably has a thickness of 50 ⁇ m or less, and more preferably 30 ⁇ m or less, from the viewpoint of easily forming an optical laminate having excellent bending resistance.
  • the base material layer 74 of the touch sensor layer has a thickness of, for example, 5 ⁇ m or more.
  • the optical laminate of the present invention is manufactured by bonding a front plate, a protective film, a polarizing layer, and a touch sensor layer using an adhesive layer.
  • an adhesive layer may be formed on the bonding surface of one layer and then the other layer may be laminated, or an adhesive layer may be formed on the bonding surface of both layers. After that, the adhesive layers may be combined.
  • the method of forming the pressure-sensitive adhesive layer on the surface to which the layers are bonded may be formed by using the pressure-sensitive adhesive composition as described above, or a sheet-like pressure-sensitive adhesive that can be handled independently is prepared and used. It may be formed by sticking it on the surface.
  • the optical laminate can be arranged on the display surface of the display panel, for example, to form a display device.
  • Optical laminates are particularly preferred for applications where they are applied to the display surface of flexible display panels.
  • the display device including the optical laminate of the present invention has excellent impact resistance.
  • FIG. 4 is a cross-sectional view showing an example of the structure of the display device of the present invention.
  • the display device 200 has an optical laminate 100 arranged on the front surface (visual side) thereof and a display panel 80.
  • the optical laminate 100 and the display panel 80 are generally bonded using an adhesive layer or an adhesive layer (non-display).
  • the display panel may be configured to be foldable with the viewing side surface on the inside, or may be configured to be foldable with the viewing side surface on the outside, and may be configured to be foldable. It may be the one.
  • Specific examples of the display panel include a liquid crystal display element, an organic EL display element, an inorganic EL display element, a plasma display element, and a field emission type display element.
  • the display device 200 can be used as a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signage, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.
  • a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signage, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.
  • the unit "part" of the ratio of blending substances is based on weight unless otherwise specified.
  • the composition for a hard coat layer was applied to one surface of the PAI film, the solvent was dried, and UV curing was performed to prepare a front plate having a hard coat layer on one side of the PAI film.
  • the obtained front plate had a thickness of 60 ⁇ m and a tensile elastic modulus of 6 GPa.
  • PVA polyvinyl alcohol
  • the PVA film that had undergone the iodine dyeing step was immersed in an aqueous solution having a mass ratio of potassium iodide / boric acid / water of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment step). ).
  • the PVA film that had undergone the boric acid treatment step was washed with pure water at 8 ° C. and then dried at 65 ° C. to obtain a polarizer in which iodine was adsorbed and oriented on polyvinyl alcohol.
  • the PVA film was stretched in the iodine dyeing step and the boric acid treatment step.
  • the total draw ratio of the PVA film was 5.3 times.
  • the thickness of the obtained polarizer was 7 ⁇ m.
  • the obtained polarizer and a cycloolefin polymer (COP) film having a thickness of 13 ⁇ m (“ZF-14” (trade name) manufactured by Nippon Zeon Corporation), an in-plane retardation value at a wavelength of 550 nm is 1 nm) are water-based. It was bonded with a nip roll via an adhesive. While maintaining the tension per unit width of the obtained laminate at 430 N / m, it was dried at 60 ° C. for 2 minutes to obtain a linear polarizing plate having a COP film on one side.
  • water-based adhesives 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol ("Kuraray Poval KL318” (trade name) manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin (Taoka Chemical Industry Co., Ltd.)
  • Kuraray Poval KL318 trade name
  • water-soluble polyamide epoxy resin Teoka Chemical Industry Co., Ltd.
  • the 1/2 wave plate a film composed of a layer in which a liquid crystal compound was cured and an alignment film was used.
  • the thickness of the 1/2 wave plate was 2 ⁇ m.
  • the 1/4 wave plate a film composed of a layer in which a liquid crystal compound was cured and an alignment film was used.
  • the thickness of the 1/4 wave plate was 1 ⁇ m.
  • the 1/2 wavelength plate and the 1/4 wavelength plate were bonded together using an ultraviolet curable adhesive.
  • a laminated body of a 1/2 wave plate and a 1/4 wave plate was bonded to a linear polarizing plate via a (meth) acrylic pressure-sensitive adhesive having a thickness of 5 ⁇ m to obtain a circularly polarizing plate.
  • the thickness of the circularly polarizing plate was 30 ⁇ m.
  • Adhesive Layer A1 25 parts of 4-hydroxybutyl acrylate (4-HBA), 2-ethylhexyl acrylate (2-EHA) 50 in a 500 ml 4-neck reactor equipped with a cooling device so that nitrogen gas is refluxed and temperature control is easy. After adding 15 parts of methyl acrylate (MA) and 10 parts of isobornyl acrylate (IBOA), 100 parts of ethyl acetate (EAc) was added as a solvent. Nitrogen gas was purged for 1 hour to remove oxygen and the temperature of the mixture was maintained at 60 ° C.
  • 4-HBA 4-hydroxybutyl acrylate
  • 2-EHA 2-ethylhexyl acrylate
  • EAc ethyl acetate
  • a cross-linking agent (“CORONATE-L” (trade name) manufactured by Tosoh Corporation) were mixed to obtain a pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition was applied onto a release film coated with a silicon release agent and dried at 100 ° C. for 1 minute to obtain a pressure-sensitive adhesive layer A1.
  • the pressure-sensitive adhesive layer A1 had a storage elastic modulus (G') of 0.3 MPa.
  • G' storage elastic modulus
  • the thickness of the pressure-sensitive adhesive layer was adjusted by adjusting the coating thickness of the pressure-sensitive adhesive composition.
  • Acrylic copolymer 2 was produced in the same manner as acrylic copolymer 1 except that butyl acrylate (BA) was used instead of methyl acrylate (MA). Further, the pressure-sensitive adhesive layer A2 was obtained in the same manner as the pressure-sensitive adhesive layer A1. The pressure-sensitive adhesive layer A2 had a storage elastic modulus (G') of 0.08 MPa.
  • G' storage elastic modulus
  • the acrylic copolymer 3 was produced in the same manner as the acrylic copolymer 1 except that hexyl acrylate (HA) was used instead of the methyl acrylate (MA). Further, the pressure-sensitive adhesive layer A3 was obtained in the same manner as the pressure-sensitive adhesive layer A1.
  • the pressure-sensitive adhesive layer A3 had a storage elastic modulus (G') of 0.02 MPa.
  • a polyethylene terephthalate (PET) film having a thickness of 80 ⁇ m (“SH82” (trade name) manufactured by SKC) was prepared.
  • the tensile elastic modulus of this PET film was 5 GPa in the mechanical axis direction and 2 GPa in the width direction.
  • a touch sensor panel was prepared in which a transparent conductive layer which is ITO, a separation layer which is an acrylic resin, an adhesive layer, and a base material layer which is a COP film are laminated in this order from the visual side.
  • the total thickness of the transparent conductive layer, the separation layer and the adhesive layer was 7 ⁇ m.
  • the thickness of the base material layer was 13 ⁇ m.
  • Corona treatment was applied to the PAI film side surface of the front plate, the front and back surfaces of the protective film, the front and back surfaces of the circularly polarizing plate, and the transparent conductive layer side surface of the touch sensor panel.
  • the corona treatment was performed under the conditions of frequency: 20 kHz / voltage: 8.6 kV / power: 2.5 kW / speed: 6 m / min.
  • the front plate 10 from the side to be visually recognized, the front plate 10, the third adhesive layer 20, the protective film 30, the second adhesive layer 40, the polarizing layer 50, the first adhesive layer 60, and the touch sensor layer.
  • Each layer was laminated in the order of 70, bonded using a roll joining machine, and cured by an autoclave to obtain an optical laminate.
  • ⁇ Measuring method of layer thickness The thickness of each layer was measured using a contact-type film thickness measuring device (“MS-5C” (trade name) manufactured by Nikon Corporation). However, the polarizer and the alignment film were measured using a laser microscope (“OLS3000” (trade name) manufactured by Olympus Corporation).
  • MS-5C contact-type film thickness measuring device
  • OLS3000 laser microscope
  • ⁇ Tension modulus> A rectangular small piece having a long side of 110 mm and a short side of 10 mm was cut out from the member using a super cutter. Next, use the upper and lower grips of a tensile tester (autograph "AG-Xplus” (trade name) manufactured by Shimadzu Corporation) to sandwich both ends of the measurement sample in the long side direction so that the distance between the grips is 5 cm, and set the temperature. In an environment of 23 ° C. and 55% relative humidity, the measurement sample is pulled in the length direction of the measurement sample at a tensile speed of 4 mm / min, and the temperature 23 is determined from the slope of a straight line between 20 and 40 MPa in the obtained stress-strain curve. The tensile elastic modulus (MPa) at ° C. and a relative humidity of 55% was calculated. At this time, as the thickness for calculating the stress, the thickness value of the layer measured as described above was used.
  • a tensile tester autograph "AG-Xplus” (
  • the front plate of the small piece was marked at the position of the bridge in the pattern of the transparent conductive layer of the touch sensor layer, and the evaluation pen was dropped so that the pen tip touched the mark.
  • the evaluation pen a pen having a mass of 5.6 g and a pen tip diameter of 0.75 mm was used. The small pieces after the evaluation pen was dropped were visually observed and the touch sensor layer function was confirmed, and the evaluation was performed according to the following criteria.
  • the impact resistance index A was calculated according to the formula (1).
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 2.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 2.
  • the impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 2.
  • the laminate of the example having an impact resistance index A of 200 or more showed excellent performance in all of the impact resistance test, the inner bending flexibility test and the outer bending flexibility test.
  • the laminated body of the comparative example having an impact resistance index A of less than 200 was inferior in any one of the impact resistance test, the inner bending flexibility test and the outer bending flexibility test.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The purpose of the present invention is to provide an optical laminate and a display device having excellent bendability and excellent impact resistance. An optical laminate according to the present invention is provided with a front plate, a third adhesive layer, a protective film, a second adhesive layer, a polarizing layer, a first adhesive layer, and a touch sensor layer in this order from a viewing side, and has an impact resistance index A represented by a formula (1) of 200 or more. [In the formula, tn represents the thickness (μm) of an n-th adhesive layer from the touch sensor layer, G'n represents a storage elastic modulus (MPa) at 25℃ of the n-th adhesive layer from the touch sensor layer, and an represents a value obtained by dividing a distance (μm) from the upper surface of the touch sensor layer to the lower surface of the n-th adhesive layer by tn.]

