Nothing Special   »   [go: up one dir, main page]

WO2021044932A1 - 通信システム、通信端末およびネットワーク - Google Patents

通信システム、通信端末およびネットワーク Download PDF

Info

Publication number
WO2021044932A1
WO2021044932A1 PCT/JP2020/032289 JP2020032289W WO2021044932A1 WO 2021044932 A1 WO2021044932 A1 WO 2021044932A1 JP 2020032289 W JP2020032289 W JP 2020032289W WO 2021044932 A1 WO2021044932 A1 WO 2021044932A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
paging
information
timing
communication
Prior art date
Application number
PCT/JP2020/032289
Other languages
English (en)
French (fr)
Inventor
忠宏 下田
望月 満
正幸 中澤
直文 岩山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021543720A priority Critical patent/JPWO2021044932A1/ja
Priority to CN202080048265.2A priority patent/CN114270969A/zh
Priority to EP20860297.9A priority patent/EP4027683A4/en
Priority to US17/634,292 priority patent/US20220287003A1/en
Publication of WO2021044932A1 publication Critical patent/WO2021044932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This disclosure relates to wireless communication technology.
  • LTE Long Term Evolution
  • network the core network and wireless access network
  • SAE System Architecture Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE does not include circuit switching and is only a packet communication method.
  • FIG. 1 is an explanatory diagram showing a configuration of a wireless frame used in an LTE communication system.
  • one radio frame is 10 ms.
  • the radio frame is divided into 10 equally sized subframes.
  • the subframe is divided into two equally sized slots.
  • a downlink synchronization signal (Downlink Synchronization Signal) is included in the first and sixth subframes for each radio frame.
  • the synchronization signal includes a first synchronization signal (PrimarySynchronizationSignal: P-SS) and a second synchronization signal (SecondarySynchronizationSignal: S-SS).
  • Non-Patent Document 1 (Chapter 5) describes the decisions regarding the channel configuration in the LTE system in 3GPP. It is assumed that the same channel configuration as the non-CSG cell is used in the CSG (Closed Subscriber Group) cell.
  • the physical broadcast channel is a communication terminal device such as a base station device (hereinafter, may be simply referred to as a "base station”) to a mobile terminal device (hereinafter, which may be simply referred to as a "mobile terminal”). It is a channel for downlink transmission to (hereinafter, may be simply referred to as a "communication terminal”).
  • the BCH transport block is mapped to 4 subframes at 40 ms intervals. There is no explicit signaling for 40ms timing.
  • the physical control format indicator channel (Physical Control Format Indicator Channel: PCFICH) is a channel for downlink transmission from a base station to a communication terminal. PCFICH notifies the communication terminal of the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols used for PDCCHs from the base station. PCFICH is transmitted every subframe.
  • PCFICH Physical Control Format Indicator Channel
  • the physical downlink control channel is a channel for downlink transmission from the base station to the communication terminal.
  • the PDCCH is resource allocation information of a downlink shared channel (DL-SCH) which is one of the transport channels described later, and a paging channel (Paging Channel: PCH) which is one of the transport channels described later.
  • DL-SCH downlink shared channel
  • PCH paging Channel
  • HARQ Hybrid Automatic Repeat reQuest
  • the PDCCH carries an Uplink Scheduling Grant.
  • the PDCCH carries Ac (Acknowledgement) / Nack (Negative Acknowledgement), which is a response signal for uplink transmission.
  • PDCCH is also called an L1 / L2 control signal.
  • the physical downlink shared channel is a channel for downlink transmission from the base station to the communication terminal.
  • a downlink shared channel (DL-SCH), which is a transport channel, and a PCH, which is a transport channel, are mapped to the PDSCH.
  • the physical multicast channel is a channel for downlink transmission from the base station to the communication terminal.
  • a multicast channel (MulticastChannel: MCH), which is a transport channel, is mapped to the PMCH.
  • the physical uplink control channel is a channel for uplink transmission from a communication terminal to a base station.
  • the PUCCH carries Ack / Nack, which is a response signal for downlink transmission.
  • PUCCH carries CSI (Channel State Information).
  • CSI consists of RI (Rank Indicator), PMI (Precoding Matrix Indicator), and CQI (Channel Quality Indicator) reports.
  • RI is rank information of a channel matrix in MIMO.
  • PMI is information on a precoding weight matrix used in MIMO.
  • CQI is quality information indicating the quality of received data or the quality of communication paths.
  • the PUCCH also carries a scheduling request (SR).
  • SR scheduling request
  • the physical uplink shared channel (PUSCH) is a channel for uplink transmission from a communication terminal to a base station.
  • An uplink shared channel (UL-SCH), which is one of the transport channels, is mapped to the PUSCH.
  • the physical HARQ indicator channel (Physical Hybrid ARQ Indicator Channel: PHICH) is a channel for downlink transmission from a base station to a communication terminal. PHICH carries Ack / Nack, which is a response signal to uplink transmission.
  • the physical random access channel (Physical Random Access Channel: PRACH) is a channel for uplink transmission from a communication terminal to a base station. The PRACH carries a random access preamble.
  • the downlink reference signal (Reference Signal: RS) is a symbol known as an LTE communication system.
  • the following five types of downlink reference signals are defined.
  • RSRP reference signal received power
  • the uplink reference signal is a well-known symbol as an LTE communication system.
  • the following two types of uplink reference signals are defined. It is a data demodulation reference signal (Demodulation Reference Signal: DM-RS) and a sounding reference signal (Sounding Reference Signal: SRS).
  • DM-RS Data demodulation Reference Signal
  • SRS Sounding Reference Signal
  • Non-Patent Document 1 The transport channel described in Non-Patent Document 1 (Chapter 5) will be described.
  • the broadcast channel BCH
  • BCH is broadcast to the entire coverage of the base station (cell).
  • BCH is mapped to the physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • HARQ Hybrid ARQ
  • the DL-SCH can notify the entire coverage of the base station (cell).
  • DL-SCH supports dynamic or quasi-static resource allocation. Quasi-static resource allocation is also called Persistent Scheduling.
  • the DL-SCH supports intermittent reception (DRX) of a communication terminal in order to reduce the power consumption of the communication terminal.
  • the DL-SCH is mapped to a physical downlink shared channel (PDSCH).
  • the paging channel supports the DRX of the communication terminal in order to enable low power consumption of the communication terminal.
  • the PCH is required to notify the entire coverage of the base station (cell).
  • the PCH is dynamically mapped to a physical resource such as a physical downlink shared channel (PDSCH) that is available for traffic.
  • PDSCH physical downlink shared channel
  • MCH Multicast channel
  • MTCH Multimedia Broadcast Multicast Service
  • MCCH Multimedia Broadcast Multicast Service
  • HARQ Hybrid ARQ
  • PUSCH physical uplink shared channel
  • Random Access Channel is limited to control information. RACH is at risk of collision.
  • the RACH is mapped to a Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • HARQ is a technology for improving the communication quality of a transmission line by combining an automatic repeat request (ARQ) and an error correction (Forward Error Correction).
  • ARQ automatic repeat request
  • FEC Correction Forward Error Correction
  • HARQ has an advantage that error correction functions effectively by retransmission even for a transmission line whose communication quality changes. In particular, it is possible to further improve the quality by synthesizing the reception result of the first transmission and the reception result of the retransmission at the time of retransmission.
  • the broadcast control channel is a downlink channel for broadcast system control information.
  • BCCH which is a logical channel, is mapped to a broadcast channel (BCH), which is a transport channel, or a downlink shared channel (DL-SCH).
  • BCH broadcast channel
  • DL-SCH downlink shared channel
  • the paging control channel is a downlink channel for transmitting changes in paging information (Paging Information) and system information (System Information).
  • PCCH is used when the network does not know the cell location of the communication terminal.
  • the PCCH which is a logical channel, is mapped to a paging channel (PCH), which is a transport channel.
  • the shared control channel (Common Control Channel: CCCH) is a channel for transmission control information between the communication terminal and the base station. CCCH is used when the communication terminal does not have an RRC connection with the network.
  • CCCH is mapped to the downlink shared channel (DL-SCH), which is a transport channel.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • Multicast Control Channel is a downlink channel for one-to-many transmission.
  • the MCCH is used for transmitting MBMS control information for one or several MTCHs from the network to the communication terminal.
  • MCCH is used only for communication terminals receiving MBMS.
  • the MCCH is mapped to a multicast channel (MCH), which is a transport channel.
  • the individual control channel (Dedicated Control Channel: DCCH) is a channel that transmits individual control information between the communication terminal and the network on a one-to-one basis.
  • DCCH is used when the communication terminal is an RRC connection.
  • the DCCH is mapped to the uplink shared channel (UL-SCH) on the uplink and to the downlink shared channel (DL-SCH) on the downlink.
  • the individual traffic channel (Dedicated Traffic Channel: DTCH) is a channel for one-to-one communication to an individual communication terminal for transmitting user information.
  • DTCH exists both up and down.
  • the DTCH is mapped to the uplink shared channel (UL-SCH) on the uplink and to the downlink shared channel (DL-SCH) on the downlink.
  • Multicast traffic channel is a downlink channel for transmitting traffic data from the network to the communication terminal.
  • MTCH is a channel used only for communication terminals receiving MBMS.
  • MTCH is mapped to a multicast channel (MCH).
  • CGI is a Cell Global Identifier.
  • ECGI is an E-UTRAN Cell Global Identifier.
  • CSG Cell Subscriber Group
  • LTE Long Term Evolution Advanced
  • UMTS Universal Mobile Telecommunication System
  • the position tracking of the communication terminal is performed in units of areas consisting of one or more cells.
  • the position tracking is performed to track the position of the communication terminal even in the standby state and call the communication terminal, in other words, to enable the communication terminal to make a call.
  • the area for tracking the position of this communication terminal is called a tracking area.
  • LTE-A Long Term Evolution Advanced
  • LTE-A systems aggregate two or more Component Carriers (CCs) to support wider frequency bandwidths up to 100 MHz (also referred to as “aggregation”).
  • CCs Component Carriers
  • CA Carrier Aggregation
  • the UE When CA is configured, the UE has a network (NW) and only one RRC connection (RRC connection). In the RRC connection, one serving cell provides NAS mobility information and security inputs. This cell is called a primary cell (PCell).
  • the carrier corresponding to PCell in the downlink is the downlink primary component carrier (DL PCC).
  • the carrier corresponding to PCell in the uplink is the uplink primary component carrier (UL PCC).
  • a secondary cell is configured to form a set of serving cells together with a PCell according to the capability of the UE.
  • the carrier corresponding to SCell in the downlink is a downlink secondary component carrier (DL SCC).
  • the carrier corresponding to SCell in the uplink is the uplink secondary component carrier (UL SCC).
  • a set of serving cells consisting of one PCell and one or more SCells is configured for one UE.
  • LTE-A new technologies in LTE-A include technology that supports a wider bandwidth (Wider bandwidth extension) and multipoint coordinated transmission / reception (Coordinated Multiple Point transmission and reception: CoMP) technology.
  • CoMP being studied for LTE-A in 3GPP is described in Non-Patent Document 1.
  • a small eNB (hereinafter sometimes referred to as a "small base station device") constituting a small cell in order to cope with a huge amount of traffic in the future.
  • a technique for increasing frequency utilization efficiency and increasing communication capacity by installing a large number of small eNBs and configuring a large number of small cells is being studied.
  • DC dual connectivity
  • eNBs that perform dual connectivity (DC)
  • master eNB abbreviated as MeNB
  • SeNB secondary eNB
  • the traffic volume of mobile networks is on the rise, and the communication speed is also increasing.
  • LTE and LTE-A start full-scale operation, it is expected that the communication speed will be further increased.
  • 5G 5th generation
  • METIS summarizes 5G requirements (see Non-Patent Document 5).
  • the system capacity is 1000 times
  • the data transmission speed is 100 times
  • the data processing delay is 1/10 (1/10)
  • the number of simultaneous connections of communication terminals is 100 times that of the LTE system. As a requirement, it is required to further reduce the power consumption and the cost of the device.
  • the NR system is being studied based on the LTE system and LTE-A system, but changes and additions have been made from the LTE system and LTE-A system in the following points.
  • OFDM is used in the downlink direction
  • OFDM is used in the uplink direction
  • DFT-s-OFDM DFT-spread-OFDM
  • cell coverage can be ensured by forming a narrow beam-shaped transmission / reception range (beamforming) and changing the direction of the beam (beam sweeping).
  • various subcarrier intervals that is, various numerologies are supported.
  • one subframe is one millisecond and one slot is composed of 14 symbols, regardless of numerology.
  • the number of slots included in one subframe is one in the numerology with a subcarrier interval of 15 kHz, and increases in proportion to the subcarrier interval in other numerologies (Non-Patent Document 13 (TS38.211 V15). See .2.0).
  • the downlink synchronization signal in NR is transmitted from the base station as a synchronization signal burst (hereinafter, may be referred to as SS burst) in a predetermined cycle and with a predetermined duration.
  • the SS burst is composed of a synchronization signal block (Synchronization Signal Block; hereinafter may be referred to as an SS block) for each beam of the base station.
  • the base station transmits the SS block of each beam in different beams within the duration of the SS burst.
  • the SS block is composed of P-SS, S-SS, and PBCH.
  • phase Tracking Reference Signal Phase Tracking Reference Signal: PTRS
  • PTRS Phase Tracking Reference Signal
  • slot configuration notification (Slot Format Indication: SFI) has been added to the information contained in PDCCH in order to flexibly switch DL / UL in the slot.
  • BWP Bandwidth Part
  • DC is DC by LTE base station and NR base station connected to EPC, DC by NR base station connected to 5G core system, and LTE base station and NR base station connected to 5G core system.
  • DC is being studied (see Non-Patent Documents 12, 16 and 19).
  • SIMs Subscriber Identity Modules
  • Non-Patent Documents 20 and 21 do not disclose a specific method for avoiding duplication of paging timing, in other words, paging collision. Therefore, it becomes impossible to avoid a paging collision between the two NWs. As a result, there arises a problem that the connection between the UE and one NW cannot be started quickly in the communication system.
  • One of the purposes of this disclosure is to provide a technology that enables quick NW connection in view of the above problems.
  • a communication system including a communication terminal and a plurality of networks configured to enable wireless communication with the communication terminal, and the communication terminal is transmitted to the communication terminal from the plurality of networks, respectively.
  • the paging of the paging occurs with respect to at least one of the networks transmitting the paging that causes the collision.
  • a communication system is provided, which comprises notifying a collision.
  • a communication terminal configured to enable wireless communication with a plurality of networks, wherein the communication terminal collides with the communication terminal among a plurality of paging transmitted from the plurality of networks.
  • a communication terminal is provided.
  • paging transmitted from the network to the communication terminal by the communication terminal is transmitted from another network to the communication terminal.
  • the network is provided with a network characterized in that the timing of transmitting the paging to the communication terminal is changed.
  • FIG. 5 is an architecture diagram showing an example of connection between a plurality of SIM-equipped UEs and a plurality of NWs according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a paging collision from a plurality of NWs according to the first embodiment.
  • FIG. 5 is a sequence diagram showing a first example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify a base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing a first example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify a base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing a second example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing a second example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing a second example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing a third example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing a third example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station of the first embodiment.
  • FIG. 5 is a sequence diagram showing an example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the AMF of the first embodiment.
  • FIG. 5 is a sequence diagram showing an example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the AMF of the first embodiment.
  • FIG. 5 is an architecture diagram showing an example of connection between a plurality of SIM-equipped UEs and a plurality of NWs with respect to the first modification of the first embodiment.
  • FIG. 5 is a sequence diagram showing a first example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a first example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a second example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a second example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a third example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a third example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a fourth example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 5 is a sequence diagram showing a fourth example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station with respect to the first modification of the second embodiment.
  • FIG. 2 is a block diagram showing the overall configuration of the LTE communication system 200 discussed in 3GPP.
  • the radio access network is referred to as E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 201.
  • the mobile terminal device (hereinafter referred to as "Mobile terminal (User Equipment: UE)") 202, which is a communication terminal device, can wirelessly communicate with the base station device (hereinafter referred to as "base station (E-UTRAN NodeB: eNB)”) 203. Yes, signals are sent and received by wireless communication.
  • base station E-UTRAN NodeB: eNB
  • the “communication terminal device” includes not only mobile terminal devices such as mobile mobile phone terminal devices but also non-moving devices such as sensors.
  • the “communication terminal device” may be simply referred to as a "communication terminal”.
  • a control protocol for the mobile terminal 202 such as RRC (Radio Resource Control), and a user plane (hereinafter, also referred to as U-Plane), such as PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium
  • PHY Physical layer
  • the control protocol RRC RadioResourceControl
  • the states of the base station 203 and the mobile terminal 202 in the RRC include RRC_IDLE and RRC_CONNECTED.
  • RRC_IDLE PLMN (Public Land Mobile Network) selection, system information (SI) notification, paging, cell re-selection, mobility, etc. are performed.
  • RRC_CONNECTED the mobile terminal has an RRC connection and can send and receive data to and from the network. Further, in RRC_CONCEPTED, handover (HO), measurement of an adjacent cell (Neighbor cell), and the like are performed.
  • Base station 203 is composed of one or more eNBs 207.
  • a system composed of an EPC (Evolved Packet Core) which is a core network and an E-UTRAN 201 which is a wireless access network is called an EPS (Evolved Packet System).
  • the EPC, which is a core network, and the E-UTRAN201, which is a wireless access network may be collectively referred to as a "network".
  • the eNB 207 is a mobility management entity (MME), an S-GW (Serving Gateway), or an MME / S-GW unit (hereinafter, may be referred to as “MME unit”) 204 including MME and S-GW. It is connected by the S1 interface, and control information is communicated between the eNB 207 and the MME unit 204.
  • MME unit mobility management entity
  • a plurality of MME units 204 may be connected to one eNB 207.
  • the eNB 207s are connected by an X2 interface, and control information is communicated between the eNBs 207s.
  • the MME unit 204 controls the connection between the higher-level device, specifically the higher-level node, the base station eNB 207, and the mobile terminal (UE) 202.
  • the MME unit 204 constitutes an EPC which is a core network.
  • Base station 203 constitutes E-UTRAN 201.
  • the base station 203 may form one cell or may form a plurality of cells. Each cell has a predetermined range as a coverage that can communicate with the mobile terminal 202, and wirelessly communicates with the mobile terminal 202 within the coverage. When one base station 203 constitutes a plurality of cells, each cell is configured to be communicable with the mobile terminal 202.
  • FIG. 3 is a block diagram showing the overall configuration of the 5G communication system 210 discussed in 3GPP.
  • the radio access network is referred to as NG-RAN (Next Generation Radio Access Network) 211.
  • the UE 202 can wirelessly communicate with the NR base station apparatus (hereinafter referred to as “NR base station (NG-RAN NodeB: gNB)”) 213, and transmits and receives signals by wireless communication.
  • NR base station (NG-RAN NodeB: gNB) NR base station
  • the core network is also referred to as a 5G core (5GCore: 5GC).
  • Control protocols for UE 202 such as RRC (Radio Resource Control), and user planes (hereinafter sometimes referred to as U-Plane), such as SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link) If the Control), MAC (Medium Access Control), and PHY (Physical layer) are terminated at the NR base station 213, the NG-RAN is composed of one or more NR base stations 213.
  • the function of the control protocol RRC (Radio Resource Control) between the UE 202 and the NR base station 213 is the same as that of LTE.
  • the states of the NR base station 213 and the UE 202 in the RRC include RRC_IDLE, RRC_CONNECTED, and RRC_INACTIVE.
  • RRC_IDLE and RRC_CONNECTED are the same as the LTE method.
  • RRC_INACTIVE system information (System Information: SI) notification, paging, cell re-selection, mobility, etc. are performed while the connection between the 5G core and the NR base station 213 is maintained. ..
  • gNB217 is an access / mobility management function (Access and Mobility Management Function: AMF), a session management function (Session Management Function: SMF), or UPF (User Plane Function), or AMF / SMF / UPF including AMF, SMF, and UPF. It is connected to the unit (hereinafter sometimes referred to as "5GC unit") 214 by an NG interface. Control information and / or user data is communicated between the gNB 217 and the 5GC unit 214.
  • NG interface is a general term for the N2 interface between gNB217 and AMF, the N3 interface between gNB217 and UPF, the N11 interface between AMF and SMF, and the N4 interface between UPF and SMF.
  • a plurality of 5GC units 214 may be connected to one gNB 217.
  • the gNB 217s are connected by an Xn interface, and control information and / or user data are communicated between the gNB 217s.
  • the NR base station 213 may also form one or a plurality of cells like the base station 203. When one NR base station 213 constitutes a plurality of cells, each cell is configured to be communicable with the UE 202.
  • the gNB 217 may be divided into a central unit (Central Unit; hereinafter, sometimes referred to as CU) 218 and a distributed unit (Distributed Unit; hereinafter, sometimes referred to as DU) 219.
  • Central Unit hereinafter, sometimes referred to as CU
  • DU distributed Unit
  • One CU218 is configured in gNB217.
  • DU219 is composed of one or more in gNB217.
  • the CU 218 is connected to the DU 219 by an F1 interface, and control information and / or user data is communicated between the CU 218 and the DU 219.
  • the 5G communication system includes an integrated data management (UDM) function and a policy control function (Policy Control Function; PCF) described in Non-Patent Document 22 (3GPP TS23.501 V16.1.0). You may. UDM and / or PCF may be included in the 5GC portion in FIG.
  • the non-3GPP interworking function (N3IWF) described in Non-Patent Document 22 (3GPP TS23.501 V16.1.0) may be included.
  • the N3IWF may terminate the access network (AN) with the UE in non-3GPP access with the UE.
  • FIG. 4 is a diagram showing a configuration of DC by eNB and gNB connected to EPC.
  • the solid line shows the connection of U-Plane
  • the broken line shows the connection of C-Plane.
  • eNB223-1 is a master base station
  • gNB224-2 is a secondary base station (this DC configuration may be referred to as EN-DC).
  • FIG. 4 shows an example in which the U-Plane connection between the MME unit 204 and the gNB 224-2 is performed via the eNB 223-1. However, even if the U-Plane connection is performed directly between the MME unit 204 and the gNB 224-2. Good.
  • FIG. 5 is a diagram showing a DC configuration by gNB connected to the NG core.
  • the solid line shows the connection of U-Plane
  • the broken line shows the connection of C-Plane.
  • gNB224-1 serves as a master base station
  • gNB224-2 serves as a secondary base station (this DC configuration may be referred to as NR-DC).
  • FIG. 5 shows an example in which the U-Plane connection between the 5GC unit 214 and gNB224-2 is performed via gNB224-1, but even if the U-Plane connection is performed directly between the 5GC unit 214 and gNB224-2. Good.
  • FIG. 6 is a diagram showing a configuration of DC by eNB and gNB connected to the NG core.
  • the solid line shows the connection of U-Plane
  • the broken line shows the connection of C-Plane.
  • eNB 226-1 serves as a master base station
  • gNB 224-2 serves as a secondary base station (this DC configuration may be referred to as NG-EN-DC).
  • FIG. 6 shows an example in which the U-Plane connection between the 5GC unit 214 and the gNB 224-2 is performed via the eNB 226-1, but even if the U-Plane connection is performed directly between the 5GC unit 214 and the gNB 224-2. Good.
  • FIG. 7 is a diagram showing another configuration of DC by eNB and gNB connected to the NG core.
  • the solid line shows the connection of U-Plane
  • the broken line shows the connection of C-Plane.
  • gNB224-1 serves as a master base station
  • eNB226-2 serves as a secondary base station (this DC configuration may be referred to as NE-DC).
  • FIG. 7 shows an example in which the U-Plane connection between the 5GC unit 214 and the eNB 226-2 is performed via gNB224-1, but even if the U-Plane connection is performed directly between the 5GC unit 214 and the eNB 226-2. Good.
  • FIG. 8 is a block diagram showing the configuration of the mobile terminal 202 shown in FIG. The transmission process of the mobile terminal 202 shown in FIG. 8 will be described.
  • the control data from the protocol processing unit 301 and the user data from the application unit 302 are stored in the transmission data buffer unit 303.
  • the data stored in the transmission data buffer unit 303 is passed to the encoder unit 304 and subjected to encoding processing such as error correction.
  • the data encoded by the encoder unit 304 is modulated by the modulation unit 305. Precoding in MIMO may be performed in the modulation unit 305.
  • the modulated data is converted into a baseband signal, then output to the frequency conversion unit 306, and converted into a radio transmission frequency. After that, the transmission signal is transmitted from the antennas 307-1 to 307-4 to the base station 203. Although the case where the number of antennas is four is illustrated in FIG. 8, the number of antennas is not limited to four.
  • the reception process of the mobile terminal 202 is executed as follows.
  • the radio signal from the base station 203 is received by the antennas 307-1 to 307-4.
  • the received signal is converted from the radio reception frequency into a baseband signal by the frequency conversion unit 306, and demodulation processing is performed by the demodulation unit 308.
  • the demodulation unit 308 may perform weight calculation and multiplication processing.
  • the demodulated data is passed to the decoder unit 309, and decoding processing such as error correction is performed.
  • the control data is passed to the protocol processing unit 301, and the user data is passed to the application unit 302.
  • a series of processes of the mobile terminal 202 is controlled by the control unit 310. Therefore, although the control unit 310 is omitted in FIG. 8, it is connected to each unit 301 to 309. In FIG. 8, the number of antennas used by the mobile terminal 202 for transmission and the number of antennas used for reception may be the same or different.
  • FIG. 9 is a block diagram showing the configuration of the base station 203 shown in FIG. The transmission process of the base station 203 shown in FIG. 9 will be described.
  • the EPC communication unit 401 transmits / receives data between the base station 203 and the EPC (MME unit 204, etc.).
  • the 5GC communication unit 412 transmits / receives data between the base station 203 and the 5GC (5GC unit 214, etc.).
  • the other base station communication unit 402 transmits / receives data to / from another base station.
  • the EPC communication unit 401, the 5GC communication unit 412, and the other base station communication unit 402 each exchange information with the protocol processing unit 403.
  • the control data from the protocol processing unit 403, and the user data and control data from the EPC communication unit 401, 5GC communication unit 412, and the other base station communication unit 402 are stored in the transmission data buffer unit 404.
  • the data stored in the transmission data buffer unit 404 is passed to the encoder unit 405, and encoding processing such as error correction is performed. There may be data that is directly output from the transmission data buffer unit 404 to the modulation unit 406 without performing the encoding process.
  • the encoded data is modulated by the modulation unit 406. Precoding in MIMO may be performed in the modulation unit 406.
  • the modulated data is converted into a baseband signal, then output to the frequency conversion unit 407, and converted into a radio transmission frequency. After that, the transmission signal is transmitted from the antennas 408-1 to 408-4 to one or more mobile terminals 202. Although the case where the number of antennas is four is illustrated in FIG. 9, the number of antennas is not limited to four.
  • the reception process of the base station 203 is executed as follows. Radio signals from one or more mobile terminals 202 are received by the antenna 408. The received signal is converted from the radio reception frequency into a baseband signal by the frequency conversion unit 407, and demodulation processing is performed by the demodulation unit 409. The demodulated data is passed to the decoder unit 410, and decoding processing such as error correction is performed. Of the decoded data, the control data is passed to the protocol processing unit 403 or the 5GC communication unit 412 or the EPC communication unit 401 or the other base station communication unit 402, and the user data is passed to the 5GC communication unit 412, the EPC communication unit 401 and the other base. It is passed to the station communication unit 402.
  • a series of processes of the base station 203 is controlled by the control unit 411. Therefore, although the control unit 411 is omitted in FIG. 9, it is connected to each unit 401 to 410. In FIG. 9, the number of antennas used by the base station 203 for transmission and the number of antennas used for reception may be the same or different.
  • FIG. 9 is a block diagram showing the configuration of the base station 203, but the base station 213 may have the same configuration. Further, with respect to FIGS. 8 and 9, the number of antennas of the mobile terminal 202 and the number of antennas of the base station 203 may be the same or different.
  • FIG. 10 is a block diagram showing the configuration of the MME.
  • FIG. 10 shows the configuration of the MME 204a included in the MME unit 204 shown in FIG. 2 described above.
  • the PDN GW communication unit 501 transmits and receives data between the MME 204a and the PDN GW.
  • the base station communication unit 502 transmits / receives data between the MME 204a and the base station 203 by the S1 interface.
  • the data received from the PDN GW is user data
  • the user data is passed from the PDN GW communication unit 501 to the base station communication unit 502 via the user plane communication unit 503, and to one or more base stations 203. Will be sent.
  • the user data is passed from the base station communication unit 502 to the PDN GW communication unit 501 via the user plane communication unit 503 and transmitted to the PDN GW.
  • control data is passed from the PDN GW communication unit 501 to the control plane control unit 505.
  • control data is passed from the base station communication unit 502 to the control plane control unit 505.
  • the control plane control unit 505 includes a NAS security unit 505-1, a SAE bearer control unit 505-2, an idle state mobility management unit 505-3, and the like, and is referred to as a control plane (hereinafter referred to as C-Plane). In some cases), perform general processing.
  • the NAS security unit 505-1 performs security of NAS (Non-Access Stratum) messages and the like.
  • the SAE bearer control unit 505-2 manages SAE (System Architecture Evolution) bearers.
  • the idle state mobility management unit 505-3 is under the control of mobility management in the standby state (Idle State; LTE-IDLE state, or simply referred to as idle), generation and control of paging signals in the standby state. Addition, deletion, update, search, tracking area list management, etc. of the tracking area of one or more mobile terminals 202.
  • MME204a distributes the paging signal to one or more base stations 203.
  • the MME204a performs mobility control in the standby state (IdleState).
  • the MME204a manages the tracking area list when the mobile terminal is in the standby state and in the active state (ActiveState).
  • the MME204a embarks on a paging protocol by sending a paging message to a cell belonging to a tracking area (tracking area) in which the UE is registered.
  • the management of the CSG of the eNB 207 connected to the MME 204a, the management of the CSG ID, and the management of the white list may be performed by the idle state mobility management unit 505-3.
  • FIG. 11 is a block diagram showing a configuration of 5GC.
  • FIG. 11 shows the configuration of the 5GC unit 214 shown in FIG. 3 described above.
  • FIG. 11 shows a case where the 5GC unit 214 shown in FIG. 5 includes an AMF configuration, an SMF configuration, and an UPF configuration.
  • the Data Network communication unit 521 transmits / receives data between the 5GC unit 214 and the Data Network.
  • the base station communication unit 522 transmits / receives data via the S1 interface between the 5GC unit 214 and the base station 203 and / or the NG interface between the 5GC unit 214 and the base station 213.
  • the user data is passed from the Data Network communication unit 521 to the base station communication unit 522 via the user plain communication unit 523, and one or more base stations 203. And / or transmitted to base station 213.
  • the user data is passed from the base station communication unit 522 to the Data Network communication unit 521 via the user plain communication unit 523, and is passed to the Data Network communication unit 521. Will be sent to.
  • control data When the data received from the Data Network is control data, the control data is passed from the Data Network communication unit 521 to the session management unit 527 via the user plane control unit 523.
  • the session management unit 527 passes the control data to the control plane control unit 525.
  • the control data When the data received from the base station 203 and / or the base station 213 is the control data, the control data is passed from the base station communication unit 522 to the control plane control unit 525.
  • the control plane control unit 525 passes the control data to the session management unit 527.
  • the control plane control unit 525 includes a NAS security unit 525-1, a PDU session control unit 525-2, an idle state mobility management unit 525-3, and the like, and may be referred to as a control plane (hereinafter, also referred to as C-Plane). Performs all processing for (is).
  • the NAS security unit 525-1 performs security of NAS (Non-Access Stratum) messages and the like.
  • the PDU session control unit 525-2 manages the PDU session between the mobile terminal 202 and the 5GC unit 214.
  • the idle state mobility management unit 525-3 manages mobility in the standby state (Idle State; RRC_IDLE state, or simply referred to as idle), generates and controls a paging signal in the standby state, and is one of its affiliates. Addition, deletion, update, search, tracking area list management, etc. of the tracking area of one or more mobile terminals 202 are performed.
  • the 5GC unit 214 distributes the paging signal to one or more base stations 203 and / or base stations 213. Further, the 5GC unit 214 performs mobility control (MobilityControl) in the standby state (IdleState). The 5GC unit 214 manages the tracking area list when the mobile terminal is in the standby state, the inactive state (InactiveState), and the active state (ActiveState). The 5GC unit 214 starts the paging protocol by transmitting a paging message to a cell belonging to the tracking area (tracking area) in which the UE is registered.
  • MobilityControl mobility control
  • IdleState standby state
  • the 5GC unit 214 manages the tracking area list when the mobile terminal is in the standby state, the inactive state (InactiveState), and the active state (ActiveState).
  • the 5GC unit 214 starts the paging protocol by transmitting a paging message to a cell belonging to the tracking area (tracking area) in which the UE is registered.
  • FIG. 12 is a flowchart showing an outline from a cell search to a standby operation performed by a communication terminal (UE) in an LTE communication system.
  • the communication terminal starts the cell search, in step ST601, the slot timing and the frame are used by using the first synchronization signal (P-SS) and the second synchronization signal (S-SS) transmitted from the surrounding base stations. Synchronize the timing.
  • P-SS first synchronization signal
  • S-SS second synchronization signal
  • the P-SS and S-SS are collectively called a synchronization signal (SS).
  • SS synchronization signal
  • a one-to-one corresponding synchronization code is assigned to the PCI assigned to each cell in the synchronization signal (SS).
  • 504 different PCIs are being considered. Synchronizing is performed using these 504 types of PCI, and the PCI of the synchronized cell is detected (specified).
  • a cell-specific reference signal which is a reference signal (reference signal: RS) transmitted from the base station for each cell, is detected.
  • RS received power Reference Signal Received Power: RSRP
  • RS Reference Signal Received Power
  • RS a code having a one-to-one correspondence with PCI is used. It can be separated from other cells by correlating with that code.
  • step ST603 the cell with the best RS reception quality, for example, the cell with the highest RS reception power, that is, the best cell is selected from one or more cells detected up to step ST602.
  • step ST604 the best cell PBCH is received to obtain BCCH which is broadcast information.
  • a MIB Master Information Block
  • the MIB information includes, for example, a DL (downlink) system bandwidth (also called a transmission bandwidth configuration (dl-bandwidth)), the number of transmitting antennas, and an SFN (SystemFrameNumber).
  • SIB1 includes information on access to the cell, information on cell selection, and scheduling information on other SIBs (SIBk; integers of k ⁇ 2). Further, SIB1 includes a tracking area code (TAC).
  • TAC tracking area code
  • the communication terminal compares the TAC of SIB1 received in step ST605 with the TAC portion of the tracking area identifier (Tracking Area Identity: TAI) in the tracking area list already held by the communication terminal. ..
  • the tracking area list is also referred to as a TAI list.
  • TAI is identification information for identifying a tracking area, and is composed of MCC (Mobile Country Code), MNC (Mobile Network Code), and TAC (Tracking Area Code).
  • MCC Mobile Country Code
  • MNC Mobile Network Code
  • TAC Track Area Code
  • MCC Mobile Country Code
  • MNC Mobile Network Code
  • TAC Track Area Code
  • step ST606 if the TAC received in step ST605 is the same as the TAC included in the tracking area list, the communication terminal enters the standby operation in the cell. In comparison, if the TAC received in step ST605 is not included in the tracking area list, the communication terminal passes through the cell to the core network (CoreNetwork, EPC) including the MME and the like, and TAU (Tracking Area Update). Request a change in the tracking area to do this.
  • CoreNetwork CoreNetwork, EPC
  • TAU Track Area Update
  • the best beam may be selected in addition to the best cell in step ST603.
  • the beam information for example, the beam identifier may be acquired in step ST604.
  • the scheduling information of Remaining Minimum SI may be acquired in step ST604.
  • RMSI Remaining Minimum SI
  • the device constituting the core network tracks based on the identification number (UE-ID, etc.) of the communication terminal sent from the communication terminal together with the TAU request signal. Update the area list.
  • the core network side device transmits the updated tracking area list to the communication terminal.
  • the communication terminal rewrites (updates) the TAC list held by the communication terminal based on the received tracking area list. After that, the communication terminal enters the standby operation in the cell.
  • the cell composed of eNB has a relatively wide range of coverage.
  • cells are configured to cover an area with a relatively wide coverage of a plurality of cells composed of a plurality of eNBs.
  • the cell composed of eNB has a narrow coverage as compared with the coverage of the cell composed of the conventional eNB. Therefore, as in the conventional case, in order to cover a certain area, a large number of small-celled eNBs are required as compared with the conventional eNBs.
  • a cell having a relatively large coverage like a cell composed of a conventional eNB is referred to as a "macro cell”
  • an eNB constituting the macro cell is referred to as a "macro eNB”.
  • a cell having a relatively small coverage such as a small cell is called a "small cell”
  • an eNB constituting the small cell is called a "small eNB”.
  • the macro eNB may be, for example, a "Wide Area Base Station" described in Non-Patent Document 7.
  • the small eNB may be, for example, a low power node, a local area node, a hotspot, or the like.
  • the small eNB is a pico eNB that constitutes a pico cell, a femto eNB that constitutes a femto cell, a HeNB, an RRH (Remote Radio Head), an RRU (Remote Radio Unit), an RRE (Remote Radio Equipment), or an RN (Relay Node).
  • the small eNB may be a "Local Area Base Station" or a "Home Base Station" described in Non-Patent Document 7.
  • FIG. 13 shows an example of the cell configuration in NR.
  • a narrow beam is formed and transmitted in a different direction.
  • the base station 750 uses the beam 751-1 to transmit and receive to and from the mobile terminal at a certain time. At other times, the base station 750 uses the beam 751-2 to transmit and receive to and from the mobile terminal.
  • the base station 750 uses one or more of the beams 751-3 to 751-8 to transmit and receive to and from the mobile terminal. By doing so, the base station 750 constitutes a wide range of cells.
  • FIG. 13 shows an example in which the number of beams used by the base station 750 is 8, the number of beams may be different from 8. Further, in the example shown in FIG. 13, the number of beams used simultaneously by the base station 750 is set to one, but the number may be plural.
  • the UE may be connected to a plurality of NWs or may be in a connectable state (hereinafter, "connection" refers to not only the actually connected state but also the connectable state. May be included).
  • the UE may connect to the plurality of NWs by using a plurality of SIMs.
  • the UE may have only one set of transmitters and receivers, or may have a plurality of sets of transmitters and receivers.
  • the plurality of NWs may be PLMNs or non-public networks (NPNs).
  • the connections to the plurality of NWs may be made in parallel.
  • the RRC state of the UE may be the RRC_CONNECTED state, the RRC_INACTIVE state, or the RRC_IDLE state.
  • the CM state of the UE may be CM-IDLE or CM-CONNECTED.
  • the UE may be in the RRC_CONNECTED state or the CM-CONNECTED state for two or more of the plurality of NWs to be connected.
  • the UE may be in the RRC_CONNECTED state or the CM-CONNECTED state only for one of the plurality of connected NWs.
  • FIG. 14 is an architectural diagram showing an example of a connection between a UE using a plurality of SIMs (hereinafter, may be referred to as a UE equipped with a plurality of SIMs (Multi-SIM UE)) and a plurality of NWs.
  • a UE equipped with a plurality of SIMs Multi-SIM UE
  • NWs a plurality of NWs.
  • the plurality of SIM-equipped UEs are connected to PLMN # 1 and PLMN # 2 in parallel.
  • the UE 1400 is connected to the gNB 1401 in PLMN # 1.
  • the UE 1400 also connects to the gNB 1411 in PLMN # 2.
  • gNB1401 connects with AMF1402 and UPF1403 in PLMN # 1.
  • SMF1404 in PLMN # 1 is connected to AMF1402 and UPF1403.
  • the gNB 1411 connects with the AMF 1412 and UPF 1413 in PLMN # 2.
  • the SMF 1414 in PLMN # 2 is connected to the AMF 1412 and UPF 1413.
  • the UE 1400 may be connected to three or more PLMNs. Further, one or more of the two NWs to which the UE 1400 is connected may be NPNs. The same may be applied when the UE 1400 connects to three or more NWs.
  • paging timings may overlap (hereinafter, may be referred to as paging collisions).
  • the UE in which the paging collision occurs may be a UE having only one set of transmitter / receiver. In this case, no specific method for avoiding a paging collision is disclosed. Therefore, each device of the communication system cannot avoid paging for the UE. As a result, the UE cannot receive the paging from one or more of the above-mentioned NWs.
  • the UE detects a paging collision from multiple NWs.
  • the UE may perform the detection using the frame timing in each NW and the timing related to paging (hereinafter, may be referred to as paging timing).
  • the UE may determine that the paging has collided when the timings related to the paging in the plurality of NWs overlap in real time.
  • the UE may correct the paging timing in each NW by using the frame timing in each NW.
  • the UE may perform the detection using the corrected paging timing.
  • the UE may acquire the frame timing at the base station of each NW by using the cell search.
  • the UE may acquire the timing related to paging in each NW by using the system information notified from the base station of each NW and the identifier of the own UE assigned to the own UE by each NW.
  • the timing regarding paging may be PF (PagingFrame), PO (PagingOccasion), PDCCH monitoring occasion (PDCCHmonitoringoccasion) used for paging reception, or the above-mentioned. Of these, a plurality of combinations may be used.
  • the UE may use PF, PO, PDCCH monitoring occasion, or a plurality of the above for detecting a paging collision. For example, when the UE uses PF for the detection, the processing amount related to the detection can be reduced. As another example, the UE can use a combination of PF, PO, and PDCCH monitoring occasions for the detection to improve the accuracy of the detection.
  • FIG. 15 shows an example of a paging collision from a plurality of NWs.
  • FIG. 15 shows a case where the UE is connected to NW # 1 and NW # 2.
  • the horizontal axis represents time.
  • the SFN of NW # 1 becomes 0.
  • the SFN of NW # 2 becomes 0.
  • the paging timing of the UE in NW # 1 is arranged in the section 1505, and the paging timing of the UE in NW # 2 is arranged in the section 1506.
  • the section 1505 and the section 1506 overlap in time in the section 1508 shown by the broken line.
  • the UE determines that a paging collision has occurred.
  • the paging timing may be PF (Paging Frame), PO (Paging Occasion), or PDCCH monitoring occasion (PDCCH monitoring occupation) used for paging reception. It may be a combination of a plurality of the above.
  • a paging collision occurs when the period of N cycles of the SS burst cycle in one NW base station overlaps with the paging timing in another NW base station. You may do.
  • the above-mentioned N may be 0, 1 or 2 or more.
  • the above-mentioned N may be determined by the standard or may be determined by the UE.
  • the above-mentioned N may be determined by the base station, for example, the base station that transmits the paging received by the UE, and may be notified to the UE. This allows, for example, the UE to establish downlink synchronization with a base station that transmits paging. As a result, the UE can quickly acquire paging.
  • the UE notifies the NW of the paging collision.
  • the UE may include in the notification the information necessary to avoid a paging collision.
  • the UE may request the NW to avoid paging collisions.
  • the request may include the above information.
  • the UE may send the notification to the base station.
  • the UE may send the notification to the base station having the earlier PRACH transmission timing among the plurality of NW base stations.
  • the UE can quickly connect to any one of the plurality of NWs, and as a result, paging collision can be quickly avoided.
  • the UE may send the notification to one NW base station.
  • paging collision avoidance can be executed with a small amount of signaling.
  • the UE may give the notification to a plurality of NW base stations. This makes it possible to improve the flexibility of changing the paging timing in, for example, a communication system.
  • the UE may make the notification using RRC signaling.
  • the UE may use an RRC setup request (RRCSetupRequest) for the notification. This allows, for example, the UE to quickly execute the notification to the base station.
  • RRCSetupComplete for the notification. This allows, for example, the UE to notify the base station of a large amount of information.
  • the UE may use an RRC restart request (RRCResumeRequest) for the notification. This allows, for example, the UE to quickly execute the notification to the base station. As another example, the UE may use RRCesumeComplete for the notification. This allows, for example, the UE to notify the base station of a large amount of information.
  • RRCResumeRequest RRC restart request
  • the UE may use RRC Reconfiguration Complete for the notification. This allows the UE to notify the base station including a lot of information.
  • new RRC signaling may be provided.
  • a signaling called RRCReconfigurationRequest may be provided and used, or a signaling called PagingCollisionNotification may be provided and used.
  • MAC signaling may be used as another example of notification from the UE to the base station. This allows, for example, the UE to quickly notify of a paging collision.
  • L1 / L2 signaling may be used. This allows, for example, the UE to notify paging collisions more quickly.
  • the UE may include information regarding the presence or absence of a paging collision in the notification.
  • the information may be, for example, an identifier for the presence or absence of a paging collision. This allows, for example, the UE to notify of a paging collision with a small amount of signaling.
  • the UE may include information used for paging collision avoidance in the notification.
  • the following (1) to (10) are disclosed as examples of information used for paging collision avoidance.
  • the information in (1) above may be, for example, PLMN-ID of the other NW, NPN-ID disclosed in Non-Patent Document 23 (TR23.734), or CAG-.
  • the ID may be included.
  • the base station can grasp the NW to avoid the paging collision, and as a result, the complexity of the avoidance process can be avoided.
  • an identifier that uniquely identifies the UE may be used.
  • the identifier may be, for example, 5G-GUTI (5G Globally Unique Temporary Identifier).
  • the base station may extract the PLMN-ID of the other NW from the 5G-GUTI.
  • the base station can acquire the identifier of another NW and the identifier of the UE at the same time.
  • the base station can acquire the information used for paging timing derivation in other NWs with less signaling.
  • the information in (2) above may be, for example, a PF (Paging Frame) or a PO (Paging Occasion) in another NW, or a PDCCH monitoring occasion (PDCCH monitoring) used for paging reception. Occasionally), or a combination of a plurality of the above. This makes it possible to reduce the amount of processing in avoiding paging collisions by the base station, for example.
  • the information in (2) above may include information regarding the time of paging timing in another NW.
  • the information regarding the time may include, for example, the time at the start point of the paging timing, the time regarding the end point of the paging timing, the information regarding the duration of the paging timing, and the above-mentioned information. Of these, multiple pieces of information may be included.
  • the paging timing may be PF (Paging Frame), PO (Paging Occasion), or PDCCH monitoring occasion (PDCCH monitoring occupation) used for paging reception in another NW. It may be a combination of a plurality of the above. This makes it possible to reduce the amount of processing in avoiding paging collisions by the base station, for example.
  • the information in (3) above may be, for example, a subcarrier interval, a slot length, or a symbol length used by the UE in paging reception from another NW, or 4 of Non-Patent Document 13 (TS38.211). It may be the parameter ⁇ disclosed in Section 2. This makes it possible to improve the reliability of paging collision avoidance by the base station, for example.
  • the above-mentioned information (4) is, for example, the difference in frame timing between the notification destination base station and the base station of another NW in SFN unit, subframe unit, slot unit, symbol unit, or the minimum on the communication system. It may be given in units (for example, Ts units), or may be a combination thereof.
