Nothing Special   »   [go: up one dir, main page]

WO2020233478A1 - 天线单元及终端设备 - Google Patents

天线单元及终端设备 Download PDF

Info

Publication number
WO2020233478A1
WO2020233478A1 PCT/CN2020/090102 CN2020090102W WO2020233478A1 WO 2020233478 A1 WO2020233478 A1 WO 2020233478A1 CN 2020090102 W CN2020090102 W CN 2020090102W WO 2020233478 A1 WO2020233478 A1 WO 2020233478A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal groove
antenna unit
present disclosure
coupling body
frequency
Prior art date
Application number
PCT/CN2020/090102
Other languages
English (en)
French (fr)
Inventor
简宪静
黄奂衢
王义金
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217038168A priority Critical patent/KR102589691B1/ko
Priority to JP2021567041A priority patent/JP7313479B2/ja
Priority to EP20809128.0A priority patent/EP3975332A4/en
Publication of WO2020233478A1 publication Critical patent/WO2020233478A1/zh
Priority to US17/531,742 priority patent/US12021316B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to an antenna unit and terminal equipment.
  • millimeter wave antennas are gradually being applied to various terminal devices to meet the increasing use demands of users.
  • millimeter wave antennas in terminal equipment are mainly implemented through antenna in package (AIP) technology.
  • AIP technology can be used to integrate the array antenna 11, radio frequency integrated circuit (RFIC) 12, and power management integrated circuit (PMIC) 13 with a working wavelength of millimeter wave.
  • RFIC radio frequency integrated circuit
  • PMIC power management integrated circuit
  • the connector 14 are packaged into a module 10, which may be called a millimeter wave antenna module.
  • the antenna in the above-mentioned array antenna may be a patch antenna, a Yagi-Uda antenna, or a dipole antenna.
  • the antennas in the above-mentioned array antennas are usually narrow-band antennas (such as the patch antennas listed above), the coverage frequency band of each antenna is limited, but there are usually more millimeter wave frequency bands planned in the 5G system, such as 28GHz The main n257 (26.5-29.5GHz) frequency band and the 39GHz main n260 (37.0-40.0GHz) frequency band, etc. Therefore, traditional millimeter wave antenna modules may not fully cover the mainstream millimeter wave frequency band planned in the 5G system. As a result, the antenna performance of the terminal device is poor.
  • the embodiments of the present disclosure provide an antenna unit and a terminal device to solve the problem that the millimeter wave antenna of the terminal device covers less frequency bands, resulting in poor antenna performance of the terminal device.
  • an embodiment of the present disclosure provides an antenna unit.
  • the antenna unit includes a target metal groove, M feeders arranged at the bottom of the target metal groove; M coupling bodies and first insulators arranged in the target metal groove, and at least two radiations carried by the first insulator Body; wherein, the M power feeders are insulated from the target metal groove, the M coupling bodies are located between the bottom of the target metal groove and the first insulator, and each of the M power feeders is respectively It is electrically connected to a coupling body, and each of the M coupling bodies is coupled with the at least two radiators and the target metal groove. Different radiators have different resonance frequencies, and M is a positive integer.
  • embodiments of the present disclosure provide a terminal device, which includes the antenna unit in the above-mentioned first aspect.
  • the antenna unit may include a target metal groove, M power feeders arranged at the bottom of the target metal groove, M coupling bodies and first insulators arranged in the target metal groove, and a first At least two radiators carried by an insulator; wherein, the M power feeding parts are insulated from the target metal groove, the M coupling bodies are located between the bottom of the target metal groove and the first insulator, and the M power feeding parts are Each power feeder of M is electrically connected to a coupling body, and each of the M coupling bodies is coupled with the at least two radiators and the target metal groove.
  • the resonance frequencies of different radiators are different, M Is a positive integer.
  • the coupling body is coupled with at least two radiators and the target metal groove (which can also be used as a radiator), when the coupling body receives an AC signal, the coupling body can interact with the at least two radiators.
  • the body and the target metal groove are coupled, so that the at least two radiators and the target metal groove can generate induced AC signals, so that the at least two radiators and the target metal groove can generate electromagnetic waves of a certain frequency.
  • the frequencies of the electromagnetic waves generated by the at least two radiators and the target metal groove are also different, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased. Thereby, the antenna performance of the antenna unit can be improved.
  • FIG. 1 is a schematic structural diagram of a traditional millimeter wave antenna provided by an embodiment of the disclosure
  • FIG. 2 is one of the exploded views of the antenna unit provided by an embodiment of the disclosure
  • FIG. 3 is the second exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 5 is a reflection coefficient diagram of an antenna unit provided by an embodiment of the disclosure.
  • FIG. 6 is the fourth exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 7 is one of the cross-sectional views of the antenna unit provided by the embodiment of the disclosure.
  • FIG. 8 is the second cross-sectional view of the antenna unit provided by the embodiment of the disclosure.
  • FIG. 9 is the fifth exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 10 is a top view of an antenna unit provided by an embodiment of the disclosure.
  • FIG. 11 is one of the schematic diagrams of the hardware structure of the terminal device provided by the embodiments of the disclosure.
  • FIG. 12 is the second schematic diagram of the hardware structure of the terminal device provided by an embodiment of the disclosure.
  • FIG. 13 is one of the radiation patterns of the antenna unit provided by the embodiments of the disclosure.
  • FIG. 14 is the second radiation pattern of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 15 is a bottom view of a terminal device provided by an embodiment of the disclosure.
  • first and second in the specification and claims of the present disclosure are used to distinguish different objects, rather than to describe a specific order of objects.
  • first metal groove and the second metal groove are used to distinguish different metal grooves, but not to describe a specific sequence of the metal grooves.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple means two or more than two, for example, multiple antennas refer to two or more than two antennas.
  • Coupling refers to the close coordination and mutual influence between the input and output of two or more circuit elements or electrical networks, and energy can be transmitted from one side to the other through the interaction.
  • AC signal A signal that changes the direction of current.
  • Vertical polarization refers to the direction of the electric field intensity formed when the antenna radiates perpendicular to the ground plane.
  • Horizontal polarization refers to the direction of the electric field intensity formed when the antenna radiates parallel to the ground plane.
  • MIMO Multiple-input multiple-output
  • transmitting end ie, the transmitting end and the receiving end
  • signals can be sent or received through multiple antennas at the transmitting end.
  • Relative permittivity A physical parameter used to characterize the dielectric properties or polarization properties of dielectric materials.
  • Floor refers to the part of the terminal device that can be used as a virtual ground.
  • the embodiments of the present disclosure provide an antenna unit and a terminal device.
  • the antenna unit may include a target metal groove, M feeders arranged at the bottom of the target metal groove, M coupling bodies arranged in the target metal groove, and A first insulator, and at least two radiators carried by the first insulator; wherein the M power feeders are insulated from the target metal groove, and the M coupling bodies are located between the bottom of the target metal groove and the first insulator, and Each of the M power feeders is electrically connected to a coupling body, and each of the M coupling bodies is coupled with the at least two radiators and the target metal groove.
  • the resonance frequency of the body is different, and M is a positive integer.
  • the coupling body is coupled with at least two radiators and the target groove (which can also be used as a radiator), when the coupling body receives an AC signal, the coupling body can interact with the at least two radiators.
  • the body and the target metal groove are coupled, so that the at least two radiators and the target metal groove can generate induced AC signals, so that the at least two radiators and the target metal groove can generate electromagnetic waves of a certain frequency.
  • the frequencies of the electromagnetic waves generated by the at least two radiators and the target metal groove are also different, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased.
  • the performance of the antenna unit can be improved.
  • the antenna unit provided by the embodiment of the present disclosure may be applied to a terminal device, and may also be applied to other electronic devices that need to use the antenna unit, and may be specifically determined according to actual use requirements, which is not limited in the embodiment of the present disclosure.
  • the antenna unit provided in the embodiment of the present disclosure will be exemplarily described below by taking the antenna unit applied to the terminal device as an example.
  • the antenna unit 20 may include a target metal groove 201, M feeders 202 arranged at the bottom of the target metal groove 201, M coupling bodies 203 and a first insulator 204 arranged in the target metal groove 201, and a first At least two radiators 205 carried by the insulator 204.
  • the M power feeders 202 may be insulated from the target metal groove 201, the M coupling bodies 203 may be located between the bottom of the target metal groove 201 and the first insulator 204, and each of the M power feeders 202 feeds
  • the electrical part 202 can be electrically connected to one coupling body 203, and each coupling body 203 of the M coupling bodies can be coupled to at least two radiators 205 and the target metal groove 201, and the resonance frequencies of different radiators are different, M is a positive integer.
  • the above-mentioned target metal groove may also be used as a radiator in the antenna unit provided by the embodiment of the present disclosure.
  • the coupling of the M coupling bodies with the target metal groove may specifically be: the M coupling bodies are coupled with the bottom of the target metal groove.
  • FIG. 2 is an exploded view of the antenna unit, that is, it is shown that the components of the antenna unit are in a separated state.
  • the aforementioned M coupling bodies, first insulators, and at least two radiators are all set in the target metal groove, that is, the target metal groove and the M coupling bodies, the first insulator, and at least two The components such as the radiator form a whole to form an antenna unit provided by an embodiment of the present disclosure.
  • the power feeder 202 and the coupling body 203 in FIG. 2 are not shown in an electrically connected state. In actual implementation, the power feeder 202 and the coupling body 203 may be electrically connected.
  • the following specifically takes an antenna unit as an example to exemplarily describe the working principle of the antenna unit provided in the embodiment of the present disclosure for sending and receiving signals.
  • the signal source in the terminal device will send out an AC signal, which can be transmitted to the coupling body through the feeder.
  • the coupling body can be coupled with the at least two radiators, so that the at least two radiators generate an induced AC signal, and then, the at least two radiators It can radiate electromagnetic waves of a certain frequency (such as the opening direction of the target metal groove, etc.); on the other hand, the coupling body can also couple with the target metal groove (specifically, the bottom of the target metal groove) to make the target metal groove
  • the target metal groove specifically, the bottom of the target metal groove
  • the target metal groove can radiate electromagnetic waves of a certain frequency (because the target metal groove and the at least two radiators have different resonance frequencies, the electromagnetic waves radiated from the target metal groove are The frequency is different from the frequency of the electromagnetic waves radiated outward by the at
  • the electromagnetic waves in the space where the terminal device is located can excite the at least two radiators and the target metal groove, so that the at least two The radiator and the target metal groove generate an induced AC signal.
  • the at least two radiators and the bottom of the target metal groove may be coupled to the coupling body, so that the coupling body generates an induced AC signal.
  • the coupling body can input the AC signal to the receiver in the terminal device through the power feeder, so that the terminal device can receive the 5G millimeter wave signal sent by other devices. That is, the terminal device can receive a signal through the antenna unit provided in the embodiment of the present disclosure.
  • the embodiments of the present disclosure provide an antenna unit. Since a coupling body is coupled with at least two radiators and a target groove (also can be used as a radiator), when the coupling body receives an AC signal, the coupling body can Coupled with the at least two radiators and the target metal groove, so that the at least two radiators and the target metal groove can generate induced AC signals, so that the at least two radiators and the target metal groove can generate Electromagnetic waves of a certain frequency. Moreover, because the resonant frequencies of different radiators are different, the frequencies of the electromagnetic waves generated by the at least two radiators and the target metal groove are also different, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased. Thus, the performance of the antenna unit can be improved.
  • the target metal groove may include a first metal groove 201a and a second metal groove 201b provided at the bottom of the first metal groove 201a.
  • M power feeders 202 may be arranged at the bottom of the first metal groove 201a
  • M coupling bodies 203 and first insulators 204 may be arranged in the first metal groove 201a
  • each coupling body of the M coupling bodies Both 203 may be coupled with at least two radiators 205 and the second metal groove 201b.
  • the target metal groove is set as two metal grooves, that is, the first metal groove and the second metal groove, and the M power feeding parts are arranged in the first metal groove.
  • the bottom, and the first insulator and the M coupling bodies are arranged in the first metal groove, and the M coupling bodies are coupled with the second metal groove, so that the two metal grooves can perform different functions in the antenna unit Therefore, the interference between the various components in the antenna unit can be reduced. For example, the interference caused by the components arranged in the first metal groove during the coupling process of the second metal groove and the M coupling bodies can be reduced.
  • the opening of the first metal groove is larger than the opening of the second metal groove. That is, the opening area of the first metal groove is larger than the opening area of the second metal groove.
  • the second metal groove 201b is provided at the bottom of the first metal groove 201a, and the opening area of the first metal groove 201a is The area of the bottom of the first metal groove 201a is equal, so the opening of the first metal groove 201a may be larger than the opening of the second metal groove 201b, so that the second metal groove 201b is not blocked by the first metal groove 201a.
  • the opening of the first metal groove may also be smaller than or equal to the opening of the second metal groove, which may be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present disclosure.
  • the manufacturing process of the antenna unit can be simplified.
  • both the first metal groove and the second metal groove may be rectangular grooves.
  • both the first metal groove and the second metal groove may be square grooves.
  • the shape of the opening of the first metal groove may be the same as the shape of the opening of the second metal groove, or may be different from the shape of the opening of the second metal groove. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the opening shapes of the first metal groove 201a and the second metal groove 201b may both be square.
  • the opening shape of the first metal groove and the opening shape of the second metal groove may also be any possible shapes, which can be determined according to actual use requirements, and the embodiment of the present disclosure is not limited.
  • the above-mentioned M power feeding portions 202 may be disposed at the bottom of the first metal groove 201a and penetrate the bottom of the first metal groove 201a.
  • the power feeding portion since the power feeding portion is disposed at the bottom of the first metal groove and penetrates the bottom of the first metal groove, the power feeding portion 202 in FIG. 3 penetrates the first metal groove 201a The bottom part is indicated by dashed lines.
  • the first end 2020 of the power feeding portion 202 may be in contact with the coupling body 203, and the second end 2021 of the power feeding portion 202 may be connected to the terminal device.
  • a signal source (such as a 5G signal source in a terminal device) is connected.
