WO2021068607A1 - 多系统多店铺订单融合方法、装置、计算机设备和存储介质 - Google Patents
多系统多店铺订单融合方法、装置、计算机设备和存储介质 Download PDFInfo
- Publication number
- WO2021068607A1 WO2021068607A1 PCT/CN2020/105641 CN2020105641W WO2021068607A1 WO 2021068607 A1 WO2021068607 A1 WO 2021068607A1 CN 2020105641 W CN2020105641 W CN 2020105641W WO 2021068607 A1 WO2021068607 A1 WO 2021068607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- order
- data
- fusion
- instruction
- party
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0633—Lists, e.g. purchase orders, compilation or processing
- G06Q30/0635—Processing of requisition or of purchase orders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2282—Tablespace storage structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2457—Query processing with adaptation to user needs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/254—Extract, transform and load [ETL] procedures, e.g. ETL data flows in data warehouses
Definitions
- the invention belongs to the field of data processing technology, and specifically, is a method, device, computer equipment and storage medium for order fusion of multiple systems and multiple stores.
- the third-party system generally pulls orders from the merchant system stores by way of ordering.
- the system obtains orders in a single way and has no scalability.
- the interface display is also displayed based on the order information of a certain merchant’s store. Although there is a store switching function, if The order details of other systems are inconsistent with the order information of the merchant system store, and the interface cannot be compatible with other types of order data.
- the purpose of the present invention is to provide a multi-system and multi-store order fusion method, device, computer equipment and storage medium to solve the above-mentioned technical problem, which is used to solve the order management problem of the same product in different systems and different stores.
- a multi-system multi-store order fusion method the method includes:
- the obtaining order information of different stores of the target commodity in multiple systems includes:
- the data interface of a preset third-party data system is called in a concurrent manner to pull store order data.
- determining the time slicing parameters according to the order warehousing time slicing includes:
- the order storage time slice is divided into multiple sub-time slices, and the slice parameter of the sub-time slice is used as the determined time slice parameter, where different sub-time slices correspond to different threads.
- the data interface of a preset third-party data system is called in a concurrent manner to fetch store order data, including:
- the fusion of the order information of the target commodity in multiple systems to establish a fusion data information table includes:
- the third-party data system parses and pulls the application interface data of the store order data, encapsulates the order data object, and stores it in the fusion data information table.
- the instruction includes a marketing activity instruction.
- the marketing activity instruction includes:
- marketing activity data which is used as the statistical basic data of the fusion data information table
- the orders that meet the marketing conditions and the orders that do not meet the marketing conditions are screened out.
- the instruction includes a construction work order instruction.
- the instruction includes an invoice issuance instruction.
- a multi-system and multi-store order fusion device comprising:
- the acquisition module is used to acquire the order information of the target product in different stores in multiple systems
- the fusion module is used to integrate the order information of the target product in multiple systems and establish a fusion data information table
- the instruction operation module captures the data in the fusion data information table according to the instruction and performs instruction operations.
- a computer device includes a memory, a processor, and a computer program that is stored in the memory and can run on the processor, and the processor implements the following steps when the processor executes the computer program:
- the computer program is executed by a processor, the following steps are implemented:
- the present invention has significant advantages: the above-mentioned multi-system and multi-store order fusion method, device, computer equipment and storage medium realize the multi-system order management problem caused by the same product in different systems and different stores.
- Multi-store order data is pulled in shards, the related product information in the sub-orders is analyzed, and the order data is sorted out, and after-sales service support system can be established through the integrated data management marketing activities. At the same time, it can generate statistics and generate business support data to promote after-sales activities. ; Solve the technical problems of multi-system and multi-store order merging, and greatly improve the work efficiency of after-sales marketing activities.
- Fig. 1 is an application environment diagram of a multi-system multi-store order fusion method in an embodiment.
- FIG. 2 is a schematic flowchart of a method for order fusion of multiple systems and multiple stores in an embodiment.
- Figure 3 is a network topology diagram of the order system in an embodiment.
- Fig. 4 is a sequence diagram of order fragment management in an embodiment.
- Fig. 5 is a sequence diagram of order synchronization execution in an embodiment.
- Fig. 6 is a structural block diagram of a multi-system and multi-store order fusion device in an embodiment.
- the multi-system multi-store order fusion method provided by this application can be applied to the application environment as shown in FIG. 1.
- the first system 101 and the second system 102 communicate with the server 103 through the network
- the third-party system server 103 communicates with the terminal 104 through the network.
- the third-party system server 103 can be implemented by an independent system or a system cluster composed of multiple systems.
