WO2021060149A1 - Transparent polyurethane, production method therefor, transparent polyurethane-containing thermosetting composition, and transparent conductive film - Google Patents
Transparent polyurethane, production method therefor, transparent polyurethane-containing thermosetting composition, and transparent conductive film Download PDFInfo
- Publication number
- WO2021060149A1 WO2021060149A1 PCT/JP2020/035290 JP2020035290W WO2021060149A1 WO 2021060149 A1 WO2021060149 A1 WO 2021060149A1 JP 2020035290 W JP2020035290 W JP 2020035290W WO 2021060149 A1 WO2021060149 A1 WO 2021060149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent
- solvent
- carboxy group
- film
- transparent conductive
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Definitions
- the present invention relates to a transparent polyurethane, a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film. More specifically, the present invention relates to a transparent polyurethane having a small degree of coloring (yellowness), a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film.
- Transparent conductive films include liquid crystal displays (LCDs), plasma display panels (PDPs), organic electroluminescent displays, transparent electrodes for solar cells (PV) and touch panels (TP), antistatic (ESD) films and electromagnetic shielding (EMI). It is used in various fields such as films. Conventionally, those using ITO (indium tin oxide) have been used as these transparent conductive films, but the supply stability of indium is low, the manufacturing cost is high, the flexibility is lacking, and the temperature is high at the time of film formation. There was a problem that was necessary. Therefore, the search for a transparent conductive film to replace ITO is being actively pursued.
- ITO indium tin oxide
- the transparent conductive film containing metal nanowires has excellent conductivity, optical properties, and flexibility, can be formed by a wet process, has a low manufacturing cost, and requires a high temperature during film formation. Therefore, it is suitable as an ITO alternative transparent conductive film.
- a transparent conductive film containing silver nanowires and having high conductivity, optical properties, and flexibility is known (see Patent Document 1).
- the transparent conductive film containing silver nanowires has a problem that it lacks environmental resistance because it has a large surface area per silver mass and easily reacts with various compounds. Due to the influence and the influence of oxygen and moisture in the air exposed by long-term storage, the nanostructures are easily corroded and the conductivity is easily lowered. Further, especially in applications such as electronic materials, a physical cleaning process using a brush or the like is often used in order to prevent the adhesion or mixing of fine particle impurities, dust, dust, etc. on the surface of the substrate. The problem is that the surface is also damaged by the process.
- the protective film also needs to be transparent so as to have a function as a transparent conductive film.
- the resin used for the protective film causes so-called yellowing. When it turns yellow, the performance of the transparent conductive film is deteriorated (the image quality of the display and the photoelectric conversion efficiency of the solar cell are deteriorated).
- Patent Document 2 discloses a polyurethane elastomer suitable for an optical sheet, which is synthesized by using a material having a specific skeleton (polyisocyanate containing 1,4-bis (isocyanatomethyl) cyclohexane), and is transparent. , It is described that it is also excellent in yellowing resistance. Further, Patent Document 3 describes a method for producing a transparent polyurethane resin, which has low hardness, has flexibility and elasticity, and is suitable for optical-related applications in which a plasticizer and / or a solvent does not bleed. Discloses a transparent coating coating made of flexible polyurethane having an antifogging effect.
- transparent polyurethane by blending and synthesizing raw materials having a specific chemical structure in a specific ratio, but they can be used for independent sheets, films, molded products, or other transparent glass or other transparent glass. It is used as a coating material to improve the mechanical properties and wettability (anti-fog property) of plastic substrates, and functions as a protective film that imparts environmental resistance (temperature, humidity, natural light) to transparent conductive films. Is not mentioned.
- An object of the present invention is to provide a transparent polyurethane having a small degree of coloring (yellowness), a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film.
- the present inventors can obtain polyurethane with less coloration and better transparency by synthesizing under specific synthetic conditions, and a transparent conductive film. It was found that it is suitable for the transparent conductive layer protective film of.
- the present invention has the following embodiments.
- the transparent polyurethane (A) containing a carboxy group is synthesized by using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound containing a carboxy group as a monomer.
- the transparent polyurethane containing the (A) carboxy group according to [1].
- Thermosetting containing (A) a transparent polyurethane containing a carboxy group having a b * value of 0.25 or less when a film is formed to a thickness of 50 ⁇ m, (B) an epoxy compound, and (C) a solvent. Sex composition.
- thermosetting composition according to [5] which further contains (D) a curing accelerator.
- a transparent base material which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a thickness of 50 ⁇ m
- a transparent polyurethane which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a thickness of 50 ⁇ m
- a transparent polyurethane which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a thickness of 50 ⁇ m
- a transparent polyurethane which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a thickness of 50 ⁇ m
- a transparent polyurethane which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a thickness of 50 ⁇ m
- a transparent polyurethane which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a
- the solvent is diethylene glycol monobutyl ether acetate, 1,4-butanediol diacetate, tripropylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, n acetate.
- thermosetting composition containing the transparent polyurethane a transparent conductive film using the cured film as a protective film.
- embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described.
- the transparent polyurethane (A) containing a carboxy group according to the first aspect of the present invention is characterized in that the b * value when a film is formed to a thickness of 50 ⁇ m is 0.25 or less.
- the resin that forms the protective film of the transparent conductive film any resin that has high insulation performance and environmental resistance (temperature, humidity, natural light, etc.) can be used without any particular problem, but considering application to flexible devices, Polyurethane having a moderately flexible skeleton is suitable.
- the curable resin has a cross-linking reactive group that can be cured after being applied onto the transparent conductive layer. After forming a protective film on the transparent conductive layer, curing with a cross-linking reactive group is preferable because scratch resistance and solvent resistance are improved.
- a thermosetting cross-linking reactive group is preferable in consideration of resistance to natural light.
- the transparent polyurethane (A) containing a carboxy group has flexibility, and by blending with a compound having an epoxy group or an isocyanato group, the cross-linking reactive group (epoxy group or isocyanato) thereof.
- the group) can be crosslinked with the carboxy group of the transparent polyurethane (A) containing the carboxy group, which is more preferable.
- the transparent polyurethane containing a carboxy group can be synthesized from a polyol compound, a polyisocyanate compound, and a dihydroxy compound containing a carboxy group.
- the protective film of the transparent conductive film is preferably formed by forming (A) a thermosetting composition containing a transparent polyurethane containing a carboxy group on the transparent conductive layer by printing, coating, or the like, and then curing the film.
- the thermosetting composition preferably contains (A) a transparent polyurethane containing a carboxy group, (B) an epoxy compound, and (C) a solvent, and if necessary, (D) a curing accelerator. It may be included.
- the transparent polyurethane containing the carboxy group (A) preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 2,000 to 70,000, and more preferably 3,000 to 50. It is more preferably 000.
- the molecular weight is a polystyrene-equivalent value measured by gel permeation chromatography (hereinafter referred to as GPC). If the weight average molecular weight is less than 1,000, the elongation, flexibility, and strength of the coating film after printing may be impaired, and if it exceeds 100,000, the solubility of polyurethane in a solvent becomes low, and the solubility of polyurethane in a solvent becomes low. Even if it is dissolved, the viscosity becomes too high, which may increase restrictions on use.
- the measurement conditions of GPC are as follows.
- Device name HPLC unit HSS-2000 manufactured by JASCO Corporation
- Detector RI-2031Plus manufactured by JASCO Corporation Temperature: 40.0 ° C
- Sample amount Sample loop 100 ⁇ liter
- Sample concentration Prepared to about 0.1% by mass
- the acid value of the transparent polyurethane (A) containing a carboxy group is preferably 10 to 140 mg-KOH / g, more preferably 15 to 130 mg-KOH / g. If the acid value is less than 10 mg-KOH / g, the curability is lowered and the solvent resistance is also lowered. If it exceeds 140 mg-KOH / g, the solubility of the urethane resin in the solvent is low, and even if it is dissolved, the viscosity becomes too high and handling is difficult. In addition, since the cured product becomes too hard, problems such as warpage are likely to occur depending on the base film.
- Acid value (mg-KOH / g) [B ⁇ f ⁇ 5.611] / S B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml) f: Factor S of 0.1N potassium hydroxide-ethanol solution: Sample collection amount (g)
- the transparent polyurethane containing a carboxy group is more specifically synthesized by using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound containing a carboxy group as a monomer. It is polyurethane. From the viewpoint of light resistance, it is desirable that (a1), (a2), and (a3) do not contain a functional group having conjugate properties such as an aromatic compound.
- a1, (a2), and (a3) do not contain a functional group having conjugate properties such as an aromatic compound.
- polyisocyanate compound (a1) As the polyisocyanate compound, diisocyanate having two isocyanato groups per molecule is preferable.
- the polyisocyanate compound include aliphatic polyisocyanates and alicyclic polyisocyanates, and one of these compounds can be used alone or in combination of two or more.
- a small amount of polyisocyanate having 3 or more isocyanato groups can also be used.
- Examples of the aliphatic polyisocyanis include 1,3-trimethylen diisocyanis, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, and 1,10-decamethylene diisocyanis, and 2, , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2'-diethyleter diisocyanate, dimerate diisocyanate and the like.
- Examples of the alicyclic polyisocyanate include 1,4-cyclohexanediisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and 3-isocyanatomethyl-3,5. , 5-trimethylcyclohexylisocyanate (IPDI, isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornandiisocyanate (NBDI) ) Etc. can be mentioned.
- the polyurethane resin according to the embodiment is used by using an alicyclic compound having 6 to 30 carbon atoms other than carbon atoms in the isocyanato group (-NCO group).
- the protective film formed from is highly reliable especially at high temperature and high humidity, and is suitable for members of electronic device parts.
- An aromatic or aromatic polyisocyanate compound having an aromatic ring can be used as the (a1) polyisocyanate compound, but from the viewpoint of weather resistance and light resistance, the (a1) polyisocyanate compound does not have an aromatic ring. It is preferable to use a compound.
- an aromatic polyisocyanate or an aromatic aliphatic polyisocyanate it is 50 mol% or less, preferably 30 mol% or less, based on the total amount (100 mol%) of the (a1) polyisocyanate compound in the (a1) polyisocyanate compound. , More preferably, it is preferably contained in an amount of 10 mol% or less.
- the number average molecular weight (catalog value) of the (a2) polyol compound (a2) polyol compound (however, the (a2) polyol compound does not include the (a3) carboxy group-containing dihydroxy compound described later) is usually 250. It is 50,000 to 50,000, preferably 400 to 10,000, and more preferably 500 to 5,000.
- the polyol compound (a2) is preferably a diol compound having hydroxy groups at both ends.
- polycarbonate polyols polyether polyols, polyester polyols, polylactone polyols.
- polycarbonate polyol is preferable in consideration of the balance between water resistance as a protective film, insulation reliability, and adhesion to a base material.
- the polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonic acid ester or phosgene, and is represented by, for example, the following structural formula (1).
- R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 3- OH), and n 3 is a positive integer, preferably 2 to 50.
- the polycarbonate polyol represented by the formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, or 3-methyl-1.
- 5-Pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -It can be produced by using decamethylene glycol, 1,2-tetradecanediol or the like as a raw material.
- the above-mentioned polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having a plurality of types of alkylene groups in its skeleton.
- the use of a copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of the transparent polyurethane (A) containing a carboxy group. Further, considering the solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain in combination.
- the polyether polyol is obtained by dehydration condensation of a diol having 2 to 12 carbon atoms, or ring-opening polymerization of an oxylan compound, an oxetane compound, or a tetrahydrofuran compound having 2 to 12 carbon atoms, for example. It is represented by the following structural formula (2).
- R 4 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 4- OH), and n 4 is a positive integer, preferably 4 to 50.
- the above-mentioned diols having 2 to 12 carbon atoms may be used alone to form a homopolymer, or may be used in combination of two or more to form a copolymer.
- polyether polyol represented by the above formula (2) examples include polyethylene glycol, polypropylene glycol, poly-1,2-butylene glycol, polytetramethylene glycol (poly1,4-butanediol), and the like.
- examples thereof include polyalkylene glycols such as poly-3-methyltetramethylene glycol and polyneopentyl glycol.
- these copolymers for the purpose of improving the hydrophobicity of the polyether polyol, these copolymers, for example, a copolymer of 1,4-butanediol and neopentyl glycol, or the like can also be used.
- the polyester polyol is obtained by dehydration condensation of a dicarboxylic acid and a diol or a transesterification reaction of a lower alcohol esterified product of the dicarboxylic acid with a diol, and is represented by, for example, the following structural formula (3).
- R 5 is the residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 5- OH), and R 6 is the two carboxy groups from the corresponding dicarboxylic acid (HOCO-R 6-COOH).
- diol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1 , 4-Butandiol, 1,5-Pentanediol, 1,6-Hexanediol, 3-Methyl-1,5-Pentanediol, 1,8-Octanediol, 1,3-Cyclohexanedimethanol, 1,4- Cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol or 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, Examples thereof include butyl ethyl propanediol, 1,3-cyclohexanedimethanol, di
- dicarboxylic acid examples include succinic acid, glutalic acid, adipic acid, azelaic acid, sebacic acid, decandicarboxylic acid, brassic acid, and 1,4-cyclohexanedicarboxylic acid.
- succinic acid glutalic acid, adipic acid, azelaic acid, sebacic acid, decandicarboxylic acid, brassic acid, and 1,4-cyclohexanedicarboxylic acid.
- Hexahydrophthalic acid methyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, chlorendic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid.
- the polylactone polyol is obtained by a condensation reaction of a ring-opening polymer of lactone and a diol, or a condensation reaction of a diol and a hydroxyalkanoic acid, and is represented by, for example, the following structural formula (4).
- R 7 is the residue obtained by removing the hydroxyl group and carboxy group from the corresponding hydroxyalkanoic acid (HO-R 7- COOH), and R 8 is the residue from the corresponding diol (HO-R 8- OH). It is a residue excluding the hydroxyl group, and n 6 is a positive integer, preferably 2 to 50.
- Examples of the diol (HO-R 8- OH) include those equivalent to the above-mentioned diol (HO-R 5-OH).
- hydroxyalkanoic acid examples include 3-hydroxybutanoic acid, 4-hydroxypentanoic acid, 5-hydroxyhexanoic acid and the like.
- lactone examples include ⁇ -caprolactone.
- the dihydroxy compound containing a carboxy group has a molecular weight of 200, which has two of a hydroxy group and a hydroxyalkyl group having 1 or 2 carbon atoms.
- the following carboxylic acid or aminocarboxylic acid is preferable because the cross-linking point can be controlled. Specific examples thereof include 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethyrolbutanoic acid (DMBA), N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine and the like.
- 2,2-dimethylolpropionic acid and 2,2-dimethyrolbutanoic acid are particularly preferable from the viewpoint of solubility in a solvent.
- These (a3) carboxy group-containing dihydroxy compounds can be used alone or in combination of two or more.
- the transparent polyurethane containing the (A) carboxy group described above can be synthesized only from the above three components ((a1), (a2) and (a3)). Further, it can be further reacted with (a4) monohydroxy compound and / or (a5) monoisocyanate compound to synthesize. From the viewpoint of light resistance, it is preferable to use a compound that does not contain an aromatic ring or a carbon-carbon double bond in the molecule.
- Monohydroxy Compound (a4) examples include compounds having a carboxylic acid such as glycolic acid and hydroxypivalic acid.
- the monohydroxy compound can be used alone or in combination of two or more.
- (a4) monohydroxy compound examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, amyl alcohol, hexyl alcohol, and octyl alcohol.
- Monoisocyanate compound (a5) examples include hexyl isocyanate and dodecyl isocyanate.
- the transparent polyurethane containing the carboxy group (A) is the polyisocyanate compound (a1) described above, in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurylate, using an appropriate organic solvent. It can be synthesized by reacting (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group, but it is preferable to react without a catalyst because it is not necessary to consider the final contamination of tin and the like. is there.
- the organic solvent used when synthesizing the transparent polyurethane containing the carboxy group (A) has low reactivity with the isocyanate compound and the solubility of the produced polyurethane is not low, and is a basic functional group such as amine.
- a solvent having a boiling point of 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher is preferable, and a solvent having an SP value of less than 9.80 according to the Fedors estimation method may be used.
- the SP (Solubility Parameter) value is a value that serves as a guideline for the solubility of a two-component solution, and substances having a similar SP value tend to be easily mixed.
- the SP value ( ⁇ ) was proposed by Hildebrand and Scott, and the cohesive force between the solute and the solvent is only the London dispersion force (Van der Waals force in the narrow sense), electrostatic interaction, and association (hydrogen). It is a value defined by the square root of the cohesive energy density as shown in the following equation according to the theory of (solution) that has no action such as bond) and dipole interaction.
- V is the molecular content of the solvent
- ⁇ E the aggregation energy (evaporation energy)
- ⁇ H the evaporation enthalpy
- R is the gas constant
- T is the absolute temperature.
- the SI unit of the SP value is (J / cm 3 ) 1/2 and (MPa) 1/2 , but in the present specification, (cal / cm 3 ) 1/2 which is conventionally used conventionally is used. SP value is calculated from the latent heat of vaporization required for the liquid 1 cm 3 evaporates.
- the SP value is limited to a known liquid whose boiling point can be measured, but it is inconsistent from the method of measuring the solubility of a polymer in a solvent having a known SP value for the purpose of applying it to polymers and various compounds. It was derived so that there would be no. There is a Fedors estimation method as one of the estimation methods of the SP value.
- This SP value is more preferably 7.00 or more and less than 9.50, and further preferably 7.50 or more and less than 9.00.
- Solvents having an SP value of less than 9.80 according to Fedor's estimation method include propylene glycol monomethyl ether acetate (SP value 8.73), diethylene glycol monoethyl ether acetate (SP value 9.01), and diethylene glycol monobutyl ether acetate (SP value 9.01).
- SP value 8.94 1,4-butanediol diacetate
- SP value 8.06 tripropylene glycol dimethyl ether
- SP value 7.52 propylene glycol dimethyl ether
- SP value 7.52 diethylene glycol dimethyl ether
- SP value 8.10 diethylene glycol dibutyl ether (SP value 8.29), triethylene glycol dimethyl ether (SP value 8.37), dipropylene glycol dimethyl ether (SP value 7.88), tripropylene glycol dimethyl ether (SP value 8) .06), n-propyl acetate (SP value 8.72), n-butyl acetate (SP value 8.70), 1,4-dioxane (SP value 8.64), methyl ethyl ketone (SP value 8.98), Methyl isobutyl ketone (SP value 8.68), diisobutyl ketone (SP value 8.50), isophorone (SP value 9.20), tetrahydrofuran (SP value 8.28), 4-methyltetrahydropyran (SP value 8.13) ), Cyclopentyl methyl ether (SP value 8.13) and the like.
- a transparent synthetic solution can be obtained, which is preferable in producing a transparent polyurethane film.
- a more preferred solvent is 4-methyltetrahydropyran.
- the order in which the raw materials are charged when synthesizing the above-mentioned (A) carboxy group-containing transparent polyurethane is not particularly limited, but usually (a2) polyol compound and (a3) carboxy group-containing dihydroxy compound are first. After being dissolved or dispersed in the above solvent, the polyisocyanate compound (a1) was added dropwise at 20 to 150 ° C., more preferably 60 to 120 ° C., and then 30 to 160 ° C., more preferably 50 ° C. These are reacted at ⁇ 130 ° C.
- the molar ratio of the raw material is adjusted according to the molecular weight and acid value of the target polyurethane, but when the (a4) monohydroxy compound is introduced into the polyurethane, the end of the polyurethane molecule becomes an isocyanate group. It is necessary to use (a1) a polyisocyanate compound in excess of (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group (so that the isocyanato group is in excess of the total number of hydroxyl groups).
- polyisocyanate When introducing a (a5) monoisocyanate compound into polyurethane, (a1) polyisocyanate is more than (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group so that the end of the polyurethane molecule becomes a hydroxy group. It is necessary to use less compound (so that there are fewer isocyanato groups than the total number of hydroxyl groups).
- the molar ratio of these charges is as follows: (a1) isocyanato group of polyisocyanate compound: ((a2) hydroxyl group of polyol compound + hydroxyl group of dihydroxy compound containing (a3) carboxy group) is 0.5 to It is 1.5: 1, preferably 0.8 to 1.2: 1, more preferably 0.95 to 1.05: 1.
- the hydroxyl group of the (a2) polyol compound the hydroxyl group of the dihydroxy compound containing the (a3) carboxy group is 1: 0.1 to 30, preferably 1: 0.3 to 10.
- the number of moles of the (a1) polyisocyanate compound is excessively larger than the number of moles of ((a2) polyol compound + (a3) dihydroxy compound containing a carboxy group), and (a4).
- the monohydroxy compound in an amount of 0.5 to 1.5 times, preferably 0.8 to 1.2 times, the molar amount of the excess molar number of the isocyanate group.
- the number of moles of ((a2) polyol compound + (a3) dihydroxy compound containing a carboxy group) is made larger than the number of moles of (a1) polyisocyanate compound, and the hydroxyl group is used. It is preferably used in an amount of 0.5 to 1.5 times, preferably 0.8 to 1.2 times, the excess molar amount.
- Examples of the (B) epoxy compound include bisphenol A type epoxy compound, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and N-glycidyl type.
- Epoxy resin bisphenol A novolak type epoxy resin, chelate type epoxy resin, glioxal type epoxy resin, amino group containing epoxy resin, rubber modified epoxy resin, dicyclopentadiene phenolic type epoxy resin, silicone modified epoxy resin, ⁇ -caprolactone modified epoxy
- examples thereof include an epoxy compound having two or more epoxy groups in one molecule, such as a resin, an aliphatic epoxy resin containing a glycidyl group, and an alicyclic epoxy resin containing a glycidyl group.
- a polyfunctional epoxy compound having three or more epoxy groups in one molecule can be used more preferably.
- epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER (registered trademark) 604 (manufactured by Mitsubishi Chemical Corporation), and EPICLON (registered trademark) EXA-4700 (manufactured by DIC Corporation).
- EPICLON registered trademark
- HP-7200 manufactured by DIC Corporation
- pentaerythritol tetraglycidyl ether pentaerythritol triglycidyl ether
- TEPIC registered trademark
- -S manufactured by Nissan Chemical Corporation
- the compounding ratio of the transparent polyurethane containing the (A) carboxy group to the (B) epoxy compound is 0.5 to 1.5 as the equivalent ratio of the carboxy group in the polyurethane to the epoxy group of the (B) epoxy compound. Is preferable, 0.7 to 1.3 is more preferable, and 0.9 to 1.1 is further preferable.
- Examples of the (D) curing accelerator include phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokuko Kagaku Kogyo Co., Ltd.) and Curesol (registered trademark) (imidazole-based epoxy resin curing agent: manufactured by Shikoku Kasei Kogyo Co., Ltd.). , 2-Phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), U-CAT (registered trademark) 5003 (phosphine-based compound: San-Apro Co., Ltd.) Made) and the like.
- phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokuko Kagaku Kogyo Co., Ltd.) and Curesol (registered trademark) (imidazole-based epoxy
- a curing aid may be used in combination.
- the curing aid include polyfunctional thiol compounds and oxetane compounds.
- the polyfunctional thiol compound include pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, trimethylpropanthris (3-mercaptopropionate), and Karenz. (Registered trademark) MT series (manufactured by Showa Denko KK) and the like.
- oxetane compound examples include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNCOLL (registered trademark) OXBP and OXMA (manufactured by Ube Industries, Ltd.).
- Aron Oxetane registered trademark
- ETERNCOLL registered trademark
- OXBP registered trademark
- OXMA manufactured by Ube Industries, Ltd.
- the thermosetting composition (sometimes referred to as protective film ink) preferably contains the solvent (C) in an amount of 95.0% by mass or more and 99.9% by mass or less, and preferably 96% by mass or more and 99.7% by mass or less. It is more preferable to contain 97% by mass or more and 99.5% by mass or less.
- the solvent (C) it is preferable to use the solvent used for the synthesis of the transparent polyurethane (A) containing a carboxy group as it is, but another solvent is used in order to adjust the solubility and printability of the polyurethane resin. You can also do it.
- the other solvent that can be used may be a solvent outside the SP value range of the solvent that is preferably used for the synthesis of the transparent polyurethane (A) containing a carboxy group.
- the boiling point of the solvent is preferably 60 ° C to 300 ° C, more preferably 70 ° C to 250 ° C. When the boiling point is less than 60 ° C., it is easy to dry at the time of printing and unevenness is likely to occur. If the boiling point is higher than 300 ° C., it is not suitable for industrial production because it requires a long time heat treatment at a high temperature during drying and curing.
- Examples of such a solvent include propylene glycol monomethyl ether acetate (boiling point of 146 ° C.), ⁇ -butyrolactone (boiling point of 204 ° C.), diethylene glycol monoethyl ether acetate (boiling point of 218 ° C.), tripropylene glycol dimethyl ether (boiling point of 243 ° C.) and the like.
- Solvents used for polyurethane synthesis ether solvents such as propylene glycol dimethyl ether (boiling point 97 ° C.), diethylene glycol dimethyl ether (boiling point 162 ° C.), isopropyl alcohol (boiling point 82 ° C.), t-butyl alcohol (boiling point 82 ° C.), propylene Glycol monomethyl ether (boiling point 120 ° C), 1-hexanol (boiling point 151 ° C), diethylene glycol monomethyl ether (boiling point 194 ° C), diethylene glycol monoethyl ether (boiling point 196 ° C), diethylene glycol monobutyl ether (boiling point 230 ° C), triethylene glycol (boiling temperature 230 ° C) Solvents containing hydroxyl groups such as ethyl lactate (boiling point 276 ° C) and ethy
- solvents may be used alone or in combination of two or more.
