WO2021056415A1 - 陶瓷介质滤波器 - Google Patents
陶瓷介质滤波器 Download PDFInfo
- Publication number
- WO2021056415A1 WO2021056415A1 PCT/CN2019/108551 CN2019108551W WO2021056415A1 WO 2021056415 A1 WO2021056415 A1 WO 2021056415A1 CN 2019108551 W CN2019108551 W CN 2019108551W WO 2021056415 A1 WO2021056415 A1 WO 2021056415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resonant
- resonant unit
- ceramic dielectric
- dielectric filter
- unit
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
- H01P1/2084—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
Definitions
- This application belongs to the field of filter technology, and in particular relates to a ceramic dielectric filter.
- the filter is an indispensable frequency selection device.
- ceramic dielectric filters have broad application prospects due to their compact size and excellent performance.
- traditional ceramic dielectric filters have difficulties in achieving capacitive coupling, such as limited methods and complex structures, resulting in poor frequency selection performance of ceramic dielectric filters.
- the present application provides a ceramic dielectric filter, which aims to solve the problems of limited method and complex structure in implementing capacitive coupling in the existing ceramic dielectric filter, which leads to poor frequency selection performance.
- a ceramic dielectric filter includes at least one first resonant unit and at least two second resonant units, each of the first resonant units has a first opening side surface, and is provided on the first opening side surface There is a first blind tuning hole and a second blind tuning hole spaced apart from the first blind tuning hole, and each of the second resonant units has a first tuning hole that is arranged parallel to the side surface of the first opening and faces the same There are two opening side surfaces, and a third tuning blind hole is opened on the second opening side surface, and the depth of the first tuning blind hole and the depth of the second tuning blind hole are both greater than that of the third The depth of the blind hole is tuned, the working mode of the first resonant unit is TE102 mode, the working mode of the second resonant unit is TE101 mode, and any one of the first resonant units is compatible with at least one of the second resonant units. And is inductively coupled with at least one of the second resonant units, and any one of the second
- the first tuning blind hole is provided between the center of the first opening side surface and its junction with a second opening side surface; the first opening side surface
- the second tuning blind hole is provided between the center of and the junction with one of the side surfaces of the remaining second openings.
- the thicknesses of each of the first resonant units and each of the second resonant units are set equal.
- the cross-sectional area of the first resonant unit on the side surface perpendicular to the first opening is greater than or equal to the cross-sectional area of the second resonator unit on the side surface perpendicular to the second opening .
- each of the first resonant units and each of the second resonant units are arranged in an array with at least two rows.
- each of the first resonant units and each of the second resonant units are integrally formed.
- the ceramic dielectric filter is provided with at least one penetrating first separation groove at the junction of the first opening side surface and the second opening side surface.
- the separation through slot can be used to separate the first resonant unit and the second resonant unit, so that the first resonant unit and the second resonant unit are not coupled at the first separation through slot;
- the ceramic dielectric filter is provided with at least one penetrating second separation through groove at the junction of the two second opening side surfaces, and the second separation through groove can be used to separate the two second resonant units , So that the two second resonant units are not coupled at the second separation through slot.
- the cross-sectional shape of the first blind tuning hole is circular.
- the cross-sectional shape of the second blind tuning hole is circular.
- the first resonant unit includes a first resonant cavity made of ceramic material and a first metal cavity wall made of metal material, and the first metal cavity wall covers the The outer surface of the first resonant cavity;
- the second resonant unit includes a second resonant cavity made of ceramic material and a second metal cavity wall made of metal material, and the second metal cavity wall covers the outside of the second resonant cavity. surface.
- the first metal cavity wall is a first metal cavity wall made of copper or silver.
- the second metal cavity wall is a second metal cavity wall made of copper or silver.
- first resonant units there are two first resonant units, seven second resonant units, and two first resonant units are spaced apart, and any one of the first resonant units is connected to one resonant unit.
- the second resonant unit is capacitively coupled and inductively coupled with the two second resonant units.
- the first resonant unit is provided with one
- the second resonant unit is provided with seven
- the first resonant unit is capacitively coupled with one of the second resonant units, and is connected to two resonant units.
- the second resonance unit is inductively coupled.
- each of the first resonant units has a third aperture side surface that is positioned opposite to the first aperture side surface
- each of the second resonant units has a third aperture side surface opposite to the first aperture side surface.
- the two opening side surfaces are arranged in alignment and facing opposite fourth opening side surfaces, and the ceramic dielectric filter is provided with a signal on one of each of the third opening side surfaces and each of the fourth opening side surfaces Access port, and one of the remaining third opening side surfaces and each of the fourth opening side surfaces is provided with a signal output port, the signal access port is used for inputting a signal, the The signal feed-out port is used to feed out signals.
- the first resonant unit of the present application is provided with a first tuning blind hole and a second tuning blind hole spaced apart from each other, and the second resonant unit is provided with a third tuning hole.
- Blind hole by adjusting the depth of the first tuning blind hole and the second tuning blind hole, the first resonant unit can work in the loaded TE102 mode, and by adjusting the depth of the third tuning blind hole, the second resonant unit can work in the loaded TE102 mode.
- the first resonant unit can be coupled with the adjacent second resonant unit to generate capacitive coupling and inductive coupling, and generate the required transmission zero near the filter passband frequency band, thereby improving the ceramic dielectric filtering Frequency selection performance of the device.
- the ceramic dielectric filter provided in the present application can realize capacitive coupling without arranging additional accessories or structural features on the resonant unit, has a simple structure, is easy to implement, and has excellent frequency selection performance.
- FIG. 1 is a schematic diagram of the ceramic dielectric filter provided in the first embodiment of the present application when viewed from the side of the first opening;
- FIG. 2 is a schematic diagram of the ceramic dielectric filter provided in the first embodiment of the present application when viewed from the side of the third opening;
- FIG. 3 is a schematic diagram of the topology structure of a ceramic dielectric filter provided in Embodiment 1 of the present application;
- Fig. 4 is a frequency response curve of a ceramic dielectric filter provided in the first embodiment of the present application.
- FIG. 5 is a schematic diagram of the ceramic dielectric filter provided in the second embodiment of the present application when viewed from the side of the first opening;
- FIG. 6 is a schematic diagram of the ceramic dielectric filter provided in the second embodiment of the present application when viewed from the side of the third opening;
- FIG. 7 is a schematic diagram of the topology structure of a ceramic dielectric filter provided in Embodiment 2 of the present application.
- Fig. 8 is a frequency response curve of a ceramic dielectric filter provided in the second embodiment of the present application.
- Label Name 100 First resonant unit 101 First tuning blind hole 102 Second tuning blind hole 200 Second resonance unit 201 Third tuning blind hole 301 The first separation slot 302 The second separation slot 303 Signal access port 304 Signal output port To To
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, "a plurality of” means two or more than two, unless otherwise specifically defined.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
- installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
- an embodiment of the present application provides a ceramic dielectric filter, which includes at least one first resonant unit 100 and at least two second resonant units 200, each of the first resonant units 100 has a first opening side surface , And a first blind tuning hole 101 and a second blind tuning hole 102 spaced apart from the first blind hole 101 are opened on the side surface of the first opening.
- Each second resonant unit 200 has the same opening as the first blind hole.
- the side surfaces of the holes are arranged in parallel and face the same side of the second opening, and each side of the second opening is provided with a third blind tuning hole 201, the depth of the first blind tuning hole 101 and the depth of the second blind tuning hole 102 Are greater than the depth of the third tuning blind hole 201, the working mode of the first resonant unit 100 is TE102 mode, and the working mode of the second resonant unit 200 is TE101 mode.
- Any one of the first resonant unit 100 and at least one second resonant unit 200 It is capacitively coupled, and is inductively coupled with at least one second resonant unit 200, and any second resonant unit 200 is inductively coupled with at least one of the remaining second resonant units 200.
- the second resonant unit 200 is provided with a third blind tuning hole 201 on the side surface of the second opening, and the third blind tuning hole 201 can be used to generate capacitance loading, so that the second resonant unit 200 works in the TE101 mode.
- the third blind tuning hole 201 needs to be arranged as a blind hole. On the one hand, it can leave a tuning margin. On the other hand, the resonance of the second resonance unit 200 can be adjusted by changing the depth and/or diameter of the third blind tuning hole 201 frequency.
- the third blind tuning hole 201 needs to be located at the center of the side surface of the second opening of the second resonant unit 200. Such a setting will help to improve the precise control of the resonant frequency of the second resonant unit 200.
- the cross-sectional shape of the third blind tuning hole 201 can be, but is not limited to, circular, square, or the like.
- the cross-sectional shape of the third blind tuning hole 201 is circular to improve The processing convenience of the second resonant unit 200 is easy to guarantee the processing accuracy of the third blind tuning hole 201.
- the first resonant unit 100 is provided with a first blind tuning hole 101 and a second blind tuning hole 102 spaced apart from each other, and both the first blind tuning hole 101 and the second blind tuning hole 102 can be used to generate capacitance loading.
- Both the first blind tuning hole 101 and the second blind tuning hole 102 are arranged as blind holes, and the depths of the first blind tuning hole 101 and the second blind tuning hole 102 are both greater than the depth setting of the third blind tuning hole 201, so set, On the one hand, a tuning margin can be left.
- the depth of the first blind tuning hole 101 and the second blind tuning hole 102 can be adjusted so that the first resonant unit 100 can work in the TE102 mode after loading, and can The operating frequency in the TE102 mode loaded by the first resonant unit 100 is adjusted.
- the first blind tuning hole 101 and the second blind tuning hole 102 are spaced apart from each other. By adjusting the center distance of the first blind tuning hole 101 and the second blind tuning hole 102, the TE102 mode loaded by the first resonant unit 100 can be adjusted. The working frequency is separated from the frequency of TE101 and other modes.