Description

光学積層体及び表示装置Optical laminate and display device
 本発明は、光学積層体及び表示装置に関し、詳しくは、屈曲性表示パネルの表示面をカバーする光学積層体、及び該光学積層体を有する屈曲性表示装置に関する。 The present invention relates to an optical laminate and a display device, and more particularly to an optical laminate that covers the display surface of a flexible display panel, and a flexible display device having the optical laminate.
 近年、可撓性を有する屈曲性表示装置が注目を集めている。屈曲性表示装置は曲面及び屈曲面等の平面ではない面上にも設置することができる。また、屈曲性表示装置は折り畳んだり巻物形状としたりすることで、携帯性を向上させることができる。かかる屈曲性表示装置においては、その表示面をカバーする光学積層体にも屈曲性が要求される。 In recent years, flexible flexibility display devices have been attracting attention. The flexibility display device can be installed on a non-planar surface such as a curved surface and a bending surface. Further, the flexibility display device can be folded or shaped into a scroll to improve portability. In such a flexibility display device, the optical laminate covering the display surface is also required to have flexibility.
 特許文献1には、第1の基材フィルム、前記第1の基材フィルムの一方の面に位置するハードコート層及び他方の面に位置する第2の基材フィルムを含む、フレキシブル画像表示装置のカバーウィンドウ基板に好ましく適用できる積層フィルムが記載されている(要約)。特許文献1の積層フィルムは表面硬度が高く、耐擦傷性に優れたものである。 Patent Document 1 includes a first base film, a hard coat layer located on one surface of the first base film, and a second base film located on the other surface. Laminated films that are preferably applicable to cover window substrates are described (summary). The laminated film of Patent Document 1 has a high surface hardness and excellent scratch resistance.
 特許文献2には、フレキシブルディスプレイの表示面をカバーする透明なウィンドウが記載されている。このウィンドウは、屈曲することができるガラス層と、ガラス層と表示パネルの間に配置されて、ガラス層よりも小さい弾性係数を有する機能性コーティング層を有する(要約)。特許文献2のウィンドウは、ガラス層を有することで、表面硬度が高く、耐擦傷性に優れている。また、機能性コーティング層は、ガラス層の一部に衝撃が加えられる場合に、ガラス層に発生する引張応力を相殺してガラス層が破損するのを防止する(段落[0086])。 Patent Document 2 describes a transparent window that covers the display surface of the flexible display. The window has a bendable glass layer and a functional coating layer that is located between the glass layer and the display panel and has a lower elastic modulus than the glass layer (summary). Since the window of Patent Document 2 has a glass layer, the surface hardness is high and the scratch resistance is excellent. In addition, the functional coating layer cancels out the tensile stress generated in the glass layer when an impact is applied to a part of the glass layer to prevent the glass layer from being damaged (paragraph [0086]).
 特許文献3には、折り曲げられる部分に、多数の凹状の形状から成る折り曲げパターンが形成されたカバーウィンドウが記載されている(請求項1)。カバーウィンドウの折り曲げられる部分は、かかる折り曲げパターンを具備するので薄く変形することができ、屈曲し易くなる。特許文献3のカバーウィンドウは、折り曲げられる部分に折り曲げパターンが存在することで屈曲性が確保されるので、折り曲げられない部分は高い剛性を有する材料で相対的に厚く形成することができ、高い耐衝撃性をも確保することができる(段落[0009])。 Patent Document 3 describes a cover window in which a folding pattern having a large number of concave shapes is formed in a bent portion (claim 1). Since the bendable portion of the cover window is provided with such a bend pattern, it can be thinly deformed and easily bends. In the cover window of Patent Document 3, the bendability is ensured by the presence of the bend pattern in the bendable portion, so that the non-foldable portion can be formed relatively thick with a material having high rigidity, and has high resistance. Impact resistance can also be ensured (paragraph [0009]).
特開2017-13492号公報Japanese Unexamined Patent Publication No. 2017-13492 米国特許公開2018/0034001号公報U.S. Patent Publication No. 2018/0034001 韓国特許公開10-2018-0079093号公報Korean Patent Publication No. 10-2018-0079093
 表示装置の中でもタッチパネルは、表示装置の表面にタッチすることで操作される。操作の種類により、表示装置の表面は摩擦されるだけでなく、叩かれる場合がある。デバイスを落下させた際に、表示装置の表面に物が当たることもある。それゆえ、表示装置には、表面に対する摩擦だけでなく、視認側から垂直方向に急激に加えられる力に対しても、耐えうる耐衝撃性が要求される。 Among the display devices, the touch panel is operated by touching the surface of the display device. Depending on the type of operation, the surface of the display device may not only be rubbed but also struck. When the device is dropped, an object may hit the surface of the display device. Therefore, the display device is required to have impact resistance that can withstand not only friction against the surface but also a force suddenly applied in the vertical direction from the viewing side.
 特許文献1の積層フィルムは、表示装置に対し、視認側から垂直方向に加えられる力が考慮されておらず、未だ耐衝撃性が十分でない。 The laminated film of Patent Document 1 does not take into consideration the force applied in the vertical direction from the viewing side to the display device, and the impact resistance is still insufficient.
 また、特許文献2のウィンドウに使用されているガラスは、柔軟性に劣る材料であり、ガラス層を有している以上、特許文献2のウィンドウは屈曲性が不十分である。 Further, the glass used for the window of Patent Document 2 is a material having inferior flexibility, and as long as it has a glass layer, the window of Patent Document 2 has insufficient flexibility.
 さらに、特許文献3については、フィルムが折り曲げられる部分に特定して、多数の凹状の形状を形成する作業は繁雑であり、製造コストが高くなる。光学フィルムの一部にパターンが形成された場合は、その部分の光透過性が変化し、フィルム材料として汎用性も低下する。更に、折り曲げパターンを形成した状態では柔軟性を有する必要があるため、それほど材料の剛性を高めることはできず、十分に高い耐衝撃性を実現することは困難である。 Further, with respect to Patent Document 3, the work of specifying a portion where the film is bent and forming a large number of concave shapes is complicated, and the manufacturing cost is high. When a pattern is formed on a part of the optical film, the light transmittance of that part changes, and the versatility as a film material also decreases. Further, since it is necessary to have flexibility in the state where the bent pattern is formed, the rigidity of the material cannot be increased so much, and it is difficult to realize sufficiently high impact resistance.
 本発明は上記従来の問題を解決するものであり、その目的とするところは、優れた屈曲性、及び優れた耐衝撃性を有する光学積層体を提供することにある。該光学積層体を有する、優れた屈曲性、及び優れた耐衝撃性を有する表示装置を提供することも、本発明の目的である。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an optical laminate having excellent flexibility and excellent impact resistance. It is also an object of the present invention to provide a display device having the optical laminate and having excellent flexibility and excellent impact resistance.
 本発明は、前面板、第3粘着剤層、保護フィルム、第2粘着剤層、偏光層、第1粘着剤層、及びタッチセンサ層を、視認側からこの順に備える光学積層体であって、
 200以上の、式
The present invention is an optical laminate including a front plate, a third pressure-sensitive adhesive layer, a protective film, a second pressure-sensitive adhesive layer, a polarizing layer, a first pressure-sensitive adhesive layer, and a touch sensor layer in this order from the viewing side.
Over 200 formulas
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
[式中、tは、タッチセンサ層からn番目の粘着剤層の厚さ(μm)を表し、G’は、タッチセンサ層からn番目の粘着剤層の25℃における貯蔵弾性率(MPa)を表し、aは、タッチセンサ層上面からn番目の粘着剤層下面までの距離(μm)をtで除した値を表す。] Wherein, t n is the thickness of the n-th of the pressure-sensitive adhesive layer from the touch sensor layer represents ([mu] m), G 'n is a storage modulus at 25 ° C. for n-th of the pressure-sensitive adhesive layer from the touch sensor layer ( represents MPa), a n denotes a value distance ([mu] m) divided by t n from the touch sensor layer top surface to the n-th of the pressure-sensitive adhesive layer lower surface. ]
で表される耐衝撃性指数Aを有する、光学積層体を提供する。 Provided is an optical laminate having an impact resistance index A represented by.
 ある一形態において、上記光学積層体は、2000以上の耐衝撃指数Aを有する。 In one form, the optical laminate has an impact resistance index A of 2000 or more.
 ある一形態において、第1、第2及び第3粘着剤層は、3~100μmの厚さを有する。 In one form, the first, second and third pressure-sensitive adhesive layers have a thickness of 3-100 μm.
 ある一形態において、第1、第2及び第3粘着剤層は、0.005~1.0MPaの温度25℃における貯蔵弾性率を有する。 In one embodiment, the first, second and third pressure-sensitive adhesive layers have a storage elastic modulus at a temperature of 0.005 to 1.0 MPa at 25 ° C.
 ある一形態において、第1、第2及び第3粘着剤層は、(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物を含んで成る。 In one embodiment, the first, second and third pressure-sensitive adhesive layers include a pressure-sensitive adhesive composition using a (meth) acrylic resin as a base polymer.
 ある一形態において、第1、第2及び第3粘着剤層は、架橋剤をさらに含む。 In one form, the first, second and third pressure-sensitive adhesive layers further include a cross-linking agent.
 また、本発明は、表示パネルの表示面に適用される上記いずれかの光学積層体を提供する。 The present invention also provides any of the above optical laminates applied to the display surface of the display panel.
 また、本発明は、表示パネルと、表示パネルの表示面に適用された上記いずれかの光学積層体とを有する表示装置を提供する。 The present invention also provides a display device having a display panel and any of the above optical laminates applied to the display surface of the display panel.
 本発明によれば、優れた屈曲性、及び優れた耐衝撃性を有する、光学積層体及び表示装置が提供される。 According to the present invention, an optical laminate and a display device having excellent flexibility and excellent impact resistance are provided.
本発明の光学積層体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the optical laminated body of this invention. 本発明の光学積層体に使用する偏光層の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the polarizing layer used for the optical laminated body of this invention. 本発明の光学積層体に使用するタッチセンサ層の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the touch sensor layer used for the optical laminated body of this invention. 本発明の表示装置の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the display device of this invention.
[光学積層体]
 図1は、本発明の光学積層体の構造の一例を示す断面図である。図1に示す光学積層体100は、前面板10、第3粘着剤層20、保護フィルム30、第2粘着剤層40、偏光層50、第1粘着剤層60、及びタッチセンサ層70を視認側からこの順に備える。
[Optical laminate]
FIG. 1 is a cross-sectional view showing an example of the structure of the optical laminate of the present invention. The optical laminate 100 shown in FIG. 1 visually recognizes the front plate 10, the third adhesive layer 20, the protective film 30, the second adhesive layer 40, the polarizing layer 50, the first adhesive layer 60, and the touch sensor layer 70. Prepare in this order from the side.
 光学積層体100は、少なくとも前面板10を内側にした方向に屈曲可能であることが好ましい。屈曲可能とは、前面板10を内側にした方向にクラックを生じさせることなく屈曲させ得ることを意味する。本発明に係る光学積層体は、耐衝撃性に優れており、耐衝撃性とともに耐屈曲性にも優れているものとすることができる。ある一形態において、光学積層体100は、前面板10を外側にした方向に屈曲可能であることが好ましい。この場合、屈曲可能とは、前面板10を外側にした方向にクラックを生じさせることなく屈曲させ得ることを意味する。 It is preferable that the optical laminate 100 can be bent at least in the direction in which the front plate 10 is inside. Bendable means that the front plate 10 can be bent in the direction inward without causing cracks. The optical laminate according to the present invention is excellent in impact resistance, and can be considered to be excellent in impact resistance as well as bending resistance. In one embodiment, the optical laminate 100 is preferably bendable in the direction in which the front plate 10 is outward. In this case, "flexible" means that the front plate 10 can be bent in the outward direction without causing cracks.
 光学積層体の面方向の形状は、例えば方形形状であってよく、好ましくは長辺と短辺とを有する方形形状であり、より好ましくは長方形である。光学積層体の面方向の形状が長方形である場合、長辺の長さは、例えば10~1400mmであってよく、好ましくは50~600mmである。短辺の長さは、例えば5~800mmであり、好ましくは30~500mmであり、より好ましくは50~300mmである。光学積層体を構成する各層は、角部がR加工されたり、端部が切り欠き加工されたり、穴あき加工されたりしていてもよい。 The shape of the optical laminate in the plane direction may be, for example, a square shape, preferably a square shape having a long side and a short side, and more preferably a rectangle. When the shape of the optical laminate in the plane direction is rectangular, the length of the long side may be, for example, 10 to 1400 mm, preferably 50 to 600 mm. The length of the short side is, for example, 5 to 800 mm, preferably 30 to 500 mm, and more preferably 50 to 300 mm. Each layer constituting the optical laminate may have corners R-processed, end portions notched, or perforated.
 光学積層体の厚さは、光学積層体に求められる機能及び積層体の用途等に応じて異なるため特に限定されないが、例えば20~1,000μmであり、好ましくは50~500μmである。 The thickness of the optical laminate is not particularly limited because it varies depending on the function required for the optical laminate, the application of the laminate, and the like, but is, for example, 20 to 1,000 μm, preferably 50 to 500 μm.
[前面板]
 前面板10は、視認側から見て、光学積層体の最表面を構成する。
[Front plate]
The front plate 10 constitutes the outermost surface of the optical laminate when viewed from the visual side.
 前面板10は、光を透過可能な板状体であれば材料及び厚さは限定されることはなく、1層のみから構成されてよく、2層以上から構成されてもよい。その例としては、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体(例えばガラス板、ガラスフィルム等)が挙げられる。 The material and thickness of the front plate 10 are not limited as long as it is a plate-like body capable of transmitting light, and the front plate 10 may be composed of only one layer or may be composed of two or more layers. Examples thereof include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.) and a glass plate-like body (for example, a glass plate, a glass film, etc.).
 前面板10の厚さは、例えば30~2,000μmであってよく、好ましくは50~1,000μmであり、より好ましくは50~500μmであり、さらに好ましくは50~100μmである。 The thickness of the front plate 10 may be, for example, 30 to 2,000 μm, preferably 50 to 1,000 μm, more preferably 50 to 500 μm, and further preferably 50 to 100 μm.
 前面板10の引張弾性率は、好ましくは3GPa以上であり、より好ましくは4GPa以上であり、さらに好ましくは5GPa以上である。前面板10の引張弾性率は、好ましくは10GPa以下であり、より好ましくは9GPa以下である。引張弾性率が上記の下限値以上であると、外部から衝撃を受けた場合、前面板に凹み等の欠陥が生じにくくなると共に、前面板の強度を高めやすい。また、引張弾性率が上記の上限値以下であると、前面板の耐屈曲性を向上させやすい。引張弾性率は、MD(Machine Direction、フィルムの成形方向)、またはTD(Transverse Direction、MDに垂直方向)の少なくとも一方で上記範囲を満たせばよく、両方で上記範囲を満たすことが好ましい。 The tensile elastic modulus of the front plate 10 is preferably 3 GPa or more, more preferably 4 GPa or more, and further preferably 5 GPa or more. The tensile elastic modulus of the front plate 10 is preferably 10 GPa or less, more preferably 9 GPa or less. When the tensile elastic modulus is at least the above lower limit value, defects such as dents are less likely to occur in the front plate when an impact is received from the outside, and the strength of the front plate is likely to be increased. Further, when the tensile elastic modulus is not more than the above upper limit value, it is easy to improve the bending resistance of the front plate. The tensile elastic modulus may satisfy at least one of MD (Machine Direction, film forming direction) or TD (Transverse Direction, direction perpendicular to MD), and it is preferable that both of them satisfy the above range.
 前面板10が樹脂製の板状体である場合、材料としては、例えば、ポリメチル(メタ)アクリレート及びポリエチル(メタ)アクリレート等のアクリル系樹脂;ポリエチレン、ポリプロピレン、ポリメチルペンテン及びポリスチレン等のポリオレフィン系樹脂;トリアセチルセルロース、アセチルセルロースブチレート、プロピオニルセルロース、ブチリルセルロース及びアセチルプロピオニルセルロース等のセルロース系樹脂;エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール及びポリビニルアセタール等のポリビニル系樹脂;ポリスルホン及びポリエーテルスルホン等のスルホン系樹脂;ポリエーテルケトン及びポリエーテルエーテルケトン等のケトン系樹脂;ポリエーテルイミド;ポリカーボネート系樹脂;ポリエステル系樹脂;ポリイミド系樹脂;ポリアミドイミド系樹脂;及びポリアミド系樹脂等が挙げられる。これらの高分子は単独で又は2種以上を混合して用いることができる。中でも強度及び透明性向上の観点から、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、又はポリアミド系樹脂を用いることが好ましい。樹脂製の板状体の厚さは、例えば30~2,000μmであってよく、好ましくは50~1,000μmであり、より好ましくは50~500μmであり、100μm以下であってもよい。 When the front plate 10 is a resin plate-like body, the material may be, for example, an acrylic resin such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; and a polyolefin-based material such as polyethylene, polypropylene, polymethylpentene and polystyrene. Resins: Cellular resins such as triacetyl cellulose, acetyl cellulose butyrate, propionyl cellulose, butyryl cellulose and acetyl propionyl cellulose; ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, etc. Polyvinyl resin; sulfone resin such as polysulfone and polyether sulfone; ketone resin such as polyether ketone and polyether ether ketone; polyetherimide; polycarbonate resin; polyester resin; polyimide resin; polyamideimide resin; And polyamide resin and the like. These polymers can be used alone or in admixture of two or more. Above all, from the viewpoint of improving strength and transparency, it is preferable to use a polycarbonate resin, a polyester resin, a polyimide resin, a polyamide-imide resin, or a polyamide resin. The thickness of the resin plate-like body may be, for example, 30 to 2,000 μm, preferably 50 to 1,000 μm, more preferably 50 to 500 μm, and may be 100 μm or less.
 前面板10は、基材フィルムの少なくとも一方の面にハードコート層を設けて硬度をより向上させたフィルムであってもよい。基材フィルムとしては、上記樹脂からできたフィルムを用いることができる。ハードコート層は、基材フィルムの一方の面に形成されていても、両方の面に形成されていてもよい。ハードコート層を設けることにより、硬度及びスクラッチ性を向上させた樹脂フィルムとすることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えばアクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層は、強度を向上させるために、添加剤を含んでいてもよい。添加剤は限定されることはなく、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。 The front plate 10 may be a film having a hard coat layer provided on at least one surface of the base film to further improve the hardness. As the base film, a film made of the above resin can be used. The hard coat layer may be formed on one surface of the base film or may be formed on both surfaces. By providing the hard coat layer, a resin film having improved hardness and scratchability can be obtained. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like. The hard coat layer may contain additives to improve strength. Additives are not limited, and examples thereof include inorganic fine particles, organic fine particles, and mixtures thereof.
 前面板10がガラス板である場合、ガラス板は、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板の厚さは、例えば50~1,000μmであってよい。ガラス板を用いることにより、優れた機械的強度及び表面硬度を有する前面板10を構成することができる。 When the front plate 10 is a glass plate, tempered glass for a display is preferably used as the glass plate. The thickness of the glass plate may be, for example, 50 to 1,000 μm. By using the glass plate, the front plate 10 having excellent mechanical strength and surface hardness can be constructed.
 光学積層体が表示装置に用いられる場合、前面板10は、表示装置におけるウィンドウフィルムとしての機能を有していてもよい。前面板10は、さらにタッチセンサとしての機能、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。 When the optical laminate is used in the display device, the front plate 10 may have a function as a window film in the display device. The front plate 10 may further have a function as a touch sensor, a blue light cut function, a viewing angle adjusting function, and the like.
[粘着剤層]
 粘着剤層は、前面板10と保護フィルム30との間に位置する第3粘着剤層20、保護フィルム30と偏光層50との間に位置する第2粘着剤層40、及び偏光層50とタッチセンサ層70との間に位置する第1粘着剤層60からなる。より詳細に言えば、第3粘着剤層20は、前面板10と保護フィルム30とに接する粘着剤層であり、第2粘着剤層40は、保護フィルム30と偏光層50とに接する粘着剤層であり、第1粘着剤層60は、偏光層50とタッチセンサ層70とに接する粘着剤層である。各粘着剤層は、同じ材料からなるものであっても、異なる材料からなるものであってもよい。
[Adhesive layer]
The pressure-sensitive adhesive layer includes a third pressure-sensitive adhesive layer 20 located between the front plate 10 and the protective film 30, a second pressure-sensitive adhesive layer 40 located between the protective film 30 and the polarizing layer 50, and the polarizing layer 50. It is composed of a first adhesive layer 60 located between the touch sensor layer 70 and the touch sensor layer 70. More specifically, the third adhesive layer 20 is an adhesive layer in contact with the front plate 10 and the protective film 30, and the second adhesive layer 40 is an adhesive in contact with the protective film 30 and the polarizing layer 50. The first pressure-sensitive adhesive layer 60 is a pressure-sensitive adhesive layer that is in contact with the polarizing layer 50 and the touch sensor layer 70. Each pressure-sensitive adhesive layer may be made of the same material or different materials.
 粘着剤層は、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好ましい。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。 The pressure-sensitive adhesive layer can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好ましく用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーが挙げられる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含む。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが挙げられる。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Examples include epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferable.
 活性エネルギー線硬化型粘着剤組成物とは、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射により硬化して密着力の調整ができる性質を有する粘着剤組成物である。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含む。
さらに必要に応じて、光重合開始剤や光増感剤等を含有させることもある。
The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays. It is a pressure-sensitive adhesive composition having the property of being able to adhere to an adherend such as, etc., and being cured by irradiation with active energy rays to adjust the adhesion force. The active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent.
Further, if necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含んでいてよい。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives may be included.
 上記粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する硬化物とすることができる。 It can be formed by applying an organic solvent diluent of the above pressure-sensitive adhesive composition on a substrate and drying it. When the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a cured product having a desired degree of curing.