  • the AC signal emitted by the signal source in the terminal device can be transmitted to the coupling body through the feeder, and then the coupling body can be coupled with the at least two radiators and the second metal groove, so that the at least two radiation
  • the body and the second metal groove generate induced AC signals, so that the at least two radiators and the second metal groove can generate electromagnetic waves.
  • the antenna unit provided by the embodiment of the present disclosure can transmit the 5G millimeter wave in the terminal device.
  • the signal radiates.
  • the power feeding part can be set at The bottom of the first metal groove penetrates the bottom of the first metal groove, so that the power feeding part is connected with the signal source in the terminal device.
  • each of the foregoing M coupling bodies may be a metal sheet.
  • each of the M coupling bodies may be a copper sheet.
  • the shape of the foregoing M coupling bodies may be any possible shape such as a rectangle.
  • the above-mentioned M coupling bodies may also be of any other possible materials and shapes, which may be specifically determined according to actual use requirements, which are not limited in the embodiment of the present disclosure.
  • the signal source connected to the first power feeder and the signal source connected to the second power feeder have the same amplitude and a phase difference of 180 degrees.
  • the first power feeder and the second power feeder are in the same coupling body group
  • the two coupling bodies are electrically connected to the power feeder.
  • the terminal device can send or receive signals through the two coupling body groups in the antenna unit respectively, that is, the antenna provided by the embodiment of the present disclosure
  • the unit implements MIMO technology, which can increase the communication capacity and communication rate of the antenna unit.
  • the above two coupling body groups are divided into a first coupling body group and a second coupling body group.
  • the first coupling body group and the second coupling body group respectively include two symmetrically arranged two coupling bodies, and the symmetry axis of the first coupling body group is orthogonal to the symmetry axis of the second coupling body group.
  • the first coupling body group and the second coupling body group may be two coupling body groups with different polarizations.
  • the first coupling body group may be a first polarization coupling body group
  • the second coupling body group may be a second polarization coupling body group.
  • the above-mentioned two coupling body groups may be two coupling body groups with different polarizations.
  • the polarization form of the above two coupling body groups may be any possible polarization form. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the first coupling body group may include a coupling body 2030 and a coupling body 2031
  • the second coupling body group may include a coupling body 2032 and a coupling body 2033.
  • the first coupling body group formed by the coupling body 2030 and the coupling body 2031 may be a first polarization coupling body group (for example, a vertically polarized coupling body group); the second coupling body formed by the coupling body 2032 and the coupling body 2033
  • the body group may be a second-polarized coupling body group (for example, a horizontally polarized coupling body group).
  • the two coupling body groups may be two coupling body groups with different polarizations, that is, the first polarization and the second polarization may be polarizations in different directions.
  • the polarization form of the above two coupling body groups may be any possible polarization form. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the antenna unit provided in the embodiments of the present disclosure may form a dual-polarization
  • the antenna unit can reduce the probability of communication disconnection of the antenna unit, that is, can improve the communication capability of the antenna unit.
  • the amplitudes of the signal sources electrically connected to the two coupling bodies and the two feeders may be equal, and may be equal to the two coupling bodies.
  • the phases of the signal sources connected to the two feeders electrically connected to the two coupling bodies may be 180 degrees out of phase.
  • the amplitudes of the signal sources connected to the two feeders electrically connected to the two coupling bodies may be equal, and the signal sources electrically connected to the two coupling bodies
  • the phases of the signal sources connected to the two feeders can be 180 degrees different.
  • the other coupling body in the first coupling body group when one coupling body in the first coupling body group is in the working state, the other coupling body in the first coupling body group may also be in the working state.
  • the other coupling body in the second coupling body group when one coupling body in the working state, the other coupling body in the second coupling body group may also be in the working state. That is, the coupling bodies in the same coupling body group can work at the same time.
  • the coupling bodies in the first coupling body group when the coupling bodies in the first coupling body group are in a working state, the coupling bodies in the second coupling body group may or may not be in a working state.
  • it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the antenna unit provided by the embodiment of the present disclosure adopts a differential quadrature feed mode, which can further improve The communication capacity and communication rate of the antenna unit.
  • the above two coupling body groups may be located on the same plane, and the coupling bodies in any coupling body group may be distributed on the symmetry axis of the other coupling body group.
  • the first coupling body group and the second coupling body group are both located on the first plane S1, that is, the coupling body 2030 and the coupling body 2031 in the first coupling body group are located on the first plane S1 , The coupling body 2032 and the coupling body 2033 in the second coupling body group are located on the first plane S1. And as shown in FIG. 4, the first coupling body group and the second coupling body group are both located on the first plane S1, that is, the coupling body 2030 and the coupling body 2031 in the first coupling body group are located on the first plane S1 , The coupling body 2032 and the coupling body 2033 in the second coupling body group are located on the first plane S1. And as shown in FIG.
  • the coupling body 2030 and the coupling body 2031 in the first coupling body group are located on the symmetry axis (ie, the first symmetry axis) L1 of the second coupling body group, and the coupling body 2032 in the second coupling body group
  • the coupling body 2033 is located on the symmetry axis (ie, the second symmetry axis) L2 of the first coupling body group.
  • each of the above-mentioned M coupling bodies is at the same distance from the radiator (for example, the above-mentioned at least two radiators or target metal grooves), it can be easily controlled.
  • the coupling parameters of the coupling body and the radiator such as the induced current generated during the coupling process, etc. Therefore, the above two coupling body groups can be set on the same plane, and the coupling body in any coupling body group can be set on the other
  • the distances between different coupling bodies and the radiator can be made equal, which is convenient for controlling the working state of the antenna unit provided by the embodiment of the present disclosure.
  • the shape of the first insulator may be the same as the opening shape of the target metal groove, for example, any possible shape such as a rectangular parallelepiped or a cylinder.
  • the shape of the first insulator may be any shape that can meet actual use requirements.
  • the embodiments of the present disclosure do not specifically limit this, and can be specifically determined according to actual use requirements.
  • the material of the first insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the material of the first insulator may be any possible material such as plastic or foam. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the relative dielectric constant of the material of the first insulator may be 2.2, and the loss tangent value may be 0.0009.
  • the first insulator can not only carry the at least two radiators, but also isolate the at least two radiators and the M coupling bodies, thereby preventing the at least two radiators and the M coupling bodies. Interference occurs between.
  • the above-mentioned at least two radiators may include a first radiator and a second radiator.
  • first radiator and the second radiator are different radiators, and the resonant frequency of the first radiator is different from the resonant frequency of the second radiator.
  • the first radiator may be a polygonal radiator
  • the second radiator may be a ring-shaped radiator
  • the aforementioned ring-shaped radiator may be a rectangular ring-shaped radiator or a square-shaped ring-shaped radiator with any possible shape.
  • the aforementioned polygonal radiator may be any possible polygonal radiator, such as a rectangular radiator, a square radiator, or a hexagonal radiator. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the above-mentioned annular radiator may be a closed annular radiator, that is, each side of the annular radiator is continuous; the above-mentioned annular radiator may also be a semi-closed annular radiator
  • the body that is, the side portion of the ring-shaped radiator is continuous. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the area of the second radiator may be larger than the area of the first radiator.
  • the above-mentioned first radiator ie, polygonal radiator
  • the above-mentioned second radiator ie, ring-shaped radiator
  • the shape of the first radiator and the shape of the second radiator can also be any possible shapes, which can be specifically determined according to actual usage requirements, which are not limited in the embodiment of the present disclosure.
  • the first radiator, the second radiator and the target metal groove are different radiators, and the first radiator, the second radiator and When the target metal groove is located at different positions in the antenna unit, the first radiator, the second radiator and the target metal groove can be coupled with the M coupling bodies to generate electromagnetic waves of different frequencies, so that the antenna unit can cover different Frequency band, that is, the frequency band covered by the antenna unit can be increased, thereby improving the performance of the antenna unit.
  • the resonance frequency of the first radiator may be the first frequency
  • the resonance frequency of the second radiator may be the second frequency
  • the resonance frequency of the target metal groove may be the third frequency. frequency.
  • the first frequency may be greater than the second frequency, and the second frequency may be greater than the third frequency.
  • the resonant frequencies of the first radiator, the second radiator, and the target metal groove may be different frequencies.
  • the first frequency may belong to a first frequency range
  • the second frequency may belong to a second frequency range
  • the third frequency may belong to a third frequency range
  • the first frequency range may be 37GHz-43GHz
  • the second frequency range may be 27GHz-30GHz
  • the third frequency range may be 24GHz-27GHz
  • the reflection coefficient diagram of the antenna unit when the antenna unit provided by the embodiment of the present disclosure is in operation may belong to the frequency range indicated by 51 in FIG. 5, that is, the resonance frequency of the target metal groove belongs to the frequency range indicated by 51 in FIG. 5 ;
  • the frequency of the electromagnetic waves generated by the coupling of the M coupling bodies and the ring radiator may belong to the frequency range indicated by 52 in FIG. 5, that is, the resonance frequency of the ring radiator belongs to the frequency range shown in FIG.
  • the frequency range indicated by 52; the frequency of electromagnetic waves generated by coupling the M coupling bodies and the polygonal radiator (ie, the first radiator) can belong to the frequency range indicated by 53 in Figure 5, that is, the resonance frequency of the polygonal radiator belongs to The frequency range indicated by 53 in Figure 5. And it can be seen from Fig.
  • the coupling of the coupling body and the target metal groove can generate low-frequency electromagnetic waves, and the coupling of the coupling body and the first radiator can generate electromagnetic waves of adjacent low-frequency, so the antenna unit provided by the embodiment of the present disclosure can cover 24.25GHz-29.5
  • the frequency range of GHz (such as n257, n258, n261, etc.) can broaden the low-frequency bandwidth of the antenna unit; the coupling of the coupling body and the second radiator can generate high-frequency electromagnetic waves, so the antenna unit provided by the embodiment of the present disclosure can cover 37GHz-43GHz (such as n259 and n260, etc.) frequency range.
  • the antenna unit provided by the embodiments of the present disclosure can cover most 5G millimeter wave frequency bands (for example, n257, n258, n259, n260, n261 and other planned 5G millimeter wave frequency bands), thereby improving the antenna performance of the terminal device.
  • 5G millimeter wave frequency bands for example, n257, n258, n259, n260, n261 and other planned 5G millimeter wave frequency bands
  • the points a, b, c, d, and e in the above Figure 5 are used to mark the return loss values. It can be seen from Figure 5 that the points a, b, c, d and The return loss values marked by point e are all less than -6dB. That is, the antenna unit provided in the embodiment of the present disclosure can meet actual use requirements.
  • the antenna unit may further include a second insulator disposed between the bottom of the first metal groove and the first insulator, and the M coupling bodies may be carried on the second insulator.
  • the antenna unit 20 may further include a second insulator 206 disposed between the bottom of the first metal groove 201a and the first insulator 204.
  • M coupling bodies 203 are carried on the second insulator 206.
  • the above-mentioned second insulator can not only carry the above-mentioned M coupling bodies, but also can isolate the M coupling bodies and the second metal groove, so that the M coupling bodies and the second metal groove can be separated Produce interference.
  • the shape of the second insulator may be the same as the opening shape of the target metal groove, for example, any possible shape such as a rectangular parallelepiped or a cylinder.
  • the material of the above-mentioned second insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the material of the second insulator may be the same as the material of the first insulator.
  • the material of the second insulator may be any possible material such as plastic or foam. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the relative dielectric constant of the material of the second insulator may be 2.5, and the loss tangent value may be 0.001.
  • the shape of the second insulator may be any shape that can meet actual use requirements.
  • the embodiments of the present disclosure do not specifically limit this, and can be specifically determined according to actual use requirements.
  • At least one of the above-mentioned at least two radiators may be flush with the surface where the opening of the target metal groove is located.
  • the at least two radiators may be flush with the surface where the opening of the target metal groove is located; or, part of the radiators of the at least two radiators may be aligned with the opening of the target metal groove.
  • the surface is flush; or, one of the above at least two radiators may be flush with the surface where the opening of the target metal groove is located.
  • the target metal groove when the target metal groove includes a first metal groove and a second metal groove, at least one of the at least two radiators may be connected to the first metal groove.
  • the surface where the opening is located is flush.
  • the above at least two radiators are two radiators, the first radiator and the second radiator respectively.
  • the first radiator 2050 and the second radiator 2051 are both flush with the surface where the opening of the first metal groove 201a is located; as shown in FIG. 8, the first radiator 2050 and the first metal groove 201a The surface of the opening of the second radiator 2051 is not flush with the surface of the opening of the first metal groove 201a.
  • the first radiator 2050 and the second radiator 2051 are carried on the first insulator 204
  • the M coupling bodies are carried on the second insulator 206
  • the second insulator 206 206 is located between the first insulator 204 and the bottom of the first metal groove 201a
  • the power feeding portion 202 is provided at the bottom of the first metal groove 201a and penetrates the bottom of the first metal groove 201a
  • the power feeding portion 202 penetrates the second metal groove 201a.
  • the insulator 206 is electrically connected to the coupling body 203.
  • the above-mentioned at least two radiators may also be located at any possible positions in the above-mentioned target metal groove, which can be specifically determined according to actual use requirements, which is not limited in the embodiment of the present disclosure.
  • the performance of the antenna units may also be different. Therefore, the positions of the above-mentioned at least two radiators can be set according to actual use requirements, thereby making the design of the antenna unit more flexible.
  • the antenna unit may further include a metal protrusion provided at the bottom of the second metal groove.
  • the above-mentioned metal protrusion may be arranged in the center of the bottom of the second metal groove.
  • the above-mentioned metal protrusions can also be arranged at any possible position in the antenna unit, which can be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present disclosure.