- the first system 101 can refer to the commodity server of one party's e-commerce platform
- the second system 102 can refer to the other party's e-commerce platform.
- the commodity server, the first system 101 and the second system 102 may be one or more
- the terminal 104 may be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
- a method for multi-system and multi-store order fusion is provided. Taking the method applied to the server in FIG. 1 as an example for description, the method includes the following steps:
- Step 1 Obtain the order information of the target product in different stores in multiple systems
- the first system 101 online store backstage pushes the second system 102 online store order to the first system 101 cloud system order table, and the first system 101 cloud platform pull order application accesses the first system 101 cloud system order table, and reads the order form.
- the target product can use the SKU information as an index mark to capture the order of the system store.
- the third-party system adopts the sharding concurrency technology to divide the order according to the storage time, and uses the concurrent method to call the data interface of the third-party data system to pull the online store order data.
- the order storage time slice is divided into multiple sub-time slices, and the slice parameter of the sub-time slice is used as the determined time slice parameter, wherein different sub-time slices correspond to different threads.
- the first system store orders are obtained in pages
- Step 2 Integrate the order information of the target product in multiple systems, and establish a fusion data information table
- the third-party data system analyzes the application interface data of the first system 101 cloud system, encapsulates the order data object, and stores it in the fusion data information table.
- Step 3 Grab the data in the fusion data information table according to the instruction, and perform the instruction operation.
- the instructions include marketing activity instructions, construction work order instructions, invoice issuance instructions, and the like.
- the implementation of the marketing activity instruction includes:
- marketing activity data which is used as the statistical basic data of the fusion data information table
- the orders that meet the marketing conditions and the orders that do not meet the marketing conditions are screened out.
- the above-mentioned obtaining order information of different stores of the target product in multiple systems may include the following steps:
- Step 101 Obtain an order warehousing time slice of the system, and determine a time slicing parameter according to the order warehousing time slice;
- Step 102 According to the time slicing parameter, a data interface of a preset third-party data system is called in a concurrent manner to fetch store order data.
- the order storage time slice is divided into multiple sub-time slices, and the slice parameter of the sub-time slice is used as the determined time slice parameter, wherein different sub-time slices correspond to different threads.
- the order data of the first system and the second system can be obtained in quasi real-time and complete.
- the above-mentioned determining the time slice parameter based on the order warehousing time slice may include the step of dividing the order warehousing time slice into multiple sub-time slices, and using the slicing parameter of the sub-time slice as the determining time slice. Slice parameters, where different sub-time slices correspond to different threads.
- Using the solution of this embodiment can further improve the real-time performance of the system's order data acquisition.
- the aforementioned data interface of a preset third-party data system is called to fetch store order data based on time slicing parameters and in a multi-threaded concurrent manner, which may include the following step:
- Step 201 call the order data interface of the first system to obtain the number of order records
- Step 202 obtain the first system store orders in pages
- step 203 the order list is stored in the main database of the third-party data system and pushed to the order table of the large database of the second system.
- the fusion of order data can be performed, which can further improve the real-time acquisition of the order data of the first system and the second system. Sex.
- the multi-system multi-store order fusion method may further include: building a marketing activity system by fusing order data.
- building a marketing activity system is described as follows:
- marketing activity data which serves as basic data for statistics of the fusion data information table
- the orders that meet the marketing conditions and the orders that do not meet the marketing conditions are filtered out, and then the order activity data can be maintained, such as giving gifts.
- the order of the online shop of the first system is taken as an example, and the above-mentioned server includes three systems of a third-party data system, a third-party management system, and a third-party workbench, but this does not constitute a limitation on the solution of the present invention.
- the multi-system multi-store order fusion method in this specific example includes the following steps:
- Step 1 The first system online shop pushes the first system store orders to the first system order table, and the first system cloud platform ordering application accesses the first system order table to read the pushed orders.
- Step 2 The third-party management system adopts the sharding concurrency technology, that is, the order is sharded according to the storage time, and the RSF interface of the third-party data system is used in a concurrent way to pull the online store order data. That is, the order storage time slice is divided into multiple sub-time slices, and the slice parameter of the sub-time slice is used as the determined time slice parameter, wherein different sub-time slices correspond to different threads; according to the time slice The data interface of the preset third-party data system is called to fetch store order data in a concurrent manner.
- Step 3 The third-party data system analyzes the application interface data of the first system to encapsulate the order data object, and stores it in the multi-store order base table.
- Step 4 The marketing activity system filters the matching multi-store order data according to the active products.
