Nothing Special   »   [go: up one dir, main page]

WO2021078005A1 - 对地高度校正方法及装置、无人飞行器 - Google Patents

对地高度校正方法及装置、无人飞行器 Download PDF

Info

Publication number
WO2021078005A1
WO2021078005A1 PCT/CN2020/118852 CN2020118852W WO2021078005A1 WO 2021078005 A1 WO2021078005 A1 WO 2021078005A1 CN 2020118852 W CN2020118852 W CN 2020118852W WO 2021078005 A1 WO2021078005 A1 WO 2021078005A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
fusion
ground height
height
abnormal
Prior art date
Application number
PCT/CN2020/118852
Other languages
English (en)
French (fr)
Inventor
张添保
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021078005A1 publication Critical patent/WO2021078005A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/005Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels altimeters for aircraft

Definitions

  • the present invention relates to the technical field of unmanned aerial vehicles, in particular to a ground height correction method and device, and unmanned aerial vehicles.
  • the inventor found that the related technology has at least the following problems: when an aircraft takes off and landing, the ground height is a key information, and if the ground height is inaccurate, it will affect the take-off and landing performance of the aircraft.
  • the embodiments of the present invention aim to provide a ground height correction method and device, and an unmanned aerial vehicle to solve the technical problems of inaccurate ground height and poor landing performance of the unmanned aerial vehicle in the prior art.
  • a ground altitude correction method applied to an unmanned aerial vehicle the unmanned aerial vehicle including a pair for detecting the unmanned aerial vehicle and a landing site
  • the ground sensor for ground height includes:
  • the calculating the ground height correction amount of the ground sensor during an abnormal period includes:
  • the ground height correction amount is calculated.
  • the fusion data includes a fusion height
  • the calculating the ground height correction amount according to the fusion data includes:
  • the fusion height of the ground sensor at each time during the abnormal period and the normal fusion height are calculated by a difference value to obtain the ground height correction amount.
  • the fusion data includes a fusion speed
  • the calculation of a ground height correction amount based on the fusion data includes:
  • the fusion speed of the ground sensor at each time during the abnormal period is integrated to obtain the ground height correction amount.
  • the fusion data includes a fusion height, a fusion speed, and a fusion attitude
  • the calculation of the ground height correction amount based on the fusion data includes:
  • the ground height correction amount is calculated according to the first ground height correction amount, the second ground height correction amount, and the fusion attitude.
  • the calculating the ground height correction amount according to the first ground height correction amount, the second ground height correction amount, and the fusion attitude includes:
  • the weighted correction amount is converted to the coordinate system of the UAV to obtain the ground height correction amount.
  • the method further includes:
  • the determining whether the abnormal failure information satisfies a preset correction trigger condition includes:
  • the determining whether the abnormal failure information satisfies a preset correction trigger condition includes:
  • the method further includes:
  • the adjusting the flight parameters of the unmanned aerial vehicle according to the corrected ground altitude includes:
  • the preset parameters include a flight speed and a shutdown threshold
  • the adjusting the flight parameters to the first preset parameter range includes:
  • the pulp suspension threshold is adjusted to the range of 6.5 to 7.5 m/s.
  • the adjusting the flight parameters of the unmanned aerial vehicle according to the current fusion height includes:
  • the preset parameters include a flight speed and a shutdown threshold
  • the adjusting the flight parameters to the second preset parameter range includes:
  • the pulp suspension threshold is adjusted to a range of 2.8 to 3.2 m/s.
  • a ground height correction device applied to an unmanned aerial vehicle including an unmanned aerial vehicle for detecting the distance between the unmanned aerial vehicle and a landing site
  • Ground sensors for ground height including:
  • the reset module is used to obtain the abnormal failure information of the ground sensor during the abnormal period, and determine whether the abnormal failure information satisfies a preset correction trigger condition.
  • the prediction module is used to calculate the ground height correction amount of the ground sensor during the abnormal period when the ground sensor is abnormal.
  • the correction module is configured to correct the ground height of the UAV according to the ground height correction amount and the normal ground height when the abnormal failure information satisfies a preset correction trigger condition.
  • the reset module includes a fusion horizontal speed latch unit, a horizontal relative distance calculation unit, and a first judgment unit;
  • the fusion horizontal speed latching unit is used to lock the current fusion horizontal speed when the ground sensor is abnormal;
  • the horizontal relative distance calculation unit is used to integrate the fusion horizontal velocity of the ground sensor at each moment during the abnormal period and the current fusion horizontal velocity to obtain the level relative of the unmanned aerial vehicle during the abnormal period. distance;
  • the first determining unit is used to determine whether the horizontal relative distance is less than a preset distance threshold.
  • the reset module includes a failure duration calculation unit and a second judgment unit;
  • the failure duration calculation unit is used to calculate the failure duration of the ground sensor during an abnormal period
  • the second determining unit is used to determine whether the failure duration is less than a preset duration threshold.
  • the prediction module includes a fusion data acquisition unit and a ground height correction unit;
  • the fusion data acquisition unit is used to acquire fusion data of the ground sensor during the abnormal period
  • the ground height correction amount unit is used to calculate the ground height correction amount according to the fusion data.
  • the ground height correction amount unit includes a normal fusion height acquisition subunit, a first ground height correction amount calculation subunit, a second ground height correction amount calculation subunit, and a ground height correction amount calculation subunit ;
  • the normal fusion height acquisition subunit is used to lock the normal fusion height before the abnormality of the ground sensor occurs;
  • the first ground height correction amount calculation subunit is used to calculate the difference between the fusion height of the ground sensor at each time during the abnormal period and the normal fusion height to obtain the first ground height correction amount;
  • the second ground height correction amount calculation subunit is used to integrate the fusion speed of the ground sensor at each moment during the abnormal period to obtain a second ground height correction amount
  • the ground height correction amount calculation subunit is configured to calculate the ground height correction amount according to the first ground height correction amount, the second ground height correction amount, and the fusion attitude.
  • an unmanned aerial vehicle includes: at least one processor; and
  • the aircraft can be used to perform the above-mentioned method for correcting the aircraft's ground height.
  • the method for providing an aircraft ground height correction first obtains the normal ground height before the ground sensor of the unmanned aerial vehicle is abnormal, and then calculates it according to the ground sensor during the abnormal period.
  • the ground height correction amount of is to correct the normal ground height, thereby improving the accuracy of the unmanned aerial vehicle's ground height and improving the landing performance of the aircraft.
  • FIG. 1 is a schematic diagram of an application environment of an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for correcting ground height provided by one of the embodiments of the present invention
  • FIG. 3 is a schematic flowchart of one embodiment of S20 in FIG. 2;
  • FIG. 4 is a schematic flowchart of one embodiment of S22 in FIG. 3;
  • FIG. 5 is a schematic flowchart of another embodiment of S22 in FIG. 4;
  • FIG. 6 is a schematic flowchart of one embodiment of S228 in FIG. 5;
  • FIG. 7 is a schematic flowchart of a method for correcting ground height according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of one embodiment of S50 in FIG. 7;
  • FIG. 9 is a schematic flowchart of another embodiment of S50 in FIG. 7;
  • FIG. 10 is a schematic flowchart of a method for correcting ground height according to still another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of one embodiment of S80 in FIG. 10;
  • FIG. 12 is a schematic flowchart of one embodiment of S90 in FIG. 10;
  • FIG. 13 is a structural block diagram of a ground height correction device provided by one of the embodiments of the present invention.
  • Fig. 14 is a structural block diagram of an unmanned aerial vehicle provided by one embodiment of the present invention.
  • the embodiment of the present invention provides a ground height correction method and device, which is applied to unmanned aerial vehicle 10, because the ground sensor of said unmanned aerial vehicle 10 is susceptible to ground environment interference during the landing process of said unmanned aerial vehicle 10 Instability, which in turn leads to the inaccuracy of the ground height obtained by the UAV 10 in real time. Therefore, the method and device first obtain the normal ground height before the ground sensor of the UAV 10 is abnormal, and then according to the The ground height correction amount calculated by the ground sensor during the abnormal period corrects the normal ground height, thereby improving the accuracy of the ground height of the UAV 10 and improving the landing performance of the aircraft.
  • FIG. 1 is a schematic diagram of an application environment of a ground height correction method and device provided by an embodiment of the present invention; as shown in FIG. 1, the application scenario includes an unmanned aerial vehicle 10, a wireless network 20, an intelligent terminal 30 and a user 40.
  • the user 40 can operate the smart terminal 30 to control the UAV 10 via the wireless network 20.
  • the unmanned aerial vehicle 10 may be an unmanned aerial vehicle driven by any type of power, including but not limited to a rotary wing drone, a fixed wing drone, an umbrella wing drone, a flapping wing drone, and a helicopter model.
  • the unmanned aerial vehicle 10 may have a corresponding volume or power according to actual needs, so as to provide load capacity, flight speed, and flight range that can meet the needs of use.
  • One or more functional modules may be added to the unmanned aerial vehicle 10 to enable the unmanned aerial vehicle 10 to realize corresponding functions.
  • the UAV 10 is provided with at least one of an accelerometer, a gyroscope, a magnetometer, a GPS navigator, a vision sensor, and a ground sensor.
  • the UAV 10 may determine whether to perform a landing action according to the acceleration information obtained by the accelerometer.
  • the ground sensor is used to detect the ground height between the UAV 10 and the landing site, and the ground sensor may be an ultrasonic sensor, an infrared sensor, a laser sensor, and so on.
  • the accuracy of the ground height directly affects the safety of the UAV 10 during landing. For example, when the UAV 10 is landing, the UAV 10 needs to perceive the ground through a downward-looking ground sensor. A problem with the ground sensor during a certain period of time will result in the inaccurate ground altitude. If the UAV 10 performs a landing operation based on the inaccurate ground altitude, the UAV may be 10 Suddenly stopping the slurry or slamming the ground violently without slowing down.
  • the UAV 10 is provided with an information receiving device, which receives and processes the information collected by the above-mentioned at least one sensor.
  • the UAV 10 is provided with an information fusion device, which can perform data fusion based on information collected by at least one sensor acquired by the information receiving device, and the fusion data may include fusion Speed, fusion height and fusion attitude angle.
  • the UAV 10 may calculate the ground height correction amount of the ground sensor during the abnormal period according to the fusion data, and then may correct the ground height correction amount according to the ground height correction value and the normal ground height. The ground height of the UAV 10 is described.
  • the unmanned aerial vehicle 10 contains at least one main control chip, which serves as the control core of the drone flight and data transmission, and integrates one or more modules to execute the corresponding logic control program.
  • the main control chip may include a method for calculating the ground height correction amount of the ground sensor during an abnormal period according to the fusion data, and also for calculating the ground height correction amount according to the fusion data.
  • the ground height correction amount is a ground height correction device for correcting the ground height of the UAV 10 with the normal ground height.
  • the smart terminal 30 may be any type of smart device used to establish a communication connection with the UAV 10, such as a mobile phone, a tablet computer, or a smart remote control.
  • the smart terminal 30 may be equipped with one or more different user 40 interaction devices to collect instructions from the user 40 or display and feedback information to the user 40.
  • buttons, display screens, touch screens, speakers, and remote control joysticks are examples of interactive devices.
  • the smart terminal 30 may be equipped with a touch display screen, through which the user 40 receives remote control instructions for the UAV 10 and displays the image information obtained by aerial photography to the user 40 through the touch screen display. The user 40 can also Switch the image information currently displayed on the display through the remote control touch screen.
  • the unmanned aerial vehicle 10 and the intelligent terminal 30 can also integrate existing image visual processing technologies to further provide more intelligent services.
  • the UAV 10 may collect images through a dual-lens camera, and the smart terminal 30 may analyze the images, so as to realize the gesture control of the UAV 10 by the user 40.