 粘着剤層は粘弾性が高く、光学積層体に加えられる衝撃を緩和する機能を有する。本発明の光学積層体では、粘着剤層の特性を適宜調節することで、光学積層体最表面に加えられる衝撃に対する光学積層体の耐衝撃性を向上させる。すなわち、光学積層体の表面に衝撃が加えられた場合でも、タッチセンサ層や光学積層体がカバーする表示パネルの配線及び素子等が破損し難くなる。 The adhesive layer has high viscoelasticity and has a function of alleviating the impact applied to the optical laminate. In the optical laminate of the present invention, the impact resistance of the optical laminate to the impact applied to the outermost surface of the optical laminate is improved by appropriately adjusting the characteristics of the pressure-sensitive adhesive layer. That is, even when an impact is applied to the surface of the optical laminate, the wiring and elements of the touch sensor layer and the display panel covered by the optical laminate are less likely to be damaged.
 発明者の検討により、粘着剤層の弾性、厚さ及び位置が光学積層体の耐衝撃性に関係することが明らかとなった。粘着剤層による衝撃緩和効果は、粘着剤層の弾性率が低いほど大きくなる。また、粘着剤層による衝撃緩和効果は、粘着剤層が厚いほど大きくなる。そして、粘着剤層による上記衝撃緩和効果は、粘着剤層の位置が表示パネルに近いほど有効性が大きくなる。 The inventor's study revealed that the elasticity, thickness and position of the pressure-sensitive adhesive layer are related to the impact resistance of the optical laminate. The impact mitigation effect of the pressure-sensitive adhesive layer increases as the elastic modulus of the pressure-sensitive adhesive layer decreases. Further, the impact mitigation effect of the pressure-sensitive adhesive layer increases as the pressure-sensitive adhesive layer becomes thicker. The impact mitigation effect of the pressure-sensitive adhesive layer becomes more effective as the position of the pressure-sensitive adhesive layer is closer to the display panel.
 ここで、粘着剤層の弾性率は貯蔵弾性率G’(MPa)で表される。粘着剤層の厚さは実測値t(μm)で表される。粘着剤層の弾性率及び厚さは、各層について、これらの特性値を使用して特定することができる。 Here, the elastic modulus of the pressure-sensitive adhesive layer is represented by the storage elastic modulus G'(MPa). The thickness of the pressure-sensitive adhesive layer is represented by an actually measured value t (μm). The elastic modulus and thickness of the pressure-sensitive adhesive layer can be specified for each layer using these characteristic values.
 表示パネルからの粘着剤層の位置は第1粘着剤層が最も近く、第2粘着剤層及び第3粘着剤層の順に遠くなる。各粘着剤層はそれ自体が厚さを有し、その厚さは独立して適宜決定されるものである。それゆえ、基準部位を決定して、単純に最下層の基準部位から各粘着剤層の基準部位までの距離を比較するだけでは、表示パネルに対する粘着剤層の位置を表すことが困難である。 The position of the pressure-sensitive adhesive layer from the display panel is closest to the first pressure-sensitive adhesive layer, and is farther from the second pressure-sensitive adhesive layer and the third pressure-sensitive adhesive layer in that order. Each pressure-sensitive adhesive layer has its own thickness, and the thickness is independently determined as appropriate. Therefore, it is difficult to indicate the position of the pressure-sensitive adhesive layer with respect to the display panel by determining the reference part and simply comparing the distances from the reference part of the lowest layer to the reference part of each pressure-sensitive adhesive layer.
 そこで、対象粘着剤層が表示パネルからどの程度離れているかは最下層であるタッチセンサ層の上部表面から対象粘着剤層の表示パネル側面(下面)までの距離d(μm)により示すこととし、粘着剤層の厚さの影響を排除するために、上記距離を対象粘着剤層の厚さt(μm)で除した特性値aを規定する。特性値a=d/tは、単位厚さの対象粘着剤層を仮定した場合に、それが表示パネルからどの程度離れているかを表す。なお、第1粘着剤層のaは1と定義する。 Therefore, how far the target adhesive layer is from the display panel is indicated by the distance d (μm) from the upper surface of the touch sensor layer, which is the lowest layer, to the side surface (lower surface) of the display panel of the target adhesive layer. In order to eliminate the influence of the thickness of the pressure-sensitive adhesive layer, the characteristic value a obtained by dividing the above distance by the thickness t (μm) of the target pressure-sensitive adhesive layer is defined. The characteristic value a = d / t represents how far it is from the display panel when the target pressure-sensitive adhesive layer having a unit thickness is assumed. The a of the first pressure-sensitive adhesive layer is defined as 1.
 粘着剤層の衝撃緩和性能の優劣傾向は、これらの特性値を使って表現すると、粘着剤層の弾性率G’に反比例し、粘着剤層の厚さtに比例し、表示パネルからの距離aに反比例する。そうすると、粘着剤層の衝撃緩和性能を表す特性値として、t/(a×G’)を考えることができる。第1粘着剤層、第2粘着剤層及び第3粘着剤層について、上記特性値を合計することで、光学積層体全体の衝撃緩和性能を表す特性値が得られる。本明細書では、以降、この特性値を耐衝撃性指数Aと呼ぶ。 Expressing the superiority or inferiority of the impact mitigation performance of the pressure-sensitive adhesive layer using these characteristic values, it is inversely proportional to the elastic modulus G'of the pressure-sensitive adhesive layer, proportional to the thickness t of the pressure-sensitive adhesive layer, and the distance from the display panel. It is inversely proportional to a. Then, t / (a × G') can be considered as a characteristic value representing the impact mitigation performance of the pressure-sensitive adhesive layer. By summing the above characteristic values of the first pressure-sensitive adhesive layer, the second pressure-sensitive adhesive layer, and the third pressure-sensitive adhesive layer, a characteristic value representing the impact mitigation performance of the entire optical laminate can be obtained. Hereinafter, this characteristic value will be referred to as an impact resistance index A.
 なお、偏光層内部及びタッチセンサ層内部にも粘着剤層が存在することがあるが、通常厚さ5μm以下と薄いので、光学積層体の耐衝撃性に影響を与えないと考えられる。従って、耐衝撃性指数Aを計算する際に、偏光層内部の粘着剤層及びタッチセンサ層内部の粘着剤層は考慮しない。 Although the adhesive layer may be present inside the polarizing layer and the touch sensor layer, it is considered that the impact resistance of the optical laminate is not affected because the thickness is usually as thin as 5 μm or less. Therefore, when calculating the impact resistance index A, the pressure-sensitive adhesive layer inside the polarizing layer and the pressure-sensitive adhesive layer inside the touch sensor layer are not taken into consideration.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
[式中、tは、タッチセンサ層からn番目の粘着剤層の厚さ(μm)を表し、G’は、タッチセンサ層からn番目の粘着剤層の25℃における貯蔵弾性率(MPa)を表し、aは、タッチセンサ層上面からn番目の粘着剤層下面までの距離(μm)をtで除した値を表す。] Wherein, t n is the thickness of the n-th of the pressure-sensitive adhesive layer from the touch sensor layer represents ([mu] m), G 'n is a storage modulus at 25 ° C. for n-th of the pressure-sensitive adhesive layer from the touch sensor layer ( represents MPa), a n denotes a value distance ([mu] m) divided by t n from the touch sensor layer top surface to the n-th of the pressure-sensitive adhesive layer lower surface. ]
 前面板、第3粘着剤層、保護フィルム、第2粘着剤層、偏光層、第1粘着剤層、及びタッチセンサ層を、視認側からこの順に備える光学積層体において、衝撃緩和性能の優劣は耐衝撃性指数Aの値と相関性を有する。すなわち、前面板と偏光層との間に、保護フィルムを有する層構成において、衝撃緩和性能の優劣は耐衝撃性指数Aの値と相関性を有する。本発明の光学積層体は200以上のAを有する。そのことで、屈曲に対する耐久性を持ちながらも、良好な光学積層体の衝撃緩和性能が達成される。 In an optical laminate having a front plate, a third pressure-sensitive adhesive layer, a protective film, a second pressure-sensitive adhesive layer, a polarizing layer, a first pressure-sensitive adhesive layer, and a touch sensor layer in this order from the visual side, the superiority or inferiority of impact mitigation performance is It has a correlation with the value of the impact resistance index A. That is, in a layer structure having a protective film between the front plate and the polarizing layer, the superiority or inferiority of the impact mitigation performance has a correlation with the value of the impact resistance index A. The optical laminate of the present invention has 200 or more A's. As a result, good impact mitigation performance of the optical laminate is achieved while having durability against bending.
 ある一形態において、光学積層体のAは、好ましくは266以上であり、より好ましくは500以上であり、より好ましくは1500以上であり、さらにより好ましくは2000以上であり、2500以上であってもよい。他の一形態において、光学積層体のAは、好ましくは250以上であり、より好ましくは266以上であり、より好ましくは500以上であり、より好ましくは1500以上であり、さらにより好ましくは2000以上であり、2500以上であってもよい。 In one embodiment, the A of the optical laminate is preferably 266 or greater, more preferably 500 or greater, more preferably 1500 or greater, even more preferably 2000 or greater, even 2500 or greater. Good. In another embodiment, the A of the optical laminate is preferably 250 or more, more preferably 266 or more, more preferably 500 or more, more preferably 1500 or more, and even more preferably 2000 or more. It may be 2500 or more.
 ある一形態において、光学積層体のAは、例えば6000以下であってもよく、好ましくは5000以下であり、より好ましくは4658以下である。他の一形態において、光学積層体のAは、例えば6000以下であってもよく、好ましくは5000以下であり、より好ましくは、4800以下であり、より好ましくは4658以下であり、4000以下であってもよい。 In one form, the A of the optical laminate may be, for example, 6000 or less, preferably 5000 or less, and more preferably 4658 or less. In another embodiment, the A of the optical laminate may be, for example, 6000 or less, preferably 5000 or less, more preferably 4800 or less, more preferably 4658 or less, and 4000 or less. You may.
 光学積層体のAは、好ましくは2013~4658である。光学積層体のAは、6000を超えて増大すると、屈曲時に粘着剤層と他部材との界面又は粘着剤層の内部で剥離・凝集破壊が生じることがある。 A of the optical laminate is preferably 2013 to 4658. If the amount of A of the optical laminate exceeds 6000, peeling / coagulation failure may occur at the interface between the pressure-sensitive adhesive layer and another member or inside the pressure-sensitive adhesive layer at the time of bending.
 好ましい一形態において、第1、第2及び第3粘着剤層の厚さは3~100μmの範囲から適宜選択される。粘着剤層が薄過ぎる場合は、光学積層体の耐衝撃性が低下する。粘着剤層が厚過ぎる場合は、光学積層体の屈曲性が低下する。第1、第2及び第3粘着剤層の厚さは、好ましくは5~70μmであり、より好ましくは10~50μmである。 In a preferred embodiment, the thickness of the first, second and third pressure-sensitive adhesive layers is appropriately selected from the range of 3 to 100 μm. If the pressure-sensitive adhesive layer is too thin, the impact resistance of the optical laminate is reduced. If the pressure-sensitive adhesive layer is too thick, the flexibility of the optical laminate is reduced. The thickness of the first, second and third pressure-sensitive adhesive layers is preferably 5 to 70 μm, more preferably 10 to 50 μm.
 好ましい一形態において、第1、第2及び第3粘着剤層の温度25℃における貯蔵弾性率は0.005~1.0MPaの範囲から適宜選択される。貯蔵弾性率が低すぎる場合は、光学積層体の耐衝撃性が低下する。第1、第2及び第3粘着剤層の該貯蔵弾性率が高すぎる場合は、光学積層体の屈曲性が低下する。第1、第2及び第3粘着剤層の該貯蔵弾性率は、好ましくは0.01~0.5MPaであり、より好ましくは0.01~0.2MPaである。また、他の一形態において、第1、第2及び第3粘着剤層の該貯蔵弾性率は、好ましくは0.01~0.1MPaであり、より好ましくは0.02~0.09MPaであり、0.02~0.06MPaであってもよい。 In a preferred embodiment, the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers at a temperature of 25 ° C. is appropriately selected from the range of 0.005 to 1.0 MPa. If the storage elastic modulus is too low, the impact resistance of the optical laminate is reduced. If the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers is too high, the flexibility of the optical laminate is reduced. The storage elastic modulus of the first, second and third pressure-sensitive adhesive layers is preferably 0.01 to 0.5 MPa, more preferably 0.01 to 0.2 MPa. Further, in another embodiment, the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers is preferably 0.01 to 0.1 MPa, more preferably 0.02 to 0.09 MPa. , 0.02 to 0.06 MPa may be used.
[保護フィルム]
 保護フィルム30は、第3粘着剤層20と第2粘着剤層40との間に位置する。保護フィルムは、光学積層体の耐衝撃性の向上に寄与することができる。保護フィルム30は、偏光層50を保護する保護層として機能することもできる。
[Protective film]
The protective film 30 is located between the third pressure-sensitive adhesive layer 20 and the second pressure-sensitive adhesive layer 40. The protective film can contribute to the improvement of the impact resistance of the optical laminate. The protective film 30 can also function as a protective layer that protects the polarizing layer 50.
 保護フィルム30の引張弾性率は、好ましくは3GPa以上であり、より好ましくは4GPa以上であり、さらに好ましくは5GPa以上である。保護フィルム30の引張弾性率は、好ましくは10GPa以下であり、より好ましくは9GPa以下である。引張弾性率が上記の下限値以上であると、外部から衝撃を受けた場合、光学積層体の耐衝撃性を高めやすい。また、引張弾性率が上記の上限値以下であると、保護フィルム30の耐屈曲性を向上させやすい。引張弾性率は、MD(Machine Direction、フィルムの成形方向)、またはTD(Transverse Direction、MDに垂直方向)の少なくとも一方で上記範囲を満たせばよく、両方で上記範囲を満たすことが好ましい。 The tensile elastic modulus of the protective film 30 is preferably 3 GPa or more, more preferably 4 GPa or more, and further preferably 5 GPa or more. The tensile elastic modulus of the protective film 30 is preferably 10 GPa or less, more preferably 9 GPa or less. When the tensile elastic modulus is at least the above lower limit value, the impact resistance of the optical laminate is likely to be improved when an impact is received from the outside. Further, when the tensile elastic modulus is not more than the above upper limit value, the bending resistance of the protective film 30 is likely to be improved. The tensile elastic modulus may satisfy at least one of MD (Machine Direction, film forming direction) or TD (Transverse Direction, direction perpendicular to MD), and it is preferable that both of them satisfy the above range.
 保護フィルム30の材料としては、例えば、透光性を有する(好ましくは光学的に透明な)熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂、セルローストリアセテート、セルロースジアセテートのようなセルロースエステル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂、ポリスチレン系樹脂、又はこれらの混合物、共重合物等を用いることができる。 As the material of the protective film 30, for example, a translucent (preferably optically transparent) thermoplastic resin, for example, a chain polyolefin resin (polypropylene resin or the like), a cyclic polyolefin resin (norbornen resin, etc.) Etc.), polyolefin resins such as cellulose triacetate, cellulose ester resins such as cellulose diacetate, polyester resins, polycarbonate resins, (meth) acrylic resins, polystyrene resins, or mixtures and copolymers thereof. Etc. can be used.
 また、保護フィルム30は、位相差フィルムや輝度向上フィルムのような光学機能を併せ持つ保護フィルムであってもよい。例えば、上記熱可塑性樹脂からなるフィルムを延伸(一軸延伸又は二軸延伸等)したり、該フィルム上に液晶層等を形成したりすることにより、任意の位相差値が付与された位相差フィルムとすることができる。 Further, the protective film 30 may be a protective film having an optical function such as a retardation film or a brightness improving film. For example, a retardation film to which an arbitrary retardation value is imparted by stretching a film made of the thermoplastic resin (uniaxial stretching, biaxial stretching, etc.) or forming a liquid crystal layer or the like on the film. Can be.
 鎖状ポリオレフィン系樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂のような鎖状オレフィンの単独重合体の他、2種以上の鎖状オレフィンからなる共重合体が挙げられる。 Examples of the chain polyolefin resin include homopolymers of chain olefins such as polyethylene resin and polypropylene resin, and copolymers composed of two or more kinds of chain olefins.
 環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称である。環状ポリオレフィン系樹脂の具体例としては、例えば、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレンのような鎖状オレフィンとの共重合体(代表的にはランダム共重合体)、及びこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びにそれらの水素化物等が挙げられる。中でも、環状オレフィンとして、例えばノルボルネンや多環ノルボルネン系モノマー等のノルボルネン系モノマーを用いたノルボルネン系樹脂が好ましく用いられる。 Cyclic polyolefin resin is a general term for resins that are polymerized using cyclic olefin as a polymerization unit. Specific examples of the cyclic polyolefin resin include, for example, a ring-opening (co) polymer of a cyclic olefin, an addition polymer of a cyclic olefin, and a copolymer of a cyclic olefin and a chain olefin such as ethylene or propylene (typical). Examples thereof include random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids and derivatives thereof, and hydrides thereof. Among them, as the cyclic olefin, a norbornene-based resin using a norbornene-based monomer such as norbornene or a polycyclic norbornene-based monomer is preferably used.
 セルロースエステル系樹脂は、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例としては、例えば、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネート等が挙げられる。
また、これらの共重合物、水酸基の一部が他の置換基で修飾されたものを用いることもできる。中でも、セルローストリアセテート(トリアセチルセルロース:TAC)が特に好ましい。
Cellulose ester-based resins are esters of cellulose and fatty acids. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate.
Further, these copolymers and those in which some of the hydroxyl groups are modified with other substituents can also be used. Of these, cellulose triacetate (triacetyl cellulose: TAC) is particularly preferable.
 ポリエステル系樹脂は、エステル結合を有する、上記セルロースエステル系樹脂以外の樹脂であり、多価カルボン酸又はその誘導体と多価アルコールとの重縮合体からなるものが一般的である。多価カルボン酸又はその誘導体としては、ジカルボン酸又はその誘導体を用いることができ、例えば、テレフタル酸、イソフタル酸、ジメチルテレフタレート、ナフタレンジカルボン酸ジメチル等が挙げられる。多価アルコールとしては、ジオールを用いることができ、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール等が挙げられる。 The polyester-based resin is a resin other than the above-mentioned cellulose ester-based resin having an ester bond, and is generally composed of a polyvalent carboxylic acid or a polycondensate of a derivative thereof and a polyhydric alcohol. As the polyvalent carboxylic acid or a derivative thereof, a dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylic acid. As the polyhydric alcohol, a diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, cyclohexanedimethanol and the like.
 ポリエステル系樹脂の具体例としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリシクロへキサンジメチルテレフタレート、ポリシクロヘキサンジメチルナフタレートが挙げられる。 Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylterephthalate, and polycyclohexanedimethylnaphthalate. Can be mentioned.
 ポリカーボネート系樹脂は、カルボナート基を介してモノマー単位が結合された重合体からなる。ポリカーボネート系樹脂としては、ポリマー骨格を修飾したような変性ポリカーボネートと呼ばれる樹脂、共重合ポリカーボネート等であってもよい。 Polycarbonate-based resin consists of a polymer in which monomer units are bonded via a carbonate group. The polycarbonate-based resin may be a resin called modified polycarbonate having a modified polymer skeleton, a copolymerized polycarbonate, or the like.
 (メタ)アクリル系樹脂は、(メタ)アクリロイル基を有する化合物を主な構成モノマーとする樹脂である。(メタ)アクリル系樹脂の具体例としては、例えば、ポリメタクリル酸メチルのようなポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂等)、メタクリル酸メチルと脂環族炭化水素基を有する化合物との共重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体等)を含む。好ましくは、ポリ(メタ)アクリル酸メチルのようなポリ(メタ)アクリル酸C1-6アルキルエステルを主成分とする重合体が用いられる。より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。 The (meth) acrylic resin is a resin whose main constituent monomer is a compound having a (meth) acryloyl group. Specific examples of the (meth) acrylic resin include poly (meth) acrylic acid esters such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymers, and methyl methacrylate- (meth) acrylic. Acid ester copolymer, methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), methyl methacrylate and alicyclic hydrocarbon group (For example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.) is included. Preferably, a polymer containing a poly (meth) acrylic acid C1-6 alkyl ester as a main component, such as methyl poly (meth) acrylate, is used. More preferably, a methyl methacrylate-based resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight) is used.
 保護フィルム30の厚さは、10μm~200μmが好ましく、より好ましくは10μm~100μm、さらに好ましくは15μm~95μmである。保護フィルム30は、面内位相差値Re(550)が例えば0nm~10nmであり、厚さ方向の位相差値Rth(550)が例えば-80nm~+80nmである。 The thickness of the protective film 30 is preferably 10 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 15 μm to 95 μm. In the protective film 30, the in-plane retardation value Re (550) is, for example, 0 nm to 10 nm, and the thickness direction retardation value Rth (550) is, for example, −80 nm to +80 nm.
[偏光層]
 偏光層50は、第2粘着剤層40と第1粘着剤層60との間に位置する。図2は、偏光層の構造の一例を示す断面図である。図2に示す偏光層50は、偏光子51、粘着剤層52、1/2波長板53、接着剤層54、及び1/4波長板55を視認側からこの順に備える。偏光層は、いわゆる円偏光板であってよい。円偏光板の厚みは、10μm~100μmであることができ、15μm~70μmであることができ、20μm~50μmであることができる。このような範囲であると、光学積層体の耐屈曲性と耐衝撃性とを両立しやすい。
[Polarizing layer]
The polarizing layer 50 is located between the second pressure-sensitive adhesive layer 40 and the first pressure-sensitive adhesive layer 60. FIG. 2 is a cross-sectional view showing an example of the structure of the polarizing layer. The polarizing layer 50 shown in FIG. 2 includes a polarizer 51, an adhesive layer 52, a 1/2 wave plate 53, an adhesive layer 54, and a 1/4 wave plate 55 in this order from the visual side. The polarizing layer may be a so-called circular polarizing plate. The thickness of the circularly polarizing plate can be 10 μm to 100 μm, 15 μm to 70 μm, and 20 μm to 50 μm. Within such a range, it is easy to achieve both bending resistance and impact resistance of the optical laminate.
 偏光層50は、偏光子51と第2接着剤層40との間に、追加の保護フィルム(非表示)を有していてもよい。追加の保護フィルムは保護フィルム30の材料として例示されたものと同様の材料から構成され、接着剤層(非表示)を介して偏光子51の表面に接着される。 The polarizing layer 50 may have an additional protective film (not displayed) between the polarizing element 51 and the second adhesive layer 40. The additional protective film is composed of a material similar to that exemplified as the material of the protective film 30, and is adhered to the surface of the polarizer 51 via an adhesive layer (hidden).
 偏光子51は、特定の方向に偏光面を持った直線偏光の光を通過させるものであり、この偏光子51を通過した光は、偏光子の透過軸方向に振動する直線偏光となる。偏光子51の厚さは、例えば1μm~80μm程度である。 The polarizer 51 passes linearly polarized light having a polarizing surface in a specific direction, and the light passing through the polarizer 51 becomes linearly polarized light that oscillates in the transmission axis direction of the polarizer. The thickness of the polarizer 51 is, for example, about 1 μm to 80 μm.