- Step 5 Save the filtered order data as marketing activity data as the basic data for report statistics. According to the activity rules, maintain the order activity data, such as giving gifts. You can also integrate order data to build a work order, invoice system, and so on.
- the order fusion solution of "sharding concurrent" in this embodiment can obtain the order information of the first system in quasi real-time and complete, and establish the order information database of the first system and the second system to generate order fusion.
- a multi-system and multi-store order fusion device which includes: an acquisition module 105, a fusion module 106, and an instruction operation module 107, wherein:
- the obtaining module 105 is used to obtain the order information of the target product in different stores in multiple systems;
- the fusion module 106 is used to integrate the order information of the target product in multiple systems and establish a fusion data information table;
- the instruction operation module 107 captures the data in the fusion data information table according to the instruction, and performs instruction operations.
- the acquiring module 105 can acquire the order information of the target product in different stores in multiple systems; divide the order storage time slice into multiple sub-time slices, and use the slicing parameters of the sub-time slices as the total value.
- the time slicing parameter is determined, wherein different sub-time slices correspond to different threads; according to the time slicing parameter, the data interface of a preset third-party data system is called in a concurrent manner to pull store order data.
- the obtaining module 105 can call the order data interface of a party's system to obtain the number of order records; according to the number of order records, obtain the orders of the party's system store in pages; the order list is stored in the main database of the third-party data system , And push to the order table of the big database of the other party's system.
- the fusion module analyzes and pulls the application interface data of the store order data, integrates the order information of the target product in multiple systems, and establishes a fusion data information table.
- the instruction operation module 107 can establish an after-sales service support system according to marketing activity instructions, construction work order instructions, invoice issuance instructions, etc., to implement marketing activities.
- marketing activity data which serves as the basic data for statistics in the fusion data information table; according to the activity rules, orders that meet the marketing conditions and orders that do not meet the marketing conditions are screened out.
- a computer device is provided, and the computer device may be a server.
- the computer equipment includes a processor, a memory, a network interface, and a database connected through a system bus.
- the processor of the computer device is used to provide calculation and control capabilities.
- the memory of the computer device includes a non-volatile storage medium and an internal memory.
- the non-volatile storage medium stores an operating system, a computer program, and a database.
- the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
- the database of the computer equipment is used to store the data needed in the process of multi-system and multi-store order fusion data.
- the network interface of the computer device is used to communicate with an external terminal through a network connection.
- the computer program is executed by the processor to realize a multi-system multi-store order fusion method.
- the above structure does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
- the specific computer equipment may include more or less components than the above, or combine certain components, or have Different component arrangements.
- a computer device including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the following steps when the processor executes the computer program:
- the processor executes the computer program to realize the aforementioned acquisition of order information of different stores of the target product in multiple systems; acquire the order storage time slice of the system, and determine the time according to the order storage time slice Sharding parameters; according to the time slicing parameters, the data interface of a preset third-party data system is called in a concurrent manner to pull store order data.
- the processor executes the computer program to implement the above-mentioned step of determining the time slicing parameter according to the order warehousing time slicing, the following steps are specifically implemented:
- the order storage time slice is divided into multiple sub-time slices, and the slice parameter of the sub-time slice is used as the determined time slice parameter, where different sub-time slices correspond to different threads.
- the processor executes the computer program to implement the above-mentioned time-slicing parameters, and uses a multi-threaded concurrent method to call a preset data interface of a third-party data system to fetch store order data
- the following steps are specifically implemented: Call the order data interface of one party's system to obtain the number of order records; according to the number of order records, obtain the orders of the party's system store by page; the order list is stored in the main database of the third-party data system, and pushed to the other party's large database order table .
- the processor executes the computer program to realize the aforementioned fusion of the order information of the target product in multiple systems.
- the fusion data information table is established, the application interface data of the store order data is parsed and pulled, and the order is encapsulated.
- the data object is stored in the fusion data information table.
- the marketing activity when the processor executes the computer program, the marketing activity also implements the following steps: according to the serial number of the active product, the order data in the matching fusion data information table is filtered out; for the order data that has been filtered out , Stored as marketing activity data, as the basic statistics of the fusion data information table; according to the rules of the activity, the orders that meet the marketing conditions and the orders that do not meet the marketing conditions are screened out.
- the processor also implements the construction work order system and the invoice system when executing the computer program.
- Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
- Volatile memory may include random access memory (RAM) or external cache memory.
- RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Computational Linguistics (AREA)
- Marketing (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种多系统多店铺订单融合方法、装置、计算机设备和存储介质。所述方法包括:获取目标商品在多个系统中不同店铺的订单信息(S1);对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表(S2);根据指令抓取融合数据信息表中的数据,进行指令操作(S3)。该方法能够融合多系统多店铺的订单数据,大大提升了售后营销活动的工作效率。
Description
本发明属于数据处理技术领域,具体地说,是一种多系统多店铺订单融合方法、装置、计算机设备和存储介质。
现阶段,我国电子商务快速增长,初步形成了功能完善的业态体系;电商涉及的领域越来越广阔,电商行业也是多种多样。电子商务的不断普及将直接带动物流、金融和IT等服务类型的行业发展,带动与之配套的第三方支付、电子认证、网络信息安全、网络保险等电商生态圈中各子业态的发展。
同时,很多电商企业不再独自经营,而是通过合作互助的方式推动自身的业务运营,各取所需,共同发展。一些大型电商商家系统之间通过第三方系统进行合作,因此第三方系统需要接受不同系统下发的订单数据。目前第三方系统一般通过拉单的方式拉取商家系统店铺的订单,系统获取订单方式单一,没有扩展性,界面展示也是根据某一方商家店铺的订单信息做展示,虽然有店铺切换功能,但是如果其他系统订单明细与该商家系统店铺的订单信息不一致,界面就不能兼容其他类型的订单数据。
例如,某一方商家系统店铺的订单数据与其有关系的数据没有关联性,比如订单中商品信息,商品库存信息,发票信息,赠品信息等,关系数据查询每次都需要找到对应的功能模块,输入商品编码或者商家系统店铺订单号查询,一种关系数据需要找一个功能模块,查询一次。如果遇到批量查询,不仅消耗时间,而且来回切换容易造成操作错误,结果就是较低业务运作效率,影响用户体验。
发明内容
本发明的目的在于针对上述技术问题,提供一种多系统多店铺订单融合方法、装置、计算机设备和存储介质,用于解决同一商品在不同系统、不同店铺产生的订单管理问题。
实现本发明目的的技术解决方案为:一种多系统多店铺订单融合方法,所述方法包括:
获取目标商品在多个系统中不同店铺的订单信息;
对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;
根据指令抓取融合数据信息表中的数据,进行指令操作。
进一步的,所述获取目标商品在多个系统中不同店铺的订单信息,包括:
获取所述系统的订单入库时间片,根据所述订单入库时间片确定时间分片参数;
根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据。
进一步的,根据所述订单入库时间片确定时间分片参数,包括:
将所述订单入库时间片划分成多个子时间片,将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程。
进一步的,根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据,包括:
调用一方系统订单数据接口,获取订单记录数;
按照所述订单记录数,分页获取该方系统店铺订单;
订单进行列表后存储于第三方数据系统主库,并推送到另一方系统大数据库订单表。
进一步的,所述对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表,包括:
第三方数据系统通过解析拉取店铺订单数据的应用接口数据,封装订单数据对象,并存储于融合数据信息表。
进一步的,所述指令包括营销活动指令。
进一步的,所述营销活动指令包括:
根据活动商品的编号,筛选出匹配的融合数据信息表中的订单数据;
针对所述已经筛选出的订单数据,存储为营销活动数据,作为融合数据信息表统计基础数据;
根据活动规则,筛选出满足营销条件的订单和不满足营销条件的订单。
进一步的,所述指令包括建设工单指令。
进一步的,所述指令包括开具发票指令。
一种多系统多店铺订单融合装置,所述装置包括:
获取模块,用于获取目标商品在多个系统中不同店铺的订单信息;
融合模块,用于对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;
指令操作模块,根据指令抓取融合数据信息表中的数据,进行指令操作。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取目标商品在多个系统中不同店铺的订单信息;
对目标商品在多个系统中的订单信息进行融合,建立融合数据信 息表;
根据指令抓取融合数据信息表中的数据,进行指令操作。
一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取目标商品在多个系统中不同店铺的订单信息;
对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;
根据指令抓取融合数据信息表中的数据,进行指令操作。
本发明与现有技术相比,其显著优点为:上述多系统多店铺订单融合方法、装置、计算机设备和存储介质,针对同一商品在不同系统、不同店铺产生的订单管理问题,实现了多系统多店铺订单数据分片拉取,分析子订单中相关联的商品信息,梳理融合订单数据,通过融合数据管理营销活动,可以建立售后服务支持系统,同时可以统计生成大促售后活动的业务支撑数据;解决了多系统、多店铺订单合并的技术问题,大大提升了售后营销活动的工作效率。
图1为一个实施例中多系统多店铺订单融合方法的应用环境图。
图2为一个实施例中多系统多店铺订单融合方法的流程示意图。
图3为一个实施例中的订单系统网络拓扑图。
图4为一个实施例中的订单分片管理序列图。
图5为一个实施例中的订单同步执行序列图。