  • the antenna unit 20 may further include a metal protrusion 207 disposed at the bottom of the second metal groove 201b.
  • the above-mentioned metal protrusions may be used to adjust the impedance of the antenna unit, thereby adjusting the frequency of electromagnetic waves generated by coupling the M coupling bodies with at least two radiators and the second metal groove.
  • the shape of the aforementioned metal protrusion may be a rectangular parallelepiped, a cube or a cylinder.
  • the shape of the above-mentioned metal protrusion may also be any other possible shape, which is not limited in the embodiment of the present disclosure.
  • the antenna unit provided in the embodiment of the present disclosure will be further exemplified below in conjunction with FIG. 10.
  • FIG. 10 it is a top view of the antenna unit provided by an embodiment of the present disclosure on the positive Z axis (coordinate system shown in FIG. 3).
  • the first insulator 204 is located in the first metal groove 201a (it can be understood that the first metal groove 201a surrounds the first insulator 204); the first insulator 204 carries the first radiator 2050 and the second radiator 2051, and Both the first radiator 2050 and the second radiator 2051 are flush with the surface where the opening of the first metal groove 201a is located.
  • coupling bodies ie, coupling body 2030, coupling body 2031, coupling body 2032, and coupling body 2033 are arranged between the first insulator 204 and the bottom of the first metal groove 201a; the second metal groove (not shown in FIG. 10) Shown)
  • a metal protrusion 207 is provided at the bottom. Specifically, since the four coupling bodies overlap with the first radiator 2050 and the second radiator 2051 in the Z-axis direction, the four coupling bodies can interact with the first radiator 2050 and the second radiator 2051.
  • the metal protrusions 207 can be prevented from coupling with the four coupling bodies, so that the metal protrusions 207 can adjust the impedance of the antenna unit, thereby The frequency range covered by the antenna unit can be adjusted.
  • the coupling body (including the coupling body 2030, the coupling body 2031, the coupling body 2032, and the coupling body 2033) and the metal protrusion 207 are all indicated by dotted lines.
  • the metal can be arranged at the bottom of the second metal groove.
  • the protrusion adjusts the impedance of the antenna unit, so that the frequencies of the electromagnetic waves generated by the coupling of at least two radiators and the second metal groove with the M coupling bodies can be adjusted, so that the frequency band covered by the antenna unit can be in the 5G millimeter wave band.
  • the antenna unit may further include a third insulator disposed in the second metal groove, and the third insulator may surround the metal protrusion.
  • the difference between the relative dielectric constant of the third insulator and the relative dielectric constant of air may be within a preset range.
  • a third insulator can be arranged in the second metal groove to isolate the second metal groove (for example, the bottom of the second metal groove). , Sidewalls, etc.) and the metal protrusion, thereby avoiding mutual interference between the second metal groove and the metal protrusion.
  • the above-mentioned third insulator may be a foam material or a plastic material with a relative dielectric constant of 1 or close to 1 (that is, the relative dielectric constant of air). Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the foregoing preset range may be determined according to the antenna performance, which is not limited in the embodiment of the present disclosure.
  • the second metal groove may not be filled with any insulator. It can be understood that when no insulator is filled in the second metal groove, the medium filled in the second metal groove is air (the relative dielectric constant is 1).
  • the third insulator can isolate the second metal groove and the metal protrusion, so that the two do not interfere with each other, thereby making the performance of the antenna unit more stable.
  • the bottom of the first metal groove may be provided with M through holes 208 passing through the bottom of the first metal groove.
  • Each power feeding part 202 is respectively disposed in a through hole 208.
  • the above M through holes may be through holes with the same diameter.
  • the aforementioned M through holes may be evenly distributed at the bottom of the aforementioned first metal groove.
  • the specific distribution mode may be determined according to the distribution mode of the M coupling bodies in the first metal groove, which is not limited in the embodiment of the present disclosure.
  • through holes penetrating the bottom of the first metal groove may be provided at the bottom of the first metal groove, and the M power feeding portions may be arranged in these through holes, so that M feeders
  • the electric part is arranged at the bottom of the first metal groove and penetrates the bottom of the first metal groove, so that the process of the power feeding part through the first metal groove can be simplified.
  • a fourth insulator may be provided in each of the above-mentioned through holes, and the fourth insulator may wrap the above-mentioned power feeding part.
  • the fourth insulator wraps the power feeding part, so that the power feeding part can be fixed in the through hole.
  • the above-mentioned fourth insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the foregoing fourth insulator may be any possible material such as a foam material or a plastic material.
  • the diameter of the through hole may be larger than the diameter of the power feeding part
  • the power feeding part when the power feeding part is provided in the through hole, the power feeding part may not be fixed in the through hole, so it can pass through
  • the above-mentioned fourth insulator is provided in the through hole, and the fourth insulator wraps the power feeding part so that the power feeding part is fixed in the through hole.
  • the first metal groove and the feeding part are made of metal, they may interfere during the operation of the antenna unit. Therefore, the feeding part can be isolated by adding the fourth insulator in the through hole.
  • the electric part is insulated from the first metal groove, so that the power feeding part is insulated from the first metal groove, thereby making the antenna performance of the terminal device more stable.
  • the antenna units shown in each of the above figures are all exemplified in conjunction with one of the figures in the embodiment of the present disclosure.
  • the antenna units shown in each of the foregoing drawings can also be implemented in combination with any other accompanying drawings illustrated in the foregoing embodiments, and details are not described herein again.
  • An embodiment of the present disclosure provides a terminal device, and the terminal device may include the antenna unit provided in any one of the foregoing embodiments in FIG. 2 to FIG. 10.
  • the antenna unit may include the antenna unit provided in any one of the foregoing embodiments in FIG. 2 to FIG. 10.
  • the antenna unit may include the relevant description of the antenna unit in the foregoing embodiment, which will not be repeated here.
  • the terminal device in the embodiment of the present disclosure may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant
  • the non-mobile terminal may be a personal computer (PC) or a television (television, TV), etc., which are not specifically limited in the embodiment of the present disclosure.
  • At least one first groove may be provided in the housing of the terminal device, and each antenna unit may be provided in one first groove.
  • the above-mentioned at least one first groove may be provided in the housing of the terminal device, and the antenna unit provided in the embodiment of the present disclosure may be arranged in the first groove, so as to realize the integration of at least An antenna unit provided by an embodiment of the present disclosure.
  • the above-mentioned first groove may be provided in the frame of the housing of the terminal device.
  • the terminal device 3 may include a housing 30.
  • the housing 30 may include a first metal frame 31, a second metal frame 32 connected to the first metal frame 31, a third metal frame 33 connected to the second metal frame 32, and a third metal frame 33 and a first metal frame. 31 are connected to the fourth metal frame 34.
  • the terminal device 3 may also include a floor 35 connected to both the second metal frame 32 and the fourth metal frame 34, and the floor 35 which is arranged in the third metal frame 33, part of the second metal frame 32 and part of the fourth metal frame 34.
  • the first antenna 36 of the area (specifically, the first antenna may also be arranged in the metal frame). Wherein, a first groove 37 is provided on the second metal frame 32.
  • the antenna unit provided by the embodiment of the present disclosure can be arranged in the first groove, so that the terminal device can include the array antenna module formed by the antenna unit provided by the embodiment of the present disclosure, and the integration of the device in the terminal device can be realized.
  • the design of the antenna unit provided by the embodiment is disclosed.
  • the above-mentioned floor can be a PCB or a metal middle frame in a terminal device, or a display screen of a terminal device, etc., which can be any part that can be used as a virtual ground.
  • the above-mentioned first antenna may be a second-generation mobile communication system (ie 2G system), a third-generation mobile communication system (ie 3G system), and a fourth-generation mobile communication system of the terminal device.
  • the communication antenna of the system ie 4G system and other systems.
  • the above-mentioned antenna unit integrated in the terminal device may be an antenna of the 5G system of the terminal device.
  • the first metal frame, the second metal frame, the third metal frame, and the fourth metal frame may be connected end to end in sequence to form a closed frame; or, the first metal frame, the second metal frame Part of the frame, the third metal frame, and the fourth metal frame may be connected to form a semi-closed frame; or, the first metal frame, the second metal frame, the third metal frame, and the fourth metal frame may be formed without being connected to each other Open border.
  • it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the frame of the housing 30 shown in FIG. 11 is a closed frame formed by connecting the first metal frame 31, the second metal frame 32, the third metal frame 33, and the fourth metal frame 34 in turn. It is taken as an example for illustrative description, which does not impose any limitation on the embodiments of the present disclosure.
  • the implementation method is the same as the embodiment of the present disclosure. The implementations provided are similar, and to avoid repetition, I won’t repeat them here.
  • the above-mentioned at least one first groove may be arranged in the same frame of the housing, or may be arranged in different frames. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • At least one first groove may be provided on the housing of the terminal device, and an antenna unit provided by the embodiment of the present disclosure may be provided in each first groove, so that the terminal device can be integrated At least one antenna unit provided in an embodiment of the present disclosure is used to improve the antenna performance of the terminal device.
  • the above-mentioned target metal groove may be a part of the housing of the terminal device. It can be understood that the target metal groove may be a groove provided on the housing of the terminal device.
  • the housing 30 of the terminal device 3 provided by the embodiment of the present disclosure may be provided with at least one target metal groove 201, a first insulator, M coupling bodies, M power feeders, and At least two radiators carried on the first insulator are both arranged in the target metal groove (in practice, the target metal groove is not visible at the angle of the terminal device shown in FIG. 12).
  • a target metal groove may be provided in the first metal frame, the second metal frame, the third metal frame, or the fourth metal frame of the housing. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the sidewalls of the target metal groove included in the target metal groove structure in the embodiment of the present disclosure are all part of the terminal device, and specifically may be part of the frame of the housing provided in the embodiment of the present disclosure.
  • FIG. 12 is based on the above-mentioned target metal groove 201 being arranged on the first metal frame 31 of the housing 30, and the opening direction of the target metal groove 201 is as shown in FIG.
  • the positive Z-axis of the coordinate system shown is taken as an example for illustration.
  • the opening direction of the target metal groove when the target metal groove is disposed in the second metal frame of the housing, the opening direction of the target metal groove may be the positive X axis;
  • the opening direction of the target metal groove can be the Z-axis reverse;
  • the target metal groove structure when the target metal groove structure is arranged on the fourth metal frame of the housing, the target metal groove The opening direction of the slot can be the reverse of the X axis.
  • a target metal groove may be provided in the housing of the terminal device, and a first insulator and other components may be arranged in each target metal groove, so that the terminal device can integrate multiple parts of the present disclosure.
  • the antenna unit provided by the embodiment in this way, these antenna units can form an antenna array, so that the antenna performance of the terminal device can be improved.
  • the antenna unit provided in the embodiment of the present disclosure radiates a signal with a frequency of 39 GHz (that is, the antenna unit radiates a high-frequency signal)
  • the antenna unit provided by the embodiment of the present disclosure is suitable for forming an antenna array.
  • the terminal device can be provided with at least two first grooves, and an antenna unit provided by an embodiment of the present disclosure is arranged in each first groove, so that the terminal device can include the antenna array, thereby improving the terminal device Antenna performance.
  • the distance between two adjacent antenna elements ie, two adjacent target metal grooves
  • the distance between the separations can be determined according to the isolation of the antenna units and the scanning angle of the antenna array formed by the multiple antenna units. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the number of target metal grooves provided in the housing of the terminal device may be determined according to the size of the target metal groove structure and the size of the housing of the terminal device.
  • the embodiment of the present disclosure does not limit this.
  • FIG. 15 a bottom view of the multiple antenna units provided on the housing provided by the embodiment of the present disclosure in the positive direction of the Z axis (coordinate system shown in FIG. 12 ).
  • the third metal frame 33 is provided with a plurality of antenna units provided by embodiments of the present disclosure (each antenna unit is composed of a target metal groove on the housing and a first insulator located in the target metal groove. And other parts).
  • the first insulator 204 is disposed in the target metal groove (not shown in FIG. 15), and at least two radiators 205 are carried in the first insulating layer 204.
  • FIG. 15 only takes the four antenna units provided on the third metal frame as an example for exemplification, which does not limit the embodiments of the present disclosure in any way. It can be understood that, in specific implementation, the number of antenna units provided on the third metal frame can be determined according to actual usage requirements, and the embodiment of the present disclosure does not make any limitation.
  • the embodiment of the present disclosure provides a terminal device, the terminal device may include an antenna unit, the antenna unit may include a target metal groove, M power feeders arranged at the bottom of the target metal groove, and M Coupling bodies and a first insulator, and at least two radiators carried by the first insulator; wherein, the M power feeders are insulated from the target metal groove, and the M coupling bodies are located at the bottom of the target metal groove and the first insulator And each of the M power feeders is electrically connected to a coupling body, and each of the M coupling bodies is connected to the at least two radiators and the target metal groove Coupling, different radiators have different resonance frequencies, and M is a positive integer.
  • the coupling body is coupled with at least two radiators and the target metal groove (which can also be used as a radiator), when the coupling body receives an AC signal, the coupling body can interact with the at least two radiators.
  • the body and the target metal groove are coupled, so that the at least two radiators and the target metal groove can generate induced AC signals, so that the at least two radiators and the target metal groove can generate electromagnetic waves of a certain frequency.
  • the frequencies of the electromagnetic waves generated by the at least two radiators and the target metal groove are also different, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased. Therefore, the antenna performance of the antenna unit can be improved, and the antenna performance of the terminal device can be improved.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present disclosure.
  • a terminal device which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本公开实施例提供一种天线单元及终端设备。该天线单元包括目标金属凹槽,设置在目标金属凹槽底部的M个馈电部,设置在目标金属凹槽内的M个耦合体和第一绝缘体,以及第一绝缘体承载的至少两个辐射体;其中,该M个馈电部与目标金属凹槽绝缘,该M个耦合体位于目标金属凹槽底部和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与至少两个辐射体和目标金属凹槽耦合,不同辐射体的谐振频率不同,M为正整数。