 偏光子51としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理及び延伸処理が施されたものの他に、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等、ポリエン系配向フィルム等を用いることができる。中でも、光学特性に優れたものとして、ポリビニルアルコール系フィルムをヨウ素で染色し、一軸延伸して得られたものを用いることが好ましい。 Examples of the polarizer 51 include a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene-vinyl acetate copolymerization system partially saponified film, and two such as iodine and a bicolor dye. In addition to those that have been dyed and stretched with a chromatic substance, polyene-based oriented films such as a dehydrated product of polyvinyl alcohol and a dehydrogenated product of polyvinyl chloride can be used. Above all, it is preferable to use a film obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching it as having excellent optical characteristics.
 ヨウ素による染色は、例えば、ポリビニルアルコール系フィルムをヨウ素水溶液に浸漬することにより行われる。一軸延伸の延伸倍率は、3~7倍であることが好ましい。延伸は、染色処理後に行ってもよく、染色しながら行ってもよい。また、延伸してから染色してもよい。 Dyeing with iodine is performed, for example, by immersing a polyvinyl alcohol-based film in an aqueous iodine solution. The draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching.
 ポリビニルアルコール系フィルムには、必要に応じて、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗することで、ポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させて染色ムラ等を防止することができる。 The polyvinyl alcohol-based film is subjected to swelling treatment, cross-linking treatment, cleaning treatment, drying treatment and the like, if necessary. For example, by immersing a polyvinyl alcohol-based film in water and washing it with water before dyeing, not only can the dirt on the surface of the polyvinyl alcohol-based film and the blocking inhibitor be washed, but also the polyvinyl alcohol-based film is swollen and dyed. It is possible to prevent unevenness and the like.
 偏光子51としては、例えば特開2016-170368号公報に記載されるように、液晶化合物が重合した硬化膜中に、二色性色素が配向したものを使用してもよい。二色性色素としては、波長380~800nmの範囲内に吸収を有するものを用いることができ、有機染料を用いることが好ましい。二色性色素として、例えば、アゾ化合物が挙げられる。液晶化合物は、配向したまま重合することができる液晶化合物であり、分子内に重合性基を有することができる。 As the polarizing element 51, for example, as described in Japanese Patent Application Laid-Open No. 2016-170368, a cured film in which a liquid crystal compound is polymerized may be used in which a dichroic dye is oriented. As the dichroic dye, a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye. Examples of the dichroic dye include an azo compound. The liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule.
 偏光子51の視感度補正偏光度は、95%以上であることが好ましく、97%以上であることがより好ましい。また、99%以上であってよく、99.9%以上であってもよい。偏光子51の視感度補正偏光度は、99.995%以下であってよく、99.99%以下であってもよい。視感度補正偏光度は、積分球付き吸光光度計(日本分光(株)製「V7100」(商品名))を用いて、得られた偏光度に対して「JIS Z 8701」の2度視野(C光源)により視感度補正を行うことで算出することができる。 The luminous efficiency correction degree of polarization of the polarizer 51 is preferably 95% or more, and more preferably 97% or more. Further, it may be 99% or more, and may be 99.9% or more. The luminous efficiency correction degree of polarization of the polarizer 51 may be 99.995% or less, and may be 99.99% or less. The luminous efficiency correction polarization degree is a two-degree field of view of "JIS Z 8701" with respect to the obtained polarization degree using an absorptiometer with an integrating sphere ("V7100" (trade name) manufactured by JASCO Corporation). It can be calculated by correcting the visual sensitivity with the C light source).
 偏光子51の視感度補正偏光度を99.9%以上とすることで、初期の(屈曲前の)色相をニュートラルから離れた位置に調整しやすくなる。このため、後述する屈曲前後の反射光の色相に関し、a*b*色度座標におけるa*座標軸及びb*座標軸を挟んで符号が変化しにくくなる。さらに、偏光子51の視感度補正偏光度を99.9%以上とすることで、偏光子51の耐久性を向上させることができる。一方、偏光子51の視感度補正偏光度が95%未満であると、反射防止膜としての機能が果たせないことがある。 By setting the luminous efficiency correction polarization degree of the polarizer 51 to 99.9% or more, it becomes easy to adjust the initial hue (before bending) to a position away from neutral. Therefore, regarding the hue of the reflected light before and after bending, which will be described later, the sign of the a * b * chromaticity coordinate is less likely to change with the a * coordinate axis and the b * coordinate axis in between. Further, by setting the luminous efficiency correction degree of polarization of the polarizer 51 to 99.9% or more, the durability of the polarizer 51 can be improved. On the other hand, if the luminous efficiency correction polarization degree of the polarizer 51 is less than 95%, the function as an antireflection film may not be achieved.
 偏光子51の視感度補正単体透過率は、42%以上であることが好ましく、44%以上であることがより好ましく、60%以下であることが好ましく、50%以下であることが更に好ましい。視感度補正単体透過率は、積分球付き吸光光度計(日本分光(株)製「V7100」(商品名))を用い、得られた透過率に対してJIS Z 8701の2度視野(C光源)により視感度補正を行うことで算出することができる。 The luminous efficiency correction single transmittance of the polarizer 51 is preferably 42% or more, more preferably 44% or more, preferably 60% or less, and further preferably 50% or less. For the luminous efficiency correction single transmittance, a absorptiometer with an integrating sphere (“V7100” (trade name) manufactured by JASCO Corporation) was used, and the two-degree field (C light source) of JIS Z8701 was used with respect to the obtained transmittance. ) Can be calculated by correcting the visual sensitivity.
 偏光子51の視感度補正直交透過率を42%以上とすることで、偏光子51の直交色相を容易にニュートラル側から離れたところに調整ができるため、後述する屈曲前後で色変化を目立たなくすることが可能である。50%を超えると偏光度が低くなりすぎて、反射防止としての機能を達成できなくなることがある。 By setting the luminous efficiency correction orthogonal transmittance of the polarizer 51 to 42% or more, the orthogonal hue of the polarizer 51 can be easily adjusted to a position away from the neutral side, so that the color change becomes inconspicuous before and after bending, which will be described later. It is possible to do. If it exceeds 50%, the degree of polarization becomes too low, and the function as antireflection may not be achieved.
 粘着剤層52は、例えば、アクリル系粘着剤により形成される。 The pressure-sensitive adhesive layer 52 is formed of, for example, an acrylic pressure-sensitive adhesive.
 1/2波長板53は、入射光の電界振動方向(偏光面)にπ(=λ/2)の位相差を与えるものであり、直線偏光の向き(偏光方位)を変える機能を有している。また、円偏光の光を入射させると、円偏光の回転方向を反対回りにすることができる。 The 1/2 wave plate 53 gives a phase difference of π (= λ / 2) to the electric field vibration direction (polarization plane) of the incident light, and has a function of changing the direction of linearly polarized light (polarization direction). There is. Further, when circularly polarized light is incident, the direction of rotation of circularly polarized light can be reversed.
 1/2波長板53は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/2を満足する。この式は、可視光域の何れかの波長(例えば、550nm)において達成されていればよい。中でも、波長550nmにおける面内レターデーション値であるRe(550)が、210nm≦Re(550)≦300nmの満足することが好ましい。また、220nm≦Re(550)≦290nmを満足することがより好ましい。 In the 1/2 wave plate 53, Re (λ), which is an in-plane retardation value at a specific wavelength λ nm, satisfies Re (λ) = λ / 2. This equation may be achieved at any wavelength in the visible light region (eg, 550 nm). Above all, it is preferable that Re (550), which is an in-plane retardation value at a wavelength of 550 nm, satisfies 210 nm ≦ Re (550) ≦ 300 nm. Further, it is more preferable to satisfy 220 nm ≦ Re (550) ≦ 290 nm.
 波長550nmで測定した1/2波長板53の厚さ方向のレターデーション値であるRth(550)は、-150~150nmであることが好ましく、-100~100nmであることがより好ましい。 Rth (550), which is a retardation value in the thickness direction of the 1/2 wavelength plate 53 measured at a wavelength of 550 nm, is preferably −150 to 150 nm, and more preferably -100 to 100 nm.
 1/2波長板53の厚さは、特に限定されないが、皺を防止するという効果を顕著にしやすいという観点から、0.5~10μmが好ましく、0.5~5μmがより好ましく、0.5~3μmが更に好ましい。なお、1/2波長板53の厚さについては、面内の任意の5点の厚さを測定し、それらを算術平均したものである。 The thickness of the 1/2 wave plate 53 is not particularly limited, but is preferably 0.5 to 10 μm, more preferably 0.5 to 5 μm, and more preferably 0.5, from the viewpoint that the effect of preventing wrinkles is likely to be noticeable. It is more preferably ~ 3 μm. The thickness of the 1/2 wave plate 53 is obtained by measuring the thickness of any five points in the plane and arithmetically averaging them.
 1/2波長板53は、後述する保護フィルム51の材料として例示した樹脂からなるフィルム、液晶化合物が硬化した層等を含んでいてよい。1/2波長板53を樹脂から形成する場合、中でもポリカーボネート系樹脂、環状オレフィン系樹脂、スチレン系樹脂、セルロース系樹脂が好ましい。本実施形態において、1/2波長板53は、液晶化合物が硬化した層を含むことが好ましい。液晶化合物の種類については、特に限定されないものの、その形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(円盤状液晶化合物、ディスコティック液晶化合物)とに分類できる。さらに、それぞれ低分子タイプと高分子タイプとがある。なお、高分子とは、一般に重合度が100以上のものを言う(高分子物理・相転移ダイナミクス、土井 正男著、2頁、岩波書店、1992)。 The 1/2 wave plate 53 may include a film made of a resin exemplified as a material of the protective film 51 described later, a layer in which a liquid crystal compound is cured, and the like. When the 1/2 wave plate 53 is formed of a resin, a polycarbonate resin, a cyclic olefin resin, a styrene resin, and a cellulosic resin are particularly preferable. In the present embodiment, the 1/2 wavelength plate 53 preferably includes a layer in which the liquid crystal compound is cured. Although the type of the liquid crystal compound is not particularly limited, it can be classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (disk-shaped liquid crystal compound, discotic liquid crystal compound) according to its shape. Further, there are a low molecular weight type and a high molecular weight type, respectively. The polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
 本実施形態では、何れの液晶化合物を用いることもできる。さらに、2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、又は棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。 In this embodiment, any liquid crystal compound can be used. Further, two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of disk-shaped liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a disk-shaped liquid crystal compound may be used.
 なお、棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1、又は、特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができる。円盤状液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]、又は、特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができる。 As the rod-shaped liquid crystal compound, for example, those described in claim 1 of JP-A-11-513019 or paragraphs [0026] to [00998] of JP-A-2005-289980 are preferably used. it can. As the disk-shaped liquid crystal compound, for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 are preferable. Can be used.
 1/2波長板53は、重合性基を有する液晶化合物(棒状液晶化合物又は円盤状液晶化合物)を用いて形成することがより好ましい。これにより、光学特性の温度変化や湿度変化を小さくすることができる。 The 1/2 wave plate 53 is more preferably formed by using a liquid crystal compound having a polymerizable group (rod-shaped liquid crystal compound or disk-shaped liquid crystal compound). Thereby, the temperature change and the humidity change of the optical characteristics can be reduced.
 液晶化合物は、2種類以上の混合物であってもよい。その場合、少なくとも1つが2以上の重合性基を有していることが好ましい。すなわち、1/2波長板53は、重合性基を有する棒状液晶化合物又は重合性基を有する円盤状液晶化合物が重合により固定されて形成された層であることが好ましく、このような層は液晶化合物が硬化した層に含まれる。
この場合、層となった後はもはや液晶性を示す必要はない。
The liquid crystal compound may be a mixture of two or more kinds. In that case, it is preferable that at least one has two or more polymerizable groups. That is, the 1/2 wave plate 53 is preferably a layer formed by fixing a rod-shaped liquid crystal compound having a polymerizable group or a disk-shaped liquid crystal compound having a polymerizable group by polymerization, and such a layer is a liquid crystal. The compound is contained in the cured layer.
In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
 棒状液晶化合物又は円盤状液晶化合物に含まれる重合性基の種類は、特に限定されるものではなく、例えば、重合性エチレン性不飽和基や環重合性基等の付加重合反応が可能な官能基が好ましい。より具体的には、例えば、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等が挙げられる。中でも(メタ)アクリロイル基が好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基及びアクリロイル基の両者を包含する概念である。 The type of the polymerizable group contained in the rod-shaped liquid crystal compound or the disk-shaped liquid crystal compound is not particularly limited, and is, for example, a functional group capable of an addition polymerization reaction such as a polymerizable ethylenically unsaturated group or a ring-polymerizable group. Is preferable. More specifically, for example, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like can be mentioned. Of these, the (meth) acryloyl group is preferable. The (meth) acryloyl group is a concept that includes both a meta-acryloyl group and an acryloyl group.
 1/2波長板53の形成方法は、特に限定されるものではなく、公知の方法が挙げられる。例えば、所定の基板(仮基板を含む)に、重合性基を有する液晶化合物を含む光学異方性層形成用組成物(以下、単に「組成物」という。)を塗布して塗膜を形成し、得られた塗膜に対して硬化処理(紫外線の照射(光照射処理)又は加熱処理)を施すことにより、第1の1/2波長板53を製造できる。 The method for forming the 1/2 wavelength plate 53 is not particularly limited, and known methods can be mentioned. For example, a composition for forming an optically anisotropic layer (hereinafter, simply referred to as “composition”) containing a liquid crystal compound having a polymerizable group is applied to a predetermined substrate (including a temporary substrate) to form a coating film. Then, the first 1/2 wave plate 53 can be manufactured by subjecting the obtained coating film to a curing treatment (ultraviolet irradiation (light irradiation treatment) or heat treatment).
 組成物の塗布としては、公知の方法、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、及びダイコーティング法により実施できる。 The composition can be applied by a known method, for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
 組成物には、上述した液晶化合物以外の成分が含まれていてもよい。例えば、組成物には、重合開始剤が含まれていてもよい。使用される重合開始剤は、重合反応の形式に応じて、例えば、熱重合開始剤や光重合開始剤が選択される。例えば、光重合開始剤としては、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ等が挙げられる。重合開始剤の使用量は、組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.5~5質量%であることがより好ましい。 The composition may contain components other than the liquid crystal compounds described above. For example, the composition may contain a polymerization initiator. As the polymerization initiator used, for example, a thermal polymerization initiator or a photopolymerization initiator is selected according to the type of the polymerization reaction. For example, examples of the photopolymerization initiator include α-carbonyl compounds, acyloin ethers, α-hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimers and p-aminophenyl ketones. The amount of the polymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the total solid content of the composition.
 また、組成物には、塗工膜の均一性及び膜の強度の点から、重合性モノマーが含まれていてもよい。重合性モノマーとしては、ラジカル重合性又はカチオン重合性の化合物が挙げられる。中でも、多官能性ラジカル重合性モノマーが好ましい。 Further, the composition may contain a polymerizable monomer from the viewpoint of the uniformity of the coating film and the strength of the film. Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Of these, a polyfunctional radically polymerizable monomer is preferable.
 なお、重合性モノマーとしては、上述した重合性基含有の液晶化合物と共重合性のものが好ましい。具体的な重合性モノマーとしては、例えば、特開2002-296423号公報中の段落[0018]~[0020]に記載のものが挙げられる。重合性モノマーの使用量は、液晶化合物の全質量に対して、1~50質量%であることが好ましく、2~30質量%であることがより好ましい。 The polymerizable monomer is preferably copolymerized with the above-mentioned liquid crystal compound containing a polymerizable group. Specific examples of the polymerizable monomer include those described in paragraphs [0018] to [0020] in JP-A-2002-296423. The amount of the polymerizable monomer used is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
 また、組成物には、塗工膜の均一性及び膜の強度の点から、界面活性剤が含まれていてもよい。界面活性剤としては、従来公知の化合物が挙げられる。中でも特に、フッ素系化合物が好ましい。具体的な界面活性剤としては、例えば、特開2001-330725号公報中の段落[0028]~[0056]に記載の化合物、特願2003-295212号明細書中の段落[0069]~[0126]に記載の化合物が挙げられる。 Further, the composition may contain a surfactant from the viewpoint of the uniformity of the coating film and the strength of the film. Examples of the surfactant include conventionally known compounds. Of these, fluorine-based compounds are particularly preferable. Specific examples of the surfactant include the compounds described in paragraphs [0028] to [0056] in JP 2001-330725, and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212. ], Examples thereof include the compounds described in.
 また、組成物には、溶媒が含まれていてもよく、有機溶媒が好ましく用いられる。有機溶媒としては、例えば、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が挙げられる。
中でも、アルキルハライド、ケトンが好ましい。また、2種類以上の有機溶媒を併用してもよい。
Further, the composition may contain a solvent, and an organic solvent is preferably used. Examples of the organic solvent include amide (eg, N, N-dimethylformamide), sulfoxide (eg, dimethyl sulfoxide), heterocyclic compound (eg, pyridine), hydrocarbon (eg, benzene, hexane), alkyl halide (eg, eg). , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane).
Of these, alkyl halides and ketones are preferable. Further, two or more kinds of organic solvents may be used in combination.
 また、組成物には、偏光子界面側垂直配向剤、空気界面側垂直配向剤等の垂直配向促進剤、並びに、偏光子界面側水平配向剤、空気界面側水平配向剤等の水平配向促進剤といった各種配向剤が含まれていてもよい。さらに、組成物には、上記成分以外にも、密着改良剤、可塑剤、ポリマー等が含まれていてもよい。 In addition, the composition includes a vertical alignment accelerator such as a polarizer interface side vertical alignment agent and an air interface side vertical alignment agent, and a horizontal alignment accelerator such as a polarizer interface side horizontal alignment agent and an air interface side horizontal alignment agent. Various orienting agents such as may be contained. Further, the composition may contain an adhesion improver, a plasticizer, a polymer and the like in addition to the above components.
 1/2波長板53には、液晶化合物の配向方向を規定する機能を有する配向膜が含まれていてもよい。配向膜は、一般的にはポリマーを主成分とする。配向膜用ポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。その中もでも、ポリマー材料として、ポリビニルアルコール又はポリイミド、その誘導体を用いることが好ましく、特に、変性又は未変性のポリビニルアルコールを用いることが好ましい。 The 1/2 wavelength plate 53 may include an alignment film having a function of defining the orientation direction of the liquid crystal compound. The alignment film generally contains a polymer as a main component. The polymer material for an alignment film has been described in a large number of documents, and a large number of commercially available products are available. Among them, it is preferable to use polyvinyl alcohol or polyimide or a derivative thereof as the polymer material, and it is particularly preferable to use modified or unmodified polyvinyl alcohol.
 本実施形態において使用可能な配向膜については、国際公開第2001/88574号の43頁24行目~49頁8行目、特許第3907735号公報の段落[0071]~[0095]に記載の変性ポリビニルアルコールを参照することができる。 Regarding the alignment film that can be used in this embodiment, the modification described in International Publication No. 2001/88574, p. 43, p. 24 to p. 49, p. 8 and paragraphs [0071] to [0995] of Japanese Patent No. 3907735. Polyvinyl alcohol can be referred to.
 なお、配向膜には、通常公知の配向処理が施される。例えば、ラビング処理、偏光を当てる光配向処理等が挙げられるが、配向膜の表面粗さの観点から、光配向処理が好ましい。 The alignment film is usually subjected to a known alignment treatment. For example, a rubbing treatment, a photo-alignment treatment for applying polarized light, and the like can be mentioned, but the photo-alignment treatment is preferable from the viewpoint of the surface roughness of the alignment film.
 配向膜の厚さは、特に限定されてないものの、20μm以下の場合が多く、中でも、0.01~10μmであることが好ましく、0.01~5μmであることがより好ましく、0.01~1μmであることがさらに好ましい。 Although the thickness of the alignment film is not particularly limited, it is often 20 μm or less, and more preferably 0.01 to 10 μm, more preferably 0.01 to 5 μm, and 0.01 to 0.01 to 5 μm. It is more preferably 1 μm.
 1/4波長板55は、入射光の電界振動方向(偏光面)にπ/2(=λ/4)の位相差を与えるものであり、ある特定の波長の直線偏光を円偏光に(又は円偏光を直線偏光に)変換する機能を有している。 The 1/4 wave plate 55 gives a phase difference of π / 2 (= λ / 4) to the electric field vibration direction (polarization plane) of the incident light, and linearly polarized light having a specific wavelength is converted to circularly polarized light (or circularly polarized light). It has a function to convert circularly polarized light to linearly polarized light.
 1/4波長板55は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/4を満足する。この式は、可視光域の何れかの波長(例えば、550nm)において達成されていればよい。中でも、波長550nmにおける面内レターデーション値であるRe(550)が、100nm≦Re(550)≦160nmの満足することが好ましい。また、110nm≦Re(550)≦150nmを満足することがより好ましい。 In the 1/4 wave plate 55, Re (λ), which is an in-plane retardation value at a specific wavelength λ nm, satisfies Re (λ) = λ / 4. This equation may be achieved at any wavelength in the visible light region (eg, 550 nm). Above all, it is preferable that Re (550), which is an in-plane retardation value at a wavelength of 550 nm, satisfies 100 nm ≦ Re (550) ≦ 160 nm. Further, it is more preferable to satisfy 110 nm ≦ Re (550) ≦ 150 nm.
 波長550nmで測定した1/4波長板55の厚さ方向のレターデーション値であるRth(550)は、-120~120nmであることが好ましく、-80~80nmであることがより好ましい。 Rth (550), which is a retardation value in the thickness direction of the 1/4 wave plate 55 measured at a wavelength of 550 nm, is preferably −120 to 120 nm, and more preferably −80 to 80 nm.
