Nothing Special   »   [go: up one dir, main page]

WO2021079822A1 - 光給電システムの受電装置及び給電装置並びに光給電システム - Google Patents

光給電システムの受電装置及び給電装置並びに光給電システム Download PDF

Info

Publication number
WO2021079822A1
WO2021079822A1 PCT/JP2020/038944 JP2020038944W WO2021079822A1 WO 2021079822 A1 WO2021079822 A1 WO 2021079822A1 JP 2020038944 W JP2020038944 W JP 2020038944W WO 2021079822 A1 WO2021079822 A1 WO 2021079822A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
light
power supply
optical
feeding
Prior art date
Application number
PCT/JP2020/038944
Other languages
English (en)
French (fr)
Inventor
小林 隆宏
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019193121A external-priority patent/JP6889226B2/ja
Priority claimed from JP2019195210A external-priority patent/JP6889227B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP20879603.7A priority Critical patent/EP3930011B1/en
Priority to US17/442,618 priority patent/US11438063B2/en
Priority to CN202080019080.9A priority patent/CN113544938B/zh
Publication of WO2021079822A1 publication Critical patent/WO2021079822A1/ja
Priority to US17/489,688 priority patent/US11387904B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Definitions

  • This disclosure relates to optical power supply.
  • Patent Document 1 describes an optical transmitter that transmits signal light modulated by an electric signal and feed light for supplying power, a core that transmits the signal light, and a core formed around the core.
  • An optical fiber having a first clad having a small refractive index and transmitting the feeding light and a second clad formed around the first clad and having a smaller refractive index than the first clad, and a first clad of the optical fiber are used for transmission.
  • an optical communication device including an optical receiver that operates with the converted power of the fed light and converts the signal light transmitted by the core of the optical fiber into the electric signal.
  • One aspect of the present disclosure is light including a power feeding device including a semiconductor laser that oscillates a laser with electric power and outputs power feeding light, and a power receiving device including a photoelectric conversion element that converts the power feeding light by the power feeding device into electric power. It ’s a power supply system,
  • the power receiving device includes a photoelectric conversion element that converts the power feeding light from the power feeding device into electric power, and a feedback semiconductor that oscillates with a laser using a part of the electric power converted by the photoelectric conversion element and outputs the feeding light to the power feeding side.
  • the power feeding device includes a semiconductor laser that oscillates a laser with electric power and outputs the feeding light to the power receiving device, converts the feeding light from the power receiving device into electric power, and outputs it as the driving power of the semiconductor laser. To be equipped with.
  • One aspect of the present disclosure is an optical fiber including a power feeding device including a semiconductor laser that oscillates a laser with electric power and outputs power feeding light, and a power receiving device including a photoelectric conversion element that converts the power feeding light by the power feeding device into electric power. It ’s a power supply system,
  • the power receiving device includes a photoelectric conversion element that converts the power feeding light from the power feeding device into electric power, and outputs a part of the feeding light from the feeding device input to the photoelectric conversion element to the power feeding side as feedback feeding light.
  • a branch optical device for monitoring and a control device for monitoring the amount of power supplied to the load of electric power converted by the photoelectric conversion element and controlling the amount of feedback by the branch optical device for feedback according to the amount of power supplied.
  • the power feeding device includes a semiconductor laser that oscillates with a laser by electric power and outputs the feeding light to the power receiving device, and the feedback feeding light from the power receiving device is associated with the feeding light output by the semiconductor laser and output. And a control device that controls the output of the semiconductor laser so that the amount of energy output by the feedback association optical device is constant.
  • optical power supply system of one aspect of the present disclosure it is possible to efficiently operate the optical power supply in which the surplus power on the power receiving side is suppressed even if the load fluctuates.
  • the optical fiber power supply (PoF: Power over Fiber) system 1A of the present embodiment includes a power supply device (PSE: Power Sourcing Equipment) 110, an optical fiber cable 200A, and a power receiving device (PD: Powered Device) 310.
  • PSE Power Sourcing Equipment
  • PD Powered Device
  • the power feeding device in the present disclosure is a device that converts electric power into light energy and supplies it
  • a power receiving device is a device that receives the supply of light energy and converts the light energy into electric power.
  • the power feeding device 110 includes a power feeding semiconductor laser 111.
  • the optical fiber cable 200A includes an optical fiber 250A that forms a transmission line for feeding light.
  • the power receiving device 310 includes a photoelectric conversion element 311.
  • the power feeding device 110 is connected to a power source, and a power feeding semiconductor laser 111 or the like is electrically driven.
  • the power feeding semiconductor laser 111 oscillates with the electric power from the power source and outputs the power feeding light 112.
  • one end 201A can be connected to the power feeding device 110, and the other end 202A can be connected to the power receiving device 310 to transmit the feeding light 112.
  • the power feeding light 112 from the power feeding device 110 is input to one end 201A of the optical fiber cable 200A, the feeding light 112 propagates in the optical fiber 250A, and is output from the other end 202A to the power receiving device 310.
  • the photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200A into electric power.
  • the electric power converted by the photoelectric conversion element 311 is used as the driving power required in the power receiving device 310. Further, the power receiving device 310 can output the electric power converted by the photoelectric conversion element 311 for an external device.
  • the semiconductor material constituting the semiconductor region that exerts the light-electric conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 is a semiconductor having a short wavelength laser wavelength of 500 nm or less. Since a semiconductor having a short wavelength laser wavelength has a large band gap and high photoelectric conversion efficiency, the photoelectric conversion efficiency on the power generation side and the power receiving side of optical power supply is improved, and the optical power supply efficiency is improved.
  • the semiconductor material for example, a semiconductor material of a laser medium having a laser wavelength (fundamental wave) of 200 to 500 nm, such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
  • a semiconductor having a band gap of 2.4 eV or more is applied as the semiconductor material.
  • a semiconductor material of a laser medium having a bandgap of 2.4 to 6.2 eV such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
  • a semiconductor material of a laser medium having a laser wavelength (fundamental wave) smaller than 200 nm may be used.
  • These semiconductor materials may be applied to either one of the power feeding semiconductor laser 111 and the photoelectric conversion element 311. The photoelectric conversion efficiency on the power feeding side or the power receiving side is improved, and the optical power feeding efficiency is improved.
  • the optical fiber power supply (PoF: Power over Fiber) system 1 of the present embodiment includes a power supply system via an optical fiber and an optical communication system, and is a power supply device (PSE: Power Sourcing Equipment) 110.
  • a first data communication device 100 including the above, an optical fiber cable 200, and a second data communication device 300 including a power receiving device (PD) 310 are provided.
  • the power feeding device 110 includes a power feeding semiconductor laser 111.
  • the first data communication device 100 includes a power supply device 110, a transmission unit 120 that performs data communication, and a reception unit 130.
  • the first data communication device 100 corresponds to a data terminal equipment (DTE (Data Terminal Equipment)), a repeater (Repeater), and the like.
  • the transmitter 120 includes a signal semiconductor laser 121 and a modulator 122.