  • the wireless network 20 may be a wireless communication network based on any type of data transmission principle for establishing a data transmission channel between two nodes, such as a Bluetooth network, a WiFi network, a wireless cellular network, or a combination thereof located in different signal frequency bands.
  • FIG. 2 is an embodiment of a method for correcting the ground height of the unmanned aerial vehicle 10 according to an embodiment of the present invention. As shown in FIG. 2, the method for correcting the height of the UAV 10 to the ground includes the following steps:
  • the ground-mounted sensor needs to obtain the ground-mounted height in real time.
  • the ground-mounted sensor is disturbed and is unstable, the ground level is inaccurate.
  • the ground sensor is interfered by the magnetic field generated by the surrounding environment (such as high-voltage lines, iron ore factories, etc.), for example, the unmanned aerial vehicle 10 is aging or the aircraft is exploded many times, which may cause damage to the ground sensor.
  • the ground sensor is abnormal based on the acquired ground height information of the ground sensor.
  • the ground height information of the ultrasonic sensor includes noise intensity, vertical flight speed, time stamp, and ground height corresponding to the time stamp.
  • the following methods can be adopted to determine whether the ultrasonic sensor is abnormal according to the height information of the ultrasonic sensor. For example, determine whether the noise intensity is less than a preset intensity threshold; determine the difference between the vertical speed of the flight and the fusion data Whether it is less than a preset error threshold; determine whether the timestamp update is normal; determine whether the ground height corresponding to the timestamp continues to change; if the above determinations are all yes, it can be confirmed that the ultrasonic sensor is normal. Otherwise, it can be confirmed that the ultrasonic sensor is abnormal.
  • the normal ground height before the ground sensor is abnormal is acquired.
  • the abnormal time of the ground sensor is T i
  • the abnormal time Ti corresponds to an abnormal ground height H i .
  • the time before the abnormal time T i is Ti -1 .
  • the time T i-1 is the time when the ground sensor does not have an abnormality, that is, the normal time T i-1 corresponds to a normal pair Ground height H i-1 . That is, when it is detected that the ground sensor is abnormal, the normal ground height H i-1 corresponding to the normal time T i-1 before the ground sensor is abnormal is acquired.
  • the abnormal time refers to the time interval from when the ground-pointing sensor is abnormal to when the ground-pointing sensor returns to normal.
  • the time when the ground-pointing sensor is abnormal is T i
  • the ground-pointing sensor recovers normal time for T i + 1, i.e., the abnormal period T i + 1 -T i.
  • the obtained fusion data of multiple sensors on board the UAV 10 can be used to calculate the ground height correction amount during the abnormal period.
  • the senor includes at least one of an accelerometer, a magnetometer, a gyroscope, a locator, and a vision sensor.
  • the technology of data fusion is a series of operation processing such as analysis, sorting, and fusion of data collected by sensors, and multi-sensor fusion data can realize the correction of ground height.
  • data fusion is performed on the data collected by multiple sensors based on the weighted average method.
  • the first step is to initialize the various software and hardware to be used, such as sensor initialization and Kalman filter initialization, etc.
  • the second step is to obtain the data in the IMU, and then make judgments based on this part of the data information. See if attitude angle compensation is required. If it is necessary, what is the specific value
  • the third step is to obtain the data collected by sensors such as accelerometer, magnetometer, gyroscope, locator, and vision sensor.
  • the weighted average operation is performed to perform Kalman filtering on the obtained data value, thereby generating the fused data.
  • the fusion data includes a fusion speed, a fusion height, and a fusion attitude angle, and then one or more fusion data of the fusion speed, fusion height, and fusion attitude angle are combined with the ground height obtained by the ground sensor to obtain the ground Height correction amount.
  • the ground height correction amount during the abnormal period and the normal ground height before the abnormality of the ground sensor may be summed and/or the difference calculation may be performed to obtain the corrected ground height.
  • the ground height correction amount ⁇ H during the abnormal period is calculated, and the normal ground height before the abnormality of the ground sensor is H b , that is, the ground height after correction is H b ⁇ ⁇ H.
  • the embodiment provides a method for correcting the ground height of the UAV 10 by first obtaining the normal ground height before the ground sensor of the UAV 10 is abnormal, and then calculating the ground height according to the ground sensor of the UAV 10 during the abnormal period.
  • the ground height correction amount corrects the normal ground height, thereby improving the accuracy of the ground height of the UAV 10 and improving the landing performance of the aircraft.
  • S20 includes the following steps:
  • the abnormality when the abnormality time refers to the occurrence of the sensor until the sensor returns to the normal time interval, e.g., the occurrence of the sensor failure time for T i, the recovery of the ground sensor normal time for T i + 1, i.e., the abnormal period T i + 1 -T i.
  • the fusion data during the abnormal period refers to data information collected by at least one of the accelerometer, magnetometer, gyroscope, locator, and vision sensor.
  • Different data fusion algorithms are used for processing, such as: weighted average method, normalized weighted average method, Kalman filter and extended Kalman filter.
  • a weighted data fusion calculation is used for data fusion.
  • the fusion data includes a fusion speed, a fusion height, and a fusion attitude angle, and then one or more fusion data of the fusion speed, fusion height, and fusion attitude angle are combined with the ground height obtained by the ground sensor to obtain the result.
  • the amount of ground height correction is a fusion speed, a fusion height, and a fusion attitude angle.
  • S22 includes the following steps:
  • the ground sensor is abnormal according to the acquired ground height information of the ground sensor.
  • the normal fusion height before the ground sensor is abnormal is acquired.
  • the abnormal time of the ground sensor is T i
  • the abnormal time T i corresponds to an abnormal fusion height F i .
  • the time before the abnormal time T i is Ti -1 .
  • the time T i-1 is the time when the ground sensor does not have an abnormality, that is, the normal time T i-1 corresponds to a normal fusion Height F i-1 . That is, when it is detected that the ground sensor is abnormal, the normal fusion height F i-1 corresponding to the normal time Ti-1 before the ground sensor is abnormal is acquired.
  • the abnormal time refers to the time interval from when the ground-pointing sensor is abnormal to when the ground-pointing sensor returns to normal.
  • the time when the ground-pointing sensor is abnormal is T i
  • the ground-pointing sensor recovers
  • the normal time is T i+n , that is, the abnormal period is T i+n -T i .
  • the abnormal period T i+n ⁇ T i includes N time instants, and each time instant corresponds to a fusion height of the UAV 10.
  • the ground height correction amount can be obtained by calculating the difference between the fusion height of the ground sensor at each time during the abnormal period T i+n -T i and the normal fusion height.
  • the abnormal time T 6 -T 2 includes abnormal times T 3 , T 4 and T 5 , the abnormal time T 3 corresponds to a fusion height F 3 , the abnormal time T 4 corresponds to a fusion height F4 , and the abnormal time T 5 corresponds to a fusion height F 5 , the moment before the abnormal time T 2 is T 1 , the T 1 is a normal time, the normal time T 1 corresponds to the normal fusion height F 1 , and then the abnormal time T 3 , fusion T 5 corresponding height. 4 and T F 3, F4 and F 5 fusion with the normal height for computing the difference F 1, to give each of the highly abnormal timing correction amount ⁇ F3, ⁇ F 4 and F 5 ⁇ .
  • S22 includes the following steps:
  • the fusion speed of the ground sensor at each time during the abnormal period is integrated to obtain the ground height correction amount.
  • the abnormal period T i+n ⁇ T i includes N time instants, and each time instant corresponds to a fusion speed of the UAV 10.
  • the fusion velocity of the ground sensor at each time during the abnormal period Ti+n- T i is integrated to obtain the ground height correction amount.
  • the abnormal time T 6 -T 2 includes abnormal times T 3 , T 4 and T 5 , the abnormal time T3 corresponds to a fusion speed V 3 , the abnormal time T 4 corresponds to a fusion speed V 4 , and the abnormal time T5 corresponding to a convergence speed V 5, and then were abnormal time T 3, T 4 and T 5 corresponding to the fusion speed V 3, V 4 and V 5, then V 3, V 4 and V 5 for the integration process to obtain The ground height correction amount.
  • S22 includes the following steps:
  • the ground sensor it can be determined whether the ground sensor is abnormal according to the acquired ground height information of the ground sensor.
  • the normal fusion height before the ground sensor is abnormal is acquired.
  • the abnormal time of the ground sensor is T i
  • the abnormal time T i corresponds to an abnormal fusion height F i .
  • the time before the abnormal time T i is Ti -1 .
  • the time T i-1 is the time when the ground sensor does not have an abnormality, that is, the normal time T i-1 corresponds to a normal fusion Height F i-1 . That is, when it is detected that the ground sensor is abnormal, the normal fusion height F i-1 corresponding to the normal time Ti-1 before the ground sensor is abnormal is acquired.
  • S224 Calculate the difference between the fusion height of the ground sensor at each moment during the abnormal period and the normal fusion height to obtain a first ground height correction amount.
  • the abnormal time refers to the time interval from when the ground-pointing sensor is abnormal to when the ground-pointing sensor returns to normal.
  • the time when the ground-pointing sensor is abnormal is T i
  • the ground-pointing sensor recovers
  • the normal time is T i+n , that is, the abnormal period is T i+n -T i .
  • the abnormal period T i+n ⁇ T i includes N time instants, and each time instant corresponds to a fusion height of the UAV 10.
  • the first ground height correction amount can be obtained by calculating the difference between the fusion height of the ground sensor at each time during the abnormal period T i+n -T i and the normal fusion height.
  • the abnormal time T 6 -T 2 includes abnormal times T 3 , T 4 and T 5 , the abnormal time T 3 corresponds to a fusion height F 3 , the abnormal time T 4 corresponds to a fusion height F 4 , the abnormal time T 5 corresponds to a fusion height F 5 , the moment before the abnormal time T 2 is T 1 , the T 1 is a normal time, the normal time T 1 corresponds to the normal fusion height F 1 , and then the abnormal time T 3 , T 4 and T 5 corresponding to the fusion heights F 3 , F 4 and F 5 and the normal fusion height F 1 for the difference calculation to obtain the corresponding first pair of ground height corrections ⁇ F 3 , ⁇ F 4 and ⁇ F 5 .
  • S226 Integrate the fusion speed of the ground sensor at each time during the abnormal period to obtain a second ground height correction amount.
  • the abnormal period T i+n ⁇ T i includes N time instants, and each time instant corresponds to a fusion speed of the UAV 10.
  • the fusion velocity of the ground sensor at each time during the abnormal period Ti+n- T i is integrated to obtain the ground height correction amount.
  • the abnormal time T 6 -T 2 includes abnormal times T 3 , T 4 and T 5 , the abnormal time T 3 corresponds to a fusion speed V 3 , the abnormal time T 4 corresponds to a fusion speed V 4 , the abnormal time T 5 corresponds to a fusion velocity V 5 , then the fusion velocities V 3 , V 4 and V 5 corresponding to abnormal times T 3 , T 4 and T 5 are respectively combined, and then V 3 , V 4 and V 5 are integrated, namely The second ground height correction amount can be obtained.
  • S228 Calculate the ground height correction amount according to the first ground height correction amount, the second ground height correction amount, and the fusion attitude.
  • S228 includes the following steps:
  • S2281 Perform weighting processing on the first pair of ground height corrections and the second pair of ground height corrections according to a preset weighting algorithm to obtain weighted corrections.
  • the preset weighting algorithm may be a weighted average algorithm, a GPA standard weighting algorithm, a binary weighting algorithm, and so on.
  • the method further includes:
  • S40 Acquire abnormal failure information of the ground sensor during the abnormal period.
  • the abnormal failure information may be sensing information acquired by the ground sensor during the abnormal period.
  • the sensing information includes information such as the time, speed, and altitude of the UAV 10. Since the sensor information is acquired during the period when the sensor is abnormal, the sensor information is abnormal failure information.
  • S50 Determine whether the abnormal failure information satisfies a preset correction trigger condition.
  • the sensing information acquired by the ground sensor during the abnormal period meets a preset correction starting condition. For example, it is determined whether the time sensing information acquired by the ground sensor during the abnormal period meets a preset correction trigger condition. For another example, it is determined whether the speed sensor information acquired by the ground sensor during the abnormal period satisfies a preset correction trigger condition.
  • the ground height correction amount during the abnormal period and the normal ground height before the ground sensor abnormality may be summed and/or calculated.
  • the difference calculation obtains the corrected ground height.
  • the ground height correction amount ⁇ H during the abnormal period is calculated, and the normal ground height before the abnormality of the ground sensor is H b , that is, the ground height after correction is H b ⁇ ⁇ H.
  • S50 includes the following steps:
  • the current fusion horizontal speed when the ground-pointing sensor is abnormal is acquired.
  • the abnormal time of the ground sensor is T i
  • the abnormal time T i corresponds to a fusion horizontal velocity V x .
