Nothing Special   »   [go: up one dir, main page]

WO2020221265A1 - 无创人体血液组分浓度的监测方法及设备 - Google Patents

无创人体血液组分浓度的监测方法及设备 Download PDF

Info

Publication number
WO2020221265A1
WO2020221265A1 PCT/CN2020/087618 CN2020087618W WO2020221265A1 WO 2020221265 A1 WO2020221265 A1 WO 2020221265A1 CN 2020087618 W CN2020087618 W CN 2020087618W WO 2020221265 A1 WO2020221265 A1 WO 2020221265A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
concentration
blood
light
incident light
Prior art date
Application number
PCT/CN2020/087618
Other languages
English (en)
French (fr)
Inventor
丁勇
丁大路
丁大威
江蓉芝
江小海
Original Assignee
上海爱德赞医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海爱德赞医疗科技有限公司 filed Critical 上海爱德赞医疗科技有限公司
Publication of WO2020221265A1 publication Critical patent/WO2020221265A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the invention belongs to the technical field of blood component concentration detection, and in particular relates to a method and equipment for non-invasive human blood component concentration monitoring.
  • the invention aims to provide a simple and fast non-invasive monitoring method and equipment for the concentration of human blood components.
  • the present invention provides the following technical solutions:
  • the first method a method for monitoring the concentration of blood components in a non-invasive capillary artery, which sequentially includes the following steps:
  • step (1) Repeat step (1) until the incident of n+1+m beams of different wavelengths of incident light is completed, and obtain the light intensity of n+1+m beams of incident light of different wavelengths through human organs at the peaks and valleys of the pulse;
  • I ⁇ k,max , I ⁇ k,min are the light intensity of incident light with a wavelength of ⁇ k through human organs at the peak and trough of the pulse , respectively;
  • ⁇ l is the blood thickness of the capillary blood flow entering the test light path between the peaks and troughs of the pulse;
  • C i is the component concentration of component i in finger capillary blood, where i is 1 ⁇ n;
  • ⁇ i, ⁇ k are the extinction coefficients of component i to incident light of wavelength ⁇ k , which are constants;
  • Equation 1 concentration of n capillary blood components in Equation 1 and the thickness of blood entering the test light path between the capillary blood flow and the pulse wave peak and trough of the incident light.
  • step (6) Compare whether the concentration of the n capillary blood components obtained in step (4) is within the normal range, if not, an alarm is issued.
  • the method for displaying the concentration of n capillary blood components on the display screen is as follows: display the concentration of human blood components on the horizontal axis and the vertical axis; after step (6), return to step (1) for capillary artery Continuous monitoring of blood component concentration.
  • the human organs include fingers, toes, and ears.
  • the second type non-invasive monitoring method of human blood component concentration, including the following steps in sequence:
  • T1 shoot incident light with a wavelength of ⁇ to the human organ, and collect the light intensity I ⁇ (t) of the incident light passing through the human organ at a certain time t;
  • l(t) is the blood thickness of the human organ on the test light path at time t;
  • C i is the component concentration of component i in human blood, with n components, where i is 1 ⁇ n;
  • ⁇ i, ⁇ is the extinction coefficient of component i to incident light of wavelength ⁇ , which is a constant;
  • D ⁇ (t) is the value of the logarithm of the light intensity of the components other than blood passing through the human organ on the test light path at time t; assume that D ⁇ (t) is a basically constant amount in a short time;
  • step (T2) Repeat step (T1) quickly until the incident of n+1+m beams of incident light of different wavelengths is completed, the wavelength is ⁇ k, and the light intensity I ⁇ k of n+1+m beams of incident light of different wavelengths through human organs is obtained.
  • K 1,2,...,n+1+m; m ⁇ 0;
  • logI ⁇ 1 (t) ( ⁇ 1, ⁇ 1 C 1 + ⁇ 2, ⁇ 1 C 2 +...+ ⁇ n, ⁇ 1 C n )l(t)+D ⁇ 1 (t)
  • logI ⁇ 2 (t) ( ⁇ 1, ⁇ 2 C 1 + ⁇ 2, ⁇ 2 C 2 +...+ ⁇ n, ⁇ 2 C n )l(t)+D ⁇ 2 (t)
  • logI ⁇ n (t) ( ⁇ 1, ⁇ n C 1 + ⁇ 2, ⁇ n C 2 +...+ ⁇ n, ⁇ n C n )l(t)+D ⁇ n (t)
  • logI ⁇ k (t) ( ⁇ 1, ⁇ k C 1 + ⁇ 2, ⁇ k C 2 +...+ ⁇ n, ⁇ k C n )l(t)+D ⁇ k (t)
  • logI ⁇ n+1+m (t) ( ⁇ 1, ⁇ n+1+m C 1 + ⁇ 2, ⁇ n+1+m C 2 +...+ ⁇ n, ⁇ n+1+m C n )l( t)+D ⁇ n+1+m (t);
  • the joint equations A has n+1+m equations, and there are n+1 unknowns, that is, l(t) and n Ci; since m ⁇ 0, the joint equations A can be solved by solving the joint equation A to obtain n individuals Blood component concentration Ci;
  • step (T5) Display the concentration of n human blood components obtained in step (T4) on the display screen;
  • the method of displaying the concentration of human blood components on the screen is as follows: display the concentration of human blood components on the horizontal axis and the vertical axis; after step (T6), return to step (T1) for human blood components Continuous monitoring of concentration.
  • the solution in the step (T4) adopts the least square calculation method or neural network calculation method of pulse wave information.
  • the human organs include fingers, toes, ears, and combinations thereof.
  • the invention also discloses a monitoring device using the above monitoring method, which includes a light collection unit, a signal processing unit, a display unit, a wireless transmission unit and a user terminal.
  • the light collection unit includes a multi-wavelength light source, a light intensity sensor, and a light source and The human organ containing cavity between the light intensity sensor.
  • the light intensity sensor transmits the received light signal to the signal processing unit.
  • the signal processing unit transmits the concentration signal of the human blood component to the display unit for display. At the same time, the signal processing unit will The concentration signal of human blood components is transmitted to the user terminal through the wireless transmission unit, and the user terminal can be a mobile phone or a computer.
  • the human blood multi-component concentration such as blood oxygen, blood sugar, cholesterol, blood lipids, etc.
  • the test method has high accuracy and can be realized Monitoring function.