- the frequency selection characteristics of the first resonant unit 100 such as the quality factor Q value will be improved, but the TE101 mode is not needed Interference frequencies such as frequency will be close to the working frequency of TE102 mode, which may have a certain negative impact on the working frequency of TE102 mode loaded by the first resonant unit 100; on the contrary, when the first tuning blind hole 101 and the second tuning blind hole When the center distance of 102 decreases, the frequency selection characteristics of the first resonant unit 100, such as the quality factor Q value, will be slightly reduced, but the unwanted interference frequencies such as the TE101 mode frequency will be far away from the TE102 mode operating frequency.
- the center distance of the first blind tuning hole 101 and the center distance of the second blind tuning hole 102 is designed to be balanced.
- the first resonant unit 100 working in the TE102 mode will generate electromagnetic fields in opposite directions near the first blind tuning hole 101 and the second blind tuning hole 102, so that the first resonant unit 100 can interact with the adjacent first resonant unit 100.
- the two resonant units 200 generate capacitive coupling, and the other adjacent second resonant units 200 generate inductive coupling with opposite polarities.
- the first resonance unit 100 in the lower left corner generates an electromagnetic field near the first blind tuning hole 101 in a counterclockwise direction, and generates an electromagnetic field near the second blind tuning hole 102 in a clockwise direction.
- the second resonant unit 200 adjacent to the first resonant unit 100 generates an electromagnetic field in a clockwise direction near the third blind tuning hole 201. Based on this setting, the first resonant unit in the lower left corner When 100 is coupled to the second resonant unit 200 in the upper left corner, the electromagnetic fields exposed to each other are in opposite directions, thereby generating capacitive coupling. The first resonant unit 100 in the lower left corner and the second resonant unit 200 in the upper right and right corners are opposite to each other. When coupled, the electromagnetic fields exposed to each other have the same direction, resulting in inductive coupling.
- the ceramic dielectric filter provided by the embodiment of the present application can realize capacitive coupling and inductive coupling without greatly changing the structure and size of the first resonant unit 100, so as to obtain the required frequency characteristics of the filter. Based on the frequency characteristics of the ceramic dielectric filter, a frequency response curve can be obtained. In the frequency response curve, at least one required transmission zero point will be generated on the left and right sides of the filter passband to enhance the adjacent frequency bands of the passband. Inhibition, thereby realizing and improving the frequency selection performance of the ceramic dielectric filter, so that the ceramic dielectric filter has the advantages of simple structure, easy implementation, and better frequency selection performance.
- each first resonant unit 100 and each second resonant unit 200 can be welded sequentially according to a preset topology, or can be processed and polished by a whole piece of medium to form the above-mentioned ceramic dielectric filter.
- the depth of the first blind tuning hole 101 and the depth of the second blind tuning hole 102 can also be reasonably allocated according to needs, so as to determine the amount of coupling between the first resonant unit 100 and each adjacent second resonant unit 200. adjust. Specifically, on the basis of ensuring that the total capacitance loading is certain, that is, on the basis of ensuring that the resonant frequency of the first resonant unit 100 remains unchanged, the depth of the first blind tuning hole 101 and the depth of the second tuning blind hole 102 can be adjusted appropriately. The ratio of the depths of the first resonant unit 100 and the second resonant unit 200 can be flexibly adjusted. For example, as shown in FIG.
- the coupling between the first resonant unit 100 and the second resonant unit 200 adjacent to the upper side thereof can be weakened, that is, the capacitive capacity is weakened. Accordingly, in order to ensure that the total capacitance loading remains unchanged, the depth of the second tuning blind hole 102 needs to be reduced accordingly, so that the first resonant unit 100 and the second resonant unit 200 adjacent to its right and upper right corners
- the coupling between the two is increased, that is, the inductive coupling is increased; conversely, by reducing the depth of the first tuning blind hole 101, the coupling between the first resonant unit 100 and the second resonant unit 200 adjacent to the upper side can be made Increased volume, that is, increased capacitive coupling.
- the depth of the second tuning blind hole 102 needs to be increased accordingly, so that the first resonant unit 100 is adjacent to its right and upper right corners.
- the amount of coupling between the second resonant units 200 is weakened, that is, the inductive coupling is weakened.
- the technical effect of the ceramic dielectric filter provided by the embodiment of the present application is that: the first resonant unit 100 of the present application is provided with a first blind tuning hole 101 and a second blind tuning hole 102 spaced apart from each other, and the second resonant unit 200 A third blind tuning hole 201 is opened on the upper side.
- the first resonant unit 100 can work in the loaded TE102 mode.
- the depth enables the second resonant unit 200 to work in the loaded TE101 mode.
- the first resonant unit 100 can be coupled with the adjacent second resonant unit 200 to generate capacitive coupling and inductive coupling, and in the filter passband frequency band The required transmission zero point is generated nearby, thereby improving the frequency selection performance of the ceramic dielectric filter.
- the ceramic dielectric filter provided by the embodiment of the present application can realize capacitive coupling without arranging additional accessories or structural features on the resonant unit, has a simple structure, is easy to implement, and has excellent frequency selection performance.
- a first tuning blind hole 101 is provided between the center of the side surface of the first opening and its junction with a side surface of the second opening;
- a second blind tuning hole 102 is provided between the center of and the junction with one of the side surfaces of the remaining second openings.
- the first blind tuning hole 101 is provided between the center of the first hole side surface and the junction of the first hole side surface and a second hole side surface, that is, the first blind tuning hole 101 is close to A second resonant unit 200 arranged adjacent to the first resonant unit 100 is arranged.
- This arrangement can guarantee the degree of coupling of the electromagnetic field exposed to each other between the first resonant unit 100 and the second resonant unit 200, so as to protect the first resonant unit 100 and the second resonant unit 200.
- the coupling relationship between the first resonant unit 100 and the second resonant unit 200 is guaranteed; in the same way, the second blind tuning hole 102 is provided in the center of the side of the first opening and the side of the first opening and the other second opening. Between the junctions of the side surfaces, that is, the second blind tuning hole 102 is placed close to another second resonant unit 200 adjacent to the first resonant unit 100. This arrangement can make the first resonant unit 100 and the second resonant unit 200 close to each other. The degree of coupling of the electromagnetic fields exposed to each other between the two resonant units 200 is guaranteed, so that the coupling relationship between the first resonant unit 100 and the other second resonant unit 200 is guaranteed. Combining the above settings, the capacitive coupling and inductive coupling strength of the ceramic dielectric filter are guaranteed, thereby ensuring the frequency selection characteristics of the ceramic dielectric filter.
- each first resonant unit 100 and each second resonant unit 200 are set equal.
- each first resonant unit 100 and each second resonant unit 200 are set to be equal.
- the flatness of the top surface of the ceramic dielectric filter is to ensure that the ceramic dielectric filter has a certain height, thereby facilitating the optimized layout and thinning design of the ceramic dielectric filter, which is conducive to the miniaturization design; on the other hand, it can also guarantee
- the cascade direction between each first resonant unit 100 and each second resonant unit 200 is basically a horizontal direction, which facilitates precise control of the coupling amount between each first resonant unit 100 and each second resonant unit 200.
- the cross-sectional area of the first resonant unit 100 on the side perpendicular to the first opening is greater than or equal to the cross-section of the second resonant unit 200 on the side perpendicular to the second opening area.
- the cross-sectional size of the first resonant unit 100 and the cross-sectional size of the second resonant unit 200 are set to be equivalent. On the one hand, it can avoid the increase of the overall size of the ceramic dielectric filter to facilitate the development of miniaturization of the ceramic dielectric filter, which can expand the application range of the ceramic dielectric filter to a certain extent; on the other hand, it is also beneficial to the first The connection arrangement of the resonant unit 100 and each second resonant unit 200 is optimized.
- the cross-sectional size of the first resonant unit 100 is set to be larger than the cross-sectional size of the second resonant unit 200.
- the size of the plane occupied by the first resonant unit 100 can be adjusted so that it can be directly coupled with a plurality of second resonant units 200 .
- it can also be combined with the first tuning blind hole 101 and the second tuning blind hole 102 to jointly use
- the first resonant unit 100 works in the TE102 mode, so that the required depth of the first blind tuning hole 101 and the second blind tuning hole 102 can be reduced to a certain extent while avoiding a large increase in the overall size of the ceramic dielectric filter.
- each first resonant unit 100 and each second resonant unit 200 are arranged in an array with at least two rows.
- first resonant unit 100 In order to enable the first resonant unit 100 to be capacitively coupled and inductively coupled to at least two second resonant units 200, respectively, and to facilitate the development of ceramic dielectric filters in the direction of miniaturization, weight reduction, and integration, this embodiment will
- the first resonant unit 100 and each second resonant unit 200 are arranged in an array with at least two rows, so as to reduce the overall size of the ceramic dielectric filter to a certain extent.
- the first resonant units 100 and the second resonant units 200 are arranged alternately with each other, so that the distance between each first resonant unit 100 and each second resonant unit 200 can be shortened to a certain extent.
- each first resonant unit 100 and each second resonant unit 200 are arranged in two rows in a ceramic dielectric filter, and each second resonant unit 200 in the upper row crosses the adjacent second resonant units in the lower row. Between one resonant unit 100 and the second resonant unit 200, or between two adjacent second resonant units 200.
- the first resonant unit 100 in the lower left corner will easily be directly coupled with the second resonant unit 200 in the upper left corner, the second resonant unit 200 in the upper right corner, and the second resonant unit 200 on the right side, thereby facilitating protection and enhancement.
- the amount of mutual coupling improves the frequency selection performance of the ceramic dielectric filter.
- the balance between the transmission zero point on the left side of the filter passband and the transmission zero point on the right side can also be adjusted.
- the stronger the inductive coupling between the first resonant unit 100 in the lower left corner and the second resonant unit 200 in the upper right corner the closer the transmission zero point on the left side of the filter passband will be to the frequency passband, and will be located in the filter passband The transmission zero on the right side will be farther away from the frequency passband, so as to meet the higher rejection requirements on the left side of the passband.