  • the fused horizontal velocity V x is the current fused horizontal velocity when the ground sensor is abnormal.
  • S53 Perform a difference integral operation between the fusion horizontal speed of the ground sensor at each time during the abnormal period and the current fusion horizontal speed to obtain the horizontal relative distance of the UAV 10 during the abnormal period.
  • the abnormal time refers to the time interval from when the ground-pointing sensor is abnormal to when the ground-pointing sensor returns to normal.
  • the time when the ground-pointing sensor is abnormal is T i
  • the ground-pointing sensor recovers
  • the normal time is T i+n , that is, the abnormal period is T i+n -T i .
  • the abnormal period T i+n ⁇ T i includes N time instants, and each time instant corresponds to a fusion horizontal velocity of the UAV 10.
  • the fusion horizontal velocity of the ground sensor at each time during the abnormal period Ti +n -T i and the current fusion horizontal velocity when the ground sensor is abnormal are calculated by integrating the difference value, and the non-existence can be obtained.
  • the abnormal time T 6 -T 2 includes abnormal times T 3 , T 4 and T 5 , the abnormal time T 3 corresponds to a fusion horizontal velocity V 3x , and the abnormal time T 4 corresponds to a fusion horizontal velocity V 4x , The abnormal time T 5 corresponds to a fusion horizontal velocity V 5x , the abnormal time T 2 is the moment when the ground sensor first started to be abnormal, the abnormal time T 2 corresponds to the current fusion horizontal velocity V 2x , and then the abnormal time T 3.
  • the fusion heights V 3x , V 4x and V 5x corresponding to T 4 and T 5 are calculated as the difference with the current fusion horizontal speed V 2x to obtain the fusion horizontal speed difference ⁇ V 3x , ⁇ V 4x and ⁇ V 5x . Then, the fusion horizontal velocity differences ⁇ V 3x , ⁇ V 4x and ⁇ V 5x at each abnormal moment are integrated to obtain the horizontal relative distance of the UAV 10 during the abnormal period.
  • the horizontal relative distance is compared with a preset distance threshold, and it is determined whether the horizontal relative distance is less than the preset distance threshold.
  • S50 includes the following steps:
  • S52 Calculate the failure duration of the ground sensor during the abnormal period.
  • the failure duration refers to the time interval between the time when the ground sensor is abnormal and the time when the ground sensor returns to normal.
  • a length of between T i + n and T i is the time T i + n, i.e., failure of the normal time abnormality when the abnormality of the time T i, the restoration of the occurrence of the sensor to ground sensor Interval.
  • S54 Determine whether the failure duration is less than a preset duration threshold.
  • the failure duration is compared with a preset duration threshold, and it is determined whether the failure duration is less than the preset duration threshold.
  • the method further includes:
  • the corrected current fusion altitude of the UAV 10 is obtained, and the corrected current fusion altitude of the UAV 10 is calculated with the corrected ground altitude difference, if If the difference between the current fusion height and the ground height is less than or equal to a preset threshold, it can be determined that the corrected ground height is normal. If the difference between the current fusion height and the ground height is greater than a preset threshold, it may be determined that the corrected ground height is abnormal.
  • the flight parameters of the UAV 10 are adjusted according to the corrected ground height.
  • the flight parameters of the UAV 10 are adjusted according to the current fusion height.
  • S80 includes the following steps:
  • the corrected ground height is compared with a preset ground height, and it is determined whether the corrected ground height is less than the preset ground height. For example, if the corrected ground height is 1.2m, the preset ground height is 0.5m, and the corrected ground height 1.2m is greater than the preset ground height 0.5m, then the corrected ground height can be determined The ground height is not less than the preset ground height. If the corrected ground height is 0.2m and the preset ground height is 0.5m, it can be determined that the corrected ground height is less than the preset ground height.
  • the preset parameters include the flight speed of the UAV 10 and the suspension threshold.
  • the flying speed is adjusted to a range of 1.0 to 2.0 m/s; the slurry stop threshold is adjusted to 6.5 to 7.5 m /s range.
  • S90 includes the following steps:
  • the current fusion height is compared with the preset fusion height, and it is judged whether the acquired current fusion height is within the preset fusion height range. For example, if the acquired current fusion height is 3m and the preset fusion height range is -2 ⁇ 2m, it can be determined that the acquired current fusion height is 3m not within the preset fusion height range of -2 ⁇ 2m. If the acquired current fusion height is 1.5m and the preset fusion height range is -2 ⁇ 2m, it can be determined that the acquired current fusion height is 1.5m and the preset fusion height range is -2 ⁇ 2m.
  • the preset parameters include the flight speed of the UAV 10 and the suspension threshold.
  • the flight speed is adjusted to the range of 0.2-0.3m/s; the suspension threshold is adjusted to 2.8-3.2m/s Within range.
  • the embodiments of the present application provide a ground height correction device, which is applied to an unmanned aerial vehicle 10.
  • the ground sensor for the height of the ground.
  • the ground height correction device 50 includes: a reset module 51, a prediction module 52, and a correction module 53.
  • the reset module 51 is configured to acquire abnormal failure information of the ground sensor during the abnormal period, and determine whether the abnormal failure information satisfies a preset correction trigger condition.
  • the prediction module 52 is used for calculating the ground height correction amount of the ground sensor during the abnormal period when the ground sensor is abnormal.
  • the correction module 53 is configured to correct the ground height of the UAV 10 according to the ground height correction amount and the normal ground height when the abnormal failure information meets a preset correction trigger condition.
  • the aircraft ground height correction device first obtains the normal ground height before the ground sensor of the UAV 10 is abnormal, and then calculates the ground height according to the ground sensor during the abnormal period.
  • the ground height correction amount corrects the normal ground height, thereby improving the accuracy of the ground height of the UAV 10 and improving the landing performance of the aircraft.
  • the aircraft ground altitude correction device 50 further includes a flight parameter adjustment module 54 for determining whether the corrected ground altitude is normal; if it is normal, according to the corrected altitude For ground altitude, adjust the flight parameters of the UAV 10; if abnormal, obtain the current fusion height, and adjust the flight parameters of the UAV 10 according to the current fusion height.
  • the flight parameter adjustment module 54 includes a first determination unit and a first flight parameter adjustment unit
  • the first determining unit is used to determine whether the corrected ground height is less than a preset ground height; the first flight parameter adjustment unit is used for when the corrected ground height is less than the preset ground height Adjust the flight parameters to the first preset parameter range.
  • the first flight parameter adjustment unit is specifically configured to adjust the flight speed to a range of 1.0-2.0 m/s; adjust the suspension threshold to a range of 6.5-7.5 m/s.
  • the flight parameter adjustment module includes a second determination unit and a second flight parameter adjustment unit.
  • the second determining unit is used to determine whether the fusion height is within a preset fusion height range
  • the second flight parameter adjustment unit is configured to adjust the flight parameters to a second preset parameter range when the current fusion height is within the preset fusion height range.
  • the second flight parameter adjustment unit is specifically configured to adjust the flight speed to a range of 0.2-0.3 m/s; adjust the suspension threshold to a range of 2.8-3.2 m/s.
  • the reset module 51 includes a fusion horizontal speed latch unit, a horizontal relative distance calculation unit, and a first judgment unit.
  • the fusion horizontal speed latching unit is used to lock the current fusion horizontal speed when the ground sensor is abnormal;
  • the horizontal relative distance calculation unit is used to calculate the difference between the fusion horizontal speed of the ground sensor at each time during the abnormal period and the current fusion horizontal speed to obtain the level of the unmanned aerial vehicle 10 during the abnormal period. relative distance;
  • the first determining unit is used to determine whether the horizontal relative distance is less than a preset distance threshold.
  • the reset module 51 includes a failure duration calculation unit and a second determination unit; the failure duration calculation unit is used to calculate the failure duration of the ground sensor during an abnormal period; the second determination The unit is used to determine whether the failure duration is less than a preset duration threshold.
  • the prediction module 52 includes a fusion data acquisition unit and a ground height correction unit.
  • the fusion data acquisition unit is used to acquire the fusion data of the ground sensor during the abnormal period; the ground height correction unit is used to calculate the ground height correction according to the fusion data.
  • the ground height correction quantity unit includes a normal fusion height acquisition subunit, a first ground height correction quantity calculation subunit, a second ground height correction quantity calculation subunit, and a ground height correction quantity calculation subunit.
  • the normal fusion height acquisition subunit is used to lock the normal fusion height before the abnormality of the ground sensor.
  • the first pair of ground height correction amount calculation subunit is used to calculate the difference between the fusion height of the ground sensor at each time during the abnormal period and the normal fusion height to obtain the first pair of ground height correction amount.
  • the second ground height correction amount calculation subunit is used to integrate the fusion speed of the ground sensor at each time during the abnormal period to obtain a second ground height correction amount.
  • the ground height correction amount calculation subunit is configured to calculate the ground height correction amount according to the first ground height correction amount, the second ground height correction amount, and the fusion attitude.
  • the above-mentioned aircraft-to-ground height correction device can execute the aircraft-to-ground height correction method provided by the embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • the aircraft ground height correction method provided in the embodiment of the present invention.
  • FIG. 14 is a structural block diagram of an unmanned aerial vehicle 10 provided by an embodiment of the present invention.
  • the unmanned aerial vehicle 10 can be used to implement all or part of the functions of the main control chip.
  • the UAV 10 may include a processor 110, a memory 120 and a communication module 130.
  • the processor 110, the memory 120, and the communication module 130 establish a communication connection between any two through a bus.
  • the processor 110 may be of any type, and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 120 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as the program corresponding to the aircraft ground altitude correction method in the embodiment of the present invention Instructions/modules (for example, the reset module 51, the prediction module 52, the correction module 53, and the flight parameter adjustment module 54 shown in FIG. 13).
  • the processor 110 executes various functional applications and data processing of the aircraft ground height correction device 50 by running the non-transitory software programs, instructions, and modules stored in the memory 120, that is, realizes the aircraft pairing in any of the above-mentioned method embodiments. Ground height correction method.
  • the memory 120 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the aircraft's ground height correction device 50 Wait.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 120 may optionally include memories remotely provided with respect to the processor 110, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 120 stores instructions that can be executed by the at least one processor 110; the at least one processor 110 is used to execute the instructions to implement the aircraft ground height correction method in any of the foregoing method embodiments, for example, The above-described method steps 10, 20, 30, etc. are executed to realize the functions of the modules 51-54 in FIG. 13.
  • the communication module 130 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 130 may be any type of wireless or wired communication module 130, including but not limited to a WiFi module or a Bluetooth module.
  • the communication module 130 is used to communicate with the UAV 10.
  • the embodiment of the present invention also provides a non-transitory terminal-readable storage medium, the non-transitory terminal-readable storage medium stores terminal executable instructions, and the terminal executable instructions are executed by one or more processors.
  • 110 is executed, for example, executed by one processor 110 in FIG. 14, so that the above-mentioned one or more processors 110 may execute the aircraft ground height correction method in any of the above-mentioned method embodiments, for example, execute the above-described method steps 10, 20, 30, etc., realize the functions of modules 51-54 in FIG. 13.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware by a computer program in a computer program product.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by a related device, the related device can execute the flow of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the above products can execute the aircraft ground height correction method provided by the embodiments of the present invention, and have the corresponding functional modules and beneficial effects for executing the aircraft ground height correction method.
  • the method for correcting the altitude of the aircraft to the ground provided in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