  • the receiving unit 130 includes a signal photodiode 131.
  • the optical fiber cable 200 includes a core 210 forming a signal light transmission path, a clad 220 arranged on the outer periphery of the core 210 and forming a feeding light transmission path, and an optical fiber 250 having the core 210.
  • the power receiving device 310 includes a photoelectric conversion element 311.
  • the second data communication device 300 includes a power receiving device 310, a transmitting unit 320, a receiving unit 330, and a data processing unit 340.
  • the second data communication device 300 corresponds to a power end station or the like.
  • the transmitter 320 includes a signal semiconductor laser 321 and a modulator 322.
  • the receiving unit 330 includes a signal photodiode 331.
  • the data processing unit 340 is a unit that processes a received signal.
  • the second data communication device 300 is a node in the communication network. Alternatively, the second data communication device 300 may be a node that communicates with another node.
  • the first data communication device 100 is connected to a power source, and a power feeding semiconductor laser 111, a signal semiconductor laser 121, a modulator 122, a signal photodiode 131, and the like are electrically driven.
  • the first data communication device 100 is a node in the communication network.
  • the first data communication device 100 may be a node that communicates with another node.
  • the power feeding semiconductor laser 111 oscillates with the electric power from the power source and outputs the power feeding light 112.
  • the photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200 into electric power.
  • the electric power converted by the photoelectric conversion element 311 is the driving power of the transmitting unit 320, the receiving unit 330, and the data processing unit 340, and other driving power required in the second data communication device 300.
  • the second data communication device 300 may be capable of outputting the electric power converted by the photoelectric conversion element 311 for an external device.
  • the modulator 122 of the transmitting unit 120 modulates the laser light 123 from the signal semiconductor laser 121 based on the transmission data 124 and outputs it as the signal light 125.
  • the signal photodiode 331 of the receiving unit 330 demodulates the signal light 125 transmitted through the optical fiber cable 200 into an electric signal and outputs it to the data processing unit 340.
  • the data processing unit 340 transmits the data obtained by the electric signal to the node, while receiving the data from the node and outputting the data as the transmission data 324 to the modulator 322.
  • the modulator 322 of the transmitting unit 320 modulates the laser light 323 from the signal semiconductor laser 321 based on the transmission data 324 and outputs it as the signal light 325.
  • the signal photodiode 131 of the receiving unit 130 demodulates the signal light 325 transmitted through the optical fiber cable 200 into an electric signal and outputs it.
  • the data by the electric signal is transmitted to the node, while the data from the node is referred to as transmission data 124.
  • the feed light 112 and the signal light 125 from the first data communication device 100 are input to one end 201 of the optical fiber cable 200, the feed light 112 propagates through the clad 220, the signal light 125 propagates through the core 210, and the other end. It is output from 202 to the second data communication device 300.
  • the signal light 325 from the second data communication device 300 is input to the other end 202 of the optical fiber cable 200, propagates through the core 210, and is output from one end 201 to the first data communication device 100.
  • the first data communication device 100 is provided with an optical input / output unit 140 and an optical connector 141 attached to the optical input / output unit 140.
  • the second data communication device 300 is provided with an optical input / output unit 350 and an optical connector 351 attached to the optical input / output unit 350.
  • An optical connector 230 provided at one end 201 of the optical fiber cable 200 connects to the optical connector 141.
  • An optical connector 240 provided at the other end 202 of the optical fiber cable 200 connects to the optical connector 351.
  • the optical input / output unit 140 guides the feeding light 112 to the clad 220, guides the signal light 125 to the core 210, and guides the signal light 325 to the receiving unit 130.
  • the optical input / output unit 350 guides the feeding light 112 to the power receiving device 310, guides the signal light 125 to the receiving unit 330, and guides the signal light 325 to the core 210.
  • the optical fiber cable 200 has one end 201 connectable to the first data communication device 100 and the other end 202 connectable to the second data communication device 300 to transmit the feeding light 112. Further, in the present embodiment, the optical fiber cable 200 transmits the signal lights 125 and 325 in both directions.
  • the semiconductor material constituting the semiconductor region that exerts the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 As the semiconductor material constituting the semiconductor region that exerts the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311, the same materials as those in the first embodiment are applied, and high light power feeding efficiency is realized. ..
  • the optical fiber 260 for transmitting signal light and the optical fiber 270 for transmitting the feeding light may be provided separately.
  • the optical fiber cable 200B may also be composed of a plurality of cables.
  • FIG. 5 shows the configuration of the optical fiber power supply system 1A1 having a feedback power supply function.
  • the optical fiber power feeding system 1A1 further has the following configurations in the power receiving device 310 and the power feeding device 110 with respect to the optical fiber power feeding system 1A (configuration shown by FIG. 1) described as the first embodiment.
  • the power receiving device 310 includes a feedback semiconductor laser 311F and a control device 312.
  • the feedback semiconductor laser 311F oscillates the laser using a part of the electric power converted by the photoelectric conversion element 311 and outputs the feedback feeding light 112F to the feeding side.
  • the control device 312 monitors the power supply amount (Q1) of the electric power (Q) converted by the photoelectric conversion element 311 to the load 20 and converts electricity and light by the feedback semiconductor laser according to the power supply amount (Q1).
  • the amount, that is, the feedback power supply amount (Q2) is controlled.
  • the power feeding device 110 includes a feedback photoelectric conversion element 111F.
  • the feedback photoelectric conversion element 111F converts the feedback feeding light 112F from the power receiving device 310 into electric power and outputs it as a part of the driving power of the semiconductor laser 111.
  • the semiconductor laser 111 outputs the feeding light 112 with a constant energy value. This is converted into electric power Q by the photoelectric conversion element 311 in the power receiving device 310. Therefore, the power Q is also a constant value.
  • a graph showing the time change of the electric power Q and the like is shown in FIG. 6 or FIG.
  • the amount of power supply Q1 to the load 20 varies depending on the operating condition, for example, as shown in FIG. FIG. 6 shows a case where a power Q of 110% is prepared with the maximum value of the load 20 as 100%. As a result, the load 20 fluctuates below the maximum value, so that the power is not insufficient and the system can be prevented from going down. However, the surplus power R1 is wasted and is not efficient.
  • the control device 312 uses the feedback semiconductor laser 311F so that the value obtained by subtracting the conversion amount Q2 from the power Q converted by the photoelectric conversion element 311 (QQ2) converges to the target value exceeding the load 20 at a predetermined ratio. Controls the amount of conversion between electricity and light, that is, the amount of feedback power supply Q2. As a result, a part of the surplus power R1 is sent to the power feeding side as the feedback power feeding amount Q2.
  • the feedback feed amount Q2 becomes the feedback feed light 112F and is input to the feedback photoelectric conversion element 111F, and is converted into electric power by the feedback photoelectric conversion element 111F to become the driving power of the semiconductor laser 111.
  • the driving power of the semiconductor laser 111 is covered by the power generated from the feedback feed amount Q2 and the new power from the power source 10.
  • the predetermined ratio is 0% at the lower limit and the ratio at which the power Q exceeds the maximum value of the load 20 at the upper limit.