- each first resonant unit 100 and each second resonant unit 200 are integrally formed.
- the production convenience of the ceramic dielectric filter can be improved to a certain extent, that is, the production efficiency of the ceramic dielectric filter can be improved, which is conducive to its mass production; on the other hand, the first resonance unit 100 and the first resonance unit 100 can be reduced.
- the machining errors between the second resonant units 200 can ensure the mutual position accuracy of the first resonant units 100 and the second resonant units 200, which is beneficial to realize the accuracy of the first resonant unit 100 and the first resonant unit 200.
- the precise control of the coupling amount between the two resonant units 200 is beneficial to guarantee the manufacturing accuracy of the ceramic dielectric filter.
- the ceramic dielectric filter is provided with at least one first partition through groove 301 at the junction of the first hole side surface and the second hole side surface.
- the separation through groove 301 can be used to separate the first resonant unit 100 and the second resonant unit 200, so that the first resonant unit 100 and the second resonant unit 200 are not coupled at the first separation through groove 301;
- At least one penetrating second separation through groove 302 is provided at the junction of the side surfaces of the second opening.
- the second separation through groove 302 can be used to separate the two second resonant units 200 so that the two second resonant units 200 are in the first place.
- the two separation slots 302 are not coupled.
- a first separation through slot 301 is provided between the first resonant unit 100 and the second resonant unit 200 that are coupled to each other, so that The first resonant unit 100 and the second resonant unit 200 are disconnected from each other at the opening of the first separation through groove 301, that is, in the area where the first separation through groove 301 is disconnected, the first resonant unit 100 and the second resonant unit 200 will not be coupled, but at the part where the first resonant unit 100 and the second resonant unit 200 are connected, the first resonant unit 100 and the second resonant unit 200 will be coupled.
- the size and shape can realize the control of the coupling amount between the first resonant unit 100 and the second resonant unit 200.
- the second separation through slot 302 is opened between the two second resonant units 200 coupled with each other, so that the two second resonant units 200 are disconnected at the opening of the second separation through slot 302, that is, the two second resonant units 200 will not be coupled in the area broken by the second separation through groove 302, but will be coupled in the part where the two second resonant units 200 are connected. Therefore, by adjusting the position, size, and shape of the second separation through groove 302 The amount of coupling between the two second resonance units 200 can be controlled.
- the cross-sectional shape of the first blind tuning hole 101 is circular. Setting the cross-sectional shape of the first blind tuning hole 101 to be circular, on the one hand, can improve the processing convenience of the first blind tuning hole 101, and it is easy to guarantee the processing accuracy of the first blind tuning hole 101; on the other hand, It can also ensure the balance of the electromagnetic field formed by the first resonant unit 100 near the first tuning blind hole 101, thereby helping to ensure the average strength of the capacitive coupling or the inductive coupling between the first resonant unit 100 and the second resonant unit 200 , And help to achieve precise control of the amount of coupling between the first resonant unit 100 and the second resonant unit 200.
- the cross-sectional shape of the second blind tuning hole 102 is circular. Setting the cross-sectional shape of the second blind tuning hole 102 in a circular shape, on the one hand, can improve the processing convenience of the second blind tuning hole 102, and it is easy to guarantee the processing accuracy of the second blind tuning hole 102; on the other hand, It can also ensure the balance of the electromagnetic field formed by the first resonant unit 100 near the second tuning blind hole 102, thereby helping to ensure the average strength of capacitive coupling or inductive coupling between the first resonant unit 100 and the second resonant unit 200 , And help to achieve precise control of the amount of coupling between the first resonant unit 100 and the second resonant unit 200.
- the first resonant unit 100 includes a first resonant cavity body made of ceramic material and a first metal cavity wall made of metal material.
- the first metal cavity wall includes Covers the outer surface of the first resonant cavity;
- the second resonant unit 200 includes a second resonant cavity made of ceramic material and a second metal cavity wall made of metal material, the second metal cavity wall covering the first The outer surface of the two resonant cavity.
- the first resonant unit 100 includes a first resonant cavity and a first metal cavity wall
- the second resonant unit 200 includes a second resonant cavity and a second metal cavity wall.
- the two resonant cavities are made of ceramic material, that is, an electrically insulating material
- the first metal cavity wall and the second metal cavity wall are made of metal material, that is, a conductive material.
- the first metal cavity wall is a first metal cavity wall made of copper or silver.
- the first metal cavity wall is made of copper or silver with higher conductivity, which can further reduce the insertion loss of the ceramic dielectric filter.
- the second metal cavity wall is a second metal cavity wall made of copper or silver.
- the second metal cavity wall is made of copper or silver with higher conductivity, which can further reduce the insertion loss of the ceramic dielectric filter.
- first resonant units 100 there are two first resonant units 100, and there are seven second resonant units 200.
- the two first resonant units 100 are spaced apart, and any one of the first resonant units 100 It is capacitively coupled with a second resonant unit 200 and inductively coupled with two second resonant units 200.
- the topology of the above-mentioned ceramic dielectric filter is designed. Specifically, in the initial stage of the design, the topology of the ceramic dielectric filter is designed according to the requirements of the communication system, that is, the connection arrangement between each first resonant unit 100 and each second resonant unit 200 is designed, and the topology is analyzed by circuit simulation software. The feasibility of the structure is verified.
- the second resonant units 200 are arranged adjacent to each other in a row, and the remaining two second resonant units 200 are arranged in the three second resonators in the middle of the upper row.
- the lower side of the unit 200 is alternately arranged between every two second resonant units 200, and the two first resonant units 100 are separately arranged on both sides of the two second resonant units 200 in the lower row. It can guarantee the connection arrangement between each first resonant unit 100 and each second resonant unit 200, and make the most of space, so that the ceramic dielectric filter can develop in the direction of miniaturization, weight reduction and integration. .
- the third second resonant unit 200 in the upper row is the limit, and the ceramic dielectric filter is divided into two groups of cross-coupling components, and each group of cross-coupling components will include a first resonator working in TE102 mode. Unit 100.
- the first resonant unit 100 in the lower left corner will be capacitively coupled to the second resonant unit 200 on the upper side, and inductively coupled to the two second resonant units 200 on the upper right and the right side, and the rest are in phase
- Two adjacent second resonant units 200 are inductively coupled to each other
- the first resonant unit 100 in the lower right corner will capacitively couple with the second resonant unit 200 on the upper side and to its upper left It is inductively coupled with the two second resonant units 200 on the left side, and the remaining two adjacent second resonant units 200 are inductively coupled to each other, thereby achieving the desired frequency response characteristics.
- each first resonant unit 100 is slightly larger than the length of each second resonant unit 200, the first resonant unit 100 in the lower left corner and the second resonant unit 200 on the upper side, and the second resonant unit 200 in the upper right corner are set.
- the two resonant units 200 and the second resonant unit 200 on the right are directly coupled, and the first resonant unit 100 in the lower right corner and the second resonant unit 200 on the upper side, the second resonant unit 200 in the upper left corner and the second resonant unit 200 on the left are directly coupled.
- the second resonant units 200 are directly coupled, so as to ensure and enhance the coupling between them, thereby improving the frequency selection performance of the ceramic dielectric filter.
- each set of cross-coupling components generates a required transmission zero point on the left and right sides of the filter passband, that is, the ceramic dielectric filter is filtering Two transmission zeros are generated on both sides of the passband frequency band.
- the rejection of the adjacent frequency bands of the passband can be enhanced, which can improve the frequency selection performance of the ceramic dielectric filter to a certain extent.
- the cross-coupling component on the left side can also be adjusted accordingly.
- the balance between the transmission zero point and the transmission zero point on the right specifically, the stronger the inductive coupling between the first resonant unit 100 in the lower left corner and the second resonant unit 200 in the upper right corner, which is located on the left side of the filter passband
- the transmission zero point of the filter will be closer to the frequency passband, and the transmission zero point on the right side of the filter passband will be farther away from the frequency passband, so as to meet the higher rejection requirements on the left side of the passband; similarly, by enhancing the first
- the inductive coupling strength between a resonant unit 100 and the second resonant unit 200 in the upper left corner can also be adjusted between the transmission zero point on the left side of the filter passband and the transmission zero point on the right side generated by the cross-coupling component on the right Specifically, the stronger the inductive coupling between the first resonant unit 100 in the lower right corner and the second resonant unit 200 in the upper left corner thereof, the closer the transmission zero point on the left side of the filter pass
- each first resonant unit 100 has a third opening side surface that is positioned opposite to the first opening side surface
- each second resonant unit 200 has The second opening side surfaces are arranged in alignment and facing the opposite fourth opening side surface
- the ceramic dielectric filter is provided with a signal access port 303 on one of each of the third opening side surface and each fourth opening side surface.
- a signal output port 304 is opened on one of the remaining third opening side surfaces and each fourth opening side surface.
- the signal access port 303 is used for inputting signals
- the signal output port 304 is used for outputting signals. .
- each first resonant unit 100 and each second resonant unit 200 are assembled, based on the topological structure of each first resonant unit 100 and each second resonant unit 200, it needs to be connected and arranged in each first resonant unit 100 and A signal input port is provided on the third opening side surface or the fourth opening side surface of the head end of each second resonant unit 200, and it needs to be connected and arranged at the tail end of each first resonant unit 100 and each second resonant unit 200
- a signal feed-out port 304 is provided on the side of the third opening or the side of the fourth opening. The arrangement of the signal access port 303 and the signal feed-out port 304 will enable electromagnetic energy to be input from the signal access port 303.
- Each first resonant unit 100 and each second resonant unit 200 coupled in sequence filter out interference signals and clutter signals in a specific frequency, and finally feed signals in the required frequency from the signal output port. That is, the arrangement of the signal access port 303 and the signal output port 304 will facilitate the testing and use of the ceramic dielectric filter.
- the third second resonant unit 200 in the upper row is the resonant unit arranged at the head end of each first resonant unit 100 and each second resonant unit 200.
- a signal input port is provided on the side of the opening for electromagnetic energy to be input into the ceramic dielectric filter, and the fourth second resonant unit 200 in the upper row is connected and arranged on each first resonant unit 100 and each first resonant unit 100 and each second resonant unit 200.
- the resonant unit at the tail end of the second resonant unit 200 therefore needs to be provided with a signal feed-out port 304 on the side of the fourth opening for feeding signals in the required frequency from the ceramic dielectric filter.
- the third second resonant unit 200 in the upper row can be connected to the upper row.
- the fourth second resonant unit 200 is provided with a second separation through groove 302 that substantially completely separates its connection relationship, so that the third second resonant unit 200 in the upper row and the fourth second resonant unit 200 in the upper row are substantially completely separated from each other. There is no coupling between the resonant units 200.
- first resonant unit 100 there is one first resonant unit 100, and there are seven second resonant units 200.
- the first resonant unit 100 and the second resonant unit 200 are capacitively coupled, and It is inductively coupled with the two second resonant units 200.
- the topology of the above-mentioned ceramic dielectric filter is designed. Specifically, at the initial stage of the design, the topology of the ceramic dielectric filter is designed according to the requirements of the communication system, that is, the connection arrangement between the first resonant unit 100 and each second resonant unit 200 is designed, and the topology is analyzed by circuit simulation software. The feasibility is verified.
- the second resonant units 200 are arranged next to each other in a row, and the remaining three second resonant units 200 and one first resonant unit 100 are arranged next to each other in turn.
- This arrangement not only guarantees the connection arrangement between each first resonant unit 100 and each second resonant unit 200, but also compresses the overall size of the ceramic dielectric filter to the greatest extent.
- the ceramic dielectric filter can be developed in the direction of miniaturization, light weight and integration.
- the first resonant unit 100 is capacitively coupled with the second resonant unit 200 on its upper side, and is inductively coupled with the second resonant unit 200 on its left and upper left.
- the remaining second resonators are arranged next to each other.
- the units 200 are inductively coupled to each other to achieve the required frequency response characteristics, thereby improving the frequency selection performance of the ceramic dielectric filter.
- the ceramic dielectric filter in the frequency response curve of the ceramic dielectric filter, it generates a required transmission zero point on the left and right sides of the filter passband.
- the transmission zero point can enhance the suppression of the adjacent frequency bands of the passband.
- the frequency selection performance of the ceramic dielectric filter can be improved to a certain extent.
- the generated transmission zero point on the left side of the filter passband and the right side of the filter passband can also be adjusted.
- the balance between the transmission zero points specifically, the stronger the inductive coupling between the first resonant unit 100 in the lower right corner and the second resonant unit 200 in the upper left corner, the closer the transmission zero point on the left side of the filter passband will be For the frequency passband, the transmission zero on the right side of the filter passband will be farther away from the frequency passband, so as to meet the higher rejection requirements on the left side of the passband.
- a signal input port is provided on the third or fourth opening side surface of the head end of the unit 100 and each second resonant unit 200, and needs to be connected to the first resonant unit 100 and each second resonant unit 200.
- a signal feed-out port 304 is provided on the side of the third opening or the side of the fourth opening of the tail end.
- the signal access port 303 and the signal feed-out port 304 Through the arrangement of the signal access port 303 and the signal feed-out port 304, electromagnetic energy can be input from the signal access port 303 , The first resonant unit 100 and each second resonant unit 200 coupled in sequence along the edge filter out the interference signal and the clutter signal in the specific frequency, and finally feed the signal in the required frequency from the signal output port. That is, the arrangement of the signal access port 303 and the signal output port 304 will facilitate the testing and use of the ceramic dielectric filter.
- the second second resonant unit 200 in the upper row is connected to the resonant units arranged at the first end of the first resonant unit 100 and each second resonant unit 200. Therefore, it needs to be located on the side of the fourth opening.