  • the slot in the above may be a slot in the notification destination base station, or may be a slot in another NW. This makes it possible to reduce the amount of processing in avoiding paging collisions by the base station, for example.
  • the information in (4) above may be a predetermined time point in another NW, for example, a time at a predetermined SFN boundary.
  • the boundary may be at the beginning of the SFN or at the end of the SFN.
  • it may be a time at a predetermined subframe boundary, a time at a predetermined slot boundary, or a time at a predetermined symbol boundary.
  • the UE may acquire the information by cell search for the other NW, or may acquire the information from the broadcast information from the other NW. As a result, for example, the amount of processing required for the notification by the UE can be reduced.
  • the information in (5) above may include, for example, the identifier of the UE in another NW, or may include a parameter used in determining the paging timing in the other NW.
  • the parameter may include a part or all of the broadcast information from the base station of the NW, for example, the PCCH setting information (PCCH-Config) disclosed in Non-Patent Document 24 (TS38.331).
  • PCCH-Config PCCH setting information
  • the above-mentioned identifier regarding the above-mentioned information in (5) may be, for example, the UE_ID disclosed in Section 7.1 of Non-Patent Document 25 (TS38.304), or Non-Patent Document 22 (TS23.501). It may be 5G-S-TMSI (5G S-Temporary Mobile Subscription Identifier), 5G-TMSI (5G Temporary Mobile Subscription Identifier), or 5G-GUTI disclosed in.
  • 5G-S-TMSI 5G S-Temporary Mobile Subscription Identifier
  • 5G-TMSI 5G Temporary Mobile Subscription Identifier
  • 5G-GUTI disclosed in.
  • the above-mentioned parameters relating to the above-mentioned information of (5) may include the DRX (Discontinuous Reception) period (T) of the UE disclosed in Non-Patent Document 25 (TS38.304), or the paging frame in the period. It may include the total number (N), the number of paging occasions in the PF (Ns), the offset used in the PF determination (PF_offset), or the first PDCCH monitoring occasion in the PO (first). -PDCCH-MonitoringOccasionOfPO) may be included.
  • the information in (6) above may be information about a beam used by the UE for reception from the notification destination base station.
  • the beam may be information about a beam used by the UE to receive an SS block from the base station, or broadcast information from the base station, for example, SIB1 or RMSI (Remaining Minimum System Information). It may be information about a beam used for receiving.
  • the base station may change the paging timing in the beam in which the UE is located by using the information in (6) above.
  • the base station may change the broadcast information in the beam. This allows, for example, the base station to flexibly change the paging timing.
  • the information in (7) above may be, for example, information regarding the cycle of the SS burst, or may be the SS block transmission continuation period in one cycle of the SS burst.
  • the base station may set the paging timing by avoiding a plurality of SS burst periods transmitted from other NW base stations by using the information in (7) described above, or may transmit the SS block.
  • the paging timing may be set while avoiding the duration.
  • the UE may use the information to receive synchronization signals of other NW base stations.
  • the UE may receive paging after receiving the synchronization signal. This makes it possible to prevent, for example, a timing shift in the paging reception of the UE.
  • the above-mentioned information (8) may be, for example, information indicating that another NW base station is an NR base station, or information indicating that it is an LTE base station.
  • the base station may use the information to change the paging timing. For example, when the base station of another NW is an LTE base station, for example, when the paging timing in the LTE base station is fixed, the base station may change the cycle of the paging timing. This makes it possible to reduce, for example, the possibility of failure to avoid paging collisions in the communication system.
  • the above-mentioned information (9) may be, for example, information indicating whether or not the own UE is a UE equipped with a plurality of SIMs, or information regarding an operation using a plurality of SIMs.
  • the information regarding the operation using the plurality of SIMs may include, for example, the number of transmitters and / or receivers in the own UE, may include the number of NWs to which the own UE can connect, and can be held by the own UE.
  • the number of RRCs may be included.
  • the information regarding the operation using the plurality of SIMs is information regarding the combination of RRC states in the own UE, for example, information indicating whether or not RRC_CONCEPTED can be simultaneously set for a plurality of base stations of a plurality of NWs. Good.
  • the UE may include the information in the UE capability, for example, and notify the base station.
  • the base station may use the information for sending and receiving data to and from the UE. This makes it possible to improve efficiency in, for example,
  • the base station may change the paging timing by using the notification from the UE.
  • the base station may change the parameters used to determine the paging timing.
  • the parameter may be, for example, the above-mentioned parameter relating to the above-mentioned information in (5).
  • the base station may notify the subordinate UE of the changed parameter.
  • the base station may include the changed parameter in SIB1 and notify it.
  • the UE may change the timing of receiving the paging (hereinafter, may be referred to as the paging reception timing) by using the notification.
  • the UE may receive the paging from the base station to which the information is notified in preference to the paging from the base station of another NW. For example, the UE may receive preferred paging until the UE receives the modified paging parameters at the base station from the base station. This allows, for example, the UE to quickly acquire the modified paging parameters.
  • the base station may change the parameter for each beam.
  • the broadcast information from the base station may be different for each beam. This makes it possible to improve the flexibility of the parameter setting in, for example, a communication system.
  • the base station may change the parameter for each UE.
  • the base station may notify the UE of the changed parameter to the UE individually.
  • the base station may include the changed parameter in RRC signaling, for example, RRC Reconfiguration, and notify each UE individually.
  • the UE may change the paging reception timing by using the individual notification. This makes it possible to avoid the complexity of processing related to the change of paging timing in, for example, a communication system.
  • the base station may set the parameters collectively for a plurality of UEs, or may change them collectively.
  • the base station may set and / or change the parameters collectively for a plurality of SIM-equipped UEs.
  • the above-mentioned plurality of multiple SIM-equipped UEs may be all the plurality of SIM-equipped UEs under the control of the base station.
  • the plurality of SIM-equipped UEs described above may have the same NW connection destination other than the base station, or may be different.
  • the plurality of SIM-equipped UEs may be treated as a UE group.
  • the base station sets and / or changes the parameters for the UE group.
  • the base station may collectively notify the plurality of UEs of the parameters that have been set and / or changed collectively. For example, RRC signaling may be used for the notification.
  • a specific UE-ID for example, a multicast UE-ID may be provided in the collective notification.
  • the plurality of UEs may set and / or change the parameter using the collective notification. This makes it possible to reduce the amount of signaling between the base station and the plurality of UEs, for example.
  • the above-mentioned collective notification from the base station to a plurality of UEs may be performed by other RRC signaling. This makes it possible to further reduce the amount of signaling between the base station and the plurality of UEs, for example.
  • the UE may notify the base station of another NW of the changed parameter notified by the base station.
  • the UE may include information about the UE's identifier in the notification to the other NW base station.
  • the identifier may be an identifier assigned in the NW of the base station whose parameters have been changed.
  • the base station of the other NW may or may not change the paging timing in the other NW by using the parameter. This makes it possible, for example, to change the paging timing in the other NW, avoiding the notified parameter. As a result, it is possible to prevent a paging collision after the paging timing is changed.
  • 16 and 17 are sequence diagrams showing a first example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station.
  • 16 and 17 are connected at the position of the boundary line BL1617.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2. There is.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • the UE is in the RRC_IDLE state for both gNB # 1 and gNB # 2.
  • 16 and 17 show an example in which the UE notifies gNB # 1 of a paging collision.
  • step ST1601 shown in FIG. 16 gNB # 1 transmits an SS block to the UE.
  • step ST1602 gNB # 2 transmits an SS block to the UE.
  • step ST1603 the UE acquires the SFN timings of gNB # 1 and gNB # 2 transmitted in steps ST1601 and ST1602 described above, and derives the difference between the SFN timings of both gNBs.
  • step ST1606 gNB # 1 notifies the UE of system information.
  • the system information broadcast in step ST1606 includes parameters for paging in gNB # 1.
  • step ST1607 gNB # 2 notifies the UE of system information.
  • the system information broadcast in step ST1607 includes parameters for paging in gNB # 2.
  • the parameter notified in steps ST1606 and ST1607 may be the same type of parameter as the parameter included in the above-mentioned information (5) disclosed as the information used for paging collision avoidance.
  • the UE acquires the paging timing in gNB # 1 and gNB # 2 by using the information acquired in steps ST1606 and ST1607 described above.
  • Step ST1611 shown in FIG. 16 represents the paging timing from gNB # 1 to the UE.
  • Step ST1612 represents the paging timing from gNB # 2 to the UE.
  • FIG. 16 shows a case where the paging timings of gNB # 1 and gNB # 2 collide with each other.
  • step ST1615 shown in FIG. 16 the UE determines whether or not there is a paging collision from gNB # 1 and gNB # 2.
  • the difference in frame timing acquired in step ST1603 and the paging timing acquired in step ST1608 may be used for the determination. If the UE determines that the paging collision does not occur, the UE may return to the process of acquiring the system information in steps ST1606 and ST1607 without performing the processes after step ST1621. When the UE determines that a paging collision has occurred, the UE performs the processing after step ST1621.
  • Steps ST1621 to ST1629 shown in FIG. 16 relate to a process in which the UE notifies gNB # 1 of a paging collision.
  • the UE transmits PRACH to gNB # 1.
  • gNB # 1 transmits a random access response (RandomAccessResponse; RAR) to the UE.
  • RAR RandomAccessResponse
  • step ST1625 shown in FIG. 16 the UE requests gNB # 1 to start RRC.
  • RRC signaling for example, RRCSetupRequest of Non-Patent Document 24 (TS38.331) may be used.
  • gNB # 1 instructs the UE to start RRC.
  • RRC signaling for example, RRC Setup of Non-Patent Document 24 (TS38.331) may be used.
  • the UE notifies gNB # 1 of the completion of RRC startup.
  • RRC signaling for example, RRCSetupComplete of Non-Patent Document 24 (TS38.331) may be used.
  • the UE may include information about the paging collision in the notification in step ST1629.
  • the information may include, for example, information regarding the presence or absence of a paging collision, or may include the above-mentioned information (1) to (10) disclosed as an example of information used for avoiding a paging collision. ..
  • step ST1631 shown in FIG. 17 gNB # 1 changes the paging timing.
  • step ST1633 gNB # 1 notifies the UE of system information.
  • the notification may include parameters related to the changed paging timing.
  • step ST1635 the UE acquires the paging parameter notified in step ST1633 described above, and acquires the paging timing of gNB # 1 using the parameter.
  • the UE changes the paging reception timing of gNB # 1 according to the acquired paging timing.
  • the UE receives the paging of gNB # 1 at the changed paging reception timing of gNB # 1. This allows the UE to receive paging from gNB # 1 and paging from gNB # 2.
  • the UE receives the paging from gNB # 1, and if there is no paging, switches the reception to gNB # 2 by the paging timing of gNB # 2, and receives the paging of gNB # 2. Further, the UE receives the paging from gNB # 2, and if there is no parsing, switches the reception to gNB # 1 by the paging timing of gNB # 1 and receives the paging of gNB # 1. For example, the UE may receive paging from gNB # 1, and if there is paging, perform processing according to the received paging.
  • the base station may request the AMF to change the UE identifier. Even if the base station makes the request, for example, when it is impossible to avoid the paging collision by changing only the parameters (for example, PCCH setting information (PCCH-Config)) used for determining the paging timing in (5) above. Good.
  • the base station may not make the request to the AMF when a paging collision is possible by changing the parameter. This makes it possible to prevent an unnecessary change of the identifier when, for example, a paging collision can be avoided only by changing the PCCH setting information.
  • the request may include one or more UE identifiers that are candidates for change. For the request, for example, signaling in the N2 interface may be used.
  • New signaling for example, signaling of N2UE configuration update request (N2UE configuration update request) may be provided and used.
  • the identifier of the UE may be, for example, the UE_ID disclosed in Section 7.1 of Non-Patent Document 25 (TS38.304), or 5S- disclosed in Non-Patent Document 22 (TS23.501). It may be TMSI (5G S-Temporary Mobile Subscription Identifier), 5G-TMSI (5G Temporary Mobile Subscription Identifier), or 5G-GUTI.
  • the AMF may use the signaling to change the identifier of the UE.
  • the base station may notify the AMF of information used for avoiding a paging collision.
  • the base station may include the information in the request for the UE identifier and notify it.
  • the information may include the above-mentioned information (1) to (10).
  • the base station may convert the above-mentioned information (1) to (10) notified from the UE into signaling in the N2 interface and notify the base station.
  • the information may further include information about its own NW.
  • the information about the own NW may be obtained by replacing the other NW with the own NW with respect to the above-mentioned information (1) to (10).
  • the AMF may change the identifier of the UE by using the information about its own NW. This makes it possible to prevent, for example, a paging collision in the changed UE identifier.
  • AMF may notify the UE of the changed identifier.
  • NAS signaling for example, a setting update instruction (CONFIGURATION UPDATE COMMAND) disclosed in Non-Patent Document 27 (TS24.501) may be used for the notification.
  • the identifier may be, for example, 5G-S-TMSI (5G S-Temporary Mobile Subscription Identifier) disclosed in Non-Patent Document 22 (TS23.501).
  • the UE may update the UE-ID of its own UE by using the notification.
  • the UE may notify the AMF of the completion of updating the identifier of its own UE.
  • NAS signaling for example, CONFIGURATION UPDATE COMPLETE disclosed in Non-Patent Document 27 (TS24.501) may be used for the notification.
  • AMF may notify the base station of the changed identifier. Signaling on the N2 interface may be used for the notification.
  • the base station may use the notification to change the paging timing of the UE. For example, the base station may use the modified identifier of the UE to change the parameters used to determine the paging timing. This makes it possible to improve the flexibility of changing the paging timing in the UE, for example.
  • the notification of the changed parameter from the base station to the UE may be the same as described above.
  • 18 and 19 are sequence diagrams showing a second example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station, and the base station requests an identifier of the UE from AMF.
  • 18 and 19 are connected at the position of the boundary line BL1819.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2. There is.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • the UE is in the RRC_IDLE state for both gNB # 1 and gNB # 2.
  • FIGS. 18 and 19 show an example in which the UE notifies gNB # 1 of a paging collision and gNB # 1 requests AMF # 1 to change the UE identifier.
  • FIGS. 18 and 19 the same processes as those in FIGS. 16 and 17 are assigned the same step numbers, and common description will be omitted.
  • Steps ST1601 to ST1629 shown in FIG. 18 are the same as those in FIG. 18 are the same as those in FIG. 18
  • gNB # 1 requests AMF # 1 to change the identifier of the UE.
  • the request for example, signaling in the N2 interface may be used.
  • New signaling for example, signaling of N2UE configuration update request (N2UE configuration update request) may be provided and used.
  • AMF # 1 changes the UE identifier.
  • the identifier may be, for example, 5G-S-TMSI.
  • AMF # 1 instructs the UE to update the identifier of the UE.
  • NAS signaling for example, a setting update instruction (CONFIGURATION UPDATE COMMAND) disclosed in Non-Patent Document 27 (TS24.501) may be used for the instruction.
  • the instructions may include, for example, the updated 5G-S-TMSI of the UE.
  • the UE updates the UE-ID of its own UE using the instruction.
  • step ST1738 shown in FIG. 19 the UE notifies AMF of the completion of updating the identifier of its own UE.
  • NAS signaling for example, CONFIGURATION UPDATE COMPLETE disclosed in Non-Patent Document 27 (TS24.501) may be used for the notification.
  • the AMF notifies the base station of the changed identifier.
  • Signaling on the N2 interface may be used for the notification.
  • the notification may include the modified identifier.
  • the identifier may be 5G-S-TMSI, UE-ID, or 5G-GUTI.
  • gNB # 1 may change the parameters related to paging timing by using the modified identifier notified in step ST1740 described above.
  • Steps ST1633 and ST1635 shown in FIG. 19 are the same as those in FIG. 19
  • the notification of the identifier after the change from the AMF to the base station may be performed before the notification from the UE to the AMF of the completion of the identifier update of the own UE.
  • the base station can quickly determine the parameters related to the paging timing while making it possible to improve the flexibility of changing the paging timing in the UE.
  • 20 and 21 are sequence diagrams showing a third example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the base station, and the base station requests an identifier of the UE from AMF.
  • 20 and 21 are connected at the position of the boundary line BL2021.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2. There is.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • the UE is in the RRC_IDLE state for both gNB # 1 and gNB # 2.
  • FIGS. 20 and 21 show an example in which the UE notifies gNB # 1 of a paging collision and gNB # 1 requests AMF # 1 to change the identifier of the UE.
  • FIGS. 20 and 21 the same processes as those in FIGS. 16 to 19 are assigned the same step numbers, and common description will be omitted.
  • Steps ST1601 to ST1629 shown in FIG. 20 are the same as those in FIG.
  • Steps ST1730 to ST1736 shown in FIG. 21 are the same as those in FIG.
  • step ST1840 shown in FIG. 21 the AMF notifies the base station of the changed identifier.
  • the notification may be similar to step ST1740 in FIG.
  • Steps ST1631 to ST1635 shown in FIG. 21 are the same as those in FIG.
  • Step ST1738 shown in FIG. 21 is the same as in FIG.
  • the 20 and 21 show a case where the UE notifies the AMF of the completion of updating the identifier of the own UE after the paging timing change in the own UE.
  • the UE may notify the completion of updating the identifier of its own UE before changing the paging timing.
  • the UE may perform step ST1738 after the UE-ID change shown in step ST1736.
  • the UE may make the notification to the AMF.
  • the UE may send the notification to the AMF connected to the base station having the earlier PRACH transmission timing among the plurality of NW base stations.
  • the UE can quickly connect to any one of the plurality of NWs, and as a result, paging collision can be quickly avoided.
  • the UE may make the notification using NAS signaling.
  • the UE may include the NAS signaling in the RRC signaling, for example, RRCSetupComplete and notify it.
  • the gNB may extract the NAS signaling from the RRC signaling.
  • the gNB may transfer the NAS signaling to the AMF.
  • signaling on the N2 interface for example, INITIAL UE TRANSFER disclosed in Non-Patent Document 26 (TS38.413) may be used. New signaling may be provided for the transfer. This allows, for example, the UE to notify information about a paging collision in the first NAS signaling after the RRC is launched. As a result, the AMF can quickly obtain information about the paging collision.
  • new NAS signaling may be provided.
  • signaling of a UE configuration update request (UE configuration update request) from the UE to the AMF may be provided.
  • the UE may give the notification to the AMF using the newly provided NAS signaling.
  • the UE may give the notification to the AMF of one NW.
  • paging collision avoidance can be executed with a small amount of signaling.
  • the UE may give the notification to multiple NW AMFs. This makes it possible to improve the flexibility of changing the paging timing in, for example, a communication system.
  • the UE may notify the AMF of information used for avoiding a paging collision.
  • the UE may include the information in the notification.
  • the information may include the above-mentioned information (1) to (10).
  • the information may further include information about its own NW.
  • the information about the own NW may be obtained by replacing the other NW with the own NW with respect to the above-mentioned information (1) to (10).
  • the AMF can acquire the parameters necessary for deriving the paging timing of the UE without any shortage.
  • paging collision in the UE can be reliably avoided.
  • the AMF may change the identifier of the UE by using the information about its own NW. This makes it possible to prevent, for example, a paging collision in the changed UE identifier.
  • AMF may change the identifier of the UE by using the signaling.
  • the AMF may notify the UE of the changed identifier.
  • NAS signaling for example, a setting update instruction (CONFIGURATION UPDATE COMMAND) disclosed in Non-Patent Document 27 (TS24.501) may be used for the notification.
  • the identifier may be, for example, 5G-S-TMSI (5G S-Temporary Mobile Subscription Identifier) disclosed in Non-Patent Document 22 (TS23.501).
  • the UE may update the UE-ID of its own UE by using the notification.
  • the UE may notify the AMF of the completion of updating the identifier of its own UE.
  • NAS signaling for example, CONFIGURATION UPDATE COMPLETE disclosed in Non-Patent Document 27 (TS24.501) may be used for the notification.
  • AMF may notify the base station of the changed identifier. Signaling on the N2 interface may be used for the notification.
  • the base station may use the notification to update the UE-ID.
  • the base station may change the paging timing by using the notification.
  • the base station may or may not change the parameters used to determine the paging timing by using the changed identifier of the UE. This makes it possible to improve the flexibility of changing the paging timing in the UE, for example.
  • the notification of the changed parameter from the base station to the UE may be the same as described above.
  • the UE may notify the AMF of another NW of the changed parameter notified by the AMF.
  • the UE may include information about the UE's identifier in the notification to the AMF of the other NW.
  • the identifier may be an identifier assigned in the NW of the AMF in which the parameter is changed.
  • the AMF of the other NW may or may not change the paging timing in the other NW using the parameter. This makes it possible, for example, to change the paging timing in the other NW, avoiding the notified parameter. As a result, it is possible to prevent a paging collision after the paging timing is changed.
  • 22 and 23 are sequence diagrams showing an example of an operation in which a plurality of SIM-equipped UEs detect a paging collision and notify the AMF. 22 and 23 are connected at the position of the boundary line BL2223.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2. There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • the UE is in the RRC_IDLE state for both gNB # 1 and gNB # 2.
  • FIGS. 22 and 23 show an example in which the UE notifies AMF # 1 of a paging collision via gNB # 1.
  • the same steps as those in FIGS. 16 to 19 are assigned the same step numbers, and common description will be omitted.
  • Steps ST1601 to ST1627 shown in FIG. 22 are the same as those in FIG. 22 are the same as those in FIG. 22.
  • the UE notifies gNB # 1 of the completion of RRC startup.
  • RRC signaling for example, RRCSetupComplete of Non-Patent Document 24 (TS38.331) may be used.
  • the UE may include NAS signaling in the notification in step ST1629.
  • the UE may include information about the paging collision in the NAS signaling.
  • the information may include, for example, information regarding the presence or absence of a paging collision, or may include the above-mentioned information (1) to (10) disclosed as an example of information used for avoiding a paging collision. ..
  • step ST1931 shown in FIG. 23 gNB # 1 transfers the NAS signaling received from the UE to AMF # 1.
  • signaling on the N2 interface for example, INITIAL UE TRANSFER disclosed in Non-Patent Document 26 (TS38.413) may be used. New signaling may be provided for the transfer.
  • AMF # 1 recognizes the occurrence of a paging collision by receiving the signaling in step ST1931.
  • Steps ST1732 to ST1740 shown in FIG. 23 are the same as those in FIG.
  • FIG. 23 the case where gNB # 1 does not change the parameter related to the paging timing is shown, but gNB # 1 may change the parameter. In this case, steps ST1631 to ST1635 shown in FIG. 19 may be performed. This makes it possible to improve the flexibility of changing the paging timing in, for example, a communication system.
  • the other base station may be, for example, a base station of the handover destination of the UE (hereinafter, may be referred to as a target base station).
  • the handover source base station (hereinafter, may be referred to as a source base station) may notify the target base station of information regarding the paging collision.
  • the information may be, for example, the above-mentioned information (1) to (10). This makes it possible to prevent a paging collision even after the UE has handed over, for example.
  • the source base station uses the signaling in the inter-base station interface (for example, the Xn interface), for example, the signaling of the handover request (HANDOVER REQUEST) disclosed in Non-Patent Document 28 (TS38.423). May be good. This allows, for example, the source base station to quickly notify the target base station of the information.
  • the inter-base station interface for example, the Xn interface
  • HANDOVER REQUEST the signaling of the handover request
  • TS38.423 Non-Patent Document 28
  • the UE may notify the target base station of the information.
  • the UE may perform the notification using the above-mentioned RRC signaling, for example, the signaling of RRC reset completion completion. This makes it possible to reduce the amount of signaling in the inter-base station interface, for example.
  • the UE may notify the information regarding the paging collision to the base station having the earliest PRACH transmission timing among the NW base stations to which the UE connects. This allows, for example, the UE to quickly notify the NW of a paging collision.
  • the UE may set a primary NW or a secondary NW.
  • the UE may send the notification to the base station and / or AMF of the primary NW, or may send the notification to the base station and / or AMF of the secondary NW. This makes it possible to avoid the complexity of the process for notifying information about the paging collision in the design of the communication system.
  • a person may set the primary NW and / or the secondary NW for the UE.
  • the primary NW and the secondary NW are set according to the preference of the person. This makes it possible to make the NW preferred by a person implement paging collision avoidance.
  • the settings of the primary NW and / or the secondary NW may be stored in the UE in advance. The UE can use the settings of the primary NW and / or the secondary NW at any time.
  • the UE may process paging processing from a plurality of NWs on a first-come, first-served basis. This makes it possible, for example, to avoid the complexity of UE design.
  • the UE may perform the processing for the second-come-first-served paging before the first-come-first-served paging.
  • the above-mentioned operation may be performed, for example, when the UE receives a high-priority second-arrival paging during the first-come-first-served paging process.
  • the base station may include the priority information in the paging and notify the UE.
  • the UE may use the information to determine whether or not to process the paging of the after-arrival. As a result, for example, high-priority communication can be started quickly, and as a result, QoS in the communication system can be secured.
  • the UE may receive paging from a plurality of NWs in a time-division manner. Paging from a plurality of NWs may be transmitted in a time division manner. The UE may receive paging from each NW using time-division-multiplexed paging timing. This makes it possible to reduce the power consumption of the UE, for example.
  • the UE may determine the time division multiplexing method for paging.
  • the UE may notify the base station that the paging will be time-division-multiplexed and received.
  • the UE may send the notification to one NW base station, may send to a plurality of NW base stations, or send the notification to all the connected NW base stations. May be good.
  • the method of notifying the base station from the UE may be the same as the method of notifying information regarding the paging collision from the UE to the base station in the above-mentioned solution.
  • the base station may use the notification to include paging information for the UE only at the paging timing received by the UE. As a result, for example, it is possible to reduce the power consumption of the base station and increase the number of UEs that can be accommodated in paging.
  • the notification from the UE to the base station may include information regarding paging timing after time division multiplexing.
  • the information may include, for example, the above-mentioned information (2) and / or (5) disclosed as information regarding a paging collision.
  • information regarding the paging cycle may be used.
  • the information regarding the paging cycle for example, the DRX (Discontinuous Reception) cycle (T) of the UE disclosed in Non-Patent Document 25 (TS38.304) may be used, or the total number of paging frames in the cycle. The number (N) may be used.
  • the information may include information regarding paging timing that is not assigned due to time division multiplexing.
  • the paging timing may be PF (Paging Frame), PO (Paging Occasion), or PDCCH monitoring occasion (PDCCH) used for paging reception, which is not assigned by time division multiplexing. It may be monitoring occasion), or it may be a combination of a plurality of the above.
  • the UE may determine a method of time division multiplexing for paging.
  • the UE may not notify the base station that the paging will be time-division-multiplexed and received.
  • the UE may receive paging from each NW by using the paging time division multiplexing method determined by the UE. This makes it possible, for example, to avoid the complexity of designing a communication system.
  • the base station may determine the time division multiplexing method for paging.
  • the base station may be, for example, a base station of the primary NW.
  • the UE may request the base station to perform time division multiplexing of paging.
  • the decision made by the base station may be triggered by the request from the UE, or may be made without the request from the UE.
  • the base station may notify other NW base stations of paging time division multiplexing information.
  • the notification may be made via the UE.
  • the base station may perform the notification using RRC signaling, MAC signaling, or L1 / L2 signaling.
  • the UE may perform the notification to the base station of another NW by using RRC signaling, MAC signaling, or L1 / L2 signaling. This eliminates the need to determine, for example, a time division multiplexing method for paging in the UE, thus avoiding design complexity.
  • the base station that determines the time division multiplexing method for paging may be one NW base station or a plurality of NW base stations.
  • the UE may send the request to one NW base station, or may send the request to a plurality of NW base stations.
  • FIG. 24 is a diagram showing a first example of time division multiplexing of paging.
  • the UE is connected to two NWs (NW # 1, NW # 2).
  • NW # 1, NW # 2 the solid line and the broken line square indicate the paging timing before time division multiplexing in each NW.
  • the UE may not receive paging from the NW at the timing of the square shown by the broken line.
  • paging from NW # 1 and paging from NW # 2 are transmitted at the same cycle.
  • the UE may alternately receive paging from NW # 1 and NW # 2.
  • FIG. 25 shows a second example of time division multiplexing of paging.
  • the UE is connected to two NWs (NW # 1 and NW # 2).
  • the solid line and the broken line square indicate the paging timing before time division multiplexing in each NW.
  • the UE may not receive paging from the NW at the timing of the square shown by the broken line.
  • the paging from NW # 1 is transmitted at a larger cycle than the paging from NW # 2.
  • the UE may receive the paging from NW # 1.
  • the base station may detect a paging collision.
  • the base station may be a base station of one NW, or may be a base station of a plurality of NWs to which the UE is connected.
  • the UE may notify the base station of the identifier of its own UE in another NW.
  • the notification may include information about cells to which the UE connects in other NWs, such as PCI.
  • the base station may acquire information on paging in the other NW.
  • the acquisition of the information in the base station may be performed by acquiring the broadcast information from the base station of the other NW, or may be performed by the notification from the UE to the base station. As a result, for example, in the UE, the amount of processing related to the paging collision can be reduced.
  • the method disclosed in the first embodiment may be applied to a paging collision between an NR base station and an LTE base station.
  • the LTE base station and / or the NW to which the LTE base station connects may change only the UE identifier. This makes it possible, for example, to avoid design complexity in communication systems.
  • the LTE base station and / or the NW to which the LTE base station connects may be mutable, including other parameters related to paging. This makes it possible to improve the flexibility of changing the paging timing, for example.
  • the notification from the UE to the NR base station and / or AMF, and the notification from the UE to the LTE base station and / or MME may be the same as the above-mentioned solution.
  • the notification from the UE to the AMF connected to the NR base station and the notification from the UE to the MME connected to the LTE base station may be the same as the above-mentioned solution. This allows, for example, the UE to avoid a paging collision between the NR base station and the LTE base station.
  • the UE may notify the NR base station of the paging collision. This makes it possible to flexibly change the paging timing of the UE, for example, in a communication system.
  • the UE may notify the LTE base station and / or MME of a paging collision.
  • the amount of signaling between the UE and the NR base station can be reduced, and as a result, the communication speed in the communication system can be secured.
  • the method disclosed in the first embodiment may be applied to a paging collision between LTE base stations. Notification from the UE to the LTE base station and / or MME may be similar to the solution described above. This makes it possible to avoid paging collisions between LTE base stations, for example.
  • the LTE base station and / or the NW to which the LTE base station connects may change only the UE identifier. This makes it possible, for example, to avoid design complexity in communication systems.
  • the LTE base station and / or the NW to which the LTE base station connects may be mutable, including other parameters related to paging. This makes it possible to improve the flexibility of changing the paging timing, for example.
  • the UE may have a plurality of RRCs.
  • the UE may be allowed to have a plurality of RRCs when the own UE is a UE equipped with a plurality of SIMs.
  • the UE may have an RRC for each of a plurality of NW base stations. This facilitates control, for example, between the UE and each base station.
  • the UE may have an RRC for each transmitter / receiver.
  • the same may be applied when the number of transmitters and receivers of the UE is different.
  • the UE may have an RRC for each transmitter of the UE, or may have an RRC for each receiver of the UE.
  • the UE may have as many RRCs as the larger number of the number of transmitters and receivers as the UE has, or may have as many RRCs as the smaller number. This makes it possible to easily control each transmitter / receiver of the UE, for example.
  • the UE may have only one RRC.
  • the UE may have only one RRC.
  • the UE may have only one RRC.
  • the same may be applied when the UE has a plurality of transmitters / receivers.
  • the same may be applied when the number of transmitters and receivers of the UE is different.
  • the UE may have only one transmitter.
  • the UE may have only one RRC.
  • the UE may have only one RRC. This facilitates control, for example, between the UE and the base stations of the plurality of NWs, eg, coordination of frequency, time, and / or power resources between the base stations of the plurality of NWs.
  • the UE may have a plurality of RRC states.
  • the UE may be allowed to have a plurality of RRC states when the own UE is a UE equipped with a plurality of SIMs.
  • an RRC may be provided for each of a plurality of NW base stations.
  • the UE may have one RRC state for one RRC or may have a plurality of RRC states for one RRC.
  • the communication system can easily control the connection state with each base station.
  • each transmitter / receiver may have an RRC state.
  • the same may be applied when the number of transmitters and receivers of the UE is different.
  • the UE may have an RRC state for each transmitter of the UE, or may have an RRC state for each receiver of the UE.
  • the UE may have as many RRC states as the larger number of the number of transmitters and receivers as the UE has, or may have as many RRC states as the smaller number. This makes it possible to easily control, for example, the operating status of each transmitter / receiver of the UE.
  • the plurality of RRC states possessed by the UE may be independent of each other.
  • the plurality of RRC states may be independent of each other.
  • the plurality of RRC states may be independent of each other. This makes it possible to improve the flexibility of the communication system, for example.
  • the plurality of RRC states possessed by the UE may have interdependence. For example, when the RRC state with one NW base station transitions to RRC_CONCEPTED, the RRC state with another NW base station may transition to RRC_CONCEPTED. As another example, when the RRC state with one NW base station transitions to RRC_IDLE or RRC_INACTIVE, the RRC state with another NW base station may transition to RRC_IDLE or RRC_INACTIVE. For example, when the UE has one transmitter / receiver, it may have interdependence between a plurality of RRC states. As another example, when the UE has a plurality of transmitters / receivers, it may have interdependence between a plurality of RRC states. This facilitates, for example, control of the RRC state in the communication system.
  • the UE may have only one RRC state. This makes it possible to easily control the operating status of the UE, for example.
  • the method disclosed in the first embodiment may be applied to the reception of SS block and / or system information.
  • the UE may receive SS blocks from a plurality of NW base stations in a time-division manner.
  • the UE may request one NW base station to avoid collision of system information transmission timing.
  • the base station may change the system information transmission timing by using the request. This makes it possible to avoid transmission timing collisions, for example, for SS blocks and / or system information.
  • the same method as in the first embodiment may be applied to a communication system in which a plurality of NWs share the same base station.
  • FIG. 26 is an architectural diagram showing an example of connection between a plurality of SIM-equipped UEs and a plurality of NWs in a communication system in which a plurality of NWs share the same base station.
  • PLMN # 1 and PLMN # 2 share the same base station 2201.
  • the plurality of SIM-equipped UEs are connected to PLMN # 1 and PLMN # 2 in parallel.
  • the UE 1400 is connected to the gNB 2201.
  • gNB2201 connects with AMF1402 and UPF1403 in PLMN # 1.
  • SMF1404 in PLMN # 1 is connected to AMF1402 and UPF1403.
  • gNB2201 connects with AMF1412 and UPF1413 in PLMN # 2.
  • the SMF 1414 in PLMN # 2 is connected to the AMF 1412 and UPF 1413.
  • the UE 1400 may be connected to three or more PLMNs. Further, one or more of the two NWs to which the UE 1400 is connected may be NPNs. The same may be applied when the UE 1400 connects to three or more NWs.
  • the UE may notify the base station of a paging timing collision between a plurality of NWs.
  • the notification may be similar to the notification disclosed in the first embodiment.
  • the UE may notify the AMF of a paging timing collision between a plurality of NWs.
  • the AMF may be one NW AMF or a plurality of NW AMFs.
  • the notification from the UE to the AMF may be similar to the notification disclosed in the first embodiment. This makes it possible to avoid a paging collision even in a communication system in which a plurality of NWs share a base station, for example.
  • the base station may detect a paging timing collision.
  • the base station may change the paging parameters in each NW.
  • the base station may notify the UE of the changed parameter, or may notify the UE individually.
  • the UE may notify the base station of the identifier of the UE assigned by each NW. This allows, for example, the base station to identify that the UE identifiers in each NW belong to the same UE. As a result, the base station can execute parameter changes for avoiding paging collisions.
  • the identifier may be UE_ID or 5G-S-TMSI. This makes it possible to reduce, for example, the amount of signaling in the notification from the UE to the base station.
  • the identifier may be 5G-TMSI.
  • the UE can notify the base station of the NW identifier at the same time, and as a result, the identification in the base station can be executed quickly.
  • the identifier may be 5G-GUTI.
  • the base station may acquire the identifier of the UE assigned by each NW by using NAS signaling between the UE and the AMF of each NW.
  • the base station may acquire the identifier of the UE in the NW by using the NAS signaling related to the registration of the UE in each NW.
  • the base station may be capable of decoding the NAS signaling. This makes it possible, for example, to reduce signaling between the UE and the base station.
  • the base station may request the AMF to change the UE identifier.
  • the request may be similar to the request for changing the UE identifier from the base station to the AMF disclosed in the first embodiment.
  • the AMF may use the request to change the identifier of the UE.
  • the AMF may notify the UE of the change in the UE identifier.
  • the NAS signaling disclosed in the first embodiment for example, the setting update instruction (CONFIGURATION UPDATE COMMAND) disclosed in Non-Patent Document 27 (TS24.501) may be used.
  • the UE may notify the AMF of the completion of updating the identifier of its own UE. Similar to the first embodiment, NAS signaling, for example, setting update completion (CONFIGURATION UPDATE COMPLETE) disclosed in Non-Patent Document 27 (TS24.501) may be used for the notification.
  • setting update completion CONFIGURATION UPDATE COMPLETE
  • TS24.501 Non-Patent Document 27
  • AMF may notify the base station of the changed identifier.
  • signaling on the N2 interface may be used for the notification.
  • the base station may or may not change the paging timing of the UE by using the notification.
  • Information about the NW may be included in the paging.
  • the information about the NW may be, for example, an identifier indicating PLMN and / or NPN.
  • the paging information may be information indicating which NW the information is about.
  • the information about the NW and the paging information may be associated with each other to provide the paging information. The UE can recognize which NW the received paging information corresponds to.
  • the base station should send one of the NW paging.
  • the base station may transmit paging of the primary NW.
  • the paging includes information about the aforementioned NW.
  • the UE can acquire the paging information of a plurality of NWs by receiving the paging at the paging timing of one NW.
  • the base station may notify the information for identifying the one NW.
  • the information for identifying one NW may be, for example, an identifier of the NW.
  • the base station may individually notify the UE of information for identifying the one NW.
  • RRC signaling may be used for the notification.
  • the base station may notify the information regarding the paging timing of the one NW.
  • the base station may individually notify the UE of information regarding the paging timing of the one NW.
  • RRC signaling may be used for the notification. By doing so, the UE can identify one NW, derive the paging timing of the NW, and can receive the paging at the paging timing of the NW.
  • the UE only needs to receive the paging at the paging timing from one NW, and the complexity of the paging process of the UE can be avoided.
  • a method of avoiding a paging collision between a plurality of NWs is disclosed.
  • a method of avoiding a conflict of random access is disclosed.
  • the UE detects a random access collision between multiple NW base stations. Similar to Embodiment 1, the UE may detect a collision using information about frame timing between a plurality of NW base stations, or system information received from the plurality of base stations, for example, random access. Collisions may be detected using the system information about. Both of the above may be combined.
  • the UE notifies one NW base station of information regarding a random access collision.
  • the base station may be, for example, the base station of the primary NW disclosed in the first embodiment.
  • the base station may use the notification from the UE to change the timing of random access to the UE.
  • the random access timing may be, for example, the PRACH transmission timing from the UE or the RAR timing received by the UE.
  • the base station may notify the UE of the changed timing.
  • the base station may change the random access preamble.
  • the base station may notify the UE of information about the modified preamble.
  • the UE may transmit PRACH to the base station using the modified preamble. This makes it possible, for example, to prevent other NW base stations from misidentifying the PRACH for the base station from the UE as a PRACH for its own base station. Further, the base station can also prevent the PRACH for the base station of another NW from being mistaken as the PRACH for its own station.
  • the following (1) to (8) are disclosed as information regarding random access processing with other NW base stations notified by the UE to the base station.
  • the information in (1) above may be, for example, a base station identifier of a base station that does not transmit or receive data (hereinafter, may be referred to as an inactive base station), or may be a cell identifier. May be good.
  • a base station that transmits / receives data (hereinafter, may be referred to as an active base station) grasps an inactive base station to which the UE should receive a synchronization signal, system information, and / or paging. It will be possible. As a result, the complexity of scheduling by active base stations can be avoided.
  • the above-mentioned information (2) may be information regarding the start timing of PRACH transmitted by the UE.
  • the information may be SFN, subframe number, slot number, or symbol number, or may be the combination described above.
  • the information may include information about the length of the PRACH transmitted by the UE, or may include information about the end timing of the PRACH.
  • the UE can notify the information about the PRACH transmitted by its own UE with a small amount of signaling.
  • the information in (2) above may include information regarding the PRACH time transmitted by the UE.
  • the information regarding the time may include, for example, the time at the start point of the PRACH, the time regarding the end point of the PRACH, the information regarding the length of the PRACH, or a plurality of the above-mentioned information. But it may be. As a result, for example, the amount of processing in random access collision avoidance by the base station can be reduced.
  • the information in (3) above may be, for example, a subcarrier interval, a slot length, or a symbol length used by the UE in a random access process with another NW base station, and may be a non-patent document 13 (3). It may be the parameter ⁇ disclosed in Section 4.2 of TS38.211). This makes it possible to improve the reliability of the avoidance processing by the base station, for example.
  • the above-mentioned information (4) may be the same as the above-mentioned information (4) used for paging collision avoidance disclosed in the first embodiment.
  • the information may be, for example, information regarding a frame timing difference between the base station and another NW base station. This makes it possible to reduce the amount of processing in the avoidance processing by the base station, for example.
  • it may be a predetermined time point in another NW base station, for example, a time at a predetermined SFN boundary. As a result, for example, the amount of processing required for the notification by the UE can be reduced.
  • the above-mentioned information (5) may include, for example, information regarding the start point of the RAR reception timing, information regarding the end point, or information regarding the length of the RAR reception timing.
  • the information may be combined, for example, in the same format as in (2) above.
  • the information in (5) above may be a ra-Response Window disclosed in Non-Patent Document 24. This makes it possible, for example, in the UE to prevent a collision between transmission / reception with the base station and the timing of RAR from another NW base station.
  • the information in (6) above may be information about a beam used by the UE to receive an SS block from another NW base station.
  • the information may be, for example, an identifier of the SS block in the SS burst.
  • the base station may not perform transmission / reception with the UE only at the timing of random access corresponding to the SS block received by the UE by using the information. This makes it possible to improve, for example, the communication rate between the UE and the base station.
  • the above-mentioned information (7) may include, for example, information regarding the PRACH preamble transmitted by the UE to another NW base station.
  • the base station may use the information to assign a preamble different from the preamble to the UE for PRACH transmission for its own base station. This makes it possible, for example, to prevent the base station from misidentifying a PRACH transmitted from a UE to a base station of another NW as a PRACH for its own base station.
  • the UE may transmit PRACH to one base station.
  • the UE may not transmit PRACH to other base stations.
  • the UE may transmit the PRACH to the base station having the earliest PRACH transmission timing. This allows, for example, the UE to quickly establish a connection.
  • the UE may transmit PRACH to a base station that performs high priority communication.
  • the UE may determine the base station by using the priority information included in the paging disclosed in the first embodiment, or may use the uplink communication priority information generated in the own UE to determine the base station.
  • the base station may be determined. As a result, for example, the UE can quickly launch a high-priority communication, and as a result, can secure the QoS of the communication.
  • the UE may transmit PRACH to a plurality of base stations.
  • the operation of the UE may be performed, for example, when the UE has a plurality of transmitters / receivers. This allows, for example, the UE to quickly establish connections with a plurality of base stations.
  • the UE may distribute the power to each base station by using the path loss with the base station, by using the priority of communication with each base station, or both of the above. May be allocated using. This makes it possible to improve efficiency in, for example, a communication system.
  • the multiple SIM-equipped UE may perform a synchronization signal, system information, and / or paging operation.
  • the UE may perform the reception operation on a base station (hereinafter, may be referred to as an inactive base station) that does not transmit or receive data.
  • the UE may switch the transmitter / receiver of its own UE to perform the reception operation while connected to a base station (hereinafter, may be referred to as an active base station) that transmits / receives data.
  • the inactive base station may be, for example, a base station facing the RRC in the RRC_IDLE state or the RRC_INACIVE state.
  • the active base station may be, for example, a base station facing the RRC in the RRC_CONNECTED state.
  • the UE may be a receiver having only one transmitter / receiver.
  • the UE may notify the active base station of information regarding the timing of receiving synchronization signals, system information, and / or paging from the inactive base station.
  • the UE may request the active base station to avoid paging collisions from the inactive base station.
  • the request may include the above information.
  • the UE may switch the reception destination to the inactive base station at the timing.