 1/4波長板55の厚さは、特に限定されないが、屈曲時にフィルムの表裏での寸法変化の違いによる皺を防止できる点から、0.5~10μmが好ましく、0.5~5μmがより好ましく、0.5~3μmが更に好ましい。なお、1/4波長板55の厚さについては、面内の任意の5点の厚さを測定し、それらを算術平均したものである。 The thickness of the 1/4 wave plate 55 is not particularly limited, but is preferably 0.5 to 10 μm, more preferably 0.5 to 5 μm, from the viewpoint of preventing wrinkles due to differences in dimensional changes on the front and back surfaces of the film during bending. It is preferable, and 0.5 to 3 μm is more preferable. The thickness of the 1/4 wave plate 55 is obtained by measuring the thickness of any five points in the plane and arithmetically averaging them.
 1/4波長板55は、液晶化合物が硬化した層を含むことが好ましい。液晶化合物の種類については、特に限定されないものの、上記1/2波長板53の材料として挙げたものと同じ材料を用いることができる。中でも、重合性基を有する棒状液晶化合物又は重合性基を有する円盤状液晶化合物が重合により固定されて形成された層であることが好ましい。この場合、層となった後はもはや液晶性を示す必要はない。 The 1/4 wave plate 55 preferably contains a layer in which the liquid crystal compound is cured. Although the type of the liquid crystal compound is not particularly limited, the same material as that mentioned as the material of the 1/2 wavelength plate 53 can be used. Above all, it is preferable that the layer is formed by fixing a rod-shaped liquid crystal compound having a polymerizable group or a disk-shaped liquid crystal compound having a polymerizable group by polymerization. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
 偏光子51に含まれる層のうち、偏光子51以外で、液晶化合物が硬化した層は、1層又は2層であることが好ましい。液晶化合物が硬化した層が3層以上含まれる場合、皺が生じる可能性がある層の数が多くなるので、屈曲時に皺が生じやすいと考えられる。 Among the layers contained in the polarizer 51, the layer other than the polarizer 51 on which the liquid crystal compound is cured is preferably one layer or two layers. When three or more layers in which the liquid crystal compound is cured are included, the number of layers in which wrinkles may occur increases, and it is considered that wrinkles are likely to occur at the time of bending.
 接着剤層54は、接着剤として、例えば、紫外線、可視光、電子線、X線のような活性エネルギー線の照射により硬化する硬化性化合物を含む活性エネルギー線硬化性接着剤(好ましくは紫外線硬化性接着剤)、ポリビニルアルコール系樹脂のような接着剤成分を水に溶解又は分散させた水系接着剤を用いることができる。偏光子51では、接着剤層54を介して1/2波長板53と1/4波長板55とを積層することにより、屈曲時に皺が生じるのを防止することができる。 The adhesive layer 54 is an active energy ray-curable adhesive (preferably ultraviolet curable) containing, as an adhesive, a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. A water-based adhesive in which an adhesive component such as a sex adhesive) or a polyvinyl alcohol-based resin is dissolved or dispersed in water can be used. In the polarizer 51, by laminating the 1/2 wavelength plate 53 and the 1/4 wavelength plate 55 via the adhesive layer 54, it is possible to prevent wrinkles from being generated at the time of bending.
 活性エネルギー線硬化性接着剤としては、良好な接着性を示すことから、カチオン重合性の硬化性化合物及び/又はラジカル重合性の硬化性化合物を含む活性エネルギー線硬化性接着剤組成物を好ましく用いることができる。活性エネルギー線硬化性接着剤は、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤及び/又はラジカル重合開始剤をさらに含んでいてよい。 As the active energy ray-curable adhesive, an active energy ray-curable adhesive composition containing a cationically polymerizable curable compound and / or a radically polymerizable curable compound is preferably used because it exhibits good adhesiveness. be able to. The active energy ray-curable adhesive may further contain a cationic polymerization initiator and / or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 カチオン重合性の硬化性化合物としては、例えば、エポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、又はこれらの組み合わせが挙げられる。ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせが挙げられる。カチオン重合性の硬化性化合物とラジカル重合性の硬化性化合物とを併用してもよい。 Examples of the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds), or a combination thereof. Examples of the radically polymerizable curable compound include (meth) acrylic compounds (compounds having one or more (meth) acryloyloxy groups in the molecule), radically polymerizable double bonds, and others. Vinyl-based compounds, or combinations thereof. A cationically polymerizable curable compound and a radically polymerizable curable compound may be used in combination.
 活性エネルギー線硬化性接着剤は、必要に応じて、カチオン重合促進剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶剤等の添加剤を含んでいてよい。 Active energy ray-curable adhesives include cationic polymerization accelerators, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow conditioners, plasticizers, and defoamers, as required. It may contain additives such as foaming agents, antistatic agents, leveling agents, and solvents.
 活性エネルギー線硬化性接着剤を用いて1/2波長板53と1/4波長板55とを貼合する場合、接着剤層54となる活性エネルギー線硬化性接着剤を介して1/2波長板53と1/4波長板とを積層した後、紫外線、可視光、電子線、X線のような活性エネルギー線を照射して接着剤層を硬化させる。中でも紫外線が好適であり、この場合の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を用いることができる。水系接着剤を用いる場合は、水系接着剤を介して1/2波長板53と1/4波長板55とを積層した後、加熱乾燥させればよい。 When the 1/2 wave plate 53 and the 1/4 wave plate 55 are bonded together using an active energy ray-curable adhesive, the 1/2 wave plate is passed through the active energy ray-curable adhesive that becomes the adhesive layer 54. After laminating the plate 53 and the 1/4 wave plate, the adhesive layer is cured by irradiating with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. Among them, ultraviolet rays are preferable, and as the light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, or the like can be used. When a water-based adhesive is used, the 1/2 wavelength plate 53 and the 1/4 wavelength plate 55 may be laminated via the water-based adhesive and then heat-dried.
 接着剤層54の厚さは、0.5~5μmが好ましく、0.5~3μmがより好ましい。 The thickness of the adhesive layer 54 is preferably 0.5 to 5 μm, more preferably 0.5 to 3 μm.
 接着剤層54の温度30℃での貯蔵弾性率は、600MPa~4000MPaであることが好ましく、700MPa~3500MPaであることがより好ましく、1000MPa~3000MPaであることがさらに好ましく、1500MPa~3000MPaであることが最も好ましい。このような貯蔵弾性率を示す硬い接着剤層54で1/2波長板53と1/4波長板55とを貼合することにより、屈曲時に位相差層に皺が生じるのを一層防止しやすくできる。 The storage elastic modulus of the adhesive layer 54 at a temperature of 30 ° C. is preferably 600 MPa to 4000 MPa, more preferably 700 MPa to 3500 MPa, further preferably 1000 MPa to 3000 MPa, and 1500 MPa to 3000 MPa. Is the most preferable. By adhering the 1/2 wave plate 53 and the 1/4 wave plate 55 with the hard adhesive layer 54 exhibiting such a storage elastic modulus, it is easier to prevent wrinkles from being generated in the retardation layer at the time of bending. it can.
 接着剤層54の温度30℃での貯蔵弾性率は、偏光子51における接着剤層54の温度30℃での貯蔵弾性率が下記の方法で直接測定できる場合は、その測定値とする。一方、直接測定できない場合は、接着剤層54の形成と同様の条件(接着剤の種類、硬化条件)で剥離紙上に接着層試験片を形成し、かかる接着層試験片を剥離紙から剥離したものについて下記の方法で測定した貯蔵弾性率と同じ値とみなすことができるものとする。 The storage elastic modulus of the adhesive layer 54 at a temperature of 30 ° C. shall be the measured value when the storage elastic modulus of the adhesive layer 54 at a temperature of 30 ° C. in the polarizer 51 can be directly measured by the following method. On the other hand, when direct measurement is not possible, an adhesive layer test piece is formed on the release paper under the same conditions as the formation of the adhesive layer 54 (adhesive type, curing conditions), and the adhesive layer test piece is peeled off from the release paper. It shall be possible to regard the thing as the same value as the storage elasticity measured by the following method.
 接着剤層54又は接着層試験片の貯蔵弾性率は、市販の動的粘弾性装置により測定することができ、例えば、アイティー計測制御(株)製「DVA-220」(商品名)により測定することができる。 The storage elastic modulus of the adhesive layer 54 or the adhesive layer test piece can be measured by a commercially available dynamic viscoelastic device, for example, measured by "DVA-220" (trade name) manufactured by IT Measurement Control Co., Ltd. can do.
[タッチセンサ層]
 タッチセンサ層70は、視認側からみて最下層に位置する。図3は、タッチセンサ層の構造の一例を示す断面図である。図3に示すタッチセンサ層70は、透明導電層71、分離層72、接着剤層73、及び基材層74を視認側からこの順に備える。
[Touch sensor layer]
The touch sensor layer 70 is located at the lowest layer when viewed from the visual recognition side. FIG. 3 is a cross-sectional view showing an example of the structure of the touch sensor layer. The touch sensor layer 70 shown in FIG. 3 includes a transparent conductive layer 71, a separation layer 72, an adhesive layer 73, and a base material layer 74 in this order from the visual recognition side.
 タッチセンサ層70としては、前面板10でタッチされた位置を検出可能なセンサであり、透明導電層71を有する構成であれば、検出方式は限定されることはなく、抵抗膜方式、静電容量方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサ層が挙げられる。中でも、低コスト、早い反応速度、薄膜化の面で、静電容量方式のタッチセンサ層が好ましく用いられる。タッチセンサ層70は、耐衝撃性を向上させることができる観点から、基材層74と、基材層74の接着剤層73側の表面上に設けられた透明導電層71とを備える構成であることが好ましい。基材層74の表面上に透明導電層71が設けられている構成においては、基材層74と透明導電層71とが互いに接している構成であってもよく(例えば、後述する第1の方法により製造されるタッチセンサ層)、基材層74と透明導電層71とが互いに接していない構成であってもよい(例えば、後述する第2の方法により製造されるタッチセンサ層)。タッチセンサ層70は、基材層74、透明導電層71とは別に、接着層、分離層、保護層等を備えていてもよい。
接着層としては、接着剤層、粘着剤層が挙げられる。タッチセンサ層70の厚さは、1μm~100μmであることができ、5μm~50μmであることができ、10μm~30μmであることができる。このような範囲であると、光学積層体の耐屈曲性と耐衝撃性とを両立しやすい。
The touch sensor layer 70 is a sensor capable of detecting the position touched by the front plate 10, and as long as it has a transparent conductive layer 71, the detection method is not limited, and the resistance film method and the capacitance are used. Examples thereof include touch sensor layers such as a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method. Among them, the capacitance type touch sensor layer is preferably used in terms of low cost, fast reaction speed, and thin film formation. The touch sensor layer 70 includes a base material layer 74 and a transparent conductive layer 71 provided on the surface of the base material layer 74 on the adhesive layer 73 side from the viewpoint of improving impact resistance. It is preferable to have. In the configuration in which the transparent conductive layer 71 is provided on the surface of the base material layer 74, the base material layer 74 and the transparent conductive layer 71 may be in contact with each other (for example, the first described later). The touch sensor layer manufactured by the method), the base material layer 74 and the transparent conductive layer 71 may not be in contact with each other (for example, the touch sensor layer manufactured by the second method described later). The touch sensor layer 70 may include an adhesive layer, a separation layer, a protective layer, and the like in addition to the base material layer 74 and the transparent conductive layer 71.
Examples of the adhesive layer include an adhesive layer and an adhesive layer. The thickness of the touch sensor layer 70 can be 1 μm to 100 μm, 5 μm to 50 μm, and 10 μm to 30 μm. Within such a range, it is easy to achieve both bending resistance and impact resistance of the optical laminate.
 静電容量方式のタッチセンサ層の一例は、基材層と、基材層の表面に設けられた位置検出用の透明導電層と、タッチ位置検知回路とにより構成されている。静電容量方式のタッチセンサ層を有する光学積層体を設けた表示装置においては、前面板10の表面がタッチされると、タッチされた点で人体の静電容量を介して透明導電層が接地される。タッチ位置検知回路が、透明導電層の接地を検知し、タッチされた位置が検出される。互いに離間した複数の透明導電層を有することにより、より詳細な位置の検出が可能となる。 An example of the capacitance type touch sensor layer is composed of a base material layer, a transparent conductive layer for position detection provided on the surface of the base material layer, and a touch position detection circuit. In a display device provided with an optical laminate having a capacitance type touch sensor layer, when the surface of the front plate 10 is touched, the transparent conductive layer is grounded via the capacitance of the human body at the touched point. Will be done. The touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected. By having a plurality of transparent conductive layers separated from each other, more detailed position detection becomes possible.
 透明導電層は、ITO等の金属酸化物からなる透明導電層であってもよく、アルミニウムや銅、銀、金、又はこれらの合金等の金属からなる金属層であってもよい。 The transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.
 分離層は、ガラス等の基板上に形成されて、分離層上に形成された透明導電層を分離層とともに、基板から分離するための層であることができる。分離層は、無機物層又は有機物層であることが好ましい。無機物層を形成する材料としては、例えばシリコン酸化物が挙げられる。有機物層を形成する材料としては、例えば(メタ)アクリル系樹脂組成物、エポキシ系樹脂組成物、ポリイミド系樹脂組成物等を用いることができる。 The separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer. The separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide. As the material for forming the organic material layer, for example, a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used.
 タッチセンサ層70は、透明導電層71に接して導電層を保護する保護層を備えていてもよい。保護層は有機絶縁膜及び無機絶縁膜のうちの少なくとも一つを含み、これらの膜は、スピンコート法、スパッタリング法、蒸着法等により形成することができる。 The touch sensor layer 70 may include a protective layer that is in contact with the transparent conductive layer 71 and protects the conductive layer. The protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method or the like.
 タッチセンサ層70は例えば、以下のようにして製造することができる。第1の方法では、まずガラス基板へ接着層を介して基材層74を積層する。基材層74上に、フォトリソグラフィによりパターン化された透明導電層71を形成する。熱を加えることにより、ガラス基板と基材層74とを分離して、透明導電層71と基材層74とからなるタッチセンサ層70が得られる。 The touch sensor layer 70 can be manufactured, for example, as follows. In the first method, the base material layer 74 is first laminated on the glass substrate via the adhesive layer. A transparent conductive layer 71 patterned by photolithography is formed on the base material layer 74. By applying heat, the glass substrate and the base material layer 74 are separated to obtain a touch sensor layer 70 composed of the transparent conductive layer 71 and the base material layer 74.
 第2の方法では、まずガラス基板上に分離層を形成し、必要に応じて、分離層上に保護層を形成する。分離層(又は保護層)上に、フォトリソグラフィによりパターン化された透明導電層71を形成する。透明導電層71上に、剥離可能な保護フィルムを積層し、透明導電層71から分離層までを転写して、ガラス基板を分離する。接着層を介して基材層74と分離層とを貼合し、剥離可能な保護フィルムを剥離することで、透明導電層71と分離層と接着層と基材層74とをこの順に有するタッチセンサ層70が得られる。なお、透明導電層71と分離層とからなる積層体を、基材層74に貼合することなく、タッチセンサ層70として用いてもよい。 In the second method, a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer. A transparent conductive layer 71 patterned by photolithography is formed on the separation layer (or protective layer). A peelable protective film is laminated on the transparent conductive layer 71, and the transparent conductive layer 71 to the separation layer are transferred to separate the glass substrate. A touch having the transparent conductive layer 71, the separation layer, the adhesive layer, and the base material layer 74 in this order by adhering the base material layer 74 and the separation layer via the adhesive layer and peeling off the peelable protective film. The sensor layer 70 is obtained. The laminated body composed of the transparent conductive layer 71 and the separation layer may be used as the touch sensor layer 70 without being bonded to the base material layer 74.
 タッチセンサ層の基材層74としては、トリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン等の樹脂フィルムが挙げられる。所望のタフネスを有する基材層を構成しやすい観点から、ポリエチレンテレフタレートが好ましく用いられる。 Examples of the base material layer 74 of the touch sensor layer include resin films such as triacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, and polystyrene. Polyethylene terephthalate is preferably used from the viewpoint of easily forming a base material layer having a desired toughness.
 タッチセンサ層の基材層74は、優れた耐屈曲性を有する光学積層体を構成しやすい観点から、厚さが50μm以下であることが好ましく、30μm以下であることがさらに好ましい。タッチセンサ層の基材層74は、厚さが、例えば5μm以上である。 The base material layer 74 of the touch sensor layer preferably has a thickness of 50 μm or less, and more preferably 30 μm or less, from the viewpoint of easily forming an optical laminate having excellent bending resistance. The base material layer 74 of the touch sensor layer has a thickness of, for example, 5 μm or more.
[光学積層体の製造方法]
 本発明の光学積層体は、粘着剤層を使用して、前面板と保護フィルムと偏光層とタッチセンサ層とを結合することにより製造される。それぞれの層を結合する方法としては、一方の層の結合する表面に粘着剤層を形成した後に他方の層を積層すればよく、又は、両方の層の結合する表面にそれぞれ粘着剤層を形成した後、粘着剤層同士を合わせてもよい。
層の結合する表面に粘着剤層を形成する方法は、上述の通り粘着剤組成物を使用して形成してよく、又は独立して取扱うことができるシート状粘着剤を準備して、これを表面に貼り付けることで形成してもよい。
[Manufacturing method of optical laminate]
The optical laminate of the present invention is manufactured by bonding a front plate, a protective film, a polarizing layer, and a touch sensor layer using an adhesive layer. As a method of binding the respective layers, an adhesive layer may be formed on the bonding surface of one layer and then the other layer may be laminated, or an adhesive layer may be formed on the bonding surface of both layers. After that, the adhesive layers may be combined.
The method of forming the pressure-sensitive adhesive layer on the surface to which the layers are bonded may be formed by using the pressure-sensitive adhesive composition as described above, or a sheet-like pressure-sensitive adhesive that can be handled independently is prepared and used. It may be formed by sticking it on the surface.
 光学積層体は、例えば、表示パネルの表示面に配置されて、表示装置を構成することができる。光学積層体は、可撓性を有する表示パネルの表示面に適用する用途に特に好ましい。本発明の光学積層体を含む表示装置は、優れた耐衝撃性を有する。 The optical laminate can be arranged on the display surface of the display panel, for example, to form a display device. Optical laminates are particularly preferred for applications where they are applied to the display surface of flexible display panels. The display device including the optical laminate of the present invention has excellent impact resistance.
[表示装置]
 図4は、本発明の表示装置の構造の一例を示す断面図である。表示装置200は、その前面(視認側)に配置された光学積層体100と、表示パネル80とを有する。光学積層体100及び表示パネル80は、一般に、粘着剤層又は接着剤層(非表示)を使用して結合されている。表示パネルは、視認側表面を内側にして折り畳み可能に構成されたものであってもよく、視認側表面を外側にして折り畳み可能に構成されたものであってもよく、巻回可能に構成されたものであってもよい。表示パネルの具体例としては、液晶表示素子、有機EL表示素子、無機EL表示素子、プラズマ表示素子、電界放射型表示素子が挙げられる。
[Display device]
FIG. 4 is a cross-sectional view showing an example of the structure of the display device of the present invention. The display device 200 has an optical laminate 100 arranged on the front surface (visual side) thereof and a display panel 80. The optical laminate 100 and the display panel 80 are generally bonded using an adhesive layer or an adhesive layer (non-display). The display panel may be configured to be foldable with the viewing side surface on the inside, or may be configured to be foldable with the viewing side surface on the outside, and may be configured to be foldable. It may be the one. Specific examples of the display panel include a liquid crystal display element, an organic EL display element, an inorganic EL display element, a plasma display element, and a field emission type display element.
 表示装置200は、スマートフォン、タブレット等のモバイル機器、テレビ、デジタルフォトフレーム、電子看板、測定器や計器類、事務用機器、医療機器、電算機器等として用いることができる。 The display device 200 can be used as a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signage, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。本実施例中、物質を配合する割合の単位「部」は、特に断らない限り、重量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In this example, the unit "part" of the ratio of blending substances is based on weight unless otherwise specified.
 <製造例1>
 前面板の作製
 特開2018-119141号公報の実施例4に記載されている方法と同様にして、厚さ50μmのポリアミドイミド(PAI)フィルムを作製した。
<Manufacturing example 1>
Preparation of Front Plate A polyamide-imide (PAI) film having a thickness of 50 μm was prepared in the same manner as in Example 4 of JP-A-2018-119141.
 多官能アクリレート(MIWONスペシャルティーケミカル社製「MIRAMER M340」(商品名))30部、プロピレングリコールモノメチルエーテルに分散したナノシリカゾル(平均粒子径12nm、固形分40%)50部、エチルアセテート17部、光重合開始剤(CIBA社製「イルガキュア 184」(商品名))2.7部、フッ素系添加剤(信越化学工業(株)製「KY-1203」(商品名))0.3部を、攪拌機を利用して混合し、ポリプロピレン(PP)材質のフィルターを用いて濾過することで、ハードコート層用組成物を製造した。 30 parts of polyfunctional acrylate (MIWON Specialty Chemicals "MIRAMER M340" (trade name)), 50 parts of nanosilica sol (average particle size 12 nm, solid content 40%) dispersed in propylene glycol monomethyl ether, 17 parts of ethyl acetate, 2.7 parts of photopolymerization initiator (CIBA "Irgacure 184" (trade name)), 0.3 parts of fluorine-based additive ("KY-1203" (trade name) manufactured by Shin-Etsu Chemical Industry Co., Ltd.), A composition for a hard coat layer was produced by mixing using a stirrer and filtering using a filter made of polypropylene (PP) material.
 PAIフィルムの片方の表面にハードコート層用組成物を塗布し、溶剤を乾燥させ、UV硬化することで、PAIフィルムの片面上にハードコート層を有する前面板を作製した。得られた前面板は、厚さ60μm及び引張弾性率6GPaを有していた。 The composition for a hard coat layer was applied to one surface of the PAI film, the solvent was dried, and UV curing was performed to prepare a front plate having a hard coat layer on one side of the PAI film. The obtained front plate had a thickness of 60 μm and a tensile elastic modulus of 6 GPa.
 <製造例2>
 円偏光板の作製
 平均重合度約2,400、ケン化度99.9モル%以上、厚さ20μmのポリビニルアルコール(PVA)フィルムを準備した。該PVAフィルムを30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.02/2/100である水溶液に30℃で浸漬してヨウ素染色を行った(ヨウ素染色工程)。ヨウ素染色工程を経たPVAフィルムを、ヨウ化カリウム/ホウ酸/水の質量比が12/5/100である水溶液に、56.5℃で浸漬してホウ酸処理を行った(ホウ酸処理工程)。ホウ酸処理工程を経たPVAフィルムを8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向している偏光子を得た。PVAフィルムの延伸は、ヨウ素染色工程とホウ酸処理工程において行った。PVAフィルムの総延伸倍率は5.3倍であった。得られた偏光子の厚さは7μmであった。
<Manufacturing example 2>