- a signal input port is provided on the upper side for electromagnetic energy to be input into the ceramic dielectric filter, and the third second resonant unit 200 in the upper row is connected to the first resonant unit 100 and each second resonant unit 200 Therefore, it is necessary to provide a signal feed-out port 304 on the side of the fourth opening of the resonant unit at the end of the resonant unit for feeding signals in the required frequency from the ceramic dielectric filter.
- the second second resonant unit 200 in the upper row can be connected to the upper row.
- the third second resonant unit 200 is provided with a second separation through groove 302 that substantially completely separates the connection relationship between them, so that the second second resonant unit 200 in the upper row and the third second resonant unit 200 in the upper row are substantially completely separated from the connection relationship therebetween. There is no coupling between the two second resonance units 200.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
一种陶瓷介质滤波器,包括至少一个第一谐振单元(100)和至少两个第二谐振单元(200),各第一谐振单元(100)于第一开孔侧面上均开设有一个第一调谐盲孔(101)和一个第二调谐盲孔(102),各第二谐振单元(200)于第二开孔侧面上均开设有一个第三调谐盲孔(201),第一调谐盲孔(101)的深度和第二调谐盲孔(102)的深度均大于第三调谐盲孔(201)的深度,第一谐振单元(100)的工作模式为TE102模式,第二谐振单元(200)的工作模式为TE101模式,任一第一谐振单元(100)至少与一第二谐振单元(200)容性耦合,并至少与一第二谐振单元(200)感性耦合。该陶瓷介质滤波器无需设置额外的附件或结构特征即可实现容性耦合,结构简单,易于实现,频率选择性能较优。
Description
本申请属于滤波器技术领域,尤其涉及一种陶瓷介质滤波器。
在无线通信系统中,滤波器是不可或缺的频率选择器件。其中,陶瓷介质滤波器因其具有紧凑的体积和优良的性能,拥有着广阔的应用前景。然而,相较于感性耦合,传统的陶瓷介质滤波器在实现容性耦合方面存在方式局限、结构复杂等难点,导致陶瓷介质滤波器的频率选择性能较差。
本申请提供了一种陶瓷介质滤波器,其旨在解决现有陶瓷介质滤波器在实现容性耦合方面存在方式局限、结构复杂等难点,导致频率选择性能较差的问题。
为解决上述技术问题,本申请实施例采用的技术方案是:
一种陶瓷介质滤波器,包括至少一个第一谐振单元和至少两个第二谐振单元,各所述第一谐振单元均具有第一开孔侧面,并于所述第一开孔侧面上均开设有一个第一调谐盲孔和一个与所述第一调谐盲孔间隔设置的第二调谐盲孔,各所述第二谐振单元均具有与所述第一开孔侧面平行设置且朝向相同的第二开孔侧面,并于所述第二开孔侧面上均开设有一个第三调谐盲孔,所述第一调谐盲孔的深度和所述第二调谐盲孔的深度均大于所述第三调谐盲孔的深度,所述第一谐振单元的工作模式为TE102模式,所述第二谐振单元的工作模式为TE101模式,任一所述第一谐振单元至少与一所述第二谐振单元容性耦合,并至少与一所述第二谐振单元感性耦合,任一所述第二谐振单元至少与其余所述第二谐振单元其中之一感性耦合。
在本申请实施例中,所述第一开孔侧面的中心和其与一所述第二开孔侧面的相接处之间设有所述第一调谐盲孔;所述第一开孔侧面的中心和其与其余所述第二开孔侧面其中之一的相接处之间设有所述第二调谐盲孔。
在本申请实施例中,各所述第一谐振单元和各所述第二谐振单元的厚度均相等设置。
在本申请实施例中,所述第一谐振单元在垂直于所述第一开孔侧面上的截面面积大于或等于所述第二谐振单元在垂直于所述第二开孔侧面上的截面面积。
在本申请实施例中,各所述第一谐振单元和各所述第二谐振单元呈至少具有两排的阵列布置。
在本申请实施例中,各所述第一谐振单元和各所述第二谐振单元一体成型。
在本申请实施例中,所述陶瓷介质滤波器于所述第一开孔侧面和所述第二开孔侧面的相接处开设有至少一个贯通设置的第一分隔通槽,所述第一分隔通槽能够用于分隔所述第一谐振单元和所述第二谐振单元,以使所述第一谐振单元与所述第二谐振单元在所述第一分隔通槽处不耦合;
所述陶瓷介质滤波器于两所述第二开孔侧面的相接处开设有至少一个贯通设置的第二分隔通槽,所述第二分隔通槽能够用于分隔两所述第二谐振单元,以使两所述第二谐振单元在所述第二分隔通槽处不耦合。
在本申请实施例中,所述第一调谐盲孔的截面形状呈圆形。
在本申请实施例中,所述第二调谐盲孔的截面形状呈圆形。
在本申请实施例中,所述第一谐振单元包括由陶瓷材料制成的第一谐振腔体及由金属材料制成的第一金属腔壁,所述第一金属腔壁包覆于所述第一谐振腔体的外表面;
所述第二谐振单元包括由陶瓷材料制成的第二谐振腔体及由金属材料制成的第二金属腔壁,所述第二金属腔壁包覆于所述第二谐振腔体的外表面。
在本申请实施例中,所述第一金属腔壁为由铜或银制成的第一金属腔壁。
在本申请实施例中,所述第二金属腔壁为由铜或银制成的第二金属腔壁。
在本申请实施例中,所述第一谐振单元设有两个,所述第二谐振单元设有七个,两所述第一谐振单元间隔设置,任一所述第一谐振单元与一所述第二谐振单元容性耦合,并与两所述第二谐振单元感性耦合。
在本申请实施例中,所述第一谐振单元设有一个,所述第二谐振单元设有七个,所述第一谐振单元与一所述第二谐振单元容性耦合,并与两所述第二谐振单元感性耦合。
在本申请实施例中,各所述第一谐振单元均具有与所述第一开孔侧面对位设置且朝向相反的第三开孔侧面,各所述第二谐振单元均具有与所述第二开孔侧面对位设置且朝向相反的第四开孔侧面,所述陶瓷介质滤波器于各所述第三开孔侧面和各所述第四开孔侧面中的其中之一上开设有信号接入端口,并于其余各所述第三开孔侧面和各所述第四开孔侧面中的其中之一上开设有信号馈出端口,所述信号接入端口用于输入信号,所述信号馈出端口用于馈出信号。
本申请提供的陶瓷介质滤波器的技术效果是:本申请的第一谐振单元上开设有相互间隔设置的第一调谐盲孔和第二调谐盲孔,而第二谐振单元上开设有第三调谐盲孔,通过调整第一调谐盲孔和第二调谐盲孔的深度可使第一谐振单元工作在加载的TE102模式,通过调整第三调谐盲孔的深度可使第二谐振单元工作在加载的TE101模式,如此,第一谐振单元则可与邻近的第二谐振单元相互耦合,以生成容性耦合和感性耦合,并在滤波通带频段附近产生所需的传输零点,从而提高了陶瓷介质滤波器的频率选择性能。本申请提供的陶瓷介质滤波器无需在谐振单元上设置额外的附件或结构特征即可实现容性耦合,结构简单,易于实现,具有较优的频率选择性能。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的陶瓷介质滤波器在正视于第一开孔侧面时的示意图;
图2是本申请实施例一提供的陶瓷介质滤波器在正视于第三开孔侧面时的示意图;
图3是本申请实施例一提供的陶瓷介质滤波器的拓扑结构示意图;
图4是本申请实施例一提供的陶瓷介质滤波器的频率响应曲线;
图5是本申请实施例二提供的陶瓷介质滤波器在正视于第一开孔侧面时的示意图;
图6是本申请实施例二提供的陶瓷介质滤波器在正视于第三开孔侧面时的示意图;
图7是本申请实施例二提供的陶瓷介质滤波器的拓扑结构示意图;
图8是本申请实施例二提供的陶瓷介质滤波器的频率响应曲线。
附图标号说明:
标号 | 名称 | 标号 | 名称 |
100 | 第一谐振单元 | 101 | 第一调谐盲孔 |
102 | 第二调谐盲孔 | 200 | 第二谐振单元 |
201 | 第三调谐盲孔 | 301 | 第一分隔通槽 |
302 | 第二分隔通槽 | 303 | 信号接入端口 |
304 | 信号馈出端口 |
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
实施例一
请参阅图1-3,本申请实施例提供一种陶瓷介质滤波器,包括至少一个第一谐振单元100和至少两个第二谐振单元200,各第一谐振单元100均具有第一开孔侧面,并于第一开孔侧面上均开设有一个第一调谐盲孔101和一个与第一调谐盲孔101间隔设置的第二调谐盲孔102,各第二谐振单元200均具有与第一开孔侧面平行设置且朝向相同的第二开孔侧面,并于第二开孔侧面上均开设有一个第三调谐盲孔201,第一调谐盲孔101的深度和第二调谐盲孔102的深度均大于第三调谐盲孔201的深度,第一谐振单元100的工作模式为TE102模式,第二谐振单元200的工作模式为TE101模式,任一第一谐振单元100至少与一第二谐振单元200容性耦合,并至少与一第二谐振单元200感性耦合,任一第二谐振单元200至少与其余第二谐振单元200其中之一感性耦合。
第二谐振单元200于第二开孔侧面上开设有第三调谐盲孔201,第三调谐盲孔201能够用于产生电容加载,使得第二谐振单元200工作于TE101模式。第三调谐盲孔201需呈盲孔设置,一方面,可以留出调谐余量,另一方面,可通过改变第三调谐盲孔201的深度和/或直径,调节第二谐振单元200的谐振频率。补充地,第三调谐盲孔201需设于第二谐振单元200的第二开孔侧面的中心处,如此设置,将有利于提高对第二谐振单元200的谐振频率的精确控制。补充地,第三调谐盲孔201的截面形状可呈但不限于呈圆形、方形等形状设置,可选地,本实施例将第三调谐盲孔201的截面形状呈圆形设置,以提高第二谐振单元200的加工便利性,并易于对第三调谐盲孔201的加工精度进行保障。
第一谐振单元100上开设有相互间隔设置的第一调谐盲孔101和第二调谐盲孔102,第一调谐盲孔101和第二调谐盲孔102均能够用于产生电容加载。第一调谐盲孔101和第二调谐盲孔102均呈盲孔设置,且第一调谐盲孔101和第二调谐盲孔102的深度均大于第三调谐盲孔201的深度设置,如此设置,一方面,可以留出调谐余量,另一方面,可通过调整第一调谐盲孔101和第二调谐盲孔102的深度,使得第一谐振单元100可工作于加载后的TE102模式,并能够对第一谐振单元100所加载的TE102模式下的工作频率进行调节。且,第一调谐盲孔101和第二调谐盲孔102相互间隔设置,通过调节第一调谐盲孔101和第二调谐盲孔102的中心距,能够调节第一谐振单元100加载的TE102模式的工作频率跟TE101等模式的频率间隔。具体地,当第一调谐盲孔101和第二调谐盲孔102的中心距增大时,第一谐振单元100的如品质因数Q值等频选特性将有所提升,但不需要的TE101模式频率等干扰频率会靠近TE102模式的工作频率,可能会对第一谐振单元100所加载的TE102模式下的工作频率造成一定的负面影响;反之,当第一调谐盲孔101和第二调谐盲孔102的中心距减小时,第一谐振单元100的如品质因数Q值等频选特性将略有下降,但不需要的TE101模式频率等干扰频率会远离TE102模式的工作频率,因而,需要根据具体使用需要,对第一调谐盲孔101和第二调谐盲孔102的中心距进行平衡设计。