  • the device of the present invention can realize the monitoring of human blood component concentration, is convenient to use, convenient to carry, and has high monitoring accuracy.
  • Figure 1 is a schematic diagram of the change of light intensity after incident light passes through human organs
  • Figure 2 is a schematic diagram of a non-invasive human blood component concentration monitoring device
  • Figure 3 is a schematic diagram of the structure of a non-invasive human blood component concentration monitoring device
  • Figure 4 is a schematic diagram of the structure of a multi-wavelength light source
  • Figure 5 is a schematic diagram of the light intensity sensor structure.
  • the invention discloses a non-invasive monitoring method for the concentration of human blood components, which specifically includes the following steps:
  • T1 shoot incident light with a wavelength of ⁇ to the human organ, and collect the light intensity I ⁇ (t) of the incident light passing through the human organ at a certain time t;
  • l(t) is the blood thickness of the human organ on the test light path at time t;
  • C i is the component concentration of component i in the human blood of the finger, with n components, where i is 1 ⁇ n;
  • ⁇ i, ⁇ is the extinction coefficient of component i to incident light of wavelength ⁇ , which is a constant;
  • D ⁇ (t) is the value of the logarithm of the light intensity of components other than blood (such as skin, tissue) passing through human organs on the test light path at time t; assume a short period of time (such as within a pulse cycle) , D ⁇ (t) is a basically constant quantity;
  • step (T2) Repeat step (T1) quickly, until the incident light of n+1+m beams of different wavelengths is completed, the wavelength is ⁇ k, and the light intensity I ⁇ k of n+1+m beams of incident light of different wavelengths through human organs is obtained.
  • K 1,2,...,n+1+m; m ⁇ 0;
  • logI ⁇ 1 (t) ( ⁇ 1, ⁇ 1 C 1 + ⁇ 2, ⁇ 1 C 2 +...+ ⁇ n, ⁇ 1 C n )l(t)+D ⁇ 1 (t)
  • logI ⁇ 2 (t) ( ⁇ 1, ⁇ 2 C 1 + ⁇ 2, ⁇ 2 C 2 +...+ ⁇ n, ⁇ 2 C n )l(t)+D ⁇ 2 (t)
  • logI ⁇ n (t) ( ⁇ 1, ⁇ n C 1 + ⁇ 2, ⁇ n C 2 +...+ ⁇ n, ⁇ n C n )l(t)+D ⁇ n (t)
  • logI ⁇ k (t) ( ⁇ 1, ⁇ k C 1 + ⁇ 2, ⁇ k C 2 +...+ ⁇ n, ⁇ k C n )l(t)+D ⁇ k (t)
  • the joint equation system A has n+1+m equations and n+1 unknowns (n Ci, and l(t)). Therefore, as long as m ⁇ 0, the joint equations A can be solved to obtain n blood component concentrations Ci.
  • the blood component concentration can be a value within a short period of time (or moment), or it can be an average value during a certain test period.
  • step (T5) Display the concentration of n human blood components obtained in step (T4) on the display screen.
  • the horizontal axis is the time and the vertical axis is the human blood component concentration.
  • Embodiment 1 Using the least squares calculation method of pulse wave information, the joint equation group A is used to solve the embodiment of blood component concentration.
  • the concentration of blood components can be obtained by the following least squares calculation method:
  • I ⁇ k,max , I ⁇ k,min are the light intensity of incident light with a wavelength of ⁇ k through human organs at the peak and trough of the pulse , respectively;
  • ⁇ l is the thickness of human blood entering the test light path between the peaks and troughs of the pulse
  • the method of obtaining the extinction coefficient corresponding to human blood components is:
  • step (2) (3 The data obtained in step (2) that can be expressed by formula A is processed into pulse period data, and substituted into formula 1, to obtain joint equations 2;
  • I ⁇ k,max,j , I ⁇ k,min,j in the joint equation set 2 are the light intensity of incident light with a wavelength of ⁇ k through the human organ J at the peak and trough of the pulse , respectively,
  • C i,j is the concentration of blood component i in the J-th human organ, and ⁇ lj is the blood thickness of the human blood flow into the test light path between the pulse wave peaks and troughs for the J-th human organ;
  • step (1 the number of human blood components with different concentrations or the number of simulated human organs is at least the same as the number of human blood components that need to be obtained.
  • step (1 the known concentration of human blood components is n+M human body organs or human body simulated organs.
  • Human body organs in human blood include human body simulated organs.
  • the known concentration of the human blood components in step (1 is in the human blood of multiple humans or multiple human simulated organs.
  • this monitoring method includes the following steps in sequence:
  • human organs include fingers, toes, and ears, and any one of fingers, toes, and ears may be selected.
  • the human organs are fingers.
  • the human organ in this embodiment may be a simulated human organ.
  • V2 Quickly repeat step (V1) until the incident of n+1+m beams of incident light of different wavelengths is completed, and the light intensity of n+1+m beams of incident light of different wavelengths through human organs is obtained; where n is the same as the need to monitor
  • the number of human blood components is related to the number of human blood components.
  • the human blood components are blood sugar, cholesterol, and blood lipids, there are 3 human blood components that need to be monitored, n is 3 and m ⁇ 0.
  • V4 The least squares calculation method is used to fit the component concentration C i of the component i in the finger human blood in the joint equation set 1 and the blood thickness of the human blood flow entering the test light path between the pulse peak and trough of the incident light, where , I is 1 ⁇ n.
  • step (V5) Display the concentration of n human blood components obtained in step (V4) on the display screen.
  • step (V4) can also be the continuous display of the concentration of n human blood components over a period of time.
  • the realization method is: display the concentration of human blood components on the horizontal axis and the vertical axis.
  • step (V6) return to step (V1) to continuously monitor the concentration of human blood components.
  • the method for obtaining the extinction coefficient corresponding to the human blood component is:
  • (U1 uses the existing standard blood drawing method to obtain the concentration of human blood components in human organs.
  • the number of human organs is at least the same as the number of human blood components for which the concentration needs to be obtained.