- aggregation and precipitation may occur in consideration of the solubility of the polyurethane resin and epoxy resin used. It is preferable to use a solvent having a hydroxy group and a boiling point of more than 100 ° C., which does not occur, or a solvent having a boiling point of 100 ° C. or lower from the viewpoint of drying property of the protective film ink.
- the protective film ink contains the transparent polyurethane containing the carboxy group (A), the epoxy compound (B), and the solvent (C), and the content of the solvent (C) is 95.0% by mass or more and 99.9. Mix so as to be less than% by mass. Further, if necessary, (D) a curing accelerator can be added. (D) When the curing accelerator is blended, it can be used by stirring so that it becomes uniform after blending.
- the solid content concentration in such a protective film ink varies depending on the desired film thickness and printing method, but is preferably 0.1 to 10% by mass, preferably 0.5% by mass to 5% by mass. More preferred.
- the solid content concentration is in the range of 0.1 to 10% by mass, there is no problem that electrical contact cannot be made due to the film thickness becoming too thick when applied on a transparent conductive film, and it is sufficient.
- a protective film having weather resistance and light resistance can be obtained.
- the amount of halogen contained in the protective film ink is preferably 200 mass ppm or less, more preferably 100 mass ppm or less, still more preferably 50 mass ppm or less, and particularly preferably 10 mass ppm or less.
- the epoxy compound is a halogen-free epoxy compound produced by a production method that does not use epichlorohydrin as a synthetic raw material, for example, oxidation of a compound containing a carbon-carbon double bond with a peroxide such as hydrogen peroxide. It is preferable to use it.
- a printing pattern is formed on the base material on which the transparent conductive layer is formed by a printing method such as a bar coat printing method, a gravure printing method, an inkjet method, or a slit coating method. After the solvent of the print pattern is dried and removed, it is cured by heat treatment as necessary to obtain a protective film.
- a transparent conductive layer formed on a transparent base material a transparent conductive film having a transparent conductive layer having a protective film with little change in sheet resistance and haze after light irradiation can be obtained. Obtainable.
- transparent means that the total light transmittance is 75% or more.
- the protective film ink When the protective film ink is cured by heating, it is heated under the conditions of a temperature of 100 ° C. or less and a heating time of 10 minutes or less.
- the transparent conductive layer can be produced by printing a conductive ink on a transparent base material.
- a transparent conductive layer is produced using silver nanowire ink as the conductive ink, the surface area per unit mass of the silver nanowire is large, and fine wiring and the like have low insulation reliability at high temperature and high humidity. Protection with the protective film ink according to the embodiment is effective.
- the transparent conductive film is provided with a transparent base material and a transparent conductive layer on at least one main surface of the transparent base material, and is provided with the protective film on the surface of the transparent conductive layer opposite to the transparent base material.
- One side or both sides of the transparent conductive film may be covered with a peeling (separate) film having a protective function.
- the transparent substrate preferably has a total light transmittance of 80% or more.
- a resin film such as polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), polycarbonate, acrylic resin (polymethylmethacrylate [PMMA], etc.), cycloolefin polymer and the like can be preferably used.
- these transparent substrates may be provided with a single layer having functions such as easy adhesion, optical adjustment (anti-glare, anti-reflection, etc.), hard coat, etc., as long as the optical properties, electrical properties, and bending resistance are not impaired. A plurality of them may be provided, and one side or both sides may be provided.
- polyethylene terephthalate and cycloolefin polymers are preferably used from the viewpoints of excellent light transmission (transparency), flexibility, mechanical properties and the like.
- cycloolefin polymers include norbornene hydride ring-opening metathesis polymerized cycloolefin polymers (ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ZEONEX (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ARTON (registered trademark, JSR stock).
- Tg glass transition temperature
- TOPAS registered trademark, manufactured by Polyplastics Co., Ltd.
- the thickness is preferably 1 to 200 ⁇ m, more preferably 5 to 150 ⁇ m, and even more preferably 8 to 100 ⁇ m.
- the conductive fibers constituting the transparent conductive layer include metal nanowires and carbon fibers, and metal nanowires can be preferably used.
- the metal nanowire is a metal having a diameter on the order of nanometers, and is a conductive material having a wire-like shape.
- metal nanotubes which are conductive materials having a porous or non-porous tubular shape, may be used together with (mixed with) the metal nanowires or instead of the metal nanowires.
- both "wire-like” and “tube-like” are linear, but the former is intended to have a hollow center and the latter to be hollow in the center.
- the properties may be flexible or rigid.
- metal nanowires in a narrow sense The former is referred to as “metal nanowires in a narrow sense” and the latter is referred to as “metal nanotubes in a narrow sense”.
- metal nanowires are used in the meaning of including metal nanowires in a narrow sense and metal nanotubes in a narrow sense.
- Metal nanowires in a narrow sense and metal nanotubes in a narrow sense may be used alone or in combination.
- metal nanowires As a method for producing metal nanowires, a known production method can be used. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using the Poly-ol method (see Chem. Matter., 2002, 14, 4736). Gold nanowires can also be similarly synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). The techniques for large-scale synthesis and purification of silver nanowires and gold nanowires are described in detail in International Publication No. 2008/073143 and International Publication No. 2008/046058.
- Gold nanotubes having a porous structure can be synthesized by reducing a gold chloride solution using silver nanowires as a template.
- the silver nanowires used in the template dissolve in the solution by a redox reaction with chloroauric acid, resulting in gold nanotubes having a porous structure (JAm. Chem. Soc., 2004, 126, 3892). See -3901).
- the average diameter of the metal nanowires is preferably 1 to 500 nm, more preferably 5 to 200 nm, further preferably 5 to 100 nm, and particularly preferably 10 to 50 nm.
- the average length of the major axis of the metal nanowire is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, further preferably 2 to 70 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
- the average diameter and the average length of the major axis satisfy the above range, and the average aspect ratio is preferably larger than 5, more preferably 10 or more, and more than 100. It is more preferable, and it is particularly preferable that it is 200 or more.
- the aspect ratio is a value obtained by a / b when the average diameter of the diameter of the metal nanowire is approximated to b and the average length of the major axis is approximated to a.
- a and b can be measured using a scanning electron microscope (SEM) and an optical microscope. Specifically, for b (average diameter), a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the dimensions (diameter) of 100 arbitrarily selected silver nanowires, and the arithmetic average thereof was measured. The value can be calculated.
- the shape measurement laser microscope VK-X200 manufactured by Keyence Co., Ltd. was used to calculate a (average length), and the dimensions (length) of 100 arbitrarily selected silver nanowires were measured, and the arithmetic was performed. The average value can be calculated.
- such a metal nanowire As the material of such a metal nanowire, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, and iridium, and metals thereof. Examples thereof include alloys in which the above are combined.
- Optimal embodiments include silver nanowires.
- the transparent conductive layer contains conductive fibers and a binder resin.
- the binder resin can be applied without limitation as long as it has bending resistance and transparency, which is the subject of the present invention, but when a metal nanowire using the polyol method is used as the conductive fiber, it is used for manufacturing the binder resin. From the viewpoint of compatibility with the solvent (polyol), it is preferable to use a binder resin that is soluble in alcohol, water, or a mixed solvent of alcohol and water.
- water-soluble cellulosic resins such as poly-N-vinylpyrrolidone, methylcellulose, hydroxyethylcellulose, and carboxymethylcellulose, butyral resin, and poly-N-vinylacetamide (PNVA (registered trademark)) can be used.
- Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA), but a copolymer containing 70 mol% or more of N-vinylacetamide (NVA) can also be used.
- Examples of the monomer copolymerizable with NVA include N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, acrylonitrile and the like.
- the sheet resistance of the obtained transparent conductive film increases, the adhesion between the silver nanowires and the substrate tends to decrease, and the heat resistance (thermal decomposition start temperature) also decreases.
- the monomer unit derived from N-vinylacetamide is preferably contained in the polymer in an amount of 70 mol% or more, more preferably 80 mol% or more, and further preferably 90 mol% or more.
- the weight average molecular weight of such a polymer based on the absolute molecular weight is preferably 30,000 to 4,000,000, more preferably 100,000 to 3,000,000, and even more preferably 300,000 to 1,500,000.
- the absolute molecular weight is measured by the following method.
- the binder resin was dissolved in the following eluate and allowed to stand for 20 hours.
- the concentration of the binder resin in this solution is 0.05% by mass. This was filtered through a 0.45 ⁇ m membrane filter, and the filtrate was measured by GPC-MALS.
- GPC Showa Denko Corporation Shodex (registered trademark) SYSTEM21
- Multi-angle fit method Berry method
- the above resins may be used alone or in combination of two or more. When two or more kinds are combined, a simple mixture may be used, or a copolymer may be used.
- the transparent conductive layer is formed by printing a conductive ink containing the conductive fibers, a binder resin and a solvent on at least one main surface of a transparent base material and drying and removing the solvent.
- the solvent is not particularly limited as long as the conductive fibers show good dispersibility and the binder resin dissolves in the solvent.
- the conductive fibers are metal nanowires synthesized by the polyol method, they are used for their production.
- alcohol, water or a mixed solvent of alcohol and water is preferable.
- the alcohol is a saturated monohydric alcohol (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n + 1 OH (n is an integer of 1 to 3) [hereinafter, simply "carbon". Notated as “saturated monohydric alcohol with 1 to 3 atomic numbers"]. It is preferable that the saturated monohydric alcohol having 1 to 3 carbon atoms is contained in an amount of 40% by mass or more based on the total alcohol. Using a saturated monohydric alcohol having 1 to 3 carbon atoms facilitates drying, which is convenient in terms of the process. As the alcohol, an alcohol other than the saturated monohydric alcohol having 1 to 3 carbon atoms can be used in combination.
- Examples of alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms that can be used in combination include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. Be done.
- the drying rate can be adjusted by using in combination with the saturated monohydric alcohol having 1 to 3 carbon atoms.
- the total alcohol content in the mixed solvent is preferably 5 to 90% by mass. If the alcohol content in the mixed solvent is less than 5% by mass or more than 90% by mass, a striped pattern (coating spot) is generated when coating, which is unsuitable.
- the conductive ink can be produced by stirring and mixing the binder resin, conductive fibers and a solvent with a rotating revolution stirrer or the like.
- the content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
- the content of conductive fibers contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
- the binder resin is preferably 0.1 to 10 with respect to the conductive fiber.
- the content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass.
- halogen is contained in the conductive ink as in the case of the protective film ink described above, when the conductive layer of the transparent conductive film is formed, the halogen remains in the conductive film and adversely affects the conductive portion. The lower the content, the better.
- the conductive ink can be printed by a printing method such as a bar coating method, a spin coating method, a spray coating method, a gravure method, or a slit coating method.
- the shape of the printed film or pattern formed at this time is not particularly limited, but the wiring formed on the base material, the shape of the electrode as a pattern, or the film covering the entire surface or a part of the base material.
- the shape as (solid pattern) and the like can be mentioned.
- the formed pattern can be made conductive by heating and drying the solvent.
- the preferable thickness of the transparent conductive layer or the transparent conductive pattern obtained after solvent drying varies depending on the diameter of the conductive fibers used and the desired surface resistance value, but is 10 to 300 nm, more preferably 30 to 200 nm.
- the formed transparent conductive layer or transparent conductive pattern can be made conductive by heating and drying the solvent, but if necessary, the transparent conductive layer or the transparent conductive pattern may be appropriately irradiated with light.
- the weight average molecular weight of the obtained transparent polyurethane (A) containing a carboxy group was 32,300.
- Synthesis Examples 2 to 13 A transparent polyurethane containing (A) carboxy group was synthesized in the same manner as in Synthesis Example 1 except that the raw materials shown in Table 1 were used.
- the main skeleton and molecular weight of the (a2) polyol compound other than C-1015N used in Synthesis Example 1 in the table are as follows.
- UC-100 Polyalkylene carbonate diol, molecular weight 1000 (catalog value) (manufactured by Ube Industries, Ltd.)
- PH-50 Polyalkylene carbonate diol, molecular weight 500 (catalog value) (manufactured by Ube Industries, Ltd.)
- G3450J Polyalkylene carbonate diol, molecular weight 800 (catalog value) (manufactured by Asahi Kasei Chemicals Co., Ltd.)
- T5651 Polyalkylene carbonate diol, molecular weight 1000 (catalog value) (manufactured by Asahi Kasei Chemicals Co., Ltd.)
- Synthesis Examples 14-23 The synthesis was carried out in the same manner except that the solvent in Synthesis Example 1 was changed as shown in Table 2. In the case of a solvent having a boiling point of 100 ° C. or lower, the reaction was carried out under the condition that the reaction temperature was lowered by 5 ° C. from the boiling point.
- NPAc N-methylpyrrolidone
- SP value: 7.52 Propylene glycol dimethyl ether
- DEGDM Diethylene glycol dimethyl ether
- CPME Cyclopentyl methyl ether
- MTHP 4-Methyltetrahydropyran
- TEGDM Triethylene glycol dimethyl ether (SP value: 8.37)
- NPAc n-propyl acetate (SP value: 8.72)
- BCA Diethylene glycol monobutyl ether acetate (SP value: 8.94)
- ECA Diethylene glycol monoethyl ether acetate (SP value: 9.01)
- BDDA 1,4-butanediol diacetate
- NMP N-methylpyrrolidone (SP value: 11.
- Tables 1 and 2 show the visual appearance of each polyurethane resin solution obtained in Synthesis Examples 1 to 23. It can be seen that in Synthesis Examples 1 to 8 in Table 1, the appearance of the obtained resin does not change only by changing the conditions such as polyol, polyisocyanate, dicarboxylic acid, and acid value. In Synthesis Examples 1, 2, 3, 5, and 8 and Synthesis Examples 9 to 13, only the solvent at the time of synthesis was changed, but it can be seen that they are colored.
- the solvent used during the synthesis has a great influence on the coloring and does not depend on the specific resin structure in the examined range. It should be noted that white turbidity and milky whiteness are caused by the compatibility between the resins, and there is no problem because they become transparent when they are formed into a film, which is the shape to be finally used. However, there is no problem because the turbidity is eliminated by adding a good solvent.
- Example 1 To 10 g of the polyurethane resin solution having a solid content concentration of 35% by mass obtained in Synthesis Example 14, 10 g of 1-hexanol (manufactured by Toyo Synthetic Chemical Industry Co., Ltd.) was added, and the mixture was stirred with an AS ONE mix rotor for 3 hours to have a solid content concentration of 17 It was set to 5.5% by mass.
- a film applicator with a micrometer manufactured by Takumi Giken Co., Ltd.
- a COP film ZF14-100 manufactured by Nippon Zeon Corporation, thickness 100 ⁇ m
- the transparent polyurethane film obtained on the COP film was peeled off from the COP, and the film thickness measured with a micrometer was 50 ⁇ m.
- a test piece cut out to a size of 3 cm ⁇ 3 cm was cut out to a size of 3 cm ⁇ 3 cm, and a color difference meter COH7700 manufactured by Nippon Denshoku Kogyo was used to set the light source to D65 in accordance with the color measurement method of JIS Z8722, and the color difference (b *). Value) was measured.
- Preparation Examples 2 to 12 A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with the one shown in Table 4.
- Preparation Examples 13, 14 A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with the one shown in Table 4 and the curing accelerator was replaced with U-CAT (registered trademark) SA102 (manufactured by Sun Appro Co., Ltd.).
- U-CAT registered trademark
- Preparation Example 15 A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with that shown in Table 4 and no curing accelerator was used.
- the obtained crude silver nanowire dispersion was dispersed in 2000 ml of methanol, and a small desktop tester (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.24 m 2 , pore diameter 2.0 ⁇ m, size ⁇ 30 mm ⁇ 250 mm, filtration It was poured into a differential pressure of 0.01 MPa), cross-flow filtration was performed at a circulation flow velocity of 12 L / min and a dispersion temperature of 25 ° C. to remove impurities, and then concentrated until the total amount reached 100 g, and silver nanowires (average diameter:: average diameter: A methanol dispersion (26 nm, average length: 20 ⁇ m) was obtained.
- a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the arithmetic mean value thereof was measured. Asked. Further, in order to calculate the average length of the obtained silver nanowires, a shape measurement laser microscope VK-X200 (manufactured by Keyence Co., Ltd.) was used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the arithmetic average value thereof was measured. Asked. As the methanol, ethylene glycol, AgNO 3 , and FeCl 3 , reagents manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. were used.
- ⁇ Making conductive ink (silver nanowire ink)> 11 g of methanol dispersion of silver nanowires synthesized by the above polyol method (silver nanowire concentration 0.62% by mass), 3.5 g of water, 10.8 g of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), propylene glycol monomethyl ether (PGME) , Fujifilm Wako Pure Chemical Industries, Ltd.) 12.8 g, propylene glycol 1.2 g (PG, manufactured by Asahi Glass Co., Ltd.), PNVA (registered trademark) aqueous solution (manufactured by Showa Denko Co., Ltd., solid content concentration 10% by mass, weight average) 0.7 g (molecular weight 900,000) was mixed and stirred with a mix rotor VMR-5R (manufactured by AS ONE Co., Ltd.) for 1 hour at room temperature and in an air atmosphere (rotation speed 100 rpm)
- ⁇ Formation of transparent conductive layer (silver nanowire layer)> A4 as a transparent substrate subjected to plasma processing gas used: nitrogen, transport speed: 50 mm / sec, processing time: 6 sec, set voltage: 400 V
- a plasma processing device AP-T03 manufactured by Sekisui Chemical Industry Co., Ltd.
- TQC automatic film applicator standard manufactured by Cortec Co., Ltd.
- wireless bar coater OSP-CN-22L manufactured by Cortec Co., Ltd.
- Silver nanowire ink was applied to the entire surface of the transparent substrate (ZF14-050) so that the wet film thickness was 22 ⁇ m (coating speed 500 mm / sec). Then, it was dried with hot air in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a silver nanowire layer (film thickness after drying: 90 nm). The film thickness was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry. The measurement points were changed, and the average value measured at three points was used as the film thickness.
- HISPEC HS350 manufactured by Kusumoto Kasei Co., Ltd.
- Tc film thickness of the silver nanowire ink coating film (transparent conductive layer) formed on the transparent base material (ZF14-050) can be directly measured.
- thermosetting composition for the protective film of Preparation Example 1 shown in Table 4 was applied by TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) to the wireless bar coater OSP-. It was applied using CN-10M so that the wet film thickness was 5 ⁇ m. Then, it was dried with hot air (thermosetting) in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a protective film (film thickness after drying: 90 nm).
- the film thickness of the protective film was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry as well as the film thickness of the silver nanowire ink coating film described above. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the total film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) formed on the transparent substrate and the film thickness (Tp) of the protective film formed on the film thickness (Tp). Since (Tc + Tp) can be directly measured, the film thickness (Tp) of the protective film can be obtained by subtracting the film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) measured earlier from this measured value.
- F20-UV manufactured by Filmometrics Co., Ltd.
- Examples 12 to 23 and Comparative Examples 3 and 4 A transparent conductive film was produced in the same manner as in Example 11 except that the protective film compositions were replaced with those shown in Table 4.
- the transparent conductive film with a protective film prepared from a resin synthesized using a solvent having an SP value of 9.80 or more has rainbow unevenness and cloudiness in appearance, and the b * value exceeds 1.00. ..
- the haze also has a value of more than 2.0, which shows that it is not suitable for a transparent conductive film.
- the protective film resin is synthesized using a solvent having an SP value of less than 9.80 as in Examples 11 to 23
- the haze is 2.0 or less and the b * value is 1.00. It is clear that it is less than that and suitable for a transparent conductive film.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
- Laminated Bodies (AREA)
Abstract
[Problem] To provide a transparent polyurethane having a low degree of coloration (yellowness), a production method therefor, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using a cured film obtained from the thermosetting composition as a protective film. [Solution] The invention involves using as a synthesis solvent a solvent having an SP value of less than 9.80 by the Fedors estimation method to synthesize (A) a carboxy group-containing transparent polyurethane having a b* value of 0.25 or lower when formed into a 50 μm-thick film. Next, a transparent base material and a transparent conductive layer on at least one surface of the transparent base material are provided, and a cured film obtained from a thermosetting composition containing (A) the carboxy group-containing transparent polyurethane, (B) an epoxy compound, and (C) a solvent is formed on the surface of the transparent conductive layer facing away from the transparent base material, thereby forming a transparent conductive film.
Description
本発明は、透明ポリウレタン及びその製造方法並びに透明ポリウレタンを含む熱硬化性組成物及びその硬化膜を保護膜として用いた透明導電フィルムに関する。さらに詳しくは着色度(黄味)が小さい透明ポリウレタン及びその製造方法並びに透明ポリウレタンを含む熱硬化性組成物及びその硬化膜を保護膜として用いた透明導電フィルムに関する。
The present invention relates to a transparent polyurethane, a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film. More specifically, the present invention relates to a transparent polyurethane having a small degree of coloring (yellowness), a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film.
透明導電膜は、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス型ディスプレイ、太陽電池(PV)およびタッチパネル(TP)の透明電極、帯電防止(ESD)フィルムならびに電磁波遮蔽(EMI)フィルム等の種々の分野で使用されている。これらの透明導電膜としては、従来、ITO(酸化インジウム錫)を用いたものが使われてきたが、インジウムの供給安定性が低い、製造コストが高い、柔軟性に欠ける、および成膜時に高温が必要であるという問題があった。そのため、ITOに代わる透明導電膜の探索が活発に進められている。それらの中でも、金属ナノワイヤを含有する透明導電膜は、導電性、光学特性、および柔軟性に優れること、ウェットプロセスで成膜が可能であること、製造コストが低いこと、成膜時に高温を必要としないことなどから、ITO代替透明導電膜として好適である。例えば、銀ナノワイヤを含み、高い導電性、光学特性、柔軟性を有する透明導電膜が知られている(特許文献1参照)。
Transparent conductive films include liquid crystal displays (LCDs), plasma display panels (PDPs), organic electroluminescent displays, transparent electrodes for solar cells (PV) and touch panels (TP), antistatic (ESD) films and electromagnetic shielding (EMI). It is used in various fields such as films. Conventionally, those using ITO (indium tin oxide) have been used as these transparent conductive films, but the supply stability of indium is low, the manufacturing cost is high, the flexibility is lacking, and the temperature is high at the time of film formation. There was a problem that was necessary. Therefore, the search for a transparent conductive film to replace ITO is being actively pursued. Among them, the transparent conductive film containing metal nanowires has excellent conductivity, optical properties, and flexibility, can be formed by a wet process, has a low manufacturing cost, and requires a high temperature during film formation. Therefore, it is suitable as an ITO alternative transparent conductive film. For example, a transparent conductive film containing silver nanowires and having high conductivity, optical properties, and flexibility is known (see Patent Document 1).
しかしながら、銀ナノワイヤを含有する透明導電膜は、銀質量当たりの表面積が大きく、種々の化合物と反応し易いために環境耐性に欠けるという問題があり、工程中に使用される種々の薬剤や洗浄液の影響や、長期保管によってさらされる空気中の酸素や水分の影響等により、ナノ構造体が腐食し、導電性が低下しやすい。また、特に電子材料などの用途では、基板の表面への微粒子状の不純物やちりやホコリなどの付着や混入を防ぐために、ブラシ等を用いた物理的洗浄工程が用いられる場合が多いが、この工程によっても表面が傷つけられることが問題になる。
However, the transparent conductive film containing silver nanowires has a problem that it lacks environmental resistance because it has a large surface area per silver mass and easily reacts with various compounds. Due to the influence and the influence of oxygen and moisture in the air exposed by long-term storage, the nanostructures are easily corroded and the conductivity is easily lowered. Further, especially in applications such as electronic materials, a physical cleaning process using a brush or the like is often used in order to prevent the adhesion or mixing of fine particle impurities, dust, dust, etc. on the surface of the substrate. The problem is that the surface is also damaged by the process.
これを解決するため、各種保護膜の検討が行われている。透明導電膜としての機能を有するように保護膜も透明である必要がある。一方で、保護膜に用いる樹脂は、いわゆる黄変を起こすことが一般に知られている。黄変した場合、透明導電膜としての性能の低下(ディスプレイの画質、太陽電池の光電変換効率、の低下)を招くことになる。
In order to solve this, various protective films are being studied. The protective film also needs to be transparent so as to have a function as a transparent conductive film. On the other hand, it is generally known that the resin used for the protective film causes so-called yellowing. When it turns yellow, the performance of the transparent conductive film is deteriorated (the image quality of the display and the photoelectric conversion efficiency of the solar cell are deteriorated).
特許文献2には特定の骨格を有する材料(1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート)を用いて合成された、光学シートに好適なポリウレタンエラストマーが開示されており、透明性、耐黄変性にも優れる旨記載されている。また、特許文献3には、低硬度であり、柔軟性と弾力性を兼ね備え、可塑剤および/または溶剤がブリードすることのない光学関連用途に適した透明ポリウレタン樹脂の製造方法が、特許文献4には、軟質ポリウレタンからなる曇り防止作用を有する透明被覆コーティングが、それぞれ開示されている。これらはいずれも特定の化学構造を有する原料を特定の割合で配合して合成することにより、透明なポリウレタンを得ているが、独立したシートやフィルム、成形品といった用途や他の透明なガラスもしくはプラスチック基材の機械的特性、湿潤性(曇り防止性)を改良するための被覆材として使用されており、透明導電膜の耐環境(温度、湿度、自然光)性を付与する保護膜としての機能については言及していない。
Patent Document 2 discloses a polyurethane elastomer suitable for an optical sheet, which is synthesized by using a material having a specific skeleton (polyisocyanate containing 1,4-bis (isocyanatomethyl) cyclohexane), and is transparent. , It is described that it is also excellent in yellowing resistance. Further, Patent Document 3 describes a method for producing a transparent polyurethane resin, which has low hardness, has flexibility and elasticity, and is suitable for optical-related applications in which a plasticizer and / or a solvent does not bleed. Discloses a transparent coating coating made of flexible polyurethane having an antifogging effect. All of these have obtained transparent polyurethane by blending and synthesizing raw materials having a specific chemical structure in a specific ratio, but they can be used for independent sheets, films, molded products, or other transparent glass or other transparent glass. It is used as a coating material to improve the mechanical properties and wettability (anti-fog property) of plastic substrates, and functions as a protective film that imparts environmental resistance (temperature, humidity, natural light) to transparent conductive films. Is not mentioned.