  • the ratio of the electric power Q exceeding the maximum value of the load 20 is 10%, so it is set in the range of 0 to 10%.
  • the target value is set to be 10% higher than the load 20. In this case, it will be as shown in FIG.
  • the power supply amount Q1 to the load 20 is the maximum value of 100%
  • the feedback power supply amount Q2 is zero and no feedback is performed.
  • the feedback power supply amount Q2 is increased to keep the surplus power R2 small.
  • the semiconductor laser 111 outputs the feeding light 112 with a constant energy value, and the power receiving device 310 converts the power Q2 into a constant power Q by the photoelectric conversion element 311.
  • the power Q2 is fed back from the amount not consumed by the load 20. Therefore, the new power supplied from the power source 10 is equivalent to QQ2, and even if the load 20 fluctuates, the surplus power R2 on the power receiving side is suppressed, and efficient optical power supply operation becomes possible. .. In the above description, the loss due to the conversion efficiency, transmission efficiency, etc. not being 100% is ignored.
  • the load 20 is an external load (power output for an external device) in addition to the drive power required in the power receiving device 310.
  • the feedback power supply amount Q2 is excluded.
  • the optical fiber feeding system 1A1 shown in FIG. 5 has been described based on the first embodiment, but is based on the optical fiber feeding systems 1 and 1B (configuration shown in FIG. 2-4) described as the second embodiment.
  • the configuration may include an optical communication system.
  • the power Q converted by the photoelectric conversion element 311 provided in the power receiving device 310 is also used as the driving power of the transmitting unit 320 and the receiving unit 330 provided in the second data communication device 300.
  • FIG. 8 shows the configuration of the optical fiber feeding system 1A2 having the function of feedback feeding light.
  • the optical fiber power feeding system 1A2 further has the following configurations in the power receiving device 310 and the power feeding device 110 with respect to the optical fiber power feeding system 1A (configuration shown by FIG. 1) described as the first embodiment.
  • the power receiving device 310 includes a dimming mirror 311E and a control device 312E as a feedback branch optical device.
  • the dimming mirror 311E outputs a part of the feeding light 112 from the feeding device 110 input to the photoelectric conversion element 311 as the feedback feeding light 112F to the feeding side.
  • the dimming mirror 311E is an electronic device that can electrically switch between a mirror state and a transparent state.
  • the adjustment of the amount of light of the feedback feed light 112F is not only to variably control the ratio of reflectance and transmittance, but also to periodically execute a period of reflection and a period of transmission to variably control the duty ratio. May be good.
  • a mechanism for mechanically switching between reflection and transmission may be applied.
  • the control device 312E monitors the power supply amount (Q1) of the electric power (Q) converted by the photoelectric conversion element 311 to the load 20, and the feedback amount by the dimming mirror 311E, that is, feedback according to the power supply amount (Q1).
  • the amount of light (P1) of the feed light 112F is controlled.
  • the power feeding device 110 includes a combiner 111E and a control device 114 as feedback meeting optical devices.
  • the combiner 111E includes an opening in which the feeding light 112G from the feeding semiconductor laser 111 is incident, an opening in which the feedback feeding light 112F is incident, and an opening in which these are merged and the feeding light 112 is emitted. That is, the feedback feeding light 112F from the power receiving device 310 is associated with the feeding light 112G output by the semiconductor laser 111 and output.
  • the control device 114 controls the output of the semiconductor laser 111 so that the amount of energy output by the combiner 111E is constant (P). Therefore, the output (P) of the semiconductor laser 111 is detected.
  • the power equivalent of the feed light 112 is P
  • the power equivalent of the feedback feed light 112F is P1
  • the power converted by the photoelectric conversion element 311 is Q
  • the power supply to the load 20 is Q1.
  • the electric power equivalent amount P of the feeding light 112 is constant, and the time change of P, Q, etc. is shown in FIG. 6 or FIG. 9 in a graph.
  • the amount of power supply Q1 to the load 20 varies depending on the operating condition, for example, as shown in FIG. FIG. 6 shows a case where a power Q of 110% is prepared with the maximum value of the load 20 as 100%. As a result, the load 20 fluctuates below the maximum value, so that the power is not insufficient and the system can be prevented from going down. However, the surplus power R1 is wasted and is not efficient.
  • the control device 312E has a feedback amount by the dimming mirror 311E, that is, a power equivalent amount of the feedback feeding light 112F so that the power Q converted by the photoelectric conversion element 311 converges to a target value exceeding the load 20 at a predetermined ratio. Control P1. As a result, a part of the surplus power R1 is sent to the power feeding side as the feedback power feeding light 112F before the power conversion.
  • the feedback feeding light 112F is input to the combiner 111E and becomes a part of the feeding light 112.
  • the feeding light 112 corresponds to the sum of the feedback feeding light 112F and the feeding light 112G output by the semiconductor laser 111.
  • the predetermined ratio is 0% at the lower limit and the ratio at which the power Q exceeds the maximum value of the load 20 at the upper limit.
  • the ratio of the electric power Q exceeding the maximum value of the load 20 is 10%, so it is set in the range of 0 to 10%.
  • the target value is set to be 10% higher than the load 20. In this case, it will be as shown in FIG.
  • the feedback power supply light 112F (P1) is zero and no feedback is performed.
  • the feedback power supply light 112F (P1) is increased to keep the surplus power R2 small.
  • the power equivalent amount P of the power supply light 112 output by the power supply device 110 is constant, but the portion that cannot be consumed by the load 20 is fed back as the feedback power supply light 112F before the power conversion, so the power supply 10 covers the power.
  • the new power generated is equivalent to PP1, and even if the load 20 fluctuates, the surplus power R2 on the power receiving side is suppressed, and efficient optical power supply operation becomes possible.
  • the loss due to the transmission efficiency and the like not being 100% is ignored. Since the feedback is performed before the power conversion, the feedback can be performed without loss due to the photoelectric conversion, which is efficient.
  • the load 20 is an external load (power output for an external device) in addition to the drive power required in the power receiving device 310.
  • the optical fiber feeding system 1A2 shown in FIG. 8 has been described based on the first embodiment, but is based on the optical fiber feeding systems 1 and 1B (configuration shown in FIG. 2-4) described as the second embodiment.
  • the configuration may be implemented including the optical communication system.
  • the power Q converted by the photoelectric conversion element 311 provided in the power receiving device 310 is also used as the driving power of the transmitting unit 320 and the receiving unit 330 provided in the second data communication device 300.
  • the present invention can be used for optical power supply.
  • Optical fiber power supply system 1A1 Optical fiber power supply system (optical power supply system) 1A2 Optical fiber power supply system (optical power supply system) 1A Optical fiber power supply system (optical power supply system) 1 Optical fiber power supply system (optical power supply system) 1B optical fiber power supply system (optical power supply system) 100
  • First data communication device 110 Power feeding device 111 Power feeding semiconductor laser 111F Feedback photoelectric conversion element 111E combiner (feedback association optical device) 112 Feeding light 112F Feedback feeding light 120 Transmitter 125 Signal light 130 Receiver 140 Optical input / output 141 Optical connector 200A Optical fiber cable 200 Optical fiber cable 200B Optical fiber cable 210 Core 220 Clad 250A Optical fiber 250 Optical fiber 260 Optical fiber 270 Optical fiber 300 Second data Communication device 310 Power receiving device 311 Photoelectric conversion element 311F Feedback semiconductor laser 311E Dimming mirror 312 Control device 312E Control device 320 Transmission unit 325