  • the existing invasive methods need to be used to obtain the concentration of blood glucose, cholesterol, and blood lipid of at least three human organs.
  • the number of human organs is represented by 3+M, where M ⁇ 0.
  • human organs include human body simulated organs.
  • I ⁇ k, max, j, I ⁇ k, min, j are wavelength ⁇ k incident light intensity when the pulse peaks and troughs human organ through J, C i, j is the J-th individual
  • concentration of the blood component i of the body organ or the simulated organ of the human body, ⁇ lj is the thickness of the blood flowing into the test light path between the pulse wave peak and the wave trough of the human blood flow for the J-th human organ.
  • Embodiment 2 The following is an embodiment of solving the concentration of blood components through the neural network calculation method for the joint equation group A.
  • F i (I ⁇ k (td), W) is the arithmetic function of the neural network, which represents a calculation method by adding a calculation weight table W to the input data I ⁇ k (td).
  • Different neural networks (such as linear or nonlinear, single-layer or multi-layer, etc.) have different calculation methods.
  • I ⁇ k (td) is the light intensity test data of n+1+m wavelengths collected in a time period t1 ⁇ t1+ ⁇ t of a fixed time interval ⁇ t and transmitted through a certain human organ.
  • the total number is q (related to the time interval ⁇ t of collecting data and the rate of collecting data, and also related to the size of n, m).
  • These data are the input data of neural computing network A;
  • W is the coefficient or weight for calculating the input data I ⁇ k,j (td), and the total number is r.
  • the r weights W in the neural network calculation model A can be obtained through the following training process:
  • average i,j ((F i,j (I ⁇ k (td),W)-C i,j (t)) 2 ) is the actual concentration of n blood components tested in all ⁇ human organs
  • the test value is the mean square error of the calculated value obtained by the neural network calculation model. argmin W, ⁇ t represents r W coefficients, and the selection of the time interval ⁇ t makes the above mean square error minimum.
  • the method of the present invention realizes dynamic non-invasive monitoring of the concentration of human blood components, and can accurately obtain
  • the user can use the instrument to compare the concentration of blood sugar, cholesterol, blood lipids, etc.
  • the monitoring of related concentrations has important positive significance for the prevention of related diseases.
  • the neural network algorithm uses the information at all times of the pulse wave to obtain the blood component concentration. Through the neural network algorithm, it is easy to process massive data, obtain useful information, and make the processed results more accurate. It is also possible to distinguish the difference in blood components between veins and arteries through neural network algorithms.
  • Embodiment 3 The present invention also discloses a monitoring device using the above non-invasive human blood component concentration monitoring method, as shown in FIG. 2, including a light collection unit, a signal processing unit, a display unit, a wireless transmission unit and a user terminal.
  • the light collection unit includes a multi-wavelength light source 3, one or more light intensity sensors 1, and a human organ accommodating cavity arranged between the light source and the light intensity sensor.
  • the human organ accommodating cavity is used to accommodate human organs.
  • the human organ is the finger 2.
  • the multi-wavelength light source 3 is turned on sequentially, and the light intensity sensor 1 sequentially receives the light signals transmitted through the human organs, and transmits the received light signals to the signal processing unit, which transmits the concentration signals of human blood components to the display unit To display.
  • the signal processing unit transmits the concentration signal of human blood components to the user terminal through the wireless transmission unit.
  • the multi-wavelength light source 3 is at least a 3-wavelength light source, and one or more light intensity sensors 1.
  • it is a 7-wavelength light source and a light intensity sensor.
  • the opposite surfaces of the light source 3 and the light intensity sensor 1 are provided with a condenser lens 4 to facilitate the light transmittance of the light source to the sensor and improve the detection accuracy.
  • the user terminal includes a mobile phone and a computer, and the user can select a mobile phone or a computer to view the concentration of human blood components.
  • the multi-wavelength light source When in use, put human organs such as fingers, toes or ears between the multi-wavelength light source and the light intensity sensor.
  • the multi-wavelength light source emits light signals in sequence, and the emitted light signals pass through the human organs such as fingers, toes or ears in sequence. Received by the light intensity sensor.
  • the light intensity sensor converts it into light intensity, and transmits the light intensity to the signal processing unit.
  • the signal processing unit processes and analyzes the received light intensity signal to calculate the concentration of human blood components.
  • human blood components include blood sugar, cholesterol, and blood lipids.
  • the signal processing unit transmits the obtained human blood component concentration to the display unit for display.
  • the signal processing unit transmits the concentration signal of human blood components to the user terminal through the wireless transmission unit, and the user can view it through the user terminal.
  • the device of the present invention can easily realize the non-invasive detection of the concentration of human blood multi-components, has little harm to the human body, has fast detection speed, high detection accuracy, and is convenient to carry.
  • Embodiment 4 The present invention also discloses a method for monitoring the concentration of blood components in the non-invasive capillary arteries.
  • the steps of this method are the same as those of the method in Embodiment 1. Both pulse peaks and troughs are used by the least square method. To obtain the concentration of blood components from the light intensity information of the point, you only need to modify the "human body” to "capillary artery", and the rest will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