本発明は、着色度(黄味)が小さい透明ポリウレタン及びその製造方法並びに透明ポリウレタンを含む熱硬化性組成物及びその硬化膜を保護膜として用いた透明導電フィルムを提供することを課題とする。
An object of the present invention is to provide a transparent polyurethane having a small degree of coloring (yellowness), a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film.
本発明者らは、ポリウレタンを合成するために用いるモノマーが同一であっても、特定の合成条件下で合成することにより、着色度の小さいより透明性に優れたポリウレタンが得られ、透明導電フィルムの透明導電層保護膜用に好適であることを見出した。
Even if the monomers used for synthesizing polyurethane are the same, the present inventors can obtain polyurethane with less coloration and better transparency by synthesizing under specific synthetic conditions, and a transparent conductive film. It was found that it is suitable for the transparent conductive layer protective film of.
すなわち、本発明は以下の実施態様を有する。
That is, the present invention has the following embodiments.
[1]厚み50μmに膜形成した際のb*値が0.25以下であることを特徴とする(A)カルボキシ基を含有する透明ポリウレタン。
[1] A transparent polyurethane containing a carboxy group (A), characterized in that the b * value when a film is formed to a thickness of 50 μm is 0.25 or less.
[2]前記(A)カルボキシ基を含有する透明ポリウレタンが(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、および(a3)カルボキシ基を含有するジヒドロキシ化合物をモノマーとして用いて合成されたものである[1]に記載の(A)カルボキシ基を含有する透明ポリウレタン。
[2] The transparent polyurethane (A) containing a carboxy group is synthesized by using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound containing a carboxy group as a monomer. The transparent polyurethane containing the (A) carboxy group according to [1].
[3]前記(a2)ポリオール化合物がポリカーボネートポリオールである[2]に記載の(A)カルボキシ基を含有する透明ポリウレタン。
[3] The transparent polyurethane containing the (A) carboxy group according to [2], wherein the (a2) polyol compound is a polycarbonate polyol.
[4]前記(a1)ポリイソシアネート化合物が脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートである[2]または[3]に記載の(A)カルボキシ基を含有する透明ポリウレタン。
[4] The transparent polyurethane containing the (A) carboxy group according to [2] or [3], wherein the (a1) polyisocyanate compound is an aliphatic polyisocyanate or an alicyclic polyisocyanate.
[5]厚み50μmに膜形成した際のb*値が0.25以下である(A)カルボキシ基を含有する透明ポリウレタンと、(B)エポキシ化合物と、(C)溶媒と、を含む熱硬化性組成物。
[5] Thermosetting containing (A) a transparent polyurethane containing a carboxy group having a b * value of 0.25 or less when a film is formed to a thickness of 50 μm, (B) an epoxy compound, and (C) a solvent. Sex composition.
[6]さらに(D)硬化促進剤を含む[5]に記載の熱硬化性組成物。
[6] The thermosetting composition according to [5], which further contains (D) a curing accelerator.
[7]前記(B)エポキシ化合物が一分子中に3個以上のエポキシ基を有する多官能エポキシ化合物である[5]または[6]に記載の熱硬化性組成物。
[7] The thermosetting composition according to [5] or [6], wherein the (B) epoxy compound is a polyfunctional epoxy compound having three or more epoxy groups in one molecule.
[8]透明基材と、透明基材上の少なくとも一方の表面に設けられた透明導電層と、該透明導電層の透明基材とは反対側の面に設けられた保護膜と、を有する透明導電フィルムであり、前記保護膜が、厚み50μmに膜形成した際のb*値が0.25以下である(A)カルボキシ基を含有する透明ポリウレタンと、(B)エポキシ化合物と、(C)溶媒と、を含む熱硬化性組成物の硬化膜であることを特徴とする透明導電フィルム。
[8] It has a transparent base material, a transparent conductive layer provided on at least one surface of the transparent base material, and a protective film provided on a surface of the transparent conductive layer opposite to the transparent base material. A transparent polyurethane which is a transparent conductive film and has a b * value of 0.25 or less when the protective film is formed to a thickness of 50 μm, (A) a transparent polyurethane containing a carboxy group, (B) an epoxy compound, and (C). A transparent conductive film, which is a cured film of a thermosetting composition containing a solvent.
[9]前記透明導電層が金属ナノワイヤを含む[8]に記載の透明導電フィルム。
[9] The transparent conductive film according to [8], wherein the transparent conductive layer contains metal nanowires.
[10]前記金属ナノワイヤが銀ナノワイヤである[9]に記載の透明導電フィルム。
[10] The transparent conductive film according to [9], wherein the metal nanowire is a silver nanowire.
[11]合成溶媒としてFedorsの推算法によるSP値が9.80未満の溶媒を用いることを特徴とする[1]~[4]のいずれかに記載の(A)カルボキシ基を含有する透明ポリウレタンの製造方法。
[11] The transparent polyurethane containing the carboxy group (A) according to any one of [1] to [4], wherein a solvent having an SP value of less than 9.80 according to the Fedors estimation method is used as the synthetic solvent. Manufacturing method.
[12]前記溶媒がジエチレングリコールモノブチルエーテルアセテート、1,4-ブタンジオールジアセテート、トリプロピレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、酢酸n-プロピル、酢酸n-ブチル、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、イソホロン、テトラヒドロフラン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテルからなる群から選択される何れかである[11]に記載の透明ポリウレタンの製造方法。
[12] The solvent is diethylene glycol monobutyl ether acetate, 1,4-butanediol diacetate, tripropylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, n acetate. -Any one selected from the group consisting of propyl, n-butyl acetate, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, isophorone, tetrahydrofuran, 4-methyltetrahydropyran, cyclopentyl methyl ether [11]. The method for producing transparent polyurethane according to.
[13]前記溶媒が4-メチルテトラヒドロピランまたはトリエチレングリコールジメチルエーテルである[11]に記載の透明ポリウレタンの製造方法。
[13] The method for producing a transparent polyurethane according to [11], wherein the solvent is 4-methyltetrahydropyran or triethylene glycol dimethyl ether.
[14]前記溶媒がメチルテトラヒドロピランである[11]に記載の透明ポリウレタンの製造方法。
[14] The method for producing a transparent polyurethane according to [11], wherein the solvent is methyl tetrahydropyran.
本発明によれば、着色度(黄味)が小さい透明ポリウレタン及びその製造方法並びに透明ポリウレタンを含む熱硬化性組成物及びその硬化膜を保護膜として用いた透明導電フィルムを提供できる。
According to the present invention, it is possible to provide a transparent polyurethane having a small degree of coloring (yellowness), a method for producing the same, a thermosetting composition containing the transparent polyurethane, and a transparent conductive film using the cured film as a protective film.
以下、本発明を実施するための形態(以下、実施形態という)を説明する。
Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described.
<透明ポリウレタン及びこれを含む熱硬化性組成物>
本発明の第一の態様である(A)カルボキシ基を含有する透明ポリウレタンは、厚み50μmに膜形成した際のb*値が0.25以下であることを特徴とする。 <Transparent polyurethane and thermosetting composition containing it>
The transparent polyurethane (A) containing a carboxy group according to the first aspect of the present invention is characterized in that the b * value when a film is formed to a thickness of 50 μm is 0.25 or less.
本発明の第一の態様である(A)カルボキシ基を含有する透明ポリウレタンは、厚み50μmに膜形成した際のb*値が0.25以下であることを特徴とする。 <Transparent polyurethane and thermosetting composition containing it>
The transparent polyurethane (A) containing a carboxy group according to the first aspect of the present invention is characterized in that the b * value when a film is formed to a thickness of 50 μm is 0.25 or less.
透明導電フィルムの保護膜を形成する樹脂としては、高い絶縁性能、耐環境性(温度、湿度、自然光など)を有する樹脂であれば特に問題なく使用できるが、フレキシブルデバイスへの適用を考えると、適度に柔軟な骨格を有するポリウレタンが好適である。また、透明導電フィルムを構成する透明導電層への傷つきを防ぐために、透明導電層上に塗布後硬化できるような架橋反応基を有する硬化性樹脂であることが好ましい。透明導電層上に保護膜を形成した後、架橋反応基による硬化を行うことで、耐擦傷性、耐溶剤性が向上するため好ましい。架橋反応基としては、自然光への耐性を考慮した場合、熱硬化する架橋反応基が好ましい。
As the resin that forms the protective film of the transparent conductive film, any resin that has high insulation performance and environmental resistance (temperature, humidity, natural light, etc.) can be used without any particular problem, but considering application to flexible devices, Polyurethane having a moderately flexible skeleton is suitable. Further, in order to prevent the transparent conductive layer constituting the transparent conductive film from being damaged, it is preferable that the curable resin has a cross-linking reactive group that can be cured after being applied onto the transparent conductive layer. After forming a protective film on the transparent conductive layer, curing with a cross-linking reactive group is preferable because scratch resistance and solvent resistance are improved. As the cross-linking reactive group, a thermosetting cross-linking reactive group is preferable in consideration of resistance to natural light.
このような熱硬化性樹脂の中でも(A)カルボキシ基を含有する透明ポリウレタンは、柔軟性を有し、エポキシ基やイソシアナト基を有する化合物と配合することでそれらの架橋反応基(エポキシ基やイソシアナト基)が(A)カルボキシ基を含有する透明ポリウレタンのカルボキシ基と架橋できるため、より好ましい。
Among such thermosetting resins, the transparent polyurethane (A) containing a carboxy group has flexibility, and by blending with a compound having an epoxy group or an isocyanato group, the cross-linking reactive group (epoxy group or isocyanato) thereof. The group) can be crosslinked with the carboxy group of the transparent polyurethane (A) containing the carboxy group, which is more preferable.
(A)カルボキシ基を含有する透明ポリウレタンは、ポリオール化合物、ポリイソシアネート化合物、カルボキシ基を含有するジヒドロキシ化合物から合成できる。
(A) The transparent polyurethane containing a carboxy group can be synthesized from a polyol compound, a polyisocyanate compound, and a dihydroxy compound containing a carboxy group.
透明導電フィルムの保護膜は、(A)カルボキシ基を含有する透明ポリウレタンを含む熱硬化性組成物を透明導電層上に印刷、塗布等により形成し、硬化させることにより形成することが好ましい。熱硬化性組成物は、(A)カルボキシ基を含有する透明ポリウレタンと、(B)エポキシ化合物と、(C)溶媒と、を含むものが好ましく、更に必要に応じて(D)硬化促進剤を含んでもよい。
The protective film of the transparent conductive film is preferably formed by forming (A) a thermosetting composition containing a transparent polyurethane containing a carboxy group on the transparent conductive layer by printing, coating, or the like, and then curing the film. The thermosetting composition preferably contains (A) a transparent polyurethane containing a carboxy group, (B) an epoxy compound, and (C) a solvent, and if necessary, (D) a curing accelerator. It may be included.
上記(A)カルボキシ基を含有する透明ポリウレタンは、その重量平均分子量が1,000~100,000であることが好ましく、2,000~70,000であることがより好ましく、3,000~50,000であると更に好ましい。ここで、分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと表記)で測定したポリスチレン換算の値である。重量平均分子量が1,000未満では、印刷後の塗膜の伸度、可撓性、並びに強度を損なうことがあり、100,000を超えると溶媒へのポリウレタンの溶解性が低くなる上に、溶解しても粘度が高くなりすぎるために、使用面で制約が大きくなることがある。
The transparent polyurethane containing the carboxy group (A) preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 2,000 to 70,000, and more preferably 3,000 to 50. It is more preferably 000. Here, the molecular weight is a polystyrene-equivalent value measured by gel permeation chromatography (hereinafter referred to as GPC). If the weight average molecular weight is less than 1,000, the elongation, flexibility, and strength of the coating film after printing may be impaired, and if it exceeds 100,000, the solubility of polyurethane in a solvent becomes low, and the solubility of polyurethane in a solvent becomes low. Even if it is dissolved, the viscosity becomes too high, which may increase restrictions on use.
本明細書においては、特に断りのない限り、GPCの測定条件は以下のとおりである。
装置名:日本分光株式会社製HPLCユニット HSS-2000
カラム:ShodexカラムLF-804
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度 :40.0℃
試料量:サンプルル-プ 100μリットル
試料濃度:約0.1質量%に調製 In the present specification, unless otherwise specified, the measurement conditions of GPC are as follows.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran Flow velocity: 1.0 mL / min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0 ° C
Sample amount: Sample loop 100 μliter Sample concentration: Prepared to about 0.1% by mass
装置名:日本分光株式会社製HPLCユニット HSS-2000
カラム:ShodexカラムLF-804
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度 :40.0℃
試料量:サンプルル-プ 100μリットル
試料濃度:約0.1質量%に調製 In the present specification, unless otherwise specified, the measurement conditions of GPC are as follows.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran Flow velocity: 1.0 mL / min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0 ° C
Sample amount: Sample loop 100 μliter Sample concentration: Prepared to about 0.1% by mass
(A)カルボキシ基を含有する透明ポリウレタンの酸価は10~140mg-KOH/gであることが好ましく、15~130mg-KOH/gであると更に好ましい。酸価が10mg-KOH/g未満では、硬化性が低くなる上に耐溶剤性も悪くなる。140mg-KOH/gを超えるとウレタン樹脂としての溶媒への溶解性が低く、また溶解したとしても粘度が高くなりすぎ、ハンドリングが難しい。また、硬化物も硬くなりすぎるために基材フィルムによっては反り等の問題を起こしやすくなる。
The acid value of the transparent polyurethane (A) containing a carboxy group is preferably 10 to 140 mg-KOH / g, more preferably 15 to 130 mg-KOH / g. If the acid value is less than 10 mg-KOH / g, the curability is lowered and the solvent resistance is also lowered. If it exceeds 140 mg-KOH / g, the solubility of the urethane resin in the solvent is low, and even if it is dissolved, the viscosity becomes too high and handling is difficult. In addition, since the cured product becomes too hard, problems such as warpage are likely to occur depending on the base film.
また、本明細書において、樹脂の酸価は以下の方法により測定した値である。
100ml三角フラスコに試料約0.2gを精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mlを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に攪拌する。これを、0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを、中和の終点とする。その結果から下記の計算式を用いて得た値を、樹脂の酸価とする。
酸価(mg-KOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム-エタノール溶液の使用量(ml)
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g) Further, in the present specification, the acid value of the resin is a value measured by the following method.
Approximately 0.2 g of the sample is precisely weighed in a 100 ml Erlenmeyer flask with a precision balance, and 10 ml of a mixed solvent of ethanol / toluene = 1/2 (mass ratio) is added thereto to dissolve the sample. Further, 1 to 3 drops of a phenolphthalein ethanol solution is added to this container as an indicator, and the sample is sufficiently stirred until it becomes uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is when the indicator has a slight crimson color for 30 seconds. The value obtained from the result using the following formula is used as the acid value of the resin.
Acid value (mg-KOH / g) = [B × f × 5.611] / S
B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml)
f: Factor S of 0.1N potassium hydroxide-ethanol solution: Sample collection amount (g)
100ml三角フラスコに試料約0.2gを精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mlを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に攪拌する。これを、0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを、中和の終点とする。その結果から下記の計算式を用いて得た値を、樹脂の酸価とする。
酸価(mg-KOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム-エタノール溶液の使用量(ml)
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g) Further, in the present specification, the acid value of the resin is a value measured by the following method.
Approximately 0.2 g of the sample is precisely weighed in a 100 ml Erlenmeyer flask with a precision balance, and 10 ml of a mixed solvent of ethanol / toluene = 1/2 (mass ratio) is added thereto to dissolve the sample. Further, 1 to 3 drops of a phenolphthalein ethanol solution is added to this container as an indicator, and the sample is sufficiently stirred until it becomes uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is when the indicator has a slight crimson color for 30 seconds. The value obtained from the result using the following formula is used as the acid value of the resin.
Acid value (mg-KOH / g) = [B × f × 5.611] / S
B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml)
f: Factor S of 0.1N potassium hydroxide-ethanol solution: Sample collection amount (g)
(A)カルボキシ基を含有する透明ポリウレタンは、より具体的には、(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、および(a3)カルボキシ基を含有するジヒドロキシ化合物をモノマーとして用いて合成されるポリウレタンである。耐光性の観点では(a1)、(a2)、(a3)はそれぞれ芳香族化合物などの共役性を有する官能基を含まないことが望ましい。以下、各モノマーについてより詳細に説明する。
(A) The transparent polyurethane containing a carboxy group is more specifically synthesized by using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound containing a carboxy group as a monomer. It is polyurethane. From the viewpoint of light resistance, it is desirable that (a1), (a2), and (a3) do not contain a functional group having conjugate properties such as an aromatic compound. Hereinafter, each monomer will be described in more detail.
(a1)ポリイソシアネート化合物
(a1)ポリイソシアネート化合物としては、1分子当たりのイソシアナト基が2個であるジイソシアネートが好ましい。ポリイソシアネート化合物としては、たとえば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。(A)カルボキシ基を含有する透明ポリウレタンがゲル化をしない範囲で、イソシアナト基を3個以上有するポリイソシアネートも少量使用することができる。 (A1) Polyisocyanate compound (a1) As the polyisocyanate compound, diisocyanate having two isocyanato groups per molecule is preferable. Examples of the polyisocyanate compound include aliphatic polyisocyanates and alicyclic polyisocyanates, and one of these compounds can be used alone or in combination of two or more. As long as the transparent polyurethane (A) containing a carboxy group does not gel, a small amount of polyisocyanate having 3 or more isocyanato groups can also be used.
(a1)ポリイソシアネート化合物としては、1分子当たりのイソシアナト基が2個であるジイソシアネートが好ましい。ポリイソシアネート化合物としては、たとえば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。(A)カルボキシ基を含有する透明ポリウレタンがゲル化をしない範囲で、イソシアナト基を3個以上有するポリイソシアネートも少量使用することができる。 (A1) Polyisocyanate compound (a1) As the polyisocyanate compound, diisocyanate having two isocyanato groups per molecule is preferable. Examples of the polyisocyanate compound include aliphatic polyisocyanates and alicyclic polyisocyanates, and one of these compounds can be used alone or in combination of two or more. As long as the transparent polyurethane (A) containing a carboxy group does not gel, a small amount of polyisocyanate having 3 or more isocyanato groups can also be used.
脂肪族ポリイソシアネートとしては、たとえば、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2’-ジエチルエ-テルジイソシアネート、ダイマー酸ジイソシアネート等が挙げられる。
Examples of the aliphatic polyisocyanis include 1,3-trimethylen diisocyanis, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, and 1,10-decamethylene diisocyanis, and 2, , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2'-diethyleter diisocyanate, dimerate diisocyanate and the like.
脂環式ポリイソシアネートとしては、たとえば、1,4-シクロヘキサンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI、イソホロンジイソシアネート)、ビス-(4-イソシアナトシクロヘキシル)メタン(水添MDI)、水素化(1,3-または1,4-)キシリレンジイソシアネート、ノルボルナンジイソシアネート(NBDI)等が挙げられる。
Examples of the alicyclic polyisocyanate include 1,4-cyclohexanediisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and 3-isocyanatomethyl-3,5. , 5-trimethylcyclohexylisocyanate (IPDI, isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornandiisocyanate (NBDI) ) Etc. can be mentioned.
ここで、(a1)ポリイソシアネート化合物として、イソシアナト基(-NCO基)中の炭素原子以外の炭素原子の数が6~30である脂環式化合物を用いることにより、実施の形態に係るポリウレタン樹脂から形成される保護膜は、特に高温高湿時の信頼性に高く、電子機器部品の部材に向いている。
Here, as the (a1) polyisocyanate compound, the polyurethane resin according to the embodiment is used by using an alicyclic compound having 6 to 30 carbon atoms other than carbon atoms in the isocyanato group (-NCO group). The protective film formed from is highly reliable especially at high temperature and high humidity, and is suitable for members of electronic device parts.
(a1)ポリイソシアネート化合物として芳香環を有する芳香族、芳香脂肪族のポリイソシアネート化合物を用いることもできるが、耐候性・耐光性の観点では(a1)ポリイソシアネート化合物としては芳香環を有さない化合物を用いる方が好ましい。芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートを用いる場合は、(a1)ポリイソシアネート化合物の中に、(a1)ポリイソシアネート化合物の総量(100mol%)に対して、50mol%以下、好ましくは30mol%以下、さらに好ましくは10mol%以下含まれることが望ましい。
An aromatic or aromatic polyisocyanate compound having an aromatic ring can be used as the (a1) polyisocyanate compound, but from the viewpoint of weather resistance and light resistance, the (a1) polyisocyanate compound does not have an aromatic ring. It is preferable to use a compound. When an aromatic polyisocyanate or an aromatic aliphatic polyisocyanate is used, it is 50 mol% or less, preferably 30 mol% or less, based on the total amount (100 mol%) of the (a1) polyisocyanate compound in the (a1) polyisocyanate compound. , More preferably, it is preferably contained in an amount of 10 mol% or less.
(a2)ポリオール化合物
(a2)ポリオール化合物(ただし、(a2)ポリオール化合物には、後述する(a3)カルボキシ基を含有するジヒドロキシ化合物は含まれない。)の数平均分子量(カタログ値)は通常250~50,000であり、好ましくは400~10,000、より好ましくは500~5,000である。 The number average molecular weight (catalog value) of the (a2) polyol compound (a2) polyol compound (however, the (a2) polyol compound does not include the (a3) carboxy group-containing dihydroxy compound described later) is usually 250. It is 50,000 to 50,000, preferably 400 to 10,000, and more preferably 500 to 5,000.
(a2)ポリオール化合物(ただし、(a2)ポリオール化合物には、後述する(a3)カルボキシ基を含有するジヒドロキシ化合物は含まれない。)の数平均分子量(カタログ値)は通常250~50,000であり、好ましくは400~10,000、より好ましくは500~5,000である。 The number average molecular weight (catalog value) of the (a2) polyol compound (a2) polyol compound (however, the (a2) polyol compound does not include the (a3) carboxy group-containing dihydroxy compound described later) is usually 250. It is 50,000 to 50,000, preferably 400 to 10,000, and more preferably 500 to 5,000.
(a2)ポリオール化合物は、両末端にヒドロキシ基を有するジオール化合物が好ましい。たとえば、ポリカーボネートポリオール、ポリエ-テルポリオール、ポリエステルポリオール、ポリラクトンポリオールである。これらの中でも保護膜としての耐水性、絶縁信頼性、基材との密着性のバランスを考慮するとポリカーボネートポリオールが好ましい
The polyol compound (a2) is preferably a diol compound having hydroxy groups at both ends. For example, polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols. Among these, polycarbonate polyol is preferable in consideration of the balance between water resistance as a protective film, insulation reliability, and adhesion to a base material.
上記ポリカーボネートポリオールは、炭素原子数3~18のジオールを原料として、炭酸エステルまたはホスゲンと反応させることにより得ることができ、たとえば、以下の構造式(1)で表される。
The polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonic acid ester or phosgene, and is represented by, for example, the following structural formula (1).
式(1)において、R3は対応するジオール(HO-R3-OH)から水酸基を除いた残基であり、n3は正の整数、好ましくは2~50である。
In the formula (1), R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 3- OH), and n 3 is a positive integer, preferably 2 to 50.
式(1)で表されるポリカーボネートポリオールは、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコールまたは1,2-テトラデカンジオールなどを原料として用いることにより製造できる。
Specifically, the polycarbonate polyol represented by the formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, or 3-methyl-1. , 5-Pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -It can be produced by using decamethylene glycol, 1,2-tetradecanediol or the like as a raw material.
上記ポリカーボネートポリオールは、その骨格中に複数種のアルキレン基を有するポリカーボネートポリオール(共重合ポリカーボネートポリオール)であってもよい。共重合ポリカーボネートポリオールの使用は、(A)カルボキシ基を含有する透明ポリウレタンの結晶化防止の観点から有利な場合が多い。また、溶媒への溶解性を考慮すると、分岐骨格を有し、分岐鎖の末端に水酸基を有するポリカーボネートポリオールが併用されることが好ましい。
The above-mentioned polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having a plurality of types of alkylene groups in its skeleton. The use of a copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of the transparent polyurethane (A) containing a carboxy group. Further, considering the solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain in combination.
上記ポリエ-テルポリオールは、炭素原子数2~12のジオールを脱水縮合、または炭素原子数2~12のオキシラン化合物、オキセタン化合物、もしくはテトラヒドロフラン化合物を開環重合して得られたものであり、たとえば以下の構造式(2)で表される。
The polyether polyol is obtained by dehydration condensation of a diol having 2 to 12 carbon atoms, or ring-opening polymerization of an oxylan compound, an oxetane compound, or a tetrahydrofuran compound having 2 to 12 carbon atoms, for example. It is represented by the following structural formula (2).