图6为一个实施例中多系统多店铺订单融合装置的结构框图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的多系统多店铺订单融合方法,可以应用于如图1所示的应用环境中。其中,第一系统101和第二系统102通过网络与服务器103进行通信,第三方系统服务器103与终端104通过网络进行通信。其中,第三方系统服务器103可以用独立的系统或者是多个系统组成的系统集群来实现,第一系统101可以指一方电商平台的商品服务器,第二系统102可以指另一方电商平台的商品服务器,第一系统101、第二系统102可以为一个也可以为多个,终端104可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。
在一个实施例中,如图2所示,提供了一种多系统多店铺订单融合方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
设定目标商品,在第一系统101产生的订单O1,以及在第二系统102产生的订单O2,订单O1和订单O2之间相互隔离,现需要对该商品的订单进行售后跟踪,并发起营销活动,如订单赠品活动等。
步骤1,获取目标商品在多个系统中不同店铺的订单信息;
具体地,第一系统101网店后台推送第二系统102网店订单到第一系统101云系统订单表,第一系统101云平台拉单应用访问第一系统101云系统订单表,读取已推送订单。其中,目标商品可以采用SKU信息作为索引标识,抓取系统店铺的订单。
第三方系统采用分片并发技术,将订单按入库时间分片,采用并发方式调用第三方数据系统的数据接口拉取网店订单数据。
进一步的,将所述订单入库时间片划分成多个子时间片,将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程。
调用第一系统订单数据接口,获取订单记录数;
按照所述订单记录数,分页获取第一系统店铺订单;
订单进行列表后存储于第三方数据系统主库,并推送到第二系统大数据库订单表。
步骤2,对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;
第三方数据系统通过解析第一系统101云系统拉单应用接口数据,封装订单数据对象,并存储于融合数据信息表。
步骤3,根据指令抓取融合数据信息表中的数据,进行指令操作。所述指令包括营销活动指令、建设工单指令、开具发票指令等。
所述营销活动指令的实现包括:
根据活动商品的编号,筛选出匹配的融合数据信息表中的订单数据;
针对所述已经筛选出的订单数据,存储为营销活动数据,作为融合数据信息表统计基础数据;
根据活动规则,筛选出满足营销条件的订单和不满足营销条件的订单。
结合具体的例子描述系统实现营销活动的过程:
1)批量输入商品编号;
2)根据商品编号筛选到第三方数据系统的大数据平台查询对应订单;
3)针对筛选的订单列表数据二次过滤;
4)设置满足营销条件的订单(如赠品);
5)设置不满足参与营销条件的订单;
6)导出满足营销条件的订单报表。
7)业务人员根据订单报表进行售后跟踪,使得处理营销订单的效率提升。
在其中一个实施例中,如图4所示,上述的获取目标商品在多个系统中不同店铺的订单信息,可以包括如下步骤:
步骤101,获取所述系统的订单入库时间片,根据所述订单入库时间片确定时间分片参数;
步骤102,根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据。
这里,将所述订单入库时间片划分成多个子时间片,将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程。
采用本实施例的方案,可以准实时的、完整的获取第一系统、第二系统的订单数据。
在其中一个实施例中,上述的根据订单入库时间片确定时间分片参数,可以包括步骤:将订单入库时间片划分成多个子时间片,将子时间片的分片参数作为确定时间分片参数,其中,不同子时间片对应不同的线程。
采用本实施例的方案,可以进一步提高系统的订单数据获取的实时性。
在其中一个实施例中,如图4、图5所示,上述的根据时间分片参数,并采用多线程并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据,可以包括如下步骤:
步骤201,调用第一系统订单数据接口,获取订单记录数;
步骤202,按照所述订单记录数,分页获取第一系统店铺订单;
步骤203,订单进行列表后存储于第三方数据系统主库,并推送 到第二系统大数据库订单表。
采用本实施例的方案,可以每获取到一页的第一系统、第二系统的订单数据,就可以执行订单数据的融合梳理,可以进一步提高第一系统、第二系统的订单数据获取的实时性。
在其中一个实施例中的多系统多店铺订单融合方法还可以包括:通过融合订单数据,建设营销活动系统。建设营销活动系统的过程描述如下:
根据活动商品的编号,筛选出匹配的融合数据信息表中的订单数据;
针对所述已经筛选出的订单数据,存储为营销活动数据,作为融合数据信息表统计基础数据;
根据活动规则,筛选出满足营销条件的订单和不满足营销条件的订单,后续则可以维护订单活动数据,如送赠品等。
除上述营销活动外,还可以通过融合订单数据,建设工单系统、发票系统等等。
为了便于理解本发明的方案,以下通过一个具体示例进行说明。在该具体示例中是以第一系统网店的订单为例,且上述的服务器包括第三方数据系统、第三方管理系统和第三方工作台三个系统,但这并不构成对本发明方案的限定。该具体示例中的多系统多店铺订单融合方法,包括如下步骤:
步骤一:第一系统网店后台推送第一系统店铺订单到第一系统订单表,第一系统云平台拉单应用访问第一系统订单表,读取已推送订单。
步骤二:第三方管理系统,采用分片并发技术,即订单按入库时间分片,采用并发方式,调用第三方数据系统的RSF接口拉取网店 订单数据。即将所述订单入库时间片划分成多个子时间片,将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程;根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据。
步骤三:第三方数据系统通过解析第一系统拉单应用接口数据,封装订单数据对象,存于多店铺订单基础表。
步骤四:营销活动系统根据活动商品筛选匹配的多店铺订单数据。
步骤五:针对已经筛选的订单数据另存为营销活动数据,作为报表统计基础数据,根据活动规则,维护订单活动数据,如送赠品,还可以通过融合订单数据,建设工单、发票系统等等。
本实施例中的‘分片并发’的订单融合方案,能够准实时的、完整的获取第一系统的订单信息,并建立第一系统和第二系统订单信息库,生成订单融合。