  • the reception timing may include the time required for the UE to switch the transmitter / receiver. This makes it possible, for example, to improve the reliability of the operation of receiving synchronization signals, system information, and / or paging from an inactive base station.
  • the information in (1) above may be, for example, a base station identifier of an inactive base station or a cell identifier. This allows, for example, an active base station to keep track of which inactive base station the UE should receive synchronization signals, system information, and / or paging. As a result, the complexity of scheduling by active base stations can be avoided.
  • the information in (2) above may be, for example, the frame timing at which the inactive base station transmits an SS burst, for example, SFN.
  • the SFN may be, for example, the SFN at the beginning of the SS burst or the SFN at the end of the SS burst.
  • the amount of scheduling processing in the active base station can be reduced.
  • the synchronization signal, system information, and / or paging can be received from the inactive base station.
  • the information in (2) above may include information regarding the time when the inactive base station transmits the SS burst.
  • the information regarding the time may include, for example, the time at the start point of the SS burst, the time regarding the end point of the SS burst, the information regarding the duration of the SS burst, or a plurality of the above. Information may be included. As a result, for example, the amount of scheduling processing in the active base station can be reduced.
  • the information in (3) above may be, for example, a subcarrier interval, slot length, or symbol length used by the UE to receive synchronization signals, system information, and / or paging from an inactive base station.
  • the parameter ⁇ disclosed in Section 4.2 of Non-Patent Document 13 (TS38.211) may be used.
  • TS38.211 Non-Patent Document 13
  • the above-mentioned information (4) may be the same as the above-mentioned information (4) used for paging collision avoidance disclosed in the first embodiment.
  • the information may be, for example, information regarding a frame timing difference between an active base station and an inactive base station. As a result, for example, the amount of scheduling processing in the active base station can be reduced.
  • the information in (4) above may be a time at a predetermined time point in an inactive base station, for example, a time at a predetermined SFN boundary. As a result, for example, the amount of processing required for the notification by the UE can be reduced.
  • the above-mentioned information (5) may include information regarding the period of the SS burst, or may include information indicating whether the SS burst is included in the first half or the second half of the frame. As a result, for example, the amount of scheduling processing in the active base station can be reduced.
  • the information in (6) above may be information about a beam used by the UE to receive an SS block from an inactive base station.
  • the information may be, for example, an identifier of the SS block in the SS burst.
  • the active base station may not perform transmission / reception with the UE only at the timing of the SS block received by the UE by using the information. This makes it possible to improve the communication rate between the UE and the active base station, for example.
  • the information in (6) above may be information on a beam candidate used by the UE to receive an SS block from an inactive base station.
  • the information about the beam candidate may be, for example, an identifier of the SS block transmitted using the beam around the SS block received by the UE. This makes it possible to improve the communication rate between the UE and the active base station, for example. At the same time, even if the beam of the inactive base station in which the UE is located changes, the UE can receive the SS block from the inactive base station.
  • the information in (6) above may be information about a beam or a candidate thereof used by the UE to receive system information from an inactive base station, or may be related to a beam or a candidate thereof used for paging reception. It may be information.
  • the above-mentioned information (7) may be, for example, information related to scheduling of system information transmitted by an inactive base station.
  • the information regarding scheduling may be, for example, pdcch-ConfigSIB1 disclosed in Non-Patent Document 24 (TS38.331).
  • TS38.331 Non-Patent Document 24
  • the information in (8) above may be information on the paging timing of the inactive base station.
  • the information may be the same as the above-mentioned information (2) used for paging collision avoidance disclosed in the first embodiment. As a result, for example, the amount of scheduling processing in the active base station can be reduced.
  • the information in (8) above may be information used for deriving the paging timing of an inactive base station.
  • the information may be the same as the above-mentioned information (5) used for paging collision avoidance disclosed in the first embodiment.
  • the UE may transmit the notification to the active base station using RRC signaling. This allows, for example, the UE to notify the active base station of a large amount of information.
  • the UE may send the notification to the active base station using MAC signaling. This allows, for example, the UE to quickly execute the notification while ensuring reliability by HARQ retransmission control.
  • the UE may transmit the notification to the active base station using L1 / L2 signaling. This allows, for example, the UE to execute the notification more quickly.
  • the UE may send the notification to the AMF connected to the active base station using NAS signaling. This eliminates the need to transfer the information included in the notification between the base stations, for example, in connection with the handover of the UE. As a result, the amount of signaling between base stations can be reduced.
  • the above methods may be combined.
  • the UE notifies the active base station of the above-mentioned information (1) to (5), (7), and / or (8) by using RRC signaling, and the above-mentioned information (6) is L1.
  • the active base station may be notified using / L2 signaling. As a result, for example, a large amount of information can be quickly notified from the UE to the active base station.
  • the active base station may change the scheduling for the UE by using the notification from the UE.
  • the change may, for example, not allocate transmission or reception to the UE when it receives synchronization signals, system information, and / or paging from an inactive base station.
  • the active base station may notify the UE of information about the modified scheduling.
  • the information may be, for example, information regarding the timing at which the UE should perform the PDCCH reception operation, for example, a control resource set (Control Resource SET; CORESET) assigned to the UE, or a configured grant. It may be information. This makes it possible to improve the reliability of communication between the active base station and the UE, for example.
  • the active base station may change the scheduling for the UE by using the notification from the UE.
  • a period during which transmission / reception is not performed between the active base station and the UE may be set.
  • the active base station may notify the UE of the period.
  • the UE may transmit and receive with the inactive base station during this period.
  • the UE does not have to frequently alternately perform communication with the active base station and communication with the inactive base station. It is possible to improve the utilization efficiency of wireless resources.
  • the UE may switch the transmitter / receiver of its own UE for the inactive base station or for the active base station by using the information received from the active base station. For example, the UE may switch the transmitter / receiver of its own UE to the inactive base station at the paging reception timing from the inactive base station. This allows, for example, the UE to receive paging from an inactive base station.
  • the UE may notify the inactive base station of information regarding transmission / reception between the UE and the active base station.
  • the RRC state of the UE for the inactive base station may transition to RRC_CONNECTED.
  • the inactive base station may use the notification to change the synchronization signal and / or the paging timing.
  • the inactive base station may assign synchronization signals and / or paging timing, bypassing the timing that the active base station schedules for the UE.
  • the modification in the inactive base station may be similar to, for example, the method disclosed in Embodiment 1. This makes it possible, for example, to receive synchronization signals, system information, and / or paging of inactive base stations while ensuring a communication rate between the active base station and the UE.
  • the following (1) to (10) are disclosed as information regarding transmission / reception between the UE and the active base station, which the UE notifies the inactive base station.
  • the above-mentioned information (1) to (8) is information on the above-mentioned reception timing notified by the UE to the active base station, that is, the UE receives a synchronization signal, system information, and / or paging from the inactive base station. It may be the same as the above-mentioned information (1) to (8) disclosed as information on timing.
  • the information in (8) above allows the UE to receive system information changes and / or emergency information from the active base station.
  • the inactive base station can change the synchronization signal, system information, and / or paging timing.
  • the information in (9) above may be, for example, information regarding the timing at which the UE should perform the PDCCH reception operation of the active base station, for example, the control resource set (Control Resource SET; CORESET) assigned to the UE. , It may be information about a configured grant from an active base station. This allows, for example, an inactive base station to change synchronization signals, system information, and / or paging timing without affecting communication between the active base station and the UE.
  • the control resource set Control Resource SET; CORESET
  • the UE may use the measurement gap when receiving the synchronization signal from the inactive base station.
  • the UE may receive a sync signal from an inactive base station using an already configured measurement gap.
  • the active base station may set a measurement gap for the UE to allow communication with the inactive base station.
  • a conventional measurement gap may be used. By eliminating the need for new processing, the complexity of these processing can be avoided.
  • a new gap may be provided and a conventional measurement gap setting method may be used as the setting method.
  • the gap period can be optimally set for communication with an inactive base station. This allows, for example, the UE to establish downlink signal synchronization with an inactive base station while allowing the UE to maintain a communication rate with an active base station.
  • the UE does not have to use the measurement gap when receiving the synchronization signal from the inactive base station. For example, if the active base station and the inactive base station use the same frequency band for the UE, the measurement gap may not be used. This makes it possible to improve efficiency in, for example, a communication system.
  • the method disclosed in the second embodiment may be used for paging reception from an active base station.
  • the UE may switch the transmitter / receiver of its own UE from data transmission / reception with an active base station to paging reception from another active base station at the paging reception timing. This allows, for example, the UE to receive system information changes and / or emergency information from other active base stations.
  • the UE may not notify the active base station of information about synchronization signals, system information, and / or paging reception timing from the inactive base station.
  • the UE may switch the transmitter / receiver of its own UE to an inactive base station at the reception timing. This makes it possible, for example, to avoid the complexity of the process by which the UE receives a signal from an inactive base station.
  • transmission / reception may be retransmitted between the active base station and the UE.
  • the retransmission may be, for example, retransmission of transmission / reception occurring during the period when the UE switches the transmitter / receiver of its own UE to an inactive base station. This makes it possible to improve the reliability of transmission / reception between the active base station and the UE, for example.
  • the method disclosed in the second embodiment may be applied to a UE having a plurality of transmitters / receivers.
  • the UE may be connected to one NW by using, for example, a plurality of transmitters and receivers.
  • the UE may be connected to a plurality of base stations in one NW.
  • the UE may form dual connectivity with the plurality of base stations.
  • the UE may switch the transmitter / receiver of its own UE for the inactive base station at the timing when the synchronization signal, system information, and / or paging is transmitted from the inactive base station in another NW.
  • the transmitter / receiver for the secondary base station may be switched to the inactive base station.
  • communication between the UE and the master base station can be maintained, and as a result, the robustness of the communication system can be maintained.
  • the transmitter / receiver for the master base station may be switched for the inactive base station. This makes it possible to maintain communication between the UE and the secondary base station, for example, when high-speed communication is being performed between the UE and the secondary base station. As a result, the transmission speed in the communication system can be maintained.
  • the secondary base station may become the master base station.
  • handover in the UE can be executed with a small amount of signaling.
  • the UE can receive a synchronization signal, a system signal, and / or paging from an inactive base station. As a result, the UE can quickly resume communication with the base station.
  • switching of the UE transmitter / receiver from the active base station to the inactive base station may be applied to the random access processing between the UE and the inactive base station.
  • the UE may notify the active base station of information regarding random access processing with the inactive base station.
  • the information may include information regarding the timing of random access processing performed by the UE with an inactive base station.
  • the active base station may not allocate transmission / reception timing between the UE and its own base station at the timing.
  • the following (1) to (8) are disclosed as information regarding random access processing with the inactive base station that the UE notifies the active base station.
  • the above-mentioned information (1) is the synchronization signal transmitted from the inactive base station, system information, and / or paging reception timing (hereinafter, synchronization and the like timing of the inactive base station, etc.) disclosed in the second embodiment. It may be referred to as (1) of the information regarding).
  • the above-mentioned information (2) may be information regarding the start timing of PRACH transmitted by the UE.
  • the information may be SFN, subframe number, slot number, or symbol number, or may be the combination described above.
  • the information may include information about the length of the PRACH transmitted by the UE, or may include information about the end timing of the PRACH.
  • the UE can notify the information about the PRACH transmitted by its own UE with a small amount of signaling.
  • the information in (2) above may include information regarding the PRACH time transmitted by the UE.
  • the information regarding the time may include, for example, the time at the start point of the PRACH, the time regarding the end point of the PRACH, the information regarding the length of the PRACH, or a plurality of the above-mentioned information. But it may be. As a result, for example, the amount of scheduling processing in the active base station can be reduced.
  • the above-mentioned information (3) and (4) may be the same as the above-mentioned information (3) and (4) of the timing information such as synchronization of the inactive base station, respectively.
  • the above-mentioned information (5) may include, for example, information regarding the start point of the RAR reception timing, information regarding the end point, or information regarding the length of the RAR reception timing.
  • the information may be combined, for example, in the same format as in (2) above.
  • the information in (5) above may be a ra-Response Window disclosed in Non-Patent Document 24. This makes it possible, for example, in the UE to prevent a collision between transmission / reception with an active base station and RAR timing from an inactive base station.
  • the above-mentioned information (6) may be the same as (6) of timing information such as synchronization of inactive base stations.
  • the above-mentioned information (7) may include, for example, information regarding the PRACH preamble transmitted by the UE to the inactive base station.
  • the active base station may use the information to assign a preamble different from the preamble to the UE for PRACH transmission for its own base station. This makes it possible, for example, to prevent the active base station from erroneously recognizing the PRACH transmitted from the UE to the inactive base station as the PRACH for its own base station.
  • the UE may perform the notification using RRC signaling, MAC signaling, or L1 / L2 signaling.
  • the UE may use NAS signaling to make the notification to the AMF to which the active base station is connected.
  • the active base station does not use the notification to perform uplink and / or downlink scheduling to the UE at the PRACH transmission timing from the UE to the inactive base station and / or the RAR transmission timing from the inactive base station to the UE. May be. Further, at the timing, transmission / reception to the UE may not be assigned.
  • FIGS. 27 and 28 are sequence diagrams showing a first example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station.
  • 27 and 28 are connected at the position of the boundary line BL2728.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • gNB # 1 is an active base station and gNB # 2 is an inactive base station.
  • FIGS. 27 and 28 the same processes as those in FIGS. 16 and 17 are assigned the same step numbers, and common description is omitted.
  • Steps ST1601 to ST1603 shown in FIG. 27 are the same as those in FIG.
  • step ST2304 shown in FIG. 27 data is transmitted / received between the UE and gNB # 1.
  • step ST2306 shown in FIG. 27, gNB # 1 notifies the UE of system information.
  • step ST2307 gNB # 2 notifies the UE of system information.
  • the notification in step ST2307 includes parameters related to PRACH transmission to gNB # 2, for example, information regarding PRACH transmission timing.
  • the notification in step ST2307 may include information regarding RAR transmission from gNB # 2.
  • step ST2308 shown in FIG. 27 the UE acquires the RACH timing in gNB # 2.
  • step ST2310 shown in FIG. 27 the UE notifies gNB # 1 of information regarding RACH with gNB # 2.
  • step ST2312 gNB # 1 avoids the transmission timing of PRACH and RAR between the UE and gNB # 2, and performs scheduling for the UE.
  • step ST2314 shown in FIG. 27 data is transmitted / received between the UE and gNB # 1.
  • the data transmission / reception in step ST2314 is performed while avoiding the transmission timing of PRACH and RAR between the UE and gNB # 2.
  • uplink data from the UE to gNB # 2 is generated in step ST2320 shown in FIG. 28.
  • step ST2322 shown in FIG. 28 the UE transmits PRACH to gNB # 2.
  • gNB # 1 does not schedule the UE at the timing of step ST2322.
  • step ST2324 shown in FIG. 28 gNB # 2 transmits RAR to the UE. gNB # 1 does not schedule the UE at the timing of step ST2324.
  • step ST2326 shown in FIG. 28 the UE requests gNB # 2 to start up the RRC.
  • the request may be made using RRC signaling, for example, the RRCSetupRequest of Non-Patent Document 24 (TS38.331).
  • step ST2328 gNB # 2 instructs the UE to start RRC.
  • RRC signaling for example, RRC Setup of Non-Patent Document 24 (TS38.331) may be used.
  • step ST2330 shown in FIG. 28 the UE notifies gNB # 2 that the RRC startup is complete.
  • RRC signaling for example, RRCSetupComplete of Non-Patent Document 24 (TS38.331) may be used.
  • Step ST2330 establishes an RRC connection between the UE and gNB # 2.
  • step ST2332 shown in FIG. 28 data is transmitted / received between the UE and gNB # 2.
  • step ST2334 shown in FIG. 28 data is transmitted / received between the UE and gNB # 1.
  • the UE may give the notification to the active base station after the uplink data to the inactive base station is generated.
  • scheduling performed by the active base station that avoids the transmission timing of PRACH and RAR can be executed after the uplink data is generated.
  • the communication efficiency between the UE and the active base station can be improved.
  • 29 and 30 are sequence diagrams showing a second example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station.
  • 29 and 30 are connected at the position of the boundary line BL2930.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • gNB # 1 is an active base station and gNB # 2 is an inactive base station.
  • the same steps as those in FIGS. 16 to 17 and 27 to 28 are assigned the same step numbers, and common description will be omitted.
  • Steps ST1601 to ST1603 shown in FIG. 29 are the same as those in FIG.
  • Steps ST2304 to ST2308 and ST2320 shown in FIG. 29 are the same as those in FIG. 27.
  • step ST2410 shown in FIG. 29 the UE notifies gNB # 1 of information regarding RACH with gNB # 2.
  • the UE may perform step ST2410 after step ST2320.
  • step ST2412 gNB # 1 avoids the transmission timing of PRACH and RAR between the UE and gNB # 2, and performs scheduling for the UE.
  • step ST2414 shown in FIG. 30 data is transmitted / received between the UE and gNB # 1.
  • the data transmission / reception in step ST2414 is performed while avoiding the transmission timing of PRACH and RAR between the UE and gNB # 2.
  • Steps ST2322 to ST2334 shown in FIG. 30 are the same as those in FIG. 28.
  • the active base station may stop data transmission / reception between the UE and the active base station during random access processing between the UE and the inactive base station.
  • the UE may notify the active base station of the start of the random access process.
  • the active base station may use the notification to stop data transmission / reception with the UE.
  • the UE may notify the active base station of the end of the random access process.
  • the active base station may use the notification to resume data transmission / reception with the UE.
  • random access processing between the UE and the inactive base station can be quickly executed.
  • the UE may transmit the notification to the active base station using L1 / L2 signaling. This allows, for example, the UE to quickly notify the notification. As another example, the UE may notify the notification using MAC signaling. As a result, for example, the reliability of the notification can be ensured by the HARQ retransmission control. As another example, the UE may notify the notification using RRC signaling. This allows, for example, the UE to notify the active base station of a lot of information.
  • 31 and 32 are sequence diagrams showing a third example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station.
  • 31 and 32 are connected at the position of the boundary line BL3132.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • gNB # 1 is an active base station
  • gNB # 2 is an inactive base station.
  • the same steps as those in FIGS. 16 to 17 and 27 to 28 are assigned the same step numbers, and common description will be omitted.
  • Steps ST1601 to ST1603 shown in FIG. 31 are the same as those in FIG.
  • Steps ST2304 to ST2320 shown in FIG. 31 are the same as those in FIGS. 27 and 28.
  • step ST2520 shown in FIG. 32 the UE notifies gNB # 1 that the random access process with gNB # 2 is started when the data for gNB # 2 is generated.
  • the UE may perform the notification using L1 / L2 signaling, MAC signaling, or RRC signaling.
  • step ST2521 gNB # 1 stops transmission / reception to / from the UE.
  • Steps ST2322 to ST2332 shown in FIG. 32 are the same as those in FIG. 28.
  • step ST2532 shown in FIG. 32 the UE notifies gNB # 1 that the random access process with gNB # 2 has been completed.
  • the UE may perform the notification using L1 / L2 signaling, MAC signaling, or RRC signaling.
  • step ST2533 gNB # 1 resumes transmission / reception with the UE.
  • Step ST2334 shown in FIG. 32 is the same as in FIG. 28.
  • the UE may request the active base station to suspend the RRC connection with the base station, or may request the release of the RRC connection.
  • the UE may make the request using RRC signaling.
  • the RRC signaling may be a newly provided signaling, for example, an RRC suspend request (RRCSuspendRequest) or an RRC release request (RRCReleaseRequest).
  • the active base station may suspend or release the connection between the UE and the active base station.
  • the UE may start random access processing with the inactive base station after suspending or releasing the connection with the active base station. This makes it possible, for example, to avoid the complexity of communication systems.
  • 33 and 34 are sequence diagrams showing a fourth example of an operation in which a plurality of SIM-equipped UEs perform random access processing with an inactive base station.
  • 33 and 34 are connected at the position of the boundary line BL3334.
  • the UE is connected to two NWs (NW # 1 and NW # 2), and is connected to gNB # 1 under NW # 1 and gNB # 2 under NW # 2.
  • NW # 1 and NW # 2 There is.
  • AMF # 1 and AMF # 2 exist under NW # 1 and NW # 2, respectively.
  • gNB # 1 is an active base station
  • gNB # 2 is an inactive base station.
  • FIGS. 33 and 34 show an example in which the RRC connection between the UE and gNB # 1 is suspended due to the generation of uplink data from the UE to gNB # 2.
  • the same steps as those in FIGS. 16 to 17 and 27 to 28 are assigned the same step numbers, and common description will be omitted.
  • Steps ST1601 to ST1603 shown in FIG. 33 are the same as those in FIG.
  • Steps ST2304 to ST2320 shown in FIG. 33 are the same as those in FIGS. 27 and 28.
  • the UE requests gNB # 1 to suspend the RRC connection.
  • the UE may make the request using RRC signaling.
  • the RRC signaling may be a newly provided signaling, for example, an RRC suspension request.
  • step ST2621 shown in FIG. 34 gNB # 1 instructs the UE to suspend the RRC connection.
  • RRC signaling for example, RRC suspension disclosed in Non-Patent Document 24 (TS38.331) may be used.
  • the UE may suspend the RRC connection with gNB # 1 based on the pause instruction in step ST2621.
  • the UE notifies gNB # 1 that the RRC connection suspension is complete.
  • RRC signaling for example, RRCsuspendComplete disclosed in Non-Patent Document 24 (TS38.331) may be used.
  • the UE starts random access processing with gNB # 2 after the completion of the RRC connection suspension with gNB # 1. Steps ST2322 to ST2332 shown in FIG. 34 are the same as those in FIG. 28.
  • the RRC connection may be released.
  • the UE may request gNB # 1 to release the RRC connection.
  • gNB # 1 may instruct the UE to release the RRC connection.
  • the UE may notify gNB # 1 of the release of the RRC connection. As a result, for example, the memory usage in the UE can be reduced.
  • the UE may request the AMF connected to the active base station to release the connection with the NW to which the active base station connects, or request the suspension of the connection. May be good.
  • the UE may request the AMF to release or pause using NAS signaling.
  • the AMF may use the request to release or suspend the connection with the UE.
  • the AMF may instruct the active base station to release the RRC connection with the UE, or may instruct the active base station to suspend the RRC connection.
  • the active base station may use the instruction to instruct the UE to release or suspend the RRC connection.
  • the UE may start random access processing with the inactive base station after releasing the connection with the NW. As a result, for example, the same effect as described above can be obtained.
  • Embodiment 3 In the second embodiment, a method of avoiding a collision between scheduling by an active base station and timing such as synchronization of an inactive base station is disclosed.
  • the third embodiment discloses a method of avoiding a scheduling conflict when a plurality of SIM-equipped UEs communicate with a plurality of NW active base stations.
  • the UE may make the allocation.
  • the UE may notify the base station of each NW of the information regarding the allocation.
  • the base station of each NW may use the allocation to transmit and receive to and from the UE.
  • the UE may make the notification using RRC signaling. This makes it possible to notify, for example, a large amount of information. As another example, the UE may make the notification using MAC signaling. This allows, for example, the UE to quickly execute the notification. As another example, the UE may perform the notification using L1 / L2 signaling. This allows, for example, the UE to execute the notification more quickly.
  • RRC signaling This makes it possible to notify, for example, a large amount of information.
  • the UE may make the notification using MAC signaling. This allows, for example, the UE to quickly execute the notification.
  • the UE may perform the notification using L1 / L2 signaling. This allows, for example, the UE to execute the notification more quickly.
  • the allocation may be determined by a base station (hereinafter, may be referred to as a determination base station).
  • a base station hereinafter, may be referred to as a determination base station.
  • the primary NW disclosed in Embodiment 1 may determine the allocation.
  • the base station of the primary NW may notify the UE of the allocation.
  • the UE may notify the decision base station of the information necessary for determining the allocation.
  • the UE may use RRC signaling, MAC signaling, L1 / L2 signaling, or a plurality of combinations of the above for the notification.
  • the decision base station may use the information to determine the allocation.
  • the information in (1) described above may be, for example, a base station identifier of another NW base station or a cell identifier.
  • the determination base station can grasp other base stations.
  • the complexity of the allocation by the decision base station can be avoided.
  • the information in (2) above may be, for example, a control resource set (Control Resource SET; CORESET) assigned to the UE by another NW base station, or may be related to scheduling dynamically assigned by the base station. It may be information, configured scheduling (eg, semi-persistent scheduling, and / or configured grants), information about PUCCH allocation, or information about SRS allocation. It may be.
  • the determination base station may determine the allocation by using the information of (2) described above. This makes it possible, for example, to prevent scheduling conflicts between the decision base station and other base stations.
  • the above-mentioned information (3) may be, for example, a subcarrier interval, a slot length, or a symbol length used by the UE for transmission / reception to / from another NW base station, or Non-Patent Document 13 (TS38.211). It may be the parameter ⁇ disclosed in Section 4.2 of. As a result, for example, in scheduling by an active base station, it is possible to improve the reliability of the operation of avoiding a synchronization signal or the like from an inactive base station.
  • the above-mentioned information (4) may be the same as the information (4) disclosed as the information used for paging collision avoidance in the first embodiment.
  • the information may be, for example, information regarding the difference in frame timing between the determination base station and another base station.
  • the information in (4) above may be a predetermined time point in each base station, for example, a time at a predetermined SFN boundary.
  • the above-mentioned information (5) is the information of (1) to (9) disclosed in the second embodiment as information regarding the timing at which the UE receives a synchronization signal, system information, and / or paging from an inactive base station.
  • the information may be obtained by replacing the inactive base station with another NW base station. This allows, for example, data transmission / reception to / from one base station and reception of synchronization signals, system information, and / or paging from another base station (for example, reception of paging accompanying system information update). Both can be implemented.
  • the above-mentioned information (6) may be the information of (1) to (8) disclosed as information regarding random access processing with another NW base station in the second modification of the first embodiment. .. Thereby, for example, both data transmission / reception with one base station and random access processing with another base station (for example, random access processing for requesting on-demand system information) can be performed. It becomes.
  • the determination base station may notify the allocation using RRC signaling. This allows, for example, the decision base station to notify a large amount of information. As another example, the decision base station may make the notification using MAC signaling. This allows, for example, the decision base station to quickly execute the notification. As another example, the determination base station may make the notification using L1 / L2 signaling. This allows, for example, the decision base station to execute the notification more quickly.
  • the UE may notify the base station of another NW of the allocation received from the determined base station.
  • the UE may perform the notification using RRC signaling, MAC signaling, or L1 / L2 signaling.
  • Other NW base stations may use the allocation to transmit and receive to and from the UE. This makes it possible to prevent a scheduling conflict with the UE, for example, even between base stations of different NWs.
  • NW base stations may request the UE to change the allocation.
  • the UE may notify the decision base station of the request.
  • the decision base station may use the request to change the allocation. This makes it possible to improve efficiency in, for example, a communication system.
  • the decision base station may notify the base stations of other NWs of the allocation.
  • An interface may be provided between the determination base station and another NW base station. The interface may be via the UPF of each of the other NWs.
  • the determination base station may notify other NW base stations of the allocation using the interface.
  • a default allocation pattern may be provided.
  • the default pattern may be stored in the SIM of the UE, for example.
  • the UE may notify the base station of each NW of the default pattern.
  • the base station of each NW may transmit and receive to and from the UE using the default allocation. This makes it possible, for example, to avoid the complexity of avoiding scheduling conflicts for UEs between base stations.
  • a plurality of default allocation patterns may be provided.
  • the plurality of allocation patterns may be provided for each SIM.
  • Priority may be provided for the plurality of allocation patterns.
  • one of the allocation patterns may be prioritized.
  • the UE may notify each base station of a high priority allocation pattern. This makes it possible, for example, to avoid the complexity of avoiding scheduling conflicts for UEs between base stations.
  • a default allocation pattern may be provided in the standard. This makes it possible to quickly execute, for example, avoidance of scheduling conflicts for UEs between base stations.
  • the method disclosed in the third embodiment may be used to avoid competition for UE capabilities. For example, when a conflict occurs between the UE capabilities that the UE has with each NW, each capability may be prioritized.
  • the priority may be given statically, for example. Alternatively, the priority may change dynamically, for example, the UE capability for the primary NW may be prioritized. This makes it possible to prevent malfunctions of the communication system caused by, for example, competition for UE capabilities.
  • the UE may notify the determining base station and other NW base stations of the default allocation pattern.
  • the determination base station may change the allocation using the allocation pattern.
  • the decision base station may notify the UE of information about the changed allocation.
  • the UE may notify other NW base stations of the changed information regarding the allocation.
  • the determination base station and other NW base stations may transmit and receive to and from the UE using the modified allocation. This makes it possible to improve the flexibility of UE scheduling in each base station, for example.
  • the third embodiment it is possible to avoid a scheduling conflict when a plurality of SIM-equipped UEs communicate with a plurality of NW active base stations. As a result, the reliability of communication between the UE and the plurality of base stations can be improved.
  • preemption between NWs may be performed.
  • the time resource allocated for transmission / reception between the UE and one NW is reassigned for high-priority transmission / reception between the UE and another NW. It may be transmission / reception performed by.
  • Signaling for preemption between NWs may be provided between the UE and the base station.
  • a signal requesting preemption between NWs may be provided.
  • SR for the inter-NW preemption may be provided.
  • a PUCCH for communicating the SR may be provided.
  • the notification of the signal from the UE to the base station may use, for example, L1 / L2 signaling, MAC signaling, or RRC signaling.
  • L1 / L2 signaling for example, the above-mentioned PUCCH may be provided and notification may be performed by the PUCCH.
  • PUCCH resources may be preset by the base station for the UE.
  • the UE may transmit the SR for the inter-NW preemption to the base station.
  • the base station may be a communication partner for the preemption between NWs.
  • the SR may include information indicating that it is an inter-NW preemption.
  • the information may be, for example, an identifier indicating that it is an inter-NW preemption.
  • the information may be, for example, information indicating a priority in the inter-NW preemption, for example, information regarding QoS.
  • the information may be, for example, information about communicable timing for preemption assigned by the UE.
  • the base station may use the SR to allocate frequency and / or time resources for inter-NW preemption to the UE.
  • the base station may notify the UE of information about frequency and / or time resources assigned to the UE.
  • the notification from the base station to the UE may be performed using, for example, L1 / L2 signaling, MAC signaling, or RRC signaling.
  • the notification from the base station to the UE may be a dynamic grant or a configured grant.
  • the UE may use the notification to perform preemption communication between NWs to the base station.
  • the UE may apply the SR for the aforementioned inter-NW preemption, for example, during the overlapping periods. For example, the UE may transmit an SR for inter-NW preemption to one NW base station. When transmitting the SR, the UE may not perform communication with other NW base stations. Alternatively, when the UE transmits information to the base station regarding the communicable timing for the preemption assigned by the UE, the UE communicates with the base station of another NW during the period of the timing. It may not be. This allows, for example, the UE to quickly initiate NW preemption during overlapping periods.
  • the SR for inter-NW preemption may include information indicating that communication is performed with another NW base station.
  • the UE may transmit the SR to one NW base station.
  • the UE may not communicate with the base station of the NW that transmitted the SR, but may communicate with the base station of the other NW.
  • the UE transmits information to the base station regarding the communicable timing for the preemption assigned by the UE, the UE communicates with the base station of the NW that transmitted the SR during the timing period. Communication with the other NW base station may be performed without communication. This makes it possible, for example, for the NW base station that has received the SR to recognize that the UE communicates with another NW base station. As a result, it is not necessary to perform reception processing from the UE at the base station of the NW that has received the SR. The power consumption of the base station can be reduced.
  • the base station may notify the UE of information regarding frequency and / or time resource allocation.
  • the UE may perform the reception operation of the information triggered by the SR transmission described above.
  • the UE may not perform transmission / reception with another NW when performing the reception operation of the information. This allows, for example, the base station to quickly notify the UE of the information.
  • preemption communication between NWs from the UE to the base station may be performed.
  • the UE may perform NW-to-NW preemption communication with the base station, triggered by the reception of the above-mentioned information regarding the allocation of frequency and / or time resources.
  • the base station may allocate preemption communication between NWs from the UE during overlapping periods between NWs, or may allocate preemption communication between NWs from the UE at the transmission / reception allocation timing with its own base station. ..
  • the UE may not perform transmission / reception with other NWs. As a result, for example, the UE can quickly execute high-priority uplink transmission to the base station.
  • Preemption between NWs may be performed in downlink communication.
  • the base station may notify the UE of the occurrence of downlink preemption.
  • the notification may be performed using, for example, L1 / L2 signaling, MAC signaling, or RRC signaling.
  • the UE may use the notification to continue downlink reception from the base station. For example, the UE may not switch the transmitter / receiver for the base station to another NW base station. As a result, for example, the UE can quickly receive high-priority downlink communication.
  • the UE may perform the operation of receiving the preemption between the downlink NWs.
  • the UE may perform the reception operation during an SS burst from another NW base station.
  • the UE may perform the receiving operation between the SS blocks constituting the SS burst.
  • the UE can receive the preemption between downlink NWs even while receiving synchronization signals from other NWs.
  • the UE can quickly receive high-priority downlink communication.
  • the UE may notify the base station of each NW of the information necessary for determining the preemption between NWs.
  • the information is, for example, the same as the information of (1) to (7) disclosed as the information necessary for determining the allocation of the timing capable of communicating with the base station of each NW in the third embodiment. You may.
  • the base station of each NW may use the information to determine whether or not the communication with the UE is preemption communication between NWs. For example, does the base station of each NW use the above-mentioned information (4), that is, the information regarding the frame timing of the base station of each NW, to cause a scheduling conflict with the base station of another NW? You may decide whether or not.
  • Each NW base station may determine that inter-NW preemption communication will occur when a scheduling conflict occurs with another NW base station. As a result, for example, the occurrence of preemption communication between NWs in the communication system can be minimized, and the efficiency in the communication system can be improved.
  • the communication may be, for example, communication of emergency information, for example, communication in a public warning system (PWS).
  • PWS public warning system
  • the base station of each NW may perform the communication to the UE. This allows, for example, the UE to quickly receive the communication.
  • the UE may delete the communication received in duplicate.
  • the UE may, for example, use only the earliest received communication and delete the second and subsequent received communications.
  • the communication may include an identifier indicating that the information is the same.
  • the UE may use the identifier to detect duplicate communications. This makes it possible to prevent redundant alarm reception in the UE, for example.
  • Inter-NW preemption may be performed using an increase or decrease in transmission power.
  • the preemption between NWs may be a communication in which the transmission power of high-priority communication is set high and the transmission power of low-priority communication is set low.
  • the inter-NW preemption performed by increasing or decreasing the transmission power may be performed when the UE has a plurality of transmitters / receivers. This makes it possible to improve the reliability of high-priority communication, for example.
  • the UE may transmit the SR for the inter-NW preemption to the base station with increased transmission power.
  • the UE may transmit to another NW base station with a low transmission power.
  • the base station may use the SR to set the transmission power of the UE to be high.
  • the base station may use the SR to notify the UE of the scheduling grant for preemption between NWs.
  • the grant may include information about uplink transmit power.
  • the UE may use the notification to increase the transmission power to the base station to perform preemption communication between NWs.
  • Embodiment 4 When a UE equipped with a plurality of SIMs communicates with a base station of a plurality of NWs, a method of adjusting power from the UE is not disclosed. As a result, the power used for transmission from the UE to each base station may be excessive or excessive.
  • the UE notifies the base station of the power that can be transmitted to the base station of each NW.
  • the power may be, for example, the maximum power that can be transmitted by the UE minus the total transmission power allocated to the base stations of other NWs.
  • the maximum power that can be transmitted by the UE may differ for each NW.
  • the maximum power that can be transmitted by the UE may be notified to the UE from the base station of each NW.
  • the transmittable power for each NW of the UE can be determined, for example, as follows.
  • the maximum power that can be transmitted for a certain NW that is the target of determining the power that can be transmitted is Pa, and the largest power that can be transmitted for each NW is other than the above-mentioned one NW.
  • Pb is obtained by subtracting the total transmittable power allocated for the NW, the smaller of Pa and Pb may be determined as the transmittable power for the one NW. If the transmittable power allocated for the other NW is not allocated, the total transmittable power allocated for the other NW other than the above-mentioned one NW may be set to 0. This makes it possible to prevent, for example, the excessive power transmitted by the UE to the one NW.
  • the UE may make the notification using RRC signaling. This allows, for example, the UE to notify each base station of a large amount of information.
  • the UE may make the notification using MAC signaling.
  • MAC signaling may be, for example, the same signaling as the PHR disclosed in Non-Patent Document 17 (TS38.321).
  • the UE may perform the notification using L1 / L2 signaling. This allows, for example, the UE to execute the notification more quickly.
  • the base station of each NW that has received the power that can be transmitted from the UE may perform scheduling for communication with the UE using the information on the power that can be transmitted by the UE.
  • the scheduling may be, for example, the amount of resources allocated on the frequency axis, information about the transmit power of the UE, or information that the UE needs to derive the transmit power. Good. This makes it possible to avoid scheduling in which the power used for transmission from the UE to each base station is excessive or excessive.
  • Priority may be set between NWs in determining the power that can be transmitted by the UE.
  • the power that can be transmitted by the UE is determined from the NW having a high priority.
  • NW1 the transmittable power for the NW
  • NW2 the transmittable power for communication with the new NW
  • the UE compares the priority of NW1 with the priority of NW2, and if the priority of NW2 is high, discards the transmittable power already determined for NW1 and determines the transmittable power for NW2. After that, the power that can be transmitted for NW1 is determined again.
  • the transmittable power for NW2 is determined by the above-mentioned method using the transmittable power already determined for NW1. By doing so, it is possible to preferentially allocate the transmission power to the communication with the NW having a high priority.
  • priority may be set for each service. Priority may be set for each service in which communication is performed in each NW.
  • the priority for each service may be included in the QoS of the service, for example. Alternatively, if QoS already has information on the priority, the information on the priority may be used.
  • the UE may determine the power that can be transmitted for each NW by using the priority for each service in which communication is performed in each NW. As the method for determining the power that can be transmitted, the above-mentioned method for determining the power that can be transmitted may be applied. It is possible to preferentially allocate transmission power to a NW that performs communication for a service having a high priority.
  • the UE may notify the base station of the NW of the redetermined power that can be transmitted.
  • the base station may perform scheduling using the transmitted power of the notified UE. By doing so, the base station of each NW can carry out more optimal scheduling for the UE. The efficiency of using resources used in each NW can be improved.
  • priorities may be set between NWs.
  • priorities may be set for each service.
  • the priority may be a unified value among NWs in advance, or may be a unified value among services.
  • the priority may be given to the NW in advance, or may be given to the service in advance.
  • the service priority may be given as the service QoS.
  • the priority may be notified to the UE from each NW.
  • the priority may be notified at the time of registration processing performed by the UE with each NW.
  • the priority may be notified at the time of service request processing or PDU session establishment processing performed by the UE with each NW.
  • the UE may set the priority.
  • a person may set priorities.
  • the method for setting the primary NW / secondary NW disclosed in the first embodiment may be appropriately applied. By doing so, the UE can recognize the priority. Further, the priority setting method disclosed here may be appropriately applied in the above-described embodiments and modifications.
  • a plurality of electric powers that can be transmitted to each NW base station may be provided. For example, power that can be transmitted when the UE performs preemption communication between NWs with respect to the NW may be provided. When the UE performs inter-NW preemption communication with another NW different from the NW, power that can be transmitted to the NW may be provided. This makes it possible to improve the reliability of preemption between NWs, for example.
  • the UE may notify the base station of each NW of the information regarding the plurality of electric powers.
  • the UE may perform the notification using RRC signaling, MAC signaling, or L1 / L2 signaling.
  • the base station of each NW may notify the UE of information on which of the plurality of powers can be transmitted.
  • the UE may use the information to derive power that can be transmitted to the base station.
  • the base station may notify the information using RRC signaling. This allows, for example, the base station to notify the UE of a large amount of information.
  • the base station may notify the information using MAC signaling. This allows, for example, the base station to promptly notify the information.
  • the base station may notify the information using L1 / L2 signaling. This allows, for example, the base station to notify the information more quickly.
  • the base station of each NW may not notify the UE of information on which of the plurality of powers can be transmitted.
  • the plurality of powers are (a) power that can be transmitted when the UE performs NW-to-NW preemption communication with the NW, (b) power that can be transmitted when NW preemption is not performed, and (c). ) Even if the base station does not notify the UE of the information when the UE performs preemption communication between NWs to another NW different from the NW and the power can be transmitted to the NW. Good.
  • the UE may determine the power that can be transmitted to the base station by using the information about the NW preemption acquired from the base station, for example, the information about the scheduling grant for the NW preemption communication.
  • the UE may autonomously determine the power that can be transmitted. For example, when the UE transmits SR for NW preemption communication to one NW base station, the UE may determine the power that can be transmitted to each NW base station. This makes it possible to reduce the amount of signaling between the base station and the UE, for example.
  • powers that can be transmitted may be provided for each uplink channel.
  • powers that can be transmitted to each NW base station may be provided for each of PUSCH, PUCCH, uplink RS, and RACH.
  • power that can be transmitted to each NW base station may be provided for each UCI included in the PUCCH.
  • power that can be transmitted to the base station of each NW may be provided for each of the uplink RSs, for example, for each of the SRS, DMRS, and PRS.
  • the UE may perform uplink transmission using information on the power that can be transmitted for each channel. This makes it possible to improve the flexibility of the communication system, for example.
  • the above examples may be combined with respect to the case where a plurality of powers that can be transmitted to each NW base station are provided.
  • the power that can be transmitted for each uplink channel may differ depending on the presence or absence of NW preemption communication. This makes it possible, for example, to improve the reliability of NW preemption communication while improving the flexibility of the communication system.
  • the electric power used for transmission from the UE to each base station can be appropriately adjusted.
  • the subframe is an example of a communication time unit in the 5th generation base station communication system. It may be a scheduling unit.
  • the processing described as a subframe unit may be performed as a TTI unit, a slot unit, a subslot unit, or a minislot unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