式(2)において、R4は対応するジオール(HO-R4-OH)から水酸基を除いた残基であり、n4は正の整数、好ましくは4~50である。上記炭素原子数2~12のジオールは一種を単独で用いて単独重合体とすることもできるし、2種以上を併用することにより共重合体とすることもできる。
In the formula (2), R 4 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 4- OH), and n 4 is a positive integer, preferably 4 to 50. The above-mentioned diols having 2 to 12 carbon atoms may be used alone to form a homopolymer, or may be used in combination of two or more to form a copolymer.
上記式(2)で表されるポリエ-テルポリオールとしては、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリ-1,2-ブチレングリコール、ポリテトラメチレングリコール(ポリ1,4-ブタンジオール)、ポリ-3-メチルテトラメチレングリコール、ポリネオペンチルグリコール等のポリアルキレングリコールが挙げられる。また、ポリエ-テルポリオールの疎水性を向上させる目的で、これらの共重合体、たとえば1,4-ブタンジオールとネオペンチルグリコールとの共重合体等も用いることができる。
Specific examples of the polyether polyol represented by the above formula (2) include polyethylene glycol, polypropylene glycol, poly-1,2-butylene glycol, polytetramethylene glycol (poly1,4-butanediol), and the like. Examples thereof include polyalkylene glycols such as poly-3-methyltetramethylene glycol and polyneopentyl glycol. Further, for the purpose of improving the hydrophobicity of the polyether polyol, these copolymers, for example, a copolymer of 1,4-butanediol and neopentyl glycol, or the like can also be used.
上記ポリエステルポリオールは、ジカルボン酸及びジオールを脱水縮合またはジカルボン酸の低級アルコールのエステル化物とジオールとのエステル交換反応をして得られるものであり、たとえば以下の構造式(3)で表される。
The polyester polyol is obtained by dehydration condensation of a dicarboxylic acid and a diol or a transesterification reaction of a lower alcohol esterified product of the dicarboxylic acid with a diol, and is represented by, for example, the following structural formula (3).
式(3)において、R5は対応するジオール(HO-R5-OH)から水酸基を除いた残基であり、R6は対応するジカルボン酸(HOCO-R6-COOH)から2つのカルボキシ基を除いた残基であり、n5は正の整数、好ましくは2~50である。
In formula (3), R 5 is the residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 5- OH), and R 6 is the two carboxy groups from the corresponding dicarboxylic acid (HOCO-R 6-COOH). Is a residue excluding, and n 5 is a positive integer, preferably 2 to 50.
上記ジオール(HO-R5-OH)としては、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコールまたは1,2-テトラデカンジオール、2,4-ジエチル-1,5-ペンタンジオール、ブチルエチルプロパンジオール、1,3-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等が挙げられる。
Specific examples of the diol (HO-R 5- OH) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1 , 4-Butandiol, 1,5-Pentanediol, 1,6-Hexanediol, 3-Methyl-1,5-Pentanediol, 1,8-Octanediol, 1,3-Cyclohexanedimethanol, 1,4- Cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10-decamethylene glycol or 1,2-tetradecanediol, 2,4-diethyl-1,5-pentanediol, Examples thereof include butyl ethyl propanediol, 1,3-cyclohexanedimethanol, diethylene glycol, triethylene glycol and dipropylene glycol.
また、上記ジカルボン酸(HOCO-R6-COOH)としては、具体的には、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ブラシル酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、クロレンド酸、フマル酸、マレイン酸、イタコン酸、シトラコン酸、が挙げられる。
Specific examples of the dicarboxylic acid (HOCO-R 6- COOH) include succinic acid, glutalic acid, adipic acid, azelaic acid, sebacic acid, decandicarboxylic acid, brassic acid, and 1,4-cyclohexanedicarboxylic acid. , Hexahydrophthalic acid, methyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, chlorendic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid.
上記ポリラクトンポリオールは、ラクトンの開環重合物とジオールとの縮合反応、またはジオールとヒドロキシアルカン酸との縮合反応により得られるものであり、たとえば以下の構造式(4)で表される。
The polylactone polyol is obtained by a condensation reaction of a ring-opening polymer of lactone and a diol, or a condensation reaction of a diol and a hydroxyalkanoic acid, and is represented by, for example, the following structural formula (4).
式(4)において、R7は対応するヒドロキシアルカン酸(HO-R7-COOH)から水酸基およびカルボキシ基を除いた残基であり、R8は対応するジオール(HO-R8-OH)から水酸基を除いた残基であり、n6は正の整数、好ましくは2~50である。ジオール(HO-R8-OH)としては、前述のジオール(HO-R5-OH)と同等のものが挙げられる。
In formula (4), R 7 is the residue obtained by removing the hydroxyl group and carboxy group from the corresponding hydroxyalkanoic acid (HO-R 7- COOH), and R 8 is the residue from the corresponding diol (HO-R 8- OH). It is a residue excluding the hydroxyl group, and n 6 is a positive integer, preferably 2 to 50. Examples of the diol (HO-R 8- OH) include those equivalent to the above-mentioned diol (HO-R 5-OH).
上記ヒドロキシアルカン酸(HO-R7-COOH)としては、具体的には、3-ヒドロキシブタン酸、4-ヒドロキシペンタン酸、5-ヒドロキシヘキサン酸等が挙げられる。ラクトンとしては、ε-カプロラクトンが挙げられる。
Specific examples of the hydroxyalkanoic acid (HO-R 7- COOH) include 3-hydroxybutanoic acid, 4-hydroxypentanoic acid, 5-hydroxyhexanoic acid and the like. Examples of the lactone include ε-caprolactone.
(a3)カルボキシ基を含有するジヒドロキシ化合物
(a3)カルボキシ基を含有するジヒドロキシ化合物としては、ヒドロキシ基、炭素原子数が1または2のヒドロキシアルキル基から選択されるいずれかを2つ有する分子量が200以下のカルボン酸またはアミノカルボン酸であることが架橋点を制御できる点で好ましい。具体的には2,2-ジメチロ-ルプロピオン酸(DMPA)、2,2-ジメチロ-ルブタン酸(DMBA)、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン等が挙げられ、この中でも、溶媒への溶解度から、2,2-ジメチロ-ルプロピオン酸、2,2-ジメチロ-ルブタン酸が特に好ましい。これらの(a3)カルボキシ基を含有するジヒドロキシ化合物は、1種単独でまたは2種以上を組み合わせて用いることができる。 (A3) Dihydroxy compound containing a carboxy group (a3) The dihydroxy compound containing a carboxy group has a molecular weight of 200, which has two of a hydroxy group and a hydroxyalkyl group having 1 or 2 carbon atoms. The following carboxylic acid or aminocarboxylic acid is preferable because the cross-linking point can be controlled. Specific examples thereof include 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethyrolbutanoic acid (DMBA), N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine and the like. Of these, 2,2-dimethylolpropionic acid and 2,2-dimethyrolbutanoic acid are particularly preferable from the viewpoint of solubility in a solvent. These (a3) carboxy group-containing dihydroxy compounds can be used alone or in combination of two or more.
(a3)カルボキシ基を含有するジヒドロキシ化合物としては、ヒドロキシ基、炭素原子数が1または2のヒドロキシアルキル基から選択されるいずれかを2つ有する分子量が200以下のカルボン酸またはアミノカルボン酸であることが架橋点を制御できる点で好ましい。具体的には2,2-ジメチロ-ルプロピオン酸(DMPA)、2,2-ジメチロ-ルブタン酸(DMBA)、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン等が挙げられ、この中でも、溶媒への溶解度から、2,2-ジメチロ-ルプロピオン酸、2,2-ジメチロ-ルブタン酸が特に好ましい。これらの(a3)カルボキシ基を含有するジヒドロキシ化合物は、1種単独でまたは2種以上を組み合わせて用いることができる。 (A3) Dihydroxy compound containing a carboxy group (a3) The dihydroxy compound containing a carboxy group has a molecular weight of 200, which has two of a hydroxy group and a hydroxyalkyl group having 1 or 2 carbon atoms. The following carboxylic acid or aminocarboxylic acid is preferable because the cross-linking point can be controlled. Specific examples thereof include 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethyrolbutanoic acid (DMBA), N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine and the like. Of these, 2,2-dimethylolpropionic acid and 2,2-dimethyrolbutanoic acid are particularly preferable from the viewpoint of solubility in a solvent. These (a3) carboxy group-containing dihydroxy compounds can be used alone or in combination of two or more.
前述の(A)カルボキシ基を含有する透明ポリウレタンは、上記の3成分((a1)、(a2)および(a3))のみから合成が可能である。また、さらに(a4)モノヒドロキシ化合物および/または(a5)モノイソシアネート化合物とともに反応させて合成することもできる。耐光性の観点から分子内に芳香環や炭素-炭素二重結合を含まない化合物を用いることが好ましい。
The transparent polyurethane containing the (A) carboxy group described above can be synthesized only from the above three components ((a1), (a2) and (a3)). Further, it can be further reacted with (a4) monohydroxy compound and / or (a5) monoisocyanate compound to synthesize. From the viewpoint of light resistance, it is preferable to use a compound that does not contain an aromatic ring or a carbon-carbon double bond in the molecule.
(a4)モノヒドロキシ化合物
(a4)モノヒドロキシ化合物として、グリコール酸、ヒドロキシピバリン酸等カルボン酸を有する化合物が挙げられる。 (A4) Monohydroxy Compound (a4) Examples of the monohydroxy compound include compounds having a carboxylic acid such as glycolic acid and hydroxypivalic acid.
(a4)モノヒドロキシ化合物として、グリコール酸、ヒドロキシピバリン酸等カルボン酸を有する化合物が挙げられる。 (A4) Monohydroxy Compound (a4) Examples of the monohydroxy compound include compounds having a carboxylic acid such as glycolic acid and hydroxypivalic acid.
(a4)モノヒドロキシ化合物は、1種単独でまたは2種以上を組み合わせて用いることができる。
(A4) The monohydroxy compound can be used alone or in combination of two or more.
この他、(a4)モノヒドロキシ化合物として、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、アミルアルコール、ヘキシルアルコール、オクチルアルコール等が挙げられる。
Other examples of the (a4) monohydroxy compound include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, amyl alcohol, hexyl alcohol, and octyl alcohol.
(a5)モノイソシアネート化合物
(a5)モノイソシアネート化合物としては、ヘキシルイソシアネート、ドデシルイソシアネート等が挙げられる。 (A5) Monoisocyanate compound (a5) Examples of the monoisocyanate compound include hexyl isocyanate and dodecyl isocyanate.
(a5)モノイソシアネート化合物としては、ヘキシルイソシアネート、ドデシルイソシアネート等が挙げられる。 (A5) Monoisocyanate compound (a5) Examples of the monoisocyanate compound include hexyl isocyanate and dodecyl isocyanate.
上記(A)カルボキシ基を含有する透明ポリウレタンは、ジブチル錫ジラウリレートのような公知のウレタン化触媒の存在下または非存在下で、適切な有機溶媒を用いて、上記した(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、(a3)カルボキシ基を含有するジヒドロキシ化合物を反応させることにより合成ができるが、無触媒で反応させた方が、最終的にスズ等の混入を考慮する必要がなく好適である。
The transparent polyurethane containing the carboxy group (A) is the polyisocyanate compound (a1) described above, in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurylate, using an appropriate organic solvent. It can be synthesized by reacting (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group, but it is preferable to react without a catalyst because it is not necessary to consider the final contamination of tin and the like. is there.
上記(A)カルボキシ基を含有する透明ポリウレタンを合成する際に用いられる有機溶媒は、イソシアネート化合物と反応性が低く、生成するポリウレタンの溶解性が低くないものであり、アミン等の塩基性官能基を含まず、沸点が50℃以上、好ましくは80℃以上、より好ましくは100℃以上である溶媒が好ましいことに加えて、Fedorsの推算法によるSP値が9.80未満の溶媒を用いることが好ましい。SP(Solubility Parameters)値は2成分系溶液の溶解度の目安となる値であり、SP値が近い物質は混ざりやすい傾向を持つ。
The organic solvent used when synthesizing the transparent polyurethane containing the carboxy group (A) has low reactivity with the isocyanate compound and the solubility of the produced polyurethane is not low, and is a basic functional group such as amine. A solvent having a boiling point of 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher is preferable, and a solvent having an SP value of less than 9.80 according to the Fedors estimation method may be used. preferable. The SP (Solubility Parameter) value is a value that serves as a guideline for the solubility of a two-component solution, and substances having a similar SP value tend to be easily mixed.
SP値(δ)は、Hildebrand、Scottにより提唱され、正則溶液(溶質と溶媒との間の凝集力がロンドン分散力(狭義のVan der Waals力)のみであり、静電相互作用、会合(水素結合)、双極子相互作用などの作用がない溶液)論により以下の式のように凝集エネルギー密度の平方根により定義された値である。
δ=(ΔE/V)1/2 =[(ΔH-RT)/V)]1/2
ここで、Vは溶媒の分子容、ΔEは凝集エネルギー(蒸発エネルギー)、ΔHは蒸発エンタルピー、Rは気体定数、Tは絶対温度を表す。SP値のSI単位は(J/cm3)1/2、(MPa)1/2であるが、本明細書においては従来慣用的に使用される(cal/cm3)1/2を用いる。SP値は1cm3の液体が蒸発するために必要な蒸発潜熱から計算される。 The SP value (δ) was proposed by Hildebrand and Scott, and the cohesive force between the solute and the solvent is only the London dispersion force (Van der Waals force in the narrow sense), electrostatic interaction, and association (hydrogen). It is a value defined by the square root of the cohesive energy density as shown in the following equation according to the theory of (solution) that has no action such as bond) and dipole interaction.
δ = (ΔE / V) 1/2 = [(ΔH-RT) / V)] 1/2
Here, V is the molecular content of the solvent, ΔE is the aggregation energy (evaporation energy), ΔH is the evaporation enthalpy, R is the gas constant, and T is the absolute temperature. The SI unit of the SP value is (J / cm 3 ) 1/2 and (MPa) 1/2 , but in the present specification, (cal / cm 3 ) 1/2 which is conventionally used conventionally is used. SP value is calculated from the latent heat of vaporization required for the liquid 1 cm 3 evaporates.
δ=(ΔE/V)1/2 =[(ΔH-RT)/V)]1/2
ここで、Vは溶媒の分子容、ΔEは凝集エネルギー(蒸発エネルギー)、ΔHは蒸発エンタルピー、Rは気体定数、Tは絶対温度を表す。SP値のSI単位は(J/cm3)1/2、(MPa)1/2であるが、本明細書においては従来慣用的に使用される(cal/cm3)1/2を用いる。SP値は1cm3の液体が蒸発するために必要な蒸発潜熱から計算される。 The SP value (δ) was proposed by Hildebrand and Scott, and the cohesive force between the solute and the solvent is only the London dispersion force (Van der Waals force in the narrow sense), electrostatic interaction, and association (hydrogen). It is a value defined by the square root of the cohesive energy density as shown in the following equation according to the theory of (solution) that has no action such as bond) and dipole interaction.
δ = (ΔE / V) 1/2 = [(ΔH-RT) / V)] 1/2
Here, V is the molecular content of the solvent, ΔE is the aggregation energy (evaporation energy), ΔH is the evaporation enthalpy, R is the gas constant, and T is the absolute temperature. The SI unit of the SP value is (J / cm 3 ) 1/2 and (MPa) 1/2 , but in the present specification, (cal / cm 3 ) 1/2 which is conventionally used conventionally is used. SP value is calculated from the latent heat of vaporization required for the liquid 1 cm 3 evaporates.
上記定義からSP値は沸点が測定できる既知の液体に限定されるが、ポリマーや種々の化合物などに適用する目的で、SP値が既知の溶媒へのポリマーの溶解度などを測定する方法から、矛盾がないように導き出された。その一つのSP値の推算法としてFedorsの推算法がある。
From the above definition, the SP value is limited to a known liquid whose boiling point can be measured, but it is inconsistent from the method of measuring the solubility of a polymer in a solvent having a known SP value for the purpose of applying it to polymers and various compounds. It was derived so that there would be no. There is a Fedors estimation method as one of the estimation methods of the SP value.
Fedorsは、凝集エネルギー密度とモル分子容の両方が置換基の種類および数に依存していると考え、以下の式と、置換基ごとの所定の定数を提案している。
δ=[(Σei)/Σvi)]1/2
ここで、Σeiは凝集エネルギーを、Σviはモル分子容を示す。凝集エネルギーの単位はJ/molの場合が多いが、本明細書においては従来用いられているcal/molを用いる。 Fedors considers that both the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and proposes the following formula and a predetermined constant for each substituent.
δ = [(Σe i ) / Σv i )] 1/2
Here, Sigma] e i is the cohesive energy, [sigma] v i denote mole molecular volume. The unit of aggregation energy is often J / mol, but in this specification, cal / mol conventionally used is used.
δ=[(Σei)/Σvi)]1/2
ここで、Σeiは凝集エネルギーを、Σviはモル分子容を示す。凝集エネルギーの単位はJ/molの場合が多いが、本明細書においては従来用いられているcal/molを用いる。 Fedors considers that both the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and proposes the following formula and a predetermined constant for each substituent.
δ = [(Σe i ) / Σv i )] 1/2
Here, Sigma] e i is the cohesive energy, [sigma] v i denote mole molecular volume. The unit of aggregation energy is often J / mol, but in this specification, cal / mol conventionally used is used.
一例として、1-オクタノールでの計算例を示す。-CH3(ei=1125cal/mol、vi=33.5cm3/mol)は1個のユニット、-CH2-(ei=1180cal/mol、vi=16.1cm3/mol)は7個のユニット、-OH(ei=7120cal/mol、vi=10.0cm3/mol)は1個のユニットから構成されているので、Σei=1125×1+1180×7+7120×1=16505cal/mol、Σvi=33.5×1+16.1×7+10.0×1=156.2cm3/molとなり、δ =(16505/156.2)1/2=10.28(cal/cm3)1/2、となる。
As an example, a calculation example using 1-octanol is shown. -CH 3 (e i = 1125cal / mol, v i = 33.5cm 3 / mol) is one unit, -CH 2 - (e i = 1180cal / mol, v i = 16.1cm 3 / mol) is seven units, -OH (e i = 7120cal / mol, v i = 10.0cm 3 / mol) is because it is composed of one unit, Σe i = 1125 × 1 + 1180 × 7 + 7120 × 1 = 16505cal / mol, Σv i = 33.5 × 1 + 16.1 × 7 + 10.0 × 1 = 156.2cm 3 / mol next, δ = (16505 / 156.2) 1/2 = 10.28 (cal / cm 3) 1 / 2 , and so on.
Fedorsの推算法および置換基ごとの所定の定数(ei、vi)は、R.F.Fedors: Polym. Eng. Sci., 14[2], 147-154(1974)に記載されている。
Estimation method and a predetermined constant for each substituent of Fedors (e i, v i) is, R. F. Fedors: Polym. Eng. Sci. , 14 [2], 147-154 (1974).
本発明者は、(A)カルボキシ基を含有する透明ポリウレタンの合成を種々の溶媒を用いて実施した結果、使用する溶媒により得られる(A)カルボキシ基を含有する透明ポリウレタンの色調が異なることを見出した。すなわち、上記Fedorsの推算法によるSP値が9.80未満の溶媒を用いることにより黄味(b*値)が小さい(A)カルボキシ基を含有する透明ポリウレタンが得られることを見出した。
As a result of synthesizing (A) a transparent polyurethane containing a carboxy group using various solvents, the present inventor has found that the color tone of the (A) carboxy group-containing transparent polyurethane obtained differs depending on the solvent used. I found it. That is, it has been found that a transparent polyurethane containing an (A) carboxy group having a small yellowness (b * value) can be obtained by using a solvent having an SP value of less than 9.80 according to the above Fedors estimation method.
このSP値は7.00以上9.50未満であることがより好ましく、7.50以上9.00未満であることがさらに好ましい。Fedorの推算法によるSP値が9.80未満の溶媒としては、プロピレングリコールモノメチルエ-テルアセテート(SP値8.73)、ジエチレングリコールモノエチルエーテルアセテート(SP値9.01)、ジエチレングリコールモノブチルエーテルアセテート(SP値8.94)、1,4-ブタンジオールジアセテート(SP値9.64)、トリプロピレングリコールジメチルエーテル(SP値8.06)や、プロピレングリコールジメチルエーテル(SP値7.52)、ジエチレングリコールジメチルエーテル(SP値8.10)、ジエチレングリコールジブチルエーテル(SP値8.29)、トリエチレングリコールジメチルエーテル(SP値8.37)、ジプロピレングリコールジメチルエーテル(SP値7.88)、トリプロピレングリコールジメチルエーテル(SP値8.06)、酢酸n-プロピル(SP値8.72)、酢酸n-ブチル(SP値8.70)、1,4-ジオキサン(SP値8.64)、メチルエチルケトン(SP値8.98)、メチルイソブチルケトン(SP値8.68)、ジイソブチルケトン(SP値8.50)、イソホロン(SP値9.20)、テトラヒドロフラン(SP値8.28)、4-メチルテトラヒドロピラン(SP値8.13)、シクロペンチルメチルエーテル(SP値8.13)等が挙げられる。これらの中でもジエチレングリコールモノブチルエーテルアセテート、1,4-ブタンジオールジアセテート、トリプロピレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、酢酸n-プロピル、酢酸n-ブチル、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、イソホロン、テトラヒドロフラン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテルが好ましい。後述する通り、トリエチレングリコールジメチルエーテルまたは4-メチルテトラヒドロピランを合成溶媒に用いると、透明な合成液が得られ、透明なポリウレタンフィルムを製造する上で好ましい。より好ましい溶媒は4-メチルテトラヒドロピランである。
This SP value is more preferably 7.00 or more and less than 9.50, and further preferably 7.50 or more and less than 9.00. Solvents having an SP value of less than 9.80 according to Fedor's estimation method include propylene glycol monomethyl ether acetate (SP value 8.73), diethylene glycol monoethyl ether acetate (SP value 9.01), and diethylene glycol monobutyl ether acetate (SP value 9.01). SP value 8.94), 1,4-butanediol diacetate (SP value 9.64), tripropylene glycol dimethyl ether (SP value 8.06), propylene glycol dimethyl ether (SP value 7.52), diethylene glycol dimethyl ether (SP value 7.52). SP value 8.10), diethylene glycol dibutyl ether (SP value 8.29), triethylene glycol dimethyl ether (SP value 8.37), dipropylene glycol dimethyl ether (SP value 7.88), tripropylene glycol dimethyl ether (SP value 8) .06), n-propyl acetate (SP value 8.72), n-butyl acetate (SP value 8.70), 1,4-dioxane (SP value 8.64), methyl ethyl ketone (SP value 8.98), Methyl isobutyl ketone (SP value 8.68), diisobutyl ketone (SP value 8.50), isophorone (SP value 9.20), tetrahydrofuran (SP value 8.28), 4-methyltetrahydropyran (SP value 8.13) ), Cyclopentyl methyl ether (SP value 8.13) and the like. Among these, diethylene glycol monobutyl ether acetate, 1,4-butanediol diacetate, tripropylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, n-propyl acetate, N-butyl acetate, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, isophorone, tetrahydrofuran, 4-methyltetrahydropyran and cyclopentyl methyl ether are preferable. As will be described later, when triethylene glycol dimethyl ether or 4-methyltetrahydropyran is used as the synthetic solvent, a transparent synthetic solution can be obtained, which is preferable in producing a transparent polyurethane film. A more preferred solvent is 4-methyltetrahydropyran.
上記(A)カルボキシ基を含有する透明ポリウレタンを合成する際の原料の仕込みを行う順番については特に制約はないが、通常は(a2)ポリオール化合物および(a3)カルボキシ基を含有するジヒドロキシ化合物を先に仕込み、上記溶媒に溶解または分散させた後、20~150℃、より好ましくは60~120℃で、(a1)ポリイソシアネート化合物を滴下しながら加え、その後、30~160℃、より好ましくは50~130℃でこれらを反応させる。
The order in which the raw materials are charged when synthesizing the above-mentioned (A) carboxy group-containing transparent polyurethane is not particularly limited, but usually (a2) polyol compound and (a3) carboxy group-containing dihydroxy compound are first. After being dissolved or dispersed in the above solvent, the polyisocyanate compound (a1) was added dropwise at 20 to 150 ° C., more preferably 60 to 120 ° C., and then 30 to 160 ° C., more preferably 50 ° C. These are reacted at ~ 130 ° C.
原料の仕込みモル比は、目的とするポリウレタンの分子量および酸価に応じて調節するが、ポリウレタンに(a4)モノヒドロキシ化合物を導入する場合には、ポリウレタン分子の末端がイソシアナト基になるように、(a2)ポリオール化合物および(a3)カルボキシ基を含有するジヒドロキシ化合物よりも(a1)ポリイソシアネート化合物を過剰に(水酸基の合計よりもイソシアナト基が過剰になるように)用いる必要がある。ポリウレタンに(a5)モノイソシアネート化合物を導入する場合には、ポリウレタン分子の末端がヒドロキシ基になるように、(a2)ポリオール化合物および(a3)カルボキシ基を含有するジヒドロキシ化合物よりも(a1)ポリイソシアネート化合物を少なく(水酸基の合計よりもイソシアナト基が少なくなるように)用いる必要がある。
The molar ratio of the raw material is adjusted according to the molecular weight and acid value of the target polyurethane, but when the (a4) monohydroxy compound is introduced into the polyurethane, the end of the polyurethane molecule becomes an isocyanate group. It is necessary to use (a1) a polyisocyanate compound in excess of (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group (so that the isocyanato group is in excess of the total number of hydroxyl groups). When introducing a (a5) monoisocyanate compound into polyurethane, (a1) polyisocyanate is more than (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group so that the end of the polyurethane molecule becomes a hydroxy group. It is necessary to use less compound (so that there are fewer isocyanato groups than the total number of hydroxyl groups).
