Nothing Special   »   [go: up one dir, main page]

WO2021046973A1 - 共光束扫描的视网膜成像系统 - Google Patents

共光束扫描的视网膜成像系统 Download PDF

Info

Publication number
WO2021046973A1
WO2021046973A1 PCT/CN2019/112521 CN2019112521W WO2021046973A1 WO 2021046973 A1 WO2021046973 A1 WO 2021046973A1 CN 2019112521 W CN2019112521 W CN 2019112521W WO 2021046973 A1 WO2021046973 A1 WO 2021046973A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
module
beam splitter
imaging
scanning
Prior art date
Application number
PCT/CN2019/112521
Other languages
English (en)
French (fr)
Inventor
何益
史国华
高峰
孔文
邢利娜
李婉越
王晶
张欣
Original Assignee
中国科学院苏州生物医学工程技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州生物医学工程技术研究所 filed Critical 中国科学院苏州生物医学工程技术研究所
Priority to KR1020207026776A priority Critical patent/KR102403875B1/ko
Priority to JP2020544628A priority patent/JP7098855B2/ja
Priority to EP19915588.8A priority patent/EP3811851A4/en
Priority to US16/971,570 priority patent/US11896309B2/en
Publication of WO2021046973A1 publication Critical patent/WO2021046973A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0091Fixation targets for viewing direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/112Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0028Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens

Definitions

  • This application relates to the field of optical imaging technology, and in particular to a common beam scanning retinal imaging system.
  • Patent number ZL201010197028.0 proposes a retinal imaging device based on adaptive optics technology.
  • the device uses two independent scanning galvanometers to achieve two-dimensional synchronous scanning of the retinal plane to achieve confocal scanning imaging, which can achieve high resolution. Rate imaging function.
  • this device can only achieve high-resolution imaging with a maximum field of view of 3 degrees of the human eye.
  • the halo zone such as adaptive optics aberration correction, adaptive optics often compromises the imaging field of view while achieving high-resolution imaging, and can only achieve small field of view imaging within 3°.
  • the existing laser confocal scanning ophthalmoscope has a large imaging field, but the resolution is not sufficient to observe the fine structure of the retina; the laser confocal scanning ophthalmoscope combined with adaptive optics can observe the fine structure of the retina, but the imaging vision The field is small, and it is impossible to observe the lesions with a larger field of view.
  • the technical problem to be solved by this application is to provide a common beam scanning retinal imaging system in view of the above-mentioned shortcomings in the prior art.
  • a common beam scanning retinal imaging system including: a light source module, an adaptive optics module, a beam scanning module, a small field of view relay module, and a large field of view relay module , Vision module, pupil monitoring module, detection module, control module and output module;
  • the light source module can emit at least two parallel light beams of different wavelengths, and the parallel light beams pass through the adaptive optics module, the beam scanning module, the small field of view relay module or the large field of view relay module in turn to illuminate the human eyes, and the human eyes scatter
  • the imaging light carrying human eye aberration information and light intensity information returns along the original path, and is transmitted to the adaptive optics module and the detection module;
  • the adaptive optics module is used to receive imaging light containing human eye aberration information, so as to realize real-time measurement and correction of wavefront aberration;
  • the beam scanning module includes a dual-axis scanning mirror, the incident end of which is along the optical path is connected to the adaptive optics module through a first transmissive or reflective telescope, and the exit end along the optical path is connected to the second transmissive or reflective telescope Connected with the small field of view relay module or the large field of view relay module to respectively realize small field of view high-resolution imaging and large field of view low-resolution imaging;
  • the small field of view relay module is configured as a beam expanding telescope, and the large field of view relay module is configured as a beam reducing telescope;
  • the optotype module is used to realize the optotype guidance and fixation of the human eye
  • the pupil monitoring module is used to realize the alignment and monitoring of the pupil of the human eye
  • the detection module is used to obtain the returned human eye imaging light, convert it into an electrical signal and transmit it to the control module;
  • the output module is connected with the control module and is used for displaying and storing human eye imaging images.
  • the system also includes a dichroic beam splitter module, which includes a first dichroic beam splitter, a second dichroic beam splitter, a third dichroic beam splitter, and a fourth dichroic beam splitter that are sequentially arranged along the incident light path.
  • Dichroic beam splitter includes a first dichroic beam splitter, a second dichroic beam splitter, a third dichroic beam splitter, and a fourth dichroic beam splitter that are sequentially arranged along the incident light path.
  • Dichroic beam splitter Dichroic beam splitter
  • the light source module includes a light source, a collimator, and a first beam splitter arranged in sequence along the incident light path, which output parallel light beams to the adaptive optics module; the light emitted by the light source is partially transmitted through the collimator.
  • the first beam splitter enters the adaptive optics module;
  • the adaptive optics module includes a wavefront corrector, a second beam splitter, a filter, and a wavefront sensor that are sequentially arranged along the returning light path of the human eye imaging light, and are connected to the beam scanning module; the light source module outputs The parallel light beams of 1 are reflected to the beam scanning module by the wavefront corrector; the returned imaging light carrying human eye aberration information and light intensity information exits through the beam scanning module, and is reflected to the beam scanning module by the wavefront corrector In the first beam splitter, a part of the light reflected by the first beam splitter is then reflected by the second beam splitter, and reaches the wavefront sensor after passing through the filter to realize wavefront aberration measurement. A part of the second beam splitter is transmitted into the detection module;
  • the wavefront sensor receives the imaging light beam containing human eye aberration information and transmits it to the control module for wavefront calculation to realize the detection of wavefront aberration, obtain the wavefront control voltage and output it to the wavefront correction
  • the wavefront corrector realizes the correction of the wavefront aberration.
  • the detection module includes a fifth dichroic beam splitter, a first detection light path, and a second detection light path, and the fifth dichroic beam splitter transmits the received light to the first detection light path, and at the same time Reflected to the second detection light path;
  • the first detection light path includes a first collection lens, a first pinhole, and a first detector;
  • the second detection light path includes a second collection lens, a second pinhole, and a second Detector;
  • the returned imaging light beam carrying human eye light intensity information is transmitted through the fifth dichroic beam splitter and then output to the first collection lens, and reaches the first detector after passing through the first pinhole to obtain Retina imaging image;
  • the returned imaging light beam carrying human eye light intensity information is reflected by the fifth dichroic beam splitter and output to the second collection lens, and reaches the second detector after passing through the second pinhole , Get retinal imaging image;
  • the beam scanning module includes a first transmissive or reflective telescope, a biaxial scanning mirror, and a second transmissive or reflective telescope arranged in sequence along the incident light path, and the biaxial scanning mirror outputs a periodic voltage from the control module Drive to realize the horizontal and vertical two-dimensional scanning of the retinal plane.
  • the optotype module includes an LED array, an optotype lens, and a first plane reflector, and the light emitted by any lamp bead in the LED array being lit by the control module propagates through the lens It is then reflected by the first plane mirror, and then reflected by the first dichroic beam splitter, and sequentially transmitted through the second dichroic beam splitter, the third dichroic beam splitter, and the fourth dichroic beam splitter Then it reaches the human eye, and the human eye looks at the luminous LED lamp bead to achieve fixation;
  • the pupil monitoring module includes a ring-shaped LED array, an imaging lens, and an area array detector.
  • the light emitted by the ring-shaped LED array illuminates the pupil of the human eye, and passes through the hollow part of the ring-shaped LED array after being reflected by the pupil of the human eye.
  • the imaging lens is finally focused on the area array detector for pupil imaging, and the area array detector will receive the light
  • the signal is converted into an electrical signal and then output to the control module.
  • the control module obtains the pupil imaging image, and finally outputs it to the output module for display and storage.
  • the small field of view relay module includes a transmissive telescope composed of a first lens and a second lens, or a reflective telescope composed of a first spherical reflector and a second spherical reflector, with a magnification greater than 1.
  • the small field of view relay module also includes a first focusing mechanism arranged between the two lenses or spherical mirrors of the telescope, the first focusing mechanism includes two orthogonal plane mirrors, the The first focusing mechanism can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye;
  • the large field of view relay module includes a transmissive telescope composed of a third lens and a fourth lens, or a reflective telescope composed of a third spherical reflector and a fourth spherical reflector, the magnification of which is less than 1;
  • the large field of view relay module also includes a second focusing mechanism arranged between the two lenses or spherical mirrors of the telescope.
  • the second focusing mechanism includes two orthogonal plane mirrors. The focusing mechanism can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye.
  • the implementation method of the small field of view high-resolution imaging is:
  • the light beam emitted by the light source module passes through the wavefront corrector of the adaptive optics module, the light beam scanning module, and the first dichroic beam splitter to be reflected and transmitted to the small field of view relay module before being emitted; Reflected by the second dichroic beam splitter, then transmitted by the third dichroic beam splitter and the fourth dichroic beam splitter, pass through the hollow part of the annular LED array to reach the human eye, and be
  • the optical system is focused to a point on the fundus retina, the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the aberration information of the human eye and the light intensity information of the point of the fundus returns along the original path through the beam scanning module And then it is reflected by the wavefront corrector to the first beam splitter.
  • the wavefront sensor transmits the received human eye aberration information to the control module, which restores the wavefront aberration and calculates the aberration correction voltage, and then transmits the aberration correction voltage to the wavefront
  • the corrector realizes real-time human eye aberration correction; at the same time, another part of the light is transmitted through the second dichroic mirror, and after being completely transmitted through the fifth dichroic dichroic mirror, it passes through the first collecting lens and the second A pinhole finally reaches the first detector, and the first detector converts the obtained fundus retinal light signal into an electrical signal, and outputs it to the control module.
  • the control module performs signal synchronization processing and combines the The electrical signal is sampled and reconstructed to obtain a small field of view high-resolution imaging image of the retina, which is then displayed and stored by the output module;
  • the light beam emitted from the light source module passes through the wavefront corrector of the adaptive optics module, the beam scanning module, the first dichroic beam splitter, and the second dichroic beam splitter, and then is transmitted by the
  • the third dichroic beam splitter reflects into the large field of view relay module and then exits.
  • the fourth dichroic beam splitter After being reflected by the fourth dichroic beam splitter, it passes through the hollow part of the annular LED array to reach the human eye, and is The optical system of the eye is focused to a point on the fundus retina, the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the light intensity information of the human eye fundus will return along the original path and exit through the beam scanning module, and then pass through the
  • the wavefront corrector is reflected to the first beam splitter, and after the first beam splitter reflects and propagates the light beam to the second beam splitter, it is transmitted through the second beam splitter, and then passed through the fifth second direction.
  • the color dichroic mirror is all reflected, and finally reaches the second detector through the second collecting lens and the second pinhole.
  • the second detector converts the obtained fundus retinal light signal into an electrical signal, and then outputs it to the second detector.
  • the control module the control module performs signal synchronization processing, and reconstructs the electrical signal sampling to obtain a low-resolution imaging image of the retina with a large field of view, which is then displayed and stored by the output module.
  • the light source module includes at least two light sources, and multiple light sources may be coupled into a collimator through a fiber coupler to be collimated into parallel light beams; multiple light sources may also be collimated into parallel light beams by respective collimators. After the beam is combined by the dichroic beam splitter, it enters the optical path;
  • the light emitted by the light source module includes light with a wavelength of ⁇ 1 and a wavelength of ⁇ 2 , where ⁇ 1 is 600 nm-850 nm, and the light with a wavelength of ⁇ 1 is used for small field of view high-resolution imaging; ⁇ 2 is 900 nm-1000 nm, Light with a wavelength of ⁇ 2 is used for low-resolution imaging with a large field of view;
  • the ring-shaped LED array includes at least three LED lamp beads arranged in a ring at equal intervals, the hollow part has a light transmission aperture not less than the imaging beam aperture, and the wavelength of the light emitted by the LED lamp beads is ⁇ 3 , and ⁇ 3 is greater than 1000 nm ;
  • the LED array of the visual target module is an equally spaced array of LED lamp beads, the light emitted by it has a wavelength ⁇ 4 , a visible light spectrum ranging from 380 nm to 760 nm, and ⁇ 4 is between ⁇ 1 and ⁇ 2 The difference between them is at least 50nm.
  • the first dichroic beam splitter has a reflection effect on light with wavelengths ⁇ 1 and ⁇ 4 and a transmission effect on light with wavelength ⁇ 2;
  • the third dichroic beam splitter has a reflection effect on light with wavelengths ⁇ 2 and ⁇ 3 , and has a transmission effect on light with wavelengths ⁇ 1 and ⁇ 4;
  • the fourth-second wavelength of the light to the dichroic mirror 2 having a reflection [lambda], 1, ⁇ 3 and ⁇ 4 light has a transmission effect on the wavelength ⁇ .
  • the wavefront sensor in the adaptive optics module is selected from a microprism array Hartmann wavefront sensor, a microlens array Hartmann wavefront sensor, a quadrangular pyramid sensor, and a curvature sensor.
  • the wavefront corrector is selected from deformable mirrors, liquid crystal spatial light modulators, micro-machined thin-film deformable mirrors, micro-electromechanical deformable mirrors, bi-piezoelectric ceramic deformable mirrors, and liquid deformable mirrors;
  • the second beam splitter splits the imaging beam reflected by the first beam splitter, and 5% of the light is reflected by the filter and then enters the wavefront sensor to achieve wavefront aberration measurement; the remaining 95% of the light is Transmitted to the fifth dichroic beam splitter;
  • the filter may be a broadband filter, and the transmission wavelength band meets the selected wavelength ⁇ 1 for small field of view high-resolution imaging; it may also be a combination of multiple narrow-band filters, and the transmission wavelength meets the selected wavelength of small field of view high-resolution imaging.
  • Wavelength ⁇ 1 the imaging beam of the selected wavelength ⁇ 2 for large-field low-resolution imaging is completely blocked by the filter and does not enter the wavefront sensor;
  • the wavefront aberration detected by the wavefront sensor is processed by the control module to obtain the wavefront control voltage and output it to the wavefront corrector to realize the correction of the wavefront aberration.
  • the dual-axis scanning mirror can be a two-dimensional scanning galvanometer to realize the horizontal and vertical scanning of the beam; it can also be a combination of two one-dimensional scanning galvanometers, and the scanning directions of the two scanning galvanometers are set to Orthogonal direction, respectively realize the horizontal and vertical scanning of the beam, and the two scanning galvanometers are connected through a transmissive telescope or a reflective telescope to achieve pupil matching;
  • the first transmission type telescope or the reflection type telescope is used to connect the wavefront corrector and the biaxial scanning mirror to achieve pupil matching, and its magnification is the biaxial scanning mirror and the wavefront corrector The ratio of the aperture of the beam of light;