迅速なNW接続を可能とする技術を提供する。通信システムは、通信端末と、通信端末と無線通信可能に構成された複数のネットワークとを備える。通信端末は、通信端末へ複数のネットワークからそれぞれ送信される複数のページングのうちで衝突するものがあるか否かを判断する(ST1615)。通信端末は、ページングの衝突を検出した場合、衝突を起こすページングを送信するネットワークのうちの少なくとも1つに対して、ページングの衝突を通知する(ST1629)。

Description

通信システム、通信端末およびネットワーク
 本開示は、無線通信技術に関する。
 移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)において、無線区間についてはロングタームエボリューション(Long Term Evolution:LTE)と称し、コアネットワークおよび無線アクセスネットワーク(以下、まとめて、ネットワークとも称する)を含めたシステム全体構成については、システムアーキテクチャエボリューション(System Architecture Evolution:SAE)と称される通信方式が検討されている(例えば、非特許文献1~5)。この通信方式は3.9G(3.9 Generation)システムとも呼ばれる。
 LTEのアクセス方式としては、下り方向はOFDM(Orthogonal Frequency Division Multiplexing)、上り方向はSC-FDMA(Single Carrier Frequency Division Multiple Access)が用いられる。また、LTEは、W-CDMA(Wideband Code Division Multiple Access)とは異なり、回線交換を含まず、パケット通信方式のみになる。
 非特許文献1(5章)に記載される、3GPPでの、LTEシステムにおけるフレーム構成に関する決定事項について、図1を用いて説明する。図1は、LTE方式の通信システムで使用される無線フレームの構成を示す説明図である。図1において、1つの無線フレーム(Radio frame)は10msである。無線フレームは10個の等しい大きさのサブフレーム(Subframe)に分割される。サブフレームは、2個の等しい大きさのスロット(slot)に分割される。無線フレーム毎に1番目および6番目のサブフレームに下り同期信号(Downlink Synchronization Signal)が含まれる。同期信号には、第一同期信号(Primary Synchronization Signal:P-SS)と、第二同期信号(Secondary Synchronization Signal:S-SS)とがある。
 3GPPでの、LTEシステムにおけるチャネル構成に関する決定事項が、非特許文献1(5章)に記載されている。CSG(Closed Subscriber Group)セルにおいてもnon-CSGセルと同じチャネル構成が用いられると想定されている。
 物理報知チャネル(Physical Broadcast Channel:PBCH)は、基地局装置(以下、単に「基地局」という場合がある)から移動端末装置(以下、単に「移動端末」という場合がある)などの通信端末装置(以下、単に「通信端末」という場合がある)への下り送信用のチャネルである。BCHトランスポートブロック(transport block)は、40ms間隔中の4個のサブフレームにマッピングされる。40msタイミングの明白なシグナリングはない。
 物理制御フォーマットインジケータチャネル(Physical Control Format Indicator Channel:PCFICH)は、基地局から通信端末への下り送信用のチャネルである。PCFICHは、PDCCHsのために用いるOFDM(Orthogonal Frequency Division Multiplexing)シンボルの数を、基地局から通信端末へ通知する。PCFICHは、サブフレーム毎に送信される。
 物理下り制御チャネル(Physical Downlink Control Channel:PDCCH)は、基地局から通信端末への下り送信用のチャネルである。PDCCHは、後述のトランスポートチャネルの1つである下り共有チャネル(Downlink Shared Channel:DL-SCH)のリソース割り当て(allocation)情報、後述のトランスポートチャネルの1つであるページングチャネル(Paging Channel:PCH)のリソース割り当て(allocation)情報、DL-SCHに関するHARQ(Hybrid Automatic Repeat reQuest)情報を通知する。PDCCHは、上りスケジューリンググラント(Uplink Scheduling Grant)を運ぶ。PDCCHは、上り送信に対する応答信号であるAck(Acknowledgement)/Nack(Negative Acknowledgement)を運ぶ。PDCCHは、L1/L2制御信号とも呼ばれる。
 物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH)は、基地局から通信端末への下り送信用のチャネルである。PDSCHには、トランスポートチャネルである下り共有チャネル(DL-SCH)、およびトランスポートチャネルであるPCHがマッピングされている。
 物理マルチキャストチャネル(Physical Multicast Channel:PMCH)は、基地局から通信端末への下り送信用のチャネルである。PMCHには、トランスポートチャネルであるマルチキャストチャネル(Multicast Channel:MCH)がマッピングされている。
 物理上り制御チャネル(Physical Uplink Control Channel:PUCCH)は、通信端末から基地局への上り送信用のチャネルである。PUCCHは、下り送信に対する応答信号(response signal)であるAck/Nackを運ぶ。PUCCHは、CSI(Channel State Information)を運ぶ。CSIは、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)、CQI(Channel Quality Indicator)レポートで構成される。RIとは、MIMOにおけるチャネル行列のランク情報である。PMIとは、MIMOにて用いるプリコーディングウェイト行列の情報である。CQIとは、受信したデータの品質、もしくは通信路品質を示す品質情報である。またPUCCHは、スケジューリングリクエスト(Scheduling Request:SR)を運ぶ。
 物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH)は、通信端末から基地局への上り送信用のチャネルである。PUSCHには、トランスポートチャネルの1つである上り共有チャネル(Uplink Shared Channel:UL-SCH)がマッピングされている。
 物理HARQインジケータチャネル(Physical Hybrid ARQ Indicator Channel:PHICH)は、基地局から通信端末への下り送信用のチャネルである。PHICHは、上り送信に対する応答信号であるAck/Nackを運ぶ。物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)は、通信端末から基地局への上り送信用のチャネルである。PRACHは、ランダムアクセスプリアンブル(random access preamble)を運ぶ。
 下り参照信号(リファレンスシグナル(Reference Signal):RS)は、LTE方式の通信システムとして既知のシンボルである。以下の5種類の下りリファレンスシグナルが定義されている。セル固有参照信号(Cell-specific Reference Signal:CRS)、MBSFN参照信号(MBSFN Reference Signal)、UE固有参照信号(UE-specific Reference Signal)であるデータ復調用参照信号(Demodulation Reference Signal:DM-RS)、位置決定参照信号(Positioning Reference Signal:PRS)、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)。通信端末の物理レイヤの測定として、リファレンスシグナルの受信電力(Reference Signal Received Power:RSRP)測定がある。
 上り参照信号についても同様に、LTE方式の通信システムとして既知のシンボルである。以下の2種類の上りリファレンスシグナルが定義されている。データ復調用参照信号(Demodulation Reference Signal:DM-RS)、サウンディング用参照信号(Sounding Reference Signal:SRS)である。
 非特許文献1(5章)に記載されるトランスポートチャネル(Transport channel)について、説明する。下りトランスポートチャネルのうち、報知チャネル(Broadcast Channel:BCH)は、その基地局(セル)のカバレッジ全体に報知される。BCHは、物理報知チャネル(PBCH)にマッピングされる。
 下り共有チャネル(Downlink Shared Channel:DL-SCH)には、HARQ(Hybrid ARQ)による再送制御が適用される。DL-SCHは、基地局(セル)のカバレッジ全体への報知が可能である。DL-SCHは、ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。準静的なリソース割り当ては、パーシステントスケジューリング(Persistent Scheduling)ともいわれる。DL-SCHは、通信端末の低消費電力化のために通信端末の間欠受信(Discontinuous reception:DRX)をサポートする。DL-SCHは、物理下り共有チャネル(PDSCH)へマッピングされる。
 ページングチャネル(Paging Channel:PCH)は、通信端末の低消費電力を可能とするために通信端末のDRXをサポートする。PCHは、基地局(セル)のカバレッジ全体への報知が要求される。PCHは、動的にトラフィックに利用できる物理下り共有チャネル(PDSCH)のような物理リソースへマッピングされる。
 マルチキャストチャネル(Multicast Channel:MCH)は、基地局(セル)のカバレッジ全体への報知に使用される。MCHは、マルチセル送信におけるMBMS(Multimedia Broadcast Multicast Service)サービス(MTCHとMCCH)のSFN合成をサポートする。MCHは、準静的なリソース割り当てをサポートする。MCHは、PMCHへマッピングされる。
 上りトランスポートチャネルのうち、上り共有チャネル(Uplink Shared Channel:UL-SCH)には、HARQ(Hybrid ARQ)による再送制御が適用される。UL-SCHは、ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。UL-SCHは、物理上り共有チャネル(PUSCH)へマッピングされる。
 ランダムアクセスチャネル(Random Access Channel:RACH)は、制御情報に限られている。RACHは、衝突のリスクがある。RACHは、物理ランダムアクセスチャネル(PRACH)へマッピングされる。
 HARQについて説明する。HARQとは、自動再送要求(Automatic Repeat reQuest:ARQ)と誤り訂正(Forward Error Correction)との組合せによって、伝送路の通信品質を向上させる技術である。HARQには、通信品質が変化する伝送路に対しても、再送によって誤り訂正が有効に機能するという利点がある。特に、再送にあたって初送の受信結果と再送の受信結果との合成をすることで、更なる品質向上を得ることも可能である。
 再送の方法の一例を説明する。受信側にて、受信データが正しくデコードできなかった場合、換言すればCRC(Cyclic Redundancy Check)エラーが発生した場合(CRC=NG)、受信側から送信側へ「Nack」を送信する。「Nack」を受信した送信側は、データを再送する。受信側にて、受信データが正しくデコードできた場合、換言すればCRCエラーが発生しない場合(CRC=OK)、受信側から送信側へ「Ack」を送信する。「Ack」を受信した送信側は次のデータを送信する。
 非特許文献1(6章)に記載される論理チャネル(ロジカルチャネル:Logical channel)について、説明する。報知制御チャネル(Broadcast Control Channel:BCCH)は、報知システム制御情報のための下りチャネルである。論理チャネルであるBCCHは、トランスポートチャネルである報知チャネル(BCH)、あるいは下り共有チャネル(DL-SCH)へマッピングされる。
 ページング制御チャネル(Paging Control Channel:PCCH)は、ページング情報(Paging Information)およびシステム情報(System Information)の変更を送信するための下りチャネルである。PCCHは、通信端末のセルロケーションをネットワークが知らない場合に用いられる。論理チャネルであるPCCHは、トランスポートチャネルであるページングチャネル(PCH)へマッピングされる。
 共有制御チャネル(Common Control Channel:CCCH)は、通信端末と基地局との間の送信制御情報のためのチャネルである。CCCHは、通信端末がネットワークとの間でRRC接続(connection)を有していない場合に用いられる。下り方向では、CCCHは、トランスポートチャネルである下り共有チャネル(DL-SCH)へマッピングされる。上り方向では、CCCHは、トランスポートチャネルである上り共有チャネル(UL-SCH)へマッピングされる。
 マルチキャスト制御チャネル(Multicast Control Channel:MCCH)は、1対多の送信のための下りチャネルである。MCCHは、ネットワークから通信端末への1つあるいはいくつかのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、MBMS受信中の通信端末のみに用いられる。MCCHは、トランスポートチャネルであるマルチキャストチャネル(MCH)へマッピングされる。
 個別制御チャネル(Dedicated Control Channel:DCCH)は、1対1にて、通信端末とネットワークとの間の個別制御情報を送信するチャネルである。DCCHは、通信端末がRRC接続(connection)である場合に用いられる。DCCHは、上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)にマッピングされる。
 個別トラフィックチャネル(Dedicated Traffic Channel:DTCH)は、ユーザ情報の送信のための個別通信端末への1対1通信のチャネルである。DTCHは、上りおよび下りともに存在する。DTCHは、上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。
 マルチキャストトラフィックチャネル(Multicast Traffic channel:MTCH)は、ネットワークから通信端末へのトラフィックデータ送信のための下りチャネルである。MTCHは、MBMS受信中の通信端末のみに用いられるチャネルである。MTCHは、マルチキャストチャネル(MCH)へマッピングされる。
 CGIとは、セルグローバル識別子(Cell Global Identifier)のことである。ECGIとは、E-UTRANセルグローバル識別子(E-UTRAN Cell Global Identifier)のことである。LTE、後述のLTE-A(Long Term Evolution Advanced)およびUMTS(Universal Mobile Telecommunication System)において、CSG(Closed Subscriber Group)セルが導入される。
 通信端末の位置追跡は、1つ以上のセルからなる区域を単位に行われる。位置追跡は、待受け状態であっても通信端末の位置を追跡し、通信端末を呼び出す、換言すれば通信端末が着呼することを可能にするために行われる。この通信端末の位置追跡のための区域をトラッキングエリアと呼ぶ。
 また3GPPでは、リリース10として、ロングタームエボリューションアドヴァンスド(Long Term Evolution Advanced:LTE-A)の規格策定が進められている(非特許文献3、非特許文献4参照)。LTE-Aは、LTEの無線区間通信方式を基本とし、それにいくつかの新技術を加えて構成される。
 LTE-Aシステムでは、100MHzまでのより広い周波数帯域幅(transmission bandwidths)をサポートするために、二つ以上のコンポーネントキャリア(Component Carrier:CC)を集約する(「アグリゲーション(aggregation)する」とも称する)、キャリアアグリゲーション(Carrier Aggregation:CA)が検討されている。CAについては、非特許文献1に記載されている。
 CAが構成される場合、UEはネットワーク(Network:NW)と唯一つのRRC接続(RRC connection)を有する。RRC接続において、一つのサービングセルがNASモビリティ情報とセキュリティ入力を与える。このセルをプライマリセル(Primary Cell:PCell)と呼ぶ。下りリンクで、PCellに対応するキャリアは、下りプライマリコンポーネントキャリア(Downlink Primary Component Carrier:DL PCC)である。上りリンクで、PCellに対応するキャリアは、上りプライマリコンポーネントキャリア(Uplink Primary Component Carrier:UL PCC)である。
 UEの能力(ケーパビリティ(capability))に応じて、セカンダリセル(Secondary Cell:SCell)が、PCellとともに、サービングセルの組を形成するために構成される。下りリンクで、SCellに対応するキャリアは、下りセカンダリコンポーネントキャリア(Downlink Secondary Component Carrier:DL SCC)である。上りリンクで、SCellに対応するキャリアは、上りセカンダリコンポーネントキャリア(Uplink Secondary Component Carrier:UL SCC)である。
 一つのPCellと一つ以上のSCellとからなるサービングセルの組が、一つのUEに対して構成される。
 また、LTE-Aでの新技術としては、より広い帯域をサポートする技術(Wider bandwidth extension)、および多地点協調送受信(Coordinated Multiple Point transmission and reception:CoMP)技術などがある。3GPPでLTE-Aのために検討されているCoMPについては、非特許文献1に記載されている。
 また、3GPPにおいて、将来の膨大なトラフィックに対応するために、スモールセルを構成するスモールeNB(以下「小規模基地局装置」という場合がある)を用いることが検討されている。例えば、多数のスモールeNBを設置して、多数のスモールセルを構成することによって、周波数利用効率を高めて、通信容量の増大を図る技術などが検討されている。具体的には、UEが2つのeNBと接続して通信を行うデュアルコネクティビティ(Dual Connectivity;DCと略称される)などがある。DCについては、非特許文献1に記載されている。
 デュアルコネクティビティ(DC)を行うeNBのうち、一方を「マスタeNB(MeNBと略称される)」といい、他方を「セカンダリeNB(SeNBと略称される)」という場合がある。
 モバイルネットワークのトラフィック量は、増加傾向にあり、通信速度も高速化が進んでいる。LTEおよびLTE-Aが本格的に運用を開始されると、更に通信速度が高速化されることが見込まれる。
 さらに、高度化する移動体通信に対して、2020年以降にサービスを開始することを目標とした第5世代(以下「5G」という場合がある)無線アクセスシステムが検討されている。例えば、欧州では、METISという団体で5Gの要求事項がまとめられている(非特許文献5参照)。
 5G無線アクセスシステムでは、LTEシステムに対して、システム容量は1000倍、データの伝送速度は100倍、データの処理遅延は10分の1(1/10)、通信端末の同時接続数は100倍として、更なる低消費電力化、および装置の低コスト化を実現することが要件として挙げられている。
 このような要求を満たすために、3GPPでは、リリース15として、5Gの規格検討が進められている(非特許文献6~18参照)。5Gの無線区間の技術は「New Radio Access Technology」と称される(「New Radio」は「NR」と略称される)。
 NRシステムは、LTEシステム、LTE-Aシステムを基にして検討が進められているが、以下の点でLTEシステム、LTE-Aシステムからの変更および追加が行われている。
 NRのアクセス方式としては、下り方向はOFDM、上り方向はOFDM、DFT-s-OFDM(DFT-spread-OFDM)が用いられる。
 NRでは、伝送速度向上、処理遅延低減のために、LTEに比べて高い周波数の使用が可能となっている。
 NRにおいては、狭いビーム状の送受信範囲を形成する(ビームフォーミング)とともにビームの向きを変化させる(ビームスイーピング)ことで、セルカバレッジの確保が図られる。
 NRのフレーム構成においては、様々なサブキャリア間隔、すなわち、様々なヌメロロジ(Numerology)がサポートされている。NRにおいては、ヌメロロジによらず、1サブフレームは1ミリ秒であり、また、1スロットは14シンボルで構成される。また、1サブフレームに含まれるスロット数は、サブキャリア間隔15kHzのヌメロロジにおいては1つであり、他のヌメロロジにおいては、サブキャリア間隔に比例して多くなる(非特許文献13(TS38.211 V15.2.0)参照)。
 NRにおける下り同期信号は、同期信号バースト(Synchronization Signal Burst;以下、SSバーストと称する場合がある)として、所定の周期で、所定の継続時間をもって基地局から送信される。SSバーストは、基地局のビーム毎の同期信号ブロック(Synchronization Signal Block;以下、SSブロックと称する場合がある)により構成される。基地局はSSバーストの継続時間内において各ビームのSSブロックを、ビームを変えて送信する。SSブロックは、P-SS、S-SS、およびPBCHによって構成される。
 NRにおいては、NRの下り参照信号として、位相追尾参照信号(Phase Tracking Reference Signal:PTRS)の追加により、位相雑音の影響の低減が図られている。上り参照信号においても、下りと同様にPTRSが追加されている。
 NRにおいては、スロット内におけるDL/ULの切替えを柔軟に行うために、PDCCHに含まれる情報にスロット構成通知(Slot Format Indication:SFI)が追加された。
 また、NRにおいては、キャリア周波数帯のうちの一部(以下、Bandwidth Part(BWP)と称する場合がある)を基地局がUEに対して予め設定し、UEが該BWPにおいて基地局との送受信を行うことで、UEにおける消費電力の低減が図られる。
 3GPPでは、DCの形態として、EPCに接続するLTE基地局とNR基地局によるDC、5Gコアシステムに接続するNR基地局によるDC、また、5Gコアシステムに接続するLTE基地局とNR基地局によるDCが検討されている(非特許文献12、16、19参照)。
 また、3GPPでは、いくつかの新たな技術が検討されている。例えば、複数のSIM(Subscriber Identity Module)を用いた端末の動作などが検討されている(非特許文献20、21参照)。
3GPP TS 36.300 V15.4.0 3GPP S1-083461 3GPP TR 36.814 V9.2.0 3GPP TR 36.912 V15.0.0 "Scenarios, requirements and KPIs for 5G mobile and wireless system"、ICT-317669-METIS/D1.1 3GPP TR 23.799 V14.0.0 3GPP TR 38.801 V14.0.0 3GPP TR 38.802 V14.2.0 3GPP TR 38.804 V14.0.0 3GPP TR 38.912 V14.1.0 3GPP RP-172115 3GPP TS 37.340 V15.2.0 3GPP TS 38.211 V15.2.0 3GPP TS 38.213 V15.2.0 3GPP TS 38.214 V15.2.0 3GPP TS 38.300 V15.2.0 3GPP TS 38.321 V15.2.0 3GPP TS 38.212 V15.2.0 3GPP RP-161266 3GPP RP-191304 3GPP RP-191347 3GPP TS 23.501 V16.1.0 3GPP TR 23.734 V16.2.0 3GPP TS 38.331 V15.6.0 3GPP TS 38.304 V15.4.0 3GPP TS 38.413 V15.4.0 3GPP TS 24.501 V16.1.0 3GPP TS 38.423 V15.4.0
 3GPPにおいて、複数SIMを用いたUEの動作が検討されており、例えば、2つのNWからの該UEに対するページングのタイミングが重複した場合の対策について検討されている(非特許文献20、21参照)。ところが、非特許文献20、21は、ページングのタイミングの重複、換言すればページングの衝突を回避するための具体的な方法を開示していない。そのため、2つのNWの間でページング衝突を回避することが不可能となる。その結果、通信システムにおいてUEと1つのNWとの接続を迅速に開始できないという問題が生じる。
 本開示は、上記課題に鑑み、迅速なNW接続を可能とする技術を提供することを、目的の一つとする。
 本開示によれば、通信端末と、前記通信端末と無線通信可能に構成された複数のネットワークとを備える通信システムであって、前記通信端末は、前記通信端末へ前記複数のネットワークからそれぞれ送信される複数のページングのうちで衝突するものがあるか否かを判断し、前記ページングの衝突を検出した場合、衝突を起こす前記ページングを送信するネットワークのうちの少なくとも1つに対して、前記ページングの衝突を通知することを特徴とする、通信システムが提供される。
  本開示によれば、複数のネットワークと無線通信可能に構成された通信端末であって、前記通信端末は、前記通信端末へ前記複数のネットワークからそれぞれ送信される複数のページングのうちで衝突するものがあるか否かを判断し、前記ページングの衝突を検出した場合、衝突を起こす前記ページングを送信するネットワークのうちの少なくとも1つに対して、前記ページングの衝突を通知することを特徴とする、通信端末が提供される。
  本開示によれば、通信端末と無線通信可能に構成されたネットワークであって、前記通信端末が、前記ネットワークから前記通信端末へ送信されるページングが、他のネットワークから前記通信端末へ送信されるページングと衝突すると判断し、前記ネットワークに対して前記ページングの衝突を通知した場合、前記ネットワークは、前記通信端末へ前記ページングを送信するタイミングを変更することを特徴とする、ネットワークが提供される。
 本開示によれば、迅速なNW接続が可能となる。
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
LTE方式の通信システムで使用される無線フレームの構成を示す説明図である。 3GPPにおいて議論されているLTE方式の通信システム200の全体的な構成を示すブロック図である。 3GPPにおいて議論されているNR方式の通信システム210の全体的な構成を示すブロック図である。 EPCに接続するeNBおよびgNBによるDCの構成図である。 NGコアに接続するgNBによるDCの構成図である。 NGコアに接続するeNBおよびgNBによるDCの構成図である。 NGコアに接続するeNBおよびgNBによるDCの構成図である。 図2に示す移動端末202の構成を示すブロック図である。 図2に示す基地局203の構成を示すブロック図である。 MMEの構成を示すブロック図である。 5GCの構成を示すブロック図である。 LTE方式の通信システムにおいて通信端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。 NRシステムにおけるセルの構成の一例を示す図である。 実施の形態1について、複数SIM搭載UEと、複数のNWとの間の接続の一例を示すアーキテクチャ図である。 実施の形態1について、複数NWからのページングの衝突の一例を示す図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第1例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第1例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第2例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第2例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第3例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第3例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出してAMFに通知する動作の例を示すシーケンス図である。 実施の形態1について、複数SIM搭載UEがページング衝突を検出してAMFに通知する動作の例を示すシーケンス図である。 実施の形態1について、ページングの時分割多重の第1例を示す図である。 実施の形態1について、ページングの時分割多重の第2例を示す図である。 実施の形態1の変形例1について、複数SIM搭載UEと、複数のNWとの間の接続の一例を示すアーキテクチャ図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第1例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第1例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第2例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第2例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第3例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第3例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第4例を示すシーケンス図である。 実施の形態2の変形例1について、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第4例を示すシーケンス図である。
 実施の形態1.
 図2は、3GPPにおいて議論されているLTE方式の通信システム200の全体的な構成を示すブロック図である。図2について説明する。無線アクセスネットワークは、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)201と称される。通信端末装置である移動端末装置(以下「移動端末(User Equipment:UE)」という)202は、基地局装置(以下「基地局(E-UTRAN NodeB:eNB)」という)203と無線通信可能であり、無線通信で信号の送受信を行う。
 ここで、「通信端末装置」とは、移動可能な携帯電話端末装置などの移動端末装置だけでなく、センサなどの移動しないデバイスも含んでいる。以下の説明では、「通信端末装置」を、単に「通信端末」という場合がある。
 移動端末202に対する制御プロトコル、例えばRRC(Radio Resource Control)と、ユーザプレイン(以下、U-Planeと称する場合もある)、例えばPDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer)とが基地局203で終端するならば、E-UTRANは1つあるいは複数の基地局203によって構成される。
 移動端末202と基地局203との間の制御プロトコルRRC(Radio Resource Control)は、報知(Broadcast)、ページング(paging)、RRC接続マネージメント(RRC connection management)などを行う。RRCにおける基地局203と移動端末202との状態として、RRC_IDLEと、RRC_CONNECTEDとがある。
 RRC_IDLEでは、PLMN(Public Land Mobile Network)選択、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。RRC_CONNECTEDでは、移動端末はRRC接続(connection)を有し、ネットワークとのデータの送受信を行うことができる。またRRC_CONNECTEDでは、ハンドオーバ(Handover:HO)、隣接セル(Neighbor cell)の測定(メジャメント(measurement))などが行われる。
 基地局203は、1つあるいは複数のeNB207により構成される。またコアネットワークであるEPC(Evolved Packet Core)と、無線アクセスネットワークであるE-UTRAN201とで構成されるシステムは、EPS(Evolved Packet System)と称される。コアネットワークであるEPCと、無線アクセスネットワークであるE-UTRAN201とを合わせて、「ネットワーク」という場合がある。
 eNB207は、移動管理エンティティ(Mobility Management Entity:MME)、あるいはS-GW(Serving Gateway)、あるいはMMEおよびS-GWを含むMME/S-GW部(以下「MME部」という場合がある)204とS1インタフェースにより接続され、eNB207とMME部204との間で制御情報が通信される。一つのeNB207に対して、複数のMME部204が接続されてもよい。eNB207間は、X2インタフェースにより接続され、eNB207間で制御情報が通信される。
 MME部204は、上位装置、具体的には上位ノードであり、基地局であるeNB207と、移動端末(UE)202との接続を制御する。MME部204は、コアネットワークであるEPCを構成する。基地局203は、E-UTRAN201を構成する。
 基地局203は、1つのセルを構成してもよいし、複数のセルを構成してもよい。各セルは、移動端末202と通信可能な範囲であるカバレッジとして予め定める範囲を有し、カバレッジ内で移動端末202と無線通信を行う。1つの基地局203が複数のセルを構成する場合、1つ1つのセルが、移動端末202と通信可能に構成される。
 図3は、3GPPにおいて議論されている5G方式の通信システム210の全体的な構成を示すブロック図である。図3について説明する。無線アクセスネットワークは、NG-RAN(Next Generation Radio Access Network)211と称される。UE202は、NR基地局装置(以下「NR基地局(NG-RAN NodeB:gNB)」という)213と無線通信可能であり、無線通信で信号の送受信を行う。また、コアネットワークは、5Gコア(5G Core:5GC)と称される。
 UE202に対する制御プロトコル、例えばRRC(Radio Resource Control)と、ユーザプレイン(以下、U-Planeと称する場合もある)、例えばSDAP(Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer)とがNR基地局213で終端するならば、NG-RANは1つあるいは複数のNR基地局213によって構成される。
 UE202とNR基地局213との間の制御プロトコルRRC(Radio Resource Control)の機能はLTEと同様である。RRCにおけるNR基地局213とUE202との状態として、RRC_IDLEと、RRC_CONNECTEDと、RRC_INACTIVEとがある。
 RRC_IDLE、RRC_CONNECTEDは、LTE方式と同様である。RRC_INACTIVEは5GコアとNR基地局213との間の接続が維持されつつ、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。
 gNB217は、アクセス・移動管理機能(Access and Mobility Management Function:AMF)、セッション管理機能(Session Management Function:SMF)、あるいはUPF(User Plane Function)、あるいはAMF、SMFおよびUPFを含むAMF/SMF/UPF部(以下「5GC部」という場合がある)214とNGインタフェースにより接続される。gNB217と5GC部214との間で制御情報および/あるいはユーザデータが通信される。NGインタフェースは、gNB217とAMFとの間のN2インタフェース、gNB217とUPFとの間のN3インタフェース、AMFとSMFとの間のN11インタフェース、および、UPFとSMFとの間のN4インタフェースの総称である。一つのgNB217に対して、複数の5GC部214が接続されてもよい。gNB217間は、Xnインタフェースにより接続され、gNB217間で制御情報および/あるいはユーザデータが通信される。
 NR基地局213も、基地局203同様、1つあるいは複数のセルを構成してもよい。1つのNR基地局213が複数のセルを構成する場合、1つ1つのセルが、UE202と通信可能に構成される。
 gNB217は、中央ユニット(Central Unit;以下、CUと称する場合がある)218と分散ユニット(Distributed Unit;以下、DUと称する場合がある)219に分割されていてもよい。CU218は、gNB217の中に1つ構成される。DU219は、gNB217の中に1つあるいは複数構成される。CU218は、DU219とF1インタフェースにより接続され、CU218とDU219との間で制御情報および/あるいはユーザデータが通信される。
 5G方式の通信システムにおいて、非特許文献22(3GPP TS23.501 V16.1.0)に記載の統合データ管理(Unified Data Management; UDM)機能、ポリシー制御機能(Policy Control Function; PCF)が含まれてもよい。UDMおよび/あるいはPCFは、図3における5GC部に含まれるとしてもよい。
 5G方式の通信システムにおいて、非特許文献22(3GPP TS23.501 V16.1.0)に記載の非3GPP相互動作機能(Non-3GPP InterworkingFunction; N3IWF)が含まれてもよい。N3IWFは、UEとの間における非3GPPアクセスにおいて、アクセスネットワーク(Access Network; AN)をUEとの間で終端してもよい。
 図4は、EPCに接続するeNBおよびgNBによるDCの構成を示した図である。図4において、実線はU-Planeの接続を示し、破線はC-Planeの接続を示す。図4において、eNB223-1がマスタ基地局となり、gNB224-2がセカンダリ基地局となる(このDC構成を、EN-DCと称する場合がある)。図4において、MME部204とgNB224-2との間のU-Plane接続がeNB223-1経由で行われる例について示しているが、MME部204とgNB224-2との間で直接行われてもよい。
 図5は、NGコアに接続するgNBによるDCの構成を示した図である。図5において、実線はU-Planeの接続を示し、破線はC-Planeの接続を示す。図5において、gNB224-1がマスタ基地局となり、gNB224-2がセカンダリ基地局となる(このDC構成を、NR-DCと称する場合がある)。図5において、5GC部214とgNB224-2との間のU-Plane接続がgNB224-1経由で行われる例について示しているが、5GC部214とgNB224-2との間で直接行われてもよい。
 図6は、NGコアに接続するeNBおよびgNBによるDCの構成を示した図である。図6において、実線はU-Planeの接続を示し、破線はC-Planeの接続を示す。図6において、eNB226-1がマスタ基地局となり、gNB224-2がセカンダリ基地局となる(このDC構成を、NG-EN-DCと称する場合がある)。図6において、5GC部214とgNB224-2との間のU-Plane接続がeNB226-1経由で行われる例について示しているが、5GC部214とgNB224-2との間で直接行われてもよい。
 図7は、NGコアに接続するeNBおよびgNBによるDCの、他の構成を示した図である。図7において、実線はU-Planeの接続を示し、破線はC-Planeの接続を示す。図7において、gNB224-1がマスタ基地局となり、eNB226-2がセカンダリ基地局となる(このDC構成を、NE-DCと称する場合がある)。図7において、5GC部214とeNB226-2との間のU-Plane接続がgNB224-1経由で行われる例について示しているが、5GC部214とeNB226-2との間で直接行われてもよい。
 図8は、図2に示す移動端末202の構成を示すブロック図である。図8に示す移動端末202の送信処理を説明する。まず、プロトコル処理部301からの制御データ、およびアプリケーション部302からのユーザデータが、送信データバッファ部303へ保存される。送信データバッファ部303に保存されたデータは、エンコーダー部304へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、送信データバッファ部303から変調部305へ直接出力されるデータが存在してもよい。エンコーダー部304でエンコード処理されたデータは、変調部305にて変調処理が行われる。変調部305にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部306へ出力され、無線送信周波数に変換される。その後、アンテナ307-1~307-4から基地局203に送信信号が送信される。図8において、アンテナの数が4つである場合について例示したが、アンテナ数は4つに限定されない。
 また、移動端末202の受信処理は、以下のように実行される。基地局203からの無線信号がアンテナ307-1~307-4により受信される。受信信号は、周波数変換部306にて無線受信周波数からベースバンド信号に変換され、復調部308において復調処理が行われる。復調部308にて、ウェイト計算および乗算処理が行われてもよい。復調後のデータは、デコーダー部309へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部301へ渡され、ユーザデータはアプリケーション部302へ渡される。移動端末202の一連の処理は、制御部310によって制御される。よって制御部310は、図8では省略しているが、各部301~309と接続している。図8において、移動端末202が送信に用いるアンテナ数と受信に用いるアンテナ数は、同じであってもよいし、異なっていてもよい。
 図9は、図2に示す基地局203の構成を示すブロック図である。図9に示す基地局203の送信処理を説明する。EPC通信部401は、基地局203とEPC(MME部204など)との間のデータの送受信を行う。5GC通信部412は、基地局203と5GC(5GC部214など)との間のデータの送受信を行う。他基地局通信部402は、他の基地局との間のデータの送受信を行う。EPC通信部401、5GC通信部412、および他基地局通信部402は、それぞれプロトコル処理部403と情報の受け渡しを行う。プロトコル処理部403からの制御データ、ならびにEPC通信部401、5GC通信部412、および他基地局通信部402からのユーザデータおよび制御データは、送信データバッファ部404へ保存される。
 送信データバッファ部404に保存されたデータは、エンコーダー部405へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、送信データバッファ部404から変調部406へ直接出力されるデータが存在してもよい。エンコードされたデータは、変調部406にて変調処理が行われる。変調部406にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部407へ出力され、無線送信周波数に変換される。その後、アンテナ408-1~408-4より一つもしくは複数の移動端末202に対して送信信号が送信される。図9において、アンテナの数が4つである場合について例示したが、アンテナ数は4つに限定されない。
 また、基地局203の受信処理は以下のように実行される。一つもしくは複数の移動端末202からの無線信号が、アンテナ408により受信される。受信信号は、周波数変換部407にて無線受信周波数からベースバンド信号に変換され、復調部409で復調処理が行われる。復調されたデータは、デコーダー部410へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部403あるいは5GC通信部412あるいはEPC通信部401、他基地局通信部402へ渡され、ユーザデータは5GC通信部412、EPC通信部401および他基地局通信部402へ渡される。基地局203の一連の処理は、制御部411によって制御される。よって制御部411は、図9では省略しているが、各部401~410と接続している。図9において、基地局203が送信に用いるアンテナ数と受信に用いるアンテナ数は、同じであってもよいし、異なっていてもよい。
 図9は、基地局203の構成について示したブロック図であるが、基地局213についても同様の構成としてもよい。また、図8および図9について、移動端末202のアンテナ数と、基地局203のアンテナ数は、同じであってもよいし、異なってもよい。
 図10は、MMEの構成を示すブロック図である。図10では、前述の図2に示すMME部204に含まれるMME204aの構成を示す。PDN GW通信部501は、MME204aとPDN GWとの間のデータの送受信を行う。基地局通信部502は、MME204aと基地局203との間のS1インタフェースによるデータの送受信を行う。PDN GWから受信したデータがユーザデータであった場合、ユーザデータは、PDN GW通信部501から、ユーザプレイン通信部503経由で基地局通信部502に渡され、1つあるいは複数の基地局203へ送信される。基地局203から受信したデータがユーザデータであった場合、ユーザデータは、基地局通信部502から、ユーザプレイン通信部503経由でPDN GW通信部501に渡され、PDN GWへ送信される。
 PDN GWから受信したデータが制御データであった場合、制御データは、PDN GW通信部501から制御プレイン制御部505へ渡される。基地局203から受信したデータが制御データであった場合、制御データは、基地局通信部502から制御プレイン制御部505へ渡される。
 制御プレイン制御部505には、NASセキュリティ部505-1、SAEベアラコントロール部505-2、アイドルステート(Idle State)モビリティ管理部505-3などが含まれ、制御プレイン(以下、C-Planeと称する場合もある)に対する処理全般を行う。NASセキュリティ部505-1は、NAS(Non-Access Stratum)メッセージのセキュリティなどを行う。SAEベアラコントロール部505-2は、SAE(System Architecture Evolution)のベアラの管理などを行う。アイドルステートモビリティ管理部505-3は、待受け状態(アイドルステート(Idle State);LTE-IDLE状態、または、単にアイドルとも称される)のモビリティ管理、待受け状態時のページング信号の生成および制御、傘下の1つあるいは複数の移動端末202のトラッキングエリアの追加、削除、更新、検索、トラッキングエリアリスト管理などを行う。
 MME204aは、1つまたは複数の基地局203に対して、ページング信号の分配を行う。また、MME204aは、待受け状態(Idle State)のモビリティ制御(Mobility control)を行う。MME204aは、移動端末が待ち受け状態のとき、および、アクティブ状態(Active State)のときに、トラッキングエリア(Tracking Area)リストの管理を行う。MME204aは、UEが登録されている(registered)追跡領域(トラッキングエリア:Tracking Area)に属するセルへ、ページングメッセージを送信することで、ページングプロトコルに着手する。MME204aに接続されるeNB207のCSGの管理、CSG IDの管理、およびホワイトリストの管理は、アイドルステートモビリティ管理部505-3で行われてもよい。