无创人体血液组分浓度的监测方法及设备,该方法包括如下步骤:(T1)将某一波长的入射光射向人体器官,分别采集入射光透过人体器官的光强;(T2)快速重复步骤(T1),直至完成n+1+m束不同波长的入射光的入射;(T3)将一段时间内重复步骤(T1)、(T2)得到的数据带入公式A,得到联合方程组A;(T4)通过联合方程组A得到n个人体血液组分浓度;(T5)将步骤(T4)中获取的n个人体血液组分浓度在显示屏上进行显示;(T6)比对步骤(T4)中获取的n个人体血液组分浓度是否在正常范围内,如否,则报警。无创人体血液组分浓度的监测方法解决了人体血液组分浓度的动态连续无创监测,可以准确地获取血液中的血糖,胆固醇,血脂等的浓度,对预防相关疾病有着积极的意义。

Description

无创人体血液组分浓度的监测方法及设备 技术领域
本发明属于血液组分浓度检测技术领域,尤其涉及无创人体血液组分浓度的监测方法及设备。
背景技术
随着社会进步和人民生活水平的提高,高血糖、高胆固醇、高血脂(三高)患者逐年增加。三高不仅给患者及其家庭带来了痛苦,而且也给国家和社会带来了沉重的负担。治疗这类疾病通常需要抽血检测血液中的血糖、胆固醇、血脂的浓度,从而确定与调整治疗药物的种类与用量。这种抽血检测方法会使患者感到疼痛,频繁的检测也增加了感染的风险,并且不能及时检测患者上述浓度指标的异常变化。特别是对糖尿病人,若因为饮食、药物、运动等不当造成的短时间血糖过低或过高,还会危及病人的生命安全。所以血糖连续监测成为糖尿病患者护理最重要的组成部分。相较于传统单点式血糖检测技术,若能实现连续无创血糖监测,就有望与智能胰岛素递送系统相结合,形成一个封闭循环反馈控制的胰岛素自动释放系统,创造出一个仿生的“人工胰腺”器官,为糖尿病患者带来全方位的监测护理。虽然世界各国进行了大量的包括血糖在内的无创连续监测方面的研发,截止目前仍然没有完全无创的产品面世。人体血糖的动态连续无创监测仍属于一大世界难题。准确地无创连续监测血液中的血糖、胆固醇、血脂的浓度对及早发现及预防这类疾病,具有十分积极的意义。
发明内容
本发明旨在提供一种检测简便、快速的无创人体血液组分浓度的监测方法及设备。
为解决上述技术问题,本发明提供了如下的技术方案:
第一种:无创毛细动脉血液组分浓度的监测方法,依次包括如下步骤:
(1)将入射光射向人体器官,分别采集入射光在脉搏波峰和波谷时透过人体器官的光强;
(2)重复步骤(1),直至完成n+1+m束不同波长的入射光的入射,得到n+1+m束不同波长入射光在脉搏波峰和波谷时透过人体器官的光强;
(3)将步骤(2)得到的数据带入公式1,得到联合方程组1;
Figure PCTCN2020087618-appb-000001
Figure PCTCN2020087618-appb-000002
其中,I λk,max,I λk,min分别为波长为λ k的入射光在脉搏波峰和波谷时透过人体器官 的光强;
Δl为毛细动脉血流在脉搏的波峰和波谷间进入测试光路的血液厚度;
C i为手指毛细动脉血液内组分i的成分浓度,其中,i为1~n;
ε i,λk为组分i对波长为λ k的入射光的消光系数,其为常数;
(4)用最小二乘法拟合得到方程组1中的n个毛细动脉血液组分的浓度与毛细动脉血流在入射光的脉搏波峰和波谷间进入测试光路的血液厚度。
(5)将步骤(4)中获取的n个毛细动脉血液组分浓度在显示屏上进行显示;
(6)比对步骤(4)中获取的n个毛细动脉血液组分浓度是否在正常范围内,如否,则报警。
n个毛细动脉血液组分浓度在显示屏上进行显示的方法为:以横轴为时间,纵轴为人体血液组分浓度进行显示;在步骤(6)之后,返回步骤(1)进行毛细动脉血液组分浓度的连续监测。
所述人体器官包括手指、脚趾、耳朵。
第二种:无创人体血液组分浓度的监测方法,依次包括如下步骤:
(T1)、将某一波长为λ的入射光射向人体器官,采集某一时刻t时入射光透过人体器官的光强Iλ(t);
logI λ(t)=(ε 1,λC 12,λC 2+...+ε n,λC n)l(t)+D λ(t)       公式A
其中,l(t)为时刻t时在测试光路上的人体器官的血液厚度;
C i为人体血液内组分i的成分浓度,设有n个组分,其中,i为1~n;
ε i,λ为组分i对波长为λ的入射光的消光系数,其为常数;
Dλ(t)为时刻t时透过测试光路上的人体器官的血液以外组分的光强的取对数后的值;假定一个短时间内Dλ(t)是基本不变的量;
(T2)、快速重复步骤(T1),直至完成n+1+m束不同波长的入射光的入射, 波长为λk,得到n+1+m束不同波长入射光透过人体器官的光强Iλk,k=1,2,…,n+1+m;m≥0;
(T3)、重复步骤(T1)和(T2),得到一段时间的透过人体器官的光强,用以下联合方程组A表示这一段时间的光强:
logI λ1(t)=(ε 1,λ1C 12,λ1C 2+...+ε n,λ1C n)l(t)+D λ1(t)
logI λ2(t)=(ε 1,λ2C 12,λ2C 2+...+ε n,λ2C n)l(t)+D λ2(t)
logI λn(t)=(ε 1,λnC 12,λnC 2+...+ε n,λnC n)l(t)+D λn(t)
logI λk(t)=(ε 1,λkC 12,λkC 2+...+ε n,λkC n)l(t)+D λk(t)
logI λn+1+m(t)=(ε 1,λn+1+mC 12,λn+1+mC 2+...+ε n,λn+1+mC n)l(t)+D λn+1+m(t);
(T4)联合方程组A有n+1+m个方程,有n+1个未知数,即l(t)与n个Ci;由于m≥0,则通过求解联合方程组A即得n个人体血液成分浓度Ci;
(T5)将步骤(T4)中获取的n个人体血液组分浓度在显示屏上进行显示;
(T6)比对步骤(T4)中获取的n个人体血液组分浓度是否在正常范围内,如否,则报警。
n个人体血液组分浓度在显示屏上进行显示的方法为:以横轴为时间,纵轴为人体血液组分浓度进行显示;步骤(T6)之后,返回步骤(T1)进行人体血液组分浓度的连续监测。
所述的步骤(T4)中的求解采用的是脉搏波信息的最小二乘计算法或神经网络计算法。
所述人体器官包括手指、脚趾、耳朵以及它们的组合。
本发明还公开了一种利用上述监测方法的监测设备,包括光采集单元,信号处理单元、显示单元、无线传输单元以及用户端,光采集单元包括多波长光源、光强传感器以及设置于光源和光强传感器之间的人体器官容纳腔,光强传感器将接收到的光信号传输到信号处理单元,信号处理单元将人体血液组分的浓度信号传输到显示单元进行显示,同时,信号处理单元将人体血液组分的浓度信号通过无线传输单元传输到用户端,用户端可以为手机或电脑。
通过以上技术方案,本发明的有益效果为:
通过本发明所述的方法可以实时进行人体血液多组分浓度,如血氧、血糖、胆固醇、血脂等的测试;不需要抽血测试,可以彻底实现无创测试;测试方法准确度高,可以实现监控功能。
通过本发明所述的设备可以实现人体血液组分浓度的监测,使用方便,便于携带,同时监测准确度高。