基于上述设置,工作于TE102模式的第一谐振单元100将于第一调谐盲孔101和第二调谐盲孔102附近产生电磁场方向相反的电磁场,使得第一谐振单元100能够与相邻的一个第二谐振单元200产生容性耦合,而与其余相邻的第二谐振单元200产生极性相反的感性耦合。例如,如图1所示,左下角的第一谐振单元100于第一调谐盲孔101附近产生电磁场方向呈逆时针设置的电磁场,并于第二调谐盲孔102附近产生电磁场方向呈顺时针设置的电磁场,而与第一谐振单元100相邻的各第二谐振单元200均于第三调谐盲孔201附近产生电磁场方向呈顺时针设置的电磁场,基于此设置,在左下角的第一谐振单元100和左上角的第二谐振单元200耦合时,其相互暴露的电磁场方向相反,从而产生容性耦合,而在左下角的第一谐振单元100和其右上角和右侧的第二谐振单元200耦合时,其所相互暴露的电磁场方向相同,从而产生了感性耦合。因而,本申请实施例提供的陶瓷介质滤波器可在不对第一谐振单元100的结构、尺寸进行较大的变动的情况下,实现容性耦合和感性耦合,以得到所需的滤波器频率特性,基于陶瓷介质滤波器的频率特性,能够获得一频率响应曲线,在该频率响应曲线中,将于滤波通带左侧和右侧产生至少一个所需的传输零点,来增强通带邻近频段的抑制度,从而实现并提高了陶瓷介质滤波器的频率选择性能,使得该陶瓷介质滤波器具有结构简单、易于实现、频率选择性能较优的优势。补充地,各第一谐振单元100和各第二谐振单元200之间可按预设的拓扑结构依次焊接,或可由整块介质加工打磨,以形成上述陶瓷介质滤波器。
此外,还可根据需要合理分配第一调谐盲孔101的深度和第二调谐盲孔102的深度,以对第一谐振单元100和与其相邻的各第二谐振单元200之间的耦合量进行调节。具体地,在保障总的电容加载量一定的基础上,即保障第一谐振单元100的谐振频率不变的基础上,可通过适当调整第一调谐盲孔101的深度和第二调谐盲孔102的深度的配比,以对第一谐振单元100和各第二谐振单元200之间的耦合量的大小进行灵活调节。例如,如图1所示,通过增加第一调谐盲孔101的深度,可使第一谐振单元100和其上侧相邻的第二谐振单元200之间的耦合量减弱,即减弱了容性耦合,相应地,为保障总的电容加载量不变,需相应减小第二调谐盲孔102的深度,使得第一谐振单元100和其右侧和右上角相邻的第二谐振单元200之间的耦合量增强,即增大了感性耦合;反之,通过减小第一调谐盲孔101的深度,可使第一谐振单元100和其上侧相邻的第二谐振单元200之间的耦合量增强,即增强了容性耦合,相应地,为保障总的电容加载量不变,需相应增加第二调谐盲孔102的深度,使得第一谐振单元100和其右侧和右上角相邻的第二谐振单元200之间的耦合量减弱,即减弱了感性耦合。
本申请实施例提供的陶瓷介质滤波器的技术效果是:本申请的第一谐振单元100上开设有相互间隔设置的第一调谐盲孔101和第二调谐盲孔102,而第二谐振单元200上开设有第三调谐盲孔201,通过调整第一调谐盲孔101和第二调谐盲孔102的深度可使第一谐振单元100工作在加载的TE102模式,通过调整第三调谐盲孔201的深度可使第二谐振单元200工作在加载的TE101模式,如此,第一谐振单元100则可与邻近的第二谐振单元200相互耦合,以生成容性耦合和感性耦合,并在滤波通带频段附近产生所需的传输零点,从而提高了陶瓷介质滤波器的频率选择性能。本申请实施例提供的陶瓷介质滤波器无需在谐振单元上设置额外的附件或结构特征即可实现容性耦合,结构简单,易于实现,具有较优的频率选择性能。
请参阅图1-3,在本申请实施例中,第一开孔侧面的中心和其与一第二开孔侧面的相接处之间设有第一调谐盲孔101;第一开孔侧面的中心和其与其余第二开孔侧面其中之一的相接处之间设有第二调谐盲孔102。
本实施例中,第一调谐盲孔101设于第一开孔侧面的中心和第一开孔侧面与一个第二开孔侧面的相接处之间,即,将第一调谐盲孔101靠近与第一谐振单元100相邻设置的一个第二谐振单元200设置,如此设置,可对第一谐振单元100和该第二谐振单元200之间相互暴露的电磁场的耦合程度进行保障,从而对第一谐振单元100和第二谐振单元200之间的耦合关系进行了保障;同理,第二调谐盲孔102设于第一开孔侧面的中心和第一开孔侧面与另一个第二开孔侧面的相接处之间,即,将第二调谐盲孔102靠近与第一谐振单元100相邻设置的另一个第二谐振单元200设置,如此设置,可对第一谐振单元100和该第二谐振单元200之间相互暴露的电磁场的耦合程度进行保障,从而对第一谐振单元100和另一第二谐振单元200之间的耦合关系进行了保障。综合上述设置,保障了陶瓷介质滤波器的容性耦合和感性耦合强度,从而对陶瓷介质滤波器的频率选择特性进行了保障。
请参阅图1-3,在本申请实施例中,各第一谐振单元100和各第二谐振单元200的厚度均相等设置。
将各第一谐振单元100和各第二谐振单元200的厚度均相等设置,一方面,可在各第一谐振单元100和各第二谐振单元200连接排布形成陶瓷介质滤波器后,保障该陶瓷介质滤波器的顶面平齐度,即确保该陶瓷介质滤波器具有确定的高度,从而利于陶瓷介质滤波器的优化布局和薄化设计,即利于小型化设计;另一方面,还可保障各第一谐振单元100和各第二谐振单元200之间的级联方向基本呈水平方向,从而利于对各第一谐振单元100和各第二谐振单元200之间的耦合量进行精确控制。
请参阅图1-3,在本申请实施例中,第一谐振单元100在垂直于第一开孔侧面上的截面面积大于或等于第二谐振单元200在垂直于第二开孔侧面上的截面面积。
在第一调谐盲孔101和第二调谐盲孔102的深度足以令第一谐振单元100工作于TE102模式时,将第一谐振单元100的截面尺寸与第二谐振单元200的截面尺寸相当设置,一方面,可避免陶瓷介质滤波器的整体尺寸增加,以利于陶瓷介质滤波器的小型化发展,在一定程度上能够扩大陶瓷介质滤波器的应用范围;另一方面,还有利于对各第一谐振单元100和各第二谐振单元200的连接排布进行优化设计。而将第一谐振单元100的截面尺寸大于第二谐振单元200的截面尺寸设置,一方面,可调整第一谐振单元100所占据的平面尺寸,使其可与多个第二谐振单元200直接耦合,以能够对第一谐振单元100和多个第二谐振单元200之间的耦合量进行保障;另一方面,还可结合第一调谐盲孔101和第二调谐盲孔102的设置,共同使第一谐振单元100工作于TE102模式,从而可在避免陶瓷介质滤波器整体尺寸增加较多的情况下,在一定程度上降低第一调谐盲孔101和第二调谐盲孔102所需的深度。
请参阅图1-3,在本申请实施例中,各第一谐振单元100和各第二谐振单元200呈至少具有两排的阵列布置。
为使第一谐振单元100至少能与两个第二谐振单元200分别进行容性耦合和感性耦合,并利于陶瓷介质滤波器趋向小型化、轻量化和集成化的方向发展,本实施例将各第一谐振单元100和各第二谐振单元200连接排布呈至少具有两排的阵列布置,以在一定程度上降低陶瓷介质滤波器的整体尺寸。并且,本实施例还将各第一谐振单元100和各第二谐振单元200相互交错排布,从而可在一定程度上缩短各第一谐振单元100和各第二谐振单元200之间的间距,并在一定程度上增强第一谐振单元100和与其相邻设置的各第二谐振单元200的耦合量,从而可调整滤波通带左右侧的传输零点的平衡度。例如,如图1所示,陶瓷介质滤波器将各第一谐振单元100和各第二谐振单元200呈两排布置,且上排的各第二谐振单元200交叉位于下排的相邻的第一谐振单元100和第二谐振单元200之间,或位于相邻的两第二谐振单元200之间。如此,左下角的第一谐振单元100将易于与其左上角的第二谐振单元200、右上角的第二谐振单元200和右侧的第二谐振单元200均进行直接耦合,从而利于保障并增强其相互之间的耦合量,从而提高了陶瓷介质滤波器的频率选择性能。并且,通过增强左下角的第一谐振单元100和其右上角的第二谐振单元200的感性耦合强度,还可调整位于滤波通带左侧的传输零点和右侧的传输零点之间的平衡度,具体地,左下角的第一谐振单元100和其右上角的第二谐振单元200的感性耦合越强,位于滤波通带左侧的传输零点将越靠近频率通带,并使位于滤波通带右侧的传输零点将越远离频率通带,从而可满足通带左侧更高的抑制度要求。
请参阅图1-3,在本申请实施例中,各第一谐振单元100和各第二谐振单元200一体成型。基于上述设置,一方面,可在一定程度上提高陶瓷介质滤波器的生产便利性,即提高陶瓷介质滤波器的生产效率,利于其批量生产;另一方面,可降低各第一谐振单元100和各第二谐振单元200相互之间的加工误差,从而对各第一谐振单元100和各第二谐振单元200相互之间的位置精度进行了保障,利于实现对各第一谐振单元100和各第二谐振单元200相互之间的耦合量进行精确控制,即利于对陶瓷介质滤波器的制造精度进行保障。
请参阅图1-3,在本申请实施例中,陶瓷介质滤波器于第一开孔侧面和第二开孔侧面的相接处开设有至少一个贯通设置的第一分隔通槽301,第一分隔通槽301能够用于分隔第一谐振单元100和第二谐振单元200,以使第一谐振单元100与第二谐振单元200在第一分隔通槽301处不耦合;陶瓷介质滤波器于两第二开孔侧面的相接处开设有至少一个贯通设置的第二分隔通槽302,第二分隔通槽302能够用于分隔两第二谐振单元200,以使两第二谐振单元200在第二分隔通槽302处不耦合。
基于各第一谐振单元100和各第二谐振单元200一体成型的设置,本实施例通过于相互耦合的第一谐振单元100和第二谐振单元200之间开设第一分隔通槽301,以使得第一谐振单元100和第二谐振单元200在第一分隔通槽301开设处相互断开,即,在第一分隔通槽301所断开的区域内,第一谐振单元100和第二谐振单元200将不进行耦合,但在第一谐振单元100和第二谐振单元200相连的部分,第一谐振单元100和第二谐振单元200将进行耦合,因而,通过调整第一分隔通槽301的位置、尺寸、形状可实现对第一谐振单元100和第二谐振单元200之间的耦合量的控制。同理,通过于相互耦合的两第二谐振单元200之间开设第二分隔通槽302,以使得两第二谐振单元200在第二分隔通槽302开设处断开,即两第二谐振单元200在第二分隔通槽302所断开的区域内将不进行耦合,但在两第二谐振单元200相连的部分将进行耦合,因而,通过调整第二分隔通槽302的位置、尺寸、形状可实现对两第二谐振单元200之间的耦合量的控制。
请参阅图1-3,在本申请实施例中,第一调谐盲孔101的截面形状呈圆形。将第一调谐盲孔101的截面形状呈圆形设置,一方面,可提高第一调谐盲孔101的加工便利性,并易于对第一调谐盲孔101的加工精度进行保障;另一方面,还可保障第一谐振单元100于第一调谐盲孔101附近所形成的电磁场的均衡性,从而利于保障第一谐振单元100和第二谐振单元200之间的容性耦合或感性耦合的平均强度,并利于实现对第一谐振单元100和第二谐振单元200之间的耦合量的精确控制。
请参阅图1-3,在本申请实施例中,第二调谐盲孔102的截面形状呈圆形。将第二调谐盲孔102的截面形状呈圆形设置,一方面,可提高第二调谐盲孔102的加工便利性,并易于对第二调谐盲孔102的加工精度进行保障;另一方面,还可保障第一谐振单元100于第二调谐盲孔102附近所形成的电磁场的均衡性,从而利于保障第一谐振单元100和第二谐振单元200之间的容性耦合或感性耦合的平均强度,并利于实现对第一谐振单元100和第二谐振单元200之间的耦合量的精确控制。
请参阅图1-3,在本申请实施例中,第一谐振单元100包括由陶瓷材料制成的第一谐振腔体及由金属材料制成的第一金属腔壁,第一金属腔壁包覆于第一谐振腔体的外表面;第二谐振单元200包括由陶瓷材料制成的第二谐振腔体及由金属材料制成的第二金属腔壁,第二金属腔壁包覆于第二谐振腔体的外表面。