一种对地高度校正方法及装置、无人飞行器(10),校正方法应用于无人飞行器(10),无人飞行器(10)包括用于检测无人飞行器(10)与着陆点之间的对地高度的对地传感器,方法包括:获取对地传感器发生异常前的正常对地高度(S10);计算对地传感器在异常期间的对地高度修正量(S20);根据对地高度修正量与正常对地高度,校正无人飞行器(10)的对地高度(S30)。校正方法提高了无人飞行器(10)的对地高度检测的准确度,提升了飞行器的降落性能。

Description

对地高度校正方法及装置、无人飞行器 【技术领域】
本发明涉及无人飞行器技术领域,尤其涉及一种对地高度校正方法及装置、无人飞行器。
【背景技术】
飞行器在空中正常飞行时,其上升速度和下降速度一般都较快,而对于商业无人飞行器而言,为了达到较好的客户体验,以及从安全性角度考虑,飞行器在低空时会被限速,特别是起飞降落时的速度会被限制得较小,以便于安全、平稳地起飞和降落。
在实现本发明的过程中,发明人发现相关技术至少存在以下问题:飞行器起飞和降落时,对地高度是一个关键的信息,若对地高度不准确,会影响飞行器的起飞降落性能。
【发明内容】
本发明实施例旨在提供一种对地高度校正方法及装置、无人飞行器,以解决现有技术中无人飞行器的对地高度不准确,降落性能差的技术问题。
为解决上述技术问题,本发明实施例提供以下技术方案:一种对地高度校正方法,应用于无人飞行器,所述无人飞行器包括用于检测所述无人飞行器与着陆点之间的对地高度的对地传感器,所述方法包括:
获取所述对地传感器发生异常前的正常对地高度;
计算所述对地传感器在异常期间的对地高度修正量;
根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器的对地高度。
可选地,所述计算所述对地传感器在异常期间的对地高度修正量,包括:
获取所述对地传感器在所述异常期间的融合数据;
根据所述融合数据,计算所述对地高度修正量。
可选地,所述融合数据包括融合高度;
所述根据所述融合数据,计算对地高度修正量,包括:
锁存所述对地传感器发生异常前的正常融合高度;
将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到所述对地高度修正量。
可选地,所述融合数据包括融合速度,所述根据所述融合数据,计算对地高度修正量,包括:
将所述对地传感器在所述异常期间每时刻的所述融合速度作积分处理,得到所述对地高度修正量。
可选地,所述融合数据包括融合高度、融合速度及融合姿态,所述根据所述融合数据,计算对地高度修正量,包括:
锁存所述对地传感器发生异常前的正常融合高度;
将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到第一对地高度修正量;
将所述对地传感器在所述异常期间每时刻的融合速度作积分处理,得到第二对地高度修正量;
根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量。
可选地,所述根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算对地高度修正量,包括:
根据预设加权算法,对所述第一对地高度修正量及所述第二对地高度修正量作加权处理,得到加权修正量;
根据所述融合姿态,将所述加权修正量转换至所述无人飞行器的坐标体系下,得到所述对地高度修正量。
可选地,所述方法还包括:
获取所述对地传感器在所述异常期间的异常失效信息;
判断所述异常失效信息是否满足预设校正触发条件;
若是,根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器的对地高度。
可选地,所述判断所述异常失效信息是否满足预设校正触发条件,包括:
锁存所述对地传感器出现异常时的当前融合水平速度;
将所述对地传感器在异常期间每时刻的融合水平速度与所述当前融合水平速度作差值积分运算,得到所述无人飞行器在异常期间内的水平相对距离;
判断所述水平相对距离是否小于预设距离阈值。
可选地,所述判断所述异常失效信息是否满足预设校正触发条件,包括:
计算所述对地传感器在异常期间的失效时长;
判断所述失效时长是否小于预设时长阈值。
可选地,校正所述无人飞行器的对地高度之后,所述方法还包括:
判断校正后的所述对地高度是否正常;
若正常,根据校正后的所述对地高度,调整所述无人飞行器的飞行参数;
若异常,获取当前融合高度,根据所述当前融合高度,调整所述无人飞行器的飞行参数。
可选地,所述根据校正后的所述对地高度,调整所述无人飞行器的飞行参数,包括:
判断校正后的所述对地高度是否小于预设对地高度;
若是,将所述飞行参数调整至第一预设参数范围。
可选地,所述预设参数包括飞行速度和停浆阈值;
所述将所述飞行参数调整至第一预设参数范围,包括:
将所述飞行速度调整至1.0~2.0m/s的范围内;
将所述停浆阈值调整至6.5~7.5m/s的范围内。
可选地,所述根据所述当前融合高度,调整所述无人飞行器的飞行参数,包括:
判断所述当前融合高度是否在预设融合高度范围内;
若是,将所述飞行参数调整至第二预设参数范围。
可选地,所述预设参数包括飞行速度和停浆阈值;
所述将所述飞行参数调整至第二预设参数范围,包括:
将所述飞行速度调整至0.2~0.3m/s的范围内;
将所述停浆阈值调整至2.8~3.2m/s的范围内。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种对地高度校正装置,应用于无人飞行器,所述无人飞行器包括用于检测所述无人飞 行器与着陆点之间的对地高度的对地传感器,包括:
复位模块,用于获取所述对地传感器在所述异常期间的异常失效信息,并判断所述异常失效信息是否满足预设校正触发条件。
预测模块,用于当所述对地传感器发生异常时,计算所述对地传感器在异常期间的对地高度修正量。
校正模块,用于当所述异常失效信息满足预设校正触发条件时,根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器的对地高度。
可选地,所述复位模块包括融合水平速度锁存单元、水平相对距离计算单元和第一判断单元;
所述融合水平速度锁存单元用于锁存所述对地传感器出现异常时的当前融合水平速度;
所述水平相对距离计算单元用于将所述对地传感器在异常期间每时刻的融合水平速度与所述当前融合水平速度作差值积分运算,得到所述无人飞行器在异常期间内的水平相对距离;
所述第一判断单元用于判断所述水平相对距离是否小于预设距离阈值。
可选地,所述复位模块包括失效时长计算单元和第二判断单元;
所述失效时长计算单元用于计算所述对地传感器在异常期间的失效时长;
所述第二判断单元用于判断所述失效时长是否小于预设时长阈值。
可选地,所述预测模块包括融合数据获取单元和对地高度修正量单元;
所述融合数据获取单元用于获取所述对地传感器在所述异常期间的融合数据;
所述对地高度修正量单元用于根据所述融合数据,计算所述对地高度修正量。
可选地,所述对地高度修正量单元包括正常融合高度获取子单元、第一对地高度修正量计算子单元、第二对地高度修正量计算子单元及对地高度修正量计算子单元;
所述正常融合高度获取子单元用于锁存所述对地传感器发生异常前的正常融合高度;
所述第一对地高度修正量计算子单元用于将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到第一对地高度 修正量;
所述第二对地高度修正量计算子单元用于将所述对地传感器在所述异常期间每时刻的融合速度作积分处理,得到第二对地高度修正量;
所述对地高度修正量计算子单元用于根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人飞行器。所述飞行器包括:至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行以上所述的飞行器对地高度校正方法。
与现有技术相比较,本发明实施例的提供飞行器对地高度校正方法通过首先获取无人飞行器的对地传感器发生异常前的正常对地高度,然后根据所述对地传感器在异常期间计算得到的对地高度修正量对所述正常对地高度进行校正,从而提高了所述无人飞行器的对地高度的准确度,提升了飞行器的降落性能。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明其中一实施例提供的对地高度校正方法的流程示意图;
图3是图2中S20的其中一实施例流程示意图;
图4是图3中S22的其中一实施例流程示意图;
图5是图4中S22的另一实施例流程示意图;
图6是图5中S228的其中一实施例流程示意图;
图7为本发明另一实施例提供的对地高度校正方法的流程示意图;
图8是图7中S50的其中一实施例流程示意图;
图9是图7中S50的另一实施例流程示意图;
图10为本发明再一实施例提供的对地高度校正方法的流程示意图;
图11是图10中S80的其中一实施例流程示意图;
图12是图10中S90的其中一实施例流程示意图;
图13为本发明其中一实施例提供的对地高度校正装置的结构框图;
图14为本发明其中一实施例提供的无人飞行器的结构框图。
【具体实施方式】
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。再者,本申请所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例提供了一种对地高度校正方法和装置,应用于无人飞行器10,由于所述无人飞行器10的对地传感器在所述无人飞行器10降落过程中容易受到地面环境干扰而不稳定,进而导致所述无人飞行器10实时获取得到的对地高度不准确,因此所述方法和装置首先获取无人飞行器10的对地传感器发生异常前的正常对地高度,然后根据所述对地传感器在异常期间计算得到的对地高度修正量对所述正常对地高度进行校正,从而提高了所述无人飞行器10的对地高度的准确度,提升了飞行器的降落性能。
以下举例说明所述无人飞行器10对地高度校正方法的应用环境。
图1是本发明实施例提供的对地高度校正方法和装置的应用环境的示意图;如图1所示,所述应用场景包括无人飞行器10、无线网络20、智能终端30以及用户40。用户40可操作智能终端30通过无线网络20操控所述无人飞行器10。
无人飞行器10可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人机、固定翼无人机、伞翼无人机、扑翼无人机以及直升机模型等。
所述无人飞行器10可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人飞行器10上还可以添加有一种或者多种功能模块,令无人飞行器10能够实现相应的功能。
例如,在本实施例中,所述无人飞行器10设置有加速度计、陀螺仪、磁力计、GPS导航仪、视觉传感器及对地传感器中的至少一种传感器。
其中,当所述无人飞行器10在降落过程中,所述无人飞行器10可根据所述加速度计获取得加速度信息判断是否执行着地动作。
其中,对地传感器用于检测所述无人飞行器10与着陆点之间的对地高度,所述对地传感器可为超声传感器、红外传感器及激光传感器等等。所述对地高度的准确度直接影响所述无人飞行器10降落过程中安全性,例如:在无人飞行器10降落时,无人飞行器10需要通过下视对地传感器来感知地面,如果下视对地传感器在某时间段出现问题则导致获取到的所述对地高度不准确,若此时所述无人飞行器10根据不准确的对地高度执行降落操作,可能会致使所述无人飞行器10出现突然停浆猛然砸地或不减速猛烈砸地的现象。
因此为了解决上述技术问题,相对应地,所述无人飞行器10设置有信息接收装置,接收并处理上述至少一种传感器采集的信息。同时相对应地,所述无人飞行器10设置有信息融合装置,所述信息融合装置可根据所述信息接收装置获取到的至少一种传感器采集的信息进行数据融合,所述融合数据可包括融合速度、融合高度及融合姿态角。所述无人飞行器10可根据所述所述融合数据计算所述对地传感器在异常期间的对地高度修正量,进而可根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器10的对地高度。