Preparation of Circular Polarizing Plate A polyvinyl alcohol (PVA) film having an average degree of polymerization of about 2,400, a saponification degree of 99.9 mol% or more, and a thickness of 20 μm was prepared. The PVA film was immersed in pure water at 30 ° C. and then immersed in an aqueous solution having an iodine / potassium iodide / water mass ratio of 0.02 / 2/100 at 30 ° C. for iodine staining (iodine staining). Process). The PVA film that had undergone the iodine dyeing step was immersed in an aqueous solution having a mass ratio of potassium iodide / boric acid / water of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment step). ). The PVA film that had undergone the boric acid treatment step was washed with pure water at 8 ° C. and then dried at 65 ° C. to obtain a polarizer in which iodine was adsorbed and oriented on polyvinyl alcohol. The PVA film was stretched in the iodine dyeing step and the boric acid treatment step. The total draw ratio of the PVA film was 5.3 times. The thickness of the obtained polarizer was 7 μm.
 得られた偏光子と、厚さ13μmのシクロオレフィンポリマー(COP)フィルム(日本ゼオン(株)製「ZF-14」(商品名))、波長550nmにおける面内位相差値が1nm)とを水系接着剤を介してニップロールで貼り合わせた。得られた貼合物の単位幅当たりの張力を430N/mに保ちながら、60℃で2分間乾燥して、片面にCOPフィルムを有する直線偏光板を得た。なお、水系接着剤としては、水100部に、カルボキシル基変性ポリビニルアルコール((株)クラレ製「クラレポバール KL318」(商品名))3部と、水溶性ポリアミドエポキシ樹脂(田岡化学工業(株)製「スミレーズレジン650」(商品名、固形分濃度30%の水溶液)1.5部とを添加したものを用いた。 The obtained polarizer and a cycloolefin polymer (COP) film having a thickness of 13 μm (“ZF-14” (trade name) manufactured by Nippon Zeon Corporation), an in-plane retardation value at a wavelength of 550 nm is 1 nm) are water-based. It was bonded with a nip roll via an adhesive. While maintaining the tension per unit width of the obtained laminate at 430 N / m, it was dried at 60 ° C. for 2 minutes to obtain a linear polarizing plate having a COP film on one side. As water-based adhesives, 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol ("Kuraray Poval KL318" (trade name) manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin (Taoka Chemical Industry Co., Ltd.) The product to which 1.5 parts of "Smiley's Resin 650" (trade name, aqueous solution having a solid content concentration of 30%) was added was used.
 1/2波長板として、液晶化合物が硬化した層及び配向膜からなるフィルムを用いた。
1/2波長板の厚さは、2μmであった。1/4波長板として、液晶化合物が硬化した層及び配向膜からなるフィルムを用いた。1/4波長板の厚さは、1μmであった。
As the 1/2 wave plate, a film composed of a layer in which a liquid crystal compound was cured and an alignment film was used.
The thickness of the 1/2 wave plate was 2 μm. As the 1/4 wave plate, a film composed of a layer in which a liquid crystal compound was cured and an alignment film was used. The thickness of the 1/4 wave plate was 1 μm.
 紫外線硬化型接着剤を用いて、1/2波長板と1/4波長板とを貼り合わせた。直線偏光板に、厚さが5μmの(メタ)アクリル系粘着剤を介して、1/2波長板と1/4波長板との積層体を貼合せて、円偏光板を得た。円偏光板の厚さは、30μmであった。 The 1/2 wavelength plate and the 1/4 wavelength plate were bonded together using an ultraviolet curable adhesive. A laminated body of a 1/2 wave plate and a 1/4 wave plate was bonded to a linear polarizing plate via a (meth) acrylic pressure-sensitive adhesive having a thickness of 5 μm to obtain a circularly polarizing plate. The thickness of the circularly polarizing plate was 30 μm.
 <製造例3>
 粘着剤の製造及び粘着剤層の作製
〔粘着剤層A1〕
 窒素ガスが還流され、温度調節が容易になるように冷却装置を設置した500mlの4-neck反応器に4-ヒドロキシブチルアクリレート(4-HBA)25部、2-エチルヘキシルアクリレート(2-EHA)50部、メチルアクリレート(MA)15部、イソボルニルアクリレート(IBOA)10部をそれぞれ投入した後、溶剤として酢酸エチル(EAc)を100部投入した。酸素を除去するために窒素ガスを1時間パージし、混合物の温度を60℃で維持した。前記の混合物が均一になった段階で、反応開始剤のアゾビスイソブチロニトリル(AIBN)を前記混合物100部に対して0.07部投入した。約5時間反応させ、重量平均分子量の約80万のアクリル系共重合体1を製造した。
<Manufacturing example 3>
Manufacture of Adhesive and Preparation of Adhesive Layer [Adhesive Layer A1]
25 parts of 4-hydroxybutyl acrylate (4-HBA), 2-ethylhexyl acrylate (2-EHA) 50 in a 500 ml 4-neck reactor equipped with a cooling device so that nitrogen gas is refluxed and temperature control is easy. After adding 15 parts of methyl acrylate (MA) and 10 parts of isobornyl acrylate (IBOA), 100 parts of ethyl acetate (EAc) was added as a solvent. Nitrogen gas was purged for 1 hour to remove oxygen and the temperature of the mixture was maintained at 60 ° C. When the mixture became uniform, 0.07 part of the reaction initiator azobisisobutyronitrile (AIBN) was added to 100 parts of the mixture. The reaction was carried out for about 5 hours to produce an acrylic copolymer 1 having a weight average molecular weight of about 800,000.
 アクリル系共重合体1の100質量部と、架橋剤(東ソー(株)製「CORONATE-L」(商品名))の0.5質量部とを混合し、粘着剤組成物を得た。該粘着剤組成物を、シリコン離型剤が塗布された離型フィルム上に塗布し、100℃で1分間乾燥して、粘着剤層A1を得た。粘着剤層A1は貯蔵弾性率(G’)0.3MPaを有していた。なお後述の実施例では、粘着剤組成物の塗布厚さを調整することにより、粘着剤層の厚さを調整した。 100 parts by mass of the acrylic copolymer 1 and 0.5 parts by mass of a cross-linking agent (“CORONATE-L” (trade name) manufactured by Tosoh Corporation) were mixed to obtain a pressure-sensitive adhesive composition. The pressure-sensitive adhesive composition was applied onto a release film coated with a silicon release agent and dried at 100 ° C. for 1 minute to obtain a pressure-sensitive adhesive layer A1. The pressure-sensitive adhesive layer A1 had a storage elastic modulus (G') of 0.3 MPa. In the examples described later, the thickness of the pressure-sensitive adhesive layer was adjusted by adjusting the coating thickness of the pressure-sensitive adhesive composition.
〔粘着剤層A2〕
 メチルアクリレート(MA)の代わりにブチルアクリレート(BA)を使用したこと以外はアクリル系共重合体1と同様にしてアクリル系共重合体2を製造した。さらに、粘着剤層A1と同様にして、粘着剤層A2を得た。粘着剤層A2は貯蔵弾性率(G’)0.08MPaを有していた。
[Adhesive layer A2]
Acrylic copolymer 2 was produced in the same manner as acrylic copolymer 1 except that butyl acrylate (BA) was used instead of methyl acrylate (MA). Further, the pressure-sensitive adhesive layer A2 was obtained in the same manner as the pressure-sensitive adhesive layer A1. The pressure-sensitive adhesive layer A2 had a storage elastic modulus (G') of 0.08 MPa.
〔粘着剤層A3〕
 メチルアクリレート(MA)の代わりにヘキシルアクリレート(HA)を使用したこと以外はアクリル系共重合体1と同様にしてアクリル系共重合体3を製造した。さらに、粘着剤層A1と同様にして、粘着剤層A3を得た。粘着剤層A3は貯蔵弾性率(G’)0.02MPaを有していた。
[Adhesive layer A3]
The acrylic copolymer 3 was produced in the same manner as the acrylic copolymer 1 except that hexyl acrylate (HA) was used instead of the methyl acrylate (MA). Further, the pressure-sensitive adhesive layer A3 was obtained in the same manner as the pressure-sensitive adhesive layer A1. The pressure-sensitive adhesive layer A3 had a storage elastic modulus (G') of 0.02 MPa.
 <製造例3>
 光学積層体の作製
〔保護フィルムの準備〕
 保護フィルムとして厚さ80μmのポリエチレンテレフタレート(PET)フィルム(SKC社製「SH82」(商品名))を準備した。このPETフィルムの引張弾性率は機械軸方向で5GPa、横幅方向で2GPaであった。
<Manufacturing example 3>
Fabrication of optical laminate [preparation of protective film]
As a protective film, a polyethylene terephthalate (PET) film having a thickness of 80 μm (“SH82” (trade name) manufactured by SKC) was prepared. The tensile elastic modulus of this PET film was 5 GPa in the mechanical axis direction and 2 GPa in the width direction.
〔タッチセンサパネルの準備〕
 ITOである透明導電層、アクリル系樹脂である分離層、接着剤層、及びCOPフィルムである基材層が、視認側からこの順に積層されたタッチセンサパネルを準備した。透明導電層、分離層及び接着剤層の厚さの合計は7μmであった。基材層の厚さは13μmであった。
[Preparation of touch sensor panel]
A touch sensor panel was prepared in which a transparent conductive layer which is ITO, a separation layer which is an acrylic resin, an adhesive layer, and a base material layer which is a COP film are laminated in this order from the visual side. The total thickness of the transparent conductive layer, the separation layer and the adhesive layer was 7 μm. The thickness of the base material layer was 13 μm.
〔光学積層体の作製〕
 前面板のPAIフィルム側表面、保護フィルムの表面及び裏面、円偏光板の表面及び裏面、及びタッチセンサパネルの透明導電層側表面にコロナ処理を施した。コロナ処理は、周波数:20kHz/電圧:8.6kV/パワー:2.5kW/速度:6m/分の条件で行った。図1を参照して、視認される側から、前面板10、第3粘着剤層20、保護フィルム30、第2粘着剤層40、偏光層50、第1粘着剤層60、及びタッチセンサ層70の順番となるように各層を積層し、ロール接合機を用いて貼合し、オートクレーブにて養生を行って、光学積層体を得た。
[Preparation of optical laminate]
Corona treatment was applied to the PAI film side surface of the front plate, the front and back surfaces of the protective film, the front and back surfaces of the circularly polarizing plate, and the transparent conductive layer side surface of the touch sensor panel. The corona treatment was performed under the conditions of frequency: 20 kHz / voltage: 8.6 kV / power: 2.5 kW / speed: 6 m / min. With reference to FIG. 1, from the side to be visually recognized, the front plate 10, the third adhesive layer 20, the protective film 30, the second adhesive layer 40, the polarizing layer 50, the first adhesive layer 60, and the touch sensor layer. Each layer was laminated in the order of 70, bonded using a roll joining machine, and cured by an autoclave to obtain an optical laminate.
 <層の厚さの測定方法>
 各層の厚さは、接触式膜厚測定装置((株)ニコン製「MS-5C」(商品名))を用いて測定した。ただし、偏光子及び配向膜については、レーザー顕微鏡(オリンパス(株)製「OLS3000」(商品名))を用いて測定した。
<Measuring method of layer thickness>
The thickness of each layer was measured using a contact-type film thickness measuring device (“MS-5C” (trade name) manufactured by Nikon Corporation). However, the polarizer and the alignment film were measured using a laser microscope (“OLS3000” (trade name) manufactured by Olympus Corporation).
 <貯蔵弾性率(G’)>
 粘着剤層を150μmになるように積み重ねて、サンプルを作製した。貯蔵弾性率(G’)は、レオメーター(Anton Parr社製「MCR-301」(商品名))を用いて測定した。測定条件は、温度25℃、応力1%及び周波数1Hzとした。
<Storage modulus (G')>
Samples were prepared by stacking the pressure-sensitive adhesive layers to a size of 150 μm. The storage elastic modulus (G') was measured using a rheometer (“MCR-301” (trade name) manufactured by Antonio Parr). The measurement conditions were a temperature of 25 ° C., a stress of 1%, and a frequency of 1 Hz.
 <引張弾性率>
 部材から長辺110mm×短辺10mmの長方形の小片をスーパーカッターを用いて切り出した。次いで、引張試験機(島津製作所製オートグラフ「AG-Xplus」(商品名))の上下つかみ具で、つかみ具の間隔が5cmとなるように上記測定用サンプルの長辺方向両端を挟み、温度23℃、相対湿度55%の環境下、引張速度4mm/分で測定用サンプルを測定用サンプルの長さ方向に引張り、得られる応力-ひずみ曲線における20~40MPa間の直線の傾きから、温度23℃、相対湿度55%での引張弾性率(MPa)を算出した。このとき、応力を算出するための厚さとしては、上記の通り測定した層の厚さ値を用いた。
<Tension modulus>
A rectangular small piece having a long side of 110 mm and a short side of 10 mm was cut out from the member using a super cutter. Next, use the upper and lower grips of a tensile tester (autograph "AG-Xplus" (trade name) manufactured by Shimadzu Corporation) to sandwich both ends of the measurement sample in the long side direction so that the distance between the grips is 5 cm, and set the temperature. In an environment of 23 ° C. and 55% relative humidity, the measurement sample is pulled in the length direction of the measurement sample at a tensile speed of 4 mm / min, and the temperature 23 is determined from the slope of a straight line between 20 and 40 MPa in the obtained stress-strain curve. The tensile elastic modulus (MPa) at ° C. and a relative humidity of 55% was calculated. At this time, as the thickness for calculating the stress, the thickness value of the layer measured as described above was used.
 <光学積層体の性能評価>
〔耐衝撃性試験〕
 光学積層体から、長辺150mm×短辺70mmの長方形の大きさの小片を、スーパーカッターを用いて切り出した。小片のタッチセンサ層側に粘着剤層を設けて、アクリル板に貼合した。そして、該小片を23℃、相対湿度55%の環境に置き、評価用ペンを小片の前面板の最表面から10cmの高さにペン先が位置しかつペン先が下向きとなるように保持し、その位置から評価用ペンを落下させた。
<Performance evaluation of optical laminate>
[Impact resistance test]
A rectangular piece having a long side of 150 mm and a short side of 70 mm was cut out from the optical laminate using a super cutter. An adhesive layer was provided on the touch sensor layer side of the small piece and bonded to an acrylic plate. Then, the small piece is placed in an environment of 23 ° C. and 55% relative humidity, and the evaluation pen is held so that the pen tip is located at a height of 10 cm from the outermost surface of the front plate of the small piece and the pen tip faces downward. , The evaluation pen was dropped from that position.
 小片の前面板には、タッチセンサ層の透明導電層のパターンにおけるブリッジの位置へ目印を付け、評価用ペンは、ペン先が目印に接触するように落下させた。評価用ペンとして、質量が5.6gであり、ペン先の直径が0.75mmのペンを用いた。評価用ペンを落下させた後の小片について、目視での観察及びタッチセンサ層機能の確認を行い、以下の基準に従って評価を行った。 The front plate of the small piece was marked at the position of the bridge in the pattern of the transparent conductive layer of the touch sensor layer, and the evaluation pen was dropped so that the pen tip touched the mark. As the evaluation pen, a pen having a mass of 5.6 g and a pen tip diameter of 0.75 mm was used. The small pieces after the evaluation pen was dropped were visually observed and the touch sensor layer function was confirmed, and the evaluation was performed according to the following criteria.
 ◎(優):クラックなし。タッチセンサ層機能維持。
 〇(良):クラックあり。タッチセンサ層機能維持。
 ×(不可):クラックあり。タッチセンサ層機能なし。
◎ (excellent): No cracks. Touch sensor layer function maintenance.
〇 (Good): There is a crack. Touch sensor layer function maintenance.
× (impossible): There is a crack. No touch sensor layer function.
〔耐衝撃性指数Aの算出〕
 耐衝撃性指数Aは、式(1)に従って算出した。
[Calculation of impact resistance index A]
The impact resistance index A was calculated according to the formula (1).
〔内側折り屈曲性試験〕
 屈曲性試験は温度25℃において行った。屈曲試験機(Covotech社製「CFT-720C」(商品名))に、各実施例及び比較例で得た光学積層体を平坦な状態(屈曲していない状態)で設置し、前面板側が内側となるように、対向する前面板間の距離が4.0mmとなるように(屈曲半径2mm)、光学積層体を180°屈曲させた。その後、元の平坦な状態に戻した。一連の操作を1回行ったときを屈曲回数1回と数え、この屈曲操作を繰返し行った。屈曲速度は60rpmとした。屈曲操作で屈曲した領域においてクラックや粘着剤層の浮きが発生したときの屈曲回数を限界屈曲回数として記録した。限界屈曲回数を、以下の基準に従って評価を行った。
[Inner fold flexibility test]
The flexibility test was performed at a temperature of 25 ° C. The optical laminates obtained in each Example and Comparative Example were installed in a bending tester (“CFT-720C” (trade name) manufactured by Covotech) in a flat state (non-bent state), and the front plate side was inside. The optical laminate was bent 180 ° so that the distance between the facing front plates was 4.0 mm (bending radius 2 mm). After that, it returned to the original flat state. When a series of operations was performed once, the number of times of bending was counted as one, and this bending operation was repeated. The bending speed was 60 rpm. The number of bends when cracks or floating of the adhesive layer occurred in the region bent by the bending operation was recorded as the limit number of bends. The limit bending number was evaluated according to the following criteria.
 ◎(優):限界屈曲回数が10万回以上、
 〇(良):限界屈曲回数が5万回以上10万回未満、
 △(不良):限界屈曲回数が1万回以上5万回未満、
 ×(不可):限界屈曲回数が1万回未満、
◎ (excellent): The limit number of bends is 100,000 or more,
〇 (Good): The limit number of bends is 50,000 or more and less than 100,000,
△ (defective): The limit number of bends is 10,000 or more and less than 50,000,
× (impossible): The limit number of bends is less than 10,000,
〔外側折り屈曲性試験〕
 屈曲試験機(Covotech社製「CFT-720C」(商品名))に、各実施例及び比較例で得た光学積層体を平坦な状態(屈曲していない状態)で設置し、前面板側が外側となるように屈曲させること以外は内側折り屈曲性試験と同様にして限界屈曲回数を記録し、評価を行った。
[Outer fold flexibility test]
The optical laminates obtained in each Example and Comparative Example are installed in a bending tester (“CFT-720C” (trade name) manufactured by Covotech) in a flat state (non-bent state), and the front plate side is on the outside. The limit number of bendings was recorded and evaluated in the same manner as in the inward bending flexibility test except that the bending was performed so as to be.
 <実施例1>
 粘着剤層A3(厚さ50μm、G’=0.02MPa)を第3粘着剤層20に、粘着剤層A3(厚さ50μm、G’=0.02MPa)を第2粘着剤層40に、粘着剤層A3(厚さ50μm、G’=0.02MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表1に示す。
<Example 1>
The pressure-sensitive adhesive layer A3 (thickness 50 μm, G'= 0.02 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A3 (thickness 50 μm, G'= 0.02 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A3 (thickness 50 μm, G'= 0.02 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
 <実施例2>
 粘着剤層A3(厚さ25μm、G’=0.02MPa)を第3粘着剤層20に、粘着剤層A3(厚さ25μm、G’=0.02MPa)を第2粘着剤層40に、粘着剤層A3(厚さ50μm、G’=0.02MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表1に示す。
<Example 2>
The pressure-sensitive adhesive layer A3 (thickness 25 μm, G'= 0.02 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A3 (thickness 25 μm, G'= 0.02 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A3 (thickness 50 μm, G'= 0.02 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
 <実施例3>
 粘着剤層A3(厚さ25μm、G’=0.02MPa)を第3粘着剤層20に、粘着剤層A3(厚さ25μm、G’=0.02MPa)を第2粘着剤層40に、粘着剤層A3(厚さ25μm、G’=0.02MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表1に示す。
<Example 3>
The pressure-sensitive adhesive layer A3 (thickness 25 μm, G'= 0.02 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A3 (thickness 25 μm, G'= 0.02 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A3 (thickness 25 μm, G'= 0.02 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
 <実施例4>
 粘着剤層A3(厚さ10μm、G’=0.02MPa)を第3粘着剤層20に、粘着剤層A2(厚さ25μm、G’=0.08MPa)を第2粘着剤層40に、粘着剤層A2(厚さ25μm、G’=0.08MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表1に示す。
<Example 4>
The pressure-sensitive adhesive layer A3 (thickness 10 μm, G'= 0.02 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A2 (thickness 25 μm, G'= 0.08 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A2 (thickness 25 μm, G'= 0.08 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
 <実施例5>
 粘着剤層A1(厚さ10μm、G’=0.3MPa)を第3粘着剤層20に、粘着剤層A2(厚さ25μm、G’=0.08MPa)を第2粘着剤層40に、粘着剤層A1(厚さ50μm、G’=0.3MPa)を第1粘着剤層60に使用して、光学積層体を得た。
得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表1に示す。
<Example 5>
The pressure-sensitive adhesive layer A1 (thickness 10 μm, G'= 0.3 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A2 (thickness 25 μm, G'= 0.08 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A1 (thickness 50 μm, G'= 0.3 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate.
The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
 <実施例6>
 粘着剤層A3(厚さ10μm、G’=0.02MPa)を第3粘着剤層20に、粘着剤層A1(厚さ25μm、G’=0.3MPa)を第2粘着剤層40に、粘着剤層A1(厚さ50μm、G’=0.3MPa)を第1粘着剤層60に使用して、光学積層体を得た。
得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表1に示す。
<Example 6>
The pressure-sensitive adhesive layer A3 (thickness 10 μm, G'= 0.02 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A1 (thickness 25 μm, G'= 0.3 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A1 (thickness 50 μm, G'= 0.3 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate.
The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 1.
 <比較例1>
 粘着剤層A1(厚さ10μm、G’=0.3MPa)を第3粘着剤層20に、粘着剤層A1(厚さ10μm、G’=0.3MPa)を第2粘着剤層40に、粘着剤層A1(厚さ50μm、G’=0.3MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表2に示す。
<Comparative example 1>
The pressure-sensitive adhesive layer A1 (thickness 10 μm, G'= 0.3 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A1 (thickness 10 μm, G'= 0.3 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A1 (thickness 50 μm, G'= 0.3 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 2.
 <比較例2>
 粘着剤層A1(厚さ25μm、G’=0.3MPa)を第3粘着剤層20に、粘着剤層A1(厚さ25μm、G’=0.3MPa)を第2粘着剤層40に、粘着剤層A1(厚さ25μm、G’=0.3MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表2に示す。
<Comparative example 2>
The pressure-sensitive adhesive layer A1 (thickness 25 μm, G'= 0.3 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A1 (thickness 25 μm, G'= 0.3 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A1 (thickness 25 μm, G'= 0.3 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 2.
 <比較例3>
 粘着剤層A1(厚さ10μm、G’=0.3MPa)を第3粘着剤層20に、粘着剤層A1(厚さ10μm、G’=0.3MPa)を第2粘着剤層40に、粘着剤層A1(厚さ10μm、G’=0.3MPa)を第1粘着剤層60に使用して、光学積層体を得た。得られた光学積層体について耐衝撃性指数Aを算出し、耐衝撃性試験及び屈曲性試験を行った。結果を表2に示す。
<Comparative example 3>
The pressure-sensitive adhesive layer A1 (thickness 10 μm, G'= 0.3 MPa) is placed on the third pressure-sensitive adhesive layer 20, and the pressure-sensitive adhesive layer A1 (thickness 10 μm, G'= 0.3 MPa) is placed on the second pressure-sensitive adhesive layer 40. The pressure-sensitive adhesive layer A1 (thickness 10 μm, G'= 0.3 MPa) was used for the first pressure-sensitive adhesive layer 60 to obtain an optical laminate. The impact resistance index A was calculated for the obtained optical laminate, and the impact resistance test and the flexibility test were performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 200以上の耐衝撃性指数Aを有する実施例の積層体は、耐衝撃性試験、内側折屈曲性試験及び外側折屈曲性試験のいずれも優れた性能を示した。これに対し、耐衝撃性指数Aが200に満たない比較例の積層体は、耐衝撃性試験、内側折屈曲性試験及び外側折屈曲性試験のうちのいずれかの性能が劣っていた。 The laminate of the example having an impact resistance index A of 200 or more showed excellent performance in all of the impact resistance test, the inner bending flexibility test and the outer bending flexibility test. On the other hand, the laminated body of the comparative example having an impact resistance index A of less than 200 was inferior in any one of the impact resistance test, the inner bending flexibility test and the outer bending flexibility test.
 10…前面板、
 20…第3粘着剤層、
 30…保護フィルム、
 40…第2粘着剤層、
 50…偏光層、
 51…偏光子、
 52…粘着剤層、
 53…1/2波長板、
 54…接着剤層、
 55…1/4波長板、
 60…第1粘着剤層、
 70…タッチセンサ層、
 71…透明導電層、
 72…分離層、
 73…接着剤層、
 74…基材層、
 80…表示パネル、
 100…光学積層体、
 200…表示装置。
10 ... Front plate,
20 ... Third adhesive layer,
30 ... Protective film,
40 ... Second adhesive layer,
50 ... Polarizing layer,
51 ... Polarizer,
52 ... Adhesive layer,
53 ... 1/2 wave plate,
54 ... Adhesive layer,
55 ... 1/4 wave plate,
60 ... First adhesive layer,
70 ... Touch sensor layer,
71 ... Transparent conductive layer,
72 ... Separation layer,
73 ... Adhesive layer,
74 ... Base material layer,
80 ... Display panel,
100 ... Optical laminate,
200 ... Display device.