Description

天线单元及终端设备
相关申请的交叉引用
本申请要求于2019年05月22日提交国家知识产权局、申请号为201910430964.2、申请名称为“一种天线单元及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种天线单元及终端设备。
背景技术
随着第五代移动通信(5-generation,5G)系统的发展,以及终端设备的广泛应用,毫米波天线逐渐被应用在各种终端设备中,以满足用户日益增长的使用需求。
目前,终端设备中的毫米波天线主要通过天线封装(antenna in package,AIP)技术实现。例如,如图1所示,可以通过AIP技术,将工作波长为毫米波的阵列天线11、射频集成电路(radio frequency integrated circuit,RFIC)12、电源管理集成电路(power management integrated circuit,PMIC)13和连接器14封装成一个模块10,该模块10可以称为毫米波天线模组。其中,上述阵列天线中的天线可以为贴片天线、八木-宇田天线,或者偶极子天线等。
然而,由于上述阵列天线中的天线通常为窄带天线(例如上述列举的贴片天线等),因此每个天线的覆盖频段有限,但是在5G系统中规划的毫米波频段通常比较多,例如以28GHz为主的n257(26.5-29.5GHz)频段和以39GHz为主的n260(37.0-40.0GHz)频段等,因此传统的毫米波天线模组可能无法全部覆盖5G系统中规划的主流的毫米波频段,从而导致终端设备的天线性能较差。
发明内容
本公开实施例提供一种天线单元及终端设备,以解决终端设备的毫米波天线覆盖的频段较少,导致终端设备的天线性能较差的问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供了一种天线单元。该天线单元包括目标金属凹槽,设置在目标金属凹槽底部的M个馈电部;设置在目标金属凹槽内的M个耦合体和第一绝缘体,以及第一绝缘体承载的至少两个辐射体;其中,该M个馈电部与目标金属凹槽绝缘,该M个耦合体位于目标金属凹槽底部和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和目标金属凹槽耦合,不同辐射体的谐振频率不同,M为正整数。
第二方面,本公开实施例提供了一种终端设备,该终端设备包括上述第一方面中的天线单元。
在本公开实施例中,天线单元可以包括目标金属凹槽,设置在目标金属凹槽底部 的M个馈电部,设置在目标金属凹槽内的M个耦合体和第一绝缘体,以及第一绝缘体承载的至少两个辐射体;其中,该M个馈电部与目标金属凹槽绝缘,该M个耦合体位于目标金属凹槽底部和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和目标金属凹槽耦合,不同辐射体的谐振频率不同,M为正整数。通过该方案,由于耦合体与至少两个辐射体和目标金属凹槽(也可以作为一个辐射体)均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和目标金属凹槽进行耦合,从而可以使得该至少两个辐射体和目标金属凹槽产生感应的交流信号,从而可以使得该至少两个辐射体和目标金属凹槽产生一定频率的电磁波。并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和目标金属凹槽产生的电磁波的频率也不同,如此可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段,从而可以提高天线单元的天线性能。
附图说明
图1为本公开实施例提供的一种传统毫米波天线的结构示意图;
图2为本公开实施例提供的天线单元的爆炸图之一;
图3为本公开实施例提供的天线单元的爆炸图之二;
图4为本公开实施例提供的天线单元的爆炸图之三;
图5为本公开实施例提供的天线单元的反射系数图;
图6为本公开实施例提供的天线单元的爆炸图之四;
图7为本公开实施例提供的天线单元的剖视图之一;
图8为本公开实施例提供的天线单元的剖视图之二;
图9为本公开实施例提供的天线单元的爆炸图之五;
图10为本公开实施例提供的天线单元的俯视图;
图11为本公开实施例提供的终端设备的硬件结构示意图之一;
图12为本公开实施例提供的终端设备的硬件结构示意图之二;
图13为本公开实施例提供的天线单元的辐射方向图之一;
图14为本公开实施例提供的天线单元的辐射方向图之二;
图15为本公开实施例提供的终端设备的仰视图。
附图标记说明:10—毫米波天线模组;11—工作波长为毫米波的阵列天线;12—RFIC;13—PMIC;14—连接器;20—天线单元;201—目标金属凹槽;201a—第一金属凹槽;201b—第二金属凹槽;202—馈电部;2020—馈电部的第一端;2021—馈电部的第二端;203—耦合体;204—第一绝缘体;205—至少两个辐射体;2050—第一辐射体;2051—第二辐射体;206—第二绝缘体;207—金属凸起;208—通孔;S1—第一平面;L1—第一对称轴;L2—第二对称轴;3—终端设备;30—壳体;31—第一金属边框;32—第二金属边框;33—第三金属边框;34—第四金属边框;35—地板;36—第一天线;37—第一凹槽。
需要说明的是,本公开实施例中,附图所示的坐标系中的坐标轴相互正交。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一金属凹槽和第二金属凹槽等是用于区别不同的金属凹槽,而不是用于描述金属凹槽的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个天线是指两个或者两个以上的天线等。
下面对本公开实施例中涉及的一些术语/名词进行解释说明。
耦合:是指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并可以通过相互作用从一侧向另一侧传输能量。
交流信号:是指电流的方向会发生变化的信号。
垂直极化:是指天线辐射时形成的电场强度方向垂直于地平面。
水平极化:是指天线辐射时形成的电场强度方向平行于地平面。
多输入多输出(multiple-input multiple-output,MIMO)技术:是指一种在传输端(即发送端和接收端)使用多个天线发送信号或接收信号,以改善通信质量的技术。在该技术中,信号可以通过传输端的多个天线发送或者接收。
相对介电常数:用于表征介质材料的介电性质或极化性质的物理参数。
地板:是指终端设备中可以作为虚拟地的部分。例如终端设备中的印制电路板(printed circuit board,PCB)或终端设备的显示屏等。
本公开实施例提供一种天线单元及终端设备,该天线单元可以包括目标金属凹槽,设置在目标金属凹槽底部的M个馈电部;设置在目标金属凹槽内的M个耦合体和第一绝缘体,以及第一绝缘体承载的至少两个辐射体;其中,该M个馈电部与目标金属凹槽绝缘,该M个耦合体位于目标金属凹槽底部和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和目标金属凹槽耦合,不同辐射体的谐振频率不同,M为正整数。通过该方案,由于耦合体与至少两个辐射体和目标属凹槽(也可以作为一个辐射体)均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和目标金属凹槽进行耦合,从而可以使得该至少两个辐射体和目标金属凹槽产生感应的交流信号,从而可以使得该至少两个辐射体和目标金属凹槽产生一定频率的电磁波。并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和目标金属凹槽产生的电磁波的频率也不同,如此可以使得天线单元 覆盖不同的频段,即可以增加天线单元覆盖的频段,从而可以提高天线单元的性能。
本公开实施例提供的天线单元可以应用于终端设备,也可以应用于需要使用该天线单元的其它电子设备,具体可以根据实际使用需求确定,本公开实施例不作限定。下面以天线单元应用于终端设备为例,对本公开实施例提供的天线单元进行示例性的说明。
下面结合各个附图对本公开实施例提供的天线单元进行示例性的说明。
如图2所示,为本公开实施例提供的天线单元的结构的爆炸示意图。天线单元20可以包括目标金属凹槽201,设置在目标金属凹槽201底部的M个馈电部202,设置在目标金属凹槽201内的M个耦合体203和第一绝缘体204,以及第一绝缘体204承载的至少两个辐射体205。
其中,M个馈电部202可以与目标金属凹槽201绝缘,M个耦合体203可以位于目标金属凹槽201底部和第一绝缘体204之间,且M个馈电部202中的每个馈电部202分别可以与一个耦合体203电连接,以及M个耦合体中的每个耦合体203均可以与至少两个辐射体205和目标金属凹槽201耦合,不同辐射体的谐振频率不同,M为正整数。
可以理解,上述目标金属凹槽也可以作为本公开实施例提供的天线单元中的一个辐射体。
本公开实施例中,上述M个耦合体与目标金属凹槽耦合具体可以为:M个耦合体与目标金属凹槽底部耦合。
需要说明的是,本公开实施例中,为了更加清楚地示意天线单元的结构,图2是以天线单元的爆炸图示意的,即是以天线单元的组成部分均处于分离状态示意的。实际实现时,上述M个耦合体、第一绝缘体,以及至少两个辐射体均是设置在目标金属凹槽内的,即目标金属凹槽与M个耦合体、第一绝缘体,以及至少两个辐射体等部件组成一个整体,以形成一个本公开实施例提供的天线单元。
另外,图2中的馈电部202与耦合体203未以电连接状态示出,实际实现时,馈电部202可以与耦合体203电连接。
为了更加清楚地描述本公开实施例提供的天线单元及其工作原理,下面具体以一个天线单元为例,对本公开实施例提供的天线单元发送信号和接收信号的工作原理进行示例性的说明。
示例性的,结合上述图2,本公开实施例中,当终端设备发送5G毫米波信号时,终端设备中的信号源会发出交流信号,该交流信号可以通过馈电部传输到耦合体。然后,在耦合体接收到该交流信号之后,一方面,耦合体可以通过与上述至少两个辐射体进行耦合,使得该至少两个辐射体产生感应的交流信号,然后,该至少两个辐射体可以向外辐射(例如目标金属凹槽的开口方向等)一定频率的电磁波;另一方面,耦合体还可以通过与目标金属凹槽(具体可以为目标金属凹槽底部)耦合,使得目标金属凹槽产生感应的交流信号,然后,目标金属凹槽可以向外辐射一定频率的电磁波(由于目标金属凹槽与该至少两个辐射体的谐振频率不同,因此目标金属凹槽向外辐射的电磁波的频率与该至少两个辐射体向外辐射的电磁波的频率不同)。如此,终端设备可以通过本公开实施例提供的天线单元发送信号。
又示例性的,本公开实施例中,当终端设备接收5G毫米波信号时,终端设备所处的空间中的电磁波可以通过激励上述至少两个辐射体和目标金属凹槽,使得该至少两个辐射 体和目标金属凹槽产生感应的交流信号。在该至少两个辐射体和目标金属凹槽产生感应的交流信号之后,该至少两个辐射体和目标金属凹槽底部可以分别与耦合体进行耦合,使得耦合体产生感应的交流信号。然后,耦合体可以通过馈电部向终端设备中的接收机输入该交流信号,从而可以使得终端设备接收到其它设备发送的5G毫米波信号。即终端设备可以通过本公开实施例提供的天线单元接收信号。
本公开实施例提供一种天线单元,由于耦合体与至少两个辐射体和目标属凹槽(也可以作为一个辐射体)均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和目标金属凹槽进行耦合,从而可以使得该至少两个辐射体和目标金属凹槽产生感应的交流信号,从而可以使得该至少两个辐射体和目标金属凹槽产生一定频率的电磁波。并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和目标金属凹槽产生的电磁波的频率也不同,如此可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段,从而可以提高天线单元的性能。
可选的,本公开实施例中,结合图2,如图3所示,目标金属凹槽可以包括第一金属凹槽201a和设置在第一金属凹槽201a底部的第二金属凹槽201b。
其中,M个馈电部202可以设置在第一金属凹槽201a底部,M个耦合体203和第一绝缘体204可以设置在第一金属凹槽201a内,M个耦合体中的每个耦合体203均可以与至少两个辐射体205和第二金属凹槽201b耦合。
本公开实施例中,通过将上述目标金属凹槽设置为两个金属凹槽,即上述第一金属凹槽和第二金属凹槽,并将上述M个馈电部设置在第一金属凹槽底部,以及将第一绝缘体和M个耦合体设置在第一金属凹槽内,且M个耦合体与第二金属凹槽耦合,可以使得这两个金属凹槽在天线单元中执行不同的功能,从而可以减小天线单元中的各个部件之间的干扰,例如可以减小在第二金属凹槽与M个耦合体耦合过程中,设置在第一金属凹槽内的部件造成的干扰。
可选的,本公开实施例中,第一金属凹槽的开口大于第二金属凹槽的开口。即第一金属凹槽的开口面积大于第二金属凹槽的开口面积。
本公开实施例中,如图3所示,由于在Z轴所指示的方向上,第二金属凹槽201b是在第一金属凹槽201a底部设置的,且第一金属凹槽201a的开口面积与第一金属凹槽201a底部面积相等,因此第一金属凹槽201a的开口可以大于第二金属凹槽201b的开口,如此可以使得第二金属凹槽201b不被第一金属凹槽201a遮挡。
当然,实际实现时,第一金属凹槽的开口还可以小于或等于第二金属凹槽的开口,具体可以根据实际使用需求确定,本公开实施例中不作限定。
本公开实施例中,由于第二金属凹槽设置在第一金属凹槽底部,且第二金属凹槽的开口小于第一金属凹槽的开口,因此可以简化天线单元的制造工艺。
可选的,本公开实施例中,第一金属凹槽和第二金属凹槽均可以为矩形凹槽。具体的,第一金属凹槽和第二金属凹槽均可以为正方形凹槽。
可选的,本公开实施例中,第一金属凹槽的开口的形状可以与第二金属凹槽的开口的形状相同,也可以与第二金属凹槽的开口的形状不同。具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,如图3所示,第一金属凹槽201a和第二金属凹槽201b的开口形状均可以 为正方形。
当然,实际实现时,上述第一金属凹槽的开口形状和第二金属凹槽的开口形状还可以为任意可能的形状,可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,如图3所示,上述M个馈电部202可以设置在第一金属凹槽201a底部、且贯穿第一金属凹槽201a底部。
需要说明的是,本公开实施例中,由于馈电部设置在第一金属凹槽底部、且贯穿第一金属凹槽底部,因此,图3中的馈电部202贯穿第一金属凹槽201a底部的部分是以虚线示意的。