 図11は、5GCの構成を示すブロック図である。図11では、前述の図3に示す5GC部214の構成を示す。図11は、図5にて示す5GC部214に、AMFの構成、SMFの構成およびUPFの構成が含まれた場合について示している。Data Network通信部521は、5GC部214とData Networkとの間のデータの送受信を行う。基地局通信部522は、5GC部214と基地局203との間のS1インタフェース、および/あるいは、5GC部214と基地局213との間のNGインタフェースによるデータの送受信を行う。Data Networkから受信したデータがユーザデータであった場合、ユーザデータは、Data Network通信部521から、ユーザプレイン通信部523経由で基地局通信部522に渡され、1つあるいは複数の、基地局203および/あるいは基地局213へ送信される。基地局203および/あるいは基地局213から受信したデータがユーザデータであった場合、ユーザデータは、基地局通信部522から、ユーザプレイン通信部523経由でData Network通信部521に渡され、Data Networkへ送信される。
 Data Networkから受信したデータが制御データであった場合、制御データは、Data Network通信部521からユーザプレイン制御部523経由でセッション管理部527へ渡される。セッション管理部527は、制御データを制御プレイン制御部525へ渡す。基地局203および/あるいは基地局213から受信したデータが制御データであった場合、制御データは、基地局通信部522から制御プレイン制御部525に渡す。制御プレイン制御部525は、制御データをセッション管理部527へ渡す。
 制御プレイン制御部525は、NASセキュリティ部525-1、PDUセッションコントロール部525-2、アイドルステート(Idle State)モビリティ管理部525-3などを含み、制御プレイン(以下、C-Planeと称する場合もある)に対する処理全般を行う。NASセキュリティ部525-1は、NAS(Non-Access Stratum)メッセージのセキュリティなどを行う。PDUセッションコントロール部525-2は、移動端末202と5GC部214との間のPDUセッションの管理などを行う。アイドルステートモビリティ管理部525-3は、待受け状態(アイドルステート(Idle State);RRC_IDLE状態、または、単にアイドルとも称される)のモビリティ管理、待受け状態時のページング信号の生成および制御、傘下の1つあるいは複数の移動端末202のトラッキングエリアの追加、削除、更新、検索、トラッキングエリアリスト管理などを行う。
 5GC部214は、1つまたは複数の基地局203および/あるいは基地局213に対して、ページング信号の分配を行う。また、5GC部214は、待受け状態(Idle State)のモビリティ制御(Mobility Control)を行う。5GC部214は、移動端末が待ち受け状態のとき、インアクティブ状態(Inactive State)および、アクティブ状態(Active State)のときに、トラッキングエリア(Tracking Area)リストの管理を行う。5GC部214は、UEが登録されている(registered)追跡領域(トラッキングエリア:Tracking Area)に属するセルへ、ページングメッセージを送信することで、ページングプロトコルに着手する。
 次に通信システムにおけるセルサーチ方法の一例を示す。図12は、LTE方式の通信システムにおいて通信端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。通信端末は、セルサーチを開始すると、ステップST601で、周辺の基地局から送信される第一同期信号(P-SS)、および第二同期信号(S-SS)を用いて、スロットタイミング、フレームタイミングの同期をとる。
 P-SSとS-SSとを合わせて、同期信号(Synchronization Signal:SS)という。同期信号(SS)には、セル毎に割り当てられたPCIに1対1に対応するシンクロナイゼーションコードが割り当てられている。PCIの数は504通りが検討されている。この504通りのPCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。
 次に同期がとれたセルに対して、ステップST602で、基地局からセル毎に送信される参照信号(リファレンスシグナル:RS)であるセル固有参照信号(Cell-specific Reference Signal:CRS)を検出し、RSの受信電力(Reference Signal Received Power:RSRP)の測定を行う。参照信号(RS)には、PCIと1対1に対応したコードが用いられている。そのコードで相関をとることによって他セルと分離できる。ステップST601で特定したPCIから、該セルのRS用のコードを導出することによって、RSを検出し、RSの受信電力を測定することが可能となる。
 次にステップST603で、ステップST602までで検出された一つ以上のセルの中から、RSの受信品質が最もよいセル、例えば、RSの受信電力が最も高いセル、つまりベストセルを選択する。
 次にステップST604で、ベストセルのPBCHを受信して、報知情報であるBCCHを得る。PBCH上のBCCHには、セル構成情報が含まれるMIB(Master Information Block)がマッピングされる。したがって、PBCHを受信してBCCHを得ることで、MIBが得られる。MIBの情報としては、例えば、DL(ダウンリンク)システム帯域幅(送信帯域幅設定(transmission bandwidth configuration:dl-bandwidth)とも呼ばれる)、送信アンテナ数、SFN(System Frame Number)などがある。
 次にステップST605で、MIBのセル構成情報をもとに該セルのDL-SCHを受信して、報知情報BCCHの中のSIB(System Information Block)1を得る。SIB1には、該セルへのアクセスに関する情報、セルセレクションに関する情報、他のSIB(SIBk;k≧2の整数)のスケジューリング情報が含まれる。また、SIB1には、トラッキングエリアコード(Tracking Area Code:TAC)が含まれる。
 次にステップST606で、通信端末は、ステップST605で受信したSIB1のTACと、通信端末が既に保有しているトラッキングエリアリスト内のトラッキングエリア識別子(Tracking Area Identity:TAI)のTAC部分とを比較する。トラッキングエリアリストは、TAIリスト(TAI list)とも称される。TAIはトラッキングエリアを識別するための識別情報であり、MCC(Mobile Country Code)と、MNC(Mobile Network Code)と、TAC(Tracking Area Code)とによって構成される。MCCは国コードである。MNCはネットワークコードである。TACはトラッキングエリアのコード番号である。
 通信端末は、ステップST606で比較した結果、ステップST605で受信したTACがトラッキングエリアリスト内に含まれるTACと同じならば、該セルで待ち受け動作に入る。比較して、ステップST605で受信したTACがトラッキングエリアリスト内に含まれなければ、通信端末は、該セルを通して、MMEなどが含まれるコアネットワーク(Core Network,EPC)へ、TAU(Tracking Area Update)を行うためにトラッキングエリアの変更を要求する。
 図12に示す例においては、LTE方式におけるセルサーチから待ち受けまでの動作の例について示したが、NR方式においては、ステップST603において、ベストセルに加えてベストビームを選択してもよい。また、NR方式においては、ステップST604において、ビームの情報、例えば、ビームの識別子を取得してもよい。また、NR方式においては、ステップST604において、リメイニングミニマムSI(Remaining Minimum SI:RMSI)のスケジューリング情報を取得してもよい。NR方式においては、ステップST605において、RMSIを受信するとしてもよい。
 コアネットワークを構成する装置(以下「コアネットワーク側装置」という場合がある)は、TAU要求信号とともに通信端末から送られてくる該通信端末の識別番号(UE-IDなど)をもとに、トラッキングエリアリストの更新を行う。コアネットワーク側装置は、通信端末に更新後のトラッキングエリアリストを送信する。通信端末は、受信したトラッキングエリアリストに基づいて、通信端末が保有するTACリストを書き換える(更新する)。その後、通信端末は、該セルで待ち受け動作に入る。
 スマートフォンおよびタブレット型端末装置の普及によって、セルラー系無線通信によるトラフィックが爆発的に増大しており、世界中で無線リソースの不足が懸念されている。これに対応して周波数利用効率を高めるために、小セル化し、空間分離を進めることが検討されている。
 従来のセルの構成では、eNBによって構成されるセルは、比較的広い範囲のカバレッジを有する。従来は、複数のeNBによって構成される複数のセルの比較的広い範囲のカバレッジによって、あるエリアを覆うように、セルが構成されている。
 小セル化された場合、eNBによって構成されるセルは、従来のeNBによって構成されるセルのカバレッジに比べて範囲が狭いカバレッジを有する。したがって、従来と同様に、あるエリアを覆うためには、従来のeNBに比べて、多数の小セル化されたeNBが必要となる。
 以下の説明では、従来のeNBによって構成されるセルのように、カバレッジが比較的大きいセルを「マクロセル」といい、マクロセルを構成するeNBを「マクロeNB」という。また、小セル化されたセルのように、カバレッジが比較的小さいセルを「スモールセル」といい、スモールセルを構成するeNBを「スモールeNB」という。
 マクロeNBは、例えば、非特許文献7に記載される「ワイドエリア基地局(Wide Area Base Station)」であってもよい。
 スモールeNBは、例えば、ローパワーノード、ローカルエリアノード、ホットスポットなどであってもよい。また、スモールeNBは、ピコセルを構成するピコeNB、フェムトセルを構成するフェムトeNB、HeNB、RRH(Remote Radio Head)、RRU(Remote Radio Unit)、RRE(Remote Radio Equipment)またはRN(Relay Node)であってもよい。また、スモールeNBは、非特許文献7に記載される「ローカルエリア基地局(Local Area Base Station)」または「ホーム基地局(Home Base Station)」であってもよい。
 図13は、NRにおけるセルの構成の一例を示す。NRのセルでは、狭いビームを形成し、方向を変えて送信する。図13に示す例において、基地局750は、ある時間において、ビーム751-1を用いて移動端末との送受信を行う。他の時間において、基地局750は、ビーム751-2を用いて移動端末との送受信を行う。以下同様にして、基地局750はビーム751-3~751-8のうち1つあるいは複数を用いて移動端末との送受信を行う。このようにすることで、基地局750は広範囲のセルを構成する。
 図13において、基地局750が用いるビームの数を8とする例について示したが、ビームの数は8とは異なっていてもよい。また、図13に示す例において、基地局750が同時に用いるビームの数を1つとしたが、複数であってもよい。
 UEは、複数のNWに対して接続されてもよいし、接続可能な状態であってもよい(以下、「接続」には、実際に接続されている状態だけでなく、接続可能な状態を含める場合がある)。UEは、複数のSIMを用いて、該複数のNWと接続してもよい。該UEは、送受信器を1組のみ有するとしてもよいし、複数組の送受信器を有するとしてもよい。該複数のNWは、PLMNであってもよいし、非公衆ネットワーク(Non Public Network;NPN)であってもよい。該複数のNWへの接続は、並列に行われてもよい。
 UEと各NWとの間の接続に関して、UEのRRCステートは、RRC_CONNECTEDステートであってもよいし、RRC_INACTIVEステートであってもよいし、RRC_IDLEステートであってもよい。UEのCMステートは、CM-IDLEであってもよいし、CM-CONNECTEDであってもよい。UEは、接続先の複数のNWのうち2つ以上に対して、RRC_CONNECTEDステートであってもよいし、CM-CONNECTEDステートであってもよい。他の例として、UEは、接続先の複数のNWのうち1つのNWに対してのみ、RRC_CONNECTEDステートであるとしてもよいし、CM-CONNECTEDステートであるとしてもよい。
 図14は、複数のSIMを用いるUE(以下、複数SIM搭載UE(Multi-SIM UE)と称する場合がある。)と、複数のNWとの間の接続の一例を示すアーキテクチャ図である。図14において、複数SIM搭載UEは、PLMN#1およびPLMN#2に並列に接続している。
 図14に示す例において、UE1400は、PLMN#1におけるgNB1401と接続する。また、UE1400は、PLMN#2におけるgNB1411と接続する。gNB1401は、PLMN#1におけるAMF1402、UPF1403と接続する。PLMN#1におけるSMF1404は、AMF1402、UPF1403と接続する。gNB1411は、PLMN#2におけるAMF1412、UPF1413と接続する。PLMN#2におけるSMF1414は、AMF1412、UPF1413と接続する。
 図14に示す例において、UE1400が2つのPLMNと接続する場合について示したが、UE1400は3つ以上のPLMNと接続してもよい。また、UE1400が接続する2つのNWのうち、1つあるいは複数がNPNであってもよい。UE1400が3つ以上のNWと接続する場合においても、同様としてもよい。
 複数のNWに並列に接続するUEにおいて、ページングのタイミングに重なりが生じる(以下、ページングの衝突と称する場合がある)場合がある。ページングの衝突が発生するUEは、送受信器を1組のみ有するUEであってもよい。この場合において、ページングの衝突を回避するための具体的な方法が開示されていない。そのため、通信システムの各装置は、該UEに対するページングの回避を行うことができない。その結果、UEは前述の1つあるいは複数のNWからのページングを受信できないという問題が生じる。
 本実施の形態1では、前述の問題を解決する方法を開示する。
 UEは、複数のNWからのページングの衝突を検出する。UEは、各NWにおけるフレームタイミングおよびページングに関するタイミング(以下、ページングタイミングと称する場合がある)を用いて、該検出を行ってもよい。UEは、実時間において、複数のNWにおけるページングに関するタイミングが重複する場合において、ページングが衝突したと判断してもよい。UEは、各NWにおけるフレームタイミングを用いて、各NWにおけるページングタイミングを補正してもよい。UEは、補正したページングタイミングを用いて、該検出を行ってもよい。UEがフレームタイミングを用いて該検出を行うことにより、例えば、各NWのフレームタイミングが異なる場合においても、ページングの衝突を検出可能となる。
 UEは、セルサーチを用いて、各NWの基地局におけるフレームタイミングを取得してもよい。UEは、各NWの基地局から報知されるシステム情報、および、各NWから自UEに対して割り当てられた自UEの識別子を用いて、各NWにおけるページングに関するタイミングを取得してもよい。ページングに関する該タイミングは、PF(Paging Frame)であってもよいし、PO(Paging Occasion)であってもよいし、ページング受信に用いるPDCCHモニタリングオケージョン(PDCCH monitoring occasion)であってもよいし、前述のうち複数の組合せであってもよい。
 UEは、ページングの衝突の検出にPFを用いてもよいし、POを用いてもよいし、PDCCHモニタリングオケージョンを用いてもよいし、前述のうち複数を用いてもよい。例えば、UEが該検出にPFを用いることにより、該検出に係る処理量を削減可能となる。他の例として、UEが該検出にPF、PO、および、PDCCHモニタリングオケージョンの組合せを用いることにより、該検出の精度を向上可能となる。
 図15に、複数のNWからのページングの衝突の一例を示す。図15は、UEがNW#1およびNW#2に接続している場合について示している。図15において、横軸は時間を示す。
 図15に示す矢符1501の時刻において、NW#1のSFNが0となる。矢符1502の時刻において、NW#2のSFNが0となる。NW#1におけるUEのページングタイミングは、区間1505に配置され、NW#2における該UEのページングタイミングは、区間1506に配置されている。
 図15に示す例において、区間1505と区間1506は、破線で示す区間1508において時間的に重複している。この場合において、UEは、ページングの衝突が発生したと判断する。
 図15に示す例において、ページングタイミングは、PF(Paging Frame)であってもよいし、PO(Paging Occasion)であってもよいし、ページング受信に用いるPDCCHモニタリングオケージョン(PDCCH monitoring occasion)であってもよいし、前述のうち複数の組合せであってもよい。
 UEにおけるページング衝突検出の他の例として、1つのNWの基地局におけるSSバースト周期のN周期分の期間と、他のNWの基地局におけるページングタイミングとが重複する場合において、ページングの衝突が発生したとしてもよい。前述のNは、0であってもよいし、1であってもよいし、2以上であってもよい。前述のNは、規格で決められてもよいし、UEが決定してもよい。前述のNは、基地局、例えば、UEが受信するページングを送信する基地局が決定して、UEに通知してもよい。このことにより、例えば、UEは、ページングを送信する基地局との下り同期を確立可能となる。その結果、UEはページングを迅速に取得可能となる。
 UEは、ページングの衝突をNWに通知する。UEは、該通知に、ページング衝突の回避に必要な情報を含めてもよい。UEは、ページング衝突回避をNWに要求してもよい。該要求に、前述の情報が含まれてもよい。
 UEは、該通知を基地局に対して行ってもよい。例えば、UEは該通知を、複数のNWの基地局のうち、PRACH送信タイミングが早い方の基地局に対して行ってもよい。このことにより、例えば、UEは該複数のNWのうちいずれかと迅速に接続可能となり、その結果、ページング衝突を迅速に回避可能となる。
 UEは、該通知を1つのNWの基地局に対して行ってもよい。このことにより、例えば、通信システムにおいて、ページング衝突回避を少ないシグナリング量で実行可能となる。他の例として、UEは、該通知を複数のNWの基地局に対して行ってもよい。このことにより、例えば、通信システムにおいて、ページングタイミング変更の柔軟性を向上可能となる。
 UEは該通知を、RRCシグナリングを用いて行ってもよい。例えば、UEは該通知に、RRC立ち上げ要求(RRCSetupRequest)を用いてもよい。このことにより、例えば、UEは基地局に対して該通知を迅速に実行可能となる。他の例として、UEは該通知に、RRC立ち上げ完了(RRCSetupComplete)を用いてもよい。このことにより、例えば、UEは多くの情報を含めて基地局に通知可能となる。
 他の例として、UEは該通知に、RRC再開要求(RRCResumeRequest)を用いてもよい。このことにより、例えば、UEは基地局に対して該通知を迅速に実行可能となる。他の例として、UEは該通知に、RRC再開完了(RRCResumeComplete)を用いてもよい。このことにより、例えば、UEは多くの情報を含めて基地局に通知可能となる。
 他の例として、UEは該通知に、RRC再設定完了(RRCReconfigurationComplete)を用いてもよい。このことにより、UEは多くの情報を含めて基地局に通知可能となる。
 他の例として、新たなRRCシグナリングが設けられてもよい。例えば、RRC再設定要求(RRCReconfigurationRequest)なるシグナリングが設けられて用いられてもよいし、ページング衝突通知(PagingCollisionNotification)なるシグナリングが設けられて用いられてもよい。
 UEから基地局への通知に関する他の例として、MACシグナリングが用いられてもよい。このことにより、例えば、UEはページング衝突を迅速に通知可能となる。他の例として、L1/L2シグナリングが用いられてもよい。このことにより、例えば、UEはページング衝突をさらに迅速に通知可能となる。
 UEは該通知に、ページング衝突の有無に関する情報を含めてもよい。該情報は、例えば、ページング衝突有無の識別子であってもよい。このことにより、例えば、UEは少ないシグナリング量でページング衝突を通知可能となる。
 UEは該通知に、ページング衝突回避に用いられる情報を含めてもよい。ページング衝突回避に用いられる情報の例として、以下の(1)~(10)を開示する。
 (1)他のNWの識別子に関する情報。
 (2)他のNWのページングタイミングに関する情報。
 (3)他のNWにおけるヌメロロジに関する情報。
 (4)他のNWにおけるフレームタイミングに関する情報。
 (5)他のNWにおけるページングタイミング導出に用いられる情報。
 (6)通知先NWとの通信に用いるビームに関する情報。
 (7)他のNWの同期信号に関する情報。
 (8)他のNWの無線アクセステクノロジ(Radio Access Technology;RAT)に関する情報。
 (9)自UEの複数SIM運用に関する情報。
 (10)前述の(1)~(9)の組合せ。
 前述の(1)の情報は、例えば、該他のNWのPLMN-IDであってもよいし、非特許文献23(TR23.734)において開示されたNPN-IDを含んでもよいし、CAG-IDを含んでもよい。このことにより、例えば、基地局はページング衝突を回避すべきNWを把握可能となり、その結果、該回避処理の複雑性を回避可能となる。
 前述の(1)の情報に関する他の例として、該UEを一意に識別する識別子が用いられてもよい。該識別子は、例えば、5G-GUTI(5G Globally Unique Temporary Identifier)であってもよい。基地局は、該5G-GUTIから、該他のNWのPLMN-IDを抽出してもよい。このことにより、例えば、基地局は他のNWの識別子と該UEの識別子を同時に取得可能となる。その結果、基地局は、他のNWにおけるページングタイミング導出に用いられる情報を少ないシグナリングで取得可能となる。
 前述の(2)の情報は、例えば、他のNWにおける、PF(Paging Frame)であってもよいし、PO(Paging Occasion)であってもよいし、ページング受信に用いるPDCCHモニタリングオケージョン(PDCCH monitoring occasion)であってもよいし、前述のうち複数の組合せであってもよい。このことにより、例えば、基地局によるページング衝突回避における処理量を削減可能となる。
 前述の(2)の情報は、他の例として、他のNWにおけるページングタイミングの時刻に関する情報が含まれてもよい。時刻に関する該情報は、例えば、該ページングタイミングの始点における時刻を含んでもよいし、該ページングタイミングの終点に関する時刻を含んでもよいし、該ページングタイミングの継続時間に関する情報を含んでもよいし、前述のうち複数の情報が含まれてもよい。該ページングタイミングは、他のNWにおける、PF(Paging Frame)であってもよいし、PO(Paging Occasion)であってもよいし、ページング受信に用いるPDCCHモニタリングオケージョン(PDCCH monitoring occasion)であってもよいし、前述のうち複数の組合せであってもよい。このことにより、例えば、基地局によるページング衝突回避における処理量を削減可能となる。
 前述の(3)の情報は、例えば、UEが他のNWからのページング受信において用いるサブキャリア間隔、スロット長、またはシンボル長であってもよいし、非特許文献13(TS38.211)の4.2節に開示されたパラメータμであってもよい。このことにより、例えば、基地局によるページング衝突回避における信頼性を向上可能となる。
 前述の(4)の情報は、例えば、通知先基地局と他NWの基地局との間のフレームタイミングの差分をSFN単位、サブフレーム単位、スロット単位、シンボル単位、または、通信システム上の最小単位(例えば、Ts単位)で与えたものであってもよいし、それらの組合せであってもよい。前述におけるスロットは、通知先基地局におけるスロットであってもよいし、他のNWにおけるスロットであってもよい。このことにより、例えば、基地局によるページング衝突回避における処理量を削減可能となる。
 前述の(4)の情報は、他の例として、他のNWにおける所定の時点、例えば、所定のSFNの境界における時刻であってもよい。該境界は、該SFNの先頭であってもよいし、該SFNの末尾であってもよい。他の例として、所定のサブフレーム境界における時刻であってもよいし、所定のスロット境界における時刻であってもよいし、所定のシンボル境界における時刻であってもよい。UEは、該情報を、該他のNWに対するセルサーチによって取得してもよいし、該他のNWからの報知情報から取得してもよい。このことにより、例えば、UEの該通知に要する処理量を削減可能となる。
 前述の(5)の情報は、例えば、他のNWにおける該UEの識別子を含んでもよいし、該他のNWにおいてページングタイミングの決定に用いられるパラメータを含んでもよい。該パラメータは、該NWの基地局からの報知情報の一部あるいは全部、例えば、非特許文献24(TS38.331)において開示されたPCCH設定情報(PCCH-Config)を含んでもよい。このことにより、例えば、UEからの該通知において要する処理量を削減可能となる。
 前述の(5)の情報に関する前述の識別子は、例えば、非特許文献25(TS38.304)の7.1節に開示されたUE_IDであってもよいし、非特許文献22(TS23.501)に開示された、5G-S-TMSI(5G S-Temporary Mobile Subscription Identifier)、5G-TMSI(5G Temporary Mobile Subscription Identifier)、または、5G-GUTIであってもよい。
 前述の(5)の情報に関する前述のパラメータは、非特許文献25(TS38.304)において開示された、UEのDRX(Discontinuous Reception)周期(T)を含んでもよいし、該周期におけるページングフレームの合計数(N)を含んでもよいし、PFにおけるページングオケージョンの数(Ns)を含んでもよいし、PF決定において用いられるオフセット(PF_offset)を含んでもよいし、POにおける最初のPDCCHモニタリングオケージョン(first-PDCCH-MonitoringOccasionOfPO)を含んでもよい。
 前述の(6)の情報は、UEが通知先基地局からの受信に用いているビームに関する情報であってもよい。該ビームは、UEが該基地局からのSSブロックの受信に用いるビームに関する情報であってもよいし、UEが該基地局からの報知情報、例えば、SIB1、あるいは、RMSI(Remaining Minimum System Information)の受信に用いるビームに関する情報であってもよい。該基地局は、前述の(6)の情報を用いて、該UEが在圏するビームにおけるページングタイミングを変更してもよい。該基地局は、該ビームにおける報知情報を変更してもよい。このことにより、例えば、基地局はページングタイミングを柔軟に変更可能となる。
 前述の(7)の情報は、例えば、SSバーストの周期に関する情報であってもよいし、SSバーストの1周期におけるSSブロック送信継続期間であってもよい。該基地局は、前述の(7)の情報を用いて、例えば、他のNWの基地局から送信される複数のSSバースト周期を回避してページングタイミングを設定してもよいし、SSブロック送信継続期間を回避してページングタイミングを設定してもよい。UEは、該情報を用いて、他のNWの基地局の同期信号を受信してもよい。UEは、該同期信号の受信後にページングを受信するとしてもよい。このことにより、例えば、UEのページング受信におけるタイミングずれを防止可能となる。
 前述の(8)の情報は、例えば、他のNWの基地局がNR基地局であることを示す情報であってもよいし、LTE基地局であることを示す情報であってもよい。基地局は、該情報を、ページングタイミングの変更に用いてもよい。例えば、他のNWの基地局がLTE基地局である場合、例えば、LTE基地局におけるページングタイミングが固定となる場合において、基地局は、ページングタイミングの周期を変更してもよい。このことにより、例えば、通信システムにおけるページング衝突の回避失敗の可能性を低下可能となる。
 前述の(9)の情報は、例えば、自UEが複数SIM搭載UEであるか否かを示す情報であってもよいし、複数SIMを用いた運用に関する情報であってもよい。複数SIMを用いた運用に関する情報は、例えば、自UEにおける送信器および/あるいは受信器の数を含んでもよいし、自UEが接続可能なNWの数を含んでもよいし、自UEが保持可能なRRCの数を含んでもよい。複数SIMを用いた運用に関する情報は、自UEにおけるRRCステートの組合せに関する情報、例えば、複数のNWの基地局の複数に対して同時にRRC_CONNECTEDとなることができるか否かを示す情報であってもよい。UEは該情報を、例えば、UEケーパビリティに含めて基地局に通知してもよい。基地局は、UEとの間のデータ送受信に該情報を用いてもよい。このことにより、例えば、通信システムにおける効率を向上可能となる。
 基地局は、UEからの該通知を用いて、ページングタイミングを変更してもよい。例えば、基地局は、ページングタイミングの決定に用いられるパラメータを変更してもよい。該パラメータは、例えば、前述の(5)の情報に関する前述のパラメータであってもよい。基地局は配下のUEに対し、変更した該パラメータを報知してもよい。例えば、基地局は、変更した該パラメータをSIB1に含めて報知してもよい。UEは、該報知を用いて、ページングを受信するタイミング(以下、ページング受信タイミングと称する場合がある。)を変更してもよい。
 UEは、該情報の通知先の基地局からのページングを、他のNWの基地局からのページングよりも優先して、受信してもよい。例えば、UEが、該基地局において変更されたページングパラメータを該基地局より受信するまでの間、UEは、優先したページングを受信するとしてもよい。このことにより、例えば、UEは、変更後のページングパラメータを迅速に取得可能となる。
 基地局は、該パラメータをビーム毎に変更してもよい。基地局からの報知情報が、ビーム毎に異なっていてもよい。このことにより、例えば、通信システムにおける該パラメータ設定の柔軟性を向上可能となる。
 他の例として、基地局は、該パラメータをUE個別に変更してもよい。基地局はUEに対して、変更後の該パラメータをUE個別に通知してもよい。基地局は、変更後の該パラメータを、RRCシグナリング、例えば、RRC再設定(RRCReconfiguration)に含めて、UE個別に通知してもよい。UEは、個別の該通知を用いて、ページング受信タイミングを変更してもよい。このことにより、例えば、通信システムにおいて、ページングタイミングの変更に関する処理の複雑性を回避可能となる。
 他の例として、基地局は、該パラメータを複数のUEに対してまとめて設定してもよいし、まとめて変更してもよい。例えば、基地局は、該パラメータの設定および/あるいは変更を、複数の複数SIM搭載UEに対してまとめて行ってもよい。たとえば、前述の複数の複数SIM搭載UEは、該基地局傘下にある全ての複数SIM搭載UEとしてもよい。たとえば、前述の複数の複数SIM搭載UEは、該基地局以外のNW接続先が同じであってもよいし、異なっていてもよい。該複数の複数SIM搭載UEを、UEグループとして扱ってもよい。基地局は、該パラメータの設定および/あるいは変更を、該UEグループに対して行う。
 基地局は、該複数のUEに対してまとめて設定および/あるいは変更した該パラメータを、該複数のUEに対してまとめて通知してもよい。該通知には、例えば、RRCシグナリングが用いられてもよい。該まとめての通知に、特定のUE-ID、例えば、マルチキャストUE-IDが設けられてもよい。該複数のUEは、該まとめての通知を用いて、該パラメータを設定および/あるいは変更してもよい。このことにより、例えば、基地局と複数のUEとの間におけるシグナリング量を削減可能となる。
 基地局から複数のUEに対する前述のまとめての通知は、他のRRCシグナリングにおいて行われてもよい。このことにより、例えば、基地局と複数のUEとの間におけるシグナリング量をさらに削減可能となる。
 UEは、該基地局より通知された変更後の該パラメータを、他のNWの基地局に対して通知してもよい。UEは、該他のNWの基地局に対する該通知に、UEの識別子に関する情報を含めてもよい。該識別子は、該パラメータを変更した基地局のNWにおいて割り当てられた識別子であってもよい。該他のNWの基地局は、該パラメータを用いて、該他のNWにおけるページングタイミングを変更してもよいし、変更しなくてもよい。このことにより、例えば、該他のNWにおけるページングタイミングを、該通知されたパラメータを回避して変更可能となる。その結果、ページングタイミング変更後におけるページング衝突を防止可能となる。
 図16および図17は、複数SIM搭載UEがページング衝突を検出して基地局に通知する動作の第1例を示すシーケンス図である。図16と図17は境界線BL1617の位置でつながっている。図16および図17において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図16および図17において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図16および図17に示す例において、UEは、gNB#1、gNB#2のいずれに対してもRRC_IDLEステートとなっている。図16および図17は、UEがgNB#1に対してページング衝突を通知する例について示している。
 図16に示すステップST1601において、gNB#1はUEに対してSSブロックを送信する。ステップST1602において、gNB#2はUEに対してSSブロックを送信する。ステップST1603において、UEは、前述のステップST1601およびST1602で送信されたgNB#1およびgNB#2のSFNタイミングを取得し、両gNBのSFNタイミングの差分を導出する。
 図16に示すステップST1606において、gNB#1はUEに対してシステム情報を報知する。ステップST1606で報知されるシステム情報は、gNB#1におけるページングに関するパラメータを含む。ステップST1607において、gNB#2はUEに対してシステム情報を報知する。ステップST1607で報知されるシステム情報は、gNB#2におけるページングに関するパラメータを含む。ステップST1606およびST1607で報知される該パラメータは、ページング衝突回避に用いられる情報として開示した前述の(5)の情報に含まれるパラメータと同じ種類のパラメータであってもよい。ステップST1608において、UEは、前述のステップST1606およびST1607によって取得した情報を用いて、gNB#1およびgNB#2におけるページングタイミングを取得する。
 図16に示すステップST1611は、gNB#1から該UEに対するページングタイミングを表す。ステップST1612は、gNB#2から該UEに対するページングタイミングを表す。図16は、gNB#1とgNB#2のページングタイミングが互いに衝突している場合を示す。
 図16に示すステップST1615において、UEはgNB#1およびgNB#2からのページングの衝突有無を判断する。該判断には、ステップST1603において取得したフレームタイミングの差分、および、ステップST1608において取得したページングタイミングが用いられてもよい。UEは、ページング衝突が発生しないと判断した場合は、ステップST1621以降の処理を行わず、ステップST1606、ST1607のシステム情報取得の処理に戻るとしてもよい。UEは、ページング衝突が発生していると判断した場合は、ステップST1621以降の処理を行う。
 図16に示すステップST1621~ST1629は、UEがgNB#1へページング衝突を通知する処理に関する。ステップST1621において、UEはgNB#1に対して、PRACHを送信する。ステップST1623において、gNB#1はUEに対してランダムアクセス応答(Random Access Response;RAR)を送信する。
 図16に示すステップST1625において、UEはgNB#1に対して、RRCの立ち上げを要求する。該要求には、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立ち上げ要求(RRCSetupRequest)が用いられてもよい。ステップST1627において、gNB#1はUEに対して、RRC立ち上げを指示する。該指示には、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立ち上げ(RRCSetup)が用いられてもよい。
 図16に示すステップST1629において、UEはgNB#1に対して、RRC立ち上げの完了を通知する。該通知には、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立ち上げ完了(RRCSetupComplete)が用いられてもよい。UEは、ステップST1629の通知に、ページング衝突に関する情報を含めてもよい。該情報には、例えば、ページング衝突の有無に関する情報が含まれてもよいし、ページング衝突回避に用いられる情報の例として開示した前述の(1)~(10)の情報が含まれてもよい。
 図17に示すステップST1631において、gNB#1は、ページングタイミングを変更する。ステップST1633において、gNB#1はUEに対してシステム情報を報知する。該報知は、変更したページングタイミングに係るパラメータを含んでもよい。ステップST1635において、UEは、前述のステップST1633で報知されたページングパラメータを取得し、該パラメータを用いてgNB#1のページングタイミングを取得する。UEは、取得したページングタイミングに従って、gNB#1のページング受信タイミングを変更する。
 UEは、変更したgNB#1のページング受信タイミングで、gNB#1のページングを受信する。このことにより、UEは、gNB#1からのページングと、gNB#2からのページングを受信可能となる。
 たとえば、UEは、gNB#1からのページングを受信し、ページングが無かった場合、gNB#2のページングタイミングまでにgNB#2への受信を切替え、gNB#2のページングを受信する。また、UEは、gNB#2からのページングを受信し、パージングが無かった場合、gNB#1のページングタイミングまでにgNB#1への受信を切替え、gNB#1のページングを受信する。たとえば、UEは、gNB#1からのページングを受信し、ページングがあった場合、該受信したページングに応じて処理を実施してもよい。
 基地局はAMFに対し、UEの識別子の変更を要求してもよい。基地局は該要求を、例えば、前述の(5)におけるページングタイミングの決定に用いられるパラメータ(例えばPCCH設定情報(PCCH-Config))だけの変更によってページング衝突回避が不可能な場合において行うとしてもよい。該パラメータの変更によってページング衝突が可能な場合において、基地局はAMFに対して該要求を行わないとしてもよい。このことにより、例えば、PCCH設定情報の変更のみによってページング衝突を回避可能な場合における、該識別子の不用な変更を防止可能となる。該要求は、変更候補とする一つまたは複数のUE識別子を含んでもよい。該要求には、例えば、N2インタフェースにおけるシグナリングが用いられてもよい。新たなシグナリング、例えば、N2UE設定更新要求(N2 UE configuration update request)のシグナリングが設けられて用いられてもよい。UEの該識別子は、例えば、非特許文献25(TS38.304)の7.1節に開示されたUE_IDであってもよいし、非特許文献22(TS23.501)に開示された、5S-TMSI(5G S-Temporary Mobile Subscription Identifier)、5G-TMSI(5G Temporary Mobile Subscription Identifier)、または、5G-GUTIであってもよい。AMFは、該シグナリングを用いて、UEの識別子を変更してもよい。
 基地局はAMFに対し、ページング衝突回避に用いられる情報を通知してもよい。基地局は該情報を、UEの識別子の該要求に含めて通知してもよい。該情報は、前述の(1)~(10)の情報を含んでもよい。基地局は、UEから通知された前述の(1)~(10)の情報を、N2インタフェースにおけるシグナリングに変換して通知してもよい。該情報は、自NWに関する情報をさらに含んでもよい。自NWに関する情報は、前述の(1)~(10)の情報について、他のNWを自NWに読み替えたものであってもよい。AMFは、自NWに関する該情報を用いて、UEの識別子を変更してもよい。このことにより、例えば、変更後のUEの識別子におけるページング衝突を防止可能となる。
 AMFはUEに対し、変更後の識別子を通知してもよい。該通知には、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新指示(CONFIGURATION UPDATE COMMAND)が用いられてもよい。該識別子は、例えば、非特許文献22(TS23.501)に開示された5G-S-TMSI(5G S-Temporary Mobile Subscription Identifier)であってもよい。UEは、該通知を用いて、自UEのUE-IDを更新してもよい。
 UEはAMFに対し、自UEの識別子更新の完了を通知してもよい。該通知には、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新完了(CONFIGURATION UPDATE COMPLETE)が用いられてもよい。
 AMFは基地局に対し、変更後の識別子を通知してもよい。該通知には、N2インタフェース上のシグナリングが用いられてもよい。基地局は、該通知を用いて、UEのページングタイミングを変更してもよい。例えば、基地局は、UEの変更後の識別子を用いて、ページングタイミングの決定に用いられるパラメータを変更してもよい。このことにより、例えば、該UEにおけるページングタイミング変更の柔軟性を向上可能となる。基地局からUEに対する、変更後の該パラメータの通知は、前述と同様としてもよい。
 図18および図19は、複数SIM搭載UEがページング衝突を検出して基地局に通知し、基地局がAMFに対してUEの識別子を要求する動作の第2例を示すシーケンス図である。図18と図19は境界線BL1819の位置でつながっている。図18および図19において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図18および図19において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図18および図19に示す例において、UEは、gNB#1、gNB#2のいずれに対してもRRC_IDLEステートとなっている。図18および図19は、UEがgNB#1に対してページング衝突を通知し、gNB#1がAMF#1に対して、UEの識別子の変更を要求する例について示している。図18および図19において、図16および図17と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図18に示すステップST1601~ST1629は、図16と同じである。
 図19に示すステップST1730において、gNB#1はAMF#1に対し、UEの識別子の変更を要求する。該要求には、例えば、N2インタフェースにおけるシグナリングが用いられてもよい。新たなシグナリング、例えば、N2UE設定更新要求(N2 UE configuration update request)のシグナリングが設けられて用いられてもよい。ステップST1732において、AMF#1は、UEの識別子を変更する。該識別子は、例えば、5G-S-TMSIであってもよい。
 図19に示すステップST1734において、AMF#1はUEに対し、UEの識別子の更新を指示する。該指示には、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新指示(CONFIGURATION UPDATE COMMAND)が用いられてもよい。該指示は、例えば、UEの更新後の5G-S-TMSIを含んでもよい。ステップST1736において、UEは、該指示を用いて、自UEのUE-IDを更新する。
 図19に示すステップST1738において、UEはAMFに対し、自UEの識別子更新の完了を通知する。該通知には、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新完了(CONFIGURATION UPDATE COMPLETE)が用いられてもよい。
 図19に示すステップST1740において、AMFは基地局に対し、変更後の識別子を通知する。該通知には、N2インタフェース上のシグナリングが用いられてもよい。該通知は、変更後の識別子を含んでもよい。該識別子は、5G-S-TMSIであってもよいし、UE-IDであってもよいし、5G-GUTIであってもよい。ステップST1631において、gNB#1は、前述のステップST1740で通知された変更後の識別子を用いて、ページングタイミングに関するパラメータを変更してもよい。
 図19に示すステップST1633、ST1635は、図17と同じである。
 AMFから基地局への変更後の識別子の通知が、UEからAMFに対する、自UEの識別子更新の完了の通知よりも前に行われてもよい。このことにより、例えば、該UEにおけるページングタイミング変更の柔軟性を向上可能としつつ、基地局はページングタイミングに関するパラメータを迅速に決定可能となる。
 図20および図21は、複数SIM搭載UEがページング衝突を検出して基地局に通知し、基地局がAMFに対してUEの識別子を要求する動作の第3例を示すシーケンス図である。図20と図21は境界線BL2021の位置でつながっている。図20および図21において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図20および図21において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図20および図21に示す例において、UEは、gNB#1、gNB#2のいずれに対してもRRC_IDLEステートとなっている。図20および図21は、UEがgNB#1に対してページング衝突を通知し、gNB#1がAMF#1に対して、UEの識別子の変更を要求する例について示している。図20および図21において、図16~図19と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図20に示すステップST1601~ST1629は、図16と同じである。
 図21に示すステップST1730~ST1736は、図19と同様である。
 図21に示すステップST1840において、AMFは基地局に対し、変更後の識別子を通知する。該通知は、図19におけるステップST1740と同様であってもよい。
 図21に示すステップST1631~ST1635は、図17と同じである。
 図21に示すステップST1738は、図19と同様である。
 図20および図21において、UEからAMFに対する、自UEの識別子更新の完了の通知が、自UEにおけるページングタイミング変更の後に行われる場合について示した。他の例として、UEは、ページングタイミング変更の前に、自UEの識別子更新の完了を通知してもよい。例えば、UEは、ステップST1736に示すUE-ID変更の後に、ステップST1738を行うとしてもよい。このことにより、例えば、該通知のAMFにおける待ち時間を短縮可能となり、その結果、AMFにおける動作の効率を向上可能となる。
 UEからNWへの該通知に関する他の例として、UEは該通知をAMFに対して行ってもよい。例えば、UEは該通知を、複数のNWの基地局のうち、PRACH送信タイミングが早い方の基地局に接続しているAMFに対して行ってもよい。このことにより、例えば、UEは該複数のNWのうちいずれかと迅速に接続可能となり、その結果、ページング衝突を迅速に回避可能となる。
 UEは該通知を、NASシグナリングを用いて行ってもよい。UEは該NASシグナリングを、RRCシグナリング、例えば、RRC立ち上げ完了(RRCSetupComplete)に含めて通知してもよい。gNBは、該RRCシグナリングから、該NASシグナリングを抽出してもよい。gNBはAMFに対して、該NASシグナリングを転送してもよい。該転送には、N2インタフェースにおけるシグナリング、例えば、非特許文献26(TS38.413)に開示されたINITIAL UE TRANSFERが用いられてもよい。該転送のために、新たなシグナリングが設けられてもよい。このことにより、例えば、UEは、RRC立ち上げ後の最初のNASシグナリングにおいて、ページング衝突に関する情報を通知可能となる。その結果、AMFはページング衝突に関する情報を迅速に取得可能となる。
 他の例として、新たなNASシグナリングが設けられてもよい。例えば、UEからAMFに対するUE設定更新要求(UE configuration update request)のシグナリングが設けられてもよい。UEはAMFに対して、新たに設けられた該NASシグナリングを用いて該通知を行ってもよい。
 UEは、該通知を1つのNWのAMFに対して行ってもよい。このことにより、例えば、通信システムにおいて、ページング衝突回避を少ないシグナリング量で実行可能となる。他の例として、UEは、該通知を複数のNWのAMFに対して行ってもよい。このことにより、例えば、通信システムにおいて、ページングタイミング変更の柔軟性を向上可能となる。