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

給電装置110と、給電装置による給電光を電力に変換する受電装置310とを備えた光ファイバー給電システム1A1であって、受電装置は給電装置からの給電光112を電力に変換する光電変換素子311と、光電変換素子により変換した電力Qの一部Q2を用いてレーザー発振して給電光112Fを給電側に出力するフィードバック用半導体レーザー311Fと、電力の負荷への給電量Q1を監視し当該給電量に応じてフィードバック用半導体レーザーによる変換量を制御する制御装置312とを備え、給電装置は電力によりレーザー発振して給電光112を受電装置へ出力する半導体レーザー111と、受電装置からの給電光を電力に変換し半導体レーザーの駆動電力として出力するフィードバック用光電変換素子111Fとを備える。他のシステム1A2では、給電光の一部を直接フィードバック給電光112Fとして循環させる。

Description

光給電システムの受電装置及び給電装置並びに光給電システム
 本開示は、光給電に関する。
 近時、電力を光(給電光と呼ばれる)に変換して伝送し、当該給電光を電気エネルギーに変換して電力として利用する光給電システムが研究されている。
 特許文献1には、電気信号で変調された信号光、及び電力を供給するための給電光を発信する光発信機と、上記信号光を伝送するコア、上記コアの周囲に形成され上記コアより屈折率が小さく上記給電光を伝送する第1クラッド、及び上記第1クラッドの周囲に形成され上記第1クラッドより屈折率が小さい第2クラッド、を有する光ファイバーと、上記光ファイバーの第1クラッドで伝送された上記給電光を変換した電力で動作し、上記光ファイバーのコアで伝送された上記信号光を上記電気信号に変換する光受信機と、を備えた光通信装置が記載されている。
特開2010-135989号公報
 光給電においては、給電側から送った電力は受電側で全て消費されることが理想である。しかし、負荷は一定ではなく変動するため、負荷の消費電力を超える電力を送ることになる。その場合受電側で電力が余り、効率的でない。
 本開示の1つの態様は、電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置とを備えた光給電システムであって、
 受電装置は、給電装置からの給電光を電力に変換する光電変換素子を含み、前記光電変換素子により変換した電力の一部を用いてレーザー発振して給電光を給電側に出力するフィードバック用半導体レーザーと、前記光電変換素子により変換した電力の負荷への給電量を監視し、当該給電量に応じて前記フィードバック用半導体レーザーによる電気‐光間の変換量を制御する制御装置と、を備え、
 給電装置は、電力によりレーザー発振して給電光を受電装置へ出力する半導体レーザーを含み、前記受電装置からの給電光を電力に変換し、前記半導体レーザーの駆動電力として出力するフィードバック用光電変換素子を備える。
 本開示の1つの態様は、電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置とを備えた光ファイバー給電システムであって、
 受電装置は、給電装置からの給電光を電力に変換する光電変換素子を含み、前記光電変換素子に入力される前記給電装置からの給電光の一部をフィードバック給電光として給電側に出力するフィードバック用分岐光学装置と、前記光電変換素子により変換した電力の負荷への給電量を監視し、当該給電量に応じて前記フィードバック用分岐光学装置によるフィードバック量を制御する制御装置と、を備え、
 給電装置は、電力によりレーザー発振して給電光を受電装置へ出力する半導体レーザーを含み、受電装置からのフィードバック給電光を前記半導体レーザーが出力する給電光と会合して出力するフィードバック用会合光学装置と、前記フィードバック用会合光学装置が出力するエネルギー量が一定となるように、前記半導体レーザーの出力を制御する制御装置と、を備える。
 本開示の1つの態様の光給電システムによれば、負荷の変動があっても受電側での余剰電力が抑えられた効率的な光給電の運用が可能となる。
本開示の第1実施形態に係る光ファイバー給電システムの構成図である。 本開示の第2実施形態に係る光ファイバー給電システムの構成図である。 本開示の第2実施形態に係る光ファイバー給電システムの構成図であって、光コネクタ等を図示したものである。 本開示の他の一実施形態に係る光ファイバー給電システムの構成図である。 フィードバック給電の機能を備える光ファイバー給電システムの構成図である。 比較例の電力需給の時間変化を示すグラフである。 図5の光ファイバー給電システムにおける電力需給の時間変化を示すグラフである。 フィードバック給電光の機能を備える光ファイバー給電システムの構成図である。 図7の光ファイバー給電システムにおける電力需給の時間変化を示すグラフである。
 以下に本開示の一実施形態につき図面を参照して説明する。
(1)システム概要
〔第1実施形態〕
 図1に示すように本実施形態の光ファイバー給電(PoF:Power over Fiber)システム1Aは、給電装置(PSE:Power Sourcing Equipment)110と、光ファイバーケーブル200Aと、受電装置(PD:Powered Device)310を備える。
 なお、本開示における給電装置は電力を光エネルギーに変換して供給する装置であり、受電装置は光エネルギーの供給を受け当該光エネルギーを電力に変換する装置である。
 給電装置110は、給電用半導体レーザー111を含む。
 光ファイバーケーブル200Aは、給電光の伝送路を形成する光ファイバー250Aを含む。
 受電装置310は、光電変換素子311を含む。
 給電装置110は電源に接続され、給電用半導体レーザー111等が電気駆動される。
 給電用半導体レーザー111は、上記電源からの電力によりレーザー発振して給電光112を出力する。
 光ファイバーケーブル200Aは、一端201Aが給電装置110に接続可能とされ、他端202Aが受電装置310に接続可能とされ、給電光112を伝送する。
 給電装置110からの給電光112が、光ファイバーケーブル200Aの一端201Aに入力され、給電光112は光ファイバー250A中を伝搬し、他端202Aから受電装置310に出力される。
 光電変換素子311は、光ファイバーケーブル200Aを通して伝送されてきた給電光112を電力に変換する。光電変換素子311により変換された電力が、受電装置310内で必要な駆動電力とされる。さらに受電装置310は光電変換素子311により変換された電力を外部機器用に出力可能とされる。
 給電用半導体レーザー111及び光電変換素子311の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が500nm以下の短波長のレーザー波長をもった半導体とされる。
 短波長のレーザー波長をもった半導体は、バンドギャップが大きく光電変換効率が高いので、光給電の発電側及び受電側における光電変換効率が向上され、光給電効率が向上する。
 そのためには、同半導体材料として、例えば、ダイヤモンド、酸化ガリウム、窒化アルミニウム、GaN等、レーザー波長(基本波)が200~500nmのレーザー媒体の半導体材料を用いてもよい。
 また、同半導体材料として、2.4eV以上のバンドギャップを有した半導体が適用される。
 例えば、ダイヤモンド、酸化ガリウム、窒化アルミニウム、GaN等、バンドギャップ2.4~6.2eVのレーザー媒体の半導体材料を用いてもよい。
 なお、レーザー光は長波長ほど伝送効率が良く、短波長ほど光電変換効率が良い傾向にある。したがって、長距離伝送の場合には、レーザー波長(基本波)が500nmより大きいレーザー媒体の半導体材料を用いてもよい。また、光電変換効率を優先する場合には、レーザー波長(基本波)が200nmより小さいレーザー媒体の半導体材料を用いてもよい。
 これらの半導体材料は、給電用半導体レーザー111及び光電変換素子311のいずれか一方に適用してもよい。給電側又は受電側における光電変換効率が向上され、光給電効率が向上する。
〔第2実施形態〕
 図2に示すように本実施形態の光ファイバー給電(PoF:Power over Fiber)システム1は、光ファイバーを介した給電システムと光通信システムとを含むものであり、給電装置(PSE:Power Sourcing Equipment)110を含む第1のデータ通信装置100と、光ファイバーケーブル200と、受電装置(PD:Powered Device)310を含む第2のデータ通信装置300とを備える。
 給電装置110は、給電用半導体レーザー111を含む。第1のデータ通信装置100は、給電装置110のほか、データ通信を行う発信部120と、受信部130とを含む。第1のデータ通信装置100は、データ端末装置(DTE(Data Terminal Equipment))、中継器(Repeater)等に相当する。発信部120は、信号用半導体レーザー121と、モジュレーター122とを含む。受信部130は、信号用フォトダイオード131を含む。
 光ファイバーケーブル200は、信号光の伝送路を形成するコア210と、コア210の外周に配置され、給電光の伝送路を形成するクラッド220と有する光ファイバー250を含む。
 受電装置310は、光電変換素子311を含む。第2のデータ通信装置300は、受電装置310のほか、発信部320と、受信部330と、データ処理ユニット340とを含む。第2のデータ通信装置300は、パワーエンドステーション(Power End Station)等に相当する。発信部320は、信号用半導体レーザー321と、モジュレーター322とを含む。受信部330は、信号用フォトダイオード331を含む。データ処理ユニット340は、受信した信号を処理するユニットである。また、第2のデータ通信装置300は、通信ネットワークにおけるノードである。または第2のデータ通信装置300は、他のノードと通信するノードでもよい。
 第1のデータ通信装置100は電源に接続され、給電用半導体レーザー111、信号用半導体レーザー121と、モジュレーター122、信号用フォトダイオード131等が電気駆動される。また、第1のデータ通信装置100は、通信ネットワークにおけるノードである。または第1のデータ通信装置100は、他のノードと通信するノードでもよい。
 給電用半導体レーザー111は、上記電源からの電力によりレーザー発振して給電光112を出力する。
 光電変換素子311は、光ファイバーケーブル200を通して伝送されてきた給電光112を電力に変換する。光電変換素子311により変換された電力は、発信部320、受信部330及びデータ処理ユニット340の駆動電力、その他の第2のデータ通信装置300内で必要となる駆動電力とされる。さらに第2のデータ通信装置300は、光電変換素子311により変換された電力を外部機器用に出力可能とされていてもよい。
 一方、発信部120のモジュレーター122は、信号用半導体レーザー121からのレーザー光123を送信データ124に基づき変調して信号光125として出力する。
 受信部330の信号用フォトダイオード331は、光ファイバーケーブル200を通して伝送されてきた信号光125を電気信号に復調し、データ処理ユニット340に出力する。データ処理ユニット340は、当該電気信号によるデータをノードに送信し、その一方で当該ノードからデータを受信し、送信データ324としてモジュレーター322に出
力する。
 発信部320のモジュレーター322は、信号用半導体レーザー321からのレーザー光323を送信データ324に基づき変調して信号光325として出力する。
 受信部130の信号用フォトダイオード131は、光ファイバーケーブル200を通して伝送されてきた信号光325を電気信号に復調し出力する。当該電気信号によるデータがノードに送信され、その一方で当該ノードからデータが送信データ124とされる。
 第1のデータ通信装置100からの給電光112及び信号光125が、光ファイバーケーブル200の一端201に入力され、給電光112はクラッド220を伝搬し、信号光125はコア210を伝搬し、他端202から第2のデータ通信装置300に出力される。
 第2のデータ通信装置300からの信号光325が、光ファイバーケーブル200の他端202に入力され、コア210を伝搬し、一端201から第1のデータ通信装置100に出力される。
 なお、図3に示すように第1のデータ通信装置100に光入出力部140とこれに付設された光コネクタ141が設けられる。また、第2のデータ通信装置300に光入出力部350とこれに付設された光コネクタ351が設けられる。光ファイバーケーブル200の一端201に設けられた光コネクタ230が光コネクタ141に接続する。光ファイバーケーブル200の他端202に設けられた光コネクタ240が光コネクタ351に接続する。光入出力部140は、給電光112をクラッド220に導光し、信号光125をコア210に導光し、信号光325を受信部130に導光する。光入出力部350は、給電光112を受電装置310に導光し、信号光125を受信部330に導光し、信号光325をコア210に導光する。
 以上のように、光ファイバーケーブル200は、一端201が第1のデータ通信装置100に接続可能とされ、他端202が第2のデータ通信装置300に接続可能とされ、給電光112を伝送する。さらに本実施形態では、光ファイバーケーブル200は、信号光125,325を双方向伝送する。
 給電用半導体レーザー111及び光電変換素子311の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料としては上記第1実施形態と同様のものが適用され、高い光給電効率が実現される。
 なお、図4に示す光ファイバー給電システム1Bの光ファイバーケーブル200Bように、信号光を伝送する光ファイバー260と、給電光を伝送する光ファイバー270とを別々に設けてもよい。光ファイバーケーブル200Bも複数本で構成してもよい。
(2)フィードバック給電の制御について
 次に、フィードバック給電の制御につき図1から図4に加え図5、図6及び図7を参照して説明する。
 図5にフィードバック給電の機能を備える光ファイバー給電システム1A1の構成を示す。
 本光ファイバー給電システム1A1は、上記第1実施形態として説明した光ファイバー給電システム1A(図1によって示される構成)に対して、受電装置310及び給電装置110内に、さらに以下の構成を有する。
 受電装置310は、フィードバック用半導体レーザー311Fと、制御装置312を備える。フィードバック用半導体レーザー311Fは、光電変換素子311により変換した電力の一部を用いてレーザー発振してフィードバック給電光112Fを給電側に出力する。制御装置312は、光電変換素子311により変換した電力(Q)の負荷20への給電
量(Q1)を監視し、当該給電量(Q1)に応じてフィードバック用半導体レーザーによる電気‐光間の変換量、すなわち、フィードバック給電量(Q2)を制御する。
 給電装置110は、フィードバック用光電変換素子111Fを備える。フィードバック用光電変換素子111Fは、受電装置310からのフィードバック給電光112Fを電力に変換し、半導体レーザー111の駆動電力の一部として出力する。
 半導体レーザー111は、一定のエネルギー値で給電光112を出力している。これが受電装置310で光電変換素子311により電力Qに変換される。したがって、電力Qも一定値である。この電力Q等の時間変化をグラフに示すと図6又は図7の通りである。
 一方、負荷20への給電量Q1は、その稼働状況により例えば図6に示すように変動する。
 図6は、負荷20の最大値を100%として、110%の電力Qを用意した場合を示す。これにより、負荷20は最大値以下で変動するので、電力不足になることが無く、システムがダウンすることを防ぐことができる。
 しかし、余剰電力R1が無駄になり、効率的でない。
 制御装置312は、光電変換素子311により変換する電力Qから変換量Q2を減じた値(Q―Q2)が、所定の割合で負荷20を超える目標値に収束するように、フィードバック用半導体レーザー311Fによる電気‐光間の変換量、すなわち、フィードバック給電量Q2を制御する。
 これにより、余剰電力R1の一部は、フィードバック給電量Q2として給電側に送られる。
 フィードバック給電量Q2は、フィードバック給電光112Fとなってフィードバック用光電変換素子111Fに入力され、フィードバック用光電変換素子111Fにより電力に変換されて半導体レーザー111の駆動電力となる。
 半導体レーザー111の駆動電力は、このようなフィードバック給電量Q2を源とする電力と、電源10から新たな電力とにより賄われる。
 所定の割合は、下限を0%、上限を電力Qが負荷20の最大値を上回る割合とする。本例の場合、電力Qが負荷20の最大値を上回る割合は10%であるので、0~10%の範囲で設定する。例えば、目標値を負荷20の10%だけ高い値とする。この場合図7に示すようになる。