具体的には、これらの仕込みモル比は、(a1)ポリイソシアネート化合物のイソシアナト基:((a2)ポリオール化合物の水酸基+(a3)カルボキシ基を含有するジヒドロキシ化合物の水酸基)が、0.5~1.5:1、好ましくは0.8~1.2:1より好ましくは0.95~1.05:1である。
Specifically, the molar ratio of these charges is as follows: (a1) isocyanato group of polyisocyanate compound: ((a2) hydroxyl group of polyol compound + hydroxyl group of dihydroxy compound containing (a3) carboxy group) is 0.5 to It is 1.5: 1, preferably 0.8 to 1.2: 1, more preferably 0.95 to 1.05: 1.
また、(a2)ポリオール化合物の水酸基:(a3)カルボキシ基を含有するジヒドロキシ化合物の水酸基が、1:0.1~30、好ましくは1:0.3~10である。
Further, the hydroxyl group of the (a2) polyol compound: the hydroxyl group of the dihydroxy compound containing the (a3) carboxy group is 1: 0.1 to 30, preferably 1: 0.3 to 10.
(a4)モノヒドロキシ化合物を用いる場合には、((a2)ポリオール化合物+(a3)カルボキシ基を含有するジヒドロキシ化合物)のモル数よりも(a1)ポリイソシアネート化合物のモル数を過剰とし、(a4)モノヒドロキシ化合物を、イソシアナト基の過剰モル数に対して、0.5~1.5倍モル量、好ましくは0.8~1.2倍モル量で用いることが好ましい。
When the (a4) monohydroxy compound is used, the number of moles of the (a1) polyisocyanate compound is excessively larger than the number of moles of ((a2) polyol compound + (a3) dihydroxy compound containing a carboxy group), and (a4). ) It is preferable to use the monohydroxy compound in an amount of 0.5 to 1.5 times, preferably 0.8 to 1.2 times, the molar amount of the excess molar number of the isocyanate group.
(a5)モノイソシアネート化合物を用いる場合には、(a1)ポリイソシアネート化合物のモル数よりも((a2)ポリオール化合物+(a3)カルボキシ基を含有するジヒドロキシ化合物)のモル数を過剰とし、水酸基の過剰モル数に対して、0.5~1.5倍モル量、好ましくは0.8~1.2倍モル量で用いることが好ましい。
When (a5) a monoisocyanate compound is used, the number of moles of ((a2) polyol compound + (a3) dihydroxy compound containing a carboxy group) is made larger than the number of moles of (a1) polyisocyanate compound, and the hydroxyl group is used. It is preferably used in an amount of 0.5 to 1.5 times, preferably 0.8 to 1.2 times, the excess molar amount.
(a4)モノヒドロキシ化合物を(A)カルボキシ基を含有する透明ポリウレタンに導入するためには、(a2)ポリオール化合物および(a3)カルボキシ基を含有するジヒドロキシ化合物と(a1)ポリイソシアネート化合物との反応がほぼ終了した時点で、(A)カルボキシ基を含有する透明ポリウレタンの両末端に残存しているイソシアナト基と(a4)モノヒドロキシ化合物とを反応させるために、反応溶液中に(a4)モノヒドロキシ化合物を20~150℃、より好ましくは70~120℃で滴下し、その後、同温度で保持して反応を完結させる。
In order to introduce the (a4) monohydroxy compound into the (A) carboxy group-containing transparent polyurethane, the reaction between the (a2) polyol compound and the (a3) carboxy group-containing dihydroxy compound and the (a1) polyisocyanate compound. (A4) monohydroxy in the reaction solution in order to react the isocyanato groups remaining at both ends of the transparent polyurethane containing the carboxy group with the (a4) monohydroxy compound. The compound is added dropwise at 20-150 ° C., more preferably 70-120 ° C. and then held at the same temperature to complete the reaction.
(a5)モノイソシアネート化合物を(A)カルボキシ基を含有する透明ポリウレタンに導入するためには、(a2)ポリオール化合物および(a3)カルボキシ基を含有するジヒドロキシ化合物と(a1)ポリイソシアネート化合物との反応がほぼ終了した時点で、(A)カルボキシ基を含有する透明ポリウレタンの両末端に残存している水酸基と(a5)モノイソシアネート化合物とを反応させるために、反応溶液中に(a5)モノイソシアネート化合物を20~150℃、より好ましくは50~120℃で滴下し、その後同温度で保持して反応を完結させる。
In order to introduce (a5) a monoisocyanate compound into (A) a transparent polyurethane containing a carboxy group, a reaction between (a2) a polyol compound and (a3) a dihydroxy compound containing a carboxy group and (a1) a polyisocyanate compound. (A5) Monoisocyanate compound in the reaction solution in order to react the hydroxyl groups remaining at both ends of the transparent polyurethane containing the carboxy group with the (a5) monoisocyanate compound. Is added dropwise at 20 to 150 ° C., more preferably 50 to 120 ° C., and then held at the same temperature to complete the reaction.
上記(B)エポキシ化合物としては、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、N-グリシジル型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、キレート型エポキシ樹脂、グリオキザール型エポキシ樹脂、アミノ基含有エポキシ樹脂、ゴム変性エポキシ樹脂、ジシクロペンタジエンフェノリック型エポキシ樹脂、シリコーン変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、グリシジル基を含有した脂肪族型エポキシ樹脂、グリシジル基を含有した脂環式エポキシ樹脂などの一分子中に2個以上のエポキシ基を有するエポキシ化合物を挙げることができる。
Examples of the (B) epoxy compound include bisphenol A type epoxy compound, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and N-glycidyl type. Epoxy resin, bisphenol A novolak type epoxy resin, chelate type epoxy resin, glioxal type epoxy resin, amino group containing epoxy resin, rubber modified epoxy resin, dicyclopentadiene phenolic type epoxy resin, silicone modified epoxy resin, ε-caprolactone modified epoxy Examples thereof include an epoxy compound having two or more epoxy groups in one molecule, such as a resin, an aliphatic epoxy resin containing a glycidyl group, and an alicyclic epoxy resin containing a glycidyl group.
特に、一分子中に3個以上のエポキシ基を有する多官能エポキシ化合物がより好適に使用できる。このようなエポキシ化合物としては、例えば、EHPE(登録商標)3150(株式会社ダイセル製)、jER(登録商標)604(三菱ケミカル株式会社製)、EPICLON(登録商標) EXA-4700(DIC社株式会社製)、EPICLON(登録商標) HP-7200(DIC株式会社製)、ペンタエリスリトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、TEPIC(登録商標)-S(日産化学株式会社製)などが挙げられる。
In particular, a polyfunctional epoxy compound having three or more epoxy groups in one molecule can be used more preferably. Examples of such epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER (registered trademark) 604 (manufactured by Mitsubishi Chemical Corporation), and EPICLON (registered trademark) EXA-4700 (manufactured by DIC Corporation). , EPICLON (registered trademark) HP-7200 (manufactured by DIC Corporation), pentaerythritol tetraglycidyl ether, pentaerythritol triglycidyl ether, TEPIC (registered trademark) -S (manufactured by Nissan Chemical Corporation) and the like.
上記(B)エポキシ化合物に対する(A)カルボキシ基を含有する透明ポリウレタンの配合割合は、(B)エポキシ化合物のエポキシ基に対するポリウレタン中のカルボキシ基の当量比で0.5~1.5であることが好ましく、0.7~1.3であることがより好ましく、0.9~1.1であることがさらに好ましい。
The compounding ratio of the transparent polyurethane containing the (A) carboxy group to the (B) epoxy compound is 0.5 to 1.5 as the equivalent ratio of the carboxy group in the polyurethane to the epoxy group of the (B) epoxy compound. Is preferable, 0.7 to 1.3 is more preferable, and 0.9 to 1.1 is further preferable.
上記(D)硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィンなどのホスフィン系化合物(北興化学工業株式会社製)、キュアゾール(登録商標)(イミダゾール系エポキシ樹脂硬化剤:四国化成工業株式会社製)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、U-CAT(登録商標)SAシリーズ(DBU塩:サンアプロ株式会社製)、U-CAT(登録商標)5003(ホスフィン系化合物:サンアプロ株式会社製)等が挙げられる。これらの使用量としては、使用量があまりに少ないと添加した効果が無く、使用量が多すぎると電気絶縁性が低下するので、(A)と(B)の合計質量に対して0.1~10質量%、より好ましくは0.5~6質量%、さらに好ましくは0.5~5質量%、特に好ましくは0.5~3質量%使用される。
Examples of the (D) curing accelerator include phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokuko Kagaku Kogyo Co., Ltd.) and Curesol (registered trademark) (imidazole-based epoxy resin curing agent: manufactured by Shikoku Kasei Kogyo Co., Ltd.). , 2-Phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), U-CAT (registered trademark) 5003 (phosphine-based compound: San-Apro Co., Ltd.) Made) and the like. As for the amount of these used, if the amount used is too small, there is no effect of addition, and if the amount used is too large, the electrical insulation property deteriorates. Therefore, 0.1 to 0.1 to the total mass of (A) and (B). 10% by mass, more preferably 0.5 to 6% by mass, still more preferably 0.5 to 5% by mass, and particularly preferably 0.5 to 3% by mass.
また、硬化助剤を併用してもよい。硬化助剤としては、多官能チオール化合物やオキセタン化合物などが挙げられる。多官能チオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、カレンズ(登録商標)MTシリーズ(昭和電工株式会社製)などが挙げられる。オキセタン化合物としては、アロンオキセタン(登録商標)シリーズ(東亜合成株式会社製)、ETERNACOLL(登録商標)OXBPやOXMA(宇部興産株式会社製)が挙げられる。これらの使用量としては、使用量があまりに少ないと添加した効果が無く、使用量が多すぎると硬化速度が速くなり過ぎ、ハンドリング性が低下するので、(B)の質量に対して0.1~10質量%であることが好ましく、より好ましくは0.5~6質量%使用される。
Alternatively, a curing aid may be used in combination. Examples of the curing aid include polyfunctional thiol compounds and oxetane compounds. Examples of the polyfunctional thiol compound include pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, trimethylpropanthris (3-mercaptopropionate), and Karenz. (Registered trademark) MT series (manufactured by Showa Denko KK) and the like. Examples of the oxetane compound include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNCOLL (registered trademark) OXBP and OXMA (manufactured by Ube Industries, Ltd.). As for the amount of these used, if the amount used is too small, there is no effect of addition, and if the amount used is too large, the curing speed becomes too fast and the handleability deteriorates. Therefore, 0.1 with respect to the mass of (B). It is preferably from 10% by mass, more preferably 0.5 to 6% by mass.
上記熱硬化性組成物(保護膜インクということがある)には(C)溶媒を95.0質量%以上99.9質量%以下含むことが好ましく、96質量%以上99.7質量%以下含むことがより好ましく、97質量%以上99.5質量%以下含むことがさらに好ましい。(C)溶媒としては、(A)カルボキシ基を含有する透明ポリウレタンの合成に用いた溶媒をそのまま使用することが好ましいが、ポリウレタン樹脂の溶解性や印刷性を調整するために他の溶媒を用いることもできる。使用できる他の溶媒は(A)カルボキシ基を含有する透明ポリウレタンの合成に用いることが好ましい溶媒のSP値の範囲外の溶媒でもよい。保護膜用の熱硬化性組成物の安定性を考慮すると、溶媒の沸点は、60℃から300℃であることが好ましく、70℃から250℃であることがより好ましい。沸点が60℃未満である場合、印刷時に乾燥しやすく、ムラが出来やすい。沸点が300℃より高いと、乾燥、硬化時に高温で長時間の加熱処理を要するために、工業的な生産には向かなくなる。
The thermosetting composition (sometimes referred to as protective film ink) preferably contains the solvent (C) in an amount of 95.0% by mass or more and 99.9% by mass or less, and preferably 96% by mass or more and 99.7% by mass or less. It is more preferable to contain 97% by mass or more and 99.5% by mass or less. As the solvent (C), it is preferable to use the solvent used for the synthesis of the transparent polyurethane (A) containing a carboxy group as it is, but another solvent is used in order to adjust the solubility and printability of the polyurethane resin. You can also do it. The other solvent that can be used may be a solvent outside the SP value range of the solvent that is preferably used for the synthesis of the transparent polyurethane (A) containing a carboxy group. Considering the stability of the thermosetting composition for the protective film, the boiling point of the solvent is preferably 60 ° C to 300 ° C, more preferably 70 ° C to 250 ° C. When the boiling point is less than 60 ° C., it is easy to dry at the time of printing and unevenness is likely to occur. If the boiling point is higher than 300 ° C., it is not suitable for industrial production because it requires a long time heat treatment at a high temperature during drying and curing.
このような溶媒としては、プロピレングリコールモノメチルエ-テルアセテート(沸点146℃)、γ-ブチロラクトン(沸点204℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点218℃)、トリプロピレングリコールジメチルエーテル(沸点243℃)等のポリウレタン合成に用いる溶媒や、プロピレングリコールジメチルエーテル(沸点97℃)、ジエチレングリコールジメチルエーテル(沸点162℃)などのエーテル系の溶媒、イソプロピルアルコール(沸点82℃)、t-ブチルアルコール(沸点82℃)、プロピレングリコールモノメチルエーテル(沸点120℃)、1-ヘキサノール(沸点151℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールモノエチルエーテル(沸点196℃)、ジエチレングリコールモノブチルエーテル(沸点230℃)、トリエチレングリコール(沸点276℃)、乳酸エチル(沸点154℃)等の水酸基を含む溶媒、メチルエチルケトン(沸点80℃)、酢酸エチル(沸点77℃)、酢酸n-プロピル(沸点102℃)を用いることができる。これらの溶媒は、1種単独でもよいし、2種類以上を混合して用いてもよい。2種類以上を混合する場合には、(A)カルボキシ基を含有する透明ポリウレタンの合成に用いた溶媒に加えて、使用するポリウレタン樹脂、エポキシ樹脂などの溶解性を考慮し、凝集や沈殿などが起きない、ヒドロキシ基を有する沸点が100℃超である溶媒や、保護膜インクの乾燥性の観点から沸点が100℃以下の溶媒を併用することが好ましい。
Examples of such a solvent include propylene glycol monomethyl ether acetate (boiling point of 146 ° C.), γ-butyrolactone (boiling point of 204 ° C.), diethylene glycol monoethyl ether acetate (boiling point of 218 ° C.), tripropylene glycol dimethyl ether (boiling point of 243 ° C.) and the like. Solvents used for polyurethane synthesis, ether solvents such as propylene glycol dimethyl ether (boiling point 97 ° C.), diethylene glycol dimethyl ether (boiling point 162 ° C.), isopropyl alcohol (boiling point 82 ° C.), t-butyl alcohol (boiling point 82 ° C.), propylene Glycol monomethyl ether (boiling point 120 ° C), 1-hexanol (boiling point 151 ° C), diethylene glycol monomethyl ether (boiling point 194 ° C), diethylene glycol monoethyl ether (boiling point 196 ° C), diethylene glycol monobutyl ether (boiling point 230 ° C), triethylene glycol (boiling temperature 230 ° C) Solvents containing hydroxyl groups such as ethyl lactate (boiling point 276 ° C) and ethyl lactate (boiling point 154 ° C), methyl ethyl ketone (boiling point 80 ° C.), ethyl acetate (boiling point 77 ° C.) and n-propyl acetate (boiling point 102 ° C.) can be used. These solvents may be used alone or in combination of two or more. When two or more types are mixed, in addition to the solvent used for the synthesis of (A) carboxy group-containing transparent polyurethane, aggregation and precipitation may occur in consideration of the solubility of the polyurethane resin and epoxy resin used. It is preferable to use a solvent having a hydroxy group and a boiling point of more than 100 ° C., which does not occur, or a solvent having a boiling point of 100 ° C. or lower from the viewpoint of drying property of the protective film ink.
上記保護膜インクは、上記(A)カルボキシ基を含有する透明ポリウレタンと、(B)エポキシ化合物と、(C)溶媒とを、(C)溶媒の含有率が95.0質量%以上99.9質量%以下となるように配合する。さらに必要に応じて、(D)硬化促進剤を配合することができる。(D)硬化促進剤を配合する場合には、配合後均一になるように攪拌して用いることができる。
The protective film ink contains the transparent polyurethane containing the carboxy group (A), the epoxy compound (B), and the solvent (C), and the content of the solvent (C) is 95.0% by mass or more and 99.9. Mix so as to be less than% by mass. Further, if necessary, (D) a curing accelerator can be added. (D) When the curing accelerator is blended, it can be used by stirring so that it becomes uniform after blending.
このような保護膜インク中の固形分濃度は所望する膜厚や印刷方法によっても異なるが、0.1~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。固形分濃度が0.1~10質量%の範囲であると、透明導電膜上に塗布した場合に膜厚が厚くなり過ぎることによる電気的なコンタクトがとれない不具合が発生せず、かつ十分な耐候性・耐光性を有する保護膜が得られる。
The solid content concentration in such a protective film ink varies depending on the desired film thickness and printing method, but is preferably 0.1 to 10% by mass, preferably 0.5% by mass to 5% by mass. More preferred. When the solid content concentration is in the range of 0.1 to 10% by mass, there is no problem that electrical contact cannot be made due to the film thickness becoming too thick when applied on a transparent conductive film, and it is sufficient. A protective film having weather resistance and light resistance can be obtained.
また、保護膜インク中にハロゲンが含有されていると、透明導電フィルムの保護膜とした場合、ハロゲンが保護膜中に残存し、導電部に悪影響を及ぼすため、ハロゲンの含有量は低い方が好ましい。保護膜インク中に含有されるハロゲン量としては、200質量ppm以下が好ましく、より好ましくは100質量ppm以下、さらに好ましくは50質量ppm以下、特に好ましくは10ppm以下である。(B)エポキシ化合物は、合成原料としてエピクロロヒドリンを用いない製法、例えば炭素-炭素二重結合を含む化合物の過酸化水素等の過酸化物による酸化等により製造されたハロゲンフリーエポキシ化合物を用いることが好ましい。
Further, if the protective film ink contains halogen, when the protective film of the transparent conductive film is used, the halogen remains in the protective film and adversely affects the conductive portion. Therefore, the lower the halogen content, the better. preferable. The amount of halogen contained in the protective film ink is preferably 200 mass ppm or less, more preferably 100 mass ppm or less, still more preferably 50 mass ppm or less, and particularly preferably 10 mass ppm or less. (B) The epoxy compound is a halogen-free epoxy compound produced by a production method that does not use epichlorohydrin as a synthetic raw material, for example, oxidation of a compound containing a carbon-carbon double bond with a peroxide such as hydrogen peroxide. It is preferable to use it.
以上に述べた保護膜インクを使用し、バーコート印刷法、グラビア印刷法、インクジェット法、スリットコート法などの印刷法により、透明導電層が形成された基材上に印刷パターンを形成し、この印刷パターンの溶媒を乾燥、除去後に、必要に応じて加熱処理を行うことにより硬化させて保護膜とする。上記保護膜を、透明基材上に形成された透明導電層上に形成することにより、光照射後のシート抵抗及びヘーズの変化が少ない、保護膜を備えた透明導電層を有する透明導電フィルムを得ることができる。本明細書において「透明」とは全光線透過率が75%以上であることを意味する。
Using the protective film ink described above, a printing pattern is formed on the base material on which the transparent conductive layer is formed by a printing method such as a bar coat printing method, a gravure printing method, an inkjet method, or a slit coating method. After the solvent of the print pattern is dried and removed, it is cured by heat treatment as necessary to obtain a protective film. By forming the protective film on a transparent conductive layer formed on a transparent base material, a transparent conductive film having a transparent conductive layer having a protective film with little change in sheet resistance and haze after light irradiation can be obtained. Obtainable. As used herein, "transparent" means that the total light transmittance is 75% or more.
なお、保護膜インクを加熱により硬化させる場合には、温度100℃以下、かつ加熱時間10分以下の条件で加熱する。
When the protective film ink is cured by heating, it is heated under the conditions of a temperature of 100 ° C. or less and a heating time of 10 minutes or less.
上記透明導電層は、導電性インクを透明基材上に印刷することにより作製することができる。導電性インクとして特に銀ナノワイヤインクを用いて透明導電層を作製する場合には、銀ナノワイヤの単位質量当たりの表面積が大きく、微細配線等は高温高湿時の絶縁信頼性が低いため、上述の実施形態に係る保護膜インクによる保護が効果的である。
The transparent conductive layer can be produced by printing a conductive ink on a transparent base material. When a transparent conductive layer is produced using silver nanowire ink as the conductive ink, the surface area per unit mass of the silver nanowire is large, and fine wiring and the like have low insulation reliability at high temperature and high humidity. Protection with the protective film ink according to the embodiment is effective.
続いて上記保護膜を設けることができる透明導電フィルムについて説明する。透明導電フィルムは透明基材と、透明基材の少なくとも一方の主面に透明導電層が設けられ、透明導電層の透明基材とは反対側の面に上記保護膜を具備する。透明導電フィルムは、その片面または両面を、保護機能を有する剥離(セパレート)フィルムで覆っていてもよい。
Next, a transparent conductive film to which the above protective film can be provided will be described. The transparent conductive film is provided with a transparent base material and a transparent conductive layer on at least one main surface of the transparent base material, and is provided with the protective film on the surface of the transparent conductive layer opposite to the transparent base material. One side or both sides of the transparent conductive film may be covered with a peeling (separate) film having a protective function.
<透明基材>
透明基材は、全光線透過率が80%以上であることが好ましい。例えば、ポリエステル(ポリエチレンテレフタレート[PET]、ポリエチレンナフタレート[PEN]等)、ポリカーボネート、アクリル樹脂(ポリメチルメタクリレート[PMMA]等)、シクロオレフィンポリマー等の樹脂フィルムを好適に使用することができる。また、これら透明基材には光学特性、電気的特性や耐屈曲性を損なわない範囲で、易接着、光学調整(アンチグレア、アンチリフレクションなど)、ハードコートなどの機能を有する層を、単一または複数備えていてもよく、片面または両面に備えていてもよい。これらの樹脂フィルムの中でも、優れた光透過性(透明性)や柔軟性、機械的特性などの点からポリエチレンテレフタレート、シクロオレフィンポリマーを用いることが好ましい。シクロオレフィンポリマーとしては、ノルボルネンの水素化開環メタセシス重合型シクロオレフィンポリマー(ZEONOR(登録商標、日本ゼオン株式会社製)、ZEONEX(登録商標、日本ゼオン株式会社製)、ARTON(登録商標、JSR株式会社製)等)やノルボルネン/エチレン付加共重合型シクロオレフィンポリマー(APEL(登録商標、三井化学株式会社製)、TOPAS(登録商標、ポリプラスチックス株式会社製))を用いることができる。これらの中でもガラス転移温度(Tg)が90~170℃のものが引き出し配線やコネクタ部分などの後工程における加熱に耐えうるため好ましく、125~145℃のものがより好ましい。厚みは1~200μmであることが好ましく、5~150μmであることがより好ましく、8~100μmがさらに好ましい。 <Transparent base material>
The transparent substrate preferably has a total light transmittance of 80% or more. For example, a resin film such as polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), polycarbonate, acrylic resin (polymethylmethacrylate [PMMA], etc.), cycloolefin polymer and the like can be preferably used. In addition, these transparent substrates may be provided with a single layer having functions such as easy adhesion, optical adjustment (anti-glare, anti-reflection, etc.), hard coat, etc., as long as the optical properties, electrical properties, and bending resistance are not impaired. A plurality of them may be provided, and one side or both sides may be provided. Among these resin films, polyethylene terephthalate and cycloolefin polymers are preferably used from the viewpoints of excellent light transmission (transparency), flexibility, mechanical properties and the like. Examples of cycloolefin polymers include norbornene hydride ring-opening metathesis polymerized cycloolefin polymers (ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ZEONEX (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ARTON (registered trademark, JSR stock). (Company), etc.), norbornene / ethylene-added copolymerized cycloolefin polymer (APEL (registered trademark, manufactured by Mitsui Kagaku Co., Ltd.), TOPAS (registered trademark, manufactured by Polyplastics Co., Ltd.)) can be used. Among these, those having a glass transition temperature (Tg) of 90 to 170 ° C. are preferable because they can withstand heating in a subsequent process such as a lead-out wiring and a connector portion, and those having a glass transition temperature (Tg) of 125 to 145 ° C. are more preferable. The thickness is preferably 1 to 200 μm, more preferably 5 to 150 μm, and even more preferably 8 to 100 μm.
透明基材は、全光線透過率が80%以上であることが好ましい。例えば、ポリエステル(ポリエチレンテレフタレート[PET]、ポリエチレンナフタレート[PEN]等)、ポリカーボネート、アクリル樹脂(ポリメチルメタクリレート[PMMA]等)、シクロオレフィンポリマー等の樹脂フィルムを好適に使用することができる。また、これら透明基材には光学特性、電気的特性や耐屈曲性を損なわない範囲で、易接着、光学調整(アンチグレア、アンチリフレクションなど)、ハードコートなどの機能を有する層を、単一または複数備えていてもよく、片面または両面に備えていてもよい。これらの樹脂フィルムの中でも、優れた光透過性(透明性)や柔軟性、機械的特性などの点からポリエチレンテレフタレート、シクロオレフィンポリマーを用いることが好ましい。シクロオレフィンポリマーとしては、ノルボルネンの水素化開環メタセシス重合型シクロオレフィンポリマー(ZEONOR(登録商標、日本ゼオン株式会社製)、ZEONEX(登録商標、日本ゼオン株式会社製)、ARTON(登録商標、JSR株式会社製)等)やノルボルネン/エチレン付加共重合型シクロオレフィンポリマー(APEL(登録商標、三井化学株式会社製)、TOPAS(登録商標、ポリプラスチックス株式会社製))を用いることができる。これらの中でもガラス転移温度(Tg)が90~170℃のものが引き出し配線やコネクタ部分などの後工程における加熱に耐えうるため好ましく、125~145℃のものがより好ましい。厚みは1~200μmであることが好ましく、5~150μmであることがより好ましく、8~100μmがさらに好ましい。 <Transparent base material>
The transparent substrate preferably has a total light transmittance of 80% or more. For example, a resin film such as polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), polycarbonate, acrylic resin (polymethylmethacrylate [PMMA], etc.), cycloolefin polymer and the like can be preferably used. In addition, these transparent substrates may be provided with a single layer having functions such as easy adhesion, optical adjustment (anti-glare, anti-reflection, etc.), hard coat, etc., as long as the optical properties, electrical properties, and bending resistance are not impaired. A plurality of them may be provided, and one side or both sides may be provided. Among these resin films, polyethylene terephthalate and cycloolefin polymers are preferably used from the viewpoints of excellent light transmission (transparency), flexibility, mechanical properties and the like. Examples of cycloolefin polymers include norbornene hydride ring-opening metathesis polymerized cycloolefin polymers (ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ZEONEX (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ARTON (registered trademark, JSR stock). (Company), etc.), norbornene / ethylene-added copolymerized cycloolefin polymer (APEL (registered trademark, manufactured by Mitsui Kagaku Co., Ltd.), TOPAS (registered trademark, manufactured by Polyplastics Co., Ltd.)) can be used. Among these, those having a glass transition temperature (Tg) of 90 to 170 ° C. are preferable because they can withstand heating in a subsequent process such as a lead-out wiring and a connector portion, and those having a glass transition temperature (Tg) of 125 to 145 ° C. are more preferable. The thickness is preferably 1 to 200 μm, more preferably 5 to 150 μm, and even more preferably 8 to 100 μm.
<透明導電層>
透明導電層を構成する導電性繊維としては、金属ナノワイヤ、カーボン繊維などが挙げられ、金属ナノワイヤを好適に使用することができる。金属ナノワイヤは、径がナノメーターオーダーのサイズである金属であり、ワイヤ状の形状を有する導電性材料である。なお、本実施形態では、金属ナノワイヤとともに(混合して)、または金属ナノワイヤに代えて、ポーラスあるいはノンポーラスのチューブ状の形状を有する導電性材料である金属ナノチューブを使用してもよい。本明細書において、「ワイヤ状」と「チューブ状」はいずれも線状であるが、前者は中央が中空ではないもの、後者は中央が中空であるものを意図する。性状は、柔軟であってもよく、剛直であってもよい。前者を「狭義の金属ナノワイヤ」、後者を「狭義の金属ナノチューブ」と呼び、以下、本願明細書において、「金属ナノワイヤ」は狭義の金属ナノワイヤと狭義の金属ナノチューブとを包括する意味で用いる。狭義の金属ナノワイヤ、狭義の金属ナノチューブは、単独で用いてもよく、混合して用いてもよい。 <Transparent conductive layer>
Examples of the conductive fibers constituting the transparent conductive layer include metal nanowires and carbon fibers, and metal nanowires can be preferably used. The metal nanowire is a metal having a diameter on the order of nanometers, and is a conductive material having a wire-like shape. In this embodiment, metal nanotubes, which are conductive materials having a porous or non-porous tubular shape, may be used together with (mixed with) the metal nanowires or instead of the metal nanowires. In the present specification, both "wire-like" and "tube-like" are linear, but the former is intended to have a hollow center and the latter to be hollow in the center. The properties may be flexible or rigid. The former is referred to as "metal nanowires in a narrow sense" and the latter is referred to as "metal nanotubes in a narrow sense". Hereinafter, in the present specification, "metal nanowires" are used in the meaning of including metal nanowires in a narrow sense and metal nanotubes in a narrow sense. Metal nanowires in a narrow sense and metal nanotubes in a narrow sense may be used alone or in combination.
透明導電層を構成する導電性繊維としては、金属ナノワイヤ、カーボン繊維などが挙げられ、金属ナノワイヤを好適に使用することができる。金属ナノワイヤは、径がナノメーターオーダーのサイズである金属であり、ワイヤ状の形状を有する導電性材料である。なお、本実施形態では、金属ナノワイヤとともに(混合して)、または金属ナノワイヤに代えて、ポーラスあるいはノンポーラスのチューブ状の形状を有する導電性材料である金属ナノチューブを使用してもよい。本明細書において、「ワイヤ状」と「チューブ状」はいずれも線状であるが、前者は中央が中空ではないもの、後者は中央が中空であるものを意図する。性状は、柔軟であってもよく、剛直であってもよい。前者を「狭義の金属ナノワイヤ」、後者を「狭義の金属ナノチューブ」と呼び、以下、本願明細書において、「金属ナノワイヤ」は狭義の金属ナノワイヤと狭義の金属ナノチューブとを包括する意味で用いる。狭義の金属ナノワイヤ、狭義の金属ナノチューブは、単独で用いてもよく、混合して用いてもよい。 <Transparent conductive layer>
Examples of the conductive fibers constituting the transparent conductive layer include metal nanowires and carbon fibers, and metal nanowires can be preferably used. The metal nanowire is a metal having a diameter on the order of nanometers, and is a conductive material having a wire-like shape. In this embodiment, metal nanotubes, which are conductive materials having a porous or non-porous tubular shape, may be used together with (mixed with) the metal nanowires or instead of the metal nanowires. In the present specification, both "wire-like" and "tube-like" are linear, but the former is intended to have a hollow center and the latter to be hollow in the center. The properties may be flexible or rigid. The former is referred to as "metal nanowires in a narrow sense" and the latter is referred to as "metal nanotubes in a narrow sense". Hereinafter, in the present specification, "metal nanowires" are used in the meaning of including metal nanowires in a narrow sense and metal nanotubes in a narrow sense. Metal nanowires in a narrow sense and metal nanotubes in a narrow sense may be used alone or in combination.
金属ナノワイヤの製造方法としては、公知の製造方法を用いることができる。例えば銀ナノワイヤは、ポリオール(Poly-ol)法を用いて、ポリビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。金ナノワイヤも同様に、ポリビニルピロリドン存在下で塩化金酸水和物を還元することによって合成することができる(J.Am.Chem.Soc.,2007,129,1733参照)。銀ナノワイヤおよび金ナノワイヤの大規模な合成および精製の技術に関しては国際公開第2008/073143号パンフレットと国際公開第2008/046058号パンフレットに詳細な記述がある。ポーラス構造を有する金ナノチューブは、銀ナノワイヤを鋳型にして、塩化金酸溶液を還元することにより合成することができる。ここで、鋳型に用いた銀ナノワイヤは塩化金酸との酸化還元反応により溶液中に溶け出し、結果としてポーラス構造を有する金ナノチューブができる(J.Am.Chem.Soc.,2004,126,3892-3901参照)。
As a method for producing metal nanowires, a known production method can be used. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using the Poly-ol method (see Chem. Matter., 2002, 14, 4736). Gold nanowires can also be similarly synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). The techniques for large-scale synthesis and purification of silver nanowires and gold nanowires are described in detail in International Publication No. 2008/073143 and International Publication No. 2008/046058. Gold nanotubes having a porous structure can be synthesized by reducing a gold chloride solution using silver nanowires as a template. Here, the silver nanowires used in the template dissolve in the solution by a redox reaction with chloroauric acid, resulting in gold nanotubes having a porous structure (JAm. Chem. Soc., 2004, 126, 3892). See -3901).
金属ナノワイヤの径の太さの平均は、1~500nmが好ましく、5~200nmがより好ましく、5~100nmがさらに好ましく、10~50nmが特に好ましい。また、金属ナノワイヤの長軸の長さの平均は、1~100μmが好ましく、1~80μmがより好ましく、2~70μmがさらに好ましく、5~50μmが特に好ましい。金属ナノワイヤは、径の太さの平均および長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が5より大きいことが好ましく、10以上であることがより好ましく、100以上であることがさらに好ましく、200以上であることが特に好ましい。ここで、アスペクト比は、金属ナノワイヤの径の平均径をb、長軸の平均長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡(SEM)及び光学顕微鏡を用いて測定できる。具体的には、b(平均径)は電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法(径)を測定し、その算術平均値を求めることができる。また、a(平均長さ)の算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法(長さ)を測定し、その算術平均値を求めることができる。
The average diameter of the metal nanowires is preferably 1 to 500 nm, more preferably 5 to 200 nm, further preferably 5 to 100 nm, and particularly preferably 10 to 50 nm. The average length of the major axis of the metal nanowire is preferably 1 to 100 μm, more preferably 1 to 80 μm, further preferably 2 to 70 μm, and particularly preferably 5 to 50 μm. In the metal nanowire, the average diameter and the average length of the major axis satisfy the above range, and the average aspect ratio is preferably larger than 5, more preferably 10 or more, and more than 100. It is more preferable, and it is particularly preferable that it is 200 or more. Here, the aspect ratio is a value obtained by a / b when the average diameter of the diameter of the metal nanowire is approximated to b and the average length of the major axis is approximated to a. a and b can be measured using a scanning electron microscope (SEM) and an optical microscope. Specifically, for b (average diameter), a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the dimensions (diameter) of 100 arbitrarily selected silver nanowires, and the arithmetic average thereof was measured. The value can be calculated. In addition, the shape measurement laser microscope VK-X200 (manufactured by Keyence Co., Ltd.) was used to calculate a (average length), and the dimensions (length) of 100 arbitrarily selected silver nanowires were measured, and the arithmetic was performed. The average value can be calculated.
このような金属ナノワイヤの材料としては、金、銀、白金、銅、ニッケル、鉄、コバルト、亜鉛、ルテニウム、ロジウム、パラジウム、カドミウム、オスミウム、イリジウムからなる群から選ばれる少なくとも1種及びこれらの金属を組み合わせた合金等が挙げられる。低い表面抵抗かつ高い全光線透過率を有する塗膜を得るためには、金、銀及び銅のいずれかを少なくとも1種含むことが好ましい。これらの金属は導電性が高いため、一定の表面抵抗を得る際に、面に占める金属の密度を減らすことができるので、高い全光線透過率を実現できる。これらの金属の中でも、金または銀の少なくとも1種を含むことがより好ましい。最適な態様としては、銀のナノワイヤが挙げられる。
As the material of such a metal nanowire, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, and iridium, and metals thereof. Examples thereof include alloys in which the above are combined. In order to obtain a coating film having low surface resistance and high total light transmittance, it is preferable to contain at least one of gold, silver and copper. Since these metals have high conductivity, the density of the metal occupying the surface can be reduced when a constant surface resistance is obtained, so that a high total light transmittance can be realized. Among these metals, it is more preferable to contain at least one of gold or silver. Optimal embodiments include silver nanowires.
透明導電層は、導電性繊維とバインダー樹脂を含む。バインダー樹脂としては、本発明の課題である耐屈曲性、および透明性を有するものであれば制限なく適用できるが、導電性繊維としてポリオール法を用いた金属ナノワイヤを使用する場合は、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール、水あるいはアルコールと水との混合溶媒に可溶なバインダー樹脂を使用することが好ましい。具体的には、ポリ-N-ビニルピロリドン、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースといった水溶性セルロース系樹脂、ブチラール樹脂、ポリ-N-ビニルアセトアミド(PNVA(登録商標))を用いることができる。ポリ-N-ビニルアセトアミドは、N-ビニルアセトアミド(NVA)のホモポリマーであるが、N-ビニルアセトアミド(NVA)が70モル%以上である共重合体を使用することもできる。NVAと共重合できるモノマーとしては、例えばN-ビニルホルムアミド、N-ビニルピロリドン、アクリル酸、メタクリル酸、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリルアミド、アクリロニトリル等が挙げられる。共重合成分の含有量が多くなると、得られる透明導電膜のシート抵抗が高くなり、銀ナノワイヤと基板との密着性が低下する傾向があり、また、耐熱性(熱分解開始温度)も低下する傾向があるので、N-ビニルアセトアミド由来のモノマー単位は、重合体中に70モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。このような重合体は絶対分子量による重量平均分子量で3万~400万であることが好ましく、10万~300万であることがより好ましく、30万~150万であることがさらに好ましい。絶対分子量は以下の方法により測定したものである。
The transparent conductive layer contains conductive fibers and a binder resin. The binder resin can be applied without limitation as long as it has bending resistance and transparency, which is the subject of the present invention, but when a metal nanowire using the polyol method is used as the conductive fiber, it is used for manufacturing the binder resin. From the viewpoint of compatibility with the solvent (polyol), it is preferable to use a binder resin that is soluble in alcohol, water, or a mixed solvent of alcohol and water. Specifically, water-soluble cellulosic resins such as poly-N-vinylpyrrolidone, methylcellulose, hydroxyethylcellulose, and carboxymethylcellulose, butyral resin, and poly-N-vinylacetamide (PNVA (registered trademark)) can be used. Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA), but a copolymer containing 70 mol% or more of N-vinylacetamide (NVA) can also be used. Examples of the monomer copolymerizable with NVA include N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, acrylonitrile and the like. As the content of the copolymerization component increases, the sheet resistance of the obtained transparent conductive film increases, the adhesion between the silver nanowires and the substrate tends to decrease, and the heat resistance (thermal decomposition start temperature) also decreases. Since there is a tendency, the monomer unit derived from N-vinylacetamide is preferably contained in the polymer in an amount of 70 mol% or more, more preferably 80 mol% or more, and further preferably 90 mol% or more. The weight average molecular weight of such a polymer based on the absolute molecular weight is preferably 30,000 to 4,000,000, more preferably 100,000 to 3,000,000, and even more preferably 300,000 to 1,500,000. The absolute molecular weight is measured by the following method.
<絶対分子量測定>
下記溶離液にバインダー樹脂を溶解させ、20時間静置した。この溶液におけるバインダー樹脂の濃度は0.05質量%である。
これを0.45μmメンブレンフィルターにて濾過し、濾液をGPC-MALSにて測定を実施した。
GPC:昭和電工株式会社製Shodex(登録商標)SYSTEM21
カラム:東ソー株式会社製TSKgel(登録商標)G6000PW
カラム温度:40℃
溶離液:0.1mol/L NaH2PO4水溶液+0.1mol/L Na2HPO4水溶液
流速:0.64mL/min
試料注入量:100μL
MALS検出器:ワイアットテクノロジーコーポレーション、DAWN(登録商標) DSP
レーザー波長:633nm
多角度フィット法:Berry法 <Absolute molecular weight measurement>
The binder resin was dissolved in the following eluate and allowed to stand for 20 hours. The concentration of the binder resin in this solution is 0.05% by mass.
This was filtered through a 0.45 μm membrane filter, and the filtrate was measured by GPC-MALS.
GPC: Showa Denko Corporation Shodex (registered trademark) SYSTEM21
Column: TSKgel (registered trademark) G6000PW manufactured by Tosoh Corporation
Column temperature: 40 ° C
Eluent: 0.1 mol / L NaH 2 PO 4 aqueous solution + 0.1 mol / L Na 2 HPO 4 aqueous solution Flow rate: 0.64 mL / min
Sample injection volume: 100 μL
MALS Detector: Wyatt Technology Corporation, DAWN® DSP
Laser wavelength: 633 nm
Multi-angle fit method: Berry method
下記溶離液にバインダー樹脂を溶解させ、20時間静置した。この溶液におけるバインダー樹脂の濃度は0.05質量%である。
これを0.45μmメンブレンフィルターにて濾過し、濾液をGPC-MALSにて測定を実施した。
GPC:昭和電工株式会社製Shodex(登録商標)SYSTEM21
カラム:東ソー株式会社製TSKgel(登録商標)G6000PW
カラム温度:40℃
溶離液:0.1mol/L NaH2PO4水溶液+0.1mol/L Na2HPO4水溶液
流速:0.64mL/min
試料注入量:100μL
MALS検出器:ワイアットテクノロジーコーポレーション、DAWN(登録商標) DSP
レーザー波長:633nm
多角度フィット法:Berry法 <Absolute molecular weight measurement>
The binder resin was dissolved in the following eluate and allowed to stand for 20 hours. The concentration of the binder resin in this solution is 0.05% by mass.
This was filtered through a 0.45 μm membrane filter, and the filtrate was measured by GPC-MALS.
GPC: Showa Denko Corporation Shodex (registered trademark) SYSTEM21
Column: TSKgel (registered trademark) G6000PW manufactured by Tosoh Corporation
Column temperature: 40 ° C
Eluent: 0.1 mol / L NaH 2 PO 4 aqueous solution + 0.1 mol / L Na 2 HPO 4 aqueous solution Flow rate: 0.64 mL / min
Sample injection volume: 100 μL
MALS Detector: Wyatt Technology Corporation, DAWN® DSP
Laser wavelength: 633 nm
Multi-angle fit method: Berry method
上記樹脂は単独で使用してもよいし、2種以上組み合わせて使用してもよい。2種以上を組み合わせる場合は、単純な混合でも良いし、共重合体を用いてもよい。
The above resins may be used alone or in combination of two or more. When two or more kinds are combined, a simple mixture may be used, or a copolymer may be used.
上記透明導電層は、上記導電性繊維、バインダー樹脂および溶媒を含む導電性インクを透明基材の少なくとも一方の主面上に印刷し、溶媒を乾燥除去することによって形成する。
The transparent conductive layer is formed by printing a conductive ink containing the conductive fibers, a binder resin and a solvent on at least one main surface of a transparent base material and drying and removing the solvent.
溶媒としては、導電性繊維が良好な分散性を示し、かつバインダー樹脂が溶解する溶媒であれば特に限定されないが、導電性繊維としてポリオール法で合成した金属ナノワイヤを用いる場合には、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール、水あるいはアルコールと水との混合溶媒が好ましい。前述の通りバインダー樹脂もアルコール、水あるいはアルコールと水との混合溶媒に可溶なバインダー樹脂を用いることが好ましい。バインダー樹脂の乾燥速度を容易に制御する事が出来る点でアルコールと水との混合溶媒を用いることがより好ましい。アルコールとしては、CnH2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール(メタノール、エタノール、ノルマルプロパノールおよびイソプロパノール)[以下、単に「炭素原子数が1~3の飽和一価アルコール」と表記]を少なくとも1種含む。炭素原子数が1~3の飽和一価アルコールを全アルコール中40質量%以上含むことが好ましい。炭素原子数が1~3の飽和一価アルコールを用いると乾燥が容易となるため工程上都合が良い。アルコールとして、炭素原子数が1~3の飽和一価アルコール以外のアルコールを併用することができる。併用できる炭素原子数が1~3の飽和一価アルコール以外のアルコールとしては、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。上記炭素原子数が1~3の飽和一価アルコールと併用することで乾燥速度を調整することが出来る。また、混合溶媒における全アルコールの含有率は、5~90質量%であることが好適である。混合溶媒におけるアルコールの含有率が5質量%未満、又は90質量%超であるとコーティングした際に縞模様(塗布斑)が発生し不適である。
The solvent is not particularly limited as long as the conductive fibers show good dispersibility and the binder resin dissolves in the solvent. However, when the conductive fibers are metal nanowires synthesized by the polyol method, they are used for their production. From the viewpoint of compatibility with the solvent (polyol), alcohol, water or a mixed solvent of alcohol and water is preferable. As described above, it is preferable to use a binder resin that is soluble in alcohol, water, or a mixed solvent of alcohol and water. It is more preferable to use a mixed solvent of alcohol and water in that the drying rate of the binder resin can be easily controlled. The alcohol is a saturated monohydric alcohol (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n + 1 OH (n is an integer of 1 to 3) [hereinafter, simply "carbon". Notated as "saturated monohydric alcohol with 1 to 3 atomic numbers"]. It is preferable that the saturated monohydric alcohol having 1 to 3 carbon atoms is contained in an amount of 40% by mass or more based on the total alcohol. Using a saturated monohydric alcohol having 1 to 3 carbon atoms facilitates drying, which is convenient in terms of the process. As the alcohol, an alcohol other than the saturated monohydric alcohol having 1 to 3 carbon atoms can be used in combination. Examples of alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms that can be used in combination include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. Be done. The drying rate can be adjusted by using in combination with the saturated monohydric alcohol having 1 to 3 carbon atoms. The total alcohol content in the mixed solvent is preferably 5 to 90% by mass. If the alcohol content in the mixed solvent is less than 5% by mass or more than 90% by mass, a striped pattern (coating spot) is generated when coating, which is unsuitable.
上記導電性インクは、上記バインダー樹脂、導電性繊維および溶媒を自転公転攪拌機等で攪拌して混合することにより製造することができる。導電性インク中に含有されるバインダー樹脂の含有量は0.01から1.0質量%の範囲であることが好ましい。導電性インク中に含有される導電性繊維の含有量は0.01から1.0質量%の範囲であることが好ましい。導電性繊維とバインダー樹脂の配合比(質量比)としては、導電性繊維に対してバインダー樹脂が0.1~10が好ましい。導電性インク中に含有される溶媒の含有量は98.0から99.98質量%の範囲であることが好ましい。
The conductive ink can be produced by stirring and mixing the binder resin, conductive fibers and a solvent with a rotating revolution stirrer or the like. The content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass. The content of conductive fibers contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass. As the compounding ratio (mass ratio) of the conductive fiber and the binder resin, the binder resin is preferably 0.1 to 10 with respect to the conductive fiber. The content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass.
また、前述の保護膜インク同様導電性インク中にハロゲンが含有されていると、透明導電フィルムの導電層とした場合、ハロゲンが導電膜中に残存し、導電部に悪影響を及ぼすため、ハロゲンの含有量は低い方が好ましい。
Further, if halogen is contained in the conductive ink as in the case of the protective film ink described above, when the conductive layer of the transparent conductive film is formed, the halogen remains in the conductive film and adversely affects the conductive portion. The lower the content, the better.
導電性インクの印刷は、バーコート法、スピンコート法、スプレーコート法、グラビア法、スリットコート法等の印刷法により行うことができる。この際に形成される印刷膜あるいはパターンの形状については特に限定はないが、基材上に形成される配線、電極のパターンとしての形状、あるいは基材の全面または一部の面を被覆する膜(ベタパターン)としての形状等が挙げられる。形成したパターンは、加熱して溶媒を乾燥させることにより導電化することができる。溶媒乾燥後得られる透明導電層あるいは透明導電パターンの好ましい厚みは、使用する導電性繊維の径や所望する表面抵抗値により異なるが、10~300nmであり、より好ましくは30~200nmである。10nmより厚いと導電性繊維の交点の数が増えるため良好な導電性を示す。また、300nmより薄いと光が透過しやすくなり導電性繊維による反射が抑制されるため良好な光学特性を示す。形成した透明導電層あるいは透明導電パターンは、加熱して溶媒を乾燥させることにより導電化することができるが、必要に応じて透明導電層あるいは透明導電パターンに適宜な光照射を行ってもよい。
The conductive ink can be printed by a printing method such as a bar coating method, a spin coating method, a spray coating method, a gravure method, or a slit coating method. The shape of the printed film or pattern formed at this time is not particularly limited, but the wiring formed on the base material, the shape of the electrode as a pattern, or the film covering the entire surface or a part of the base material. The shape as (solid pattern) and the like can be mentioned. The formed pattern can be made conductive by heating and drying the solvent. The preferable thickness of the transparent conductive layer or the transparent conductive pattern obtained after solvent drying varies depending on the diameter of the conductive fibers used and the desired surface resistance value, but is 10 to 300 nm, more preferably 30 to 200 nm. If it is thicker than 10 nm, the number of intersections of conductive fibers increases, so that good conductivity is exhibited. Further, when it is thinner than 300 nm, light is easily transmitted and reflection by conductive fibers is suppressed, so that good optical characteristics are exhibited. The formed transparent conductive layer or transparent conductive pattern can be made conductive by heating and drying the solvent, but if necessary, the transparent conductive layer or the transparent conductive pattern may be appropriately irradiated with light.
以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。
Hereinafter, examples of the present invention will be specifically described. The following examples are for facilitating the understanding of the present invention, and the present invention is not limited to these examples.
<(A)カルボキシ基を含有する透明ポリウレタンの合成例>
合成例1.
攪拌装置、温度計、コンデンサーを備えた2L三口フラスコに、(a2)ポリオール化合物としてC-1015N(株式会社クラレ製、ポリカーボネートジオール、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールを主骨格に有する、分子量1000(カタログ値))23.23g、(a3)カルボキシ基を含有するジヒドロキシ化合物として2,2-ジメチロールブタン酸(DMBA)(湖州長盛化工社製)15g、および溶媒としてプロピレングリコールモノメチルエーテルアセテート(PMA(SP値:8.73))86.8gを仕込み、90℃で前記2,2-ジメチロールブタン酸を溶解させた。 <Synthesis example of (A) transparent polyurethane containing a carboxy group>
Synthesis example 1.
In a 2L three-necked flask equipped with a stirrer, thermometer, and condenser, C-1015N (manufactured by Kuraray Co., Ltd., polycarbonate diol, 1,9-nonanediol and 2-methyl-1,8-octanediol) as the (a2) polyol compound (Catalog value) 23.23 g, (a3) 2,2-dimethylolbutanoic acid (DMBA) (manufactured by Koshu Chosei Kako Co., Ltd.) as a dihydroxy compound containing a carboxy group, and (a3) 15 g. 86.8 g of propylene glycol monomethyl ether acetate (PMA (SP value: 8.73)) was charged as a solvent, and the 2,2-dimethylolbutanoic acid was dissolved at 90 ° C.
合成例1.
攪拌装置、温度計、コンデンサーを備えた2L三口フラスコに、(a2)ポリオール化合物としてC-1015N(株式会社クラレ製、ポリカーボネートジオール、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールを主骨格に有する、分子量1000(カタログ値))23.23g、(a3)カルボキシ基を含有するジヒドロキシ化合物として2,2-ジメチロールブタン酸(DMBA)(湖州長盛化工社製)15g、および溶媒としてプロピレングリコールモノメチルエーテルアセテート(PMA(SP値:8.73))86.8gを仕込み、90℃で前記2,2-ジメチロールブタン酸を溶解させた。 <Synthesis example of (A) transparent polyurethane containing a carboxy group>
Synthesis example 1.
In a 2L three-necked flask equipped with a stirrer, thermometer, and condenser, C-1015N (manufactured by Kuraray Co., Ltd., polycarbonate diol, 1,9-nonanediol and 2-methyl-1,8-octanediol) as the (a2) polyol compound (Catalog value) 23.23 g, (a3) 2,2-dimethylolbutanoic acid (DMBA) (manufactured by Koshu Chosei Kako Co., Ltd.) as a dihydroxy compound containing a carboxy group, and (a3) 15 g. 86.8 g of propylene glycol monomethyl ether acetate (PMA (SP value: 8.73)) was charged as a solvent, and the 2,2-dimethylolbutanoic acid was dissolved at 90 ° C.
溶解したことを目視で確認した後、滴下ロートにより、(a1)ポリイソシアネート化合物としてデスモジュール(登録商標)-W(ビス-(4-イソシアナトシクロヘキシル)メタン)、住化コベストロウレタン株式会社製)32.78gを30分かけて滴下した。滴下終了後、100℃に昇温し、100℃で7時間反応を行い、イソシアナト基がほぼ消失したことをIRによって確認した後、イソブタノールを0.5g加え、更に100℃にて2時間反応を行った。
After visually confirming that it was dissolved, a dropping funnel was used to obtain (a1) Death Module (registered trademark) -W (bis- (4-isocyanatocyclohexyl) methane) as a polyisocyanate compound, manufactured by Sumika Cobestrourethane Co., Ltd. ) 32.78 g was added dropwise over 30 minutes. After completion of the dropwise addition, the temperature was raised to 100 ° C., the reaction was carried out at 100 ° C. for 7 hours, and after confirming by IR that the isocyanato group had almost disappeared, 0.5 g of isobutanol was added, and the reaction was further carried out at 100 ° C. for 2 hours. Was done.
固形分濃度が35質量%となるように、溶媒であるPMAを45.1g追加し、均一になるまで攪拌した。得られた(A)カルボキシ基を含有する透明ポリウレタンの重量平均分子量は32300であった。
45.1 g of PMA as a solvent was added so that the solid content concentration became 35% by mass, and the mixture was stirred until it became uniform. The weight average molecular weight of the obtained transparent polyurethane (A) containing a carboxy group was 32,300.
合成例2~13.
表1に示した原料を用いた以外は、合成例1と同様に(A)カルボキシ基を含有する透明ポリウレタンを合成した。表中における合成例1で使用したC-1015N以外の(a2)ポリオール化合物の主骨格と分子量は、それぞれ以下の通りである。
UCー100:ポリアルキレンカーボネートジオール、分子量1000(カタログ値)(宇部興産株式会社製)
PH-50:ポリアルキレンカーボネートジオール、分子量500(カタログ値)(宇部興産株式会社製)
G3450J:ポリアルキレンカーボネートジオール、分子量800(カタログ値)(旭化成ケミカルズ株式会社製)
T5651:ポリアルキレンカーボネートジオール、分子量1000(カタログ値)(旭化成ケミカルズ株式会社製) Synthesis Examples 2 to 13.
A transparent polyurethane containing (A) carboxy group was synthesized in the same manner as in Synthesis Example 1 except that the raw materials shown in Table 1 were used. The main skeleton and molecular weight of the (a2) polyol compound other than C-1015N used in Synthesis Example 1 in the table are as follows.
UC-100: Polyalkylene carbonate diol, molecular weight 1000 (catalog value) (manufactured by Ube Industries, Ltd.)
PH-50: Polyalkylene carbonate diol, molecular weight 500 (catalog value) (manufactured by Ube Industries, Ltd.)
G3450J: Polyalkylene carbonate diol, molecular weight 800 (catalog value) (manufactured by Asahi Kasei Chemicals Co., Ltd.)
T5651: Polyalkylene carbonate diol, molecular weight 1000 (catalog value) (manufactured by Asahi Kasei Chemicals Co., Ltd.)
表1に示した原料を用いた以外は、合成例1と同様に(A)カルボキシ基を含有する透明ポリウレタンを合成した。表中における合成例1で使用したC-1015N以外の(a2)ポリオール化合物の主骨格と分子量は、それぞれ以下の通りである。
UCー100:ポリアルキレンカーボネートジオール、分子量1000(カタログ値)(宇部興産株式会社製)
PH-50:ポリアルキレンカーボネートジオール、分子量500(カタログ値)(宇部興産株式会社製)
G3450J:ポリアルキレンカーボネートジオール、分子量800(カタログ値)(旭化成ケミカルズ株式会社製)
T5651:ポリアルキレンカーボネートジオール、分子量1000(カタログ値)(旭化成ケミカルズ株式会社製) Synthesis Examples 2 to 13.
A transparent polyurethane containing (A) carboxy group was synthesized in the same manner as in Synthesis Example 1 except that the raw materials shown in Table 1 were used. The main skeleton and molecular weight of the (a2) polyol compound other than C-1015N used in Synthesis Example 1 in the table are as follows.
UC-100: Polyalkylene carbonate diol, molecular weight 1000 (catalog value) (manufactured by Ube Industries, Ltd.)
PH-50: Polyalkylene carbonate diol, molecular weight 500 (catalog value) (manufactured by Ube Industries, Ltd.)
G3450J: Polyalkylene carbonate diol, molecular weight 800 (catalog value) (manufactured by Asahi Kasei Chemicals Co., Ltd.)
T5651: Polyalkylene carbonate diol, molecular weight 1000 (catalog value) (manufactured by Asahi Kasei Chemicals Co., Ltd.)
合成例14~23
上記合成例1における溶媒を表2の通り変更した以外は、同様にして合成した。なお、沸点が100℃以下の溶媒の場合は、反応温度を沸点から5℃下げた条件で反応した。 Synthesis Examples 14-23
The synthesis was carried out in the same manner except that the solvent in Synthesis Example 1 was changed as shown in Table 2. In the case of a solvent having a boiling point of 100 ° C. or lower, the reaction was carried out under the condition that the reaction temperature was lowered by 5 ° C. from the boiling point.
上記合成例1における溶媒を表2の通り変更した以外は、同様にして合成した。なお、沸点が100℃以下の溶媒の場合は、反応温度を沸点から5℃下げた条件で反応した。 Synthesis Examples 14-23
The synthesis was carried out in the same manner except that the solvent in Synthesis Example 1 was changed as shown in Table 2. In the case of a solvent having a boiling point of 100 ° C. or lower, the reaction was carried out under the condition that the reaction temperature was lowered by 5 ° C. from the boiling point.
表中における略語を以下に示す。なお、NPAcは昭和電工株式会社製のものを使用したが、他の溶媒は富士フイルム和光純薬株式会社から購入したものを使用した。
PGDM:プロピレングリコールジメチルエーテル(SP値:7.52)
DEGDM:ジエチレングリコールジメチルエーテル(SP値:8.1)
CPME:シクロペンチルメチルエーテル(SP値:8.13)
MTHP:4-メチルテトラヒドロピラン(SP値:8.13)
TEGDM:トリエチレングリコールジメチルエーテル(SP値:8.37)
NPAc:酢酸n-プロピル(SP値:8.72)
BCA:ジエチレングリコールモノブチルエーテルアセテート(SP値:8.94)
ECA:ジエチレングリコールモノエチルエーテルアセテート(SP値:9.01)
BDDA:1,4-ブタンジオールジアセテート(SP値:9.64)
NMP:N-メチルピロリドン(SP値:11.52) The abbreviations in the table are shown below. The NPAc used was manufactured by Showa Denko KK, but the other solvent used was purchased from Fujifilm Wako Pure Chemical Industries, Ltd.
PGDM: Propylene glycol dimethyl ether (SP value: 7.52)
DEGDM: Diethylene glycol dimethyl ether (SP value: 8.1)
CPME: Cyclopentyl methyl ether (SP value: 8.13)
MTHP: 4-Methyltetrahydropyran (SP value: 8.13)
TEGDM: Triethylene glycol dimethyl ether (SP value: 8.37)
NPAc: n-propyl acetate (SP value: 8.72)
BCA: Diethylene glycol monobutyl ether acetate (SP value: 8.94)
ECA: Diethylene glycol monoethyl ether acetate (SP value: 9.01)
BDDA: 1,4-butanediol diacetate (SP value: 9.64)
NMP: N-methylpyrrolidone (SP value: 11.52)
PGDM:プロピレングリコールジメチルエーテル(SP値:7.52)
DEGDM:ジエチレングリコールジメチルエーテル(SP値:8.1)
CPME:シクロペンチルメチルエーテル(SP値:8.13)
MTHP:4-メチルテトラヒドロピラン(SP値:8.13)
TEGDM:トリエチレングリコールジメチルエーテル(SP値:8.37)
NPAc:酢酸n-プロピル(SP値:8.72)
BCA:ジエチレングリコールモノブチルエーテルアセテート(SP値:8.94)
ECA:ジエチレングリコールモノエチルエーテルアセテート(SP値:9.01)
BDDA:1,4-ブタンジオールジアセテート(SP値:9.64)
NMP:N-メチルピロリドン(SP値:11.52) The abbreviations in the table are shown below. The NPAc used was manufactured by Showa Denko KK, but the other solvent used was purchased from Fujifilm Wako Pure Chemical Industries, Ltd.
PGDM: Propylene glycol dimethyl ether (SP value: 7.52)
DEGDM: Diethylene glycol dimethyl ether (SP value: 8.1)
CPME: Cyclopentyl methyl ether (SP value: 8.13)
MTHP: 4-Methyltetrahydropyran (SP value: 8.13)
TEGDM: Triethylene glycol dimethyl ether (SP value: 8.37)
NPAc: n-propyl acetate (SP value: 8.72)
BCA: Diethylene glycol monobutyl ether acetate (SP value: 8.94)
ECA: Diethylene glycol monoethyl ether acetate (SP value: 9.01)
BDDA: 1,4-butanediol diacetate (SP value: 9.64)
NMP: N-methylpyrrolidone (SP value: 11.52)
<外観検査>
合成例1~23で得られた各ポリウレタン樹脂溶液の目視による外観を表1および表2に示す。
表1の合成例1~8において、ポリオール、ポリイソシアネート、ジカルボン酸、酸価などの条件を変えただけでは、得られる樹脂の外観は変化しない事が分かる。合成例1、2、3、5、8と合成例9~13では、それぞれ合成時の溶媒を変更したのみであるが、着色する様子がわかる。 <Visual inspection>
Tables 1 and 2 show the visual appearance of each polyurethane resin solution obtained in Synthesis Examples 1 to 23.
It can be seen that in Synthesis Examples 1 to 8 in Table 1, the appearance of the obtained resin does not change only by changing the conditions such as polyol, polyisocyanate, dicarboxylic acid, and acid value. In Synthesis Examples 1, 2, 3, 5, and 8 and Synthesis Examples 9 to 13, only the solvent at the time of synthesis was changed, but it can be seen that they are colored.
合成例1~23で得られた各ポリウレタン樹脂溶液の目視による外観を表1および表2に示す。
表1の合成例1~8において、ポリオール、ポリイソシアネート、ジカルボン酸、酸価などの条件を変えただけでは、得られる樹脂の外観は変化しない事が分かる。合成例1、2、3、5、8と合成例9~13では、それぞれ合成時の溶媒を変更したのみであるが、着色する様子がわかる。 <Visual inspection>
Tables 1 and 2 show the visual appearance of each polyurethane resin solution obtained in Synthesis Examples 1 to 23.
It can be seen that in Synthesis Examples 1 to 8 in Table 1, the appearance of the obtained resin does not change only by changing the conditions such as polyol, polyisocyanate, dicarboxylic acid, and acid value. In Synthesis Examples 1, 2, 3, 5, and 8 and Synthesis Examples 9 to 13, only the solvent at the time of synthesis was changed, but it can be seen that they are colored.
また、表2より、得られている樹脂骨格が同じであっても、溶媒を変えたのみで、顕著に外観が変わることがわかる。
Further, from Table 2, it can be seen that even if the obtained resin skeleton is the same, the appearance changes remarkably only by changing the solvent.
これらの結果より、合成時に用いる溶媒が着色に大きな影響を与え、検討した範囲においては特定の樹脂構造に因らない事がわかる。なお白濁や乳白に関しては、樹脂同士の相溶性に起因するものであり、最終的に用いられる形状であるフィルム状にした場合は透明となるので問題がなく、保護膜インク組成物とする際にも、良溶媒を添加する事で濁りが解消されるため何等問題となるものではない。
From these results, it can be seen that the solvent used during the synthesis has a great influence on the coloring and does not depend on the specific resin structure in the examined range. It should be noted that white turbidity and milky whiteness are caused by the compatibility between the resins, and there is no problem because they become transparent when they are formed into a film, which is the shape to be finally used. However, there is no problem because the turbidity is eliminated by adding a good solvent.
<光学特性評価>
実施例1
合成例14で得られた固形分濃度35質量%のポリウレタン樹脂溶液10gに、1-ヘキサノール(東洋合成化学工業社製)10gを加え、アズワン製ミックスローターにて3時間攪拌し、固形分濃度17.5質量%とした。その後マイクロメーター付きフィルムアプリケーター(有限会社タクミ技研製)を用い、表面処理をしていないCOPフィルム(日本ゼオン株式会社製ZF14-100、厚み100μm)にウェット膜厚300μmで塗工し、100℃で30分乾燥させた。COPフィルム上に得られた透明ポリウレタンフィルムをCOPから剥離し、マイクロメーターで測定した膜厚は50μmであった。このフィルムを用い、3cm×3cmのサイズに切り出した試験片を、JIS Z8722の色測定法に準拠して日本電色工業製色彩色差計COH7700を用いて、光源をD65とし、色彩色差(b*値)を測定した。 <Evaluation of optical characteristics>
Example 1
To 10 g of the polyurethane resin solution having a solid content concentration of 35% by mass obtained in Synthesis Example 14, 10 g of 1-hexanol (manufactured by Toyo Synthetic Chemical Industry Co., Ltd.) was added, and the mixture was stirred with an AS ONE mix rotor for 3 hours to have a solid content concentration of 17 It was set to 5.5% by mass. After that, using a film applicator with a micrometer (manufactured by Takumi Giken Co., Ltd.), a COP film (ZF14-100 manufactured by Nippon Zeon Corporation, thickness 100 μm) with no surface treatment was coated with a wet film thickness of 300 μm, and at 100 ° C. It was dried for 30 minutes. The transparent polyurethane film obtained on the COP film was peeled off from the COP, and the film thickness measured with a micrometer was 50 μm. Using this film, a test piece cut out to a size of 3 cm × 3 cm was cut out to a size of 3 cm × 3 cm, and a color difference meter COH7700 manufactured by Nippon Denshoku Kogyo was used to set the light source to D65 in accordance with the color measurement method of JIS Z8722, and the color difference (b *). Value) was measured.
実施例1
合成例14で得られた固形分濃度35質量%のポリウレタン樹脂溶液10gに、1-ヘキサノール(東洋合成化学工業社製)10gを加え、アズワン製ミックスローターにて3時間攪拌し、固形分濃度17.5質量%とした。その後マイクロメーター付きフィルムアプリケーター(有限会社タクミ技研製)を用い、表面処理をしていないCOPフィルム(日本ゼオン株式会社製ZF14-100、厚み100μm)にウェット膜厚300μmで塗工し、100℃で30分乾燥させた。COPフィルム上に得られた透明ポリウレタンフィルムをCOPから剥離し、マイクロメーターで測定した膜厚は50μmであった。このフィルムを用い、3cm×3cmのサイズに切り出した試験片を、JIS Z8722の色測定法に準拠して日本電色工業製色彩色差計COH7700を用いて、光源をD65とし、色彩色差(b*値)を測定した。 <Evaluation of optical characteristics>
Example 1
To 10 g of the polyurethane resin solution having a solid content concentration of 35% by mass obtained in Synthesis Example 14, 10 g of 1-hexanol (manufactured by Toyo Synthetic Chemical Industry Co., Ltd.) was added, and the mixture was stirred with an AS ONE mix rotor for 3 hours to have a solid content concentration of 17 It was set to 5.5% by mass. After that, using a film applicator with a micrometer (manufactured by Takumi Giken Co., Ltd.), a COP film (ZF14-100 manufactured by Nippon Zeon Corporation, thickness 100 μm) with no surface treatment was coated with a wet film thickness of 300 μm, and at 100 ° C. It was dried for 30 minutes. The transparent polyurethane film obtained on the COP film was peeled off from the COP, and the film thickness measured with a micrometer was 50 μm. Using this film, a test piece cut out to a size of 3 cm × 3 cm was cut out to a size of 3 cm × 3 cm, and a color difference meter COH7700 manufactured by Nippon Denshoku Kogyo was used to set the light source to D65 in accordance with the color measurement method of JIS Z8722, and the color difference (b *). Value) was measured.
実施例2~10、比較例1,2
表3に示した各合成例で得られたポリウレタン樹脂溶液を用いた以外は実施例1と同様にして測定した。結果を表3に示す。 Examples 2 to 10, Comparative Examples 1 and 2.
The measurement was carried out in the same manner as in Example 1 except that the polyurethane resin solution obtained in each synthetic example shown in Table 3 was used. The results are shown in Table 3.
表3に示した各合成例で得られたポリウレタン樹脂溶液を用いた以外は実施例1と同様にして測定した。結果を表3に示す。 Examples 2 to 10, Comparative Examples 1 and 2.
The measurement was carried out in the same manner as in Example 1 except that the polyurethane resin solution obtained in each synthetic example shown in Table 3 was used. The results are shown in Table 3.
表3より、実施例1~10においては、光学特性、特にb*値が0.25以下であり、無色透明なフィルムを得るための用途に適していることが分かる。
From Table 3, it can be seen that in Examples 1 to 10, the optical characteristics, particularly the b * value, are 0.25 or less, and the film is suitable for use in obtaining a colorless and transparent film.
<保護膜用熱硬化性組成物>
調製例1
(A)カルボキシ基を含有する透明ポリウレタンとして合成例14で得た35質量%ポリウレタン樹脂溶液を10g、(B)エポキシ樹脂としてペンタエリスリトールテトラグリシジルエーテル(昭和電工株式会社製)を0.49g、(D)硬化促進剤としてU-CAT(登録商標)5003を0.24g、(C)溶媒として1-ヘキサノール65.19g、酢酸エチル(富士フイルム和光純薬社製)65.19gを加え、ミックスローターにて均一になるように2時間攪拌した。得られた保護膜インクのハロゲン含有量は10質量ppm以下であった。ハロゲン原子の含有量はJIS K7243-3に従い、測定した値である。 <Thermosetting composition for protective film>
Preparation Example 1
(A) 10 g of the 35 mass% polyurethane resin solution obtained in Synthesis Example 14 as a transparent polyurethane containing a carboxy group, and (B) 0.49 g of pentaerythritol tetraglycidyl ether (manufactured by Showa Denko Co., Ltd.) as an epoxy resin. D) 0.24 g of U-CAT (registered trademark) 5003 as a curing accelerator, 65.19 g of 1-hexanol as a solvent (C), and 65.19 g of ethyl acetate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added to the mix rotor. The mixture was stirred for 2 hours so as to be uniform. The halogen content of the obtained protective film ink was 10 mass ppm or less. The halogen atom content is a value measured according to JIS K7243-3.
調製例1
(A)カルボキシ基を含有する透明ポリウレタンとして合成例14で得た35質量%ポリウレタン樹脂溶液を10g、(B)エポキシ樹脂としてペンタエリスリトールテトラグリシジルエーテル(昭和電工株式会社製)を0.49g、(D)硬化促進剤としてU-CAT(登録商標)5003を0.24g、(C)溶媒として1-ヘキサノール65.19g、酢酸エチル(富士フイルム和光純薬社製)65.19gを加え、ミックスローターにて均一になるように2時間攪拌した。得られた保護膜インクのハロゲン含有量は10質量ppm以下であった。ハロゲン原子の含有量はJIS K7243-3に従い、測定した値である。 <Thermosetting composition for protective film>
Preparation Example 1
(A) 10 g of the 35 mass% polyurethane resin solution obtained in Synthesis Example 14 as a transparent polyurethane containing a carboxy group, and (B) 0.49 g of pentaerythritol tetraglycidyl ether (manufactured by Showa Denko Co., Ltd.) as an epoxy resin. D) 0.24 g of U-CAT (registered trademark) 5003 as a curing accelerator, 65.19 g of 1-hexanol as a solvent (C), and 65.19 g of ethyl acetate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added to the mix rotor. The mixture was stirred for 2 hours so as to be uniform. The halogen content of the obtained protective film ink was 10 mass ppm or less. The halogen atom content is a value measured according to JIS K7243-3.
調製例2~12
ポリウレタン樹脂溶液を表4に示したものにそれぞれ代えた以外は、調製例1と同様に組成物を作製した。 Preparation Examples 2 to 12
A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with the one shown in Table 4.
ポリウレタン樹脂溶液を表4に示したものにそれぞれ代えた以外は、調製例1と同様に組成物を作製した。 Preparation Examples 2 to 12
A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with the one shown in Table 4.
調製例13、14
ポリウレタン樹脂溶液を表4に示したものにそれぞれ代え、硬化促進剤をU-CAT(登録商標)SA102(サンアプロ株式会社製)に代えた以外は、調製例1と同様に組成物を作製した。 Preparation Examples 13, 14
A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with the one shown in Table 4 and the curing accelerator was replaced with U-CAT (registered trademark) SA102 (manufactured by Sun Appro Co., Ltd.).
ポリウレタン樹脂溶液を表4に示したものにそれぞれ代え、硬化促進剤をU-CAT(登録商標)SA102(サンアプロ株式会社製)に代えた以外は、調製例1と同様に組成物を作製した。 Preparation Examples 13, 14
A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with the one shown in Table 4 and the curing accelerator was replaced with U-CAT (registered trademark) SA102 (manufactured by Sun Appro Co., Ltd.).
調製例15
ポリウレタン樹脂溶液を表4に示したものに代え、硬化促進剤を使用しなかった以外は、調製例1と同様に組成物を作製した。 Preparation Example 15
A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with that shown in Table 4 and no curing accelerator was used.
ポリウレタン樹脂溶液を表4に示したものに代え、硬化促進剤を使用しなかった以外は、調製例1と同様に組成物を作製した。 Preparation Example 15
A composition was prepared in the same manner as in Preparation Example 1 except that the polyurethane resin solution was replaced with that shown in Table 4 and no curing accelerator was used.
<透明導電フィルム>
<銀ナノワイヤの作製>
ポリビニルピロリドンK-90((株)日本触媒社製)(0.98g)、AgNO3(1.04g)及びFeCl3(0.8mg)を、エチレングリコール(250ml)に溶解し、150℃で1時間加熱反応した。得られた銀ナノワイヤ粗分散液をメタノール2000mlに分散させ、卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m2、孔径2.0μm、寸法Φ30mm×250mm、ろ過差圧0.01MPa)に流し入れ、循環流速12L/min、分散液温度25℃にてクロスフロー濾過を実施し不純物を除去した後、全体量が100gになるまで濃縮し、銀ナノワイヤ(平均直径:26nm、平均長さ:20μm)のメタノール分散液を得た。得られた銀ナノワイヤの平均径の算出には、電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法を測定し、その算術平均値を求めた。また、得られた銀ナノワイヤの平均長の算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法を測定し、その算術平均値を求めた。また、上記メタノール、エチレングリコール、AgNO3、FeCl3は富士フイルム和光純薬株式会社製試薬を用いた。 <Transparent conductive film>
<Manufacturing of silver nanowires>
Polyvinylpyrrolidone K-90 (manufactured by Nippon Shokubai Co., Ltd.) (0.98 g), AgNO 3 (1.04 g) and FeCl 3 (0.8 mg) were dissolved in ethylene glycol (250 ml) and 1 at 150 ° C. Heat reaction for hours. The obtained crude silver nanowire dispersion was dispersed in 2000 ml of methanol, and a small desktop tester (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.24 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm, filtration It was poured into a differential pressure of 0.01 MPa), cross-flow filtration was performed at a circulation flow velocity of 12 L / min and a dispersion temperature of 25 ° C. to remove impurities, and then concentrated until the total amount reached 100 g, and silver nanowires (average diameter:: average diameter: A methanol dispersion (26 nm, average length: 20 μm) was obtained. To calculate the average diameter of the obtained silver nanowires, a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the arithmetic mean value thereof was measured. Asked. Further, in order to calculate the average length of the obtained silver nanowires, a shape measurement laser microscope VK-X200 (manufactured by Keyence Co., Ltd.) was used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the arithmetic average value thereof was measured. Asked. As the methanol, ethylene glycol, AgNO 3 , and FeCl 3 , reagents manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. were used.