  • the second transmission-type telescope or the reflection-type telescope is used for conjugate transfer of the output light of the biaxial scanning mirror to the first dichroic beam splitter.
  • the common-beam scanning retinal imaging system provided by this application only uses one set of scanning mechanism, which can simultaneously acquire the large-field low-resolution imaging image of the fundus retina and the small-field high-resolution imaging image, and the two types of imaging images are structured by a common optical path. Acquisition and acquisition, so the two types of imaging images have the same center position and imaging speed, and the image characteristics are consistent, which is convenient for comparison processing and operation;
  • this application uses adaptive optics technology to correct human eye aberrations in real time, through the common beam synchronous scanning setting, and combining the two relay optical path structures of the small field of view and the large field of view.
  • the confocal scanning imaging function in the large field of view is greater than 20 degrees
  • the adaptive optics high-resolution imaging function in the small field of view, single-shot small field of view adaptive optics is high
  • the resolution imaging field of view is not more than 5 degrees.
  • the system can not only observe the large-scale disease focus area of the retina with large field of view imaging, but also observe the fine structure of the focus with small field of view high-resolution imaging.
  • a variety of imaging images are acquired through common optical path beam scanning to meet the needs of different application scenarios. Dadi expands the application range of existing confocal imaging equipment.
  • Fig. 1 is a schematic block diagram of a common beam scanning retinal imaging system of this application
  • FIG. 2 is a diagram of the optical path structure of the retinal imaging system for common beam scanning of the present application
  • FIG. 3 is a schematic diagram of the optical path structure of a light source module in an embodiment of the application.
  • FIG. 4 is a schematic diagram of the optical path structure of a light source module in another embodiment of the application.
  • FIG. 5 is a schematic diagram of the imaging process of the common beam scanning retinal imaging system of this application.
  • a common beam scanning retinal imaging system of this embodiment includes: a light source module 1, an adaptive optics module 2, a beam scanning module 3, a small field of view relay module 5, and a large field of view Following module 6, visual target module 9, pupil monitoring module 7, detection module 8, control module 10 and output module 11;
  • the light source module 1 can emit at least two parallel light beams of different wavelengths.
  • the parallel light beams pass through the adaptive optics module 2, the beam scanning module 3, the small field of view relay module 5, and the large field of view relay module 6 to illuminate the human eye 12.
  • the imaging light scattered by the eye 12 and carrying human eye aberration information and light intensity information returns along the original path, and is transmitted to the adaptive optics module 2 and the detection module 8;
  • the adaptive optics module 2 is used to receive imaging light containing human eye aberration information to realize real-time measurement and correction of wavefront aberration;
  • the beam scanning module 3 includes a biaxial scanning mirror 302, the incident end of which along the optical path is connected to the adaptive optics module 2 through a first transmissive or reflective telescope 301, and the exit end along the optical path is connected to the adaptive optics module 2 through a second transmissive or reflective telescope.
  • 303 is connected to the small field of view relay module 5 or the large field of view relay module 6 to realize small field of view high-resolution imaging and large field of view low-resolution imaging respectively;
  • the small field of view relay module 5 is configured as a beam expanding telescope, and the large field of view relay module 6 is configured as a beam reducing telescope;
  • the optotype module 9 is used to realize the optotype guidance and fixation of the human eye
  • the pupil monitoring module 7 is used to realize the alignment and monitoring of the pupil of the human eye
  • the detection module 8 is used to obtain the returned human eye imaging light, convert it into an electrical signal and transmit it to the control module 10;
  • the output module 11 is connected to the control module 10, and is used for displaying and storing human eye imaging images.
  • the light source module 1 includes a light source 101, a collimator 102, and a first beam splitter 103 arranged in sequence along the incident light path, which outputs a parallel beam to the adaptive optics module 2; the light emitted by the light source 101 is partially transmitted through the collimator 102 The first beam splitter 103 enters the adaptive optics module 2.
  • the light source module 1 includes at least two light sources 101, and multiple light sources 101 can be coupled into a collimator 102 through a fiber coupler to be collimated into parallel beams; multiple light sources 101 can also be collimated by their respective collimators 102 After being a parallel beam, the beam is combined by a dichroic beam splitter and enters the optical path;
  • the light emitted by the light source module 1 includes light with a wavelength of ⁇ 1 and a wavelength of ⁇ 2 , and ⁇ 1 is 600nm-850nm.
  • Typical optional wavelengths are 670nm, 730nm, 795nm, 830nm, and more preferably Light of 670nm and 795nm, wavelength ⁇ 1 is used for small field of view high resolution imaging; ⁇ 2 is 900nm-1000nm, wavelength of ⁇ 2 light is used for large field of view high resolution imaging.
  • the collimator 102 may be a single lens, or an achromatic lens, or an apochromatic lens, or a combination of lenses, or a parabolic mirror, used to collimate the light beam emitted by the light source 101 into parallel
  • the reflective collimator RC12FC-P01 from Thorlabs is selected in this embodiment.
  • the beam splitter is a wide-band beam splitter with a transmittance and reflectance ratio of 20:80.
  • the pupil monitoring module 7 includes an annular LED array 701, an imaging lens 702 and an area detector 703.
  • the light emitted by the annular LED array 701 illuminates the pupil of the human eye, and passes through the hollow part of the annular LED array 701 after being reflected by the pupil of the human eye. After passing through the fourth dichroic beam splitter 404, it is reflected by the third dichroic beam splitter 403, and finally is focused by the imaging lens 702 to the area array detector 703 for pupil imaging.
  • the area array detector 703 converts the received light signal into After the electrical signal is output to the control module 10, the pupil imaging image is obtained, and finally output to the output module 11 for display and storage.
  • the ring-shaped LED array 701 includes at least three LED lamp beads, which are arranged in a ring at equal intervals, the hollow part has a light transmission aperture not less than the imaging beam aperture, and the wavelength of the light emitted by the LED lamp beads is ⁇ 3 , And ⁇ 3 is greater than 1000nm; the typical optional wavelengths are 1020nm, 1310nm, etc. Preferably, the wavelength of 1020 nm is selected in this embodiment.
  • the optotype module 9 includes an LED array 901, an optotype lens 902, and a first plane mirror 903.
  • the light emitted by any lamp bead in the LED array 901 after being lit by the control module 10 passes through the optotype lens 902. It is reflected by the first plane mirror 903, and then reflected by the first dichroic dichroic mirror 401, and sequentially transmitted through the second dichroic dichroic mirror 402, the third dichroic dichroic mirror 403, and the fourth dichroic dichroic mirror 404, The hollow part of the annular LED array 701 then reaches the human eye 12, and the human eye looks at the luminous LED lamp bead to achieve fixation.
  • the LED array 901 is an LED lamp bead arranged in an evenly spaced array, and the light emitted by it has a wavelength ⁇ 4 , and the difference between ⁇ 4 and ⁇ 1 , ⁇ 2 is at least 50 nm.
  • the adaptive optics module 2 includes a wavefront corrector 201, a second beam splitter 202, a filter 203, and a wavefront sensor 204 arranged in sequence along the returning human eye imaging light path, which is connected to the beam scanning module 3;
  • the parallel beam output by the module 1 is reflected by the wavefront corrector 201 to the beam scanning module 3;
  • the returned imaging light carrying human eye aberration information and light intensity information is emitted from the beam scanning module 3, and is reflected by the wavefront corrector 201 to the first beam scanning module 3.
  • a beam splitter 103 part of the light reflected by the first beam splitter 103 is reflected by the second beam splitter 202, and then reaches the wavefront sensor 204 after passing through the filter 203 to achieve wavefront aberration measurement, and the other part is transmitted through the second beam splitter 202 enter the detection module 8.
  • the wavefront sensor 204 in the adaptive optics module 2 is selected from the microprism array Hartmann wavefront sensor 204, the microlens array Hartmann wavefront sensor 204, the quadrangular pyramid sensor, and the curvature sensor.
  • the wavefront corrector 201 is selected from deformable mirrors, liquid crystal spatial light modulators, micro-machined thin film deformable mirrors, micro-electromechanical deformable mirrors, bi-piezoelectric ceramic deformable mirrors, and liquid deformable mirrors;
  • the second beam splitter 202 is a wide-band beam splitter with a transmittance and reflectance ratio of 95:5.
  • the second beam splitter 202 splits the imaging beam reflected by the first beam splitter 103, and 5% of the light is reflected by the filter 203 and then enters the wavefront sensor 204 to achieve wavefront aberration measurement; the remaining 95% of the light is transmitted to
  • the filter 203 can be a broadband filter 203, and the transmission band meets the selected wavelength ⁇ 1 for small field of view high-resolution imaging; it can also be a combination of multiple narrow-band filters to pass the wavelength It satisfies the selected wavelength ⁇ 1 for small field of view high-resolution imaging ; the imaging light beam of the selected wavelength ⁇ 2 for large field of view low-resolution imaging is completely blocked by the filter 203 and does not enter the wavefront sensor 204;
  • the wavefront sensor 204 receives the imaging light beam containing human eye aberration information and transmits it to the control module 10 for wavefront calculation.
  • the wavefront sensor 204 realizes the measurement of the wavefront aberration, obtains the wavefront control voltage and outputs it to the wavefront corrector 201.
  • the wavefront corrector 201 realizes the correction of the wavefront aberration.
  • the beam scanning module 3 includes a first transmissive or reflective telescope 301, a biaxial scanning mirror 302, and a second transmissive or reflective telescope 303 arranged in sequence along the incident light path.
  • the biaxial scanning mirror 302 is output periodically by the control module 10.
  • the sexual voltage drive realizes the horizontal and vertical two-dimensional scanning of the retinal plane.
  • the biaxial scanning mirror 302 can be a two-dimensional scanning galvanometer to realize the horizontal and vertical scanning of the beam; it can also be a combination of two one-dimensional scanning galvanometers, and the scanning direction of the two scanning galvanometers It is set to the orthogonal direction to realize the horizontal and vertical scanning of the beam, and the two scanning galvanometers are connected through a transmissive telescope or a reflective telescope to achieve pupil matching; in this embodiment, the biaxial scanning mirror 302 is a rapid Mirror MR-30-15-G-25 ⁇ 25D.
  • the first transmissive telescope or reflective telescope is used to connect the wavefront corrector 201 with the biaxial scanning mirror 302 to achieve pupil matching, and its magnification is the biaxial scanning mirror 302 and the wavefront corrector.
  • the second transmission type telescope or the reflection type telescope is used to conjugate the output light of the biaxial scanning mirror 302 to the first dichroic beam splitter 401, and its magnification is N 3 .
  • the small field of view relay module 5 includes a transmissive telescope composed of a first lens and a second lens (501, 503), or a reflective telescope composed of a first spherical mirror and a second spherical mirror (501, 503).
  • the telescope whose magnification is greater than 1, is denoted as N 5 ;
  • the small field of view relay module 5 also includes a first focusing mechanism 502 arranged between the two lenses or spherical mirrors of the telescope.
  • the first focusing mechanism 502 includes two Orthogonal plane mirror, the first focusing mechanism 502 can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye;
  • the large field of view relay module 6 includes a transmissive telescope composed of a third lens and a fourth lens (601, 603), or a reflective telescope composed of a third spherical mirror and a fourth spherical mirror (601, 603) , Its magnification is less than 1, denoted as N 6 ; the large field of view relay module 6 also includes a second focusing mechanism 602 arranged between the two lenses or spherical mirrors of the telescope, the second focusing mechanism 602 includes two Orthogonal plane mirror, the second focusing mechanism 602 can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye.
  • a dichroic beam splitter module which includes a first dichroic beam splitter 401, a second dichroic beam splitter 402, a third dichroic beam splitter 403, and a fourth dichroic beam splitter 401, a second dichroic beam splitter 402, a third dichroic beam splitter 403, and a To the color beam splitter 404.
  • the first dichroic beam splitter 401 has a reflection effect on the light with the wavelengths ⁇ 1 and ⁇ 4 , and has a transmission effect on the light with the wavelength ⁇ 2;
  • Two second dichroic beam splitter having a wavelength of 402 pairs of light reflection 1 ⁇ , having effect on the transmission light of the wavelength of [lambda] 2 and ⁇ 4;
  • the third dichroic beam splitter 403 has a reflection effect on the light with the wavelengths ⁇ 2 and ⁇ 3 , and has a transmission effect on the light with the wavelengths ⁇ 1 and ⁇ 4;
  • Two fourth dichroic beam splitter having a wavelength of 404 pairs of reflection light 2 ⁇ , 1, ⁇ 3 and ⁇ 4 light has a transmission effect on the wavelength ⁇ .
  • the detection module 8 includes a fifth dichroic beam splitter 800, a first detection light path, and a second detection light path.
  • the fifth dichroic beam splitter 800 transmits the received light to the first detection light path or reflects to the second detection light path.
  • the first detection optical path includes a first collection lens 801, a first pinhole 802, and a first detector 803, and the second detection optical path includes a second collection lens 811, a second pinhole 812, and a second detector 813;
  • the imaging light beam carrying human eye light intensity information is transmitted through the fifth dichroic beam splitter 800 and then output to the first collecting lens 801, passes through the first pinhole 802 and then reaches the first detector 803 to obtain the retinal imaging image; the returned human eye light
  • the imaging beam with strong information is reflected by the fifth dichroic beam splitter 800 and output to the second collecting lens 811, and then reaches the second detector 813 after passing through the second pinhole 812 to obtain the retinal imaging image.
  • the two fifth dichroic beam splitter 800 may be set to the transmission wavelength [lambda] 1, [lambda] 2 reflected wavelength; may be provided as a reflection wavelength [lambda], the transmittance of the wavelength ⁇ 2.
  • the fifth dichroic beam splitter 800 is either of the two setting modes, and does not affect the actual operation effect of the system.
  • the fifth dichroic beam splitter 800 When the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 , the light beam is transmitted into the collection lens 801 and the pinhole 802 to reach the detector 803; when the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 When 1 plays the role of reflection, the light beam is reflected into the collecting lens 811 and the pinhole 812 to reach the detector 813.
  • the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 , the light beam is transmitted into the collecting lens 801 and the pinhole 802 to reach the detector 803, and the fundus obtained by the detector 803
  • the retinal light signal is converted into an electrical signal and output to the control module 10.