附图说明
图1为入射光通过人体器官后,光强的变化示意图;
图2为无创人体血液组分浓度监测设备原理图;
图3为无创人体血液组分浓度监测设备结构示意图;
图4为多波长光源结构示意图;
图5为光强传感器结构示意图。
具体实施方式
本发明公开了一种无创人体血液组分浓度的监测方法,具体包括以下步骤:
(T1)、将某一波长为λ的入射光射向人体器官,采集某一时刻t时入射光透过人体器官的光强Iλ(t);
logI λ(t)=(ε 1,λC 12,λC 2+...+ε n,λC n)l(t)+D λ(t)      (公式A)
其中,l(t)为时刻t时在测试光路上的人体器官的血液厚度;
C i为手指人体血液内组分i的成分浓度,设有n个组分,其中,i为1~n;
ε i,λ为组分i对波长为λ的入射光的消光系数,其为常数;
Dλ(t)为时刻t时透过测试光路上的人体器官的血液以外组分(如皮肤,组织)的光强的取对数后的值;假定一个短时间内(如一个脉搏周期内),Dλ(t)是基本不变的量;
(T2)、快速重复步骤(T1),直至完成n+1+m束不同波长的入射光的入射,波长为λk,得到n+1+m束不同波长入射光透过人体器官的光强Iλk,k=1,2,…,n+1+m;m≥0;
(T3)、重复步骤(T1)和(T2),得到一段时间的透过人体器官的光强,用以下联合方程组A表示这一段时间的光强:
logI λ1(t)=(ε 1,λ1C 12,λ1C 2+...+ε n,λ1C n)l(t)+D λ1(t)
logI λ2(t)=(ε 1,λ2C 12,λ2C 2+...+ε n,λ2C n)l(t)+D λ2(t)
logI λn(t)=(ε 1,λnC 12,λnC 2+...+ε n,λnC n)l(t)+D λn(t)
logI λk(t)=(ε 1,λkC 12,λkC 2+...+ε n,λkC n)l(t)+D λk(t)
logI λn+1+m(t)=(ε 1,λn+1+mC 12,λn+1+mC 2+...+ε n,λn+1+mC n)l(t)+D λn+1+m(t);(T4)联合方程组A有n+1+m个方程,有n+1个未知数(n个Ci,与l(t))。因此,只要m≥0,就可以求解联合方程组A得n个血液成分浓度Ci。这个血液成分浓度可以是某一短时间内(或时刻)的值,也可以是某一测试时段的平均 值。
(T5)将步骤(T4)中获取的n个人体血液组分浓度在显示屏上进行显示,具体显示时以横轴为时间,纵轴为人体血液组分浓度进行显示;
(T6)比对步骤(T4)中获取的n个人体血液组分浓度是否在正常范围内,如否,则报警;
(T7)重复以上步骤(T1)~(T6),进行血液组分浓度的连续监测。
实施例1:用脉搏波信息的最小二乘计算法对联合方程组A进行求解血液组分浓度的实施例介绍。
考虑到一个脉搏的短时间内,测试光路上的人体器官的血液以外组分(如皮肤,组织)的光吸收是Dλ(t)是基本不变的量这个事实,脉博波动部分(此波动部分指的就是在脉搏波峰和波谷)血液的成分浓度可以通过以下最小二乘计算法得到:
1)将步骤(T1)~(T3)得到的可以用公式A表示的数据,处理成以脉搏周期(时间)为单位的数据,(一个周期,有一个波峰与一个波谷),并代入公式1,
Figure PCTCN2020087618-appb-000003
得到联合方程组1;
Figure PCTCN2020087618-appb-000004
Figure PCTCN2020087618-appb-000005
其中,I λk,max,I λk,min分别为波长为λ k的入射光在脉搏波峰和波谷时透过人体器官的光强;
Δl为人体血流在脉搏的波峰和波谷间进入测试光路的血液厚度;
用最小二乘计算法拟合得到联合方程组1(有n+1+m个方程)中的n个人体血液组分的浓度C i与人体血流在入射光的脉搏波峰和波谷间进入测试光路的血液厚度Δl。
其中,人体血液组分对应的消光系数的获取方法为:
(1用传统方法,如抽血化验方法,获取n+M个人体器官的n个人体血液组分的浓度,其中,M≥0;
(2在每个个体抽血的基本同时,通过步骤(T1)~(T3),获得透过n+M个人体器官的n+1+m个不同波长的光强。
(3将步骤(2得到的可以用公式A表示的数据,处理成脉搏周期的数据,并代入公式1,得到联合方程组2;
Figure PCTCN2020087618-appb-000006
Figure PCTCN2020087618-appb-000007
联合方程组2中的I λk,max,j,I λk,min,j分别为波长为λ k的入射光在脉搏波峰和波谷时透过人体器官J的光强,
C i,j为第J个人体器官中血液组分i的浓度,Δlj为针对第J位人体器官的人体血流在脉搏波峰和波谷间流入测试光路的血液厚度;
(4用最小二乘计算法拟合得到联合方程组2中的每个人体器官的n个人体血液组分,n+1+m个波长对应的消光系数。
人体血液组分对应的消光系数的获取方法的步骤中:步骤(1中已知不同浓度的人体血液组分的人数或人体模拟器官数人体器官数至少与需要获取人体血液组分数相同。
人体血液组分对应的消光系数的获取方法的步骤中:步骤(1中已知浓度的 人体血液组分为n+M个人体器官或人体模拟器官的人体血液中的人体器官包括人体模拟器官。
人体血液组分对应的消光系数的获取方法的步骤中:步骤(1中已知浓度的人体血液组分为多个人的或多个人体模拟器官的人体血液中的。
以监测血糖、胆固醇、血脂三种人体血液组分浓度为例进行说明此监测方法,依次包括如下步骤:
(V1)将入射光射向人体器官,分别采集入射光透过人体器官的光强。其中,入射光通过人体器官后,光强的变化如图1所示。
其中,人体器官包括手指、脚趾、耳朵,选用手指、脚趾、耳朵中的任意一个即可,本实施例中,人体器官为手指。另外,本实施例中的人体器官可以为人体模拟器官。
(V2)快速重复步骤(V1),直至完成n+1+m束不同波长入射光的入射,得到n+1+m束不同波长入射光透过人体器官的光强;其中,n与需要监测的人体血液组分的数量有关,当人体血液组分为血糖、胆固醇、血脂时,则有3个需要监测的人体血液组分,n为3,m≥0即可。
(V3)将步骤(V2)得到的数据带入公式1,得到联合方程组1;
(V4)用最小二乘计算法拟合得到联合方程组1中手指人体血液内组分i的成分浓度C i与人体血流在入射光的脉搏波峰和波谷间进入测试光路的血液厚度,其中,i为1~n。
(V5)将步骤(V4)中获取的n个人体血液组分浓度在显示屏上进行显示。作为本实施例的变换,也可以为n个人体血液组分的浓度在一段时间内的连续显示,实现方法为:以横轴为时间,纵轴为人体血液组分浓度进行显示。
(V6)比对步骤(V4)中获取的n个人体血液组分浓度是否在正常范围内, 如否,则报警。
在步骤(V6)之后,返回步骤(V1)进行人体血液组分浓度的连续监测。
本实施例中,人体血液组分对应的消光系数的获取方法为:
(U1用现有的标准抽血方法获取人体器官中人体血液组分的浓度。其中,人体器官数至少与需要获取浓度的人体血液组分数相同。