在一个实施例中,如图6所示,提供了一种多系统多店铺订单融合装置,包括:获取模块105、融合模块106和指令操作模块107,其中:
获取模块105,用于获取目标商品在多个系统中不同店铺的订单信息;
融合模块106,用于对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;
指令操作模块107,根据指令抓取融合数据信息表中的数据,进行指令操作。
在其中一个实施例中,获取模块105可以获取目标商品在多个系统中不同店铺的订单信息;将订单入库时间片划分成多个子时间片, 将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程;根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据。
在其中一个实施例中,获取模块105可以调用一方系统订单数据接口,获取订单记录数;按照所述订单记录数,分页获取该方系统店铺订单;订单进行列表后存储于第三方数据系统主库,并推送到另一方系统大数据库订单表。
在其中一个实施例中,融合模块,通过解析拉取店铺订单数据的应用接口数据,对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表。
在其中一个实施例中,指令操作模块107,可以根据营销活动指令、建设工单指令、开具发票指令等建立售后服务支持系统,实现营销活动。针对已经筛选出的订单数据,存储为营销活动数据,作为融合数据信息表统计基础数据;根据活动规则,筛选出满足营销条件的订单和不满足营销条件的订单。
在一个实施例中,提供了一种该计算机设备,该计算机设备可以是服务器。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储多系统多店铺订单融合数据过程中需要用到的数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种多系统多店铺订单融合方法。
本领域技术人员可以理解,上述结构并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比上述更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:
获取目标商品在多个系统中不同店铺的订单信息;
对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;
根据指令抓取融合数据信息表中的数据,进行指令操作。
在其中一个实施例中,处理器执行计算机程序实现上述的获取目标商品在多个系统中不同店铺的订单信息;获取所述系统的订单入库时间片,根据所述订单入库时间片确定时间分片参数;根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据。
在其中一个实施例中,处理器执行计算机程序实现上述的根据订单入库时间片确定时间分片参数的步骤时,具体实现以下步骤:
将所述订单入库时间片划分成多个子时间片,将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程。
在其中一个实施例中,处理器执行计算机程序实现上述的根据时间分片参数,并采用多线程并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据时,具体实现以下步骤:调用一方系统订单数据接口,获取订单记录数;按照所述订单记录数,分页获取该方系统店铺订单;订单进行列表后存储于第三方数据系统主库,并推送到 另一方系统大数据库订单表。
在其中一个实施例中,处理器执行计算机程序实现上述的对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表时,通过解析拉取店铺订单数据的应用接口数据,封装订单数据对象,并存储于融合数据信息表。
在其中一个实施例中,处理器执行计算机程序时还实现营销活动具体实现以下步骤:根据活动商品的编号,筛选出匹配的融合数据信息表中的订单数据;针对所述已经筛选出的订单数据,存储为营销活动数据,作为融合数据信息表统计基础数据;根据活动规则,筛选出满足营销条件的订单和不满足营销条件的订单。
在其中一个实施例中,处理器执行计算机程序时还实现建设工单系统和发票系统。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总 线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (12)
- 一种多系统多店铺订单融合方法,其特征在于,所述方法包括:获取目标商品在多个系统中不同店铺的订单信息;对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;根据指令抓取融合数据信息表中的数据,进行指令操作。
- 根据权利要求1所述的方法,其特征在于,所述获取目标商品在多个系统中不同店铺的订单信息,包括:获取所述系统的订单入库时间片,根据所述订单入库时间片确定时间分片参数;根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据。
- 根据权利要求2所述的方法,其特征在于,根据所述订单入库时间片确定时间分片参数,包括:将所述订单入库时间片划分成多个子时间片,将所述子时间片的分片参数作为所述确定时间分片参数,其中,不同子时间片对应不同的线程。
- 根据权利要求2所述的方法,其特征在于,根据所述时间分片参数,并采用并发方式调用预设的第三方数据系统的数据接口拉取店铺订单数据,包括:调用一方系统订单数据接口,获取订单记录数;按照所述订单记录数,分页获取该方系统店铺订单;订单进行列表后存储于第三方数据系统主库,并推送到另一方系统大数据库订单表。
- 根据权利要求1所述的方法,其特征在于,所述对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表,包括:第三方数据系统通过解析拉取店铺订单数据的应用接口数据,封装订单数据对象,并存储于融合数据信息表。
- 根据权利要求1所述的方法,其特征在于,所述指令包括营销活动指令。