无人飞行器10上包含至少一个主控芯片,作为无人机飞行和数据传输等 的控制核心,整合一个或者多个模块,以执行相应的逻辑控制程序。
例如,在一些实施例中,所述主控芯片上可以包括用于可根据所述所述融合数据计算所述对地传感器在异常期间的对地高度修正量,还用于对可根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器10的对地高度的对地高度校正装置。
智能终端30可以是任何类型,用以与无人飞行器10建立通信连接的智能装置,例如手机、平板电脑或者智能遥控器等。该智能终端30可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,智能终端30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人飞行器10的遥控指令并通过触控显示屏向用户40展示航拍获得的图像信息,用户40还可以通过遥控触摸屏切换显示屏当前显示的图像信息。
在一些实施例中,无人飞行器10与智能终端30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人飞行器10可以通过双光相机采集图像的方式,由智能终端30对图像进行解析,从而实现用户40对于无人飞行器10的手势控制。
无线网络20可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络,例如位于不同信号频段的蓝牙网络、WiFi网络、无线蜂窝网络或者其结合。
图2为本发明实施例提供的无人飞行器10对地高度校正方法的实施例。如图2所示,该无人飞行器10对地高度校正方法包括如下步骤:
S10:获取所述对地传感器发生异常前的正常对地高度。
在所述无人飞行器10降落过程中,需要所述对地传感器实时获取所述对地高度,当所述对地传感器受到干扰而不稳定,从而导致所述对地高度不准确。例如,所述对地传感器受到周围环境(如高压线、铁矿厂等)所产生的磁场干扰,又例如,所无人飞行器10老化或者炸机多次,可能引起所述对地传感器损坏。
具体地,可根据获取到的所述对地传感器的对地高度信息来判断所述对 地传感器是否发生异常。以超声传感器为例说明,所述超声传感器的对地高度信息包括噪声强度、飞行垂直速度、时间戳及与所述时间戳对应的对地高度。可采取如下方法根据所述超声传感器的对地高度信息判断所述超声传感器是否发生异常,举例说明,判断所述噪声强度是否小于预设强度阈值;判断所述飞行垂直速度与融合数据的差值是否小于预设误差阈值;判断所述时间戳更新是否正常;判断与所述时间戳对应的对地高度是否持续发生变化;若上述判断均为是,则可确认所述超声传感器为正常。否则,则可确认所述超声传感器发生异常。
当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常前的正常对地高度。
举例说明,若对地传感器发生异常时刻为T i,所述异常时刻Ti对应有一异常对地高度H i。所述异常时刻T i前一时刻为T i-1,可以理解的是,所述T i-1时刻为所述对地传感器未发生异常的时刻,即正常时刻T i-1对应有一正常对地高度H i-1。即当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常前的正常时刻T i-1对应的正常对地高度H i-1
S20:计算所述对地传感器在异常期间的对地高度修正量。
其中,所述异常时间是指当所述对地传感器发生异常起至所述对地传感器恢复正常的时间区间,例如,所述对地传感器发生异常时刻为T i,所述对地传感器恢复的正常时刻为T i+1,即所述异常期间为T i+1-T i
其中,可通过获取到的所述无人飞行器10机载的多个传感器的融合数据,计算在异常期间的对地高度修正量。
具体地,所述传感器包括加速度计、磁力计、陀螺仪、定位仪和视觉传感器中的至少一种传感器。
具体地,数据融合的技术是对传感器采集的数据进行分析,整理,融合等一系列的操作处理,多传感器融合数据能够实现对对地高度的修正。
在本实施例中,基于加权平均法对多传感器采集的数据进行数据融合。具体地,第一步就要将所要使用到的各种软硬件进行初始化操作,如传感器初始化以及卡尔曼滤波初始化等;第二步要获取IMU里面的数据,再通过这部分数据信息做判断,看是否需要做姿态角补偿,若是需要补偿,具体数值为多少;第三步要获取加速度计、磁力计、陀螺仪、定位仪和视觉传感器等 传感器采集的数据,针对这部分数据值,做相关的加权平均操作,把得到的数据值进行卡尔曼滤波,从而产生所述融合数据。
所述融合数据包括融合速度、融合高度及融合姿态角,进而将融合速度、融合高度及融合姿态角中的一个或多个融合数据结合所述对地传感器获得的对地高度得到所述对地高度修正量。
S30:根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器10的对地高度。
具体地,可将异常期间的对地高度修正量与所述对地传感器发生异常前的正常对地高度进行求和且/或求差运算得到校正后的对地高度。
举例说明,计算得到异常期间的对地高度修正量△H,所述对地传感器发生异常前的正常对地高度为H b,即校正后的对地高度为H b±△H。
由于所述无人飞行器10的对地传感器在所述无人飞行器10降落过程中容易受到地面环境干扰而不稳定,进而导致所述无人飞行器10实时获取得到的对地高度不准确,本发明实施例提供了一种无人飞行器10对地高度校正方法,通过首先获取无人飞行器10的对地传感器发生异常前的正常对地高度,然后根据所述对地传感器在异常期间计算得到的对地高度修正量对所述正常对地高度进行校正,从而提高了所述无人飞行器10的对地高度的准确度,提升了飞行器的降落性能。
为了准确的计算所述对地传感器在异常期间的对地高度修正量,在一些实施例中,请参阅图3,S20包括如下步骤:
S21:获取所述对地传感器在所述异常期间的融合数据。
其中,所述异常时间是指当所述对地传感器发生异常起至所述对地传感器恢复正常的时间区间,例如,所述对地传感器发生异常时刻为T i,所述对地传感器恢复的正常时刻为T i+1,即所述异常期间为T i+1-T i
具体地,所述异常期间的融合数据是指将加速度计、磁力计、陀螺仪、定位仪和视觉传感器中的至少一种传感器采集的数据信息进行数据融合得到的,所述数据信息可采用多种不同的数据融合算法进行处理,例如:加权平均法、归一化加权平均法、卡尔曼滤波和扩展卡尔曼滤波。
在本实施例中,采用加权数据融合算计进行数据融合。
S22:根据所述融合数据,计算所述对地高度修正量。
具体地,所述融合数据包括融合速度、融合高度及融合姿态角,进而将融合速度、融合高度及融合姿态角中的一个或多个融合数据结合所述对地传感器获得的对地高度得到所述对地高度修正量。
为了更好的根据所述融合数据,得到准确的所述对地高度修正量,在一些实施例中,请参阅图4,S22包括如下步骤:
S221:锁存所述对地传感器发生异常前的正常融合高度。
具体地,可根据获取到的所述对地传感器的对地高度信息来判断所述对地传感器是否发生异常。
当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常前的正常融合高度。
举例说明,若对地传感器发生异常时刻为T i,所述异常时刻T i对应有一异常融合高度F i。所述异常时刻T i前一时刻为T i-1,可以理解的是,所述T i-1时刻为所述对地传感器未发生异常的时刻,即正常时刻T i-1对应有一正常融合高度F i-1。即当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常前的正常时刻T i-1对应的正常融合高度F i-1
S223:将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到所述对地高度修正量。
其中,所述异常时间是指当所述对地传感器发生异常起至所述对地传感器恢复正常的时间区间,例如,所述对地传感器发生异常时刻为T i,所述对地传感器恢复的正常时刻为T i+n,即所述异常期间为T i+n-T i
所述异常期间T i+n-T i内包括N个时刻,每个时刻对应有一所述无人飞行器10的融合高度。将所述对地传感器在所述异常期间T i+n-T i每时刻的融合高度与所述正常融合高度作差值运算,即可得到所述对地高度修正量。
举例说明,所述异常时间T 6-T 2内包括有异常时刻T 3、T 4及T 5,异常时刻T 3对应有一融合高度F 3,异常时刻T 4对应有一融合高度 F4,异常时刻T 5对应有一融合高度F 5,异常时刻T 2的前一时刻为T 1,所述T 1为正常时刻,所述正常时刻T 1对应的正常融合高度F 1,然后分别将异常时刻T 3、T 4及T 5对应的融合高度F 3F4及F 5与正常融合高度F 1作差值运算,得到每个异常时刻的所述对地高度修正量△F3、△F 4及△F 5
为了更好的根据所述融合数据,得到准确的所述对地高度修正量,在一 些实施例中,请参阅图5,S22包括如下步骤:
将所述对地传感器在所述异常期间每时刻的所述融合速度作积分处理,得到所述对地高度修正量。
具体地,所述异常期间T i+n-T i内包括N个时刻,每个时刻对应有一所述无人飞行器10的融合速度。将所述对地传感器在所述异常期间T i+n-T i每时刻的融合速度作积分处理,即可得到所述对地高度修正量。
举例说明,所述异常时间T 6-T 2内包括有异常时刻T 3、T 4及T 5,异常时刻 T3对应有一融合速度V 3,异常时刻T 4对应有一融合速度V 4,异常时刻 T5对应有一融合速度V 5,然后分别将异常时刻T 3、T 4及T 5对应的融合速度V 3、V 4及V 5,然后对V 3、V 4及V 5作积分处理,即可得到所述对地高度修正量。
为了更好的根据所述融合数据,得到准确的所述对地高度修正量,在一些实施例中,请参阅图5,S22包括如下步骤:
S222:锁存所述对地传感器发生异常前的正常融合高度。
具体地,可根据获取到的所述对地传感器的对地高度信息来判断所述对地传感器是否发生异常。当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常前的正常融合高度。
举例说明,若对地传感器发生异常时刻为T i,所述异常时刻T i对应有一异常融合高度F i。所述异常时刻T i前一时刻为T i-1,可以理解的是,所述T i-1时刻为所述对地传感器未发生异常的时刻,即正常时刻T i-1对应有一正常融合高度F i-1。即当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常前的正常时刻T i-1对应的正常融合高度F i-1
S224:将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到第一对地高度修正量。
其中,所述异常时间是指当所述对地传感器发生异常起至所述对地传感器恢复正常的时间区间,例如,所述对地传感器发生异常时刻为T i,所述对地传感器恢复的正常时刻为T i+n,即所述异常期间为T i+n-T i
所述异常期间T i+n-T i内包括N个时刻,每个时刻对应有一所述无人飞行器10的融合高度。将所述对地传感器在所述异常期间T i+n-T i每时刻的融合高度与所述正常融合高度作差值运算,即可得到所述第一对地高度修正量。
举例说明,所述异常时间T 6-T 2内包括有异常时刻T 3、T 4及T 5,异常时刻 T 3对应有一融合高度F 3,异常时刻T 4对应有一融合高度F 4,异常时刻T 5对应有一融合高度F 5,异常时刻T 2的前一时刻为T 1,所述T 1为正常时刻,所述正常时刻T 1对应的正常融合高度F 1,然后分别将异常时刻T 3、T 4及T 5对应的融合高度F 3、F 4及F 5与正常融合高度F 1作差值运算,得到每个异常时刻的对应的所述第一对地高度修正量△F 3、△F 4及△F 5
S226:将所述对地传感器在所述异常期间每时刻的融合速度作积分处理,得到第二对地高度修正量。
具体地,所述异常期间T i+n-T i内包括N个时刻,每个时刻对应有一所述无人飞行器10的融合速度。将所述对地传感器在所述异常期间T i+n-T i每时刻的融合速度作积分处理,即可得到所述对地高度修正量。
举例说明,所述异常时间T 6-T 2内包括有异常时刻T 3、T 4及T 5,异常时刻T 3对应有一融合速度V 3,异常时刻T 4对应有一融合速度V 4,异常时刻T 5对应有一融合速度V 5,然后分别将异常时刻T 3、T 4及T 5对应的融合速度V 3、V 4及V 5,然后对V 3、V 4及V 5作积分处理,即可得到所述第二对地高度修正量。
S228:根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量。
为了更好的根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量,在一些实施例中,请参阅图6,S228包括如下步骤:
S2281:根据预设加权算法,对所述第一对地高度修正量及所述第二对地高度修正量作加权处理,得到加权修正量。
其中,所述预设加权算法可为加权平均算法、GPA标准加权算法、二进制加权算法等等。
S2282:根据所述融合姿态,将所述加权修正量转换至所述无人飞行器10的坐标体系下,得到所述对地高度修正量。
为了及时有效地校正所述无人飞行器10的对地高度,当检测到所述对地传感器发生异常时,在一些实施例中,请参阅图7,所述方法还包括:
S40:获取所述对地传感器在所述异常期间的异常失效信息。
具体地,所述异常失效信息可为在所述异常期间的所述对地传感器获取到的传感信息,例如所述传感信息包括无人飞行器10的时间、速度及高度等 信息。由于所述传感信息是在传感器发生异常的期间获取到的,所以所述传感信息即为异常失效信息。
S50:判断所述异常失效信息是否满足预设校正触发条件。
具体地,判断在所述异常期间的所述对地传感器获取到的传感信息是否满足预设校正出发条件。例如判断在所述异常期间的所述对地传感器获取到的时间传感信息是否满足预设校正触发条件。又例如判断在所述异常期间的所述对地传感器获取到的速度传感信息是否满足预设校正触发条件。
S60:若是,根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器10的对地高度。
具体地,若所述异常失效信息满足预设校正触发条件,具体地,可将异常期间的对地高度修正量与所述对地传感器发生异常前的正常对地高度进行求和且/或求差运算得到校正后的对地高度。
举例说明,计算得到异常期间的对地高度修正量△H,所述对地传感器发生异常前的正常对地高度为H b,即校正后的对地高度为H b±△H。
为了及时所述异常失效信息是否满足预设校正触发条件,在一些实施例中,请参阅图8,S50包括如下步骤:
S51:锁存所述对地传感器出现异常时的当前融合水平速度;
具体地,当检测到所述对地传感器发生异常时,获取所述对地传感器发生异常时的当前融合水平速度。例如若对地传感器发生异常时刻为T i,所述异常时刻T i对应有一融合水平速度V x。所融合水平速度V x即为所述对地传感器出现异常时的当前融合水平速度。
S53:将所述对地传感器在异常期间每时刻的融合水平速度与所述当前融合水平速度作差值积分运算,得到所述无人飞行器10在异常期间内的水平相对距离。
其中,所述异常时间是指当所述对地传感器发生异常起至所述对地传感器恢复正常的时间区间,例如,所述对地传感器发生异常时刻为T i,所述对地传感器恢复的正常时刻为T i+n,即所述异常期间为T i+n-T i
所述异常期间T i+n-T i内包括N个时刻,每个时刻对应有一所述无人飞行器10的融合水平速度。将所述对地传感器在所述异常期间T i+n-T i每时刻的融合水平速度与所述对地传感器出现异常时的当前融合水平速度作差值积分运 算,即可得到所述无人飞行器10在异常期间内的水平相对距离。
举例说明,所述异常时间T 6-T 2内包括有异常时刻T 3、T 4及T 5,异常时刻T 3对应有一融合水平速度V 3x,异常时刻T 4对应有一融合水平速度V 4x,异常时刻T 5对应有一融合水平速度V 5x,异常时刻T 2为所述对地传感器刚开始发生异常的时刻,所述异常时刻T 2对应的当前融合水平速度V 2x,然后分别将异常时刻T 3、T 4及T 5对应的融合高度V 3x、V 4x及V 5x与当前融合水平速度V 2x作差值运算,得到每个异常时刻的融合水平速度差值△V 3x、△V 4x及△V 5x。然后将每个异常时刻的融合水平速度差值△V 3x、△V 4x及△V 5x进行积分运算,即可得到所述无人飞行器10在异常期间内的水平相对距离。
S55:判断所述水平相对距离是否小于预设距离阈值。
具体地,将所述水平相对距离与预设距离阈值进行比较,判断所述水平相对距离是否小于预设距离阈值。
为了及时所述异常失效信息是否满足预设校正触发条件,在一些实施例中,请参阅图9,S50包括如下步骤:
S52:计算所述对地传感器在异常期间的失效时长。
其中,所述失效时长是指当所述对地传感器发生异常的时刻与所述对地传感器恢复正常时刻的之间的时间区间。
举例说明,所述对地传感器发生异常时刻为T i,所述对地传感器恢复的正常时刻为T i+n,即所述异常期间的失效时长为T i+n与T i之间的时间区间。
S54:判断所述失效时长是否小于预设时长阈值。
具体地,将所述失效时长与预设时长阈值进行比较,判断所述失效时长是否小于预设时长阈值。
为了能够根据校正后的所述无人飞行器10的对地高度,调整所述无人飞行器10的飞行参数,实施安全降落,在一些实施例中,请参阅图10,在所述校正所述无人飞行器10的对地高度之后,所述方法还包括:
S70:判断校正后的所述对地高度是否正常。
具体地,获取校正后的所述无人飞行器10的当前融合高度,将所述校正后的所述无人飞行器10的当前融合高度与所述校正后的所述对地高度差值运算,若所述当前融合高度与所述对地高度的差值小于或等于预设阈值,则可判定校正后的所述对地高度是正常的。若所述当前融合高度与所述对地高度 的差值大于预设阈值,则可判定校正后的所述对地高度是不正常的。
S80:若正常,根据校正后的所述对地高度,调整所述无人飞行器10的飞行参数。
具体地,若所述当前融合高度与所述对地高度的差值小于或等于预设阈值,则根据校正后的所述对地高度,调整所述无人飞行器10的飞行参数。
S90:若异常,获取当前融合高度,根据所述当前融合高度,调整所述无人飞行器10的飞行参数。
具体地,若所述当前融合高度与所述对地高度的差值大于预设阈值,根据所述当前融合高度,调整所述无人飞行器10的飞行参数。
为了更好的根据校正后的所述对地高度,调整所述无人飞行器10的飞行参数,在一些实施例中,请参阅图11,S80包括如下步骤:
S81:判断校正后的所述对地高度是否小于预设对地高度。
具体地,将所述校正后的所述对地高度与预设对地高度进行比较,判断所述校正后的所述对地高度是否小于预设对地高度。例如,若校正后的对地高度为1.2m,预设对地高度为0.5m,校正后的对地高度1.2m大于预设对地高度0.5m,则可判定所述校正后的所述对地高度不小于预设对地高度。若校正后的对地高度为0.2m,预设对地高度为0.5m,则可判定所述校正后的所述对地高度小于预设对地高度。
S82:若是,将所述飞行参数调整至第一预设参数范围。
其中,所述预设参数包括无人飞行器10的飞行速度和停浆阈值。
具体地,若校正后的所述对地高度是否小于预设对地高度,则将所述飞行速度调整至1.0~2.0m/s的范围内;将所述停浆阈值调整至6.5~7.5m/s的范围内。
为了更好的根据所述当前融合高度,调整所述无人飞行器10的飞行参数,在一些实施例中,请参阅图12,S90包括如下步骤:
S91:判断所当前述融合高度是否在预设融合高度范围内;
具体地,将所述当前融合高度与预设融合高度进行比较,判断获取到的当前融合高度是否在预设融合高度范围内。例如,若获取到的当前融合高度为3m,预设融合高度范围为-2~2m,则可判定获取到的当前融合高度为3m不在预设融合高度范围为-2~2m内。若获取到的当前融合高度为1.5m,预设融合 高度范围为-2~2m,则可判定获取到的当前融合高度为1.5m在预设融合高度范围为-2~2m内。
S92:若是,将所述飞行参数调整至第二预设参数范围。
其中,所述预设参数包括无人飞行器10的飞行速度和停浆阈值。
具体地,若所述当前融合高度在预设融合高度范围内,则将所述飞行速度调整至0.2-0.3m/s的范围内;将所述停浆阈值调整至2.8-3.2m/s的范围内。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行,亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种对地高度校正装置,应用于无人飞行器10,所述无人飞行器10包括用于检测所述无人飞行器10与着陆点之间的对地高度的对地传感器。请参阅图13,该对地高度校正装置50包括:复位模块51、预测模块52及校正模块53。
所述复位模块51用于获取所述对地传感器在所述异常期间的异常失效信息,并判断所述异常失效信息是否满足预设校正触发条件。
所述预测模块52用于当所述对地传感器发生异常时,计算所述对地传感器在异常期间的对地高度修正量。
所述校正模块53用于当所述异常失效信息满足预设校正触发条件时,根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器10的对地高度。
因此,在本实施例中,所述飞行器对地高度校正装置通过首先获取无人飞行器10的对地传感器发生异常前的正常对地高度,然后根据所述对地传感器在异常期间计算得到的对地高度修正量对所述正常对地高度进行校正,从而提高了所述无人飞行器10的对地高度的准确度,提升了飞行器的降落性能。
在一些实施例中,飞行器对地高度校正装置50还包括飞行参数调整模块54,所述飞行参数调整模块用于判断校正后的所述对地高度是否正常;若正常,根据校正后的所述对地高度,调整所述无人飞行器10的飞行参数;若异常,获取当前融合高度,根据所述当前融合高度,调整所述无人飞行器10的飞行参数。
所述飞行参数调整模块54包括第一判定单元和第一飞行参数调整单元;
所述第一判定单元用于判断校正后的所述对地高度是否小于预设对地高度;所述第一飞行参数调整单元用于当校正后的所述对地高度小于预设对地高度时,将所述飞行参数调整至第一预设参数范围。所述所述第一飞行参数调整单元具体用于将所述飞行速度调整至1.0-2.0m/s的范围内;将所述停浆阈值调整至6.5-7.5m/s的范围内。
在一些实施例中,所述飞行参数调整模块包括第二判定单元和第二飞行参数调整单元。
所述第二判定单元用于判断所述融合高度是否在预设融合高度范围内;
所述第二飞行参数调整单元用于当所述当前融合高度在预设融合高度范围内时,将所述飞行参数调整至第二预设参数范围。所述第二飞行参数调整单元具体用于将所述飞行速度调整至0.2-0.3m/s的范围内;将所述停浆阈值调整至2.8-3.2m/s的范围内。
其中,所述复位模块51包括融合水平速度锁存单元、水平相对距离计算单元和第一判断单元。
所述融合水平速度锁存单元用于锁存所述对地传感器出现异常时的当前融合水平速度;
所述水平相对距离计算单元用于将所述对地传感器在异常期间每时刻的融合水平速度与所述当前融合水平速度作差值积分运算,得到所述无人飞行器10在异常期间内的水平相对距离;
所述第一判断单元用于判断所述水平相对距离是否小于预设距离阈值。
其中,在一些实施例中,所述复位模块51包括失效时长计算单元和第二判断单元;所述失效时长计算单元用于计算所述对地传感器在异常期间的失效时长;所述第二判断单元用于判断所述失效时长是否小于预设时长阈值。
其中,所述所述预测模块52包括融合数据获取单元和对地高度修正量单元。
所述融合数据获取单元用于获取所述对地传感器在所述异常期间的融合数据;所述对地高度修正量单元用于根据所述融合数据,计算所述对地高度修正量。