  • the control module 10 performs signal synchronization processing, and the electrical signal is sampled and reconstructed to obtain a small field of view high-resolution imaging image of the retina, which is output to the output module 11 through the control module 10 Display, storage, processing and other functions.
  • the collection lenses 801 and 811 may be achromatic lenses, or apochromatic lenses, or a combination of lenses, and their focal lengths are not less than 100 mm.
  • the pinholes 802 and 812 are 50 microns in size, and their size can be changed according to the light energy efficiency, and should not exceed 200 microns.
  • the detectors 803 and 813 may be photomultiplier tubes, or avalanche diodes, or highly sensitive cameras.
  • the light source module 1 emits a light beam with a wavelength of ⁇ 1 , which can be approximated as a point light source 101, collimated into a parallel beam by the collimator 102, and split by the first beam splitter 103, 20% of the light energy is transmitted through the wavefront correction
  • the parallel beam continues to pass through the first transmissive or reflective telescope 301 to achieve pupil diameter matching, and reaches the biaxial scanning mirror 302.
  • the biaxial scanning mirror 302 scans the beam horizontally and vertically, and passes through the second transmission Type or reflective telescope 303; reach the first dichroic beam splitter 401, reflected by the first dichroic beam splitter 401, and then transmitted to the second dichroic beam splitter 402 through the small field of view relay module 5 to form the
  • a badal focusing mechanism 502 composed of a set of flat mirrors is arranged between the lens or spherical mirrors 501 and 503 of the small field of view relay module 5, and the badal focusing mechanism 502 reciprocates back and forth along the center of the optical axis to realize the correction of the refractive error of the human eye.
  • the second dichroic beam splitter 402 reflects the light beam through the third dichroic beam splitter 403 and the fourth dichroic beam splitter 404, and then passes through the hollow part of the annular LED array 701 to reach the human eye, and is The optical system is focused to a point on the fundus retina;
  • the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the aberration information of the human eye and the light intensity information of the point of the fundus returns along the original path and exits through the beam scanning module 3, and then is reflected by the wavefront corrector 201 to
  • the first beam splitter 103 the first beam splitter 103 reflects 80% of the light to the second beam splitter 202 for splitting, and 5% of the light energy reaching the second beam splitter 202 is reflected into the filter 203 and the wavefront sensor 204 ;
  • the remaining 95% of the light energy is transmitted to the fifth dichroic beam splitter 800 through transmission;
  • the wavefront sensor 204 transmits the received human eye aberration information to the control module 10.
  • the control module 10 restores the wavefront aberration and calculates the aberration correction voltage, and then transmits the difference correction voltage to the wavefront corrector 201, Real-time human eye aberration correction;
  • the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 , and transmits the light of the second beam splitter 202, and then after being completely transmitted by the fifth dichroic beam splitter 800, it passes through the second beam splitter.
  • a collecting lens 801 and a first pinhole 802 finally reach the first detector 803.
  • the first detector 803 converts the obtained fundus retinal light signal into an electrical signal, and outputs it to the control module 10, which performs signal synchronization processing, and The electrical signal is sampled and reconstructed to obtain a high-resolution imaging image of the retina with a small field of view, which is then displayed and stored by the output module 11.
  • the wavelength of the light source 101 is ⁇ 1 , which includes at least one or more of the laser light sources 101 with a characteristic wavelength in the range of 600nm-850nm.
  • Multiple light sources 101 (101a, 101b, 101c) can be coupled through the fiber coupler 104
  • the entering collimator 102 is collimated into a parallel beam, and then enters the first beam splitter 103, as shown in FIG. 3; multiple light sources 101 (101a, 101b, 101c) can also pass through their respective collimators 102 (102a, 102a, 101c).
  • 102b, 102c are collimated into parallel beams and then transmitted or reflected by a number of beamsplitters (103b, 103c) and then coupled into the optical path, and then coupled into the optical path of the system by the first beamsplitter 103, as shown in FIG. 4.
  • Typical selectable wavelengths are 670 nm, 730 nm, 795 nm, 830 nm, etc.
  • ⁇ 1 selected in this embodiment as the small field of view high-resolution imaging wavelength is 670 nm and 795 nm.
  • the filter 203 can be a broadband filter 203, the transmission wavelength band meets the selected wavelength ⁇ 1 for small field of view high-resolution imaging; it can also be a combination of multiple narrow-band filters, and the transmission wavelength meets the selection of small field of view high-resolution imaging The wavelength ⁇ 1 .
  • the collimator 102 can be a single lens, or an achromatic lens, or an apochromatic lens, or a combination of lenses, or a parabolic mirror, used to collimate the light beam emitted by the light source 101 into a parallel light beam, which is selected in this embodiment Thorlabs' reflective collimator RC12FC-P01.
  • the first beam splitter 103 is a wide-band beam splitter, and its transmittance and reflectance ratio is 20:80.
  • the second beam splitter 202 is a wide-band beam splitter with a transmittance and reflectance ratio of 95:5.
  • the biaxial scanning mirror 302 can be a two-dimensional scanning galvanometer to realize the horizontal and vertical scanning of the beam; it can also be a combination of two one-dimensional scanning galvanometers, and the scanning directions of the two scanning galvanometers are set to orthogonal directions, respectively
  • two scanning galvanometers are connected through a transmissive telescope or a reflective telescope to achieve pupil matching.
  • the biaxial scanning mirror 302 in this embodiment is a fast reflection mirror MR-30-15-G-25 ⁇ 25D from Optotune Company.
  • the small field of view relay module 5 includes a transmissive telescope composed of lenses 501 and 503, or a reflective telescope composed of spherical mirrors 501 and 503, and the telescope magnification is N 5 and greater than 1.
  • the beam diameter of the wavelength ⁇ 1 at the pupil of the human eye is 6-8 mm.
  • Transmissive or reflective telescopes composed of lenses or spherical mirrors 301, 303 and lenses or spherical mirrors 501, 503.
  • the magnification product of the two sets of telescopes is greater than 1, which is equal to the wavelength ⁇ 1 and the beam diameter and biaxial output from the pupil of the human eye.
  • the product of N 3 and N 5 of the two sets of telescopes is 3-4; when the beam diameter of the biaxial scanning mirror 302 is 3 mm, the magnification of the two sets of telescopes The product of N 3 and N 5 is 2-3.
  • the light source module 1 emits a beam with a wavelength of ⁇ 2 , which can be approximated as a point light source 101, collimated into a parallel beam by the collimator 102, and split by the first beam splitter 103, 20% of the light energy is transmitted through the wavefront correction
  • the parallel beam continues to pass through the first transmissive or reflective telescope 301 to achieve pupil diameter matching, and reaches the biaxial scanning mirror 302.
  • the biaxial scanning mirror 302 scans the beam horizontally and vertically, and passes through the second transmission
  • the type or reflection type telescope 303 propagates; it reaches the first dichroic beam splitter 401, passes through the first dichroic beam splitter 401, the second dichroic beam splitter 402, and is reflected by the third dichroic beam splitter 403, Then it is transmitted to the fourth dichroic dichroic mirror 404 via the large field of view relay template 6, and a badal tone composed of a set of flat mirrors is arranged between the lenses or spherical mirrors 601 and 603 that make up the large field of view relay template 6.
  • the focusing mechanism 602 and the badal focusing mechanism 602 move back and forth along the center of the optical axis to compensate for the refractive error of the human eye.
  • the fourth dichroic beam splitter 404 After the light beam is reflected by the fourth dichroic beam splitter 404, it passes directly through the hollow part of the annular LED array 701 and finally Reach the human eye, and focus the light beam to a point on the fundus retina through the optical system of the human eye;
  • the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the light intensity information of the human eye fundus returns along the original path and exits through the beam scanning module 3, and then is reflected by the wavefront corrector 201 to the first beam splitter 103.
  • the first dichroic mirror 103 reflects 80% of the light to the second dichroic mirror 202 for splitting, and for the light reaching the second dichroic mirror 202, 95% of the light energy is transmitted to the fifth dichroic dichroic mirror 800;
  • the fifth dichroic beam splitter 800 is set to play a reflection wavelength ⁇ 2 pair, the transmitted light of the second dichroic mirror 202, the dichroic mirror 800 and then by two fifth reflecting dichroic After all, through the first
  • the second collecting lens 811 and the second pinhole 812 finally arrive at the second detector 813
  • the second detector 813 converts the obtained fundus retinal light signal into an electrical signal, and outputs it to the control module 10, and the control module 10 performs signal synchronization processing, and
  • the electrical signal is sampled and reconstructed to obtain a low-resolution imaging image of the retina with a large field of view, which is then displayed and stored by the output module 11.
  • [Lambda] 2 wavelength light source 101 a characteristic for a wavelength in the range 900nm-1000nm, typically an optional wavelength by 904nm, 950nm and the like, preferably, selected [lambda] Example 2 of the present embodiment as a large field of view of the imaging wavelength resolution 950nm.
  • the large field of view relay module 6 includes a transmissive telescope composed of lenses 601 and 603, or a reflective telescope composed of spherical mirrors 601, 603 , and the magnification of the telescope is N 5 and less than 1.
  • the beam diameter of the wavelength ⁇ 2 at the pupil of the human eye 12 is 1-3 mm.
  • the product of N 3 and N 5 of the two sets of telescopes is 0.5-1.5; when the beam diameter of the biaxial scanning mirror 302 is 3 mm, the magnification of the two sets of telescopes The product of N 3 and N 5 is 1/3-1.
  • the subjects' related processes mainly include pupil alignment and monitoring, visual target guidance and fixation.
  • the pupil monitoring module 7 includes a ring-shaped LED array 701, an imaging lens 702, and an area array detector 703.
  • the ring-shaped LED array 701 includes at least three LED lamp beads arranged in a ring at equal intervals, and the hollow part has a light transmission aperture not less than the imaging beam aperture , an annular LED array 701 of light emission wavelength ⁇ 3 reaches the pupil of the eye, the pupil of the eye of the light beam reflected back through the hollow portion of annular LED array 701, the dichroic mirror 404 through the fourth dichroic transmissive second, third dichroic After the spectroscope 403 is reflected, it is focused by the imaging lens 702 to the area array detector 703.
  • the area array detector 703 converts the optical signal into an electrical signal, outputs it to the control module 10 to obtain the pupil imaging image, and outputs it to the output module 11 for display, Storage, processing and other functions.
  • the subject’s head is located on the headrest, which has a three-dimensional translation adjustment function, which can be adjusted manually through the guide rail, or can be configured as a motor-driven guide rail.
  • the control module 1010 drives the motor to achieve automatic adjustment. Make the pupil imaging in the middle area of the field of view.
  • the LED lamp beads of the annular LED array 701 select a certain characteristic wavelength ⁇ 3 in the wavelength range above 1000 nm, and typical selectable wavelengths are 1020 nm, 1310 nm, and so on.
  • the wavelength of 1020 nm is selected in this embodiment.
  • the visual target module 9 includes an LED array 901, a visual target lens 902, and a first plane reflector 903.
  • an LED lamp bead in the LED array 901 is lit, and the LED lamp bead emits light with a wavelength of ⁇ 4 through the visual target.
  • the lens 902 propagates, it is reflected by the first plane mirror 903, reflected by the first dichroic dichroic mirror 401, and then transmitted by the second, third, and fourth dichroic dichroic mirrors 402, 403, 404 and then passes through the ring
  • the hollow part of the LED array 701 finally enters the human eye 12, and the human eye looks at the luminous LED lamp bead to achieve fixation.
  • control module 10 to light up the lamp beads at different positions on the LED array 901, different areas of the fundus retina will be guided into imaging areas.
  • the LED array 901 is an even-spaced array of LED lamp beads. Typical arrangements are 3 ⁇ 3, 4 ⁇ 4, etc.
  • the selected wavelength is a characteristic wavelength ⁇ 4 in the visible light band, and is the same as the wavelength included in the light source 101 ⁇ 1 and ⁇ 2 maintain a bandwidth difference of at least 50 nm. In this embodiment, the wavelength ⁇ 4 is selected to be 550 nm.
  • step (5) and step (6) have no sequence requirements, and the operations can be selected according to actual needs.
  • this application proposes a common beam scanning retinal imaging system based on the basic principles of confocal scanning technology, which uses adaptive optics technology to correct human eye aberrations in real time.
  • confocal scanning imaging in a large field of view can be realized at the same time, a single large field of view imaging range is greater than 20 degrees, and a small field of view
  • the adaptive optics high-resolution imaging function within the field range, a single small field of view adaptive optics high-resolution imaging field of view range is not more than 5 degrees.
  • the system can not only observe the large-scale disease focus area of the retina with a large field of view imaging, but also observe the fine structure of the focus with high-resolution imaging with a small field of view, which greatly expands the application range of existing confocal imaging equipment.
  • the common beam scanning retinal imaging system of the present application uses only one set of scanning mirrors and adopts a common optical path structure, which can simultaneously obtain large-field low-resolution imaging images and small-field high-resolution imaging images of the fundus retina, two imaging images Fully synchronized, with the same center position and imaging speed.
  • the system realizes the coupling and separation of different imaging beams of the common optical path through two separate relay transition optical paths, and simultaneously performs retinal illumination and imaging detection of the fundus.
  • the system is simple in structure, simple in control, and rich in functions.
  • the system is also equipped with an optotype module.
  • the common-beam scanning retinal imaging system can simultaneously acquire large-field low-resolution imaging images and small-field high-resolution imaging images of the fundus retina, and the two types of imaging images are acquired by the common optical path structure, so the two types of imaging The images have the same center position and imaging speed, and the image characteristics are consistent, which is convenient for comparison processing and operation.
  • the system has a simple structure, and the common optical path structure can simultaneously obtain high and low resolution retinal imaging images: large field of view low resolution imaging images can observe the characteristics of the structure and lesions in a large area of the retina, and small field of view high resolution imaging images You can observe the fine structure of the area, such as cells, capillaries, nerve fibers, etc.
  • a variety of imaging images are acquired through common optical path beam scanning to meet the needs of different application scenarios and greatly increase the application range of retinal imaging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种共光束扫描的视网膜成像系统,包括:光源模块(1)、自适应光学模块(2)、光束扫描模块(3)、小视场中继模块(5)、大视场中继模块(6)、视标模块(9)、瞳孔监测模块(7)、探测模块(8)、控制模块(10)和输出模块(11)。该系统利用自适应光学技术实时校正人眼像差,通过光束同步扫描设置,结合小视场和大视场两套中继光路结构,可以同时实现大视场范围内的共焦扫描成像功能以及小视场范围内的自适应光学高分辨率成像功能。该系统既可以大视场成像观察视网膜大范围的疾病病灶区域,也可以小视场高分辨率成像观察病灶的微细结构,多种成像图像通过共光路光束扫描获取,满足不同的应用场景需求,极大地扩展了现有共焦成像设备的应用范围。