例如,本实施例中,需要监测血糖、胆固醇、血脂的浓度,则需要采用现有有创的方法获取至少3个人体器官的血糖、胆固醇、血脂的浓度。
为便于表示,本实施例中,人体器官数用3+M表示,其中,M≥0。
本实施例中,人体器官包括人体模拟器官。
(U2在每个个体抽血的基本同时,将入射光射向选取的人体器官上,分别采集入射光透过人体器官的光强。
(U3快速重复步骤(U1,直至完成3+1+m束不同波长入射光的入射,得到透过个人体器官的光强。
(U4重复步骤(U2,(U3,直至完成入射光对3+M个人体器官的入射,每个人体器官上有3+1+m束不同波长入射光的入射。
(U5将步骤(U4得到的数据带入公式1,得到联合方程组3;
Figure PCTCN2020087618-appb-000008
Figure PCTCN2020087618-appb-000009
联合方程组3中I λk,max,j,I λk,min,j分别为波长为λ k的入射光在脉搏波峰和波谷时透过人体器官J的光强,C i,j为第J个人体器官或人体模拟器官的血液组分i的浓度,Δlj为针对第J位人体器官的人体血流在脉搏波峰和波谷间流入测试光路的血液厚度。
(U6用最小二乘计算法拟合得到联合方程组3中的3+1+M个人的3个人体血液组分对应的消光系数。
实施例2:以下为通过神经网络计算法,对联合方程组A进行求解血液组分浓度的实施例介绍。
P1)设计一个求解联合方程组A,得到血液组分的成分浓度C i(i=1~n)的神经计算网络模型。如:
F i(I λk(td),W)=C i(t)
i=1~n
td=t~t+Δt
k=1~n+1+m
                                          (神经网络计算模型A)
其中:
F i(I λk(td),W)是神经网络的运算函数,代表对输入数据I λk(td)添加计算权 重表W进行计算的方法。不同的神经网络(如线性还是非线性的,单层还是多层的,等)计算方法不同。
I λk(td)为一个固定时间间隔Δt的时间段t1~t1+Δt内采集到的,透过某一位人体器官的,n+1+m个波长的光强测试数据。总数为q个(与采集数据的时间间隔Δt和采集数据的速率有关,也与n,m的大小有关)。这些数据是神经计算网络A的输入数据;
W为对输入数据I λk,j(td)进行计算的系数或权重,总数为r个。
P2)在已知(通过训练得到的)权重W的情况下,输入测试步骤(T1)~(T3)得到的某一个体的一个固定时间间隔Δt时间段t1~t1+Δt的q个数据到神经网络计算模型A,对这q个输入数据进行计算,可以得到这个体在这个时间段的各血液组分的成分浓度C i(i=1~n)。
P3)对另一个时间段(如t2~t2+Δt),进行步骤P2)的各血液组分的成分浓度C i(i=1~n)的计算。
P4)重复步骤P2),P3),计算得到某个测试时间范围的各个时间段的各血液组分的成分浓度C i
在本人体血液组分浓度的神经网络计算法实施例中,神经网络计算模型A内的r个权重W,可以通过以下训练过程得到:
(Y1)用传统方法,如抽血化验方法,获取Ω个人体器官(可以某个人测多天的)的人体血液n个组分的浓度C i,j(i=1~n,j=1~Ω)。
(Y2)在每个个体抽血的基本同时,通过步骤(T1)~(T3),获得透过该个体人体器官的n+1+m个不同波长的光强I λk(t,j),k=1~n+1+m,j=1~Ω。
(Y3)把步骤(Y2)的光强数据用包含血液组分的成分浓度C i(i=1~n)的联合方程组A表示。
(Y4)利用已知的Ω个人体器官(可以某个人测多天的)的n个血液组分的浓度C i,j(i=1~n,j=1~Ω)数据,训练神经网络计算模型A,得到r个权重W,与时间间隔Δt的最优值。其训练公式可表示为:
F i,j(I λk,j(td),W)=C i,j(t)
W,Δt←argmin W,Δt(average i,j((F i,j(I λk,j(td),W)-C i,j(t)) 2))
i=1~n
j=1~Ω
k=1~n+1+m
                                           (神经网络训练公式)
其中,average i,j((F i,j(I λk(td),W)-C i,j(t)) 2)是所有Ω个人体器官的测试的n个血液组分的浓度的实际测试值,与神经网络计算模型得到的计算值的均方误差。argmin W,Δt表示r个W系数,与时间间隔Δt的选择使得以上均方误差为最小。
本发明所述的方法实现了人体血液组分浓度的动态无创监测,可以准确的获
取血液中的血糖、胆固醇、血脂等的浓度,使用者在家就能通过仪器进行相
关浓度的监测,对预防相关疾病有着重要的积极意义。
由于最小二乘法是利用脉搏波峰和波谷两个点的光强信息得到血液组分浓度,而神经网络算法是利用脉搏波的所有时刻的信息来得到血液组分浓度的。通过神经网络算法,容易处理海量的数据,得到有用的信息,使处理出来的结果精度更为准确。通过神经网络算法还有可能区分静脉与动脉的血液组分的不同。
实施例3:本发明还公开了一种利用上述无创人体血液组分浓度监测方法的监测设备,如图2所示,包括光采集单元,信号处理单元、显示单元、无线传输单元以及用户端。
光采集单元如图3~5所示,包括多波长光源3、一个或多个光强传感器1以及设置于光源和光强传感器之间的人体器官容纳腔,人体器官容纳腔用于容纳人体器官,本实施例中人体器官为手指2。多波长光源3依次开启,同时光强传感器1依次接收透过人体器官的光信号,并将接收到的光信号传输到信号处理单元,信号处理单元将人体血液组分的浓度信号传输到显示单元进行显示。
同时,信号处理单元将人体血液组分的浓度信号通过无线传输单元传输到用户端。
其中,多波长光源3至少为3波长光源,1个或多个光强传感器1。本实施例中,如图4与图5所示为7波长光源,1个光强传感器。
另外,光源3和光强传感器1相对的表面上均设置有聚光透镜4,利于光源的到传感器的透光率,提高检测准确度。
用户端包括手机和电脑,用户可以根据需要选用手机或电脑查看人体血液组分的浓度。
使用的时候,将手指、脚趾或耳朵等人体器官放入到多波长光源与光强传感器之间,多波长光源依次发射光信号,发射的光信号透过手指、脚趾或耳朵等人体器官后依次被光强传感器接收到。
光强传感器将其转化成光强,并将光强传输到信号处理单元,信号处理单元将接收到的光强信号进行处理分析,计算出人体血液组分的浓度。
其中,人体血液组分包括血糖、胆固醇、血脂等。
同时,信号处理单元将得出的人体血液组分浓度传输到显示单元进行显示。
另外,信号处理单元将人体血液组分的浓度信号通过无线传输单元传输到用户端,用户可以通过用户端进行查看。
本发明所述的设备可以轻松实现人体血液多组分浓度的无创检测,对人体 伤害小,同时检测速度快,检测准确度高,携带方便。
实施例4:本发明还公开了一种无创毛细动脉血液组分浓度的监测方法,此方法的实施例与实施例1中的方法步骤相同,均是通过最小二乘法利用脉搏波峰和波谷两个点的光强信息得到血液组分浓度,只需将“人体”修改为“毛细动脉”,其它在此不再赘述。