Claims (8)

  1.  前面板、第3粘着剤層、保護フィルム、第2粘着剤層、偏光層、第1粘着剤層、及びタッチセンサ層を、視認側からこの順に備える光学積層体であって、
     200以上の、
     式
    Figure JPOXMLDOC01-appb-M000001
    [式中、tは、タッチセンサ層からn番目の粘着剤層の厚さ(μm)を表し、G’は、タッチセンサ層からn番目の粘着剤層の温度25℃における貯蔵弾性率(MPa)を表し、aは、タッチセンサ層上面からn番目の粘着剤層下面までの距離(μm)をtで除した値を表す。]
    で表される耐衝撃性指数Aを有する、光学積層体。
    An optical laminate comprising a front plate, a third pressure-sensitive adhesive layer, a protective film, a second pressure-sensitive adhesive layer, a polarizing layer, a first pressure-sensitive adhesive layer, and a touch sensor layer in this order from the visual side.
    Over 200
    formula
    Figure JPOXMLDOC01-appb-M000001
    Wherein, t n denotes the thickness of the n-th of the pressure-sensitive adhesive layer ([mu] m) from the touch sensor layer, G 'n, the storage elastic modulus at a temperature of 25 ° C. for n-th of the pressure-sensitive adhesive layer from the touch sensor layer represents (MPa), a n denotes a value distance ([mu] m) divided by t n from the touch sensor layer top surface to the n-th of the pressure-sensitive adhesive layer lower surface. ]
    An optical laminate having an impact resistance index A represented by.
  2.  2000以上の耐衝撃指数Aを有する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, which has an impact resistance index A of 2000 or more.
  3.  第1、第2及び第3粘着剤層が、3~100μmの厚さを有する、請求項1又は2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the first, second and third pressure-sensitive adhesive layers have a thickness of 3 to 100 μm.
  4.  第1、第2及び第3粘着剤層の温度25℃における貯蔵弾性率が、0.005~1.0MPaである、請求項1~3のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the storage elastic modulus of the first, second and third pressure-sensitive adhesive layers at a temperature of 25 ° C. is 0.005 to 1.0 MPa.
  5.  第1、第2及び第3粘着剤層が、(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物を含んで成る、請求項1~4のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein the first, second and third pressure-sensitive adhesive layers include a pressure-sensitive adhesive composition using a (meth) acrylic resin as a base polymer.
  6.  第1、第2及び第3粘着剤層が、架橋剤を更に含有する、請求項5に記載の光学積層体。 The optical laminate according to claim 5, wherein the first, second and third pressure-sensitive adhesive layers further contain a cross-linking agent.
  7.  表示パネルの表示面に適用される、請求項1~6のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 6, which is applied to the display surface of the display panel.
  8.  表示パネルと、表示パネルの表示面に適用された請求項1~7のいずれか一項に記載の光学積層体とを有する、表示装置。 A display device having a display panel and the optical laminate according to any one of claims 1 to 7 applied to the display surface of the display panel.
PCT/JP2020/036643 2019-10-28 2020-09-28 Optical laminate and display device WO2021085000A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080075221.9A CN114641814A (en) 2019-10-28 2020-09-28 Optical laminate and display device
KR1020227011207A KR20220088414A (en) 2019-10-28 2020-09-28 Optical laminate and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019195594 2019-10-28
JP2019-195594 2019-10-28
JP2020148152A JP2021071713A (en) 2019-10-28 2020-09-03 Optical laminate and display device
JP2020-148152 2020-09-03