 負荷20への給電量Q1が最大値100%である場合は、フィードバック給電量Q2はゼロでありフィードバックしない。一方、負荷20への給電量Q1が最大値より低くなればなるほど、フィードバック給電量Q2を増やして余剰電力R2を小さく抑える。
 相変わらず半導体レーザー111は一定のエネルギー値で給電光112を出力しており、受電装置310で光電変換素子311により一定の電力Qに変換されるが、負荷20で消費されない分から電力Q2がフィードバックされているので、電源10から賄われる新たな電力は、Q-Q2相当で済み、負荷20の変動があっても受電側での余剰電力R2が
抑えられた効率的な光給電の運用が可能となる。
 なお、以上の説明では、変換効率、伝送効率等が100%でないことによる損失を無視する。
 なお、負荷20は、受電装置310内で必要な駆動電力のほか、外部の負荷(外部機器用に出力される電力)である。但し、フィードバック給電量Q2を除く。
 図5に示した光ファイバー給電システム1A1としては、上記第1実施形態を基礎として説明したが、上記第2実施形態として説明した光ファイバー給電システム1,1B(図2-4に示される構成)を基礎にして、同様にフィードバック給電の機能を実現するための構成(111F,311F,312)を追加して設けることで、光通信システムを含む構成で実施してもよい。
 この場合、受電装置310に備えられる光電変換素子311により変換された電力Qが、第2のデータ通信装置300に設けられた発信部320及び受信部330の駆動電力ともされる。
(3)フィードバック給電光の制御について
 次に、フィードバック給電光の制御につき図1から図4に加え図6、図8及び図9を参照して説明する。
 図8にフィードバック給電光の機能を備える光ファイバー給電システム1A2の構成を示す。
 本光ファイバー給電システム1A2は、上記第1実施形態として説明した光ファイバー給電システム1A(図1によって示される構成)に対して、受電装置310及び給電装置110内に、さらに以下の構成を有する。
 受電装置310は、フィードバック用分岐光学装置として調光ミラー311Eと、制御装置312Eを備える。
 調光ミラー311Eは、光電変換素子311に入力される給電装置110からの給電光112の一部をフィードバック給電光112Fとして給電側に出力する。調光ミラー311Eは、電気的に鏡状態と透明状態を切り替えられる電子デバイスである。フィードバック給電光112Fの光量の調整は、反射率と透過率の比率を可変制御するもののほか、反射する期間と透過する期間とを周期的に実行し、そのデューティー比を可変制御するものであってもよい。調光ミラー311Eに代え、機械的に反射と透過を切り替える機構を適用して実施してもよい。
 制御装置312Eは、光電変換素子311により変換した電力(Q)の負荷20への給電量(Q1)を監視し、当該給電量(Q1)に応じて調光ミラー311Eによるフィードバック量、すなわち、フィードバック給電光112Fの光量(P1)を制御する。
 給電装置110は、フィードバック用会合光学装置としてコンバイナ111Eと、制御装置114とを備える。コンバイナ111Eは、給電用半導体レーザー111からの給電光112Gが入射する開口と、フィードバック給電光112Fが入射する開口と、これらを合流させ給電光112が出射する開口とを備えるものである。すなわち、受電装置310からのフィードバック給電光112Fを半導体レーザー111が出力する給電光112Gと会合して出力する。
 制御装置114は、コンバイナ111Eが出力するエネルギー量が一定(P)となるように、半導体レーザー111の出力を制御する。そのために半導体レーザー111の出力(P)を検出する。
 ここで、給電光112の電力相当量をP、フィードバック給電光112Fの電力相当量をP1、光電変換素子311により変換した電力をQ、負荷20への給電量をQ1とする。給電光112の電力相当量Pは、一定であり、P,Q等の時間変化をグラフに示すと図6又は図9の通りである。
 一方、負荷20への給電量Q1は、その稼働状況により例えば図6に示すように変動する。
 図6は、負荷20の最大値を100%として、110%の電力Qを用意した場合を示す。これにより、負荷20は最大値以下で変動するので、電力不足になることが無く、システムがダウンすることを防ぐことができる。
 しかし、余剰電力R1が無駄になり、効率的でない。
 制御装置312Eは、光電変換素子311により変換する電力Qが、所定の割合で負荷20を超える目標値に収束するように、調光ミラー311Eによるフィードバック量、すなわち、フィードバック給電光112Fの電力相当量P1を制御する。
 これにより、余剰電力R1の一部は、電力変換前にフィードバック給電光112Fとして給電側に送られる。
 フィードバック給電光112Fは、コンバイナ111Eに入力され、給電光112の一部となる。
 給電光112は、フィードバック給電光112Fと、半導体レーザー111が出力する給電光112Gとの合算に相当する。
 所定の割合は、下限を0%、上限を電力Qが負荷20の最大値を上回る割合とする。本例の場合、電力Qが負荷20の最大値を上回る割合は10%であるので、0~10%の範囲で設定する。例えば、目標値を負荷20の10%だけ高い値とする。この場合図9に示すようになる。
 負荷20への給電量Q1が最大値100%である場合は、フィードバック給電光112F(P1)はゼロでありフィードバックしない。一方、負荷20への給電量Q1が最大値より低くなればなるほど、フィードバック給電光112F(P1)を増やして余剰電力R2を小さく抑える。
 相変わらず給電装置110が出力する給電光112の電力相当量Pは一定であるが、負荷20で消費しきれない分は、電力変換前にフィードバック給電光112Fとしてフィードバックされているので、電源10から賄われる新たな電力は、P-P1相当で済み、負
荷20の変動があっても受電側での余剰電力R2が抑えられた効率的な光給電の運用が可能となる。
 なお、以上の説明では、伝送効率等が100%でないことによる損失を無視する。電力変換前にフィードバックするので、光電変換による損失なくフィードバックすることができ効率的である。
 なお、負荷20は、受電装置310内で必要な駆動電力のほか、外部の負荷(外部機器用に出力される電力)である。
 図8に示した光ファイバー給電システム1A2としては、上記第1実施形態を基礎として説明したが、上記第2実施形態として説明した光ファイバー給電システム1,1B(図2-4に示される構成)を基礎にして、同様にフィードバック給電の機能を実現するための構成(111E,311E,312E)を追加して設けることで、光通信システムとを含む構成で実施してもよい。
 この場合、受電装置310に備えられる光電変換素子311により変換された電力Qが、第2のデータ通信装置300に設けられた発信部320及び受信部330の駆動電力ともされる。
 以上本開示の実施形態を説明したが、この実施形態は、例として示したものであり、この他の様々な形態で実施が可能であり、発明の要旨を逸脱しない範囲で、構成要素の省略、置き換え、変更を行うことができる。
 本発明は、光給電に利用することができる。
1A1 光ファイバー給電システム(光給電システム)
1A2 光ファイバー給電システム(光給電システム)
1A   光ファイバー給電システム(光給電システム)
1     光ファイバー給電システム(光給電システム)
1B   光ファイバー給電システム(光給電システム)
100 第1のデータ通信装置
110 給電装置
111 給電用半導体レーザー
111F フィードバック用光電変換素子
111E コンバイナ(フィードバック用会合光学装置)
112 給電光
112F フィードバック給電光
120 発信部
125 信号光
130 受信部
140 光入出力部
141 光コネクタ
200A 光ファイバーケーブル
200 光ファイバーケーブル
200B      光ファイバーケーブル
210 コア
220 クラッド
250A 光ファイバー
250 光ファイバー
260 光ファイバー
270 光ファイバー
300 第2のデータ通信装置
310 受電装置
311 光電変換素子
311F フィードバック用半導体レーザー
311E 調光ミラー
312 制御装置
312E 制御装置
320 発信部
325 信号光
330 受信部
350 光入出力部
351 光コネクタ

Claims (18)

  1.  給電装置からの給電光を電力に変換する光電変換素子を含む受電装置であって、
     前記光電変換素子により変換した電力の一部を用いてレーザー発振して給電光を給電側に出力するフィードバック用半導体レーザーと、
     前記光電変換素子により変換した電力の負荷への給電量を監視し、当該給電量に応じて前記フィードバック用半導体レーザーによる電気‐光間の変換量を制御する制御装置と、を備える光給電システムの受電装置。
  2.  前記制御装置は、前記光電変換素子により変換する電力から前記変換量を減じた値が、所定の割合で負荷を超える目標値に収束するように、前記フィードバック用半導体レーザーによる電気‐光間の変換量を制御する請求項1に記載の光給電システムの受電装置。
  3.  前記光電変換素子の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項1又は請求項2に記載の光給電システムの受電装置。
  4.  前記フィードバック用半導体レーザーの電気‐光間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項1から請求項3のうちいずれか一に記載の光給電システムの受電装置。
  5.  電力によりレーザー発振して給電光を受電装置へ出力する半導体レーザーを含む給電装置であって、
     前記受電装置からの給電光を電力に変換し、前記半導体レーザーの駆動電力として出力するフィードバック用光電変換素子を備える光給電システムの給電装置。
  6.  前記半導体レーザーの光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項5に記載の光給電システムの給電装置。
  7.  前記フィードバック用光電変換素子の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項5又は請求項6に記載の光給電システムの給電装置。
  8.  電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置とを備えた光給電システムであって、
     当該受電装置として請求項1から請求項4のうちいずれか一に記載の受電装置を、当該給電装置として請求項5から請求項7のうちいずれか一に記載の給電装置を備える光給電システム。
  9.  前記給電装置を含む第1のデータ通信装置と、前記第1のデータ通信装置と光通信し、前記受電装置を含む第2のデータ通信装置とを備え、
     前記受電装置に備えられる前記光電変換素子により変換された電力が、前記第2のデータ通信装置に設けられた発信部及び受信部の駆動電力とされた請求項8に記載の光給電システム。
  10.  給電装置からの給電光を電力に変換する光電変換素子を含む受電装置であって、
     前記光電変換素子に入力される前記給電装置からの給電光の一部をフィードバック給電光として給電側に出力するフィードバック用分岐光学装置と、
     前記光電変換素子により変換した電力の負荷への給電量を監視し、当該給電量に応じて前記フィードバック用分岐光学装置によるフィードバック量を制御する制御装置と、を備える光給電システムの受電装置。
  11.  前記制御装置は、前記光電変換素子により変換する電力が、所定の割合で負荷を超える目標値に収束するように、前記フィードバック用分岐光学装置によるフィードバック量を制御する請求項10に記載の光給電システムの受電装置。
  12.  前記光電変換素子の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項10又は請求項11に記載の光給電システムの受電装置。
  13.  電力によりレーザー発振して給電光を受電装置へ出力する半導体レーザーを含む給電装置であって、
     受電装置からのフィードバック給電光を前記半導体レーザーが出力する給電光と会合して出力するフィードバック用会合光学装置と、
     前記フィードバック用会合光学装置が出力するエネルギー量が一定となるように、前記半導体レーザーの出力を制御する制御装置と、を備える光給電システムの給電装置。
  14.  前記半導体レーザーの光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項13に記載の光給電システムの給電装置。
  15.  電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置とを備えた光ファイバー給電システムであって、
     当該受電装置として請求項10から請求項12のうちいずれか一に記載の受電装置を、当該給電装置として請求項13又は請求項14に記載の給電装置を備える光給電システム。
  16.  前記給電装置を含む第1のデータ通信装置と、前記第1のデータ通信装置と光通信し、前記受電装置を含む第2のデータ通信装置とを備え、
     前記光電変換素子により変換された電力が、前記第2のデータ通信装置に設けられた発信部及び受信部の駆動電力とされた請求項15に記載の光給電システム。
  17.  一端が前記給電装置に接続可能とされ、他端が前記受電装置に接続可能とされ、前記給電光を伝送する光ファイバーケーブルを備えた請求項8又は請求項15に記載の光給電システム。
  18.  一端が前記第1のデータ通信装置に接続可能とされ、他端が前記第2のデータ通信装置に接続可能とされ、前記給電光及び信号光を伝送する光ファイバーケーブルを備えた請求項9又は請求項16に記載の光給電システム。
PCT/JP2020/038944 2019-10-24 2020-10-15 光給電システムの受電装置及び給電装置並びに光給電システム WO2021079822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20879603.7A EP3930011B1 (en) 2019-10-24 2020-10-15 Power feed device of an optical power feed system and optical power feed system
US17/442,618 US11438063B2 (en) 2019-10-24 2020-10-15 Powered device and power sourcing equipment of optical power supply system, and optical power supply system
CN202080019080.9A CN113544938B (zh) 2019-10-24 2020-10-15 光供电系统的受电装置以及供电装置和光供电系统
US17/489,688 US11387904B2 (en) 2019-10-24 2021-09-29 Powered device and power sourcing equipment of optical power supply system, and optical power supply system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019193121A JP6889226B2 (ja) 2019-10-24 2019-10-24 光給電システムの受電装置及び給電装置並びに光給電システム
JP2019-193121 2019-10-24
JP2019-195210 2019-10-28
JP2019195210A JP6889227B2 (ja) 2019-10-28 2019-10-28 光給電システムの受電装置及び給電装置並びに光給電システム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/442,618 A-371-Of-International US11438063B2 (en) 2019-10-24 2020-10-15 Powered device and power sourcing equipment of optical power supply system, and optical power supply system
US17/489,688 Continuation US11387904B2 (en) 2019-10-24 2021-09-29 Powered device and power sourcing equipment of optical power supply system, and optical power supply system

Publications (1)

Publication Number Publication Date
WO2021079822A1 true WO2021079822A1 (ja) 2021-04-29

Family

ID=75619417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038944 WO2021079822A1 (ja) 2019-10-24 2020-10-15 光給電システムの受電装置及び給電装置並びに光給電システム

Country Status (4)

Country Link
US (2) US11438063B2 (ja)
EP (1) EP3930011B1 (ja)
CN (1) CN113544938B (ja)
WO (1) WO2021079822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248730A1 (ja) * 2022-06-20 2023-12-28 京セラ株式会社 受電装置、光給電システム及び受電方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575055B2 (en) 2019-07-15 2023-02-07 SLT Technologies, Inc Methods for coupling of optical fibers to a power photodiode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510418A (ja) * 1994-12-14 1998-10-06 シーメンス アクチエンゲゼルシヤフト 調節された供給電圧または調節された供給電流を電気負荷に供給するための方法および装置
JPH1189120A (ja) * 1997-09-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 光パワー伝送方法及び装置
JP2001025180A (ja) * 1999-07-06 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 光パワー給電装置
JP2010135989A (ja) 2008-12-03 2010-06-17 Mitsubishi Electric Corp 光ファイバ、光通信装置、及び光通信方法
JP2015001925A (ja) * 2013-06-18 2015-01-05 富士機械製造株式会社 光給電型センシングシステム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139538A (ja) 1982-02-15 1983-08-18 Furukawa Electric Co Ltd:The 光伝送方式
DE3583969D1 (de) 1984-06-13 1991-10-10 Fuji Photo Film Co Ltd Abtastvorrichtung mit halbleiterlaser.
US5528409A (en) * 1994-10-13 1996-06-18 Nt International, Inc. Fiber-optic interface system
KR100965941B1 (ko) * 2007-10-05 2010-06-24 한국과학기술원 수동형 광 가입자 망에서 향상된 서비스를 제공하기 위한원격 노드의 구조 및 이를 구비한 수동형 광 가입자 망
CN101594008A (zh) * 2008-05-29 2009-12-02 英华达(上海)电子有限公司 一种充电器及电子设备
JP2011142544A (ja) * 2010-01-08 2011-07-21 Anritsu Corp 光給電型光源およびそれを用いた光給電型rofシステム
US20110278479A1 (en) 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Optical power transmission system and method having counter-propagating control signal
US9218031B2 (en) * 2012-05-18 2015-12-22 Dell Products, Lp System and method for providing wireless power feedback in a wireless power delivery system
CN105052056B (zh) 2013-03-15 2018-05-22 日本电气株式会社 光发射/接收设备、光通信系统、以及光发射/接收方法
CN205248613U (zh) * 2015-11-08 2016-05-18 中国计量学院 一种半导体激光器电源驱动和温度控制装置
US9979480B1 (en) 2016-05-19 2018-05-22 X Development Llc Optical power and data
CN106092519B (zh) * 2016-06-24 2018-09-25 西安电子科技大学 基于光电反馈的短延时激光器线宽测量系统及其测量方法
CN106169692A (zh) * 2016-07-08 2016-11-30 深圳市光大激光科技股份有限公司 一种能量反馈激光输出控制系统及其反馈测量方法
CN109644047B (zh) * 2016-09-02 2022-04-05 皇家飞利浦有限公司 用于供应能量和返回数据的光学收发器、光学系统、介入设备和方法
CN106451825A (zh) * 2016-09-28 2017-02-22 南京奥依菲光电科技有限公司 具有安全保护装置的光纤远端供电系统及其实现方法
CN206379777U (zh) * 2016-12-22 2017-08-04 南京雄略电子科技有限公司 一种反馈型脉冲式微功率光供能装置
CN106877163A (zh) * 2017-04-06 2017-06-20 深圳市联赢激光股份有限公司 一种激光器负反馈控制电路
CN110336388B (zh) * 2019-06-10 2023-08-01 南京航空航天大学 激光无线能量传输系统的能量管理保护方法及装置
US11233980B2 (en) * 2019-06-13 2022-01-25 Microsoft Technologly Licensing, LLC Monitoring and correction system for improved laser display systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510418A (ja) * 1994-12-14 1998-10-06 シーメンス アクチエンゲゼルシヤフト 調節された供給電圧または調節された供給電流を電気負荷に供給するための方法および装置
JPH1189120A (ja) * 1997-09-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> 光パワー伝送方法及び装置
JP2001025180A (ja) * 1999-07-06 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 光パワー給電装置
JP2010135989A (ja) 2008-12-03 2010-06-17 Mitsubishi Electric Corp 光ファイバ、光通信装置、及び光通信方法
JP2015001925A (ja) * 2013-06-18 2015-01-05 富士機械製造株式会社 光給電型センシングシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930011A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248730A1 (ja) * 2022-06-20 2023-12-28 京セラ株式会社 受電装置、光給電システム及び受電方法

Also Published As

Publication number Publication date
EP3930011A1 (en) 2021-12-29
US11438063B2 (en) 2022-09-06
EP3930011A4 (en) 2022-05-11
US20220094448A1 (en) 2022-03-24
CN113544938B (zh) 2022-07-01
EP3930011B1 (en) 2024-03-06
US20220021453A1 (en) 2022-01-20
CN113544938A (zh) 2021-10-22
US11387904B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021079822A1 (ja) 光給電システムの受電装置及び給電装置並びに光給電システム
WO2021079703A1 (ja) 光給電システム
WO2021014841A1 (ja) 光給電システム
CN111988088A (zh) 光供电系统的供电装置和受电装置、以及光供电系统
JP7436156B2 (ja) 光給電システム
WO2021014727A1 (ja) 光ファイバー給電システム
WO2020255612A1 (ja) 受電装置及び光ファイバー給電システム
WO2021014882A1 (ja) 光給電システム
JP6890636B2 (ja) 光給電システム
WO2021075196A1 (ja) 受電装置、給電装置及び光ファイバー給電システム
JP6889227B2 (ja) 光給電システムの受電装置及び給電装置並びに光給電システム
JP6889226B2 (ja) 光給電システムの受電装置及び給電装置並びに光給電システム
JP6890635B2 (ja) 光給電システム
JP7436160B2 (ja) 光給電システム
WO2021075088A1 (ja) 光ファイバー給電システム
WO2021019995A1 (ja) 光ファイバー給電システム
WO2021075087A1 (ja) 光ファイバー給電システム
WO2021019997A1 (ja) 光ファイバー給電システム
WO2021024574A1 (ja) 光ファイバー給電システム
JP7084441B2 (ja) 光ファイバー給電システムの給電装置及び光ファイバー給電システム
JP7326107B2 (ja) 受電装置及び光ファイバー給電システム
JP7308682B2 (ja) 光給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020879603

Country of ref document: EP

Effective date: 20210922

NENP Non-entry into the national phase

Ref country code: DE