 UEはAMFに対し、ページング衝突回避に用いられる情報を通知してもよい。UEは該情報を、該通知に含めてもよい。該情報は、前述の(1)~(10)の情報を含んでもよい。該情報は、自NWに関する情報をさらに含んでもよい。自NWに関する情報は、前述の(1)~(10)の情報について、他のNWを自NWに読み替えたものであってもよい。このことにより、例えば、AMFは該UEのページングタイミング導出に必要なパラメータを不足なく取得可能となる。その結果、該UEにおけるページング衝突を確実に回避可能となる。AMFは、自NWに関する該情報を用いて、UEの識別子を変更してもよい。このことにより、例えば、変更後のUEの識別子におけるページング衝突を防止可能となる。
 AMFは、該シグナリングを用いて、UEの識別子を変更してもよい。AMFはUEに対し、変更後の識別子を通知してもよい。該通知には、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新指示(CONFIGURATION UPDATE COMMAND)が用いられてもよい。該識別子は、例えば、非特許文献22(TS23.501)に開示された5G-S-TMSI(5G S-Temporary Mobile Subscription Identifier)であってもよい。UEは、該通知を用いて、自UEのUE-IDを更新してもよい。
 UEはAMFに対し、自UEの識別子更新の完了を通知してもよい。該通知には、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新完了(CONFIGURATION UPDATE COMPLETE)が用いられてもよい。
 AMFは基地局に対し、変更後の識別子を通知してもよい。該通知には、N2インタフェース上のシグナリングが用いられてもよい。基地局は、該通知を用いて、UE-IDを更新してもよい。基地局は、該通知を用いて、ページングタイミングを変更してもよい。基地局は、UEの変更後の識別子を用いて、ページングタイミングの決定に用いられるパラメータを変更してもよいし、変更しなくてもよい。このことにより、例えば、該UEにおけるページングタイミング変更の柔軟性を向上可能となる。基地局からUEに対する、変更後の該パラメータの通知は、前述と同様としてもよい。
 UEは、該AMFより通知された変更後の該パラメータを、他のNWのAMFに対して通知してもよい。UEは、該他のNWのAMFに対する該通知に、UEの識別子に関する情報を含めてもよい。該識別子は、該パラメータを変更したAMFのNWにおいて割り当てられた識別子であってもよい。該他のNWのAMFは、該パラメータを用いて、該他のNWにおけるページングタイミングを変更してもよいし、変更しなくてもよい。このことにより、例えば、該他のNWにおけるページングタイミングを、該通知されたパラメータを回避して変更可能となる。その結果、ページングタイミング変更後におけるページング衝突を防止可能となる。
 図22および図23は、複数SIM搭載UEがページング衝突を検出してAMFに通知する動作の例を示すシーケンス図である。図22と図23は境界線BL2223の位置でつながっている。図22および図23において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図22および図23において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図22および図23に示す例において、UEはgNB#1、gNB#2のいずれに対してもRRC_IDLEステートとなっている。図22および図23は、UEがgNB#1経由でAMF#1に対してページング衝突を通知する例について示している。図22および図23において、図16~図19と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図22に示すステップST1601~ST1627は、図16と同じである。
 図22に示すステップST1929において、UEはgNB#1に対して、RRC立ち上げの完了を通知する。該通知には、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立ち上げ完了(RRCSetupComplete)が用いられてもよい。UEは、ステップST1629の通知に、NASシグナリングを含めてもよい。UEは、該NASシグナリングに、ページング衝突に関する情報を含めてもよい。該情報には、例えば、ページング衝突の有無に関する情報が含まれてもよいし、ページング衝突回避に用いられる情報の例として開示した前述の(1)~(10)の情報が含まれてもよい。
 図23に示すステップST1931において、gNB#1は、UEから受信したNASシグナリングを、AMF#1に転送する。該転送には、N2インタフェースにおけるシグナリング、例えば、非特許文献26(TS38.413)に開示されたINITIAL UE TRANSFERが用いられてもよい。該転送のために、新たなシグナリングが設けられてもよい。AMF#1は、ステップST1931のシグナリングを受信することによって、ページング衝突の発生を認識する。
 図23に示すステップST1732~ST1740は、図19と同様である。
 図23において、gNB#1がページングタイミングに関するパラメータを変更しない場合について示したが、gNB#1が該パラメータを変更するとしてもよい。この場合において、図19に示すステップST1631~ST1635が行われてもよい。このことにより、例えば、通信システムにおいて、ページングタイミング変更の柔軟性を向上可能となる。
 ページング衝突に関する情報を、他の基地局が取得してもよい。該他の基地局は、例えば、UEのハンドオーバ先の基地局(以下、ターゲット基地局と称する場合がある。)であってもよい。ハンドオーバ元の基地局(以下、ソース基地局と称する場合がある。)はターゲット基地局に対して、ページング衝突に関する情報を通知してもよい。該情報は、例えば、前述の(1)~(10)の情報であってもよい。このことにより、例えば、UEがハンドオーバした後においても、ページング衝突を防止可能となる。
 ソース基地局は、該通知を、基地局間インタフェース(例えば、Xnインタフェース)におけるシグナリング、例えば、非特許文献28(TS38.423)に開示されたハンドオーバ要求(HANDOVER REQUEST)のシグナリングを用いて行ってもよい。このことにより、例えば、ソース基地局はターゲット基地局に対して該情報を迅速に通知可能となる。
 他の例として、UEがターゲット基地局に対し、該情報を通知してもよい。UEは該通知を、前述のRRCシグナリング、例えば、RRC再設定完了のシグナリングを用いて行ってもよい。このことにより、例えば、基地局間インタフェースにおけるシグナリング量を削減可能となる。
 UEは、ページング衝突に関する情報を、該UEが接続するNWの基地局のうち、PRACH送信タイミングが一番早い基地局に対して通知してもよい。このことにより、例えば、UEはNWに対してページング衝突を迅速に通知可能となる。
 他の例として、UEは、プライマリNWを設定してもよいし、セカンダリNWを設定してもよい。UEは、該通知を、プライマリNWの基地局および/あるいはAMFに行うとしてもよいし、セカンダリNWの基地局および/あるいはAMFに行うとしてもよい。このことにより、通信システムの設計において、ページング衝突に関する情報を通知するための処理の複雑性を回避可能となる。
 人がUEに対して、プライマリNWおよび/あるいはセカンダリNWの設定を行ってもよい。たとえば、人の好みに応じてプライマリNWとセカンダリNWの設定を行う。このことにより、人が好むNWに対してページング衝突回避を実施させることが可能となる。UEに、プライマリNWおよび/あるいはセカンダリNWの設定を、予め記憶しておいてもよい。UEは、随時プライマリNWおよび/あるいはセカンダリNWの設定を使用することが可能となる。
 UEは、複数のNWからのページングの処理を、先着順で処理してもよい。このことにより、例えば、UEの設計の複雑性を回避可能となる。
 他の例として、UEは、後着のページングに対する処理を、先着のページングよりも先に行ってもよい。前述の動作は、例えば、UEが先着のページングの処理中に優先度の高い後着のページングを受信した場合に行われてもよい。基地局は、優先度を示す情報を、ページングに含めて、UEに通知してもよい。UEは、該情報を用いて、後着のページングの処理可否を決定してもよい。このことにより、例えば、優先度の高い通信を迅速に開始することが可能となり、その結果、通信システムにおけるQoSを確保可能となる。
 他の解決策を開示する。UEは、複数のNWからのページングを時分割で受信してもよい。複数のNWからのページングが時分割で送信されてもよい。UEは、時分割多重されたページングタイミングを用いて、各NWからのページングを受信するとしてもよい。このことにより、例えば、UEにおける消費電力を削減可能となる。
 UEは、ページングの時分割多重の方法を決定してもよい。UEは、ページングを時分割多重して受信することを、基地局に通知してもよい。UEは該通知を、1つのNWの基地局に対して行ってもよいし、複数のNWの基地局に対して行ってもよいし、接続先の全部のNWの基地局に対して行ってもよい。UEから該基地局への通知方法は、前述の解決策における、UEから基地局へのページング衝突に関する情報の通知方法と同様であってもよい。基地局は、該通知を用いて、該UEが受信するページングタイミングにおいてのみ、該UEに対するページングの情報を含めてもよい。このことにより、例えば、基地局における消費電力を削減可能となるとともに、ページングにおいて収容可能なUE数を増加可能となる。
 UEから該基地局への該通知は、時分割多重後のページングタイミングに関する情報を含んでもよい。該情報は、例えば、ページング衝突に関する情報として開示した前述の(2)および/あるいは(5)の情報を含んでもよい。前述の(5)の情報として、例えば、ページングの周期に関する情報が用いられてもよい。ページングの周期に関する該情報として、例えば、非特許文献25(TS38.304)において開示された、UEのDRX(Discontinuous Reception)周期(T)が用いられてもよいし、該周期におけるページングフレームの合計数(N)が用いられてもよい。
 該情報は、他の例として、時分割多重によって割り当てられないこととなったページングタイミングに関する情報を含んでもよい。該ページングタイミングは、時分割多重によって割り当てられないこととなった、PF(Paging Frame)であってもよいし、PO(Paging Occasion)であってもよいし、ページング受信に用いるPDCCHモニタリングオケージョン(PDCCH monitoring occasion)であってもよいし、前述のうち複数の組合せであってもよい。
 他の例として、UEは、ページングの時分割多重の方法を決定してもよい。UEは、ページングを時分割多重して受信することを基地局に通知しないとしてもよい。UEは、自UEが決定したページング時分割多重方法を用いて、各NWからのページングを受信するとしてもよい。このことにより、例えば、通信システムの設計の複雑性を回避可能となる。
 他の例として、基地局が、ページングの時分割多重の方法を決定してもよい。該基地局は、例えば、プライマリNWの基地局であってもよい。UEは該基地局に対し、ページングの時分割多重を要求してもよい。該基地局による決定は、UEからの該要求を契機として行われてもよいし、UEからの該要求なしに行われてもよい。該基地局は、他のNWの基地局に、ページングの時分割多重の情報を通知してもよい。該通知は、UE経由で行われてもよい。該基地局は該通知を、RRCシグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、L1/L2シグナリングを用いて行ってもよい。UEは、他のNWの基地局に対する該通知を、RRCシグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、L1/L2シグナリングを用いて行ってもよい。このことにより、例えば、UEにおけるページングの時分割多重の方法の決定が不要となり、その結果、設計の複雑性を回避可能となる。
 ページングの時分割多重の方法を決定する基地局は、1つのNWの基地局であってもよいし、複数のNWの基地局であってもよい。UEは、1つのNWの基地局に対し該要求を送ってもよいし、複数のNWの基地局に該要求を送ってもよい。該方法を複数のNWの基地局が決定することにより、例えば、通信システムにおけるページングの時分割多重方法の決定動作を迅速に開始可能となる。
 図24は、ページングの時分割多重の第1例を示す図である。図24において、UEは2つのNW(NW#1、NW#2)に接続している。図24において、実線および破線の四角は、各NWにおける時分割多重前のページングタイミングを示す。図24において、UEは、時分割多重の結果、破線に示す四角のタイミングにおいては当該NWからのページングを受信しないとしてもよい。図24に示す例においては、NW#1からのページングとNW#2からのページングが同じ周期で送信されている。図24に示す例においては、UEは、NW#1、NW#2からのページングを交互に受信するとしてもよい。
 図25は、ページングの時分割多重の第2例を示す。図25において、UEは2つのNW(NW#1、NW#2)に接続している。図25において、実線および破線の四角は、各NWにおける時分割多重前のページングタイミングを示す。図25において、UEは、時分割多重の結果、破線に示す四角のタイミングにおいては当該NWからのページングを受信しないとしてもよい。図25に示す例においては、NW#1からのページングはNW#2からのページングよりも大きい周期で送信されている。図25に示す例においてUEは、NW#1とNW#2からのページングが重複する場合、NW#1からのページングを受信するとしてもよい。
 他の解決策を開示する。基地局がページング衝突を検出してもよい。該基地局は、1つのNWの基地局であってもよいし、UEが接続する複数のNWの基地局であってもよい。UEは基地局に対し、他のNWにおける自UEの識別子を通知してもよい。該通知は、UEが他のNWにおいて接続するセルに関する情報、例えば、PCIを含んでもよい。基地局は、該他のNWにおけるページングに関する情報を取得してもよい。基地局における該情報の取得は、該他のNWの基地局からの報知情報の取得によって行われてもよいし、UEから該基地局への通知によって行われてもよい。このことにより、例えば、UEにおいて、ページング衝突に関する処理量を削減可能となる。
 本実施の形態1において開示された方法が、NR基地局とLTE基地局との間のページング衝突に適用されてもよい。LTE基地局および/あるいは該LTE基地局が接続するNWは、UEの識別子のみを変更するとしてもよい。このことにより、例えば、通信システムにおける設計の複雑性を回避可能となる。他の例として、LTE基地局および/あるいは該LTE基地局が接続するNWは、ページングに関する他のパラメータも含めて変更可能としてもよい。このことにより、例えば、ページングタイミング変更の柔軟性を向上可能となる。UEからNR基地局および/あるいはAMFへの通知、ならびに、UEからLTE基地局および/あるいはMMEへの通知については、前述の解決策と同様であってもよい。UEから、NR基地局に接続するAMFへの通知、ならびに、UEから、LTE基地局に接続するMMEへの通知についても、前述の解決策と同様であってもよい。このことにより、例えば、UEはNR基地局とLTE基地局との間のページング衝突を回避可能となる。
 UEは、ページング衝突を、NR基地局に通知してもよい。このことにより、例えば、通信システムにおいて、UEのページングタイミングを柔軟に変更可能となる。
 他の例として、UEは、ページング衝突を、LTE基地局および/あるいはMMEに通知してもよい。このことにより、例えば、UEとNR基地局との間のシグナリング量を削減可能となり、その結果、通信システムにおける通信速度を確保可能となる。
 本実施の形態1において開示された方法が、LTE基地局同士のページング衝突に適用されてもよい。UEからLTE基地局および/あるいはMMEへの通知は、前述の解決策と同様としてもよい。このことにより、例えば、LTE基地局同士のページング衝突を回避可能となる。LTE基地局および/あるいは該LTE基地局が接続するNWは、UEの識別子のみを変更するとしてもよい。このことにより、例えば、通信システムにおける設計の複雑性を回避可能となる。他の例として、LTE基地局および/あるいは該LTE基地局が接続するNWは、ページングに関する他のパラメータも含めて変更可能としてもよい。このことにより、例えば、ページングタイミング変更の柔軟性を向上可能となる。
 UEは、複数のRRCを有してもよい。例えば、UEは、自UEが複数SIM搭載UEである場合において、複数のRRCを有することが許容されるとしてもよい。例えば、UEは、複数のNWの基地局毎にRRCを有してもよい。このことにより、例えば、UEと各基地局との間の制御が容易になる。
 他の例として、UEは、送受信器毎にRRCを有してもよい。UEが有する送信器と受信器の数が異なる場合においても、同様としてもよい。例えば、UEは、UEが有する送信器毎にRRCを有するとしてもよいし、UEが有する受信器毎にRRCを有するとしてもよい。UEは、UEが有する送信器の数と受信器の数のうち、大きいほうの数だけRRCを有するとしてもよいし、小さいほうの数だけRRCを有するとしてもよい。このことにより、例えば、UEの各送受信器を容易に制御可能となる。
 他の例として、UEは、RRCを1つのみ有するとしてもよい。例えば、UEが複数SIM搭載UEであっても、RRCを1つのみ有するとしてもよい。UEが複数の送受信器を有する場合においても、同様としてもよい。UEが有する送信器と受信器の数が異なる場合においても、同様としてもよい。例えば、UEが送信器を1つのみ有する場合において、UEはRRCを1つのみ有するとしてもよい。例えば、UEが受信器を1つのみ有する場合において、UEはRRCを1つのみ有するとしてもよい。このことにより、例えば、UEと複数のNWの基地局との間の制御、例えば、複数のNWの基地局間における周波数、時間、および/あるいは電力のリソースの調整が容易となる。
 UEは、複数のRRCステートを有してもよい。例えば、UEは、自UEが複数SIM搭載UEである場合において、複数のRRCステートを有することが許容されるとしてもよい。例えば、複数のNWの基地局毎にRRCを有してもよい。UEは、1つのRRCに対して1つのRRCステートを有してもよいし、1つのRRCに対して複数のRRCステートを有してもよい。このことにより、例えば、通信システムは、各基地局との間の接続状態を容易に制御可能となる。
 UEが複数のRRCステートを有する他の例として、送受信器毎にRRCステートを有してもよい。UEが有する送信器と受信器の数が異なる場合においても、同様としてもよい。例えば、UEは、UEが有する送信器毎にRRCステートを有するとしてもよいし、UEが有する受信器毎にRRCステートを有するとしてもよい。UEは、UEが有する送信器の数と受信器の数のうち、大きいほうの数だけRRCステートを有するとしてもよいし、小さいほうの数だけRRCステートを有するとしてもよい。このことにより、例えば、UEの各送受信器の稼働状況を容易に制御可能となる。
 UEが有する複数のRRCステートは、互いに独立であってもよい。例えば、UEが複数の送受信器を有する場合において、複数のRRCステートが互いに独立であるとしてもよい。他の例として、UEが単一の送受信器を有する場合において、複数のRRCステートが互いに独立であるとしてもよい。このことにより、例えば、通信システムにおける柔軟性を向上可能となる。
 他の例として、UEが有する複数のRRCステートは、相互依存性を有してもよい。例えば、1つのNWの基地局との間のRRCステートがRRC_CONNECTEDに遷移する場合において、他のNWの基地局との間のRRCステートがRRC_CONNECTEDに遷移するとしてもよい。他の例として、1つのNWの基地局との間のRRCステートがRRC_IDLEあるいはRRC_INACTIVEに遷移する場合において、他のNWの基地局との間のRRCステートがRRC_IDLEあるいはRRC_INACTIVEに遷移するとしてもよい。例えば、UEが1つの送受信器を有する場合において、複数のRRCステート間の相互依存性を有するとしてもよい。他の例として、UEが複数の送受信器を有する場合において、複数のRRCステート間の相互依存性を有するとしてもよい。このことにより、例えば、通信システムにおけるRRCステートの制御が容易になる。
 UEは、RRCステートを1つのみ有するとしてもよい。このことにより、例えば、UEの稼働状況を容易に制御可能となる。
 本実施の形態1において開示した方法が、SSブロックおよび/あるいはシステム情報の受信に適用されてもよい。例えば、UEは、複数のNWの基地局からのSSブロックを、時分割で受信してもよい。他の例として、UEは、1つのNWの基地局に対して、システム情報送信タイミングの衝突回避を要求してもよい。該基地局は、該要求を用いて、システム情報送信タイミングを変更してもよい。このことにより、例えば、SSブロックおよび/あるいはシステム情報についても、送信タイミング衝突を回避可能となる。
 本実施の形態1により、NW間のページングの重複を回避可能となる。
 実施の形態1の変形例1.
 複数のNWが同じ基地局を共有する通信システムに、実施の形態1と同様の方法が適用されてもよい。
 図26は、複数のNWが同じ基地局を共有する通信システムにおいて、複数SIM搭載UEと、複数のNWとの間の接続の一例を示すアーキテクチャ図である。図26において、PLMN#1とPLMN#2は、同じ基地局2201を共有している。図26において、複数SIM搭載UEは、PLMN#1およびPLMN#2に並列に接続している。
 図26に示す例において、UE1400はgNB2201と接続する。gNB2201は、PLMN#1におけるAMF1402、UPF1403と接続する。PLMN#1におけるSMF1404は、AMF1402、UPF1403と接続する。gNB2201は、PLMN#2におけるAMF1412、UPF1413と接続する。PLMN#2におけるSMF1414は、AMF1412、UPF1413と接続する。
 図26に示す例において、UE1400が2つのPLMNと接続する場合について示したが、UE1400は3つ以上のPLMNと接続してもよい。また、UE1400が接続する2つのNWのうち、1つあるいは複数がNPNであってもよい。UE1400が3つ以上のNWと接続する場合においても、同様としてもよい。
 UEは、複数のNW間のページングタイミング衝突を、基地局に通知してもよい。該通知は、実施の形態1において開示した通知と同様であってもよい。他の例として、UEは、複数のNW間のページングタイミング衝突を、AMFに通知してもよい。該AMFは、1つのNWのAMFであってもよいし、複数のNWのAMFであってもよい。UEからAMFへの該通知は、実施の形態1において開示した通知と同様であってもよい。このことにより、例えば、複数NWが基地局を共有する通信システムにおいても、ページング衝突を回避可能となる。
 他の解決策を開示する。基地局がページングタイミング衝突を検出してもよい。基地局は、各NWにおけるページングパラメータを変更してもよい。基地局はUEに対し、変更した該パラメータを報知してもよいし、個別に通知してもよい。
 UEは基地局に対し、各NWによって割り当てられたUEの識別子を通知してもよい。このことにより、例えば、基地局は、各NWにおけるUEの識別子が同じUEのものであることを識別可能となる。その結果、基地局は、ページング衝突回避のためのパラメータ変更を実行可能となる。該識別子は、UE_IDであってもよいし、5G-S-TMSIであってもよい。このことにより、例えば、UEから基地局に対する該通知におけるシグナリング量を削減可能となる。他の例として、該識別子は、5G-TMSIであってもよい。このことにより、例えば、UEは基地局に対し、NWの識別子を同時に通知可能となり、その結果、基地局における該識別が迅速に実行可能となる。他の例として、該識別子は、5G-GUTIであってもよい。
 他の例として、基地局は、UEと各NWのAMFとの間のNASシグナリングを用いて、各NWによって割り当てられたUEの識別子を取得してもよい。例えば、基地局は、UEの各NWへの登録に係るNASシグナリングを用いて、UEの該NWにおける識別子を取得してもよい。基地局は、該NASシグナリングをデコード可能としてもよい。このことにより、例えば、UEと基地局との間のシグナリングを削減可能となる。
 基地局はAMFに対し、UEの識別子の変更を要求してもよい。該要求は、実施の形態1において開示した、基地局からAMFに対するUE識別子の変更の要求と同様であってもよい。AMFは該要求を用いて、UEの識別子を変更してもよい。AMFはUEに対して、UE識別子の変更を通知してもよい。該通知には、実施の形態1において開示したNASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新指示(CONFIGURATION UPDATE COMMAND)が用いられてもよい。
 UEはAMFに対し、自UEの識別子更新の完了を通知してもよい。該通知には、実施の形態1と同様、NASシグナリング、例えば、非特許文献27(TS24.501)に開示された設定更新完了(CONFIGURATION UPDATE COMPLETE)が用いられてもよい。
 AMFは基地局に対し、変更後の識別子を通知してもよい。該通知には、実施の形態1と同様、N2インタフェース上のシグナリングが用いられてもよい。基地局は、該通知を用いて、UEのページングタイミングを変更してもよいし、変更しなくてもよい。
 他の解決策を開示する。ページングに、NWに関する情報を含めてもよい。NWに関する情報は、たとえば、PLMNおよび/またはNPNを示す識別子であってもよい。ページング情報がどのNWに関する情報かを示す情報とするとよい。該NWに関する情報とページング情報とを対応付けてページング情報としてもよい。UEは、受信したページング情報が、どのNWに対応するかを認識可能となる。
 基地局は、どれか一つのNWのページングを送信するとよい。たとえば、基地局は、プライマリNWのページングを送信するとしてもよい。該ページングに前述のNWに関する情報を含める。このようにすることで、UEは、一つのNWのページングタイミングでページングを受信することで、複数のNWのページング情報を取得することが可能となる。
 基地局は、該一つのNWを特定するための情報を報知してもよい。一つのNWを特定するための情報は、たとえば、NWの識別子であってもよい。基地局は、該一つのNWを特定するための情報を、UEに対して個別に通知してもよい。たとえば、該通知にRRCシグナリングを用いてもよい。また、基地局は、該一つのNWのページングタイミングに関する情報を報知してもよい。あるいは、基地局は、該一つのNWのページングタイミングに関する情報を、UEに対して個別に通知してもよい。たとえば、該通知にRRCシグナリングを用いてもよい。このようにすることで、UEは、一つのNWを特定でき、該NWのページングタイミングを導出でき、該NWのページングタイミングでページング受信可能となる。
 このようにすることで、UEは一つのNWからのページングタイミングでページングを受信すればよく、UEのページング処理の複雑性を回避することができる。
 本変形例1により、複数NWが基地局を共有する通信システムにおいても、ページング衝突を回避可能となる。
 実施の形態1の変形例2.
 実施の形態1では、複数のNW間でのページング衝突の回避の方法を開示した。本変形例2では、ランダムアクセスの競合回避の方法を開示する。
 UEは、複数のNWの基地局間のランダムアクセスの衝突を検出する。実施の形態1と同様、UEは、複数のNWの基地局間のフレームタイミングに関する情報を用いて、衝突を検出してもよいし、該複数の基地局から受信するシステム情報、例えば、ランダムアクセスに関するシステム情報を用いて衝突を検出してもよい。前述の両方を組み合わせてもよい。
 UEは1つのNWの基地局に対して、ランダムアクセスの衝突に関する情報を通知する。該基地局は、例えば、実施の形態1において開示したプライマリNWの基地局であってもよい。該基地局は、UEからの該通知を用いて、UEに対するランダムアクセスのタイミングを変更してもよい。ランダムアクセスのタイミングは、例えば、UEからのPRACH送信タイミングであってもよいし、UEが受信するRARのタイミングであってもよい。該基地局は、変更した該タイミングをUEに報知してもよい。
 該基地局は、ランダムアクセスのプリアンブルを変更してもよい。該基地局はUEに対し、変更したプリアンブルに関する情報を通知してもよい。UEは、変更後のプリアンブルを用いて、該基地局に対してPRACHを送信してもよい。このことにより、例えば、他のNWの基地局は、UEから該基地局に対するPRACHを自基地局向けのPRACHと誤認するのを防止可能となる。また、該基地局も、他のNWの基地局に対するPRACHを自局向けのPRACHと誤認するのを防止可能となる。
 UEが該基地局に通知する、他のNWの基地局との間のランダムアクセス処理に関する情報として、以下の(1)~(8)を開示する。
 (1)他のNWの基地局の識別子に関する情報。
 (2)他のNWの基地局へのPRACH送信タイミングに関する情報。
 (3)他のNWの基地局のヌメロロジに関する情報。
 (4)他のNWの基地局のフレームタイミングに関する情報。
 (5)他のNWの基地局からのRAR受信タイミングに関する情報。
 (6)他のNWの基地局から受信するビームに関する情報。
 (7)他のNWの基地局へのPRACHのプリアンブルに関する情報。
 (8)前述の(1)~(7)の組合せ。
 前述の(1)の情報は、例えば、データの送受信を行っていない基地局(以下、非アクティブ基地局と称する場合がある。)の基地局識別子であってもよいし、セル識別子であってもよい。このことにより、例えば、データの送受信を行う基地局(以下、アクティブ基地局と称する場合がある。)は、UEが同期信号、システム情報、および/あるいはページングを受信すべき非アクティブ基地局を把握可能となる。その結果、アクティブ基地局によるスケジューリングに関する複雑性を回避可能となる。
 前述の(2)の情報は、UEが送信するPRACHの開始タイミングに関する情報であってもよい。該情報は、SFN、サブフレーム番号、スロット番号、またはシンボル番号であってもよいし、前述の組合せであってもよい。該情報は、UEが送信するPRACHの長さに関する情報を含んでもよいし、該PRACHの終了タイミングに関する情報を含んでもよい。このことにより、例えば、UEは、自UEが送信するPRACHに関する情報を、少ないシグナリング量で通知可能となる。
 前述の(2)の情報は、他の例として、UEが送信するPRACHの時刻に関する情報を含んでもよい。時刻に関する該情報は、例えば、PRACHの始点における時刻を含んでもよいし、PRACHの終点に関する時刻を含んでもよいし、PRACHの長さに関する情報を含んでもよいし、前述のうち複数の情報を含んでもよい。このことにより、例えば、該基地局によるランダムアクセス衝突回避における処理量を削減可能となる。
 前述の(3)の情報は、例えば、UEが他のNWの基地局との間のランダムアクセス処理において用いるサブキャリア間隔、スロット長、またはシンボル長であってもよいし、非特許文献13(TS38.211)の4.2節に開示されたパラメータμであってもよい。このことにより、例えば、該基地局による該回避処理における信頼性を向上可能となる。
 前述の(4)の情報は、実施の形態1において開示した、ページング衝突回避に用いられる前述の(4)の情報と同様としてもよい。該情報は、例えば、該基地局と他のNWの基地局との間のフレームタイミングの差分に関する情報であってもよい。このことにより、例えば、該基地局による回避処理における処理量を削減可能となる。他の例として、他のNWの基地局における所定の時点、例えば、所定のSFNの境界における時刻であってもよい。このことにより、例えば、UEの該通知に要する処理量を削減可能となる。
 前述の(5)の情報は、例えば、RAR受信タイミングの始点に関する情報を含んでもよいし、終点に関する情報を含んでもよいし、RAR受信タイミングの長さに関する情報を含んでもよい。該情報は、例えば、前述の(2)と同様の形式で合ってもよい。他の例として、前述の(5)の情報は、非特許文献24に開示されたra-ResponseWindowであってもよい。このことにより、例えば、UEにおいて、該基地局との間の送受信と他のNWの基地局からのRARのタイミングとの衝突を防止可能となる。
 前述の(6)の情報は、UEが他のNWの基地局からSSブロックを受信するのに用いているビームに関する情報であってもよい。該情報は、例えば、SSバースト内における該SSブロックの識別子であってもよい。該基地局は、該情報を用いて、UEが受信するSSブロックに対応するランダムアクセスのタイミングにおいてのみ、該UEとの送受信を行わないとしてもよい。このことにより、例えば、UEと該基地局との間における通信レートを向上可能となる。
 前述の(7)の情報は、例えば、UEが他のNWの基地局に対して送信するPRACHのプリアンブルに関する情報を含んでもよい。該基地局は、該情報を用いて、UEに対して、自基地局向けのPRACH送信用に、該プリアンブルとは異なるプリアンブルを割り当ててもよい。このことにより、例えば、該基地局は、UEから他のNWの基地局に向けて送信したPRACHを自基地局向けPRACHと誤認することを防止可能となる。
 他の解決策を開示する。UEは、1つの基地局にPRACHを送信するとしてもよい。UEは、他の基地局にはPRACHを送信しないとしてもよい。UEは、PRACH送信タイミングの先頭が最も早い基地局にPRACHを送信するとしてもよい。このことにより、例えば、UEは迅速に接続を確立可能となる。他の例として、UEは、優先度が高い通信を行う基地局に対してPRACHを送信するとしてもよい。UEは、実施の形態1において開示した、ページングに含まれる優先度の情報を用いて、該基地局を判断してもよいし、自UEにおいて発生した上り通信の優先度の情報を用いて、該基地局を判断してもよい。このことにより、例えば、UEは優先度が高い通信を迅速に立ち上げ可能となり、その結果、該通信のQoSを確保可能となる。
 他の解決策を開示する。UEは、複数の基地局に対してPRACHを送信するとしてもよい。UEの該動作は、例えば、UEが複数の送受信器を有している場合に行われてもよい。このことにより、例えば、UEは、複数の基地局との間での接続を迅速に確立可能となる。
 UEは、各基地局に対する電力を、該基地局との間のパスロスを用いて配分してもよいし、各基地局との通信の優先度を用いて配分してもよいし、前述の両方を用いて配分してもよい。このことにより、例えば、通信システムにおける効率を向上可能となる。
 本変形例2により、複数のNW間におけるランダムアクセスのタイミングの衝突を回避可能となる。
 実施の形態2.
 複数SIM搭載UEは、同期信号、システム情報、および/あるいはページングの受信動作を行ってもよい。UEは該受信動作を、データの送受信を行っていない基地局(以下、非アクティブ基地局と称する場合がある。)に対して行ってもよい。該UEは、データの送受信を行う基地局(以下、アクティブ基地局と称する場合がある。)との接続中において、自UEの送受信器を切替えて該受信動作を行ってもよい。非アクティブ基地局は、例えば、RRC_IDLEステートあるいはRRC_INACTIVEステートとなっているRRCに対向する基地局であってもよい。アクティブ基地局は、例えば、RRC_CONNECTEDステートとなっているRRCに対向する基地局であってもよい。該UEは、送受信器を1つのみ有する受信器であってもよい。
 UEは、アクティブ基地局に対し、非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信するタイミングに関する情報を通知してもよい。UEは、非アクティブ基地局からのページング衝突回避を、アクティブ基地局に要求してもよい。該要求に、前述の情報が含まれてもよい。UEは、該タイミングにおいて、受信先を非アクティブ基地局に切替えてもよい。
 該受信タイミングは、該UEが送受信器の切替えに要する時間を含んでもよい。このことにより、例えば、非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信する動作の信頼性を向上可能となる。
 UEがアクティブ基地局に通知する前述の受信タイミングに関する情報、すなわち、UEが非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信するタイミングに関する情報として、以下の(1)~(9)を開示する。
 (1)非アクティブ基地局の識別子に関する情報。
 (2)非アクティブ基地局の同期信号送信タイミングに関する情報。
 (3)非アクティブ基地局のヌメロロジに関する情報。
 (4)非アクティブ基地局のフレームタイミングに関する情報。
 (5)非アクティブ基地局の同期信号送信タイミング導出に用いられる情報。
 (6)非アクティブ基地局から受信するビームに関する情報。
 (7)非アクティブ基地局のシステム情報送信タイミングに関する情報。
 (8)非アクティブ基地局からのページング受信タイミングに関する情報。
 (9)前述の(1)~(8)の組合せ。
 前述の(1)の情報は、例えば、非アクティブ基地局の基地局識別子であってもよいし、セル識別子であってもよい。このことにより、例えば、アクティブ基地局は、UEが同期信号、システム情報、および/あるいはページングを受信すべき非アクティブ基地局を把握可能となる。その結果、アクティブ基地局によるスケジューリングに関する複雑性を回避可能となる。
 前述の(2)の情報は、例えば、非アクティブ基地局がSSバーストを送信するフレームタイミング、例えば、SFNであってもよい。該SFNは、例えば、SSバーストの先頭となるSFNであってもよいし、SSバーストの末尾となるSFNであってもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。また、アクティブ基地局と非アクティブ基地局との間にタイミングオフセットがある場合においても、非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信可能となる。
 前述の(2)の情報は、他の例として、非アクティブ基地局がSSバーストを送信する時刻に関する情報を含んでもよい。時刻に関する該情報は、例えば、SSバーストの始点における時刻を含んでもよいし、SSバーストの終点に関する時刻を含んでもよいし、SSバーストの継続時間に関する情報を含んでもよいし、前述のうち複数の情報が含まれてもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。
 前述の(3)の情報は、例えば、UEが非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信する際に用いる、サブキャリア間隔、スロット長、またはシンボル長であってもよいし、非特許文献13(TS38.211)の4.2節に開示されたパラメータμであってもよい。このことにより、例えば、アクティブ基地局によるスケジューリングにおいて、非アクティブ基地局からの同期信号等を回避する動作の信頼性を向上可能となる。
 前述の(4)の情報は、実施の形態1において開示した、ページング衝突回避に用いられる前述の(4)の情報と同様としてもよい。該情報は、例えば、アクティブ基地局と非アクティブ基地局との間のフレームタイミングの差分に関する情報であってもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。他の例として、前述の(4)の情報は、非アクティブ基地局における所定の時点、例えば、所定のSFNの境界における時刻であってもよい。このことにより、例えば、UEの該通知に要する処理量を削減可能となる。
 前述の(5)の情報は、SSバーストの周期に関する情報を含んでもよいし、SSバーストがフレームの前半、後半、いずれに含まれるかを示す情報を含んでもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。
 前述の(6)の情報は、UEが非アクティブ基地局からSSブロックを受信するのに用いているビームに関する情報であってもよい。該情報は、例えば、SSバースト内における該SSブロックの識別子であってもよい。アクティブ基地局は、該情報を用いて、UEが受信するSSブロックのタイミングにおいてのみ、該UEとの送受信を行わないとしてもよい。このことにより、例えば、UEとアクティブ基地局との間における通信レートを向上可能となる。
 前述の(6)の情報は、他の例として、UEが非アクティブ基地局からSSブロックを受信するのに用いているビームの候補に関する情報であってもよい。ビームの候補に関する該情報は、例えば、UEが受信するSSブロックの周辺のビームを用いて送信されるSSブロックの識別子であってもよい。このことにより、例えば、UEとアクティブ基地局との間における通信レートを向上可能となる。それとともに、UEが在圏する非アクティブ基地局のビームが変わった場合においても、UEは、非アクティブ基地局からのSSブロックを受信可能となる。
 前述の(6)の情報は、UEが非アクティブ基地局からシステム情報を受信するのに用いているビームあるいはその候補に関する情報であってもよいし、ページング受信に用いているビームあるいはその候補に関する情報であってもよい。
 前述の(7)の情報は、例えば、非アクティブ基地局が送信するシステム情報のスケジューリングに関する情報であってもよい。スケジューリングに関する該情報は、例えば、非特許文献24(TS38.331)に開示されたpdcch-ConfigSIB1であってもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。
 前述の(8)の情報は、非アクティブ基地局のページングタイミングに関する情報であってもよい。該情報は、実施の形態1において開示した、ページング衝突回避に用いられる前述の(2)の情報と同様であってもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。
 前述の(8)の情報は、他の例として、非アクティブ基地局のページングタイミング導出に用いられる情報であってもよい。該情報は、実施の形態1において開示した、ページング衝突回避に用いられる前述の(5)の情報と同様であってもよい。このことにより、例えば、UEからアクティブ基地局へのシグナリング量を削減可能としつつ、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。
 UEは該通知を、RRCシグナリングを用いてアクティブ基地局に送信してもよい。このことにより、例えば、UEはアクティブ基地局に対し、多くの情報を通知可能となる。
 他の例として、UEは該通知を、MACシグナリングを用いてアクティブ基地局に送信してもよい。このことにより、例えば、UEは該通知を、HARQ再送制御によって信頼性を確保しつつ、迅速に実行可能となる。
 他の例として、UEは該通知を、L1/L2シグナリングを用いてアクティブ基地局に送信してもよい。このことにより、例えば、UEは該通知をさらに迅速に実行可能となる。
 他の例として、UEは該通知を、NASシグナリングを用いて、アクティブ基地局と接続するAMFに送信してもよい。このことにより、例えば、UEのハンドオーバに伴って、該通知に含まれる情報を基地局間で転送することが不要となる。その結果、基地局間シグナリング量を削減可能となる。
 他の例として、前述の方法が組み合わされてもよい。例えば、UEは、前述の(1)~(5)、(7)、および/あるいは(8)の情報を、RRCシグナリングを用いてアクティブ基地局に通知し、前述の(6)の情報をL1/L2シグナリングを用いて該アクティブ基地局に通知してもよい。このことにより、例えば、UEからアクティブ基地局に対し、多くの情報を迅速に通知可能となる。
 アクティブ基地局は、UEからの該通知を用いて、UEに対するスケジューリングを変更してもよい。該変更は、例えば、UEが非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信するタイミングに、該UEに対する送受信を割り当てないものであってもよい。アクティブ基地局はUEに対し、変更後のスケジューリングに関する情報を通知してもよい。該情報は、例えば、UEがPDCCH受信動作を行うべきタイミングに関する情報、例えば、UEに割り当てられた制御リソースセット(Control Resource SET;CORESET)であってもよいし、設定済みグラント(Configured grant)に関する情報であってもよい。このことにより、例えば、アクティブ基地局とUEとの間の通信の信頼性を向上可能となる。
 アクティブ基地局は、UEからの該通知を用いて、UEに対するスケジューリングを変更してもよい。他の変更例として、たとえば、アクティブ基地局とUEとの間で送受信を行わない期間を設定してもよい。アクティブ基地局はUEに対して該期間を通知してもよい。UEは、該期間、非アクティブ基地局と送受信を行ってもよい。UEにおいて、アクティブ基地局の送受信と、非アクティブ基地局の送受信を時間多重することが可能となる。該期間を比較的長期間に設定することで、UEが頻繁にアクティブ基地局との通信と非アクティブ基地局との通信を交互に実行しなくて済む。無線リソースの使用効率を向上させることが可能となる。
 UEは、アクティブ基地局から受信した該情報を用いて、自UEの送受信器を非アクティブ基地局向けに切替えてもよいし、アクティブ基地局向けに切替えてもよい。例えば、UEは、非アクティブ基地局からのページング受信タイミングにおいて、自UEの送受信器を非アクティブ基地局向けに切替えてもよい。このことにより、例えば、UEは、非アクティブ基地局からのページングを受信可能となる。
 他の解決策を開示する。UEは、非アクティブ基地局に対し、自UEとアクティブ基地局との間の送受信に関する情報を通知してもよい。前述において、非アクティブ基地局に対するUEのRRCステートが、RRC_CONNECTEDに遷移してもよい。非アクティブ基地局は、該通知を用いて、同期信号および/あるいはページングタイミングを変更してもよい。例えば、非アクティブ基地局は、アクティブ基地局がUEに対してスケジューリングしたタイミングを回避して、同期信号および/あるいはページングタイミングを割り当ててもよい。非アクティブ基地局における該変更は、例えば、実施の形態1において開示した方法と同様であってもよい。このことにより、例えば、アクティブ基地局とUEとの間の通信レートを確保しつつ、非アクティブ基地局の同期信号、システム情報、および/あるいはページングを受信可能となる。
 UEが非アクティブ基地局に対して通知する、UEとアクティブ基地局との間の送受信に関する情報として、以下の(1)~(10)を開示する。
 (1)アクティブ基地局の識別子に関する情報。
 (2)アクティブ基地局の同期信号送信タイミングに関する情報。
 (3)アクティブ基地局のヌメロロジに関する情報。
 (4)アクティブ基地局のフレームタイミングに関する情報。
 (5)アクティブ基地局の同期信号送信タイミング導出に用いられる情報。
 (6)アクティブ基地局から受信するビームに関する情報。
 (7)アクティブ基地局のシステム情報送信タイミングに関する情報。
 (8)アクティブ基地局からのページング受信タイミングに関する情報。
 (9)アクティブ基地局におけるスケジューリングに関する情報。
 (10)前述の(1)~(9)の組合せ。
 前述の(1)~(8)の情報は、UEがアクティブ基地局に通知する前述の受信タイミングに関する情報、すなわち、UEが非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信するタイミングに関する情報として開示した前述の(1)~(8)の情報と同様であってもよい。例えば、前述の(8)の情報により、UEはアクティブ基地局からシステム情報変更および/あるいは緊急情報を受信可能となる。それとともに、非アクティブ基地局は、同期信号、システム情報、および/あるいはページングのタイミングを変更可能となる。
 前述の(9)の情報は、例えば、UEがアクティブ基地局のPDCCH受信動作を行うべきタイミングに関する情報、例えば、UEに割り当てられた制御リソースセット(Control Resource SET;CORESET)であってもよいし、アクティブ基地局からの設定済みグラント(Configured grant)に関する情報であってもよい。このことにより、例えば、非アクティブ基地局は、アクティブ基地局とUEとの間の通信に影響を与えずに、同期信号、システム情報、および/あるいはページングのタイミングを変更可能となる。
 UEは、非アクティブ基地局からの同期信号を受信する際に、メジャメントギャップを用いてもよい。たとえば、UEは、既に設定されたメジャメントギャップを用いて、非アクティブ基地局からの同期信号を受信してもよい。また、たとえば、アクティブ基地局が、UEに対して、非アクティブ基地局との通信を許容するためのメジャメントギャップを設定してもよい。従来のメジャメントギャップを用いてもよい。新たな処理を不要とすることで、これら処理の複雑性を回避することができる。あるいは、新たなギャップを設け、その設定方法として従来のメジャメントギャップの設定方法を用いてもよい。新たなギャップを設けることで、ギャップ期間を非アクティブ基地局との通信のために最適に設定可能となる。このことにより、例えば、UEは、アクティブ基地局との間の通信レートを維持可能としつつ、非アクティブ基地局との間の下り信号の同期を確立可能となる。
 他の例として、UEは、非アクティブ基地局から同期信号を受信する際に、メジャメントギャップを用いなくてもよい。例えば、アクティブ基地局と非アクティブ基地局がUEに対して同じ周波数帯を用いている場合、メジャメントギャップを用いなくてもよい。このことにより、例えば、通信システムにおける効率を向上可能となる。
 本実施の形態2において開示した方法が、アクティブ基地局からのページング受信に用いられてもよい。例えば、UEは、該ページング受信タイミングにおいて、自UEの送受信器を、アクティブ基地局との間のデータ送受信から、他のアクティブ基地局からのページング受信に切り替えてもよい。このことにより、例えば、UEは、他のアクティブ基地局からシステム情報変更および/あるいは緊急情報を受信可能となる。
 他の解決策を開示する。UEは、アクティブ基地局に対し、非アクティブ基地局からの同期信号、システム情報、および/あるいはページングの受信タイミングに関する情報を通知しないとしてもよい。UEは、該受信タイミングにおいて、自UEの送受信器を非アクティブ基地局向けに切替えてもよい。このことにより、例えば、UEが非アクティブ基地局から信号を受信する処理の複雑性を回避可能となる。
 前述において、アクティブ基地局とUEとの間の送受信の再送が行われてもよい。該再送は、例えば、UEが自UEの送受信器を非アクティブ基地局向けに切替えた期間に発生した送受信についての再送であってもよい。このことにより、例えば、アクティブ基地局とUEとの間の送受信の信頼性を向上可能となる。
 本実施の形態2において開示した方法が、複数の送受信器を有するUEに対して適用されてもよい。該UEは、例えば、複数の送受信機を用いて、1つのNWと接続していてもよい。該UEは、1つのNWにおける複数の基地局と接続していてもよい。該UEは、該複数の基地局との間でデュアルコネクティビティを形成してもよい。該UEは、他のNWにおける非アクティブ基地局から同期信号、システム情報、および/あるいはページングが送信されるタイミングにおいて、自UEの送受信器を非アクティブ基地局向けに切替えてもよい。
 該UEが前述のデュアルコネクティビティを形成する場合において、セカンダリ基地局向けの送受信器が非アクティブ基地局向けに切替えられてもよい。このことにより、例えば、UEとマスタ基地局との間の通信を維持可能となり、その結果、通信システムの堅牢性を維持可能となる。
 他の例として、マスタ基地局向けの送受信器が非アクティブ基地局向けに切替えられてもよい。このことにより、例えば、UEとセカンダリ基地局との間で高速な通信が行われている場合において、UEとセカンダリ基地局との間の通信を維持可能となる。その結果、通信システムにおける伝送速度を維持可能となる。
 マスタ基地局向けの送受信器が非アクティブ基地局向けに切替えられた場合において、セカンダリ基地局がマスタ基地局になってもよい。このことにより、例えば、UEにおけるハンドオーバを少ないシグナリング量で実行可能となる。
 本実施の形態2によって、UEは、非アクティブ基地局からの同期信号、システム信号、および/あるいはページングを受信可能となる。その結果、UEは、該基地局との間の通信を迅速に再開可能となる。
 実施の形態2の変形例1.
 実施の形態2において、UEの送受信器の、アクティブ基地局向けから非アクティブ基地局向けへの切替えが、UEと非アクティブ基地局との間のランダムアクセス処理に適用されてもよい。
 UEは、アクティブ基地局に対し、非アクティブ基地局との間のランダムアクセス処理に関する情報を通知してもよい。該情報は、UEが非アクティブ基地局との間で行うランダムアクセス処理のタイミングに関する情報を含んでもよい。アクティブ基地局は、該タイミングにおいて、UEと自基地局との間の送受信タイミングを割り当てないとしてもよい。
 UEがアクティブ基地局に通知する、非アクティブ基地局との間のランダムアクセス処理に関する情報として、以下の(1)~(8)を開示する。
 (1)非アクティブ基地局の識別子に関する情報。
 (2)非アクティブ基地局へのPRACH送信タイミングに関する情報。
 (3)非アクティブ基地局のヌメロロジに関する情報。
 (4)非アクティブ基地局のフレームタイミングに関する情報。
 (5)非アクティブ基地局からのRAR受信タイミングに関する情報。
 (6)非アクティブ基地局から受信するビームに関する情報。
 (7)非アクティブ基地局へのPRACHのプリアンブルに関する情報。
 (8)前述の(1)~(7)の組合せ。
 前述の(1)の情報は、実施の形態2において開示した、非アクティブ基地局から送信される同期信号、システム情報、および/あるいはページングの受信タイミング(以下、非アクティブ基地局の同期等タイミング、と称する場合がある。)に関する情報の(1)と同様であってもよい。
 前述の(2)の情報は、UEが送信するPRACHの開始タイミングに関する情報であってもよい。該情報は、SFN、サブフレーム番号、スロット番号、またはシンボル番号であってもよいし、前述の組合せであってもよい。該情報は、UEが送信するPRACHの長さに関する情報を含んでもよいし、該PRACHの終了タイミングに関する情報を含んでもよい。このことにより、例えば、UEは、自UEが送信するPRACHに関する情報を、少ないシグナリング量で通知可能となる。
 前述の(2)の情報は、他の例として、UEが送信するPRACHの時刻に関する情報を含んでもよい。時刻に関する該情報は、例えば、PRACHの始点における時刻を含んでもよいし、PRACHの終点に関する時刻を含んでもよいし、PRACHの長さに関する情報を含んでもよいし、前述のうち複数の情報を含んでもよい。このことにより、例えば、アクティブ基地局におけるスケジューリングの処理量を削減可能となる。
 前述の(3)、(4)の情報は、非アクティブ基地局の同期等タイミング情報のそれぞれ(3)、(4)と同様であってもよい。
 前述の(5)の情報は、例えば、RAR受信タイミングの始点に関する情報を含んでもよいし、終点に関する情報を含んでもよいし、RAR受信タイミングの長さに関する情報を含んでもよい。該情報は、例えば、前述の(2)と同様の形式で合ってもよい。他の例として、前述の(5)の情報は、非特許文献24に開示されたra-ResponseWindowであってもよい。このことにより、例えば、UEにおいて、アクティブ基地局との間の送受信と非アクティブ基地局からのRARのタイミングとの衝突を防止可能となる。
 前述の(6)の情報は、非アクティブ基地局の同期等タイミング情報の(6)と同様であってもよい。
 前述の(7)の情報は、例えば、UEが非アクティブ基地局に対して送信するPRACHのプリアンブルに関する情報を含んでもよい。アクティブ基地局は、該情報を用いて、UEに対して、自基地局向けのPRACH送信用に、該プリアンブルとは異なるプリアンブルを割り当ててもよい。このことにより、例えば、アクティブ基地局は、UEから非アクティブ基地局に向けて送信したPRACHを自基地局向けPRACHと誤認することを防止可能となる。
 実施の形態2と同様、UEは、該通知を、RRCシグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、L1/L2シグナリングを用いて行ってもよい。他の例として、UEは、該通知を、NASシグナリングを用いて、アクティブ基地局が接続するAMFに対して行ってもよい。
 アクティブ基地局は、該通知を用いて、UEから非アクティブ基地局へのPRACH送信タイミングおよび/あるいは非アクティブ基地局からUEへのRAR送信タイミングにおいて、UEへの上りおよび/あるいは下りスケジューリングを行わないとしてもよい。また、該タイミングにおいて、該UEに対する送受信を割り当てないものとしてもよい。
 図27および図28は、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第1例を示すシーケンス図である。図27と図28は境界線BL2728の位置でつながっている。図27および図28において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図27および図28において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図27および図28に示す例において、gNB#1はアクティブ基地局であり、gNB#2は非アクティブ基地局である。図27および図28において、図16および図17と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図27に示すステップST1601~ST1603は、図16と同様である。
 図27に示すステップST2304において、UEとgNB#1の間でデータの送受信が行われている。
 図27に示すステップST2306において、gNB#1はUEに対してシステム情報を報知する。ステップST2307において、gNB#2はUEに対してシステム情報を報知する。ステップST2307の報知は、gNB#2に対するPRACH送信に関するパラメータ、例えば、PRACH送信タイミングに関する情報を含む。ステップST2307の報知は、gNB#2からのRAR送信に関する情報を含んでもよい。
 図27に示すステップST2308において、UEは、gNB#2におけるRACHタイミングを取得する。
 図27に示すステップST2310において、UEはgNB#1に対して、gNB#2との間のRACHに関する情報を通知する。ステップST2312において、gNB#1は、UEとgNB#2との間のPRACH、RARの送信タイミングを回避して、UEに対するスケジューリングを行う。
 図27に示すステップST2314において、UEとgNB#1の間でデータの送受信が行われる。ステップST2314におけるデータ送受信は、UEとgNB#2との間のPRACH、RARの送信タイミングを回避して行われる。
 図28に示すステップST2320において、UEからgNB#2への上りデータが発生したとする。
 図28に示すステップST2322において、UEはgNB#2に対してPRACHを送信する。gNB#1は、ステップST2322のタイミングにおいてUEに対してスケジューリングを行わない。
 図28に示すステップST2324において、gNB#2はUEに対してRARを送信する。gNB#1は、ステップST2324のタイミングにおいてUEに対してスケジューリングを行わない。
 図28に示すステップST2326において、UEはgNB#2に対してRRCの立上げを要求する。該要求は、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立上げ要求(RRCSetupRequest)を用いて行われてもよい。ステップST2328において、gNB#2はUEに対して、RRC立ち上げを指示する。該指示には、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立ち上げ(RRCSetup)が用いられてもよい。図28に示すステップST2330において、UEはgNB#2に対して、RRC立ち上げの完了を通知する。該通知には、RRCシグナリング、例えば、非特許文献24(TS38.331)のRRC立ち上げ完了(RRCSetupComplete)が用いられてもよい。ステップST2330によって、UEとgNB#2との間のRRC接続が確立する。
 図28に示すステップST2332において、UEとgNB#2の間でデータの送受信が行われる。図28に示すステップST2334において、UEとgNB#1の間でデータの送受信が行われる。
 他の例として、UEは、アクティブ基地局に対する該通知を、非アクティブ基地局への上りデータ発生後に行ってもよい。このことにより、例えば、アクティブ基地局によって行われる、PRACH、RARの送信タイミングを回避したスケジューリングを、該上りデータ発生後に実行可能となる。その結果、UEとアクティブ基地局との間の通信効率を向上可能となる。
 図29および図30は、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第2例を示すシーケンス図である。図29と図30は境界線BL2930の位置でつながっている。図29および図30において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図29および図30において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図29および図30に示す例において、gNB#1はアクティブ基地局であり、gNB#2は非アクティブ基地局である。図29および図30において、図16~図17、図27~図28と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図29に示すステップST1601~ST1603は、図16と同様である。図29に示すステップST2304~ST2308、ST2320は、図27と同様である。
 図29に示すステップST2410において、UEはgNB#1に対し、gNB#2との間のRACHに関する情報を通知する。UEは、ステップST2410を、ステップST2320の後に行うとしてもよい。ステップST2412において、gNB#1は、UEとgNB#2との間のPRACH、RARの送信タイミングを回避して、UEに対するスケジューリングを行う。
 図30に示すステップST2414において、UEとgNB#1の間でデータの送受信が行われる。ステップST2414におけるデータ送受信は、UEとgNB#2との間のPRACH、RARの送信タイミングを回避して行われる。
 図30に示すステップST2322~ST2334は、図28と同様である。
 他の例として、アクティブ基地局は、UEとアクティブ基地局との間のデータ送受信を、UEと非アクティブ基地局とのランダムアクセス処理の間において停止してもよい。UEはアクティブ基地局に対して、該ランダムアクセス処理の開始を通知してもよい。アクティブ基地局は、該通知を用いて、UEとの間のデータ送受信を停止してもよい。UEはアクティブ基地局に対して、該ランダムアクセス処理の終了を通知してもよい。アクティブ基地局は、該通知を用いて、UEとの間のデータ送受信を再開してもよい。このことにより、例えば、UEと非アクティブ基地局との間のランダムアクセス処理を迅速に実行可能となる。
 UEは該通知を、L1/L2シグナリングを用いてアクティブ基地局に送信してもよい。このことにより、例えば、UEは該通知を迅速に通知可能となる。他の例として、UEは該通知を、MACシグナリングを用いて通知してもよい。このことにより、例えば、HARQ再送制御により該通知の信頼性を確保可能となる。他の例として、UEは該通知を、RRCシグナリングを用いて通知してもよい。このことにより、例えば、UEはアクティブ基地局に対して多くの情報を通知可能となる。
 図31および図32は、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第3例を示すシーケンス図である。図31と図32は境界線BL3132の位置でつながっている。図31および図32において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図31および図32において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図31および図32に示す例において、gNB#1はアクティブ基地局であり、gNB#2は非アクティブ基地局である。図31および図32において、図16~図17、図27~図28と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図31に示すステップST1601~ST1603は、図16と同様である。図31に示すステップST2304~ST2320は、図27および図28と同様である。
 図32に示すステップST2520において、UEは、gNB#2向けデータ発生を契機として、gNB#1に対し、gNB#2との間のランダムアクセス処理を開始することを通知する。UEは該通知を、L1/L2シグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、RRCシグナリングを用いて行ってもよい。ステップST2521において、gNB#1は、UEとの間の送受信を停止する。
 図32に示すステップST2322~ST2332は、図28と同様である。
 図32に示すステップST2532において、UEはgNB#1に対し、gNB#2との間のランダムアクセス処理を完了したことを通知する。UEは該通知を、L1/L2シグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、RRCシグナリングを用いて行ってもよい。ステップST2533において、gNB#1は、UEとの間の送受信を再開する。
 図32に示すステップST2334は、図28と同様である。
 他の例として、UEはアクティブ基地局に対し、該基地局との間のRRC接続の休止を要求してもよいし、該RRC接続の解放を要求してもよい。UEは該要求を、RRCシグナリングを用いて行ってもよい。該RRCシグナリングは、新たに設けられたシグナリング、例えば、RRC休止要求(RRCSuspendRequest)であってもよいし、RRC解放要求(RRCReleaseRequest)であってもよい。アクティブ基地局は、UEとアクティブ基地局との間の接続を休止してもよいし、解放してもよい。UEは、アクティブ基地局との間の接続休止あるいは接続解放の後に、非アクティブ基地局との間のランダムアクセス処理を開始してもよい。このことにより、例えば、通信システムの複雑性を回避可能となる。
 図33および図34は、複数SIM搭載UEが非アクティブ基地局との間でランダムアクセス処理を行う動作の第4例を示すシーケンス図である。図33と図34は境界線BL3334の位置でつながっている。図33および図34において、UEは2つのNW(NW#1、NW#2)に接続しており、NW#1配下のgNB#1、および、NW#2配下のgNB#2に接続している。図33および図34において、AMF#1、AMF#2は、NW#1、NW#2の配下にそれぞれ存在する。図33および図34に示す例において、gNB#1はアクティブ基地局であり、gNB#2は非アクティブ基地局である。図33および図34は、UEからgNB#2への上りデータ発生に伴い、UEとgNB#1との間のRRC接続が休止される例について示している。図33および図34において、図16~図17、図27~図28と同様の処理には同じステップ番号を付し、共通する説明を省略する。
 図33に示すステップST1601~ST1603は、図16と同様である。図33に示すステップST2304~ST2320は、図27および図28と同様である。
 図34に示すステップST2620において、UEはgNB#1に対して、RRC接続の休止を要求する。UEは該要求を、RRCシグナリングを用いて行ってもよい。該RRCシグナリングは、新たに設けられたシグナリング、例えば、RRC休止要求(RRCSuspendRequest)であってもよい。
 図34に示すステップST2621において、gNB#1はUEに対して、RRC接続の休止を指示する。gNB#1からUEへの該指示には、RRCシグナリング、例えば、非特許文献24(TS38.331)に開示されたRRC休止(RRCSuspend)が用いられてもよい。UEは、ステップST2621の休止指示に基づいて、gNB#1との間のRRC接続を休止してもよい。ステップST2622において、UEはgNB#1に対し、RRC接続休止の完了を通知する。UEからgNB#1への該通知には、RRCシグナリング、例えば、非特許文献24(TS38.331)に開示されたRRC休止完了(RRCSuspendComplete)が用いられてもよい。
 UEは、gNB#1との間のRRC接続休止完了後に、gNB#2との間のランダムアクセス処理を開始する。図34に示すステップST2322~ST2332は、図28と同様である。
 図33および図34において、UEとgNB#1との間のRRC接続が休止される場合について示したが、該RRC接続が解放されてもよい。ステップST2620において、UEはgNB#1に対して、RRC接続の解放を要求してもよい。ステップST2621において、gNB#1はUEに対して、RRC接続解放を指示してもよい。ステップST2622において、UEはgNB#1に対し、RRC接続の解放を通知してもよい。このことにより、例えば、UEにおけるメモリ使用量を削減可能となる。
 他の例として、UEは、アクティブ基地局と接続しているAMFに対し、アクティブ基地局が接続するNWとの間の接続の解放を要求してもよいし、該接続の休止を要求してもよい。UEは該AMFに対し、NASシグナリングを用いて、解放あるいは休止を要求してもよい。AMFは、該要求を用いて、UEとの間の接続を解放あるいは休止してもよい。例えば、AMFはアクティブ基地局に対し、UEとの間のRRC接続の解放を指示してもよいし、該RRC接続の休止を指示してもよい。アクティブ基地局は、該指示を用いて、UEに対してRRC接続の解放あるいは休止を指示してもよい。UEは、該NWとの間の接続解放後において、非アクティブ基地局との間のランダムアクセス処理を開始してもよい。このことにより、例えば、前述と同様の効果が得られる。
 本変形例1によって、UEと非アクティブ基地局との間のランダムアクセス処理のための時間を確保可能となる。その結果、非アクティブ基地局との間の接続開始あるいは再開を可能とする。
 実施の形態3.
 実施の形態2では、アクティブ基地局によるスケジューリングと非アクティブ基地局の同期等タイミングとの間の衝突を回避する方法を開示した。本実施の形態3では、複数SIM搭載UEが複数のNWのアクティブ基地局と通信する場合におけるスケジューリングの衝突を回避する方法を開示する。
 UEと各NWの基地局との間で通信可能なタイミングを、時分割で割り当てる。
 該割り当てを、UEが行ってもよい。UEは各NWの基地局に対して、該割り当てに関する情報を通知してもよい。各NWの基地局は該割り当てを用いて、UEとの間の送受信を行うとしてもよい。
 UEは該通知を、RRCシグナリングを用いて行ってもよい。このことにより、例えば、多くの情報を通知可能となる。他の例として、UEは該通知を、MACシグナリングを用いて行ってもよい。このことにより、例えば、UEは該通知を迅速に実行可能となる。他の例として、UEは該通知を、L1/L2シグナリングを用いて行ってもよい。このことにより、例えば、UEは該通知をさらに迅速に実行可能となる。
 他の解決策を開示する。該割り当てを、基地局(以下、決定基地局と称する場合がある。)が決定してもよい。例えば、実施の形態1において開示したプライマリNWが該割り当てを決定してもよい。プライマリNWの基地局はUEに対し、該割り当てを通知してもよい。
 UEは決定基地局に対し、該割り当ての決定に必要な情報を通知してもよい。UEは、該通知に、RRCシグナリングを用いてもよいし、MACシグナリングを用いてもよいし、L1/L2シグナリングを用いてもよいし、前述のうち複数の組合せを用いてもよい。決定基地局は、該情報を用いて、該割り当てを決定してもよい。
 該割り当ての決定に必要な情報の例として、以下の(1)~(7)を開示する。
 (1)他のNWの基地局の識別子に関する情報。
 (2)他のNWの基地局のスケジューリングに関する情報。
 (3)他のNWの基地局のヌメロロジに関する情報。
 (4)各NWの基地局のフレームタイミングに関する情報。
 (5)他のNWの基地局からの同期信号、システム情報、および/あるいはページングを受信するタイミングに関する情報。
 (6)他のNWの基地局との間のランダムアクセス処理に関する情報。
 (7)前述の(1)~(6)の組合せ。
 前述の(1)の情報は、例えば、他のNWの基地局の基地局識別子であってもよいし、セル識別子であってもよい。このことにより、例えば、決定基地局は、他の基地局を把握可能となる。その結果、決定基地局による該割り当てに関する複雑性を回避可能となる。
 前述の(2)の情報は、例えば、他のNWの基地局がUEに割り当てた制御リソースセット(Control Resource SET;CORESET)であってもよいし、該基地局が動的に割り当てたスケジューリングに関する情報であってもよいし、設定済みスケジューリング(例えば、セミパーシステントスケジューリング、および/あるいは設定済みグラント)であってもよいし、PUCCHの割り当てに関する情報であってもよいし、SRSの割り当てに関する情報であってもよい。決定基地局は、前述の(2)の情報を用いて、該割り当てを決定してもよい。このことにより、例えば、決定基地局と他の基地局との間のスケジューリングの衝突を防止可能となる。
 前述の(3)の情報は、例えば、UEが他のNWの基地局との送受信に用いるサブキャリア間隔、スロット長、またはシンボル長であってもよいし、非特許文献13(TS38.211)の4.2節に開示されたパラメータμであってもよい。このことにより、例えば、アクティブ基地局によるスケジューリングにおいて、非アクティブ基地局からの同期信号等を回避する動作の信頼性を向上可能となる。
 前述の(4)の情報は、実施の形態1においてページング衝突回避に用いられる情報として開示した(4)の情報と同様としてもよい。該情報は、例えば、決定基地局と他の基地局との間のフレームタイミングの差分に関する情報であってもよい。他の例として、前述の(4)の情報は、各基地局における所定の時点、例えば、所定のSFNの境界における時刻であってもよい。このことにより、例えば、決定基地局と他の基地局との間にフレームオフセットが存在する場合においても、基地局間のスケジューリングの衝突を回避可能となる。
 前述の(5)の情報は、実施の形態2においてUEが非アクティブ基地局から同期信号、システム情報、および/あるいはページングを受信するタイミングに関する情報として開示した(1)~(9)の情報において、非アクティブ基地局を他のNWの基地局に読み替えた情報であってもよい。このことにより、例えば、1つの基地局との間のデータ送受信と、他の基地局からの同期信号、システム情報、および/あるいはページングの受信(例えば、システム情報更新に伴うページングの受信)との両方を実施可能となる。
 前述の(6)の情報は、実施の形態1の変形例2において他のNWの基地局との間のランダムアクセス処理に関する情報として開示した(1)~(8)の情報であってもよい。このことにより、例えば、1つの基地局との間のデータ送受信と、他の基地局との間のランダムアクセス処理(例えば、オンデマンドシステム情報要求のためのランダムアクセス処理)との両方を実施可能となる。
 決定基地局は該割り当ての通知を、RRCシグナリングを用いて行ってもよい。このことにより、例えば、決定基地局は多くの情報を通知可能となる。他の例として、決定基地局は該通知を、MACシグナリングを用いて行ってもよい。このことにより、例えば、決定基地局は該通知を迅速に実行可能となる。他の例として、決定基地局は該通知を、L1/L2シグナリングを用いて行ってもよい。このことにより、例えば、決定基地局は該通知をさらに迅速に実行可能となる。
 UEは決定基地局から受信した該割り当てを、他のNWの基地局に対して通知してもよい。UEは該通知を、RRCシグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、L1/L2シグナリングを用いて行ってもよい。他のNWの基地局は、該割り当てを用いて、UEとの間の送受信を行ってもよい。このことにより、例えば、異なるNWの基地局間においても、該UEに対するスケジューリングの衝突を防止可能となる。
 他のNWの基地局は、該割り当ての変更をUEに要求してもよい。UEは、該要求を決定基地局に通知してもよい。決定基地局は、該要求を用いて、該割り当てを変更してもよい。このことにより、例えば、通信システムにおける効率を向上可能となる。
 他の解決策を開示する。決定基地局は他のNWの基地局に対し、該割り当てを通知してもよい。決定基地局と他のNWの基地局との間にインタフェースが設けられてもよい。該インタフェースは、他の各NWのUPFを経由するものであってもよい。決定基地局は他のNWの基地局に対し、該インタフェースを用いて該割り当てを通知してもよい。
 他の解決策を開示する。デフォルトの割り当てパターンが設けられてもよい。デフォルトの該パターンは、例えば、UEが有するSIMに格納されていてもよい。UEは、デフォルトの該パターンを各NWの基地局に通知してもよい。各NWの基地局は、デフォルトの該割り当てを用いて、UEとの間の送受信を行ってもよい。このことにより、例えば、各基地局間におけるUEに対するスケジューリングの衝突回避に関する複雑性を回避可能となる。
 デフォルトの該割り当てパターンが複数設けられてもよい。例えば、該複数の割り当てパターンがSIM毎に設けられてもよい。該複数の割り当てパターンに優先度が設けられてもよい。例えば、各SIMに設定された割り当てパターンが互いに競合する場合において、いずれかの割り当てパターンが優先されてもよい。UEは各基地局に対し、優先度が高い割り当てパターンを通知してもよい。このことにより、例えば、各基地局間におけるUEに対するスケジューリングの衝突回避に関する複雑性を回避可能となる。
 他の例として、デフォルトの割り当てパターンが規格で設けられてもよい。このことにより、例えば、各基地局間におけるUEに対するスケジューリングの衝突回避を迅速に実行可能となる。
 本実施の形態3において開示した方法が、UEケーパビリティの競合の回避に用いられてもよい。例えば、UEが各NWとの間で有するUEケーパビリティの間に競合が発生する場合において、各ケーパビリティに優先度が設けられてもよい。該優先度は、例えば、静的に与えられてもよい。あるいは、該優先度は、動的に変化してもよく、例えば、プライマリNW向けのUEケーパビリティが優先される、としてもよい。このことにより、例えば、UEケーパビリティの競合によって発生する通信システムの誤動作を防止可能となる。
 前述の解決策が組み合わされてもよい。例えば、UEは、デフォルトの割り当てパターンを決定基地局および他のNWの基地局に通知してもよい。決定基地局は、該割り当てパターンを用いて該割り当てを変更してもよい。決定基地局はUEに対し、変更後の該割り当てに関する情報を通知してもよい。UEは他のNWの基地局に対し、変更後の該割り当てに関する情報を通知してもよい。決定基地局および他のNWの基地局は、変更後の該割り当てを用いて、UEとの間で送受信を行ってもよい。このことにより、例えば、各基地局におけるUEのスケジューリングの柔軟性を向上可能となる。
 本実施の形態3によって、複数SIM搭載UEが複数のNWのアクティブ基地局と通信する場合におけるスケジューリングの衝突の回避が可能となる。その結果、該UEと該複数の基地局との間の通信の信頼性を向上可能となる。
 実施の形態3の変形例1.
 複数SIM搭載UEが複数のNWのアクティブ基地局と通信する場合において、NW間プリエンプションが行われてもよい。NW間プリエンプションは、例えば、UEと1つのNWとの間で行われる送受信向けに割り当てられた時間リソースが、該UEと他のNWとの間で行われる優先度の高い送受信用に割り当て直されて行われる送受信であってもよい。
 UEと基地局との間に、NW間プリエンプションのためのシグナリングが設けられてもよい。
 NW間プリエンプションを要求する信号を設けてもよい。たとえば、上りのNW間プリエンプションにおいて、NW間プリエンプションのためのSRを設けてもよい。該SRを通信するためのPUCCHが設けられてもよい。該SR用のPUCCHと従来のSRのPUCCHとで、時間および/あるいは周波数軸および/あるいは符号上のリソースを異ならせることで、該SRと従来のSRとの分別が可能となる。
 UEから基地局に対する該信号の通知は、例えば、L1/L2シグナリングを用いてもよいし、MACシグナリングを用いてもよいし、RRCシグナリングを用いてもよい。L1/L2シグナリングの場合、たとえば、前述のPUCCHを設けて、該PUCCHで通知を行ってもよい。PUCCHのリソースは、基地局がUEに対して予め設定してもよい。L1/L2シグナリングを用いることで早期にNW間プリエンプションの要求を通知することが可能となる。
 例えば、上りのNW間プリエンプションにおいて、UEは、NW間プリエンプションのためのSRを、基地局に送信してもよい。該基地局は、該NW間プリエンプションに係る通信の相手であってもよい。該SRは、NW間プリエンプションであることを示す情報を含んでもよい。該情報は、例えば、NW間プリエンプションであることを示す識別子であってもよい。該情報は、例えば、該NW間プリエンプションにおける優先度を示す情報、例えば、QoSに関する情報であってもよい。該情報は、例えば、UEが割り当てたプリエンプションのための通信可能なタイミングに関する情報であってもよい。
 基地局は、該SRを用いて、NW間プリエンプションのための周波数および/あるいは時間リソースを、UEに割り当ててもよい。基地局は、UEに割り当てた周波数および/あるいは時間リソースに関する情報を、UEに通知してもよい。基地局からUEに対する該通知は、例えば、L1/L2シグナリングを用いて行われてもよいし、MACシグナリングを用いて行われてもよいし、RRCシグナリングを用いて行われてもよい。基地局からUEに対する該通知は、動的グラントであってもよいし、設定済みグラントであってもよい。UEは、該通知を用いて、該基地局に対してNW間プリエンプション通信を行ってもよい。
 実施の形態3において開示した、UEと各NWとの送受信タイミングの割り当てにおいて、NW間で重複する期間が存在してもよい。UEは、例えば、重複する該期間において、前述のNW間プリエンプションのためのSRを適用してもよい。たとえば、UEはNW間プリエンプションのためのSRを、1つのNW基地局に送信してもよい。UEは、該SRを送信する場合において、他のNWの基地局との間の通信を行わないとしてもよい。あるいは、UEが基地局に対して、UEが割り当てたプリエンプションのための通信可能なタイミングに関する情報を送信した場合、UEは、該タイミングの期間、他のNWの基地局との間の通信を行わないとしてもよい。このことにより、例えば、UEは重複期間におけるNWプリエンプションを迅速に開始可能となる。
 たとえば、NW間プリエンプションのためのSRは、他のNWの基地局との通信を行うことを示す情報を含んでもよい。UEは、該SRを、1つのNW基地局に送信してもよい。UEは、該SRを送信する場合において、該SRを送信したNWの基地局との間で通信を行わず、該他のNWの基地局との間の通信を行うとしてもよい。あるいは、UEが基地局に対して、UEが割り当てたプリエンプションのための通信可能なタイミングに関する情報を送信した場合、UEは、該タイミングの期間、該SRを送信したNWの基地局との間で通信を行わず、該他のNWの基地局との間の通信を行うとしてもよい。このことにより、例えば、該SRを受信したNWの基地局が、UEが他のNWの基地局と通信することを認識可能となる。このことにより、該SRを受信したNWの基地局におけるUEからの受信処理をしなくてすむ。基地局の消費電力を低減可能となる。
 前述の重複する期間において、基地局がUEへ、周波数および/あるいは時間リソースの割り当てに関する情報を通知してもよい。UEは、前述のSR送信を契機として、該情報の受信動作を行ってもよい。UEは、該情報の受信動作を行う場合において、他のNWとの間の送受信を行わないとしてもよい。このことにより、例えば、基地局は該情報をUEに迅速に通知可能となる。
 前述の重複する期間において、UEから基地局へのNW間プリエンプション通信が行われてもよい。UEは、前述の周波数および/あるいは時間リソースの割り当てに関する情報の受信を契機として、基地局に対してNW間プリエンプション通信を行うとしてもよい。基地局は、NW間で重複する期間に、UEからのNW間プリエンプション通信を割り当ててもよいし、自基地局との間の送受信割り当てタイミングにおいて、UEからのNW間プリエンプション通信を割り当ててもよい。UEは、NW間プリエンプション通信を行う場合において、他のNWとの間の送受信を行わないとしてもよい。このことにより、例えば、UEは基地局に対して、優先度の高い上り送信を迅速に実行可能となる。
 NW間プリエンプションが、下り通信において行われてもよい。基地局はUEに対して、下りNW間プリエンプションの発生を通知してもよい。該通知は、例えば、L1/L2シグナリングを用いて行われてもよいし、MACシグナリングを用いて行われてもよいし、RRCシグナリングを用いて行われてもよい。UEは該通知を用いて、該基地局からの下り受信を継続してもよい。例えば、該UEは、該基地局向けの送受信器を、他のNWの基地局向けに切替えないとしてもよい。このことにより、例えば、UEは優先度の高い下り通信を迅速に受信可能となる。
 UEは、下りNW間プリエンプションの受信動作を行ってもよい。UEは、該受信動作を、他のNWの基地局からのSSバーストの間に行ってもよい。例えば、UEは、該SSバーストを構成するSSブロックの合間において、該受信動作を行ってもよい。このことにより、例えば、UEは、他のNWからの同期信号を受信中においても、下りNW間プリエンプションを受信可能となる。その結果、UEは優先度の高い下り通信を迅速に受信可能となる。
 UEは各NWの基地局に対して、NW間プリエンプションの判断に必要な情報を通知してもよい。該情報は、例えば、実施の形態3において各NWの基地局との間で通信可能なタイミングの割り当ての決定に必要な情報として開示した(1)~(7)の情報と同様のものであってもよい。各NWの基地局は、該情報を用いて、UEとの間の通信がNW間プリエンプション通信となるか否かを判断してもよい。例えば、各NWの基地局は、前述の(4)の情報、すなわち、各NWの基地局のフレームタイミングに関する情報を用いて、他のNWの基地局との間でスケジューリングの衝突が発生するか否かを判断してもよい。各NWの基地局は、他のNWの基地局との間でスケジューリングの衝突が発生する場合において、NW間プリエンプション通信が発生すると判断してもよい。このことにより、例えば、通信システムにおいてNW間プリエンプション通信の発生を必要最小限とし、通信システムにおける効率を向上可能となる。
 UEがいずれのNWとも送受信可能な通信が存在してもよい。該通信は、例えば、緊急情報の通信、例えば、公衆警報システム(Public Warning System;PWS)における通信であってもよい。各NWの基地局は、UEに対してそれぞれ該通信を行ってもよい。このことにより、例えば、UEは、該通信を迅速に受信可能となる。
 UEは、重複して受信した該通信を削除してもよい。UEは、例えば、最も早く受信した該通信のみを用い、2番目以降に受信した該通信を削除してもよい。該通信に、同じ情報であることを示す識別子が含まれてもよい。UEは、該識別子を用いて、該通信の重複を検出してもよい。このことにより、例えば、UEにおける冗長な警報受信を防止可能となる。
 他の解決策を開示する。NW間プリエンプションが、送信電力の増減を用いて行われてもよい。例えば、NW間プリエンプションが、優先度の高い通信の送信電力を高く設定し、優先度の低い通信の送信電力を低く設定した通信であってもよい。送信電力の増減を用いて行われるNW間プリエンプションは、UEが複数の送受信器を有する場合に行われてもよい。このことにより、例えば、優先度の高い通信の信頼性を向上可能となる。
 例えば、上りのNW間プリエンプションにおいて、UEは、NW間プリエンプションのためのSRを、送信電力を高めて基地局に送信してもよい。該UEは、他のNWの基地局への送信を、送信電力を低めて行ってもよい。基地局は、該SRを用いて、UEの送信電力を高く設定してもよい。基地局は、該SRを用いて、NW間プリエンプションのためのスケジューリンググラントを、UEに通知してもよい。該グラントは、上り送信電力に関する情報を含んでもよい。UEは、該通知を用いて、該基地局に対して送信電力を高めてNW間プリエンプション通信を行ってもよい。
 本変形例1によって、複数SIM搭載UEにおいてNW間プリエンプションが可能となり、その結果、通信システムにおけるQoSを満足可能となる。
 実施の形態4.
 複数SIM搭載UEが複数のNWの基地局と通信を行う場合において、UEからの電力調整を行う方法が開示されていない。その結果、UEから各基地局への送信に用いる電力が過大あるいは過少となる恐れがある。
 本実施の形態4では、前述の問題点を解決する方法を開示する。
 UEは、各NWの基地局に対して送信可能な電力を、該基地局に通知する。
 該電力は、例えば、UEが送信可能な最大電力から、他のNWの基地局に割り当てた送信電力の合計を減じたものであってもよい。
 UEが送信可能な最大電力は、NW毎に異なってもよい。UEが送信可能な最大電力は、各NWの基地局からUEに対して通知してもよい。この場合において、UEの各NW用の送信可能な電力は、例えば次のように決定することが可能である。送信可能な電力の決定対象となる或る一のNW用の送信可能な最大電力をPaとし、各NW用の送信可能な最大電力のうち一番大きいものから、前述の一のNW以外の他のNW用に割り当てられた送信可能な電力の合計を減じたものをPbとした場合、PaとPbのうちで小さい方を当該一のNW用の送信可能な電力として決定してもよい。もし、他のNW用に送信可能な電力が割り当てられていない場合、前述の一のNW以外の他のNW用に割り当てられた送信可能な電力の合計を0としてもよい。このことにより、例えば、UEが当該一のNWに対して送信する電力が過大となることを防止可能となる。
 UEは該通知を、RRCシグナリングを用いて行ってもよい。このことにより、例えば、UEは各基地局に対して多くの情報を通知可能となる。
 他の例として、UEは該通知を、MACシグナリングを用いて行ってもよい。このことにより、例えば、UEは該通知を迅速に実行可能となる。該MACシグナリングは、例えば、非特許文献17(TS38.321)に開示されたPHRと同様のシグナリングであってもよい。
 他の例として、UEは該通知を、L1/L2シグナリングを用いて行ってもよい。このことにより、例えば、UEは該通知をさらに迅速に実行可能となる。
 UEから送信可能な電力を受信した各NWの基地局は、該UEの送信可能な電力の情報を用いて、UEに対して通信のためのスケジューリングを実施してもよい。該スケジューリングは、たとえば、周波数軸上に割り当てるリソース量であってもよいし、UEの送信電力に関する情報であってもよいし、UEが送信電力を導出するために必要とする情報であってもよい。このことにより、UEから各基地局への送信に用いる電力が過大あるいは過少となるようなスケジューリングを回避することが可能となる。
 UEの送信可能な電力の決定において、NW間で優先度を設けてもよい。たとえば、優先度の高いNWからUEの送信可能な電力を決定する。既に所定の優先度のNW(NW1とする)用の送信可能な電力が決定されており、その後、新たなNW(NW2とする)との通信のための送信可能な電力を決定する場合の具体例を開示する。UEは、NW1の優先度とNW2の優先度を比較し、NW2の優先度が高い場合は、NW1用に既に決定した送信可能な電力を破棄し、NW2用の送信可能な電力を決定する。その後で、再度NW1用の送信可能な電力を決定する。NW2の優先度が低い場合は、NW1用に既に決定した送信可能な電力を用いて前述の方法でNW2用の送信可能な電力を決定する。このようにすることで、優先度の高いNWとの通信に対して優先して送信電力を割り当てることが可能となる。
 他の方法として、サービス毎に優先度を設けてもよい。各NWで通信が行われるサービス毎に優先度を設けてもよい。サービス毎の優先度は、たとえば、サービスのQoSに含めてもよい。あるいは、既にQoSに優先度に関する情報がある場合は、該優先度に関する情報を用いてもよい。UEは、各NWで通信が行われるサービス毎の優先度を用いて、各NW用の送信可能な電力を決定してもよい。該送信可能な電力の決定方法として、前述の送信可能な電力決定方法を適用するとよい。優先度の高いサービスのための通信を行うNWに対して優先して送信電力を割り当てることが可能となる。
 UEがNWに対して送信可能な電力を再決定した場合、UEは、再決定した送信可能な電力を、該NWの基地局に通知してもよい。該基地局は、通知されたUEの送信可能な電力を用いて、スケジューリングを実施するとよい。このようにすることで、各NWの基地局は、UEに対してより最適なスケジューリングを実施可能となる。各NWで用いるリソースの使用効率を向上できる。
 優先度の設定方法を開示する。たとえば、NW間で優先度を設けてもよい。他の方法として、サービス毎に優先度を設けてもよい。優先度は、あらかじめNW間で統一の値としてもよいし、あるいは、サービス間で統一の値としてもよい。優先度は、予めNWに対して与えられてもよいし、あるいは、予めサービスに対して与えられてもよい。サービスの優先度は、サービスのQoSとして与えられてもよい。優先度は、各NWからUEに対して通知されてもよい。たとえば、優先度は、UEが各NWと行うレジストレーション処理の際に通知されてもよい。たとえば、優先度は、UEが各NWと行うサービス要求処理あるいはPDUセッション確立処理の際に通知されてもよい。たとえば、UEが優先度を設定してもよい。たとえば、人が優先度を設定してもよい。UEや人が優先度を設定する方法は、たとえば、実施の形態1で開示したプライマリNW/セカンダリNWの設定方法を適宜適用してもよい。このようにすることで、UEは優先度を認識可能となる。また、ここで開示した優先度の設定方法は、前述の実施の形態および変形例において適宜適用してもよい。
 各NWの基地局に対して送信可能な電力が、複数設けられてもよい。例えば、UEが該NWに対してNW間プリエンプション通信を行う場合において送信可能な電力が設けられてもよい。UEが該NWとは異なる他のNWに対してNW間プリエンプション通信を行う場合において該NWに対して送信可能な電力が設けられてもよい。このことにより、例えば、NW間プリエンプションの信頼性を向上可能となる。
 UEは、該複数の電力に関する情報を、各NWの基地局に対して通知してもよい。UEは該通知を、RRCシグナリングを用いて行ってもよいし、MACシグナリングを用いて行ってもよいし、L1/L2シグナリングを用いて行ってもよい。
 各NWの基地局はUEに対し、該複数の電力のうちどの送信可能電力を用いるかの情報を通知してもよい。UEは該情報を用いて、該基地局に対して送信可能な電力を導出してもよい。基地局は該情報を、RRCシグナリングを用いて通知してもよい。このことにより、例えば、基地局はUEに対して多くの情報を通知可能となる。他の例として、基地局は該情報を、MACシグナリングを用いて通知してもよい。このことにより、例えば、基地局は該情報を迅速に通知可能となる。他の例として、基地局は該情報をL1/L2シグナリングを用いて通知してもよい。このことにより、例えば、基地局は該情報をさらに迅速に通知可能となる。
 他の例として、各NWの基地局はUEに対し、該複数の電力のうちどの送信可能電力を用いるかの情報を通知しないとしてもよい。例えば、該複数の電力が、(a)UEが該NWに対してNW間プリエンプション通信を行う場合において送信可能な電力、(b)NWプリエンプションが行われない場合において送信可能な電力、および(c)UEが該NWとは異なる他のNWに対してNW間プリエンプション通信を行う場合において該NWに対して送信可能な電力である場合において、基地局からUEに対して該情報が通知されないとしてもよい。UEは、基地局から取得する、NWプリエンプションに関する情報、例えば、NWプリエンプション通信に対するスケジューリンググラントに関する情報を用いて、該基地局に対して送信可能な電力を判断してもよい。他の例として、UEが自律的に、送信可能な電力を判断してもよい。例えば、UEが1つのNWの基地局に対して、NWプリエンプション通信のためのSRを送信する場合において、UEは各NWの基地局に対して送信可能な電力を判断してもよい。このことにより、例えば、基地局とUEとの間のシグナリング量を削減可能となる。
 各NWの基地局に対して送信可能な電力が複数設けられる場合の他の例として、上りチャネル毎に送信可能な電力が設けられてもよい。例えば、PUSCH、PUCCH、上りRS、RACHのそれぞれについて、各NWの基地局に対して送信可能な電力が設けられてもよい。PUCCHに含まれるUCI毎に、各NWの基地局に対して送信可能な電力が設けられてもよい。上りRSのそれぞれについて、例えば、SRS、DMRS、PRSのそれぞれについて、各NWの基地局に対して送信可能な電力が設けられてもよい。UEは、チャネル毎に送信可能な電力の情報を用いて、上り送信を行ってもよい。このことにより、例えば、通信システムにおける柔軟性を向上可能となる。
 各NWの基地局に対して送信可能な電力が複数設けられる場合に関して、前述の例が組み合わされてもよい。例えば、上りチャネル毎に送信可能な電力が、NWプリエンプション通信の有無によって異なってもよい。このことにより、例えば、NWプリエンプション通信の信頼性を向上可能としつつ、通信システムにおける柔軟性を向上可能となる。
 本実施の形態4により、UEから各基地局への送信に用いる電力を適切に調整可能となる。
 前述の各実施の形態およびその変形例は、例示に過ぎず、各実施の形態およびその変形例を自由に組合せることができる。また各実施の形態およびその変形例の任意の構成要素を適宜変更または省略することができる。
 例えば、前述の各実施の形態およびその変形例において、サブフレームは、第5世代基地局通信システムにおける通信の時間単位の一例である。スケジューリング単位であってもよい。前述の各実施の形態およびその変形例において、サブフレーム単位として記載している処理を、TTI単位、スロット単位、サブスロット単位、ミニスロット単位として行ってもよい。
 本開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。
 200,210 通信システム、202 通信端末装置、203 基地局装置。

Claims (5)

  1.  通信端末と、
     前記通信端末と無線通信可能に構成された複数のネットワークと
    を備える通信システムであって、
     前記通信端末は、前記通信端末へ前記複数のネットワークからそれぞれ送信される複数のページングのうちで衝突するものがあるか否かを判断し、前記ページングの衝突を検出した場合、衝突を起こす前記ページングを送信するネットワークのうちの少なくとも1つに対して、前記ページングの衝突を通知することを特徴とする、通信システム。
  2.  前記通信端末から前記ページングの衝突を通知されたネットワークは、前記通信端末へ前記ページングを送信するタイミングを変更することを特徴とする、請求項1に記載の通信システム。
  3.  前記通信端末は、各ネットワークのフレームタイミングと前記ページングに関するタイミングとを用いて、前記ページングの衝突が起きるか否かを判断することを特徴とする、請求項1または2に記載の通信システム。
  4.  複数のネットワークと無線通信可能に構成された通信端末であって、
     前記通信端末は、前記通信端末へ前記複数のネットワークからそれぞれ送信される複数のページングのうちで衝突するものがあるか否かを判断し、前記ページングの衝突を検出した場合、衝突を起こす前記ページングを送信するネットワークのうちの少なくとも1つに対して、前記ページングの衝突を通知することを特徴とする、通信端末。
  5.  通信端末と無線通信可能に構成されたネットワークであって、
     前記通信端末が、前記ネットワークから前記通信端末へ送信されるページングが、他のネットワークから前記通信端末へ送信されるページングと衝突すると判断し、前記ネットワークに対して前記ページングの衝突を通知した場合、前記ネットワークは、前記通信端末へ前記ページングを送信するタイミングを変更することを特徴とする、ネットワーク。
PCT/JP2020/032289 2019-09-04 2020-08-27 通信システム、通信端末およびネットワーク WO2021044932A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021543720A JPWO2021044932A1 (ja) 2019-09-04 2020-08-27
CN202080048265.2A CN114270969A (zh) 2019-09-04 2020-08-27 通信系统、通信终端及网络
EP20860297.9A EP4027683A4 (en) 2019-09-04 2020-08-27 COMMUNICATION SYSTEM, COMMUNICATION TERMINAL AND NETWORK
US17/634,292 US20220287003A1 (en) 2019-09-04 2020-08-27 Communication system, communication terminal, and network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-160982 2019-09-04
JP2019160982 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044932A1 true WO2021044932A1 (ja) 2021-03-11

Family

ID=74852547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032289 WO2021044932A1 (ja) 2019-09-04 2020-08-27 通信システム、通信端末およびネットワーク

Country Status (5)

Country Link
US (1) US20220287003A1 (ja)
EP (1) EP4027683A4 (ja)
JP (1) JPWO2021044932A1 (ja)
CN (1) CN114270969A (ja)
WO (1) WO2021044932A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162927A1 (en) * 2020-02-12 2021-08-19 Charter Communications Operating, Llc Paging repetition, paging notification conflict and management in multiple wireless networks
US11140657B2 (en) 2020-02-12 2021-10-05 Charter Communications Operating, Llc Repetition of paging notifications in wireless networks
WO2022209906A1 (ja) * 2021-03-30 2022-10-06 株式会社デンソー ユーザ装置、基地局、及び通信制御方法
WO2022209905A1 (ja) * 2021-03-30 2022-10-06 株式会社デンソー ユーザ装置、基地局、及び通信制御方法
US11483797B2 (en) 2020-02-12 2022-10-25 Charter Communications Operating, Llc Paging notification conflict and management in multiple wireless networks
US12137494B2 (en) * 2022-09-26 2024-11-05 Blackpin Inc. Method and apparatus for performing uplink transmission based on configured grant in wireless communication system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917580B2 (en) 2018-11-30 2024-02-27 Lg Electronics Inc. Method for transmitting and receiving paging signal in wireless communication system and apparatus therefor
CN114503785B (zh) * 2019-09-30 2024-07-16 华为技术有限公司 用于寻呼的方法和装置
CN114731620B (zh) * 2019-11-28 2023-12-22 苹果公司 调整寻呼时机以解决多sim设备处的寻呼冲突

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507438A (ja) * 2012-02-03 2015-03-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated ボイス/データハイブリッドモード

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180675A1 (en) * 2002-11-06 2004-09-16 Samsung Electronics Co., Ltd. Method for transmitting and receiving control messages in a mobile communication system providing MBMS service
KR101714790B1 (ko) * 2010-10-29 2017-03-10 삼성전자주식회사 복수개의 심카드를 사용하는 휴대단말기의 통신 방법 및 장치
CN104126325B (zh) * 2011-07-25 2018-11-06 瑞典爱立信有限公司 带有双sim的无线通信装置中的寻呼接收
WO2013170140A2 (en) * 2012-05-10 2013-11-14 Interdigital Patent Holdings, Inc. Paging and system information broadcast handling in virtualized networks
CN106385675B (zh) * 2015-07-31 2019-09-27 展讯通信(上海)有限公司 多卡多待单通移动终端寻呼指示接收方法及装置
US20170230932A1 (en) * 2016-02-04 2017-08-10 Qualcomm Incorporated Paging conflict management for multi-sim wireless communication device
KR102476783B1 (ko) * 2016-06-14 2022-12-13 삼성전자주식회사 멀티-sim 디바이스의 동작을 위한 방법 및 장치
US10362623B2 (en) * 2016-07-15 2019-07-23 Samsung Electronics Co., Ltd Apparatus and method for paging overlap mitigation
CN107690134B (zh) * 2016-08-05 2022-07-08 北京三星通信技术研究有限公司 用于双卡终端的寻呼冲突解决方法及双卡终端
WO2018161244A1 (en) * 2017-03-07 2018-09-13 Qualcomm Incorporated Paging offset negotiation
CN108811084B (zh) * 2017-05-04 2021-06-01 深圳市中兴微电子技术有限公司 接收寻呼消息的方法及多卡移动终端
US10178648B2 (en) * 2017-05-23 2019-01-08 Qualcomm Incorporated Techniques and apparatus for reducing occurrence of one or more collisions of paging using an asynchronous cell
US10492169B2 (en) * 2017-06-15 2019-11-26 Qualcomm Incorporated Mitigating page collisions in dual subscriber identity module devices
US11265700B2 (en) * 2018-11-30 2022-03-01 Qualcomm Incorporated Methods and systems for detecting and responding to paging channel attacks
WO2020243932A1 (en) * 2019-06-05 2020-12-10 Lenovo (Beijing) Limited Method and apparatus for handling paging collisions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507438A (ja) * 2012-02-03 2015-03-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated ボイス/データハイブリッドモード

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
"Scenarios, requirements and KPIs for 5G mobile and wireless system", ICT-317669-METIS/D1.1
3 GPP TR 38.912
3GPP RP-161266
3GPP RP-172115
3GPP RP-191304
3GPP RP-191347
3GPP SI-083461
3GPP TR 23.734
3GPP TR 23.799
3GPP TR 36.814
3GPP TR 36.912
3GPP TR 38.801
3GPP TR 38.802
3GPP TR 38.804
3GPP TS 23.501
3GPP TS 24.501
3GPP TS 36.300
3GPP TS 37.340
3GPP TS 38.211
3GPP TS 38.212
3GPP TS 38.213
3GPP TS 38.214
3GPP TS 38.300
3GPP TS 38.304
3GPP TS 38.321
3GPP TS 38.331
3GPP TS 38.413
3GPP TS 38.423
INTEL CORPORATION: "INTEL VIEWS ON RELEASE-17", 3GPP TSG RAN #84 RP-191406, 29 May 2019 (2019-05-29), pages 1 - 36, XP051739823 *
See also references of EP4027683A4
VIVO: "vivo views on NR Rel-17", 3GPP TSG RAN #84 RP-190833, 27 May 2019 (2019-05-27), pages 1 - 23, XP051739154 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162927A1 (en) * 2020-02-12 2021-08-19 Charter Communications Operating, Llc Paging repetition, paging notification conflict and management in multiple wireless networks
US11140657B2 (en) 2020-02-12 2021-10-05 Charter Communications Operating, Llc Repetition of paging notifications in wireless networks
US11483797B2 (en) 2020-02-12 2022-10-25 Charter Communications Operating, Llc Paging notification conflict and management in multiple wireless networks
WO2022209906A1 (ja) * 2021-03-30 2022-10-06 株式会社デンソー ユーザ装置、基地局、及び通信制御方法
WO2022209905A1 (ja) * 2021-03-30 2022-10-06 株式会社デンソー ユーザ装置、基地局、及び通信制御方法
US12137494B2 (en) * 2022-09-26 2024-11-05 Blackpin Inc. Method and apparatus for performing uplink transmission based on configured grant in wireless communication system

Also Published As

Publication number Publication date
CN114270969A (zh) 2022-04-01
JPWO2021044932A1 (ja) 2021-03-11
EP4027683A4 (en) 2023-09-20
EP4027683A1 (en) 2022-07-13
US20220287003A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
JP7405911B2 (ja) 無線通信システム、基地局
US12114365B2 (en) User apparatus, base station and communication system
WO2021044932A1 (ja) 通信システム、通信端末およびネットワーク
WO2020145248A1 (ja) 通信システムおよび通信端末
JP7420732B2 (ja) ユーザ装置および通信システム
WO2021106761A1 (ja) 通信システム、通信端末および基地局
WO2022030520A1 (ja) 通信システムおよび通信端末
WO2021161951A1 (ja) 通信システムおよび通信端末
WO2022030488A1 (ja) 通信システムおよび基地局
WO2022113875A1 (ja) 通信システムおよび通信端末
JPWO2020022389A1 (ja) 通信システム、基地局および通信端末
EP4135468A1 (en) Communication system, communication terminal, and base station
JP2023179745A (ja) 通信システム、ユーザ装置および基地局
EP4319429A1 (en) Communication system and base station
WO2021106769A1 (ja) 通信システム、基地局および通信端末
WO2022080309A1 (ja) 通信システム
EP4106368A1 (en) Communication system, communication terminal, and network
KR20230147066A (ko) 통신 시스템 및 통신 단말
WO2021251210A1 (ja) 通信システム、通信端末および管理装置
EP4301045A1 (en) Communication system and base station
WO2023013513A1 (ja) 通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860297

Country of ref document: EP

Effective date: 20220404