所述所述对地高度修正量单元包括正常融合高度获取子单元、第一对地 高度修正量计算子单元、第二对地高度修正量计算子单元及对地高度修正量计算子单元。
所述正常融合高度获取子单元用于锁存所述对地传感器发生异常前的正常融合高度。
所述第一对地高度修正量计算子单元用于将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到第一对地高度修正量。
所述第二对地高度修正量计算子单元用于将所述对地传感器在所述异常期间每时刻的融合速度作积分处理,得到第二对地高度修正量。
所述对地高度修正量计算子单元用于根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量。
需要说明的是,上述飞行器对地高度校正装置可执行本发明实施例所提供的飞行器对地高度校正方法,具备执行方法相应的功能模块和有益效果。未在飞行器对地高度校正装置实施例中详尽描述的技术细节,可参见本发明实施例所提供的飞行器对地高度校正方法。
图14为本发明实施例提供的无人飞行器10的结构框图。该无人飞行器10可以用于实现所述主控芯片中的全部或者部分功能模块的功能。如图14所示,该无人飞行器10可以包括:处理器110、存储器120以及通信模块130。所述处理器110、存储器120以及通信模块130之间通过总线的方式,建立任意两者之间的通信连接。
处理器110可以为任何类型,具备一个或者多个处理核心的处理器110。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的飞行器对地高度校正方法对应的程序指令/模块(例如,附图13所示的复位模块51、预测模块52、校正模块53及飞行参数调整模块54)。处理器110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,从而执行飞行器对地高度校正装置50的各种功能应用以及数据处理,即实现上述任一方法实施例中飞行器对地高度校正方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据飞行器对地高度校正装置50的使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器120可选包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器120存储有可被所述至少一个处理器110执行的指令;所述至少一个处理器110用于执行所述指令,以实现上述任意方法实施例中飞行器对地高度校正方法,例如,执行以上描述的方法步骤10、20、30等,实现图13中的模块51-54的功能。
通信模块130是用于建立通信连接,提供物理信道的功能模块。通信模块130以是任何类型的无线或者有线通信模块130,包括但不限于WiFi模块或者蓝牙模块等。所述通信模块130用于与无人飞行器10通信连接。
进一步地,本发明实施例还提供了一种非暂态终端可读存储介质,所述非暂态终端可读存储介质存储有终端可执行指令,该终端可执行指令被一个或多个处理器110执行,例如,被图14中的一个处理器110执行,可使得上述一个或多个处理器110执行上述任意方法实施例中飞行器对地高度校正方法,例如,执行以上描述的方法步骤10、20、30等等,实现图13中的模块51-54的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计 算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的飞行器对地高度校正方法,具备执行飞行器对地高度校正方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的飞行器对地高度校正方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种对地高度校正方法,应用于无人飞行器,所述无人飞行器包括用于检测所述无人飞行器与着陆点之间的对地高度的对地传感器,其特征在于,所述方法包括:
    获取所述对地传感器发生异常前的正常对地高度;
    计算所述对地传感器在异常期间的对地高度修正量;
    根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器的对地高度。
  2. 根据权利要求1所述的方法,其特征在于,所述计算所述对地传感器在异常期间的对地高度修正量,包括:
    获取所述对地传感器在所述异常期间的融合数据;
    根据所述融合数据,计算所述对地高度修正量。
  3. 根据权利要求2所述的方法,其特征在于,所述融合数据包括融合高度;
    所述根据所述融合数据,计算对地高度修正量,包括:
    锁存所述对地传感器发生异常前的正常融合高度;
    将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到所述对地高度修正量。
  4. 根据权利要求2所述的方法,其特征在于,所述融合数据包括融合速度,所述根据所述融合数据,计算对地高度修正量,包括:
    将所述对地传感器在所述异常期间每时刻的所述融合速度作积分处理,得到所述对地高度修正量。
  5. 根据权利要求2所述的方法,其特征在于,所述融合数据包括融合高度、融合速度及融合姿态,所述根据所述融合数据,计算对地高度修正量,包括:
    锁存所述对地传感器发生异常前的正常融合高度;
    将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到第一对地高度修正量;
    将所述对地传感器在所述异常期间每时刻的融合速度作积分处理,得到 第二对地高度修正量;
    根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算对地高度修正量,包括:
    根据预设加权算法,对所述第一对地高度修正量及所述第二对地高度修正量作加权处理,得到加权修正量;
    根据所述融合姿态,将所述加权修正量转换至所述无人飞行器的坐标体系下,得到所述对地高度修正量。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    获取所述对地传感器在所述异常期间的异常失效信息;
    判断所述异常失效信息是否满足预设校正触发条件;
    若是,根据所述对地高度修正量与所述正常对地高度,校正所述无人飞行器的对地高度。
  8. 根据权利要求7所述的方法,其特征在于,所述判断所述异常失效信息是否满足预设校正触发条件,包括:
    锁存所述对地传感器出现异常时的当前融合水平速度;
    将所述对地传感器在异常期间每时刻的融合水平速度与所述当前融合水平速度作差值积分运算,得到所述无人飞行器在异常期间内的水平相对距离;
    判断所述水平相对距离是否小于预设距离阈值。
  9. 根据权利要求7所述的方法,其特征在于,所述判断所述异常失效信息是否满足预设校正触发条件,包括:
    计算所述对地传感器在异常期间的失效时长;
    判断所述失效时长是否小于预设时长阈值。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,校正所述无人飞行器的对地高度之后,所述方法还包括:
    判断校正后的所述对地高度是否正常;
    若正常,根据校正后的所述对地高度,调整所述无人飞行器的飞行参数;
    若异常,获取当前融合高度,根据所述当前融合高度,调整所述无人飞行器的飞行参数。
  11. 根据权利要求10所述的方法,其特征在于,所述根据校正后的所述对地高度,调整所述无人飞行器的飞行参数,包括:
    判断校正后的所述对地高度是否小于预设对地高度;
    若是,将所述飞行参数调整至第一预设参数范围。
  12. 根据权利要求11所述的方法,其特征在于,所述预设参数包括飞行速度和停浆阈值;
    所述将所述飞行参数调整至第一预设参数范围,包括:
    将所述飞行速度调整至1.0~2.0m/s的范围内;
    将所述停浆阈值调整至6.5~7.5m/s的范围内。
  13. 根据权利要求10所述的方法,其特征在于,所述根据所述当前融合高度,调整所述无人飞行器的飞行参数,包括:
    判断所述当前融合高度是否在预设融合高度范围内;
    若是,将所述飞行参数调整至第二预设参数范围。
  14. 根据权利要求13所述的方法,其特征在于,所述第二预设参数包括飞行速度和停浆阈值;
    所述将所述飞行参数调整至第二预设参数范围,包括:
    将所述飞行速度调整至0.2~0.3m/s的范围内;
    将所述停浆阈值调整至2.8~3.2m/s的范围内。
  15. 一种对地高度校正装置,应用于无人飞行器,所述无人飞行器包括用于检测所述无人飞行器与着陆点之间的对地高度的对地传感器,其特征在于,包括:
    复位模块,用于获取所述对地传感器在异常期间的异常失效信息,并判断所述异常失效信息是否满足预设校正触发条件。
    预测模块,用于当所述对地传感器发生异常时,计算所述对地传感器在所述异常期间的对地高度修正量。
    校正模块,用于当所述异常失效信息满足预设校正触发条件,根据所述对地高度修正量与正常对地高度,校正所述无人飞行器的所述对地高度。
  16. 根据权利要求15所述的对地高度校正装置,其特征在于,
    所述复位模块包括融合水平速度锁存单元、水平相对距离计算单元和第一判断单元;
    所述融合水平速度锁存单元用于锁存所述对地传感器出现异常时的当前融合水平速度;
    所述水平相对距离计算单元用于将所述对地传感器在异常期间每时刻的融合水平速度与所述当前融合水平速度作差值积分运算,得到所述无人飞行器在所述异常期间内的水平相对距离;
    所述第一判断单元用于判断所述水平相对距离是否小于预设距离阈值。
  17. 根据权利要求15所述的对地高度校正装置,其特征在于,
    所述复位模块包括失效时长计算单元和第二判断单元;
    所述失效时长计算单元用于计算所述对地传感器在所述异常期间的失效时长;
    所述第二判断单元用于判断所述失效时长是否小于预设时长阈值。
  18. 根据权利要求15所述的对地高度校正装置,其特征在于,
    所述预测模块包括融合数据获取单元和对地高度修正量单元;
    所述融合数据获取单元用于获取所述对地传感器在所述异常期间的融合数据;
    所述对地高度修正量单元用于根据所述融合数据,计算所述对地高度修正量。
  19. 根据权利要求18所述的对地高度校正装置,其特征在于,
    所述对地高度修正量单元包括正常融合高度获取子单元、第一对地高度修正量计算子单元、第二对地高度修正量计算子单元及对地高度修正量计算子单元;
    所述正常融合高度获取子单元用于锁存所述对地传感器发生异常前的正常融合高度;
    所述第一对地高度修正量计算子单元用于将所述对地传感器在所述异常期间每时刻的融合高度与所述正常融合高度作差值运算,得到第一对地高度修正量;
    所述第二对地高度修正量计算子单元用于将所述对地传感器在所述异常期间每时刻的融合速度作积分处理,得到第二对地高度修正量;
    所述对地高度修正量计算子单元用于根据所述第一对地高度修正量、所述第二对地高度修正量及所述融合姿态,计算所述对地高度修正量。
  20. 一种无人飞行器,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1-14中任一项所述的飞行器对地高度校正方法。
PCT/CN2020/118852 2019-10-22 2020-09-29 对地高度校正方法及装置、无人飞行器 WO2021078005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911007421.6A CN110658831B (zh) 2019-10-22 2019-10-22 对地高度校正方法及装置、无人飞行器
CN201911007421.6 2019-10-22