具体的,实际实现时,如图3所示,本公开实施例中,馈电部202的第一端2020可以与耦合体203接触,馈电部202的第二端2021可以与终端设备中的一个信号源(例如终端设备中的5G信号源)连接。如此,终端设备中的信号源发出的交流信号可以通过馈电部传输到耦合体上,然后耦合体可以通过与上述至少两个辐射体和第二金属凹槽进行耦合,使得该至少两个辐射体和第二金属凹槽产生感应的交流信号,从而可以使得该至少两个辐射体和第二金属凹槽产生电磁波,如此,本公开实施例提供的天线单元可以将终端设备中的5G毫米波信号辐射出去。
本公开实施例中,由于终端设备可以通过馈电部将交流信号传输到耦合体上,且耦合体可以通过馈电部将交流信号传输到终端设备中,因此,可以通过将馈电部设置在第一金属凹槽底部,并贯穿第一金属凹槽底部的方式,使得馈电部与终端设备中的信号源连接。
可选的,本公开实施例中,上述M个耦合体中的每个耦合体可以为一个金属片。示例性的,该M个耦合体中的每个耦合体可以为一个铜片。
可选的,本公开实施例中,上述M个耦合体的形状可以为矩形等任意可能的形状。
当然,实际实现时,上述M个耦合体还可以为其它任意可能的材质和形状,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,M个耦合体可以为四个耦合体(即M=4),该四个耦合体可以组成两个耦合体组,每个耦合体组可以包括对称设置的两个耦合体,且一个耦合体组的对称轴与另一个耦合体组的对称轴正交。
其中,与第一馈电部连接的信号源和与第二馈电部连接的信号源的幅值相等,相位相差180度,第一馈电部和第二馈电部为与同一耦合体组中的两个耦合体分别电连接的馈电部。
本公开实施例中,由于天线单元中可以包括两个耦合体组,因此终端设备可以通过天线单元中的该两个耦合体组分别发送信号或接收信号,即可以通过本公开实施例提供的天线单元实现MIMO技术,如此可以提高天线单元的通信容量和通信速率。
需要说明的是,为了便于描述和理解,下述实施例中将上述两个耦合体组分为第一耦合体组和第二耦合体组。其中,第一耦合体组和第二耦合体组中分别包括两对称设置的两个耦合体,且第一耦合体组的对称轴与第二耦合体组的对称轴正交。
可选的,本公开实施例中,上述第一耦合体组和上述第二耦合体组可以为两个不同极化的耦合体组。具体的,第一耦合体组可以为一个第一极化的耦合体组,第二耦合体组可以为一个第二极化的耦合体组。
本公开实施例中,上述两个耦合体组可以为两个不同极化的耦合体组。
需要说明的是,本公开实施例中,上述两个耦合体组的极化形式可以为任意可能极化形式。具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,结合图3,如图4所示,上述第一耦合体组可以包括耦合体2030和耦合体2031,上述第二耦合体组可以包括耦合体2032和耦合体2033。其中,耦合体2030和耦合体2031形成的第一耦合体组可以为一个第一极化的耦合体组(例如垂直极化的耦合体组);耦合体2032和耦合体2033形成的第二耦合体组可以为一个第二极化的耦合体组(例如水平极化的耦合体组)。
可选的,本公开实施例中,上述两个耦合体组可以为两个不同极化的耦合体组,即上述第一极化和第二极化可以为不同方向的极化。
需要说明的是,本公开实施例中,上述两个耦合体组的极化形式可以为任意可能极化形式。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于上述第一耦合体组和上述第二耦合体组可以为两个不同极化的耦合体组,因此可以使得本公开实施例提供的天线单元可以形成一个双极化的天线单元,如此可以减小天线单元通信断线的概率,即可以提高天线单元的通信能力。
可选的,本公开实施例中,对于第一耦合体组中的两个耦合体,与该两个耦合体电连接两个馈电部连接的信号源的幅值可以相等,且与该两个耦合体电连接的两个馈电部连接的信号源的相位可以相差180度。
相应的,对于第二耦合体组中的两个耦合体,与该两个耦合体电连接的两个馈电部连接的信号源的幅值可以相等,且与该两个耦合体电连接的两个馈电部连接的信号源的相位可以相差180度。
本公开实施例中,当第一耦合体组中的一个耦合体处于工作状态时,第一耦合体组中的另一个耦合体也可以处于工作状态。相应的,当第二耦合体组中的一个耦合体处于工作状态时,第二耦合体组中的另一个耦合体也可以处于工作状态。即同一耦合体组中的耦合体可以是同时工作的。
可选的,本公开实施例中,当第一耦合体组中的耦合体处于工作状态时,第二耦合体组中的耦合体可能处于工作状态,也可能不处于工作状态。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于上述第一耦合体组与第二耦合体组正交分布,且与同一个耦合体组中的两个耦合体电连接两个馈电部连接的信号源的幅值相等,与两个耦合体电连接两个馈电部连接的信号源的相位相差180度,即本公开实施例提供的天线单元采用的馈电方式为差分正交馈电方式,因此可以进一步提高天线单元的通信容量和通信速率。
可选的,本公开实施例中,上述两个耦合体组可以位于同一平面上,且任意一个耦合体组中的耦合体可以分布在另一个耦合体组的对称轴上。
示例性的,如图4所示,第一耦合体组与第二耦合体组均位于第一平面S1上,即第一耦合体组中的耦合体2030和耦合体2031位于第一平面S1上,第二耦合体组中的耦合体2032和耦合体2033位于第一平面S1上。且如图4所示,第一耦合体组中的耦合体2030和耦合体2031位于第二耦合体组的对称轴(即第一对称轴)L1上,第二耦合体组中的耦合体2032和耦合体2033位于第一耦合体组的对称轴(即第二对称轴)L2上。
本公开实施例中,由于在上述M个耦合体中的每个耦合体均与辐射体(例如上述至少 两个辐射体或目标金属凹槽)的距离均相等的情况下,可以便于控制该M个耦合体与辐射体耦合的参数,例如耦合过程中产生的感应电流等,因此可以将上述两个耦合体组均设置在同一平面上,且将任意一个耦合体组中的耦合体设置在另一个耦合体组的对称轴上,可以使得不同耦合体与辐射体之间的距离均相等,如此便于控制本公开实施例提供的天线单元的工作状态。
可选的,本公开实施例中,上述第一绝缘体的形状可以与目标金属凹槽的开口形状相同,例如长方体或圆柱体等任意可能的形状。
需要说明的是,本公开实施例中,上述第一绝缘体的形状可以为任意可以满足实际使用需求的形状,本公开实施例对此不作具体限定,具体可以根据实际使用需求确定。
可选的,本公开实施例中,上述第一绝缘体的材料可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
可选的,本公开实施例中,上述第一绝缘体的材料可以塑胶或者泡沫等任意可能的材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,本公开实施例中,上述第一绝缘体的材料的相对介电常数可以为2.2,损耗角正切值可以为0.0009。
本公开实施例中,上述第一绝缘体不仅可以承载上述至少两个辐射体,还可以隔离该至少两个辐射体和M个耦合体,从而可以防止该至少两个辐射体和M个耦合体之间产生干扰。
需要说明的是,本公开实施例,在承载上述至少两个辐射体的前提下,第一绝缘体的材料的相对介电常数和损耗角正切值越小,该第一绝缘体对天线单元的辐射效果的影响越小。也就是说,上述第一绝缘体的材料的相对介电常数和损耗角正切值越小,第一绝缘体对天线单元的工作性能影响越小,天线单元的辐射效果越好。
可选的,本公开实施例中,上述至少两个辐射体可以包括第一辐射体和第二辐射体。
可以理解,上述第一辐射体与上述第二辐射体为不同的辐射体,第一辐射体的谐振频率与第二辐射体的谐振频率不同。
可选的,本公开实施例中,上述第一辐射体可以为多边形辐射体,上述第二辐射体可以为环状辐射体。
可选的,本公开实施例中,上述环状辐射体可以为矩形环状辐射体或正方形环状辐射体等任意可能形状的环状辐射体。上述多边形辐射体可以为矩形辐射体、正方形辐射体或六边形辐射体等任意可能的多边形辐射体。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述环状辐射体可以为封闭的环状辐射体,即该环状辐射体的各个边依次连续;上述环状辐射体也可以为半封闭的环状辐射体,即该环状辐射体的边部分连续。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述第二辐射体的面积可以大于上述第一辐射体的面积。
可选的,本公开实施例中,上述第一辐射体(即多边形辐射体)可以位于上述第二辐射体(即环状辐射体)的中间。
当然,实际实现时,上述第一辐射体的形状和第二辐射体的形状还可以为任意可能的形状,具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于不同的辐射体的谐振频率不同,因此当上述第一辐射体、第二辐射体和目标金属凹槽为不同的辐射体,且第一辐射体、第二辐射体和目标金属凹槽位于天线单元中的不同位置时,上述第一辐射体、第二辐射体和目标金属凹槽可以与上述M个耦合体耦合产生不同频率的电磁波,如此可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段,从而可以提高天线单元的性能。
可选的,本公开实施例中,上述第一辐射体的谐振频率可以为第一频率,上述第二辐射体的谐振频率可以为第二频率,上述目标金属凹槽的谐振频率可以为第三频率。
其中,上述第一频率可以大于上述第二频率,上述第二频率可以大于上述第三频率。
本公开实施例中,由于不同辐射体的谐振频率不同,因此上述第一辐射体、第二辐射体和目标金属凹槽的谐振频率可以为不同的频率。
可选的,本公开实施例中,上述第一频率可以属于第一频率范围,上述第二频率可以属于第二频率范围,上述第三频率可以属于第三频率范围。
其中,上述第一频率范围可以为37GHz-43GHz,上述第二频率范围可以为27GHz-30GHz,上述第三频率范围可以为24GHz-27GHz。
示例性的,假设上述第一辐射体为多边形辐射体,第二辐射体为环状辐射体,如图5所示,为本公开实施例提供的天线单元工作时,天线单元的反射系数图。其中,上述M个耦合体与目标金属凹槽耦合产生的电磁波的频率可以属于图5中的51所指示的频率范围,即目标金属凹槽的谐振频率属于图5中的51所指示的频率范围;上述M个耦合体与环状辐射体(即第二辐射体)耦合产生的电磁波的频率可以属于图5中的52所指示的频率范围,即环状辐射体的谐振频率属于图5中的52所指示的频率范围;上述M个耦合体与多边形辐射体(即第一辐射体)耦合产生的电磁波的频率可以属于图5中的53所指示的频率范围,即多边形辐射体的谐振频率属于图5中的53所指示的频率范围。并且由图5可见,耦合体与目标金属凹槽耦合可以产生低频的电磁波,耦合体与第一辐射体耦合可以产生临近低频的电磁波,如此本公开实施例提供的天线单元可以覆盖24.25GHz-29.5GHz(例如n257、n258和n261等)的频率范围,从而可以扩宽天线单元的低频带宽;耦合体与第二辐射体耦合可以产生高频的电磁波,如此本公开实施例提供的天线单元可以覆盖37GHz-43GHz(例如n259和n260等)的频率范围。综上,本公开实施例提供的天线单元可以覆盖大多数5G毫米波频段(例如n257、n258、n259、n260、n261等已经规划的5G毫米波频段),从而可以提高终端设备的天线性能。
需要说明的是,上述图5中的点a、点b、点c、点d和点e用于标记回波损耗的数值,由图5可见,点a、点b、点c、点d和点e标记的回波损耗的数值,均小于-6dB。即本公开实施例提供的天线单元可以满足实际使用需求。
可选的,本公开实施例中,天线单元还可以包括设置在该上述第一金属凹槽底部与第一绝缘体之间的第二绝缘体,上述M个耦合体可以承载在该第二绝缘体上。
示例性的,结合图3,如图6所示,天线单元20还可以包括设置在第一金属凹槽201a底部和第一绝缘体204之间的第二绝缘体206。其中,M个耦合体203承载在第二绝缘体206上。
本公开实施例中,上述第二绝缘体不仅可以承载上述M个耦合体,还可以隔离该M个耦合体和第二金属凹槽,从而可以方式该M个耦合体与第二金属凹槽之间产生干扰。
可选的,本公开实施例中,上述第二绝缘体的形状可以与目标金属凹槽的开口形状相同,例如长方体或圆柱体等任意可能的形状。
可选的,本公开实施例中,上述第二绝缘体的材料可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
可选的,本公开实施例中,上述第二绝缘体的材料可以与上述第一绝缘体的材料相同。
可选的,本公开实施例中,上述第二绝缘体的材料可以塑胶或者泡沫等任意可能的材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,本公开实施例中,上述第二绝缘体的材料的相对介电常数可以为2.5,损耗角正切值可以为0.001。
需要说明的是,本公开实施例中,上述第二绝缘体的形状可以为任意可以满足实际使用需求的形状,本公开实施例对此不作具体限定,具体可以根据实际使用需求确定。
需要说明的是,本公开实施例,在承载上述M个耦合体的前提下,第二绝缘体的材料的相对介电常数和损耗角正切值越小,该第二绝缘体对天线单元的辐射效果的影响越小。也就是说,上述第二绝缘体的材料的相对介电常数和损耗角正切值越小,第二绝缘体对天线单元的工作性能影响越小,天线单元的辐射效果越好。
可选的,本公开实施例中,上述至少两个辐射体中的至少一个辐射体可以与目标金属凹槽的开口所在的表面齐平。
可以理解,本公开实施例中,上述至少两个辐射体均可以与目标金属凹槽的开口所在表面齐平;或者,上述至少两个辐射体中的部分辐射体可以与目标金属凹槽的开口所在表面齐平;或者,上述至少两个辐射体中的一个辐射体可以与目标金属凹槽的开口所在表面齐平。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,当上述目标金属凹槽包括第一金属凹槽和第二金属凹槽时,上述至少两个辐射体中的至少一个辐射体可以与第一金属凹槽的开口所在表面齐平。
示例性的,假设上述至少两个辐射体为两个辐射体,分别为第一辐射体和第二辐射体。如图7所示,第一辐射体2050与第二辐射体2051均与第一金属凹槽201a的开口所在表面齐平;如图8所示,第一辐射体2050与第一金属凹槽201a的开口所在表面齐平,第二辐射体2051未与第一金属凹槽201a的开口所在表面齐平。
需要说明的是,如图7(或图8)所示,第一辐射体2050和第二辐射体2051承载在第一绝缘体204上,M个耦合体承载在第二绝缘体206上,第二绝缘体206位于第一绝缘体204与第一金属凹槽201a底部之间;馈电部202设置在第一金属凹槽201a底部,且贯穿第一金属凹槽201a底部,以及馈电部202穿过第二绝缘体206与耦合体203电连接。