Claims (9)

  1. 无创毛细动脉血液组分浓度的监测方法,其特征在于:依次包括如下步骤:
    (1)将入射光射向人体器官,分别采集入射光在脉搏波峰和波谷时透过人体器官的光强;
    (2)重复步骤(1),直至完成n+1+m束不同波长的入射光的入射,得到n+1+m束不同波长入射光在脉搏波峰和波谷时透过人体器官的光强;
    (3)将步骤(2)得到的数据带入公式1,得到联合方程组1;
    Figure PCTCN2020087618-appb-100001
    Figure PCTCN2020087618-appb-100002
    其中,I λk,max,I λk,min分别为波长为λ k的入射光在脉搏波峰和波谷时透过人体器官 的光强;
    Δl为毛细动脉血流在脉搏的波峰和波谷间进入测试光路的血液厚度;
    C i为手指毛细动脉血液内组分i的成分浓度,其中,i为1~n;
    ε i,λk为组分i对波长为λ k的入射光的消光系数,其为常数;
    (4)用最小二乘法拟合得到方程组1中的n个毛细动脉血液组分的浓度与毛细动脉血流在入射光的脉搏波峰和波谷间进入测试光路的血液厚度。
    (5)将步骤(4)中获取的n个毛细动脉血液组分浓度在显示屏上进行显示;
    (6)比对步骤(4)中获取的n个毛细动脉血液组分浓度是否在正常范围内,如否,则报警。
  2. 如权利要求1所述的无创毛细动脉血液组分浓度的监测方法,其特征在于:n个毛细动脉血液组分浓度在显示屏上进行显示的方法为:以横轴为时间,纵轴为人体血液组分浓度进行显示;在步骤(6)之后,返回步骤(1)进行毛细动脉血液组分浓度的连续监测。
  3. 如权利要求2所述的无创毛细动脉血液组分浓度的监测方法,其特征在于:所述人体器官包括手指、脚趾、耳朵。
  4. 无创人体血液组分浓度的监测方法,其特征在于:依次包括如下步骤:
    (T1)、将某一波长为λ的入射光射向人体器官,采集某一时刻t时入射光透过人体器官的光强Iλ(t);
    log I λ(t)=(ε 1,λC 12,λC 2+...+ε n,λC n)l(t)+D λ(t)  公式A
    其中,l(t)为时刻t时在测试光路上的人体器官的血液厚度;
    C i为人体血液内组分i的成分浓度,设有n个组分,其中,i为1~n;
    ε i,λ为组分i对波长为λ的入射光的消光系数,其为常数;
    Dλ(t)为时刻t时透过测试光路上的人体器官的血液以外组分的光强的取 对数后的值;假定一个短时间内Dλ(t)是基本不变的量;
    (T2)、快速重复步骤(T1),直至完成n+1+m束不同波长的入射光的入射,波长为λk,得到n+1+m束不同波长入射光透过人体器官的光强Iλk,k=1,2,…,n+1+m;m≥0;
    (T3)、重复步骤(T1)和(T2),得到一段时间的透过人体器官的光强,用以下联合方程组A表示这一段时间的光强:
    log I λ1(t)=(ε 1,λ1C 12,λ1C 2+...+ε n,λ1C n)l(t)+D λ1(t)
    log I λ2(t)=(ε 1,λ2C 12,λ2C 2+...+ε n,λ2C n)l(t)+D λ2(t)
    log I λn(t)=(ε 1,λnC 12,λnC 2+...+ε n,λnC n)l(t)+D λn(t)
    log I λk(t)=(ε 1,λkC 12,λkC 2+...+ε n,λkC n)l(t)+D λk(t)
    log I λn+1+m(t)=(ε 1,λn+1+mC 12,λn+1+mC 2+...+ε n,λn+1+mC n)l(t)+D λn+1+m(t)(T4)联合方程组A有n+1+m个方程,有n+1个未知数,即l(t)与n个Ci;由于m≥0,则通过求解联合方程组A即得n个人体血液成分浓度Ci;
    (T5)将步骤(T4)中获取的n个人体血液组分浓度在显示屏上进行显示;
    (T6)比对步骤(T4)中获取的n个人体血液组分浓度是否在正常范围内,如否,则报警。
  5. 如权利要求4所述的无创人体血液组分浓度的监测方法,其特征在于:n个人体血液组分浓度在显示屏上进行显示的方法为:以横轴为时间,纵轴为人体血液组分浓度进行显示;步骤(T6)之后,返回步骤(T1)进行人体血液组分浓度的连续监测。
  6. 如权利要求5所述的无创人体血液组分浓度的监测方法,其特征在于:所述的步骤(T4)中的求解采用的是脉搏波信息的最小二乘计算法。
  7. 如权利要求5所述的无创人体血液组分浓度的监测方法,其特征在于:所述的步骤(T4)中的求解采用的是神经网络计算法。
  8. 如权利要求4-7任意一项所述的无创人体血液组分浓度的监测方法,其特征在于:人体器官包括手指、脚趾、耳朵以及它们的组合。
  9. 利用权利要求1或4所述的监测方法的监测设备,其特征在于:包括光采集单元,信号处理单元、显示单元、无线传输单元以及用户端,光采集单元包括多波长光源、光强传感器以及设置于光源和光强传感器之间的人体器官容纳腔,光强传感器将接收到的光信号传输到信号处理单元,信号处理单元将人体血液组分的浓度信号传输到显示单元进行显示,同时,信号处理单元将人体血液组分的浓度信号通过无线传输单元传输到用户端。
PCT/CN2020/087618 2019-04-28 2020-04-28 无创人体血液组分浓度的监测方法及设备 WO2020221265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910348223.XA CN110192866A (zh) 2019-04-28 2019-04-28 无创毛细动脉血液组分浓度的监测方法及设备
CN201910348223.X 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020221265A1 true WO2020221265A1 (zh) 2020-11-05

Family

ID=67752287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087618 WO2020221265A1 (zh) 2019-04-28 2020-04-28 无创人体血液组分浓度的监测方法及设备

Country Status (2)