Publications (1)

Publication Number Publication Date
WO2021078005A1 true WO2021078005A1 (zh) 2021-04-29

Family

ID=69042004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118852 WO2021078005A1 (zh) 2019-10-22 2020-09-29 对地高度校正方法及装置、无人飞行器

Country Status (2)

Country Link
CN (1) CN110658831B (zh)
WO (1) WO2021078005A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115808186A (zh) * 2023-01-29 2023-03-17 中国空气动力研究与发展中心高速空气动力研究所 一种扑翼飞行器距离测量结果的校正方法
CN116147578A (zh) * 2023-03-21 2023-05-23 广东汇天航空航天科技有限公司 高度检测方法、装置、终端设备以及存储介质
CN117009908A (zh) * 2023-09-25 2023-11-07 中国民用航空飞行学院 一种飞行异常状态识别与预测系统及方法
CN117073717A (zh) * 2023-07-17 2023-11-17 江苏省地质调查研究院 一种无人机测距校准方法及系统
CN118220505A (zh) * 2024-05-23 2024-06-21 中汽北消(北京)应急装备科技有限公司 一种无人机锁紧模块的控制系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658831B (zh) * 2019-10-22 2022-04-15 深圳市道通智能航空技术股份有限公司 对地高度校正方法及装置、无人飞行器
CN114594472B (zh) * 2022-02-24 2023-06-27 中国电子科技集团公司第十研究所 基于外信息的无线电高度表数据处理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913775A (zh) * 2015-06-19 2015-09-16 广州快飞计算机科技有限公司 无人机对地高度的测量方法、无人机定位方法及装置
CN105203075A (zh) * 2015-09-15 2015-12-30 北京安达维尔航空设备有限公司 无线电高度表数据融合测高系统以及测高方法
CN105346706A (zh) * 2015-11-13 2016-02-24 深圳市道通智能航空技术有限公司 飞行装置、飞行控制系统及方法
US20160257422A1 (en) * 2014-03-27 2016-09-08 Ambiton Sp. Z O.O. Device for aeroplane landing monitoring
CN109282786A (zh) * 2017-07-21 2019-01-29 昊翔电能运动科技(昆山)有限公司 用于固定翼无人机的测量高度方法及装置
CN110146055A (zh) * 2019-05-21 2019-08-20 深圳市道通智能航空技术有限公司 一种超声异常检测方法、装置及电子设备
CN110658831A (zh) * 2019-10-22 2020-01-07 深圳市道通智能航空技术有限公司 对地高度校正方法及装置、无人飞行器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988618B1 (fr) * 2012-03-30 2014-05-09 Parrot Estimateur d'altitude pour drone a voilure tournante a rotors multiples
UA103633U (ru) * 2015-06-15 2015-12-25 M E Zhukovsky Nat Aerospace University Kharkiv Aviat Inst Система автоматического управления высотой полета беспилотного летательного аппарата
CN107783548B (zh) * 2016-08-25 2021-02-26 大连楼兰科技股份有限公司 基于多传感器信息融合技术的数据处理方法
CN106403940B (zh) * 2016-08-26 2018-10-19 杨百川 一种抗大气参数漂移的无人机飞行导航系统高度信息融合方法
WO2018058288A1 (zh) * 2016-09-27 2018-04-05 深圳市大疆创新科技有限公司 用于检测飞行高度的方法、装置及无人机
CN106225769B (zh) * 2016-09-30 2020-01-21 深圳市富微科创电子有限公司 一种飞行器定高方法和系统
CN106595578B (zh) * 2017-01-25 2019-06-14 拓攻(南京)机器人有限公司 一种基于多传感器信息融合的无人机高度测量方法及系统
CN109211185A (zh) * 2017-06-30 2019-01-15 北京臻迪科技股份有限公司 一种飞行设备、获取位置信息的方法及装置
CN107577238B (zh) * 2017-08-25 2020-12-18 深圳禾苗通信科技有限公司 基于ukf的无人机气压计异常数据处理的高度控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160257422A1 (en) * 2014-03-27 2016-09-08 Ambiton Sp. Z O.O. Device for aeroplane landing monitoring
CN104913775A (zh) * 2015-06-19 2015-09-16 广州快飞计算机科技有限公司 无人机对地高度的测量方法、无人机定位方法及装置
CN105203075A (zh) * 2015-09-15 2015-12-30 北京安达维尔航空设备有限公司 无线电高度表数据融合测高系统以及测高方法
CN105346706A (zh) * 2015-11-13 2016-02-24 深圳市道通智能航空技术有限公司 飞行装置、飞行控制系统及方法
CN109282786A (zh) * 2017-07-21 2019-01-29 昊翔电能运动科技(昆山)有限公司 用于固定翼无人机的测量高度方法及装置
CN110146055A (zh) * 2019-05-21 2019-08-20 深圳市道通智能航空技术有限公司 一种超声异常检测方法、装置及电子设备
CN110658831A (zh) * 2019-10-22 2020-01-07 深圳市道通智能航空技术有限公司 对地高度校正方法及装置、无人飞行器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115808186A (zh) * 2023-01-29 2023-03-17 中国空气动力研究与发展中心高速空气动力研究所 一种扑翼飞行器距离测量结果的校正方法
CN115808186B (zh) * 2023-01-29 2023-05-23 中国空气动力研究与发展中心高速空气动力研究所 一种扑翼飞行器距离测量结果的校正方法
CN116147578A (zh) * 2023-03-21 2023-05-23 广东汇天航空航天科技有限公司 高度检测方法、装置、终端设备以及存储介质
CN117073717A (zh) * 2023-07-17 2023-11-17 江苏省地质调查研究院 一种无人机测距校准方法及系统
CN117009908A (zh) * 2023-09-25 2023-11-07 中国民用航空飞行学院 一种飞行异常状态识别与预测系统及方法
CN117009908B (zh) * 2023-09-25 2024-01-12 中国民用航空飞行学院 一种飞行异常状态识别与预测系统及方法
CN118220505A (zh) * 2024-05-23 2024-06-21 中汽北消(北京)应急装备科技有限公司 一种无人机锁紧模块的控制系统及方法

Also Published As

Publication number Publication date
CN110658831B (zh) 2022-04-15
CN110658831A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2021078005A1 (zh) 对地高度校正方法及装置、无人飞行器
US11797028B2 (en) Unmanned aerial vehicle control method and device and obstacle notification method and device
US10942529B2 (en) Aircraft information acquisition method, apparatus and device
US20220234733A1 (en) Aerial Vehicle Smart Landing
WO2021018050A1 (zh) 风速测算方法、风速估算器及无人机
US20190220650A1 (en) Systems and methods for depth map sampling
WO2021078002A1 (zh) 无人机航向角初值选取方法、装置及无人机
WO2021031975A1 (zh) 无人机航向确定方法、装置及无人机
WO2021031974A1 (zh) 无人机航向角初值选取方法及无人机
CN104656665A (zh) 一种新型无人机通用避障模块及步骤
US20230280763A1 (en) Method for protection unmanned aerial vehicle and unmanned aerial vehicle
US20170344026A1 (en) Uav, uav flight control method and device
US20220317708A1 (en) Unmanned aerial vehicle protection method and apparatus and unmanned aerial vehicle
WO2021088684A1 (zh) 全向避障方法及无人飞行器
CN106292721A (zh) 一种控制飞行器跟踪目标对象的方法、设备及系统
WO2021139461A1 (zh) 无人机严重低电保护方法及无人机
WO2021027886A1 (zh) 无人机飞行控制方法及无人机
CN109715498A (zh) 无人自主交通工具中的自适应运动滤波
WO2018195905A1 (zh) 一种无人机手掌降落的控制方法、控制设备及无人机
CN106647785A (zh) 无人机停机坪控制方法及装置
WO2023178476A1 (zh) 无人机降落的控制方法和装置、无人机
WO2021077306A1 (zh) 无人飞行器的返航控制方法、用户终端以及无人飞行器
WO2023025203A1 (zh) 云台相机的变焦控制方法、装置及终端
CN110568859B (zh) 无人机控制方法、移动终端及计算机可读存储介质
WO2021217346A1 (zh) 信息处理方法、信息处理装置和可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879204

Country of ref document: EP

Kind code of ref document: A1