当然,实际实现时,上述至少两个辐射体还可以位于上述目标金属凹槽内的任意可能的位置,具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于辐射体所在的位置不同,天线单元的性能也可能不同,因此可以根据实际使用需求设置上述至少两个辐射体的位置,从而可以使得天线单元的设计更加灵活。
可选的,本公开实施例中,天线单元还可以包括设置在第二金属凹槽底部的金属凸起。
可选的,本公开实施例中,上述金属凸起可以设置在第二金属凹槽底部的中央。
当然,实际实现时,上述金属凸起还可设置在天线单元中任意可能的位置,具体可以 根据实际使用需求确定,本公开实施例不作限定。
示例性的,结合图3,如图9所示,天线单元20还可以包括设置在第二金属凹槽201b底部的金属凸起207。
本公开实施例中,上述金属凸起可以用于调节天线单元的阻抗,从而调节上述M个耦合体与至少两个辐射体和第二金属凹槽耦合产生的电磁波的频率。
可选的,本公开实施例中,上述金属凸起的形状可以为长方体、正方体或圆柱体。
当然,实际实现时,上述金属凸起的形状还可以为其他任意可能的形状,本公开实施例不做限定。
下面再结合图10,对本公开实施例提供的天线单元进行进一步示例性的说明。
示例性的,如图10所示,为本公开实施例提供的天线单元在Z轴正向(如图3所示的坐标系)上的俯视图。其中,第一绝缘体204位于第一金属凹槽201a内(可以理解,第一金属凹槽201a包围第一绝缘体204);第一绝缘体204承载有第一辐射体2050和第二辐射体2051,且第一辐射体2050和第二辐射体2051均与第一金属凹槽201a开口所在表面齐平。第一绝缘体204与第一金属凹槽201a底部之间设置有4个耦合体(即耦合体2030、耦合体2031、耦合体2032和耦合体2033);第二金属凹槽(未在图10中示出)底部设置有金属凸起207。具体的,由于该4个耦合体在Z轴方向上与第一辐射体2050和第二辐射体2051有重叠的部分,因此该4个耦合体可以与第一辐射体2050和第二辐射体2051耦合;由于该4个耦合体在Z轴方向上与金属凸起207无重叠部分,可以避免金属凸起207与该4个耦合体耦合,从而可以使得金属凸起207调节天线单元的阻抗,进而可以调节天线单元覆盖的频率范围。
需要说明的是,由于在Z轴反向上俯视本公开实施例提供的天线单元时,上述耦合体和金属凸起均是不可见的,因此为了准确地示意各个部件之间的关系,上述图10中的耦合体(包括耦合体2030、耦合体2031、耦合体2032和耦合体2033)和金属凸起207均是以虚线示意的。
本公开实施例中,由于上述至少两个辐射体和第二金属凹槽与M个耦合体耦合所产生的电磁波的频率天线单元的阻抗有关,因此可以通过在第二金属凹槽底部设置上述金属凸起,调节天线单元的阻抗,如此可以调节至少两个辐射体和第二金属凹槽与该M个耦合体耦合产生的电磁波的频率,从而可以使得天线单元覆盖的频段处于5G毫米波频段。
可选的,本公开实施例中,天线单元还可以包括设置在上述第二金属凹槽内的第三绝缘体,该第三绝缘体可以围绕在上述金属凸起周围。
其中,上述第三绝缘体的相对介电常数与空气的相对介电常数的差值可以在预设范围内。
本公开实施例中,由于上述金属凸起设置在上述第二金属凹槽底部,因此可以通过在第二金属凹槽内设置第三绝缘体,隔离第二金属凹槽(例如第二金属凹槽底部、侧壁等部位)与该金属凸起,从而可以避免第二金属凹槽与该金属凸起之间互相干扰。
可选的,本公开实施例中,上述第三绝缘体可以为相对介电常数为1或接近于1(即空气的相对介电常数)的泡沫材料或者塑胶材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,上述预设范围可以根据天线性能确定,本公开实施例不作限定。
可选的,本公开实施例中,上述第二金属凹槽中也可以不填充任何绝缘体。可以理解,在第二金属凹槽中不填充任何绝缘体的情况下,该第二金属凹槽中填充的介质即为空气(相对介电常数为1)。
本公开实施例中,上述第三绝缘体可以隔离第二金属凹槽和上述金属凸起,以使得这两者互不干扰,从而可以使得天线单元的性能更加稳定。
可选的,本公开实施例中,结合图7或图8所示,第一金属凹槽底部可以设置有贯穿第一金属凹槽底部的M个通孔208,上述M个馈电部中的每个馈电部202分别设置在一个通孔208中。
可选的,本公开实施例中,上述M个通孔可以为直径相同的通孔。
可选的,本公开实施例中,上述M个通孔可以均匀分布在上述第一金属凹槽底部。具体的分布方式可以根据上述M个耦合体在第一金属凹槽中的分布方式确定,本公开实施例不作限定。
本公开实施例中,可以通过在上述第一金属凹槽底部设置贯穿上述第一金属凹槽底部的通孔,并将上述M个馈电部设置在这些通孔中的方式,使得M个馈电部设置在第一金属凹槽的底部、且贯穿第一金属凹槽底部,如此可以简化馈电部贯穿第一金属凹槽的工艺。
可选的,本公开实施例中,上述每个通孔内可以设置有第四绝缘体,该第四绝缘体可以包裹上述馈电部。
本公开实施例中,上述第四绝缘体包裹上述馈电部,可以使得馈电部固定在通孔中。
本公开实施例中,上述第四绝缘体可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
示例性的,上述第四绝缘体可以为泡沫材料或者塑胶材料等任意可能的材料。
本公开实施例中,一方面,由于通孔的直径可能大于馈电部的直径,因此当馈电部设置在通孔中时,该馈电部可能无法固定在该通孔中,因此可以通过在通孔中设置上述第四绝缘体,且该第四绝缘体包裹馈电部的方式,使得馈电部固定在通孔中。另一方面,由于第一金属凹槽和馈电部均为金属材质,在天线单元工作的过程中,两者可能会产生干扰,因此可以通过在通孔中增加上述第四绝缘体的方式隔离馈电部与第一金属凹槽,使得馈电部与第一金属凹槽绝缘,从而可以使得终端设备的天线性能更加稳定。
需要说明的是,本公开实施例中,上述各个附图所示的天线单元均是以结合本公开实施例中的一个附图为例示例性的说明的。具体实现时,上述各个附图所示的天线单元还可以结合上述实施例中示意的其它可以结合的任意附图实现,此处不再赘述。
本公开实施例提供一种终端设备,该终端设备可以包括上述如图2至图10中任一实施例提供的天线单元。对于天线单元的描述具体可以参见上述实施例中对天线单元的相关描述,此处不再赘述。
本公开实施例中的终端设备可以为移动终端,也可以为非移动终端。示例性的,移动终端可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动终端可以为个人计算机(personal computer,PC)或电视机(television,TV)等,本公开实施例不作具体限定。
可选的,本公开实施例中,终端设备的壳体中可以设置有至少一个第一凹槽,每个天 线单元可以设置在一个第一凹槽内。
本公开实施例中,可以通过在终端设备的壳体中设置上述至少一个第一凹槽,并将本公开实施例提供的天线单元设置在该第一凹槽内,实现在终端设备中集成至少一个本公开实施例提供的天线单元。
可选的,本公开实施例中,上述第一凹槽可以设置在终端设备的壳体的边框中。
本公开实施例中,如图11所示,终端设备3可以包括壳体30。壳体30可以包括第一金属边框31,与第一金属边框31连接的第二金属边框32,与第二金属边框32连接的第三金属边框33,与第三金属边框33和第一金属边框31均连接的第四金属边框34。终端设备3还可以包括与第二金属边框32和第四金属边框34均连接的地板35,以及设置在第三金属边框33、部分第二金属边框32和部分第四金属边框34所围成的区域的第一天线36(具体的,第一天线也可以设置在金属边框中)。其中,第二金属边框32上设置有第一凹槽37。如此,本公开实施例提供的天线单元可以设置该第一凹槽内,从而可以使得终端设备中包括本公开实施例提供的天线单元形成的阵列天线模组,进而可以实现在终端设备中集成本公开实施例提供的天线单元的设计。
其中,上述地板可以为终端设备中的PCB或金属中框,或者为终端设备的显示屏等任意可以作为虚拟地的部分。
需要说明的是,本公开实施例中,上述第一天线可以为终端设备的第二代移动通信系统(即2G系统)、第三代移动通信系统(即3G系统),以及第四代移动通信系统(即4G系统)等系统的通信天线。上述集成在终端设备中的天线单元(凹槽结构和位于该凹槽结构内的目标绝缘层形成的天线单元)可以为终端设备的5G系统的天线。
可选的,本公开实施例中,上述第一金属边框、第二金属边框、第三金属边框和第四金属边框可以依次首尾连接形成封闭式边框;或者,上述第一金属边框、第二金属边框、第三金属边框和第四金属边框中的部分边框可以连接形成半封闭式边框;或者,上述第一金属边框、第二金属边框、第三金属边框和第四金属边框可以互不连接形成开放式边框。具体可以根据实际使用需求确定,本公开实施例不作限定。
需要说明的是,上述图11所示的壳体30包括的边框是以第一金属边框31、第二金属边框32、第三金属边框33和第四金属边框34依次首尾连接形成的封闭式边框为例进行示例性的说明的,其并不对本公开实施例造成任何限定。对于上述第一金属边框、第二金属边框、第三金属边框和第四金属边框之间以其它连接方式(部分边框连接或各个边框互不连接)形成的边框,其实现方式与本公开实施例提供的实现方式类似,为避免重复,此处不再赘述。
可选的,本公开实施例中,上述至少一个第一凹槽可以设置壳体的同一边框中,也可以设置在不同的边框中。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,可以通过在终端设备的壳体上设置至少一个第一凹槽,并在每个第一凹槽中设置一个本公开实施例提供的天线单元,以使得终端设备中可以集成至少一个本公开实施例提供的天线单元,以提高终端设备的天线性能。
可选的,本公开实施例中,上述目标金属凹槽可以为终端设备的壳体的一部分。可以理解,该目标金属凹槽可以为终端设备的壳体上设置的凹槽。
示例性的,如图12所示,本公开实施例提供的终端设备3的壳体30中可以设置有至 少一个目标金属凹槽201,第一绝缘体、M个耦合体、M个馈电部以及承载在第一绝缘体上的至少两个辐射体均设置在该目标金属凹槽内(实际中,图12示意的终端设备的角度,目标金属凹槽不可见)。
可选的,本公开实施例中,一个目标金属凹槽可以设置在壳体的第一金属边框、第二金属边框、第三金属边框或第四金属边框中。具体可以根据实际使用需求确定,本公开实施例不作限定。
可以理解,在上述目标金属凹槽设置在壳体的边框(例如上述第一金属边框等)的情况下,本公开实施例中的目标金属凹槽构中包括的目标金属凹槽的侧壁、目标金属凹槽底部等部分均为终端设备的一部分,具体可以为本公开实施例提供的壳体的边框的一部分。
需要说明的是,本公开实施例中,上述图12均是以上述目标金属凹槽201设置在壳体30的第一金属边框31上,且目标金属凹槽201的开口方向为如图12所示的坐标系的Z轴正向为例进行示例性说明的。
可以理解,本公开实施例中,如图12所示,当上述目标金属凹槽设置在壳体的第二金属边框中时,目标金属凹槽的开口方向可以X轴正向;当上述目标金属凹槽设置在壳体的第三金属边框上时,目标金属凹槽的开口方向可以为Z轴反向;当上述目标金属凹槽结构设置在壳体的第四金属边框上时,目标金属凹槽的开口方向可以为X轴反向。
可选的,本公开实施例中,终端设备的壳体中可以设置目标金属凹槽,并在每个目标金属凹槽内设置第一绝缘体等部件,以使得终端设备中可以集成多个本公开实施例提供的天线单元,如此这些天线单元可以形成天线阵列,从而可以提高终端设备的天线性能。
本公开实施例中,如图13所示,为本公开实施例提供的天线单元辐射频率为28GHz的信号(即天线单元辐射低频信号)时,天线单元辐射的方向图;如图14所示,为本公开实施例提供的天线单元辐射频率为39GHz的信号(即天线单元辐射高频信号)时,天线单元辐射的方向图。由图13和图14可见,辐射高频信号时的最大辐射方向,与辐射低频信号时的最大辐射方向相同,因此本公开实施例提供的天线单元适合组成天线阵列。如此,终端设备可以设置至少两个第一凹槽,并在每个第一凹槽中设置一个本公开实施例提供的天线单元,从而可以使得终端设备中包括该天线阵列,进而可以提高终端设备的天线性能。
可选的,本公开实施例中,在终端设备中集成多个本公开实施例提供的天线单元的情况下,相邻两个天线单元之间间隔的距离(即相邻两个目标金属凹槽之间间隔的距离)可以根据天线单元的隔离度和该多个天线单元形成的天线阵列的扫描角度确定。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,终端设备的壳体中设置的目标金属凹槽的数量可以根据目标金属凹槽结构的尺寸和终端设备的壳体的尺寸确定。本公开实施例对此不作限定。
示例性的,如图15所示,为本公开实施例提供的壳体上设置的多个天线单元在Z轴正向(如图12所示的坐标系)上的仰视图。如图15所示,第三金属边框33上设置有本公开实施例提供的多个天线单元(每个天线单元由壳体上的目标金属凹槽和位于该目标金属凹槽内的第一绝缘体等部件形成)。其中,第一绝缘体204设置在目标金属凹槽(未在图15中示出)中,至少两个辐射体205承载在第一绝缘层204中。
需要说明的是,本公开实施例中,上述图15中仅是以第三金属边框上设置的4个天线单元为例进行示例性说明的,其并不对本公开实施例形成任何限定。可以理解,具体实 现时,第三金属边框上设置的天线单元的数量可以根据实际使用需求确定,本公开实施例不做任何限定。
本公开实施例提供一种终端设备,该终端设备可以包括天线单元,天线单元可以包括目标金属凹槽,设置在目标金属凹槽底部的M个馈电部,设置在目标金属凹槽内的M个耦合体和第一绝缘体,以及第一绝缘体承载的至少两个辐射体;其中,该M个馈电部与目标金属凹槽绝缘,该M个耦合体位于目标金属凹槽底部和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和目标金属凹槽耦合,不同辐射体的谐振频率不同,M为正整数。通过该方案,由于耦合体与至少两个辐射体和目标金属凹槽(也可以作为一个辐射体)均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和目标金属凹槽进行耦合,从而可以使得该至少两个辐射体和目标金属凹槽产生感应的交流信号,从而可以使得该至少两个辐射体和目标金属凹槽产生一定频率的电磁波。并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和目标金属凹槽产生的电磁波的频率也不同,如此可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段,从而可以提高天线单元的天线性能,进而可以提高终端设备的天线性能。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (17)