Publications (1)

Publication Number Publication Date
WO2021085000A1 true WO2021085000A1 (en) 2021-05-06

Family

ID=75713067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036643 WO2021085000A1 (en) 2019-10-28 2020-09-28 Optical laminate and display device

Country Status (5)

Country Link
JP (1) JP2021071713A (en)
KR (1) KR20220088414A (en)
CN (1) CN114641814A (en)
TW (1) TW202117364A (en)
WO (1) WO2021085000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005362A (en) * 2021-10-29 2022-02-01 湖北长江新型显示产业创新中心有限公司 Display module and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064765A1 (en) 2020-09-25 2022-03-31 東洋インキScホールディングス株式会社 Rosin-modified phenolic resin, lithographic printing ink, and printed matter
WO2024148584A1 (en) * 2023-01-12 2024-07-18 律胜科技(苏州)有限公司 Flexible display cover plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160155967A1 (en) * 2014-11-27 2016-06-02 Samsung Electronics Co., Ltd. Flexible display device
US20180034001A1 (en) * 2016-07-27 2018-02-01 Samsung Display Co., Ltd. Window for a display device and a flexible display device including the same
US20180287092A1 (en) * 2017-03-30 2018-10-04 Dongwoo Fine-Chem Co., Ltd. Oled panel and image display device including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548177B2 (en) * 2000-03-15 2003-04-15 Nitto Denko Corporation Transparent shock-absorbing laminate and flat panel display using the same
JP3706105B2 (en) * 2001-03-15 2005-10-12 三井化学株式会社 Display filter and display device using the same
US7208206B2 (en) * 2003-03-10 2007-04-24 Nitto Denko Corporation Glass crack prevention laminate and liquid crystal display device
JP4952337B2 (en) * 2007-03-30 2012-06-13 Jsr株式会社 Impact-resistant adhesive laminate and display device
TWI627068B (en) * 2011-10-14 2018-06-21 Nitto Denko Corp Unit for image display device with adhesive layer and image display device using the unit
KR102088674B1 (en) * 2014-11-27 2020-03-13 삼성전자주식회사 flexible display device
KR102031556B1 (en) 2015-06-26 2019-10-14 동우 화인켐 주식회사 Laminate film and display device comprising the same
JP6638239B2 (en) * 2015-07-30 2020-01-29 住友化学株式会社 Optical laminate and liquid crystal display device
EP3362850B1 (en) * 2015-10-13 2021-04-21 Corning Incorporated Bendable electronic device module
KR20170053039A (en) * 2015-11-05 2017-05-15 스미또모 가가꾸 가부시키가이샤 Polarizing plate and display device comprising the same
JP7042020B2 (en) * 2016-08-15 2022-03-25 日東電工株式会社 Laminated body for flexible image display device and flexible image display device
KR102609511B1 (en) 2016-12-30 2023-12-04 엘지디스플레이 주식회사 Cover window for foldable display device and foldable display device having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160155967A1 (en) * 2014-11-27 2016-06-02 Samsung Electronics Co., Ltd. Flexible display device
US20180034001A1 (en) * 2016-07-27 2018-02-01 Samsung Display Co., Ltd. Window for a display device and a flexible display device including the same
US20180287092A1 (en) * 2017-03-30 2018-10-04 Dongwoo Fine-Chem Co., Ltd. Oled panel and image display device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005362A (en) * 2021-10-29 2022-02-01 湖北长江新型显示产业创新中心有限公司 Display module and display device
CN114005362B (en) * 2021-10-29 2023-11-14 湖北长江新型显示产业创新中心有限公司 Display module and display device

Also Published As

Publication number Publication date
TW202117364A (en) 2021-05-01
JP2021071713A (en) 2021-05-06
KR20220088414A (en) 2022-06-27
CN114641814A (en) 2022-06-17

Similar Documents

Publication Publication Date Title
JP7300906B2 (en) Optical layered body and image display device provided with the same
KR102220433B1 (en) Flexible laminate and image display device having the same
JP7194041B2 (en) laminate
WO2021085000A1 (en) Optical laminate and display device
JP7469889B2 (en) Optical laminate and method for manufacturing display device
JP2020095287A (en) Laminate body
KR20200081287A (en) Flexible laminate and image display device having the same
JP2020024364A (en) Optical laminate
JP7422048B2 (en) optical laminate
KR20210114869A (en) Optical laminate and display device
KR20220157367A (en) laminate
WO2022004137A1 (en) Polarizing plate with adhesive layer
KR102393475B1 (en) Optical laminate and display device
WO2021182056A1 (en) Optical laminate
WO2021166434A1 (en) Optical laminate and display device having same
JP2022145565A (en) Optical laminate and display device
JP2023003753A (en) Optical laminate and display device
JP7312013B2 (en) Optical laminate and display device
JP7194042B2 (en) laminate
WO2020100468A1 (en) Optical laminate and image display device provided with same
TW202032178A (en) Flexible layered body and image display device provided with same
KR102345851B1 (en) Optical laminate and display device
WO2021149359A1 (en) Optical stack and display device
JP2022148467A (en) optical laminate
KR20210111686A (en) Optical laminate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880756

Country of ref document: EP

Kind code of ref document: A1