- 根据权利要求6所述的方法,其特征在于,所述营销活动指令包括:根据活动商品的编号,筛选出匹配的融合数据信息表中的订单数据;针对所述已经筛选出的订单数据,存储为营销活动数据,作为融合数据信息表统计基础数据;根据活动规则,筛选出满足营销条件的订单和不满足营销条件的订单。
- 根据权利要求1所述的方法,其特征在于:所述指令包括建设工单指令。
- 根据权利要求1所述的方法,其特征在于:所述指令包括开具发票指令。
- 一种多系统多店铺订单融合装置,其特征在于,所述装置包括:获取模块,用于获取目标商品在多个系统中不同店铺的订单信息;融合模块,用于对目标商品在多个系统中的订单信息进行融合,建立融合数据信息表;指令操作模块,根据指令抓取融合数据信息表中的数据,进行指 令操作。
- 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至9中任一项所述方法的步骤。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述的方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3157818A CA3157818A1 (en) | 2019-10-12 | 2020-07-29 | Method, apparatus, computer device, and storage medium for fusing multi-system multi-store orders |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910970189.XA CN110766520A (zh) | 2019-10-12 | 2019-10-12 | 多系统多店铺订单融合方法、装置、计算机设备和存储介质 |
CN201910970189.X | 2019-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021068607A1 true WO2021068607A1 (zh) | 2021-04-15 |
Family
ID=69331767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/105641 WO2021068607A1 (zh) | 2019-10-12 | 2020-07-29 | 多系统多店铺订单融合方法、装置、计算机设备和存储介质 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110766520A (zh) |
CA (1) | CA3157818A1 (zh) |
WO (1) | WO2021068607A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110766520A (zh) * | 2019-10-12 | 2020-02-07 | 苏宁云计算有限公司 | 多系统多店铺订单融合方法、装置、计算机设备和存储介质 |
CN112381567A (zh) * | 2020-11-11 | 2021-02-19 | 苏宁云计算有限公司 | 多店铺订单营销的订单信息处理方法、装置和计算机设备 |
CN112330421B (zh) * | 2020-11-27 | 2024-05-21 | 京东科技控股股份有限公司 | 订单处理方法、装置、电子设备及存储介质 |
CN113159689B (zh) * | 2021-05-08 | 2024-10-18 | 北京京东振世信息技术有限公司 | 一种订单合并方法、装置、设备及存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5893076A (en) * | 1996-01-16 | 1999-04-06 | Sterling Commerce, Inc. | Supplier driven commerce transaction processing system and methodology |
CN101655950A (zh) * | 2009-06-30 | 2010-02-24 | 阿里巴巴集团控股有限公司 | 一种合并支付的实现方法、装置及系统 |
CN107203921A (zh) * | 2017-04-20 | 2017-09-26 | 多点生活(中国)网络科技有限公司 | 订单信息合并处理方法和系统 |
CN107358503A (zh) * | 2017-07-11 | 2017-11-17 | 郑州云海信息技术有限公司 | 一种电子订单接口系统和电子订单接口实现方法 |
CN107742242A (zh) * | 2017-10-16 | 2018-02-27 | 苏州赛科计算机信息系统有限公司 | 订单处理方法及装置 |
CN108038216A (zh) * | 2017-12-22 | 2018-05-15 | 联想(北京)有限公司 | 信息处理方法、装置及服务器集群 |
CN110209733A (zh) * | 2019-04-29 | 2019-09-06 | 苏宁易购集团股份有限公司 | 多系统数据融合方法、装置、计算机设备和存储介质 |
CN110766520A (zh) * | 2019-10-12 | 2020-02-07 | 苏宁云计算有限公司 | 多系统多店铺订单融合方法、装置、计算机设备和存储介质 |
-
2019
- 2019-10-12 CN CN201910970189.XA patent/CN110766520A/zh active Pending
-
2020
- 2020-07-29 WO PCT/CN2020/105641 patent/WO2021068607A1/zh active Application Filing
- 2020-07-29 CA CA3157818A patent/CA3157818A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5893076A (en) * | 1996-01-16 | 1999-04-06 | Sterling Commerce, Inc. | Supplier driven commerce transaction processing system and methodology |
CN101655950A (zh) * | 2009-06-30 | 2010-02-24 | 阿里巴巴集团控股有限公司 | 一种合并支付的实现方法、装置及系统 |
CN107203921A (zh) * | 2017-04-20 | 2017-09-26 | 多点生活(中国)网络科技有限公司 | 订单信息合并处理方法和系统 |
CN107358503A (zh) * | 2017-07-11 | 2017-11-17 | 郑州云海信息技术有限公司 | 一种电子订单接口系统和电子订单接口实现方法 |
CN107742242A (zh) * | 2017-10-16 | 2018-02-27 | 苏州赛科计算机信息系统有限公司 | 订单处理方法及装置 |
CN108038216A (zh) * | 2017-12-22 | 2018-05-15 | 联想(北京)有限公司 | 信息处理方法、装置及服务器集群 |
CN110209733A (zh) * | 2019-04-29 | 2019-09-06 | 苏宁易购集团股份有限公司 | 多系统数据融合方法、装置、计算机设备和存储介质 |
CN110766520A (zh) * | 2019-10-12 | 2020-02-07 | 苏宁云计算有限公司 | 多系统多店铺订单融合方法、装置、计算机设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN110766520A (zh) | 2020-02-07 |
CA3157818A1 (en) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021068607A1 (zh) | 多系统多店铺订单融合方法、装置、计算机设备和存储介质 | |
CN109997126B (zh) | 事件驱动提取、变换、加载(etl)处理 | |
CN109716320A (zh) | 用于分布式事件处理系统的图生成 | |
WO2021036449A1 (zh) | 维度数据处理方法、装置、计算机设备和存储介质 | |
US11797557B2 (en) | Data management platform, intelligent defect analysis system, intelligent defect analysis method, computer-program product, and method for defect analysis | |
EP2930629A1 (en) | Accessing non-relational data stores using structured query language queries | |
US20180329963A1 (en) | Embedded Analytics and Transactional Data Processing | |
WO2021223686A1 (zh) | 模型训练任务处理方法、装置、电子设备和存储介质 | |
CN113836131A (zh) | 一种大数据清洗方法、装置、计算机设备及存储介质 | |
US20220179873A1 (en) | Data management platform, intelligent defect analysis system, intelligent defect analysis method, computer-program product, and method for defect analysis | |
CN110825820A (zh) | 实时数据标签获取方法、装置、计算机设备和存储介质 | |
US20190050435A1 (en) | Object data association index system and methods for the construction and applications thereof | |
WO2018233393A1 (zh) | 投保校验的方法、装置、计算机设备及存储介质 | |
CN111752944A (zh) | 数据分摊方法、装置、计算机设备及存储介质 | |
US9489423B1 (en) | Query data acquisition and analysis | |
CN106777265B (zh) | 一种业务数据的处理方法及装置 | |
US11868363B2 (en) | Method and system for persisting data | |
EP3779720A1 (en) | Transaction processing method and system, and server | |
CN110704442A (zh) | 一种大数据的实时获取方法及装置 | |
CN110442647A (zh) | 数据一致性同步方法、装置及计算机可读存储介质 | |
CN111159213A (zh) | 一种数据查询方法、装置、系统和存储介质 | |
CN110737707A (zh) | 多系统的日志搜索方法、装置及计算机可读存储介质 | |
WO2015131579A1 (zh) | 数据存储方法、装置及系统 | |
US11734295B2 (en) | Parallel load operations for ETL with unified post-processing | |
CN117009371A (zh) | 数据血缘分析方法、装置、设备、存储介质及程序产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20874826 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3157818 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20874826 Country of ref document: EP Kind code of ref document: A1 |