Description

共光束扫描的视网膜成像系统
交叉引用
本申请要求在2019年9月9日提交中国专利局、申请号为201910865740.4、申请名称为“共光束扫描的视网膜成像系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学成像技术领域,特别涉及一种共光束扫描的视网膜成像系统。
背景技术
传统的共焦扫描技术,在1987年发展成为成熟的激光共焦扫描成像设备(Webb R,Hughes G,Delori F.Confocal scanning laser ophthalmoscope.Applied optics.1987;26(8):1492-9),并且广泛应用于视网膜成像,可以实现大视场的眼底视网膜活体成像。但是,眼球是一个复杂的光学系统,即使是无屈光不正的的眼睛也不可避免地存在光学像差,尤其是为了获得大数值孔径下的高分辨率,大瞳孔下根据光学理论可以得到更高的衍射极限分辨率,但大瞳孔带来更多的人眼像差极大地限制了实际分辨率,传统的激光共焦扫描检眼镜通常可以获取眼底10度以上大视场成像图像,但是很难分辨20微米以下的血管,更谈不上观察视细胞等微细结构。
十九世纪九十年代,随着自适应光学技术被引入眼底视网膜成像中,利用自适应光学变形镜等校正器件可以很好地校正人眼像差,从而获取衍射极限的高分辨率,使得首次实现活体观察视网膜微细血管和视细胞。专利号为ZL201010197028.0的申请专利提出基于自适应光学技术的视网膜成像装置,该装置通过两个独立的扫描振镜实现视网膜平面二维同步扫描,用以实现共焦扫描成像,可以实现高分辨率成像功能。但是,该装置只能实现人眼最大3度视场的高分辨率成像。受自适应光学像差校正等晕区的限制,自适应光学在实现高分辨率成像的同时,往往在成像视场上作出了妥协,只能实现3°以内的小视场成像。
综上所述可知,现有的激光共焦扫描检眼镜成像视场大,但是分辨率不足以观察视网膜微细结构;结合自适应光学的激光共焦扫描检眼镜可以观察视网膜微细结构,但是成像视场小,无法观察较大视场的病灶情况。
申请内容
本申请所要解决的技术问题在于针对上述现有技术中的不足,提供一种共光束扫描的视网膜成像系统。
为解决上述技术问题,本申请采用的技术方案是:一种共光束扫描的视网膜成像系统,包括:光源模块、自适应光学模块、光束扫描模块、小视场中继模块、大视场中继模块、视标模块、瞳孔监测模块、探测模块、控制模块和输出模块;
所述光源模块可出射至少两种不同波长的平行光束,平行光束依次经过所述自适应光学模块、光束扫描模块、小视场中继模块或大视场中继模块照射到人眼,人眼散射的携 带人眼像差信息和光强信息的成像光沿原路返回,并传输到所述自适应光学模块和探测模块;
所述自适应光学模块用于接收含人眼像差信息的成像光,实现波前像差的实时测量和校正;
所述光束扫描模块包括双轴扫描镜,其沿光路的入射端通过第一透射式或反射式望远镜与所述自适应光学模块连接,其沿光路的出射端通过第二透射式或反射式望远镜与所述小视场中继模块或大视场中继模块连接,以分别实现小视场高分辨率成像和大视场低分辨率成像;
所述小视场中继模块配置为扩束望远镜,所述大视场中继模块配置为缩束望远镜;
所述视标模块用于实现对人眼的视标引导与固视;
所述瞳孔监测模块用于实现对人眼瞳孔的对准与监测;
所述探测模块用于获取返回的人眼成像光,并转换为电信号后传输至所述控制模块;
所述输出模块与所述控制模块连接,用于对人眼成像图像进行显示和存储。
可选地,该系统还包括二向色分光镜组模块,其包括沿入射光路依次设置的第一二向色分光镜、第二二向色分光镜、第三二向色分光镜、第四二向色分光镜;
所述光源模块包括沿入射光路依次设置的光源、准直器以及第一分光镜,其输出平行光束至所述自适应光学模块;所述光源发出的光经所述准直器后部分透射所述第一分光镜,进入所述自适应光学模块;
所述自适应光学模块包括沿返回的人眼成像光光路依次设置的波前校正器、第二分光镜、滤光片以及波前传感器,其与所述光束扫描模块连接;所述光源模块输出的平行光束经所述波前校正器反射至所述光束扫描模块;返回的携带人眼像差信息和光强信息的成像光经过所述光束扫描模块出射,由所述波前校正器反射至所述第一分光镜,所述第一分光镜反射的光中一部分再由所述第二分光镜反射,经过所述滤光片后到达所述波前传感器,实现波前像差测量,另一部分透射所述第二分光镜进入所述探测模块;
所述波前传感器接受到含有人眼像差信息的成像光束后传输至所述控制模块进行波前计算,实现对波前像差的探测,得到波前控制电压并输出给所述波前校正器,所述波前校正器实现对波前像差的校正。
可选地,所述探测模块包括第五二向色分光镜、第一探测光路和第二探测光路,所述第五二向色分光镜将接收的光透射至所述第一探测光路,同时反射至所述第二探测光路;所述第一探测光路包括第一收集透镜、第一针孔、第一探测器,所述第二探测光路包括第二收集透镜、第二针孔、第二探测器;返回的携带人眼光强信息的成像光束透射所述第五二向色分光镜后输出至所述第一收集透镜,经过所述第一针孔后到达所述第一探测器,得到视网膜成像图像;返回的携带人眼光强信息的成像光束由所述第五二向色分光镜反射后输出至所述第二收集透镜,经过所述第二针孔后到达所述第二探测器,得到视网膜成像图像;
所述光束扫描模块包括沿入射光路依次设置的第一透射式或反射式望远镜、双轴扫描镜、第二透射式或反射式望远镜,所述双轴扫描镜由所述控制模块输出周期性电压驱动实现对视网膜平面的横向和纵向二维扫描。
可选地,所述视标模块包括LED阵列、视标透镜和第一平面反射镜,所述LED阵列 中的任意一个灯珠被所述控制模块点亮后发出的光,经过所述透镜传播后由所述第一平面反射镜反射,再被所述第一二向色分光镜反射,依次透射所述第二二向色分光镜、第三二向色分光镜、第四二向色分光镜,然后到达人眼,人眼注视该发光的LED灯珠,实现固视;
所述瞳孔监测模块包括环形LED阵列、成像透镜和面阵探测器,所述环形LED阵列发出的光照明人眼瞳孔,经人眼瞳孔反射后穿过所述环形LED阵列的中空部位,透射所述第四二向色分光镜后被所述第三二向色分光镜反射,最后由所述成像透镜聚焦到所述面阵探测器进行瞳孔成像,所述面阵探测器将接收到的光信号转换成电信号后输出至所述控制模块,所述控制模块得到瞳孔成像图像,最后输出至所述输出模块进行显示、存储。
可选地,所述小视场中继模块包括由第一透镜和第二透镜组成的透射式望远镜,或者由第一球面反射镜、第二球面反射镜组成的反射式望远镜,其放大倍率大于1;所述小视场中继模块还包括设置在所述望远镜两片透镜或球面反射镜之间的第一调焦机构,所述第一调焦机构包括两片正交的平面反射镜,所述第一调焦机构可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正;
所述大视场中继模块包括由第三透镜和第四透镜组成的透射式望远镜,或者由第三球面反射镜、第四球面反射镜组成的反射式望远镜,其放大倍率小于1;所述大视场中继模块还包括设置在所述望远镜两片透镜或球面反射镜之间的第二调焦机构,所述第二调焦机构包括两片正交的平面反射镜,所述第二调焦机构可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正。
可选地,所述小视场高分辨率成像的实现方法为:
所述光源模块出射的光束经过所述自适应光学模块的所述波前校正器、所述光束扫描模块、所述第一二向色分光镜反射传递至所述小视场中继模块后出射,经所述第二二向色分光镜反射,然后经所述第三二向色分光镜、第四二向色分光镜透射后穿过所述环形LED阵列的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点,眼底视网膜对入射光束进行散射,散射的携带着人眼的像差信息和眼底该点的光强信息的成像光束,沿原路返回经所述光束扫描模块出射,再经所述波前校正器反射至所述第一分光镜,所述第一分光镜将光束反射传播至所述第二分光镜后,一部分反射光进入所述波前传感器,所述波前传感器将接收到的人眼像差信息传递到所述控制模块,所述控制模块对波前像差进行复原并计算得到像差校正电压,然后将像差校正电压传给所述波前校正器,实现实时人眼像差校正;同时,另一部分光透射所述第二分光镜,再经所述第五二向色分光镜全部透射后,经过所述第一收集透镜和所述第一针孔最终到达所述第一探测器,所述第一探测器将获得的眼底视网膜光信号转换为电信号,输出至所述控制模块,所述控制模块进行信号同步处理,并将所述电信号采样重构得到视网膜小视场高分辨率成像图像,再通过所述输出模块进行显示、存储;
所述大视场低分辨率成像的实现方法为:
所述光源模块出射的光束经过所述自适应光学模块的所述波前校正器、所述光束扫描模块、所述第一二向色分光镜、第二二向色分光镜透射,再由所述第三二向色分光镜反射进入至所述大视场中继模块后出射,经所述第四二向色分光镜反射后穿过所述环形LED阵列的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点,眼底视网膜对入 射光束进行散射,散射的携带着人眼眼底该点光强信息的成像光束,沿原路返回经所述光束扫描模块出射,再经所述波前校正器反射至所述第一分光镜,所述第一分光镜将光束反射传播至所述第二分光镜后,经所述第二分光镜透射,再经所述第五二向色分光镜全部反射,经过所述第二收集透镜和所述第二针孔最终到达所述第二探测器,所述第二探测器将获得的眼底视网膜光信号转换为电信号,输出至所述控制模块,所述控制模块进行信号同步处理,并将所述电信号采样重构得到视网膜大视场低分辨率成像图像,再通过所述输出模块进行显示、存储。
可选地,所述光源模块包括至少两个光源,多个光源可以通过光纤耦合器耦合进入准直器被准直为平行光束;多个光源也可以分别经各自的准直器准直为平行光束后经二向色分光镜合束进入光路中;
所述光源模块出射的光包括波长为λ 1和波长为λ 2的光,λ 1为600nm-850nm,波长为λ 1的光用于进行小视场高分辨率成像;λ 2为900nm-1000nm,波长为λ 2的光用于进行大视场低分辨率成像;
所述环形LED阵列包含至少三颗LED灯珠,为环形等间距排布,中空部位透光口径不小于成像光束口径,其中的LED灯珠发出的光的波长为λ 3,且λ 3大于1000nm;
所述视标模块的所述LED阵列为等间距阵列排布的LED灯珠,其发出的光的波长λ 4,波长范围为380nm-760nm的可见光光谱,且λ 4与λ 1、λ 2之间的差值至少为50nm。
可选地,所述第一二向色分光镜对波长为λ 1和λ 4的光具有反射作用,对波长为λ 2的光具有透射作用;
所述第二二向色分光镜对波长为λ 1的光具有反射作用,对波长为λ 2和λ 4的光具有透射作用;
所述第三二向色分光镜对波长为λ 2和λ 3的光具有反射作用,对波长为λ 1和λ 4的光具有透射作用;
所述第四二向色分光镜对波长为λ 2的光具有反射作用,对波长λ 1、λ 3和λ 4的光具有透射作用。
可选地,所述自适应光学模块中的所述波前传感器是从微棱镜阵列哈特曼波前传感器、微透镜阵列哈特曼波前传感器、四棱锥传感器和曲率传感器中选择的,所述波前校正器是从变形反射镜、液晶空间光调制器、微加工薄膜变形镜、微机电变形镜、双压电陶瓷变形镜、液体变形镜中选择的;
所述第二分光镜将第一分光镜反射来的成像光束分光,5%的光被反射经所述滤光片后进入所述波前传感器,实现波前像差测量;其余95%光被透射至所述第五二向色分光镜;
所述滤光片可以是宽带滤光片,透过波段满足小视场高分辨率成像所选波长λ 1;也可以是多个窄带滤波片组合,透过波长满足小视场高分辨率成像所选波长λ 1;大视场低分辨率成像所选波长λ 2的成像光束被所述滤光片全部阻挡,不进入波前传感器;
所述波前传感器探测得到的波前像差经控制模块处理,得到波前控制电压并输出给波前校正器,实现对波前像差的校正。
可选地,所述双轴扫描镜可以是一片二维扫描振镜,实现对光束的横向和纵向扫描;也可以是两片一维扫描振镜组合,两片扫描振镜的扫描方向设置为正交方向,分别实现对光束的横向和纵向扫描,并且两片扫描振镜通过透射式望远镜或反射式望远镜连接实现光 瞳匹配;
所述第一透射式望远镜或反射式望远镜用于将所述波前校正器与所述双轴扫描镜连接实现光瞳匹配,其放大倍率为所述双轴扫描镜与所述波前校正器的光束通光口径之比;
所述第二透射式望远镜或反射式望远镜用于将所述双轴扫描镜的出射光共轭传递至所述第一二向色分光镜。
本申请的有益效果是:
本申请提供的共光束扫描的视网膜成像系统,只采用一套扫描机构,可以同时获取眼底视网膜大视场低分辨率成像图像与小视场高分辨率成像图像,并且两类成像图像由共光路结构采集获得,因此两类成像图像具有相同的中心位置和成像速度,图像特征一致性好,便于进行对比处理和操作;
对比国内外在激光共焦扫描成像领域的技术成果,本申请利用自适应光学技术实时校正人眼像差,通过共光束同步扫描设置,结合小视场和大视场两套中继光路结构,可以同时实现大视场范围内的共焦扫描成像功能,单次的大视场成像范围大于20度,以及小视场范围内的自适应光学高分辨率成像功能,单次的小视场自适应光学高分辨率成像视场范围不大于5度。该系统既可以大视场成像观察视网膜大范围的疾病病灶区域,也可以小视场高分辨率成像观察病灶的微细结构,多种成像图像通过共光路光束扫描获取,满足不同的应用场景需求,极大地扩展了现有共焦成像设备的应用范围。
附图说明
图1为本申请的共光束扫描的视网膜成像系统的原理框图;
图2为本申请的共光束扫描的视网膜成像系统的光路结构图;
图3为本申请的一种实施例中的光源模块的光路结构示意图;
图4为本申请的另一种实施例中的光源模块的光路结构示意图;
图5为本申请的共光束扫描的视网膜成像系统的成像流程示意图。
附图标记说明:
1—光源模块;2—自适应光学模块;3—光束扫描模块;5—小视场中继模块;6—大视场中继模块;7—瞳孔监测模块;8—探测模块;9—视标模块;10—控制模块;11—输出模块;12—人眼;101—光源;102—准直器;103—第一分光镜;201—波前校正器;202—第二分光镜;203—滤光片;204—波前传感器;301—第一透射式或反射式望远镜;302—双轴扫描镜;303—第二透射式或反射式望远镜;401—第一二向色分光镜;402—第二二向色分光镜;403—第三二向色分光镜;404—第四二向色分光镜;501—第一透镜或第一球面反射镜;502—第一调焦机构;503—第二透镜或第二球面反射镜;601—第三透镜或第三球面反射镜;602—第二调焦机构;603—第四透镜或第四球面反射镜;701—环形LED阵列;702—成像透镜;703—面阵探测器;800—第五二向色分光镜;801—第一收集透镜;802—第一针孔;803—第一探测器;811—第二收集透镜;812—第二针孔;813—第二探测器;901—LED阵列;902—视标透镜;903—第一平面反射镜。
具体实施方式
下面结合实施例对本申请做进一步的详细说明,以令本领域技术人员参照说明书文字 能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
如图1-2所示,本实施例的一种共光束扫描的视网膜成像系统,包括:光源模块1、自适应光学模块2、光束扫描模块3、小视场中继模块5、大视场中继模块6、视标模块9、瞳孔监测模块7、探测模块8、控制模块10和输出模块11;
光源模块1可出射至少两种不同波长的平行光束,平行光束依次经过自适应光学模块2、光束扫描模块3、小视场中继模块5、大视场中继模块6照射到人眼12,人眼12散射的携带人眼像差信息和光强信息的成像光沿原路返回,并传输到自适应光学模块2和探测模块8;
自适应光学模块2用于接收含人眼像差信息的成像光,实现波前像差的实时测量和校正;
光束扫描模块3包括双轴扫描镜302,其沿光路的入射端通过第一透射式或反射式望远镜301与自适应光学模块2连接,其沿光路的出射端通过第二透射式或反射式望远镜303与小视场中继模块5或大视场中继模块6连接,以分别实现小视场高分辨率成像和大视场低分辨率成像;
小视场中继模块5配置为扩束望远镜,大视场中继模块6配置为缩束望远镜;
视标模块9用于实现对人眼的视标引导与固视;
瞳孔监测模块7用于实现对人眼瞳孔的对准与监测;
探测模块8用于获取返回的人眼成像光,并转换为电信号后传输至控制模块10;
输出模块11与控制模块10连接,用于对人眼成像图像进行显示和存储。
其中,光源模块1包括沿入射光路依次设置的光源101、准直器102以及第一分光镜103,其输出平行光束至自适应光学模块2;光源101发出的光经准直器102后部分透射第一分光镜103,进入自适应光学模块2。其中,光源模块1包括至少两个光源101,多个光源101可以通过光纤耦合器耦合进入准直器102被准直为平行光束;多个光源101也可以分别经各自的准直器102准直为平行光束后经二向色分光镜合束进入光路中;
在优选的实施例中,光源模块1出射的光包括波长为λ 1和波长为λ 2的光,λ 1为600nm-850nm,典型的可选波长有670nm、730nm、795nm、830nm,进一步优选为670nm和795nm,波长为λ 1的光用于进行小视场高分辨率成像;λ 2为900nm-1000nm,波长为λ 2的光用于进行大视场高分辨率成像。
在优选的实施例中,准直器102可以是单透镜、或消色差透镜、或复消色差透镜、或透镜组合,也可以是抛物面反射镜,用于将光源101出射的光束准直为平行光束,本实施例中选取thorlabs公司的反射式准直器RC12FC-P01。分光镜为宽波段分光镜,其透射反射比为20:80。
其中,瞳孔监测模块7包括环形LED阵列701、成像透镜702和面阵探测器703,环形LED阵列701发出的光照明人眼瞳孔,经人眼瞳孔反射后穿过环形LED阵列701的中空部位,透射第四二向色分光镜404后被第三二向色分光镜403反射,最后由成像透镜702聚焦到面阵探测器703进行瞳孔成像,面阵探测器703将接收到的光信号转换成电信 号后输出至控制模块10,得到瞳孔成像图像,最后输出至输出模块11进行显示、存储。
在优选的实施例中,环形LED阵列701包含至少三颗LED灯珠,为环形等间距排布,中空部位透光口径不小于成像光束口径,其中的LED灯珠发出的光的波长为λ 3,且λ 3大于1000nm;典型的可选波长有1020nm、1310nm等。优选地,本实施例选择1020nm波长。
其中,视标模块9包括LED阵列901、视标透镜902和第一平面反射镜903,LED阵列901中的任意一个灯珠被控制模块10点亮后发出的光,经过视标透镜902传播后由第一平面反射镜903反射,再被第一二向色分光镜401反射,依次透射第二二向色分光镜402、第三二向色分光镜403、第四二向色分光镜404、环形LED阵列701的中空部分,然后到达人眼12,人眼注视该发光的LED灯珠,实现固视。
LED阵列901为等间距阵列排布的LED灯珠,其发出的光的波长λ 4,且λ 4与λ 1、λ 2之间的差值至少为50nm。