Country Link
CN (2) CN110192866A (zh)
WO (1) WO2020221265A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192866A (zh) * 2019-04-28 2019-09-03 上海爱德赞医疗科技有限公司 无创毛细动脉血液组分浓度的监测方法及设备
CN110974250B (zh) * 2019-12-27 2024-01-16 深圳市华讯方舟光电技术有限公司 基于太赫兹光谱的血糖检测方法、装置及计算机存储介质
CN112836647B (zh) * 2021-02-05 2023-07-21 合肥工业大学 一种基于ppg信号的无创式甘油三酯估计系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012435A2 (en) * 1991-03-07 1996-05-02 Masimo Corporation Signal processing apparatus
CN104586407A (zh) * 2014-01-16 2015-05-06 清华大学 一种多参数生理指征检测装置及其检测方法
CN104688234A (zh) * 2015-03-17 2015-06-10 吉林大学 一种icg色素浓度谱的无创、抗扰动检测方法
CN104958075A (zh) * 2015-06-03 2015-10-07 香港应用科技研究院有限公司 使用拉曼光谱非侵入性测量皮肤厚度和血糖浓度及其校准方法
CN106901705A (zh) * 2017-01-11 2017-06-30 南京邮电大学 一种无感知人体多生理参数采集装置及采集方法和应用
CN107427219A (zh) * 2015-03-04 2017-12-01 南洋理工大学 光声感测装置及其操作方法
CN107928631A (zh) * 2017-12-21 2018-04-20 哈尔滨工业大学 基于差分路径因子估计的近红外脑功能信号处理方法
CN109106376A (zh) * 2018-09-20 2019-01-01 京东方科技集团股份有限公司 一种血液中总血红蛋白浓度的检测方法及装置
CN109222992A (zh) * 2018-08-24 2019-01-18 河南大学 基于光学反射式原理的血红蛋白浓度无创测量方法
CN110192866A (zh) * 2019-04-28 2019-09-03 上海爱德赞医疗科技有限公司 无创毛细动脉血液组分浓度的监测方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905356A4 (en) * 2006-03-10 2008-10-15 Matsushita Electric Ind Co Ltd INSTRUMENT FOR MEASURING THE CONCENTRATION OF AN INGREDIENT OF A LIVING BODY
CN101686803B (zh) * 2007-03-23 2012-09-19 安维尔蒂斯股份有限公司 用于连续无创确定血液成分浓度的方法
WO2012032536A2 (en) * 2010-09-06 2012-03-15 Abhishek Sen System and method for non-invasive determination of hemoglobin concentration in blood
CN102319075B (zh) * 2011-08-17 2014-07-09 天津大学 一种血氧饱和度测量装置和测量方法
CN204318763U (zh) * 2014-11-12 2015-05-13 杭州欣安医疗科技有限公司 一种基于近红外检测人体生化参数的检测装置
CN105942982B (zh) * 2016-06-01 2019-02-15 何雷 一种基于动态光谱的肿瘤预测仪

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012435A2 (en) * 1991-03-07 1996-05-02 Masimo Corporation Signal processing apparatus
CN104586407A (zh) * 2014-01-16 2015-05-06 清华大学 一种多参数生理指征检测装置及其检测方法
CN107427219A (zh) * 2015-03-04 2017-12-01 南洋理工大学 光声感测装置及其操作方法
CN104688234A (zh) * 2015-03-17 2015-06-10 吉林大学 一种icg色素浓度谱的无创、抗扰动检测方法
CN104958075A (zh) * 2015-06-03 2015-10-07 香港应用科技研究院有限公司 使用拉曼光谱非侵入性测量皮肤厚度和血糖浓度及其校准方法
CN106901705A (zh) * 2017-01-11 2017-06-30 南京邮电大学 一种无感知人体多生理参数采集装置及采集方法和应用
CN107928631A (zh) * 2017-12-21 2018-04-20 哈尔滨工业大学 基于差分路径因子估计的近红外脑功能信号处理方法
CN109222992A (zh) * 2018-08-24 2019-01-18 河南大学 基于光学反射式原理的血红蛋白浓度无创测量方法
CN109106376A (zh) * 2018-09-20 2019-01-01 京东方科技集团股份有限公司 一种血液中总血红蛋白浓度的检测方法及装置
CN110192866A (zh) * 2019-04-28 2019-09-03 上海爱德赞医疗科技有限公司 无创毛细动脉血液组分浓度的监测方法及设备
CN111436948A (zh) * 2019-04-28 2020-07-24 上海爱德赞医疗科技有限公司 无创人体血液组分浓度的监测方法及设备

Also Published As

Publication number Publication date
CN111436948A (zh) 2020-07-24
CN110192866A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
JP3242346U (ja) 生理学的測定値の非侵襲的監視のための装置、およびシステム
Joshi et al. iGLU 2.0: A new wearable for accurate non-invasive continuous serum glucose measurement in IoMT framework
ES2250334T3 (es) Valoracion no invasiva de la concentracion de lactato en el cuerpo en relacion con el ejercicio corporal.
Garrett et al. Engineering approaches to assessing hydration status
CN110198663B (zh) 用于监视患有呼吸系统疾病的患者的健康状况的系统
WO2020221265A1 (zh) 无创人体血液组分浓度的监测方法及设备
CN106061373A (zh) 用于非侵入性地监测个体的生物学或生物化学参数的方法和系统
CN106901705A (zh) 一种无感知人体多生理参数采集装置及采集方法和应用
CN105167763B (zh) 一种健康检测仪
WO2019141869A1 (en) Optical response measurement from skin and tissue using spectroscopy.
JP7247444B2 (ja) 血圧を測定するための装置
Menon et al. A survey on non-invasive blood glucose monitoring using NIR
US20150217056A1 (en) Therapy systems and methods utilizing tissue oxygenation detection
CN109924987A (zh) 反射式血氧仪的标定方法、系统和可读存储介质
Zhang et al. Non-invasive blood glucose detection system based on conservation of energy method
Dennis et al. Measurement of muscle blood flow and O2 uptake via near-infrared spectroscopy using a novel occlusion protocol
Gupta et al. In-vivo estimation of glucose level using PPG signal
Ogunsanya et al. Design and Development of a Non-invasive Glucometer System.
Fauzi et al. Non-Invasive Detection System for Blood Sugar, Cholesterol, Uric Acid, and Body Temperature Using MAX30105 and MLX90614 Sensors
Austin et al. GSM and Arduino Based Vital Sign Monitoring System
Manikandan et al. Development of Non Invasive Blood Glucose Monitoring
Hasan et al. Noninvasive glucose sensing system based on modified SPO2 sensor
El-Khoury et al. Portable spo2 monitor: A fast response approach
Melnyk et al. Investigation of Wireless pulse oximeters for smartphone-based remote monitoring of lung health
Wang et al. A self-developed smart wristband to monitor exercise intensity and safety in physical education class

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798486

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20798486

Country of ref document: EP

Kind code of ref document: A1