  1. 一种天线单元,所述天线单元包括目标金属凹槽,设置在所述目标金属凹槽底部的M个馈电部,设置在所述目标金属凹槽内的M个耦合体和第一绝缘体,以及所述第一绝缘体承载的至少两个辐射体;
    其中,所述M个馈电部与所述目标金属凹槽绝缘,所述M个耦合体位于所述目标金属凹槽底部和所述第一绝缘体之间,且所述M个馈电部中的每个馈电部分别与一个耦合体电连接,以及所述M个耦合体中的每个耦合体均与所述至少两个辐射体和所述目标金属凹槽耦合,不同辐射体的谐振频率不同,M为正整数。
  2. 根据权利要求1所述的天线单元,其中,所述目标金属凹槽包括第一金属凹槽和设置在所述第一金属凹槽底部的第二金属凹槽;
    其中,所述M个馈电部设置在所述第一金属凹槽底部,所述M个耦合体和所述第一绝缘体设置在所述第一金属凹槽内,所述每个耦合体均与所述至少两个辐射体和所述第二金属凹槽耦合。
  3. 根据权利要求2所述的天线单元,其中,所述第一金属凹槽的开口大于所述第二金属凹槽的开口。
  4. 根据权利要求2所述的天线单元,其中,所述M个馈电部设置在所述第一金属凹槽底部、且贯穿所述第一金属凹槽底部。
  5. 根据权利要求1至4中任一项所述的天线单元,其中,所述M个耦合体为四个耦合体,所述四个耦合体组成两个耦合体组,每个耦合体组包括对称设置的两个耦合体,且一个耦合体组的对称轴与另一个耦合体组的对称轴正交;
    其中,与第一馈电部连接的信号源和与第二馈电部连接的信号源的幅值相等,相位相差180度,所述第一馈电部和所述第二馈电部为与同一耦合体组中的两个耦合体分别电连接的馈电部。
  6. 根据权利要求5所述的天线单元,其中,所述两个耦合体组位于同一平面上,且任意一个耦合体组中的耦合体分布在另一个耦合体组的对称轴上。
  7. 根据权利要求1所述的天线单元,其中,所述至少两个辐射体包括第一辐射体和第二辐射体。
  8. 根据权利要求7所述的天线单元,其中,所述第一辐射体为多边形辐射体,所述第二辐射体为环状辐射体。
  9. 根据权利要求7或8所述的天线单元,其中,所述第一辐射体的谐振频率为第一频率,所述第二辐射体的谐振频率为第二频率,所述目标金属凹槽的谐振频率为第三频率;
    其中,所述第一频率大于所述第二频率,所述第二频率大于所述第三频率。
  10. 根据权利要求9所述的天线单元,其中,所述第一频率属于第一频率范围,所述第二频率属于第二频率范围,所述第三频率属于第三频率范围;
    其中,所述第一频率范围为37GHz-43GHz,所述第二频率范围为27GHz-30GHz,所述第三频率范围为24GHz-27GHz。
  11. 根据权利要求2至4中任一项所述的天线单元,其中,所述天线单元还包括设置在所述第一金属凹槽底部与所述第一绝缘体之间的第二绝缘体,所述M个耦合体 承载在所述第二绝缘体上。
  12. 根据权利要求1所述的天线单元,其中,所述至少两个辐射体中的至少一个辐射体与所述目标金属凹槽的开口所在的表面齐平。
  13. 根据权利要求2至4中任一项所述的天线单元,其中,所述天线单元还包括设置在所述第二金属凹槽底部的金属凸起。
  14. 根据权利要求13所述的天线单元,其中,所述天线单元还包括设置在所述第二金属凹槽内的第三绝缘体,所述第三绝缘体围绕在所述金属凸起的周围;
    其中,所述第三绝缘体的相对介电常数与空气的相对介电常数的差值在预设范围内。
  15. 一种终端设备,所述终端设备包括至少一个如权利要求1至14中任一项所述的天线单元。
  16. 根据权利要求15所述的终端设备,其中,所述终端设备的壳体中设置有至少一个第一凹槽,每个天线单元设置在一个第一凹槽内。
  17. 根据权利要求15所述的终端设备,其中,所述天线单元中的目标金属凹槽为所述终端设备壳体的一部分。
PCT/CN2020/090102 2019-05-22 2020-05-13 天线单元及终端设备 WO2020233478A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217038168A KR102589691B1 (ko) 2019-05-22 2020-05-13 안테나 유닛 및 단말 장비
JP2021567041A JP7313479B2 (ja) 2019-05-22 2020-05-13 アンテナユニット及び端末機器
EP20809128.0A EP3975332A4 (en) 2019-05-22 2020-05-13 ANTENNA UNIT AND TERMINAL DEVICE
US17/531,742 US12021316B2 (en) 2019-05-22 2021-11-20 Antenna unit and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430964.2A CN110212283B (zh) 2019-05-22 2019-05-22 一种天线单元及终端设备
CN201910430964.2 2019-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/531,742 Continuation US12021316B2 (en) 2019-05-22 2021-11-20 Antenna unit and terminal device

Publications (1)

Publication Number Publication Date
WO2020233478A1 true WO2020233478A1 (zh) 2020-11-26

Family

ID=67788222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090102 WO2020233478A1 (zh) 2019-05-22 2020-05-13 天线单元及终端设备

Country Status (6)

Country Link
US (1) US12021316B2 (zh)
EP (1) EP3975332A4 (zh)
JP (1) JP7313479B2 (zh)
KR (1) KR102589691B1 (zh)
CN (1) CN110212283B (zh)
WO (1) WO2020233478A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212283B (zh) * 2019-05-22 2021-06-08 维沃移动通信有限公司 一种天线单元及终端设备
CN110718760B (zh) * 2019-10-24 2020-12-25 珠海格力电器股份有限公司 天线单元以及折叠屏终端设备
CN110649384B (zh) * 2019-10-30 2021-04-23 维沃移动通信有限公司 一种天线及电子设备
CN110828988B (zh) * 2019-10-31 2023-04-11 维沃移动通信有限公司 一种天线单元及电子设备
CN110828986A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN110829021A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN110828987A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN110931944A (zh) * 2019-12-24 2020-03-27 天通凯美微电子有限公司 一种集成毫米波阵列天线的电子设备
CN113540808B (zh) * 2020-04-22 2022-11-22 华为技术有限公司 一种电子设备及天线装置
CN111740219A (zh) * 2020-07-03 2020-10-02 维沃移动通信有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150575A1 (en) * 2003-02-03 2004-08-05 Silver Spring Networks, Inc. Flush-mounted antenna and transmission system
US20070080864A1 (en) * 2005-10-11 2007-04-12 M/A-Com, Inc. Broadband proximity-coupled cavity backed patch antenna
CN101740870A (zh) * 2009-12-28 2010-06-16 中国电子科技集团公司第二十六研究所 小型化单馈电点双频双极化微带天线
CN105990651A (zh) * 2015-03-05 2016-10-05 中兴通讯股份有限公司 双极化天线
CN110212283A (zh) * 2019-05-22 2019-09-06 维沃移动通信有限公司 一种天线单元及终端设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069442A1 (en) * 2003-12-31 2005-07-28 Bae Systems Information And Electronic Systems_Integration Inc. Cavity embedded meander line loaded antenna and method and apparatus for limiting vswr
EP1744399A1 (en) * 2005-07-12 2007-01-17 Galileo Joint Undertaking Multi-band antenna for satellite positioning system
JP4296282B2 (ja) * 2005-11-24 2009-07-15 国立大学法人埼玉大学 多周波共用マイクロストリップアンテナ
US7541982B2 (en) * 2007-03-05 2009-06-02 Lockheed Martin Corporation Probe fed patch antenna
TWI334241B (en) * 2007-05-10 2010-12-01 Asustek Comp Inc Antenna
US8102321B2 (en) * 2009-03-10 2012-01-24 Apple Inc. Cavity antenna for an electronic device
JP2010220047A (ja) * 2009-03-18 2010-09-30 Mitsubishi Electric Corp アンテナ装置及びアレーアンテナ装置
CN201840424U (zh) 2010-10-29 2011-05-25 熊猫通用机械集团有限公司 一种洗地刷
TW201427181A (zh) 2012-12-25 2014-07-01 Compal Electronics Inc 多頻天線
KR20150054272A (ko) * 2013-11-11 2015-05-20 한국전자통신연구원 이동 통신 기지국용 이중 편파 안테나
CN203983480U (zh) * 2014-07-30 2014-12-03 中国电子科技集团公司第五十四研究所 一种宽带宽波束圆极化天线
TWI628860B (zh) * 2016-07-06 2018-07-01 新加坡商雲網科技新加坡有限公司 三極化的mimo天線系統
CN106450748A (zh) * 2016-11-08 2017-02-22 广东盛路通信科技股份有限公司 腔体耦合缝隙辐射单元
US11336016B2 (en) * 2017-10-17 2022-05-17 Sony Group Corporation Cavity supported patch antenna
CN108400424A (zh) * 2018-03-30 2018-08-14 深圳市中天迅通信技术股份有限公司 一种金属外框智能电视天线
CN109119757B (zh) * 2018-04-27 2020-11-06 咏业科技股份有限公司 多频天线装置
CN109037906A (zh) * 2018-06-04 2018-12-18 深圳市飞荣达科技股份有限公司 一种基于塑胶电镀工艺的双极化天线
CN109066055B (zh) 2018-09-28 2020-10-20 维沃移动通信有限公司 一种终端设备
CN111755805B (zh) * 2019-03-28 2022-02-18 Oppo广东移动通信有限公司 天线模组和电子设备
KR20220066536A (ko) * 2020-11-16 2022-05-24 삼성전기주식회사 안테나 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150575A1 (en) * 2003-02-03 2004-08-05 Silver Spring Networks, Inc. Flush-mounted antenna and transmission system
US20070080864A1 (en) * 2005-10-11 2007-04-12 M/A-Com, Inc. Broadband proximity-coupled cavity backed patch antenna
CN101740870A (zh) * 2009-12-28 2010-06-16 中国电子科技集团公司第二十六研究所 小型化单馈电点双频双极化微带天线
CN105990651A (zh) * 2015-03-05 2016-10-05 中兴通讯股份有限公司 双极化天线
CN110212283A (zh) * 2019-05-22 2019-09-06 维沃移动通信有限公司 一种天线单元及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SETLEM SAI SRUTHI ET AL.: "Design of a Dual-Polarized Antenna Using Square Backed Cavity", 2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 17 March 2017 (2017-03-17), pages 1 - 4, XP033311172 *

Also Published As

Publication number Publication date
JP7313479B2 (ja) 2023-07-24
US20220085501A1 (en) 2022-03-17
EP3975332A1 (en) 2022-03-30
US12021316B2 (en) 2024-06-25
EP3975332A4 (en) 2022-07-20
KR20210149189A (ko) 2021-12-08
KR102589691B1 (ko) 2023-10-16
CN110212283B (zh) 2021-06-08
CN110212283A (zh) 2019-09-06
JP2022531808A (ja) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
WO2020233478A1 (zh) 天线单元及终端设备
WO2020233476A1 (zh) 天线单元及终端设备
WO2021104191A1 (zh) 天线单元及电子设备
WO2018028162A1 (zh) 一种去耦组件、多天线系统及终端
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2021083217A1 (zh) 天线单元及电子设备
WO2021083222A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083219A1 (zh) 天线单元及电子设备
CN210576433U (zh) 一种天线单元及电子设备
CN110600858A (zh) 一种天线单元及终端设备
US12142853B2 (en) Antenna unit and terminal device
US20240313406A1 (en) Antenna assembly and electronic device
CN110600866A (zh) 一种天线单元及终端设备
CN110600867A (zh) 一种天线单元及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567041

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217038168

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809128

Country of ref document: EP

Effective date: 20211222