其中,自适应光学模块2包括沿返回的人眼成像光光路依次设置的波前校正器201、第二分光镜202、滤光片203以及波前传感器204,其与光束扫描模块3连接;光源模块1输出的平行光束经波前校正器201反射至光束扫描模块3;返回的携带人眼像差信息和光强信息的成像光经过光束扫描模块3出射,由波前校正器201反射至第一分光镜103,第一分光镜103反射的光中一部分再由第二分光镜202反射,经过滤光片203后到达波前传感器204,实现波前像差测量,另一部分透射第二分光镜202进入探测模块8。
在优选的实施例中,自适应光学模块2中的波前传感器204是从微棱镜阵列哈特曼波前传感器204、微透镜阵列哈特曼波前传感器204、四棱锥传感器和曲率传感器中选择的,波前校正器201是从变形反射镜、液晶空间光调制器、微加工薄膜变形镜、微机电变形镜、双压电陶瓷变形镜、液体变形镜中选择的;
在优选的实施例中,第二分光镜202为宽波段分光镜,其透射反射比为95:5。第二分光镜202将第一分光镜103反射来的成像光束分光,5%的光被反射经滤光片203后进入波前传感器204,实现波前像差测量;其余95%光被透射至第五二向色分光镜800;滤光片203可以是宽带滤光片203,透过波段满足小视场高分辨率成像所选波长λ 1;也可以是多个窄带滤波片组合,透过波长满足小视场高分辨率成像所选波长λ 1;大视场低分辨率成像所选波长λ 2的成像光束被滤光片203全部阻挡,不进入波前传感器204;
波前传感器204接受到含有人眼像差信息的成像光束后传输至控制模块10进行波前计算,波前传感器204实现波前像差的测量,得到波前控制电压并输出给波前校正器201,波前校正器201实现对波前像差的校正。
其中,光束扫描模块3包括沿入射光路依次设置的第一透射式或反射式望远镜301、双轴扫描镜302、第二透射式或反射式望远镜303,双轴扫描镜302由控制模块10输出周期性电压驱动实现对视网膜平面的横向和纵向二维扫描。
在优选的实施例中,双轴扫描镜302可以是一片二维扫描振镜,实现对光束的横向和纵向扫描;也可以是两片一维扫描振镜组合,两片扫描振镜的扫描方向设置为正交方向,分别实现对光束的横向和纵向扫描,并且两片扫描振镜通过透射式望远镜或反射式望远镜 连接实现光瞳匹配;本实施例中双轴扫描镜302为Optotune公司的快速反射镜MR-30-15-G-25×25D。
在优选的实施例中,第一透射式望远镜或反射式望远镜用于将波前校正器201与双轴扫描镜302连接实现光瞳匹配,其放大倍率为双轴扫描镜302与波前校正器201的光束通光口径之比;
第二透射式望远镜或反射式望远镜用于将双轴扫描镜302的出射光共轭传递至第一二向色分光镜401,其放大倍率为N 3
其中,小视场中继模块5包括由第一透镜和第二透镜(501、503)组成的透射式望远镜,或者由第一球面反射镜、第二球面反射镜(501、503)组成的反射式望远镜,其放大倍率大于1,记为N 5;小视场中继模块5还包括设置在望远镜两片透镜或球面反射镜之间的第一调焦机构502,第一调焦机构502包括两片正交的平面反射镜,第一调焦机构502可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正;
大视场中继模块6包括由第三透镜和第四透镜(601、603)组成的透射式望远镜,或者由第三球面反射镜、第四球面反射镜(601、603)组成的反射式望远镜,其放大倍率小于1,记为N 6;大视场中继模块6还包括设置在望远镜两片透镜或球面反射镜之间的第二调焦机构602,第二调焦机构602包括两片正交的平面反射镜,第二调焦机构602可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正。
其中,还包括二向色分光镜组模块,其包括沿入射光路依次设置的第一二向色分光镜401、第二二向色分光镜402、第三二向色分光镜403、第四二向色分光镜404。
其中,第一二向色分光镜401对波长为λ 1和λ 4的光具有反射作用,对波长为λ 2的光具有透射作用;
第二二向色分光镜402对波长为λ 1的光具有反射作用,对波长为λ 2和λ 4的光具有透射作用;
第三二向色分光镜403对波长为λ 2和λ 3的光具有反射作用,对波长为λ 1和λ 4的光具有透射作用;
第四二向色分光镜404对波长为λ 2的光具有反射作用,对波长λ 1、λ 3和λ 4的光具有透射作用。
其中,探测模块8包括第五二向色分光镜800、第一探测光路和第二探测光路,第五二向色分光镜800将接收的光透射至第一探测光路或是反射至第二探测光路;第一探测光路包括第一收集透镜801、第一针孔802、第一探测器803,第二探测光路包括第二收集透镜811、第二针孔812、第二探测器813;返回的携带人眼光强信息的成像光束透射第五二向色分光镜800后输出至第一收集透镜801,经过第一针孔802后到达第一探测器803,得到视网膜成像图像;返回的携带人眼光强信息的成像光束由第五二向色分光镜800反射后输出至第二收集透镜811,经过第二针孔812后到达第二探测器813,得到视网膜成像图像。
在优选的实施例中,第五二向色分光镜800可以设置为对波长λ 1透射,对波长λ 2反射;也可以设置为对波长λ 1反射,对波长λ 2透射。第五二向色分光镜800为该两种设置 方式中的任意一种,不影响系统实际运行效果。当第五二向色分光镜800设置为对波长λ 1起透射作用时,光束被透射进入收集透镜801和针孔802到达探测器803;当第五二向色分光镜800设置为对波长λ 1起反射作用时,光束被反射进入收集透镜811和针孔812到达探测器813。
进一步优选的,本实施例中,第五二向色分光镜800设置为对波长λ 1起透射作用,光束被透射进入收集透镜801和针孔802到达探测器803,探测器803将获取的眼底视网膜光信号转换为电信号,输出给控制模块10,由控制模块10进行信号同步处理,并将电信号采样重构得到视网膜小视场高分辨率成像图像,经控制模块10输出至输出模块11进行显示、存储、处理等功能。
在优选的实施例中,收集透镜801和811可以是消色差透镜、或复消色差透镜、或透镜组合,其焦距不小于100mm。针孔802和812为50微米,其大小可根据光能效率更换,不超过200微米。探测器803和813可以是光电倍增管、或雪崩二极管、或高灵敏相机。
本申请的成像系统实际工作中存在多个过程,包括小视场高分辨率成像过程、大视场低分辨率成像过程、受试者相关过程。以下结合实施例进一步说明。
1、小视场高分辨率成像过程:
光源模块1出射光束,波长为λ 1,可以近似看作点光源101,经过准直器102准直为平行光束,并由第一分光镜103分光,20%的光能被透射经波前校正器201反射,该平行光束继续经过第一透射式或反射式望远镜301实现光瞳口径匹配,到达双轴扫描镜302,双轴扫描镜302对该光束进行横向和纵向扫描,并经第二透射式或反射式望远镜303传播;到达第一二向色分光镜401,经第一二向色分光镜401反射,接着经小视场中继模块5传输至第二二向色分光镜402,组成该小视场中继模块5的透镜或球面反射镜501和503之间设置有一组平面反射镜组成的badal调焦机构502,badal调焦机构502沿光轴中心前后往复移动实现人眼屈光不正的补偿,第二二向色分光镜402对光束反射后经第三二向色分光镜403、第四二向色分光镜404透射后穿过环形LED阵列701的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点;
眼底视网膜对入射光束进行散射,散射的携带着人眼的像差信息和眼底该点的光强信息的成像光束,沿原路返回经光束扫描模块3出射,再经波前校正器201反射至第一分光镜103,第一分光镜103将80%的光反射至第二分光镜202分光,到达第二分光镜202的光中5%的光能经反射进入滤波片203和波前传感器204;剩余95%的光能经透射传播至第五二向色分光镜800;
波前传感器204将接收到的人眼像差信息传递到控制模块10,控制模块10对波前像差进行复原并计算得到像差校正电压,然后将差校正电压传给波前校正器201,实时人眼像差校正;
同时,本实施例中,第五二向色分光镜800设置为对波长λ 1起透射作用,透射第二分光镜202的光,再经第五二向色分光镜800全部透射后,经过第一收集透镜801和第一针孔802最终到达第一探测器803,第一探测器803将获得的眼底视网膜光信号转换为电信号,输出至控制模块10,控制模块10进行信号同步处理,并将电信号采样重构得到视 网膜小视场高分辨率成像图像,再通过输出模块11进行显示、存储。
光源101的波长为λ 1,至少包括波长为600nm-850nm范围内的某个特征波长激光光源101之一或多个,多个光源101(101a、101b、101c)可以通过光纤耦合器104耦合后进入准直器102被准直为平行光束,在进入第一分光镜103,如图3所示;多个光源101(101a、101b、101c)也可以分别经各自的准直器102(102a、102b、102c)准直为平行光束后经若干分光镜透射或反射(103b、103c)后耦合进入光路中,再由第一分光镜103耦合进入系统光路,如图4所示。典型的可选波长有670nm、730nm、795nm、830nm等,优选地,本实施例选取的λ 1作为小视场高分辨率成像波长有670nm和795nm。
滤光片203可以是宽带滤光片203,透过波段满足小视场高分辨率成像所选波长λ 1;也可以是多个窄带滤波片组合,透过波长满足小视场高分辨率成像所选波长λ 1
准直器102可以是单透镜、或消色差透镜、或复消色差透镜、或透镜组合,也可以是抛物面反射镜,用于将光源101出射的光束准直为平行光束,本实施例中选取thorlabs公司的反射式准直器RC12FC-P01。
第一分光镜103为宽波段分光镜,其透射反射比为20:80。第二分光镜202为宽波段分光镜,其透射反射比为95:5。
双轴扫描镜302可以是一片二维扫描振镜,实现对光束的横向和纵向扫描;也可以是两片一维扫描振镜组合,两片扫描振镜的扫描方向设置为正交方向,分别实现对光束的横向和纵向扫描,两片扫描振镜并且通过透射式望远镜或反射式望远镜连接实现光瞳匹配。优选地,本实施例中双轴扫描镜302为Optotune公司的快速反射镜MR-30-15-G-25×25D。
小视场中继模块5包括由透镜501、503组成的透射式望远镜,或者由球面反射镜501、503组成的反射式望远镜,望远镜放大倍率为N 5,且大于1。
在本实施例中,为了满足小视场高分辨率成像功能,波长λ 1在人眼瞳孔处的光束口径为6-8mm。透镜或球面反射镜301、303与透镜或球面反射镜501、503组成的透射式或反射望远镜,两套望远镜的放大倍率乘积大于1,等于波长λ 1在人眼瞳孔出的光束口径与双轴扫描镜302302的光束通光口径之比。当双轴扫描镜302的光束口径为2mm时,两套望远镜的放大倍率N 3与N 5之积为3-4;当双轴扫描镜302的光束口径为3mm时,两套望远镜的放大倍率N 3与N 5之积为2-3。
2、大视场低分辨率成像的过程:
光源模块1出射光束,波长为λ 2,可以近似看作点光源101,经过准直器102准直为平行光束,并由第一分光镜103分光,20%的光能被透射经波前校正器201反射,该平行光束继续经过第一透射式或反射式望远镜301实现光瞳口径匹配,到达双轴扫描镜302,双轴扫描镜302对该光束进行横向和纵向扫描,并经第二透射式或反射式望远镜303传播;到达第一二向色分光镜401,经第一二向色分光镜401、第二二向色分光镜402透射,再由第三二向色分光镜403反射,接着经大视场中继模板6传输至第四二向色分光镜404,组成该大视场中继模板6的透镜或球面反射镜601和603之间设置有一组平面反射镜组成的badal调焦机构602,badal调焦机构602沿光轴中心前后往复移动实现人眼屈光不正的补偿,第四二向色分光镜404对光束进行反射后,直接穿过环形LED阵列701的中空部 位最终到达人眼,并通过人眼的光学系统将光束聚焦到眼底视网膜上的一点;
眼底视网膜对入射光束进行散射,散射的携带着人眼眼底该点光强信息的成像光束,沿原路返回经光束扫描模块3出射,再经波前校正器201反射至第一分光镜103,第一分光镜103将80%的光反射至第二分光镜202分光,到达第二分光镜202的光,95%的光能经透射传播至第五二向色分光镜800;
同时,本实施例中,第五二向色分光镜800设置为对波长λ 2起反射作用,透射第二分光镜202的光,再经第五二向色分光镜800全部反射后,经过第二收集透镜811和第二针孔812最终到达第二探测器813,第二探测器813将获得的眼底视网膜光信号转换为电信号,输出至控制模块10,控制模块10进行信号同步处理,并将电信号采样重构得到视网膜大视场低分辨率成像图像,再通过输出模块11进行显示、存储。
光源101的波长λ 2,为900nm-1000nm范围内的某一个特征波长,典型的可选波长有904nm、950nm等,优选地,本实施例选取的λ 2作为大视场低分辨率成像波长为950nm。
大视场中继模块6包括由透镜601、603组成的透射式望远镜,或者由球面反射镜601、603组成的反射式望远镜,望远镜放大倍率为N 5,且小于1。
本实施例中,为了满足大视场低分辨率成像功能,波长λ 2在人眼12瞳孔出的光束口径为1-3mm。透射式或反射式望远镜303,透镜或球面反射镜601、603组成的透射式或反射望远镜,两套望远镜的放大倍率乘积等于波长λ 2在人眼瞳孔出的光束口径与双轴扫描镜302的光束通光口径之比。当双轴扫描镜302的光束口径为2mm时,两套望远镜的放大倍率N 3与N 5之积为0.5-1.5;当双轴扫描镜302的光束口径为3mm时,两套望远镜的放大倍率N 3与N 5之积为1/3-1。
3、受试者相关过程
受试者相关过程主要包括瞳孔对准与监测、视标引导与固视。
(1)瞳孔对准与监测
瞳孔监测模块7包括环形LED阵列701、成像透镜702、以及面阵探测器703,环形LED阵列701包含至少三颗LED灯珠,为环形等间距排布,中空部位透光口径不小于成像光束口径,环形LED阵列701出射波长λ 3的光到达人眼瞳孔,经人眼瞳孔反射回的光束穿过环形LED阵列701的中空部位,经第四二向色分光镜404透射、第三二向色分光镜403反射后,经成像透镜702聚焦到面阵探测器703,面阵探测器703将光信号转换成电信号,输出至控制模块10获取瞳孔成像图像,并输出给输出模块11实现显示、存储、处理等功能。
本申请的系统工作时,受试者头部位于托头架,托头架具有三维平移调节功能,可以通过导轨手动调节,也可以配置为电机驱动导轨,由控制模块1010驱动电机实现自动调节,使得瞳孔成像在视场中间区域。
环形LED阵列701的LED灯珠选取1000nm以上波长范围的某个特征波长λ 3,典型的可选波长有1020nm、1310nm等。优选地,本实施例选择1020nm波长。
(2)视标引导与固视
视标模块9包括LED阵列901、视标透镜902、第一平面反射镜903,通过控制模块10点亮LED阵列901中的一个LED灯珠,该LED灯珠发出波长λ 4的光经视标透镜902 传播后,经第一平面反射镜903反射,经第一二向色分光镜401反射,然后经第二、第三、第四二向色分光镜402、403、404透射后穿过环形LED阵列701的中空部位最终进入人眼12,人眼注视该发光的LED灯珠,实现固视。
通过控制模块10点亮LED阵列901上不同位置的灯珠,眼底视网膜不同的区域将被引导成为成像区域。
LED阵列901为等间距阵列排布的LED灯珠,典型的排布方式有3×3、4×4等,所选波长为可见光波段的某个特征波长λ 4,且与光源101包括的波长λ 1和λ 2保持至少50nm的带宽差。本实施例中,波长λ 4选取550nm。
本申请的共光束扫描的视网膜成像系统的成像方法,具体操作流程包括以下步骤,参照如图5:
(1)开机,启动系统。
(2)被试者头部置于托头架上,开启瞳孔监测模块7;通过手动调节或控制模块10自动调节托头架三维平移,使得瞳孔成像在视场中间区域;
(3)点亮LED阵列901中的一盏灯,受试者注视该光点,实现固视;
(4)分别调节小视场中继模块5、大视场中继模块6中的badal调焦机构502和602,补偿人眼屈光不正;
(5)令被测者保持眼部稳定,通过控制模块10采集大视场低分辨率成像图像并输出;
(6)令被测者保持眼部稳定,通过控制模块10控制自适应光学模块2完成像差测量与校正后,采集小视场高分辨率成像图像并输出;
(7)点亮LED阵列901不同位置的灯,重复步骤(5)和步骤(6)可以采集视网膜不同区域的大视场低分辨率图像和小视场高分辨率图像;
步骤(5)和步骤(6)所完成的操作没有顺序要求,可根据实际需要选择操作。
对比国内外在激光共焦扫描成像领域的技术成果,本申请在共焦扫描技术的基本原理基础上,提出一种共光束扫描的视网膜成像系统,利用自适应光学技术实时校正人眼像差,通过共光束同步扫描设置,结合小视场和大视场两套中继光路结构,可以同时实现大视场范围内的共焦扫描成像功能,单次的大视场成像范围大于20度,以及小视场范围内的自适应光学高分辨率成像功能,单次的小视场自适应光学高分辨率成像视场范围不大于5度。该系统既可以大视场成像观察视网膜大范围的疾病病灶区域,也可以小视场高分辨率成像观察病灶的微细结构,极大地扩展了现有共焦成像设备的应用范围。
本申请的共光束扫描的视网膜成像系统,只使用一套扫描镜,采用共光路结构,可以同时获取眼底视网膜的大视场低分辨率成像图像和小视场高分辨率成像图像,两种成像图像完全同步,具有相同的中心位置、成像速度。该系统通过两套分离的中继过渡光路,实现共光路的不同成像光束的耦合和分离,并同时进行眼底视网膜照明和成像探测。系统结构简单,控制简洁,功能丰富。此外,系统还配置有视标模块,当人眼注视不同位置的视标,眼底视网膜不同区域依次被光束照明时,可以获取得到视网膜各个区域的大视场低分辨率成像图像和小视场高分辨率成像图像。
本申请提供的共光束扫描的视网膜成像系统,可以同时获取眼底视网膜大视场低分辨 率成像图像与小视场高分辨率成像图像,并且两类成像图像由共光路结构采集获得,因此两类成像图像具有相同的中心位置和成像速度,图像特征一致性好,便于进行对比处理和操作。同时,该系统结构简单,共光路结构可以同时获取高、低分辨率视网膜成像图像:大视场低分辨率成像图像可以观察视网膜大范围内的结构和病灶等特征,小视场高分辨率成像图像可以观察该区域的微细结构,例如细胞、毛细血管、神经纤维等。多种成像图像通过共光路光束扫描获取,满足不同的应用场景需求,极大地提高了视网膜成像的应用范围。
尽管本申请的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本申请的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本申请并不限于特定的细节。