<銀ナノワイヤの作製>
ポリビニルピロリドンK-90((株)日本触媒社製)(0.98g)、AgNO3(1.04g)及びFeCl3(0.8mg)を、エチレングリコール(250ml)に溶解し、150℃で1時間加熱反応した。得られた銀ナノワイヤ粗分散液をメタノール2000mlに分散させ、卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m2、孔径2.0μm、寸法Φ30mm×250mm、ろ過差圧0.01MPa)に流し入れ、循環流速12L/min、分散液温度25℃にてクロスフロー濾過を実施し不純物を除去した後、全体量が100gになるまで濃縮し、銀ナノワイヤ(平均直径:26nm、平均長さ:20μm)のメタノール分散液を得た。得られた銀ナノワイヤの平均径の算出には、電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法を測定し、その算術平均値を求めた。また、得られた銀ナノワイヤの平均長の算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤ寸法を測定し、その算術平均値を求めた。また、上記メタノール、エチレングリコール、AgNO3、FeCl3は富士フイルム和光純薬株式会社製試薬を用いた。 <Transparent conductive film>
<Manufacturing of silver nanowires>
Polyvinylpyrrolidone K-90 (manufactured by Nippon Shokubai Co., Ltd.) (0.98 g), AgNO 3 (1.04 g) and FeCl 3 (0.8 mg) were dissolved in ethylene glycol (250 ml) and 1 at 150 ° C. Heat reaction for hours. The obtained crude silver nanowire dispersion was dispersed in 2000 ml of methanol, and a small desktop tester (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.24 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm, filtration It was poured into a differential pressure of 0.01 MPa), cross-flow filtration was performed at a circulation flow velocity of 12 L / min and a dispersion temperature of 25 ° C. to remove impurities, and then concentrated until the total amount reached 100 g, and silver nanowires (average diameter:: average diameter: A methanol dispersion (26 nm, average length: 20 μm) was obtained. To calculate the average diameter of the obtained silver nanowires, a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the arithmetic mean value thereof was measured. Asked. Further, in order to calculate the average length of the obtained silver nanowires, a shape measurement laser microscope VK-X200 (manufactured by Keyence Co., Ltd.) was used to measure the dimensions of 100 arbitrarily selected silver nanowires, and the arithmetic average value thereof was measured. Asked. As the methanol, ethylene glycol, AgNO 3 , and FeCl 3 , reagents manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. were used.
<導電性インク(銀ナノワイヤインク)作製>
上記ポリオール法で合成した銀ナノワイヤのメタノール分散液11g(銀ナノワイヤ濃度0.62質量%)、水3.5g、エタノール10.8g(富士フイルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フイルム和光純薬株式会社製)12.8g、プロピレングリコール1.2g(PG、旭硝子株式会社製)、PNVA(登録商標)水溶液(昭和電工株式会社製、固形分濃度10質量%、重量平均分子量90万)0.7gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク40gを作製した。 <Making conductive ink (silver nanowire ink)>
11 g of methanol dispersion of silver nanowires synthesized by the above polyol method (silver nanowire concentration 0.62% by mass), 3.5 g of water, 10.8 g of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), propylene glycol monomethyl ether (PGME) , Fujifilm Wako Pure Chemical Industries, Ltd.) 12.8 g, propylene glycol 1.2 g (PG, manufactured by Asahi Glass Co., Ltd.), PNVA (registered trademark) aqueous solution (manufactured by Showa Denko Co., Ltd., solid content concentration 10% by mass, weight average) 0.7 g (molecular weight 900,000) was mixed and stirred with a mix rotor VMR-5R (manufactured by AS ONE Co., Ltd.) for 1 hour at room temperature and in an air atmosphere (rotation speed 100 rpm) to prepare 40 g of silver nanowire ink.
上記ポリオール法で合成した銀ナノワイヤのメタノール分散液11g(銀ナノワイヤ濃度0.62質量%)、水3.5g、エタノール10.8g(富士フイルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フイルム和光純薬株式会社製)12.8g、プロピレングリコール1.2g(PG、旭硝子株式会社製)、PNVA(登録商標)水溶液(昭和電工株式会社製、固形分濃度10質量%、重量平均分子量90万)0.7gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク40gを作製した。 <Making conductive ink (silver nanowire ink)>
11 g of methanol dispersion of silver nanowires synthesized by the above polyol method (silver nanowire concentration 0.62% by mass), 3.5 g of water, 10.8 g of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), propylene glycol monomethyl ether (PGME) , Fujifilm Wako Pure Chemical Industries, Ltd.) 12.8 g, propylene glycol 1.2 g (PG, manufactured by Asahi Glass Co., Ltd.), PNVA (registered trademark) aqueous solution (manufactured by Showa Denko Co., Ltd., solid content concentration 10% by mass, weight average) 0.7 g (molecular weight 900,000) was mixed and stirred with a mix rotor VMR-5R (manufactured by AS ONE Co., Ltd.) for 1 hour at room temperature and in an air atmosphere (rotation speed 100 rpm) to prepare 40 g of silver nanowire ink.
<透明導電層(銀ナノワイヤ層)の形成>
プラズマ処理装置(積水化学工業株式会社製AP-T03)を用いてプラズマ処理(使用ガス:窒素、搬送速度:50mm/sec、処理時間:6sec、設定電圧:400V)した、透明基材としてのA4サイズのシクロオレフィンポリマーフィルムZF14-050(日本ゼオン株式会社製厚み50μm)上に、TQC自動フィルムアプリケータースタンダード(コーテック株式会社製)とワイヤレスバーコータOSP-CN-22L(コーテック株式会社製)とを用い、ウェット膜厚が22μmとなるように銀ナノワイヤインクを透明基材(ZF14-050)の全面に塗布した(塗工速度500mm/sec)。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、1分間、大気雰囲気下で熱風乾燥し、銀ナノワイヤ層(乾燥後の膜厚:90nm)を形成した。膜厚は光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材(ZF14-050)上に形成された銀ナノワイヤインク塗膜(透明導電層)の膜厚(Tc)を直接測定できる。 <Formation of transparent conductive layer (silver nanowire layer)>
A4 as a transparent substrate subjected to plasma processing (gas used: nitrogen, transport speed: 50 mm / sec, processing time: 6 sec, set voltage: 400 V) using a plasma processing device (AP-T03 manufactured by Sekisui Chemical Industry Co., Ltd.) Using TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) and wireless bar coater OSP-CN-22L (manufactured by Cortec Co., Ltd.) on a cycloolefin polymer film ZF14-050 (thickness 50 μm manufactured by Nippon Zeon Co., Ltd.). , Silver nanowire ink was applied to the entire surface of the transparent substrate (ZF14-050) so that the wet film thickness was 22 μm (coating speed 500 mm / sec). Then, it was dried with hot air in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a silver nanowire layer (film thickness after drying: 90 nm). The film thickness was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) formed on the transparent base material (ZF14-050) can be directly measured.
プラズマ処理装置(積水化学工業株式会社製AP-T03)を用いてプラズマ処理(使用ガス:窒素、搬送速度:50mm/sec、処理時間:6sec、設定電圧:400V)した、透明基材としてのA4サイズのシクロオレフィンポリマーフィルムZF14-050(日本ゼオン株式会社製厚み50μm)上に、TQC自動フィルムアプリケータースタンダード(コーテック株式会社製)とワイヤレスバーコータOSP-CN-22L(コーテック株式会社製)とを用い、ウェット膜厚が22μmとなるように銀ナノワイヤインクを透明基材(ZF14-050)の全面に塗布した(塗工速度500mm/sec)。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、1分間、大気雰囲気下で熱風乾燥し、銀ナノワイヤ層(乾燥後の膜厚:90nm)を形成した。膜厚は光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材(ZF14-050)上に形成された銀ナノワイヤインク塗膜(透明導電層)の膜厚(Tc)を直接測定できる。 <Formation of transparent conductive layer (silver nanowire layer)>
A4 as a transparent substrate subjected to plasma processing (gas used: nitrogen, transport speed: 50 mm / sec, processing time: 6 sec, set voltage: 400 V) using a plasma processing device (AP-T03 manufactured by Sekisui Chemical Industry Co., Ltd.) Using TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) and wireless bar coater OSP-CN-22L (manufactured by Cortec Co., Ltd.) on a cycloolefin polymer film ZF14-050 (thickness 50 μm manufactured by Nippon Zeon Co., Ltd.). , Silver nanowire ink was applied to the entire surface of the transparent substrate (ZF14-050) so that the wet film thickness was 22 μm (coating speed 500 mm / sec). Then, it was dried with hot air in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a silver nanowire layer (film thickness after drying: 90 nm). The film thickness was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) formed on the transparent base material (ZF14-050) can be directly measured.
<保護膜の形成(透明導電フィルムの作製)>
実施例11
透明基材上に形成した銀ナノワイヤ層の上に、表4に示した調製例1の保護膜用熱硬化性組成物をTQC自動フィルムアプリケータースタンダード(コーテック株式会社製)により、ワイヤレスバーコータOSP-CN-10Mを用いてウェット膜厚が5μmになるように塗布した。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、1分間、大気雰囲気下で熱風乾燥(熱硬化)し、保護膜(乾燥後の膜厚:90nm)を形成した。保護膜の膜厚は、前述の銀ナノワイヤインク塗膜の膜厚同様光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤインク塗膜(透明導電層)の膜厚(Tc)とその上に形成された保護膜の膜厚(Tp)との総膜厚(Tc+Tp)が直接測定できるので、この測定値から先に測定した銀ナノワイヤインク塗膜(透明導電層)の膜厚(Tc)を差し引くことにより保護膜の膜厚(Tp)が得られる。 <Formation of protective film (production of transparent conductive film)>
Example 11
On the silver nanowire layer formed on the transparent substrate, the thermosetting composition for the protective film of Preparation Example 1 shown in Table 4 was applied by TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) to the wireless bar coater OSP-. It was applied using CN-10M so that the wet film thickness was 5 μm. Then, it was dried with hot air (thermosetting) in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a protective film (film thickness after drying: 90 nm). The film thickness of the protective film was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry as well as the film thickness of the silver nanowire ink coating film described above. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the total film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) formed on the transparent substrate and the film thickness (Tp) of the protective film formed on the film thickness (Tp). Since (Tc + Tp) can be directly measured, the film thickness (Tp) of the protective film can be obtained by subtracting the film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) measured earlier from this measured value.
実施例11
透明基材上に形成した銀ナノワイヤ層の上に、表4に示した調製例1の保護膜用熱硬化性組成物をTQC自動フィルムアプリケータースタンダード(コーテック株式会社製)により、ワイヤレスバーコータOSP-CN-10Mを用いてウェット膜厚が5μmになるように塗布した。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、1分間、大気雰囲気下で熱風乾燥(熱硬化)し、保護膜(乾燥後の膜厚:90nm)を形成した。保護膜の膜厚は、前述の銀ナノワイヤインク塗膜の膜厚同様光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤインク塗膜(透明導電層)の膜厚(Tc)とその上に形成された保護膜の膜厚(Tp)との総膜厚(Tc+Tp)が直接測定できるので、この測定値から先に測定した銀ナノワイヤインク塗膜(透明導電層)の膜厚(Tc)を差し引くことにより保護膜の膜厚(Tp)が得られる。 <Formation of protective film (production of transparent conductive film)>
Example 11
On the silver nanowire layer formed on the transparent substrate, the thermosetting composition for the protective film of Preparation Example 1 shown in Table 4 was applied by TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) to the wireless bar coater OSP-. It was applied using CN-10M so that the wet film thickness was 5 μm. Then, it was dried with hot air (thermosetting) in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a protective film (film thickness after drying: 90 nm). The film thickness of the protective film was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry as well as the film thickness of the silver nanowire ink coating film described above. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the total film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) formed on the transparent substrate and the film thickness (Tp) of the protective film formed on the film thickness (Tp). Since (Tc + Tp) can be directly measured, the film thickness (Tp) of the protective film can be obtained by subtracting the film thickness (Tc) of the silver nanowire ink coating film (transparent conductive layer) measured earlier from this measured value.
実施例12~23、比較例3,4 保護膜用組成物を表4にそれぞれ示したものに代えた以外は実施例11と同様に透明導電フィルムを作製した。
Examples 12 to 23 and Comparative Examples 3 and 4 A transparent conductive film was produced in the same manner as in Example 11 except that the protective film compositions were replaced with those shown in Table 4.
<表面抵抗測定>
上記A4サイズに全面塗布した銀ナノワイヤ塗膜から3cm×3cmの試験片を切り出し、試験片の中心部に手動式非破壊抵抗測定器EC-80P(ナプソン株式会社製)の端子を当てて測定した。いずれのフィルムも約40Ω/□のシート抵抗値を示した。 <Surface resistance measurement>
A 3 cm x 3 cm test piece was cut out from the silver nanowire coating film coated on the entire surface of the above A4 size, and the terminal of the manual non-destructive resistance measuring instrument EC-80P (manufactured by Napson Co., Ltd.) was applied to the center of the test piece for measurement. .. Both films showed a sheet resistance value of about 40Ω / □.
上記A4サイズに全面塗布した銀ナノワイヤ塗膜から3cm×3cmの試験片を切り出し、試験片の中心部に手動式非破壊抵抗測定器EC-80P(ナプソン株式会社製)の端子を当てて測定した。いずれのフィルムも約40Ω/□のシート抵抗値を示した。 <Surface resistance measurement>
A 3 cm x 3 cm test piece was cut out from the silver nanowire coating film coated on the entire surface of the above A4 size, and the terminal of the manual non-destructive resistance measuring instrument EC-80P (manufactured by Napson Co., Ltd.) was applied to the center of the test piece for measurement. .. Both films showed a sheet resistance value of about 40Ω / □.
<全光線透過率、ヘーズ測定、色彩測定(b*)>
上記3cm×3cmの試験片を用い、JIS Z8722の色測定法、JIS K7361-1の透明材料の全光線透過率測定法、JIS K7136の透明材料のヘーズの求め方、に準拠して色彩色差計COH7700(日本電色工業株式会社製)を用いて、光源をD65とし、全光線透過率、ヘーズ、色彩色差(b*値)を測定した。測定結果を表4にまとめて示す。 <Total light transmittance, haze measurement, color measurement (b *)>
Using the above 3 cm x 3 cm test piece, a color difference meter based on the JIS Z8722 color measurement method, the JIS K7361-1 transparent material total light transmission measurement method, and the JIS K7136 transparent material haze determination method. Using COH7700 (manufactured by Nippon Denshoku Industries Co., Ltd.), the light source was set to D65, and the total light transmittance, haze, and color difference (b * value) were measured. The measurement results are summarized in Table 4.
上記3cm×3cmの試験片を用い、JIS Z8722の色測定法、JIS K7361-1の透明材料の全光線透過率測定法、JIS K7136の透明材料のヘーズの求め方、に準拠して色彩色差計COH7700(日本電色工業株式会社製)を用いて、光源をD65とし、全光線透過率、ヘーズ、色彩色差(b*値)を測定した。測定結果を表4にまとめて示す。 <Total light transmittance, haze measurement, color measurement (b *)>
Using the above 3 cm x 3 cm test piece, a color difference meter based on the JIS Z8722 color measurement method, the JIS K7361-1 transparent material total light transmission measurement method, and the JIS K7136 transparent material haze determination method. Using COH7700 (manufactured by Nippon Denshoku Industries Co., Ltd.), the light source was set to D65, and the total light transmittance, haze, and color difference (b * value) were measured. The measurement results are summarized in Table 4.
表4よりSP値が9.80以上の溶媒を用いて合成した樹脂から調製した保護膜付き透明導電フィルムは、外観で虹ムラや曇りが発生し、b*値が1.00を超えている。特にSP値が10を超えているNMPを用いた場合は、ヘーズも2.0を超える値となっており、透明導電フィルムには適さない事が分かる。これに対して、実施例11~23のようにSP値が9.80未満の溶媒を用いて保護膜樹脂を合成した場合は、ヘーズが2.0以下であり、b*値も1.00未満となり透明導電フィルムに適していることが明らかである。
From Table 4, the transparent conductive film with a protective film prepared from a resin synthesized using a solvent having an SP value of 9.80 or more has rainbow unevenness and cloudiness in appearance, and the b * value exceeds 1.00. .. In particular, when NMP having an SP value of more than 10 is used, the haze also has a value of more than 2.0, which shows that it is not suitable for a transparent conductive film. On the other hand, when the protective film resin is synthesized using a solvent having an SP value of less than 9.80 as in Examples 11 to 23, the haze is 2.0 or less and the b * value is 1.00. It is clear that it is less than that and suitable for a transparent conductive film.
From Table 4, the transparent conductive film with a protective film prepared from a resin synthesized using a solvent having an SP value of 9.80 or more has rainbow unevenness and cloudiness in appearance, and the b * value exceeds 1.00. .. In particular, when NMP having an SP value of more than 10 is used, the haze also has a value of more than 2.0, which shows that it is not suitable for a transparent conductive film. On the other hand, when the protective film resin is synthesized using a solvent having an SP value of less than 9.80 as in Examples 11 to 23, the haze is 2.0 or less and the b * value is 1.00. It is clear that it is less than that and suitable for a transparent conductive film.
Claims (14)
- 厚み50μmに膜形成した際のb*値が0.25以下であることを特徴とする(A)カルボキシ基を含有する透明ポリウレタン。 (A) A transparent polyurethane containing a carboxy group, characterized in that the b * value when a film is formed to a thickness of 50 μm is 0.25 or less.
- 前記(A)カルボキシ基を含有する透明ポリウレタンが(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、および(a3)カルボキシ基を含有するジヒドロキシ化合物をモノマーとして用いて合成されたものである請求項1に記載の(A)カルボキシ基を含有する透明ポリウレタン。 Claim 1 in which the transparent polyurethane (A) containing a carboxy group is synthesized by using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound containing a carboxy group as a monomer. (A) A transparent polyurethane containing a carboxy group according to.
- 前記(a2)ポリオール化合物がポリカーボネートポリオールである請求項2に記載の(A)カルボキシ基を含有する透明ポリウレタン。 The transparent polyurethane containing the (A) carboxy group according to claim 2, wherein the (a2) polyol compound is a polycarbonate polyol.
- 前記(a1)ポリイソシアネート化合物が脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートである請求項2または3に記載の(A)カルボキシ基を含有する透明ポリウレタン。 The transparent polyurethane containing the (A) carboxy group according to claim 2 or 3, wherein the (a1) polyisocyanate compound is an aliphatic polyisocyanate or an alicyclic polyisocyanate.
- 厚み50μmに膜形成した際のb*値が0.25以下である(A)カルボキシ基を含有する透明ポリウレタンと、(B)エポキシ化合物と、(C)溶媒と、を含む熱硬化性組成物。 A thermosetting composition containing (A) a transparent polyurethane containing a carboxy group having a b * value of 0.25 or less when a film is formed to a thickness of 50 μm, (B) an epoxy compound, and (C) a solvent. ..
- さらに(D)硬化促進剤を含む請求項5に記載の熱硬化性組成物。 The thermosetting composition according to claim 5, further comprising (D) a curing accelerator.
- 前記(B)エポキシ化合物が一分子中に3個以上のエポキシ基を有する多官能エポキシ化合物である請求項5または6に記載の熱硬化性組成物。 The thermosetting composition according to claim 5 or 6, wherein the (B) epoxy compound is a polyfunctional epoxy compound having three or more epoxy groups in one molecule.
- 透明基材と、透明基材上の少なくとも一方の表面に設けられた透明導電層と、該透明導電層の透明基材とは反対側の面に設けられた保護膜と、を有する透明導電フィルムであり、
前記保護膜が、厚み50μmに膜形成した際のb*値が0.25以下である(A)カルボキシ基を含有する透明ポリウレタンと、(B)エポキシ化合物と、(C)溶媒と、を含む熱硬化性組成物の硬化膜であることを特徴とする透明導電フィルム。 A transparent conductive film having a transparent base material, a transparent conductive layer provided on at least one surface of the transparent base material, and a protective film provided on a surface of the transparent conductive layer opposite to the transparent base material. And
The protective film contains (A) a transparent polyurethane containing a carboxy group having a b * value of 0.25 or less when the film is formed to a thickness of 50 μm, (B) an epoxy compound, and (C) a solvent. A transparent conductive film characterized by being a cured film of a thermosetting composition. - 前記透明導電層が金属ナノワイヤを含む請求項8に記載の透明導電フィルム。 The transparent conductive film according to claim 8, wherein the transparent conductive layer contains metal nanowires.
- 前記金属ナノワイヤが銀ナノワイヤである請求項9に記載の透明導電フィルム。 The transparent conductive film according to claim 9, wherein the metal nanowire is a silver nanowire.
- 合成溶媒としてFedorsの推算法によるSP値が9.80未満の溶媒を用いることを特徴とする請求項1~4のいずれか一に記載の(A)カルボキシ基を含有する透明ポリウレタンの製造方法。 The method for producing a transparent polyurethane containing a carboxy group (A) according to any one of claims 1 to 4, wherein a solvent having an SP value of less than 9.80 according to the Fedors estimation method is used as the synthetic solvent.
- 前記溶媒がジエチレングリコールモノブチルエーテルアセテート、1,4-ブタンジオールジアセテート、トリプロピレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、酢酸n-プロピル、酢酸n-ブチル、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、イソホロン、テトラヒドロフラン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテルからなる群から選択される何れかである請求項11に記載の透明ポリウレタンの製造方法。 The solvent is diethylene glycol monobutyl ether acetate, 1,4-butanediol diacetate, tripropylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, n-propyl acetate, 10. The eleventh claim, which is any one selected from the group consisting of n-butyl acetate, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, isophorone, tetrahydrofuran, 4-methyltetrahydropyran, and cyclopentyl methyl ether. Method for producing transparent polyurethane.
- 前記溶媒が4-メチルテトラヒドロピランまたはトリエチレングリコールジメチルエーテルである請求項11に記載の透明ポリウレタンの製造方法。 The method for producing a transparent polyurethane according to claim 11, wherein the solvent is 4-methyltetrahydropyran or triethylene glycol dimethyl ether.
- 前記溶媒がメチルテトラヒドロピランである請求項11に記載の透明ポリウレタンの製造方法。
The method for producing a transparent polyurethane according to claim 11, wherein the solvent is methyl tetrahydropyran.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021548862A JPWO2021060149A1 (en) | 2019-09-26 | 2020-09-17 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019175994 | 2019-09-26 | ||
JP2019-175994 | 2019-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021060149A1 true WO2021060149A1 (en) | 2021-04-01 |
Family
ID=75165760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035290 WO2021060149A1 (en) | 2019-09-26 | 2020-09-17 | Transparent polyurethane, production method therefor, transparent polyurethane-containing thermosetting composition, and transparent conductive film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021060149A1 (en) |
TW (1) | TW202126715A (en) |
WO (1) | WO2021060149A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015017218A (en) * | 2013-07-12 | 2015-01-29 | 株式会社クラレ | Cationic polymerization method using 4-methyl tetrahydropyran as solvent |
WO2016088841A1 (en) * | 2014-12-05 | 2016-06-09 | 株式会社クラレ | Insulation material |
WO2018101333A1 (en) * | 2016-12-01 | 2018-06-07 | 昭和電工株式会社 | Composition for forming protective film for electroconductive pattern, protective film for electroconductive pattern, method for producing protective film, and method for producing transparent electroconductive film |
WO2018101334A1 (en) * | 2016-12-01 | 2018-06-07 | 昭和電工株式会社 | Transparent conductive substrate and method for producing same |
-
2020
- 2020-09-17 JP JP2021548862A patent/JPWO2021060149A1/ja not_active Withdrawn
- 2020-09-17 WO PCT/JP2020/035290 patent/WO2021060149A1/en active Application Filing
- 2020-09-24 TW TW109133044A patent/TW202126715A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015017218A (en) * | 2013-07-12 | 2015-01-29 | 株式会社クラレ | Cationic polymerization method using 4-methyl tetrahydropyran as solvent |
WO2016088841A1 (en) * | 2014-12-05 | 2016-06-09 | 株式会社クラレ | Insulation material |
WO2018101333A1 (en) * | 2016-12-01 | 2018-06-07 | 昭和電工株式会社 | Composition for forming protective film for electroconductive pattern, protective film for electroconductive pattern, method for producing protective film, and method for producing transparent electroconductive film |
WO2018101334A1 (en) * | 2016-12-01 | 2018-06-07 | 昭和電工株式会社 | Transparent conductive substrate and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021060149A1 (en) | 2021-04-01 |
TW202126715A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11154902B2 (en) | Transparent conductive substrate and method for producing same | |
WO2020255458A1 (en) | Transparent electroconductive film laminate and method for processing same | |
JP7061734B2 (en) | Transparent conductive film laminate and its processing method | |
WO2020171022A1 (en) | Transparent electroconductive substrate, and touch panel including same | |
JP7435831B2 (en) | Transparent conductive film laminate | |
US11535047B2 (en) | Method for producing transparent conducting film | |
WO2021060149A1 (en) | Transparent polyurethane, production method therefor, transparent polyurethane-containing thermosetting composition, and transparent conductive film | |
US11538603B2 (en) | Method for producing transparent conducting film | |
TWI775458B (en) | Transparent conductive substrate | |
TWI749570B (en) | Method for producing transparent conductive film | |
CN211578399U (en) | Transparent conductive substrate | |
JP2024067269A (en) | Transparent conductive film laminate, method for manufacturing the same, and transparent conductive film laminate for molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869672 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021548862 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20869672 Country of ref document: EP Kind code of ref document: A1 |