本实施例中,第一谐振单元100包括第一谐振腔体和第一金属腔壁,第二谐振单元200包括第二谐振腔体和第二金属腔壁,其中,第一谐振腔体和第二谐振腔体均由陶瓷材料即电绝缘材料制成,而第一金属腔壁和第二金属腔壁则由金属材料即导电材料制成。基于上述设置,可利于邻近的第一谐振单元100的电磁场和第二谐振单元200的电磁场在陶瓷介质中相互暴露直接生成容性耦合和感性耦合,从而可提高陶瓷介质滤波器的频率选择性能。此外,通过第一金属腔壁和第二金属腔壁的设置,还可在一定程度上减少陶瓷介质滤波器的插入损耗。
在本申请实施例中,第一金属腔壁为由铜或银制成的第一金属腔壁。本实施例采用导电率较高的铜或银制成制成第一金属腔壁,可进一步减少陶瓷介质滤波器的插入损耗。
在本申请实施例中,第二金属腔壁为由铜或银制成的第二金属腔壁。本实施例采用导电率较高的铜或银制成制成第二金属腔壁,可进一步减少陶瓷介质滤波器的插入损耗。
请参阅图1-3,在本申请实施例中,第一谐振单元100设有两个,第二谐振单元200设有七个,两第一谐振单元100间隔设置,任一第一谐振单元100与一第二谐振单元200容性耦合,并与两第二谐振单元200感性耦合。
如图3所示,对上述陶瓷介质滤波器的拓扑结构进行设计。具体地,在设计初期,根据通信系统需求设计陶瓷介质滤波器的拓扑结构,即设计各第一谐振单元100和各第二谐振单元200之间的连接排布方式,并通过电路模拟软件对拓扑结构的可行性进行验证。
如图1所示,基于上述拓扑结构,将其中五个第二谐振单元200依次相邻设置呈一排,并将其余两个第二谐振单元200排布于上排中间的三个第二谐振单元200的下侧,且分别交错设置于每两个第二谐振单元200之间,而两第一谐振单元100则分设于下排的两个第二谐振单元200的两侧,如此布置,不仅可保障各第一谐振单元100和各第二谐振单元200之间的连接排布方式,还可最大程度地利用空间,以使陶瓷介质滤波器能够趋向小型化、轻量化和集成化的方向发展。
本实施例还以上排的第三个第二谐振单元200为界限,将陶瓷介质滤波器划分为两组交叉耦合组件,且每组交叉耦合组件中将包含有一个工作于TE102模式的第一谐振单元100。其中,左侧的交叉耦合组件中,左下角的第一谐振单元100将与其上侧的第二谐振单元200容性耦合,并与其右上和右侧的两第二谐振单元200感性耦合,其余相邻的两第二谐振单元200之间相互进行感性耦合,而在右侧的交叉耦合组件中,右下角的第一谐振单元100将与其上侧的第二谐振单元200容性耦合,并与其左上和左侧的两第二谐振单元200感性耦合,其余相邻的两第二谐振单元200之间相互进行感性耦合,从而实现了所需的频率响应特性。补充地,本实施例中,各第一谐振单元100的长度略大于各第二谐振单元200的长度设置,左下角的第一谐振单元100与其上侧的第二谐振单元200、右上角的第二谐振单元200和右侧的第二谐振单元200均进行直接耦合,并且,右下角的第一谐振单元100与其上侧的第二谐振单元200、左上角的第二谐振单元200和左侧的第二谐振单元200均进行直接耦合,从而利于保障并增强其相互之间的耦合量,从而提高了陶瓷介质滤波器的频率选择性能。
如图4所示,在该陶瓷介质滤波器的频率响应曲线中,每组交叉耦合组件均于滤波通带左侧和右侧各产生一个所需的传输零点,即该陶瓷介质滤波器在滤波通带频段两侧各产生了两个传输零点,通过传输零点可增强通带邻近频段的抑制度,从而可在一定程度上提高陶瓷介质滤波器的频率选择性能。补充地,通过增强左下角的第一谐振单元100和其右上角的第二谐振单元200之间的感性耦合强度,还可相应调整左侧的交叉耦合组件所产生的位于滤波通带左侧的传输零点和右侧的传输零点之间的平衡度,具体地,左下角的第一谐振单元100和其右上角的第二谐振单元200之间的感性耦合越强,其位于滤波通带左侧的传输零点将越靠近频率通带,且位于滤波通带右侧的传输零点将越远离频率通带,从而可满足通带左侧更高的抑制度要求;类似地,通过增强右下角的第一谐振单元100和其左上角的第二谐振单元200之间的感性耦合强度,还可调整右侧的交叉耦合组件所产生的位于滤波通带左侧的传输零点和右侧的传输零点之间的平衡度,具体地,右下角的第一谐振单元100和其左上角的第二谐振单元200之间的感性耦合越强,其位于滤波通带左侧的传输零点将越靠近频率通带,且位于滤波通带右侧的传输零点将越远离频率通带,从而可满足通带左侧更高的抑制度要求。
请参阅图1-3,在本申请实施例中,各第一谐振单元100均具有与第一开孔侧面对位设置且朝向相反的第三开孔侧面,各第二谐振单元200均具有与第二开孔侧面对位设置且朝向相反的第四开孔侧面,陶瓷介质滤波器于各第三开孔侧面和各第四开孔侧面中的其中之一上开设有信号接入端口303,并于其余各第三开孔侧面和各第四开孔侧面中的其中之一上开设有信号馈出端口304,信号接入端口303用于输入信号,信号馈出端口304用于馈出信号。
在各第一谐振单元100和各第二谐振单元200均组装完成后,基于各第一谐振单元100和各第二谐振单元200的拓扑结构,需于连接排布于各第一谐振单元100和各第二谐振单元200的首端的第三开孔侧面或第四开孔侧面上设置一个信号输入端口,并需于连接排布于各第一谐振单元100和各第二谐振单元200的尾端的第三开孔侧面或第四开孔侧面上设置一个信号馈出端口304,通过该信号接入端口303和信号馈出端口304的设置,将使得电磁能量可从信号接入端口303输入,经沿依次耦合的各第一谐振单元100和各第二谐振单元200对特定频率内的干扰信号和杂波信号进行滤除,并最终将所需频率内的信号从信号输出端口馈出。即,通过该信号接入端口303和信号馈出端口304的设置将有利于陶瓷介质滤波器的测试和使用。
例如,如图1所示,上排的第三个第二谐振单元200即连接排布于各第一谐振单元100和各第二谐振单元200的首端的谐振单元,因而,需于其第四开孔侧面上设置一个信号输入端口,以用于供电磁能量从其输入陶瓷介质滤波器,而上排的第四个第二谐振单元200即连接排布于各第一谐振单元100和各第二谐振单元200的尾端的谐振单元,因而,需于其第四开孔侧面上设置一个信号馈出端口304,以用于供所需频率内的信号从其馈出陶瓷介质滤波器。并且,上排的第三个第二谐振单元200和上排的第四个第二谐振单元200之间不存在耦合关系,因而,可于上排的第三个第二谐振单元200和上排的第四个第二谐振单元200之间开设基本完全分隔开其连接关系的第二分隔通槽302,以使上排的第三个第二谐振单元200和上排的第四个第二谐振单元200之间不进行耦合。
实施例二
本实施例与实施例一的区别在于:
请参阅图5-7,在本申请实施例中,第一谐振单元100设有一个,第二谐振单元200设有七个,第一谐振单元100与一第二谐振单元200容性耦合,并与两第二谐振单元200感性耦合。
如图7所示,对上述陶瓷介质滤波器的拓扑结构进行设计。具体地,在设计初期,根据通信系统需求设计陶瓷介质滤波器的拓扑结构,即设计第一谐振单元100和各第二谐振单元200之间的连接排布方式,并通过电路模拟软件对拓扑结构的可行性进行验证。
如图5所示,基于上述拓扑结构,将其中四个第二谐振单元200依次相邻设置呈一排,并将其余三个第二谐振单元200和一个第一谐振单元100依次相邻设置呈一排,其中,第一谐振单元100的尺寸与各第二谐振单元200的尺寸相当,上排的四个第二谐振单元200与下排的三个第二谐振单元200和一个第一谐振单元100一一上下对位设置,如此布置,不仅可保障各第一谐振单元100和各第二谐振单元200之间的连接排布方式,还可最大程度地压缩陶瓷介质滤波器的整体尺寸,以使陶瓷介质滤波器能够趋向小型化、轻量化和集成化的方向发展。
本实施例还通过第一谐振单元100和其上侧的第二谐振单元200容性耦合,并和其左侧和左上的第二谐振单元200感性耦合,其余每两相邻设置的第二谐振单元200相互进行感性耦合,以实现所需的频率响应特性,从而提高了陶瓷介质滤波器的频率选择性能。
如图8所示,在该陶瓷介质滤波器的频率响应曲线中,其于滤波通带左侧和右侧各产生一个所需的传输零点,通过传输零点可增强通带邻近频段的抑制度,从而可在一定程度上提高陶瓷介质滤波器的频率选择性能。补充地,通过增强右下角的第一谐振单元100和其左上角的第二谐振单元200之间的感性耦合强度,还可调整其所产生的位于滤波通带左侧的传输零点和右侧的传输零点之间的平衡度,具体地,右下角的第一谐振单元100和其左上角的第二谐振单元200之间的感性耦合越强,其位于滤波通带左侧的传输零点将越靠近频率通带,位于滤波通带右侧的传输零点将越远离频率通带,从而可满足通带左侧更高的抑制度要求。
如图6所示,在第一谐振单元100和各第二谐振单元200均组装完成后,基于第一谐振单元100和各第二谐振单元200的拓扑结构,需于连接排布于第一谐振单元100和各第二谐振单元200的首端的第三开孔侧面或第四开孔侧面上设置一个信号输入端口,并需于连接排布于第一谐振单元100和各第二谐振单元200的尾端的第三开孔侧面或第四开孔侧面上设置一个信号馈出端口304,通过该信号接入端口303和信号馈出端口304的设置,将使得电磁能量可从信号接入端口303输入,经沿依次耦合的第一谐振单元100和各第二谐振单元200对特定频率内的干扰信号和杂波信号进行滤除,并最终将所需频率内的信号从信号输出端口馈出。即,通过该信号接入端口303和信号馈出端口304的设置将有利于陶瓷介质滤波器的测试和使用。
如图5所示,上排的第二个第二谐振单元200即连接排布于第一谐振单元100和各第二谐振单元200的首端的谐振单元,因而,需于其第四开孔侧面上设置一个信号输入端口,以用于供电磁能量从其输入陶瓷介质滤波器,而上排的第三个第二谐振单元200即连接排布于第一谐振单元100和各第二谐振单元200的尾端的谐振单元,因而,需于其第四开孔侧面上设置一个信号馈出端口304,以用于供所需频率内的信号从其馈出陶瓷介质滤波器。并且,上排的第二个第二谐振单元200和上排的第三个第二谐振单元200之间不存在耦合关系,因而,可于上排的第二个第二谐振单元200和上排的第三个第二谐振单元200之间开设基本完全分隔开其之间的连接关系的第二分隔通槽302,以使上排的第二个第二谐振单元200和上排的第三个第二谐振单元200之间不进行耦合。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。
Claims (15)
- 一种陶瓷介质滤波器,其特征在于,包括至少一个第一谐振单元和至少两个第二谐振单元,各所述第一谐振单元均具有第一开孔侧面,并于所述第一开孔侧面上均开设有一个第一调谐盲孔和一个与所述第一调谐盲孔间隔设置的第二调谐盲孔,各所述第二谐振单元均具有与所述第一开孔侧面平行设置且朝向相同的第二开孔侧面,并于所述第二开孔侧面上均开设有一个第三调谐盲孔,所述第一调谐盲孔的深度和所述第二调谐盲孔的深度均大于所述第三调谐盲孔的深度,所述第一谐振单元的工作模式为TE102模式,所述第二谐振单元的工作模式为TE101模式,任一所述第一谐振单元至少与一所述第二谐振单元容性耦合,并至少与一所述第二谐振单元感性耦合,任一所述第二谐振单元至少与其余所述第二谐振单元其中之一感性耦合。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述第一开孔侧面的中心和其与一所述第二开孔侧面的相接处之间设有所述第一调谐盲孔;所述第一开孔侧面的中心和其与其余所述第二开孔侧面其中之一的相接处之间设有所述第二调谐盲孔。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,各所述第一谐振单元和各所述第二谐振单元的厚度均相等设置。
- 如权利要求3所述的陶瓷介质滤波器,其特征在于,所述第一谐振单元在垂直于所述第一开孔侧面上的截面面积大于或等于所述第二谐振单元在垂直于所述第二开孔侧面上的截面面积。
- 如权利要求3所述的陶瓷介质滤波器,其特征在于,各所述第一谐振单元和各所述第二谐振单元呈至少具有两排的阵列布置。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,各所述第一谐振单元和各所述第二谐振单元一体成型。
- 如权利要求6所述的陶瓷介质滤波器,其特征在于,所述陶瓷介质滤波器于所述第一开孔侧面和所述第二开孔侧面的相接处开设有至少一个贯通设置的第一分隔通槽,所述第一分隔通槽能够用于分隔所述第一谐振单元和所述第二谐振单元,以使所述第一谐振单元与所述第二谐振单元在所述第一分隔通槽处不耦合;所述陶瓷介质滤波器于两所述第二开孔侧面的相接处开设有至少一个贯通设置的第二分隔通槽,所述第二分隔通槽能够用于分隔两所述第二谐振单元,以使两所述第二谐振单元在所述第二分隔通槽处不耦合。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述第一调谐盲孔的截面形状呈圆形。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述第二调谐盲孔的截面形状呈圆形。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述第一谐振单元包括由陶瓷材料制成的第一谐振腔体及由金属材料制成的第一金属腔壁,所述第一金属腔壁包覆于所述第一谐振腔体的外表面;所述第二谐振单元包括由陶瓷材料制成的第二谐振腔体及由金属材料制成的第二金属腔壁,所述第二金属腔壁包覆于所述第二谐振腔体的外表面。
- 如权利要求10所述的陶瓷介质滤波器,其特征在于,所述第一金属腔壁为由铜或银制成的第一金属腔壁。
- 如权利要求10所述的陶瓷介质滤波器,其特征在于,所述第二金属腔壁为由铜或银制成的第二金属腔壁。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述第一谐振单元设有两个,所述第二谐振单元设有七个,两所述第一谐振单元间隔设置,任一所述第一谐振单元与一所述第二谐振单元容性耦合,并与两所述第二谐振单元感性耦合。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述第一谐振单元设有一个,所述第二谐振单元设有七个,所述第一谐振单元与一所述第二谐振单元容性耦合,并与两所述第二谐振单元感性耦合。
- 如权利要求1所述的陶瓷介质滤波器,其特征在于,各所述第一谐振单元均具有与所述第一开孔侧面对位设置且朝向相反的第三开孔侧面,各所述第二谐振单元均具有与所述第二开孔侧面对位设置且朝向相反的第四开孔侧面,所述陶瓷介质滤波器于各所述第三开孔侧面和各所述第四开孔侧面中的其中之一上开设有信号接入端口,并于其余各所述第三开孔侧面和各所述第四开孔侧面中的其中之一上开设有信号馈出端口,所述信号接入端口用于输入信号,所述信号馈出端口用于馈出信号。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/108551 WO2021056415A1 (zh) | 2019-09-27 | 2019-09-27 | 陶瓷介质滤波器 |
CN201980001851.9A CN111066198B (zh) | 2019-09-27 | 2019-09-27 | 陶瓷介质滤波器 |
EP19919543.9A EP4037093A4 (en) | 2019-09-27 | 2019-09-27 | CERAMIC DIELECTRIC FILTER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/108551 WO2021056415A1 (zh) | 2019-09-27 | 2019-09-27 | 陶瓷介质滤波器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021056415A1 true WO2021056415A1 (zh) | 2021-04-01 |
Family
ID=70306459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/108551 WO2021056415A1 (zh) | 2019-09-27 | 2019-09-27 | 陶瓷介质滤波器 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4037093A4 (zh) |
CN (1) | CN111066198B (zh) |
WO (1) | WO2021056415A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111600100A (zh) * | 2020-06-30 | 2020-08-28 | 瑞声精密制造科技(常州)有限公司 | 容性、感性交叉耦合结构及介质波导滤波器 |
CN111682291B (zh) * | 2020-07-24 | 2024-03-12 | 中国电子科技集团公司第二十六研究所 | 一种介质滤波器耦合转换结构及通信设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964439A (zh) * | 2010-10-27 | 2011-02-02 | 摩比天线技术(深圳)有限公司 | 滤波器可调容性耦合结构 |
CN103855448A (zh) * | 2012-12-03 | 2014-06-11 | 武汉凡谷电子技术股份有限公司 | Tm模介质滤波器 |
EP2993727A1 (en) * | 2013-06-04 | 2016-03-09 | Huawei Technologies Co., Ltd. | Dielectric resonator and dielectric filter, transceiver and base station using same |
CN106169638A (zh) * | 2016-08-30 | 2016-11-30 | 广东通宇通讯股份有限公司 | 一种滤波器及其耦合结构 |
CN109950669A (zh) * | 2019-02-18 | 2019-06-28 | 摩比科技(深圳)有限公司 | 介质波导滤波器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6572391B2 (ja) * | 2015-11-27 | 2019-09-11 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 誘電体フィルタ、トランシーバ、および基地局 |
CN110034362A (zh) * | 2019-05-14 | 2019-07-19 | 苏州波发特电子科技有限公司 | 易于调试对称零点的介质滤波器耦合结构 |
-
2019
- 2019-09-27 WO PCT/CN2019/108551 patent/WO2021056415A1/zh active Application Filing
- 2019-09-27 EP EP19919543.9A patent/EP4037093A4/en active Pending
- 2019-09-27 CN CN201980001851.9A patent/CN111066198B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964439A (zh) * | 2010-10-27 | 2011-02-02 | 摩比天线技术(深圳)有限公司 | 滤波器可调容性耦合结构 |
CN103855448A (zh) * | 2012-12-03 | 2014-06-11 | 武汉凡谷电子技术股份有限公司 | Tm模介质滤波器 |
EP2993727A1 (en) * | 2013-06-04 | 2016-03-09 | Huawei Technologies Co., Ltd. | Dielectric resonator and dielectric filter, transceiver and base station using same |
CN106169638A (zh) * | 2016-08-30 | 2016-11-30 | 广东通宇通讯股份有限公司 | 一种滤波器及其耦合结构 |
CN109950669A (zh) * | 2019-02-18 | 2019-06-28 | 摩比科技(深圳)有限公司 | 介质波导滤波器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4037093A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN111066198B (zh) | 2020-11-13 |
EP4037093A1 (en) | 2022-08-03 |
EP4037093A4 (en) | 2023-06-07 |
CN111066198A (zh) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110265753B (zh) | 一种介质波导滤波器 | |
CN110265755B (zh) | 一种介质波导滤波器 | |
CN210379367U (zh) | 陶瓷介质滤波器 | |
WO2018098642A1 (zh) | 一种滤波器及通信设备 | |
CN109742493B (zh) | 一种基于四模介质谐振器的差分双通带滤波器 | |
WO2021056415A1 (zh) | 陶瓷介质滤波器 | |
JPH08250904A (ja) | 誘電体フィルタ | |
CN108539336A (zh) | 带宽可独立控制的hmsiw双模双频带滤波器 | |
CN212277356U (zh) | 一种八阶四零点的微波介质波导滤波器 | |
JPH07231204A (ja) | 誘電体共振器装置 | |
JP4803255B2 (ja) | 誘電体共振器、誘電体フィルタ、および通信装置 | |
EP3718165B1 (en) | High frequency selectivity filter for microwave signals | |
JPH07231203A (ja) | 誘電体共振器装置 | |
CN110896163A (zh) | 可实现单个带外传输零点的介质波导滤波器 | |
JP2005012457A (ja) | 共振器、フィルタおよび通信装置 | |
WO2021170119A1 (zh) | 介质滤波器和通信设备 | |
WO2021077379A1 (zh) | 带阻滤波器及电子设备 | |
CN210182542U (zh) | 介质滤波器、信号收发装置及基站 | |
JP2000244206A (ja) | 誘電体フィルタ、誘電体デュプレクサ及び通信機装置 | |
WO2023060438A1 (zh) | 介质谐振器、介质滤波器、射频器件及基站 | |
JP7585484B2 (ja) | アンテナ用セラミック導波管フィルタ | |
JP2001308682A (ja) | 水晶フィルタ | |
CN209843915U (zh) | 一种介质波导滤波器 | |
CN113258229B (zh) | 介质双工器及基站 | |
CN219696693U (zh) | 多模滤波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19919543 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019919543 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019919543 Country of ref document: EP Effective date: 20220428 |