Claims (10)

  1. 一种共光束扫描的视网膜成像系统,其特征在于,包括:光源模块、自适应光学模块、光束扫描模块、小视场中继模块、大视场中继模块、视标模块、瞳孔监测模块、探测模块、控制模块和输出模块;
    所述光源模块可出射至少两种不同波长的平行光束,平行光束依次经过所述自适应光学模块、光束扫描模块、小视场中继模块或大视场中继模块照射到人眼,人眼散射的携带人眼像差信息和光强信息的成像光沿原路返回,并传输到所述自适应光学模块和探测模块;
    所述自适应光学模块用于接收含人眼像差信息的成像光,实现波前像差的实时测量和校正;
    所述光束扫描模块包括双轴扫描镜,其沿光路的入射端通过第一透射式或反射式望远镜与所述自适应光学模块连接,其沿光路的出射端通过第二透射式或反射式望远镜与所述小视场中继模块或大视场中继模块连接,以分别实现小视场高分辨率成像和大视场低分辨率成像;
    所述小视场中继模块配置为扩束望远镜,所述大视场中继模块配置为缩束望远镜;
    所述视标模块用于实现对人眼的视标引导与固视;
    所述瞳孔监测模块用于实现对人眼瞳孔的对准与监测;
    所述探测模块用于获取返回的人眼成像光,并转换为电信号后传输至所述控制模块;
    所述输出模块与所述控制模块连接,用于对人眼成像图像进行显示和存储。
  2. 根据权利要求1所述的共光束扫描的视网膜成像系统,其特征在于,还包括二向色分光镜组模块,其包括沿入射光路依次设置的第一二向色分光镜、第二二向色分光镜、第三二向色分光镜、第四二向色分光镜;
    所述光源模块包括沿入射光路依次设置的光源、准直器以及第一分光镜,其输出平行光束至所述自适应光学模块;所述光源发出的光经所述准直器后部分透射所述第一分光镜,进入所述自适应光学模块;
    所述自适应光学模块包括沿返回的人眼成像光光路依次设置的波前校正器、第二分光镜、滤光片以及波前传感器,其与所述光束扫描模块连接;所述光源模块输出的平行光束经所述波前校正器反射至所述光束扫描模块;返回的携带人眼像差信息和光强信息的成像光经过所述光束扫描模块出射,由所述波前校正器反射至所述第一分光镜,所述第一分 光镜反射的光中一部分再由所述第二分光镜反射,经过所述滤光片后到达所述波前传感器,实现波前像差测量,另一部分透射所述第二分光镜进入所述探测模块;
    所述波前传感器接受到含有人眼像差信息的成像光束后传输至所述控制模块进行波前计算,实现对波前像差的探测,得到波前控制电压并输出给所述波前校正器,所述波前校正器实现对波前像差的校正。
  3. 根据权利要求2所述的共光束扫描的视网膜成像系统,其特征在于,所述探测模块包括第五二向色分光镜、第一探测光路和第二探测光路,所述第五二向色分光镜将接收的光透射至所述第一探测光路,同时反射至所述第二探测光路;所述第一探测光路包括第一收集透镜、第一针孔、第一探测器,所述第二探测光路包括第二收集透镜、第二针孔、第二探测器;返回的携带人眼光强信息的成像光束透射所述第五二向色分光镜后输出至所述第一收集透镜,经过所述第一针孔后到达所述第一探测器,得到视网膜成像图像;返回的携带人眼光强信息的成像光束由所述第五二向色分光镜反射后输出至所述第二收集透镜,经过所述第二针孔后到达所述第二探测器,得到视网膜成像图像;
    所述光束扫描模块包括沿入射光路依次设置的第一透射式或反射式望远镜、双轴扫描镜、第二透射式或反射式望远镜,所述双轴扫描镜由所述控制模块输出周期性电压驱动实现对视网膜平面的横向和纵向二维扫描。
  4. 根据权利要求3所述的共光束扫描的视网膜成像系统,其特征在于,所述视标模块包括LED阵列、视标透镜和第一平面反射镜,所述LED阵列中的任意一个灯珠被所述控制模块点亮后发出的光,经过所述透镜传播后由所述第一平面反射镜反射,再被所述第一二向色分光镜反射,依次透射所述第二二向色分光镜、第三二向色分光镜、第四二向色分光镜,然后到达人眼,人眼注视该发光的LED灯珠,实现固视;
    所述瞳孔监测模块包括环形LED阵列、成像透镜和面阵探测器,所述环形LED阵列发出的光照明人眼瞳孔,经人眼瞳孔反射后穿过所述环形LED阵列的中空部位,透射所述第四二向色分光镜后被所述第三二向色分光镜反射,最后由所述成像透镜聚焦到所述面阵探测器进行瞳孔成像,所述面阵探测器将接收到的光信号转换成电信号后输出至所述控制模块,所述控制模块得到瞳孔成像图像,最后输出至所述输出模块进行显示、存储。
  5. 根据权利要求4所述的共光束扫描的视网膜成像系统,其特征在于,所述小视场中继模块包括由第一透镜和第二透镜组成的透射式望远镜,或者由第一球面反射镜、第二球面反射镜组成的反射式望远镜,其放大倍率大于1;所述小视场中继模块还包括设置在所 述望远镜两片透镜或球面反射镜之间的第一调焦机构,所述第一调焦机构包括两片正交的平面反射镜,所述第一调焦机构可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正;
    所述大视场中继模块包括由第三透镜和第四透镜组成的透射式望远镜,或者由第三球面反射镜、第四球面反射镜组成的反射式望远镜,其放大倍率小于1;所述大视场中继模块还包括设置在所述望远镜两片透镜或球面反射镜之间的第二调焦机构,所述第二调焦机构包括两片正交的平面反射镜,所述第二调焦机构可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正。
  6. 根据权利要求5所述的共光束扫描的视网膜成像系统,其特征在于,所述小视场高分辨率成像的实现方法为:
    所述光源模块出射的光束经过所述自适应光学模块的所述波前校正器、所述光束扫描模块、所述第一二向色分光镜反射传递至所述小视场中继模块后出射,经所述第二二向色分光镜反射,然后经所述第三二向色分光镜、第四二向色分光镜透射后穿过所述环形LED阵列的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点,眼底视网膜对入射光束进行散射,散射的携带着人眼的像差信息和眼底该点的光强信息的成像光束,沿原路返回经所述光束扫描模块出射,再经所述波前校正器反射至所述第一分光镜,所述第一分光镜将光束反射传播至所述第二分光镜后,一部分反射光进入所述波前传感器,所述波前传感器将接收到的人眼像差信息传递到所述控制模块,所述控制模块对波前像差进行复原并计算得到像差校正电压,然后将像差校正电压传给所述波前校正器,实现实时人眼像差校正;同时,另一部分光透射所述第二分光镜,再经所述第五二向色分光镜全部透射后,经过所述第一收集透镜和所述第一针孔最终到达所述第一探测器,所述第一探测器将获得的眼底视网膜光信号转换为电信号,输出至所述控制模块,所述控制模块进行信号同步处理,并将所述电信号采样重构得到视网膜小视场高分辨率成像图像,再通过所述输出模块进行显示、存储;
    所述大视场低分辨率成像的实现方法为:
    所述光源模块出射的光束经过所述自适应光学模块的所述波前校正器、所述光束扫描模块、所述第一二向色分光镜、第二二向色分光镜透射,再由所述第三二向色分光镜反射进入至所述大视场中继模块后出射,经所述第四二向色分光镜反射后穿过所述环形LED阵列的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点,眼底视网膜对入 射光束进行散射,散射的携带着人眼眼底该点光强信息的成像光束,沿原路返回经所述光束扫描模块出射,再经所述波前校正器反射至所述第一分光镜,所述第一分光镜将光束反射传播至所述第二分光镜后,经所述第二分光镜透射,再经所述第五二向色分光镜全部反射,经过所述第二收集透镜和所述第二针孔最终到达所述第二探测器,所述第二探测器将获得的眼底视网膜光信号转换为电信号,输出至所述控制模块,所述控制模块进行信号同步处理,并将所述电信号采样重构得到视网膜大视场低分辨率成像图像,再通过所述输出模块进行显示、存储。
  7. 根据权利要求6所述的共光束扫描的视网膜成像系统,其特征在于,所述光源模块包括至少两个光源,多个光源可以通过光纤耦合器耦合进入准直器被准直为平行光束;多个光源也可以分别经各自的准直器准直为平行光束后经二向色分光镜合束进入光路中;
    所述光源模块出射的光包括波长为λ 1和波长为λ 2的光,λ 1为600nm-850nm,波长为λ 1的光用于进行小视场高分辨率成像;λ 2为900nm-1000nm,波长为λ 2的光用于进行大视场低分辨率成像;
    所述环形LED阵列包含至少三颗LED灯珠,为环形等间距排布,中空部位透光口径不小于成像光束口径,其中的LED灯珠发出的光的波长为λ 3,且λ 3大于1000nm;
    所述视标模块的所述LED阵列为等间距阵列排布的LED灯珠,其发出的光的波长λ 4,波长范围为380nm-760nm的可见光光谱,且λ 4与λ 1、λ 2之间的差值至少为50nm。
  8. 根据权利要求7所述的共光束扫描的视网膜成像系统,其特征在于,所述第一二向色分光镜对波长为λ 1和λ 4的光具有反射作用,对波长为λ 2的光具有透射作用;
    所述第二二向色分光镜对波长为λ 1的光具有反射作用,对波长为λ 2和λ 4的光具有透射作用;
    所述第三二向色分光镜对波长为λ 2和λ 3的光具有反射作用,对波长为λ 1和λ 4的光具有透射作用;
    所述第四二向色分光镜对波长为λ 2的光具有反射作用,对波长λ 1、λ 3和λ 4的光具有透射作用。
  9. 根据权利要求6所述的共光束扫描的视网膜成像系统,其特征在于,所述自适应光学模块中的所述波前传感器是从微棱镜阵列哈特曼波前传感器、微透镜阵列哈特曼波前传感器、四棱锥传感器和曲率传感器中选择的,所述波前校正器是从变形反射镜、液晶空间光调制器、微加工薄膜变形镜、微机电变形镜、双压电陶瓷变形镜、液体变形镜中选择的;
    所述第二分光镜将第一分光镜反射来的成像光束分光,5%的光被反射经所述滤光片后进入所述波前传感器,实现波前像差测量;其余95%光被透射至所述第五二向色分光镜;
    所述滤光片可以是宽带滤光片,透过波段满足小视场高分辨率成像所选波长λ 1;也可以是多个窄带滤波片组合,透过波长满足小视场高分辨率成像所选波长λ 1;大视场低分辨率成像所选波长λ 2的成像光束被所述滤光片全部阻挡,不进入波前传感器;
    所述波前传感器探测得到的波前像差经控制模块处理,得到波前控制电压并输出给波前校正器,实现对波前像差的校正。
  10. 根据权利要求6所述的共光束扫描的视网膜成像系统,其特征在于,所述双轴扫描镜可以是一片二维扫描振镜,实现对光束的横向和纵向扫描;也可以是两片一维扫描振镜组合,两片扫描振镜的扫描方向设置为正交方向,分别实现对光束的横向和纵向扫描,并且两片扫描振镜通过透射式望远镜或反射式望远镜连接实现光瞳匹配;
    所述第一透射式望远镜或反射式望远镜用于将所述波前校正器与所述双轴扫描镜连接实现光瞳匹配,其放大倍率为所述双轴扫描镜与所述波前校正器的光束通光口径之比;
    所述第二透射式望远镜或反射式望远镜用于将所述双轴扫描镜的出射光共轭传递至所述第一二向色分光镜。
PCT/CN2019/112521 2019-09-09 2019-10-22 共光束扫描的视网膜成像系统 WO2021046973A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207026776A KR102403875B1 (ko) 2019-09-09 2019-10-22 공초점 광빔으로 스캐닝하는 망막 이미징 시스템
JP2020544628A JP7098855B2 (ja) 2019-09-09 2019-10-22 共ビーム走査型網膜結像システム
EP19915588.8A EP3811851A4 (en) 2019-09-09 2019-10-22 SCANNING RETINAL IMAGING SYSTEM WITH SHARED BEAM
US16/971,570 US11896309B2 (en) 2019-09-09 2019-10-22 Retina imaging system based on the common beam scanning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910865740.4 2019-09-09
CN201910865740.4A CN110584593B (zh) 2019-09-09 2019-09-09 共光束扫描的视网膜成像系统

Publications (1)

Publication Number Publication Date
WO2021046973A1 true WO2021046973A1 (zh) 2021-03-18

Family

ID=68859210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112521 WO2021046973A1 (zh) 2019-09-09 2019-10-22 共光束扫描的视网膜成像系统

Country Status (6)

Country Link
US (1) US11896309B2 (zh)
EP (1) EP3811851A4 (zh)
JP (1) JP7098855B2 (zh)
KR (1) KR102403875B1 (zh)
CN (1) CN110584593B (zh)
WO (1) WO2021046973A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113229777A (zh) * 2021-04-07 2021-08-10 上海美沃精密仪器股份有限公司 一种视觉质量分析仪
CN113324540A (zh) * 2021-06-03 2021-08-31 合肥工业大学 一种基于扫描振镜的拼接镜位姿测试系统及方法
CN115420691A (zh) * 2022-11-03 2022-12-02 北京云端光科技术有限公司 遥测收发装置的校正系统、方法、装置、设备及存储介质
CN116942076A (zh) * 2023-07-24 2023-10-27 南开大学 一种测量人眼全视场波前像差的自动化测量系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951174B (zh) * 2020-06-16 2023-09-29 中国科学院苏州生物医学工程技术研究所 自适应光学线光束扫描成像的非等晕像差校正方法与装置
WO2022065658A1 (en) 2020-09-22 2022-03-31 Samsung Electronics Co., Ltd. Holographic waveguide, method of producing the same, and display device including the holographic waveguide
DE102020213713A1 (de) * 2020-11-01 2022-05-05 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur Erfassung von Bilddaten
CN113017569B (zh) * 2021-03-09 2022-06-03 四川大学华西医院 基于光谱子带时域自相关的皮肤伤口愈合情况检查系统
CN113974965B (zh) * 2021-12-28 2022-04-22 广东麦特维逊医学研究发展有限公司 一种激光撕囊装置
CN114063275A (zh) * 2022-01-17 2022-02-18 北京九辰智能医疗设备有限公司 角膜内皮细胞成像系统、方法、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252951A1 (en) * 2006-04-24 2007-11-01 Hammer Daniel X Stabilized retinal imaging with adaptive optics
US20100277692A1 (en) * 2009-04-30 2010-11-04 Hideo Mukai Fundus photographing apparatus
CN103054550A (zh) * 2013-01-17 2013-04-24 中国科学院光电技术研究所 一种基于自适应光学的线扫描共焦检眼镜系统
US20130215385A1 (en) * 2012-02-21 2013-08-22 Canon Kabushiki Kaisha Imaging apparatus
US20150077710A1 (en) * 2013-09-19 2015-03-19 Canon Kabushiki Kaisha Apparatus, method, and non-transitory medium for optical stabilization and digital image registration in scanning light ophthalmoscopy
CN104783755A (zh) * 2015-04-29 2015-07-22 中国科学院光电技术研究所 自适应光学视网膜成像装置和方法
WO2018197288A1 (fr) * 2017-04-25 2018-11-01 Imagine Eyes Systeme et méthode d'imagerie rétinienne multi-echelle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101862178B (zh) 2010-06-02 2012-07-11 中国科学院光电技术研究所 一种基于自适应光学的反射式共焦扫描视网膜成像系统
CN101904735B (zh) * 2010-07-20 2013-05-08 苏州微清医疗器械有限公司 基于快速倾斜镜的宽视场共焦扫描显微镜
CN101884524B (zh) * 2010-07-20 2012-01-25 李超宏 基于自适应光学技术的宽视场光学相干层析仪
CN202104907U (zh) * 2010-12-08 2012-01-11 苏州六六宏医疗器械有限公司 基于自动寻优算法的像差补偿眼底显微镜
CN102499633B (zh) * 2011-09-30 2013-09-25 中国科学院长春光学精密机械与物理研究所 大视场液晶自适应光学眼底成像的方法
CN102429636B (zh) * 2011-09-30 2013-07-03 中国科学院长春光学精密机械与物理研究所 大视场液晶自适应光学眼底成像的系统
US8936364B2 (en) * 2011-10-20 2015-01-20 University Of Houston System Wavefront sensorless adaptive correction of the wave aberration for an eye
CN102429638B (zh) * 2011-10-26 2013-11-20 中国科学院光电技术研究所 一种基于图像相关的视网膜抖动校正装置和方法
JP6049310B2 (ja) * 2012-06-01 2016-12-21 キヤノン株式会社 撮影装置、制御方法及びプログラム
CN102860815B (zh) * 2012-09-11 2014-10-08 中国科学院光电技术研究所 基于线扫描共焦成像图像引导的自适应共焦扫描视网膜成像方法及装置
CN102908119A (zh) * 2012-09-26 2013-02-06 温州医学院眼视光研究院 一种共焦扫描成像系统及其像差控制方法
CN102860817A (zh) * 2012-10-12 2013-01-09 中国科学院光电技术研究所 一种基于双波前校正器的激光扫描共焦检眼镜装置
JP2014108212A (ja) * 2012-11-30 2014-06-12 Canon Inc 撮像装置
EP2749204B1 (en) * 2012-12-28 2016-03-16 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US10226173B2 (en) * 2014-07-07 2019-03-12 University Of Rochester System and method for real-time montaging from live moving retina
JP6686296B2 (ja) 2015-05-18 2020-04-22 株式会社ニデック 眼科測定装置
US9867538B2 (en) * 2016-03-21 2018-01-16 Canon Kabushiki Kaisha Method for robust eye tracking and ophthalmologic apparatus therefor
CN107928624A (zh) * 2017-12-22 2018-04-20 温州医科大学附属眼视光医院 一种基于瞳孔自动定位对焦的自适应光学扫描激光眼底成像系统及其成像方法
CN108784644A (zh) * 2018-07-12 2018-11-13 东北大学秦皇岛分校 一种眼科光学参数测量系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252951A1 (en) * 2006-04-24 2007-11-01 Hammer Daniel X Stabilized retinal imaging with adaptive optics
US20100277692A1 (en) * 2009-04-30 2010-11-04 Hideo Mukai Fundus photographing apparatus
US20130215385A1 (en) * 2012-02-21 2013-08-22 Canon Kabushiki Kaisha Imaging apparatus
CN103054550A (zh) * 2013-01-17 2013-04-24 中国科学院光电技术研究所 一种基于自适应光学的线扫描共焦检眼镜系统
US20150077710A1 (en) * 2013-09-19 2015-03-19 Canon Kabushiki Kaisha Apparatus, method, and non-transitory medium for optical stabilization and digital image registration in scanning light ophthalmoscopy
CN104783755A (zh) * 2015-04-29 2015-07-22 中国科学院光电技术研究所 自适应光学视网膜成像装置和方法
WO2018197288A1 (fr) * 2017-04-25 2018-11-01 Imagine Eyes Systeme et méthode d'imagerie rétinienne multi-echelle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3811851A4
WEBB RHUGHES GDELORI F: "Confocal scanning laser ophthalmoscope", APPLIED OPTICS, vol. 26, no. 8, 1987, pages 1492 - 9, XP000579927, DOI: 10.1364/AO.26.001492

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113229777A (zh) * 2021-04-07 2021-08-10 上海美沃精密仪器股份有限公司 一种视觉质量分析仪
CN113229777B (zh) * 2021-04-07 2022-09-23 上海美沃精密仪器股份有限公司 一种视觉质量分析仪
CN113324540A (zh) * 2021-06-03 2021-08-31 合肥工业大学 一种基于扫描振镜的拼接镜位姿测试系统及方法
CN113324540B (zh) * 2021-06-03 2023-07-07 合肥工业大学 一种基于扫描振镜的拼接镜位姿测试系统及方法
CN115420691A (zh) * 2022-11-03 2022-12-02 北京云端光科技术有限公司 遥测收发装置的校正系统、方法、装置、设备及存储介质
CN115420691B (zh) * 2022-11-03 2023-01-31 北京云端光科技术有限公司 遥测收发装置的校正系统、方法、装置、设备及存储介质
CN116942076A (zh) * 2023-07-24 2023-10-27 南开大学 一种测量人眼全视场波前像差的自动化测量系统
CN116942076B (zh) * 2023-07-24 2024-05-24 南开大学 一种测量人眼全视场波前像差的自动化测量系统

Also Published As

Publication number Publication date
CN110584593B (zh) 2021-06-22
US20230094588A1 (en) 2023-03-30
JP7098855B2 (ja) 2022-07-12
EP3811851A4 (en) 2021-07-14
KR102403875B1 (ko) 2022-05-31
KR20210032926A (ko) 2021-03-25
CN110584593A (zh) 2019-12-20
EP3811851A8 (en) 2021-06-16
US11896309B2 (en) 2024-02-13
EP3811851A1 (en) 2021-04-28
JP2022503315A (ja) 2022-01-12

Similar Documents

Publication Publication Date Title
WO2021046973A1 (zh) 共光束扫描的视网膜成像系统
WO2021046975A1 (zh) 共光路光束扫描的大视场自适应光学视网膜成像系统和方法
US11583180B2 (en) Optical component for retinal imaging and retina imaging device
CN101862178B (zh) 一种基于自适应光学的反射式共焦扫描视网膜成像系统
CN102860815B (zh) 基于线扫描共焦成像图像引导的自适应共焦扫描视网膜成像方法及装置
US11684257B2 (en) System and method for multi-scale retinal imaging
JP7443400B2 (ja) 眼科装置及び断層画像生成装置
CN113440099B (zh) 一种人眼视光综合检查装置和方法
CN107157439B (zh) 一种共焦激光扫描眼底成像与投影系统
WO2023025062A1 (zh) 一种眼部多模态成像系统
WO2022057402A1 (zh) 基于近红外光的高速功能性眼底三维检测系统
WO2024125416A1 (zh) 手术显微镜系统及手术显微镜
CN113703151B (zh) 一种低照度可调焦间接检眼镜
CN113509142A (zh) 一种大视野视网膜检查装置
CN214906733U (zh) 一种免散瞳眼底相机光学系统
WO2008000008A2 (en) Achromatising triplet for the human eye

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020544628

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019915588

Country of ref document: EP

Effective date: 20200828

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE