Nothing Special   »   [go: up one dir, main page]

WO2020218554A1 - Digital somatic cell variation analysis - Google Patents

Digital somatic cell variation analysis Download PDF

Info

Publication number
WO2020218554A1
WO2020218554A1 PCT/JP2020/017793 JP2020017793W WO2020218554A1 WO 2020218554 A1 WO2020218554 A1 WO 2020218554A1 JP 2020017793 W JP2020017793 W JP 2020017793W WO 2020218554 A1 WO2020218554 A1 WO 2020218554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
nucleic acid
amplification
tissue
Prior art date
Application number
PCT/JP2020/017793
Other languages
French (fr)
Japanese (ja)
Inventor
正人 細川
春子 竹山
西川 洋平
Original Assignee
bitBiome株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by bitBiome株式会社 filed Critical bitBiome株式会社
Priority to JP2021516286A priority Critical patent/JP7584801B2/en
Publication of WO2020218554A1 publication Critical patent/WO2020218554A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • This disclosure is available in fields such as biological research, medicine, and healthcare regarding the analysis of cell populations.
  • Non-Patent Document 1 Woodruff, 1983.
  • cancer tissues proliferate while acquiring new genomic mutations one after another, so one cancer tissue contains many tumor subclones. These subclones differ in their morphology, proliferation, drug resistance, etc. due to differences in genetic information and epigenetic control.
  • EGFR epidermal growth factor receptor
  • Non-Patent Document 2 Paezetal. , 2004.
  • gene mutations there are also gene regions that are naturally diverse, such as changes in chromosomal polyploidy and copy number variation. Accurate detection of these genetic diversities is essential for a detailed understanding of body tissue.
  • Non-Patent Document 3 Zonget al., 2012
  • the necessity of single cell analysis is stated in various areas. ..
  • the present inventors are a method of analyzing the composition of cells in a tissue as a result of diligent invention, and the sequence information of cells (for example, mutation) is obtained from a sample containing an amplified nucleic acid derived from each cell in the tissue. ) Can be cheaply and easily evaluated by the method including the step of evaluating the whole genome sequence before decoding the whole genome sequence. After decoding the whole genome sequence, the information to be analyzed can be narrowed down from the digital sequence information. The present invention has been completed by finding that it becomes possible to compare long gene sequences and the accuracy is improved.
  • the present disclosure comprehensively reads the gene sequence that identifies the characteristics of each cell from the amplified polynucleotide prepared in parallel for each cell from a cell population (for example, tissue) containing various cells, and selects the cells in the sample. It is possible to digitally count cells one by one and provide information that is digitally counted with the cell composition as an absolute amount.
  • Examples of embodiments of the present disclosure include: (Item 1) A method for analyzing mutations in tissues. A method comprising identifying mutations in a cell or cell-like structure from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue. (Item A) A method for analyzing mutations in tissues. A step of individually obtaining a nucleic acid sequence derived from each cell or cell-like structure in the tissue, and A method comprising the step of analyzing using the individually obtained set of nucleic acid sequences.
  • (Item 2) Amplified nucleic acid derived from each cell or cell-like structure Using a sample containing the tissue, a step of encapsulating cells or cell-like structures in droplets one cell or structure at a time, and The process of gelling the droplets to form gel capsules, A step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, wherein the genomic DNA of the cell or a polynucleotide containing a portion thereof is eluted into the gel capsule and the genomic DNA or its portion.
  • the process of holding in the gel capsule with the substance bound to the moiety removed The method according to any of the above items, which is produced by a method comprising contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule.
  • the cells or cell-like structures are encapsulated in the droplets produced by flowing the suspension of the cells or cell-like structures into a microchannel and shearing the suspension with oil.
  • the method according to any one of the above items characterized in that (Item 4)
  • the solubilizing reagents are lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform , Guanidin Hydrochloride, Urea, 2-Mercaptoethanol, Dithiotreitol, TCEP-HCl, Sodium Colate, Sodium Deoxycholate, TritonX-100, Triton X-114, NP-40, Brij-35, Brij-58, The item, wherein at least one is selected from the group consisting of Tween 20, Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodec
  • the method described in any of. (Item 6) The method according to any one of the above items, wherein the gel capsule is a hydrogel capsule. (Item 7) The method according to any one of the above items, wherein the step of amplifying the polynucleotide in a gel capsule is carried out by a homeothermic chain substitution amplification reaction for 10 to 60 minutes. (Item 8) The method according to any one of the above items, further comprising a step of selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell or cell-like structure.
  • the method according to any one of the above items which comprises a step of detecting a nucleic acid having a specific sequence in a sample containing an amplified nucleic acid derived from each cell or cell-like structure.
  • the method according to any one of the above items, wherein the step of detecting the nucleic acid having the specific sequence comprises amplifying the nucleic acid having the specific sequence.
  • the mutation comprises a mutation accompanied by a change in the sequence compared to the reference sequence.
  • the mutation comprises a base substitution, insertion or deletion.
  • the item further comprises a step of obtaining genomic sequence data of each cell or cell-like structure from a sample containing an amplified nucleic acid derived from each cell or cell-like structure. The method described in either.
  • the method according to any one of the above items further comprising a step of selecting genomic sequence data to be analyzed from the genomic sequence data of each cell or cell-like structure.
  • the mutation comprises a mutation that does not involve a sequence change compared to a reference sequence.
  • the mutation comprises copy number variation (CNV).
  • (Item 17) The method according to any of the above items, which comprises using the genomic sequence data to identify mutations including base substitutions, insertions or deletions.
  • (Item 18) The method according to any one of the above items, wherein the tissue is a tissue containing a tumor.
  • (Item 19) The method according to any one of the above items, wherein the tissue is a human tissue.
  • (Item 20) A system for analyzing mutations in tissues. An amplified nucleic acid sample provider that provides a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue.
  • a system comprising a mutation-identifying part that identifies a mutation in a cell or cell-like structure.
  • the amplified nucleic acid sample providing unit Using a sample containing the above-mentioned tissue, a droplet encapsulation portion for encapsulating cells or cell-like structures one cell or a structure unit in a droplet, A gel capsule generation unit that gels the droplet to generate a gel capsule, One or more dissolution reagents and A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, which contains one or more lysis reagents for lysing cells. , The polynucleotide containing the genomic DNA of the cell or a portion thereof is eluted in the gel capsule and retained in the gel capsule with the substance binding to the genomic DNA or the portion removed.
  • the system according to item 20 which comprises a reagent for amplifying the polynucleotide for amplifying the polynucleotide in a gel capsule.
  • the composition evaluation unit includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells. system.
  • the detection reagent or detection device includes a nucleic acid amplification sequencing device for amplifying and sequencing a nucleic acid.
  • the composition evaluation unit further includes a genome sequence data acquisition unit for genome sequence data of each cell from a sample containing an amplified nucleic acid derived from each cell in the microbiota. The system according to any one of 20 to 23.
  • This disclosure enables easy acquisition of whole genome information of body tissues and efficient detection of gene mutations.
  • FIG. 1 shows a schematic diagram in which steps are taken to prepare amplified DNA.
  • FIG. 2 shows a schematic diagram of wet sequence screening.
  • FIG. 3 is a schematic diagram of the sequence determination after selection.
  • FIG. 4 is a schematic diagram showing a dry sequence screening step.
  • FIG. 5 is a schematic diagram showing the overall flow of somatic mutation analysis in the present disclosure.
  • FIG. 6 is a schematic diagram showing an example of designing a microfluidic device. The device has two inlets and one outlet. The two inlets are for aqueous solution and oil, respectively. At the cross, the aqueous solution is split with oil to form a large number of droplets.
  • FIG. 7 is a diagram showing encapsulation of a single cell in a gel droplet.
  • FIG. 8 shows a fluorescence image of the droplet after MDA (Multiple Displacement Amplification) amplification.
  • the figure on the left is a genome amplification-positive droplet (green fluorescence) showing a spherical morphology.
  • the figure on the right shows the collapse of the shape of the droplet after genome amplification.
  • FIG. 9 shows the circularity of the droplets positive for genome amplification before and after MDA.
  • FIG. 10 shows the quantification of DNA yield of secondary amplification products from genomic amplification positive or negative droplets.
  • FIG. 11 shows a comparison of genomic amplification biases between conventional direct single-cell genome amplification and gel droplet-based single-cell genome amplification.
  • the ⁇ Ct value of the amplification of each single cell genome was measured by comparing the Ct value of each sample with the bulk extracted DNA sample.
  • FIG. 12 shows the circularity of the droplets before the reaction of MDA (0 minutes), reaction times of 30 minutes and 60 minutes.
  • FIG. 13 shows a comparison of genome amplification bias between gel droplet-based mononuclear genome amplification by 10-minute MDA reaction and 30-minute MDA reaction.
  • the ⁇ Ct value of the amplification of each mononuclear genome was measured by comparing the Ct value of each sample with the bulk extracted DNA sample.
  • FIG. 12 shows the circularity of the droplets before the reaction of MDA (0 minutes), reaction times of 30 minutes and 60 minutes.
  • FIG. 13 shows a comparison of genome amplification bias between gel droplet-based mononuclear genome amplification by 10-minute
  • FIG. 14 shows the quantification of the DNA yield of the second amplification product by FACS sorting.
  • the yield of all selected amplification negative droplets was less than 1000 ng.
  • the yield of 53 selected amplification-positive droplets was 1000 ng or more.
  • FIG. 15 shows the electrophoresis of the EGFR ex19 amplicon obtained from a mononuclear amplicon derived from a gel droplet.
  • FIG. 16 shows the results of Sanger sequence analysis of EGFR ex20 and 21 amplicons obtained from a mononuclear amplicon derived from a gel droplet.
  • (B) EGFR ex21 amplicon array Upper row: Sequences obtained from single-cell genomes known to have wild-type sequences in EGFR ex20 and 21, Lower row: Sequences obtained from single-cell genomes known to have mutant sequences in EGFR ex20 and 21 Array.
  • the present disclosure relates to a method for analyzing a somatic mutation composition, which comprises a step of evaluating a somatic mutation from a sample containing an amplified nucleic acid derived from each cell in the somatic cell.
  • cell refers to a particle that contains a molecule that carries the genetic information and is any particle that can be replicated (whether or not it is possible alone).
  • the term “cell” as used herein includes cells of unicellular organisms, bacteria, cells derived from multicellular organisms, fungi and the like.
  • cell-like structure refers to any particle containing a molecule having genetic information.
  • cell-like structures include organelles such as mitochondria, cell nuclei, and chloroplasts, and viruses.
  • biomolecule refers to a molecule possessed by any organism or virus.
  • In vivo molecules can include nucleic acids, proteins, sugar chains, lipids, and the like.
  • biomolecular analog refers to a natural or non-natural variant of a biomolecule.
  • Analogs of in vivo molecules can include modified nucleic acids, modified amino acids, modified lipids or modified sugar chains.
  • gel refers to a colloidal solution (sol) in which a polymer substance or colloidal particles interact with each other to form a network structure as a whole and contain a large amount of a liquid phase as a solvent or a dispersion medium. A state in which fluidity is lost.
  • gelling means changing a solution into a “gel” state.
  • the "gel capsule” refers to a gel-like fine particle structure capable of holding a cell or a cell-like structure therein.
  • gene analysis means examining the state of nucleic acids (DNA, RNA, etc.) in a biological sample.
  • the gene analysis can include those that utilize a nucleic acid amplification reaction.
  • Examples of gene analysis including these include sequencing, genotyping / polymorphism analysis (SNP analysis, copy number polymorphism, restriction enzyme fragment length polymorphism, repeat number polymorphism), expression analysis, fluorescence quenching probe ( Quenching Probe: Q-Probe), SYBR green method, melting curve analysis, real-time PCR, quantitative RT-PCR, digital PCR and the like can be mentioned.
  • single cell level means that the genetic information contained in one cell or cell-like structure is processed in a state of being distinguished from the genetic information contained in another cell or cell-like structure. To do. For example, when amplifying a polynucleotide at the "single cell level", the amplification is performed in a state in which the polynucleotide in one cell and the polynucleotide in another cell can be distinguished from each other.
  • single cell analysis refers to the analysis of genetic information contained in one cell or cell-like structure in a state of being distinguished from the genetic information contained in another cell or cell-like structure. Point to.
  • nucleic acid information refers to information on nucleic acids contained in one cell or cell-like structure, and includes the presence or absence of a specific gene sequence, the yield of a specific gene, or the total nucleic acid yield.
  • identity refers to sequence similarity between two nucleic acid molecules. Identity can be determined by comparing positions in each sequence that can be aligned for comparison.
  • tissue refers to a set of cells or cell-like structures arranged three-dimensionally according to a certain rule. A plurality of tissues are combined to form an organ having a certain function, but in the present disclosure, a "tissue” may be an area that traverses a plurality of tissues. Tissues can contain cells or cell-like structures as well as other components such as extracellular matrix.
  • the "type" of a cell or cell-like structure is a parameter indicating the classification of a cell or a cell-like structure.
  • a cell or cell-like structure may be classified into multiple types by multiple classifications. For example, from the viewpoint of whether or not a cell has a point mutation A, there are a type having a point mutation A and a type not having a point mutation A. In addition, from another viewpoint, from the viewpoint of whether or not the insertion mutation B is present, there are types having B and types not having B. It is possible to specify which type of each cell is.
  • mutation refers to a portion of a cell or cell-like structure that differs from another cell or cell-like structure in terms of genetic information.
  • the “mutation” includes, but is not essential, a difference from a sequence (reference sequence) that serves as a reference for genetic information of a cell or a structure for a certain organism.
  • composition refers to what type of cell in a tissue is (eg, containing a mutation), or the amount of each type of cell contained. It refers to information and also includes information about whether or not the tissue contains cells of some type.
  • a method of analyzing the composition of cells in a tissue from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue, the cell or cell-like structure.
  • a method may be provided that comprises the step of identifying sequence information in an object.
  • a tissue is a collection of heterogeneous cells, and by identifying the type of each cell, not only the presence or absence of certain properties (0 or 1) in the tissue, but also the proportion of cells having a certain type. It is possible to obtain information such as (continuous).
  • the tissue may be a human tissue.
  • a method of analyzing mutations in a tissue from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue, in a cell or cell-like structure may be provided that include the step of identifying the mutation.
  • a tissue is a collection of heterogeneous cells, and by identifying mutations in each cell, not only the presence or absence of mutations in the tissue (0 or 1) but also the proportion of cells having mutations (continuous). It is possible to obtain information such as (target).
  • the tissue may be a human tissue.
  • a method for analyzing mutations in a tissue the step of individually obtaining a nucleic acid sequence derived from each cell or cell-like structure in the tissue, and the step of individually obtaining the nucleic acid sequence.
  • a method may be provided that comprises the step of analysis using the set of nucleic acid sequences.
  • the amount of nucleic acid per cell is small, and even when analysis is performed in a state where nucleic acids derived from a plurality of cells are mixed, it is common to use an amplification reaction, but nucleic acids such as using a random primer are used. It is known that the degree of amplification is biased for each sequence depending on the GC content and the like even when an attempt is made to amplify the whole. When amplification is biased, it is difficult to measure the relative amount of cells with a particular sequence in the tissue.
  • nucleic acid sequences derived from individual cells or cell-like structures may be obtained by any method. There are various methods for single-cell analysis, but the genome of one cell has a mass of only a few femtograms for bacteria and a few picograms for animal cells (Gregory, TR, Nicol, JA, Tamm, H., Kullman, B., Kullman, K., Leitch, IJ,... Bennett, MD (2007). Eukaryotic genome size databases. Nucleic Acids Research, 35 (Database issue), D332-8.
  • Non-Patent Document 4 Zhang et al., 1992).
  • the MDA method is a method for continuously amplifying the genome using phi29 DNA polymerase and a random primer, and is known to be an excellent method for whole-genome amplification.
  • these whole-genome amplification reagents and PCR reagents are allowed to act on individual single cells to amplify the genome, and then perform various analyzes. Can be used.
  • the most basic platform for adding genomic amplification reagents to a single-cell genome is to use a micromanipulator or flow cytometry to dispense one cell into tubes and manually lyse reagents or whole tubes.
  • a method of adding a genome amplification reagent (Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R.,... Rajewsky, K. (2000). Clonal. Expansions of Cd8 + T Cells Dominate the T CellInfiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction. The Journal of ExperimentalMedicine, 192 (3), 393-404.
  • Microfluidics is a technology for freely manipulating solutions in micro / nanoliter units in microfluidic devices that require microchannels and microvessels.
  • One example is Droplet Microfluidics. Droplet microfluidics have the advantage of being capable of precise operation and automation compared to conventional tube operations. In the ⁇ m size flow path provided in the microfluidic device, the liquid layer is sheared by the oil layer, and pL size droplets are continuously generated in units of 1000 per second.
  • each droplet acts as an independent reaction field, by making a solution containing cells into a droplet in a microfluidic device, each cell is encapsulated in the droplet one by one and becomes independent for each cell.
  • the reaction can be carried out.
  • droplet manipulation technology it is possible to individually perform complex reactions such as segmentation and sorting of droplets, including fusion of genome-encapsulated droplets and reaction reagent-encapsulated droplets such as PCR.
  • Droplet microfluidics can perform various operations on cells with high throughput by creating droplets and encapsulating the cells, which may be preferable in the present disclosure.
  • a single cell analysis technique using droplet microfluidics, for example, in which droplets are fused without charging and single cells are massively parallel.
  • Techniques for obtaining whole genome amplification products are available. These methods enable high-precision single-cell analysis for a wide variety of samples at high speed, and are extremely useful for single-cell genome acquisition and comprehensive genome mutation analysis of the entire cell population. It can be said that there is.
  • the device that applies an electrical load to add barcodes and amplification reagents is very fine, and each laboratory uses a different mechanism, so only a limited number of laboratories can be used. Can not. It takes time to learn the technology of the fusion mechanism that does not apply electric charge.
  • the droplets are produced by shearing with oil and are collected while floating in the oil, so that they cannot be applied to automatic sorting by flow cytometry or the like. In addition, these methods cannot remove the reagent once added from the tube.
  • Some lytic reagents are known to have the effect of inhibiting whole-genome amplification, and because the primer dimer increases the amplification bias, the step of removing the reagent for each reaction and adding the next reagent is high. It may be preferable when performing accurate whole genome amplification.
  • a commercially available single cell analyzer may be used for the purpose of enabling single cell analysis in many laboratories.
  • these analyzers can amplify the target site by PCR without performing whole genome amplification.
  • it may be preferable to adopt a method capable of performing whole genome amplification.
  • a sample containing tissue is used, and the cells are encapsulated in droplets one by one.
  • a single cell-derived nucleic acid can be obtained by a method comprising the step of amplifying the polynucleotide in a gel capsule.
  • the step of contacting the polynucleotide with an amplification reagent to amplify the polynucleotide in a gel capsule can also amplify the polynucleotide while maintaining a gel state in the gel capsule. ..
  • droplets can be made by encapsulating one cell by flowing one cell into a microchannel and shearing the suspension with oil.
  • the gel capsule may be a hydrogel capsule.
  • the material of the gel capsule may include agarose, acrylamide, a photocurable resin (for example, PEG-DA), PEG, gelatin, sodium alginate, matrigel, collagen and the like.
  • Gelation of the droplets can be performed by configuring the droplets to contain the material of the gel capsule and cooling the prepared droplets. Alternatively, gelation can be performed by giving a stimulus such as light to the droplet.
  • the inclusion of the gel capsule material in the droplets can be done, for example, by including the gel capsule material in a suspension of cells or cell-like structures.
  • the gel capsule may be a hydrogel capsule.
  • hydrogel refers to one in which the solvent or dispersion medium held by the network structure of the polymer substance or colloidal particles is water.
  • Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride.
  • Urea 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween20, Tween80 , Octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl- ⁇ -D-maltoside, Nonidet P-40, and Zwittergent 3-12 can be selected from at least one species.
  • the cells or cell-like structures that can be targeted in the mutation analysis of the present disclosure are two or more arbitrary numbers, for example, 10 or more, 50 or more, 100 or more, 500 or more, 1000 or more, 5000 or more. It can be 10,000 or more, 50,000 or more, 100,000 or more, 500,000 or more, 1 million or more, 5 million or more, 10 million or more.
  • the mutation analysis of the present disclosure may use information on nucleic acids derived from one cell at a time rather than using a conventional single cell reaction system, eg, a 0.2 mL, 1.5 mL microtube reaction system.
  • a gel droplet technique for producing a droplet using an agarose solution can be adopted. This makes it possible to perform analysis in many laboratories without degrading throughput and accuracy.
  • the single cell By preparing a droplet using agarose and embedding a single cell inside, the single cell can be isolated and cultured in the droplet, or PCR can be performed.
  • a gel droplet is regarded as a reaction field having a network structure in which one cell or one cell nucleus is embedded, and a lysis reagent or a whole genome amplification reagent is allowed to act so as to pass through the network structure to easily make the droplet. It is possible to perform whole genome amplification and reagent removal within.
  • the labor-intensive single-cell genome-embedded droplet fraction may be automated by commercially available flow cytometry.
  • nucleic acids or other biomolecules prepared in parallel from various cells or cell-like structures prior to analysis of the total sequence information of individual cells or cell-like structures (eg, genomic sequencing). From the structure or sequence of the above, the structure or sequence may be referred to for individual cell-specific detection and selection. That is, the method may include selecting a sample containing the amplified nucleic acid to be analyzed from a sample containing the amplified nucleic acid derived from each cell or cell-like structure.
  • selection can be made based on the presence or absence of a particular gene sequence, the yield of a particular gene or the total nucleic acid yield. In some embodiments, it may be selected when there is a specific gene sequence, or it may be selected when there is no specific gene sequence. In some embodiments, it may be selected if the yield of the particular gene is greater than or equal to the baseline yield. In some embodiments, it may be selected if the total nucleic acid yield is greater than or equal to the reference yield.
  • reagents that specifically detect the presence or absence of a particular gene sequence include antibodies, probes, DNA-binding fluorescent dyes, fluorescent dye-binding nucleotides.
  • the yield of a specific gene or the total nucleic acid yield can be measured by absorbance measurement, fluorescence measurement, agarose gel electrophoresis, or microchip electrophoresis.
  • the method may include detecting nucleic acid having a particular sequence in a sample containing amplified nucleic acid derived from each cell.
  • the step of detecting a nucleic acid having a specific sequence may include amplifying and sequencing the nucleic acid having a specific sequence.
  • Evaluation of the composition of the mutation may include identifying the absolute number of various cells in the tissue.
  • the absolute number of cells having various mutations can be specified.
  • the cell type can be specified, for example, by specifying the presence or absence of a specific gene sequence.
  • the method of the present disclosure may include obtaining genomic sequence data for each cell or cell-like structure from a sample containing amplified nucleic acid from each cell or cell-like structure in a tissue.
  • genomic sequence data it is possible to obtain not only information as a sequence but also information from the viewpoint of the function or characteristic of the sequence for each cell in the tissue.
  • Genome sequence data It is possible to select the genome sequence data to be analyzed from the genome sequence data of each cell. Genome sequence data has a large amount of information, and limiting the amount to be processed leads to a reduction in labor and time.
  • Selection may include assessing the presence or absence of a particular gene sequence and / or identity with a particular gene sequence. In some embodiments, identity with a particular gene sequence can be assessed by using BLAST or the like. In certain embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the presence or absence of a particular gene sequence. In other embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the identity of a particular gene sequence with nucleic acid information derived from two or more cells. In some embodiments, it may be selected when it has a certain level of identity or more, or it may be selected when it has a certain level of identity or less.
  • the identity is 50% or higher, 55% or higher, 60% or higher, 65% or higher, 70% or higher, 75% or higher, 80% or higher, 85% or higher, 90% or higher, 91% or higher, It may be 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 100%.
  • the identity is 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 9% or less, It may be 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, or 0%.
  • the composition of mutations may be evaluated by comparing long gene sequences in each cell.
  • the long sequence may be, for example, a gene sequence extracted from de novo assembly data. Comparison of such long gene sequences can not only enhance the evaluation system but also enable evaluation of function in tissues. For example, even if it is known that multiple types of cells exist from sequence information alone, it may not be possible to understand the state of the entire tissue without individual information on the role and state of each cell. Based on this information, it is possible to obtain information about the amount of cells having a specific activity (for example, enzyme activity, drug sensitivity, tumorigenicity) in a tissue.
  • a specific activity for example, enzyme activity, drug sensitivity, tumorigenicity
  • Mutations include mutations that involve sequence changes and mutations that do not involve sequence changes. Mutations with sequence changes include substitutions, insertions, deletions, inversions, or translocations. Examples of mutations that do not involve sequence changes include copy number variation. The mutation can be identified by comparing the sequences with each other based on a method known in the art.
  • nucleic acid be evenly amplified for each cell or cell-like structure. For such amplification, the features described in the (single cell analysis) column of the present specification can be appropriately adopted.
  • Tissues that can be analyzed in this disclosure include tumor tissue, nervous tissue, blood, bone marrow fluid, semen, peritoneal lavage fluid, and the like. Even if the tissue is morphologically composed of certain cells, it may be genetically composed of various cells, and individual cells cannot be captured by the data averaged from the cell population.
  • the methods of the present disclosure are useful in understanding the properties of each organization based on its characteristics and functions.
  • the tissues that can be analyzed in the present disclosure may be derived from any organism, and the animals include, for example, human or non-human mammals (eg, mice, rats, rabbits, sheep, pigs, cows). , Horses, cats, dogs, monkeys, chimpanzees), vertebrates such as birds, reptiles, amphibians, fish, and invertebrates, such as insects and linear animals.
  • human or non-human mammals eg, mice, rats, rabbits, sheep, pigs, cows.
  • vertebrates such as birds, reptiles, amphibians, fish, and invertebrates, such as insects and linear animals.
  • Plants include rice, wheat, corn, potato, barley, sweet potato, buckwheat, white indigo, sorghum, tomato, cucumber, cabbage, white vegetable, eggplant, sugar cane, sorghum, apple, orange, banana, peach, poplar, pine, cedar, Examples include angiosperms, grasses, ferns, moss, and algae.
  • human tissue can be targeted.
  • tumor tissue tumor marker, tumor malignancy index, tumor drug susceptibility index, nerve tissue, neuropsychiatric disease index, peripheral neuropathy index, germ cell, hereditary disease index, blood cell It is possible to identify the amount of cells with mutations that can be used as an index of malignancy and drug susceptibility of acute myeloid leukemia, safety evaluation in regenerative medicine, and the like. It is possible to obtain information such as not only the presence or absence of mutation (0 or 1) in a tissue but also the proportion of cells having a mutation (continuous).
  • the obtained mutation information for each single cell can be used for development research of new treatment methods and drugs by elucidating genetic heterogeneity in the case of tumor tissues and hematological malignancies, as well as stratification of cancer patients. , Leading to improved treatment selection and pathological monitoring. If the type of mutant cells can be determined and the composition ratio can be known before and after treatment, the drug can be given to the patient under appropriate application conditions. For example, by applying this technology to perform the current cancer panel DNA analysis on a cell-by-cell basis, more precise treatment method selection becomes possible.
  • the genome in brain nerve cells has brain-specific genome polymorphisms such as chromosome number and retrotransposon transfer, in addition to the effects of mutations that occur during mitosis. It has also been suggested that these genomic polymorphisms are associated with psychiatric disorders.
  • system In another aspect of the disclosure, a system for analyzing mutations in tissues may be provided.
  • the system may be provided with a method or means for implementing a process thereof that comprises any of the features described in the other items herein.
  • the system may include a device for amplifying polynucleotides in cells.
  • the device can be, among other things, capable of amplifying polynucleotides in cells at the single cell level.
  • the device is a droplet preparation unit that encapsulates cells or cell-like structures in droplets one cell or structure at a time; a gel capsule generation unit that gels droplets to generate gel capsules; a reagent for dissolving gel capsules. It may be provided with a dissolving reagent dipping part to be immersed in; a removing part for removing contaminants from the gel capsule; and / or an amplification reagent dipping part for immersing the gel capsule in the amplification reagent.
  • the system or device may further comprise a sorting unit that sorts the gel capsules and houses the gel capsules in a storage container.
  • the system or device may optionally include media for encapsulating cells or cell-like structures, gel capsule materials, lysis reagents, amplification reagents, reagents used for sequencing nucleic acids (eg, polymerases, primer sets (eg, polymerases, primer sets). Barcode sequences may be included), etc.) and other reagents.
  • reagents in addition to those described elsewhere in the present specification, reagents known in the art may be used.
  • the device or system may further include a sequencing section for sequencing the nucleic acid sequence in the amplified polynucleotide in the amplification reagent immersion section.
  • the sequencing unit may be provided integrally with the above device or as another device in the system.
  • the sequencing unit includes the Sanger method, the Maxam-Gilbird method, single molecule real-time sequencing (for example, Pacific Biosciences, Menlo Park, California), and ion semiconductor sequencing (for example, Ion Torrent, South San Francisco, California).
  • Bisynthesis pyrosequencing (eg, 454, Brandored, Connecticut), ligation sequencing (eg, Life Technologies, Carlsbad, California SOLiD sequencing), synthetic and reversible terminator sequencing (eg, Illumina) , California), nucleic acid imaging techniques such as transmission electron microscopy, nanopore sequencing, and the like.
  • ligation sequencing eg, Life Technologies, Carlsbad, California SOLiD sequencing
  • synthetic and reversible terminator sequencing eg, Illumina
  • nucleic acid imaging techniques such as transmission electron microscopy, nanopore sequencing, and the like.
  • the system or device may be equipped with means for detecting and measuring the amplified gene.
  • a flow cytometry device suitable for handling the shape of a gelul capsule may be provided integrally with the above device or as another device in the system.
  • Means for detecting and measuring the amplified gene include means for performing a detection reaction (eg, thermal cycler and suitable reagents) and / or means for detecting signals (optical sensors, cameras, and suitable means for analysis). Can be included.
  • the system or device may include a calculator that may be configured to perform any information processing described elsewhere herein.
  • the calculation unit may be provided integrally with the above-mentioned device, or may be provided as another device (computer) in the system.
  • a calculation unit may also provide a program for performing information processing described elsewhere in the specification to implement the method of the present disclosure and a storage medium on which it is recorded.
  • the calculator may optionally include such a program and / or a storage medium on which it is recorded.
  • kits for analyzing mutations in tissues may be provided.
  • the kit may include the material of the gel capsule, and the use of the gel capsule is advantageous for amplifying nucleic acids in cells or cell-like structures at the single cell level, as described elsewhere herein. And can be used as described herein for the analysis of mutations in tissues.
  • the kit may include, for example, the material of the gel capsule and, optionally, one or more reagents. As the reagent, in addition to those described elsewhere in the present specification, reagents known in the art may be used.
  • Kits for analyzing mutations in tissues may include reagents for lysis.
  • Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride.
  • Tween 20 Urea, 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, It may include at least one selected from the group consisting of Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl- ⁇ -D-maltoside, Nonidet P-40, Zwittergent 3-12. Dissolving reagents are useful for obtaining amplified polynucleotides at the single cell level, especially genomic-wide amplification products.
  • the kit may include reagents for amplifying nucleic acids.
  • Amplification reagents include, for example, polymerases, primer sets (which may include barcode sequences), base mixes, suitable buffers and the like.
  • the kit may include reagents such as reagents used for sequencing nucleic acids (eg, polymerases, primer sets (which may include barcode sequences), etc.).
  • reagents polymerase, primer set (which may include a barcode sequence), etc.) for amplifying / decoding a specific gene by a Sanger sequence or NGS may be included.
  • the kit may also include reagents that can be used to detect and measure specific sequences, such as nucleic acid binding dyes, fluorescently labeled probes, and the like. Using these reagents, the presence or absence of a specific sequence can be measured by an instrument that detects and measures the amplified gene (flow cytometry, etc.).
  • specific sequences such as nucleic acid binding dyes, fluorescently labeled probes, and the like.
  • a tissue comprising an amplified nucleic acid sample donor that provides a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue and a mutation-identifying portion that identifies a mutation in the cell or cell-like structure.
  • a system that analyzes mutations in is capable of single-cell whole-genome amplification within gel droplets.
  • the amplified nucleic acid sample provider uses the sample containing the tissue to encapsulate the cells or cell-like structures in the droplets one cell or each structure, and gels the droplets.
  • a gel capsule generator that produces a gel capsule, one or more lysis reagents, and one or more lysis reagents for lysing cells are stored in the gel capsule.
  • a cell lysate that lyses the cell by immersing in the cell in which the genomic DNA of the cell or a polynucleotide containing a portion thereof elutes into the gel capsule and binds to the genomic DNA or portion thereof.
  • a cell lysate which is configured to be retained in the gel capsule with the substance to be removed, and the polynucleotide amplification reagent for amplifying the polynucleotide in the gel capsule. Is preferable.
  • the composition evaluation unit includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells, and the detection reagent or the detection device amplifies the nucleic acid and
  • a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells
  • the detection reagent or the detection device amplifies the nucleic acid and
  • Example 1 Preparation of agarose gel droplet
  • Example 2 Preparation of agarose gel droplet
  • AUTOCAD Manufacturing of microfluidic device
  • the width of the flow path inside the device was designed to be 100 ⁇ m
  • the carrier oil side of the cross structure was 17 ⁇ m
  • the aqueous solution side was 8.5 or 17 ⁇ m.
  • a mold for device fabrication was produced by transferring the flow path to a glass substrate coated with a negative resist (SU-8 3050, MicroChem Corp., Newton, MA) using a photomask.
  • SU-8 3050 MicroChem Corp., Newton, MA
  • a spin coater (MS-B150, Mikasa, Japan) was used to coat the resist on the glass substrate.
  • the height of the flow path of the device having a cross-structured aqueous solution side flow path width of 17 ⁇ m was 50 ⁇ m, and the height of the flow path of the device having 8.5 ⁇ m was 30 ⁇ m.
  • Polydimethylsiloxane (PDMS; Sylgard 184: Dow Corning Corp., Midland, MI) was used to fabricate the microfluidic device.
  • the prepared microchannel made of polydimethylsiloxane was used to prepare the droplet.
  • the prepared droplets were collected in 1.5 mL tubes. A part of the collected droplets was observed using a microscope (BZ-X710, KEYENCE, Osaka, Japan) (Fig. 7, right figure). The collected gel droplets were allowed to stand on ice for 15 minutes to gel the gel droplets.
  • the prepared gel droplet is in a state of floating in oil, and it is necessary to replace the oil layer with an aqueous layer in order to add a dissolving reagent or a whole genome amplification reagent.
  • the oil in the tube was removed as much as possible to replace the droplets with an aqueous layer.
  • 200 ⁇ L of a 1: 9 mixed solution of 1H, 1H, 2H, 2H-Perfluoro-1-octanol (SIGMA-ALDRICH, St. Louis, MO) and Novec 7500 was added, mixed with the droplet by tapping, and adsorbed on the droplet.
  • the oil that had been used was removed.
  • Centrifuge in a tabletop centrifuge (Petit Change, WAKENBTECH CO., Kyoto, Japan) for 1 second to remove the supernatant, and then mix 1H, 1H, 2H, 2H-Perfluoro-1-octanol and Novec 7500 1: 9 in the same manner.
  • the solution was mixed and centrifuged in a tabletop centrifuge for 1 second to remove the supernatant.
  • 500 ⁇ L of acetone (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) was added, mixed by a vortex mixer (Nissinrika Co., Tokyo, Japan), and then centrifuged in a tabletop centrifuge for 30 seconds to remove the supernatant.
  • Example 2 Whole genome amplification and amplification bias evaluation in gel droplet
  • GM12878, a human lymphoblastic cell was used as a model cell.
  • the concentration of the cell suspension was adjusted to 3,000 cells / ⁇ L, and then mixed with a 3% agarose solution prepared in advance at a ratio of 1: 1.
  • the agarose concentration of the mixed solution was 1.5%, and the cell concentration was When a droplet having a particle size of 1,500 cells / ⁇ L and a particle size of 50 ⁇ m was prepared, the encapsulation ratio was 1 cell / drop. Droplets were made using a microfluidic device using the prepared solution. The collected gel droplets were allowed to stand on ice for 15 minutes to gel the gel droplets.
  • GM12878 was encapsulated by the above method to prepare droplets having two types of particle sizes, 50 ⁇ m and 70 ⁇ m.
  • the conditions are an agarose concentration of 1.5% and an encapsulation ratio of 0.1 cell / drop.
  • the aqueous layer was replaced by the method described above.
  • Buffer D2 (1M DTT and Buffer DLB) contained in Repli-g Single Cell Kit (QIAGEN, Valencia, CA) is prepared in a droplet suspension and reacted at 40 ° C for 10 minutes to produce one piece of DNA. Chaining was performed.
  • the reagent included in the kit was similarly mixed with the tube after the reaction, and the whole genome was amplified by reacting at 30 ° C. for 3 hours. After whole-genome amplification, 100 ⁇ L of DPBS was added to the droplet and centrifuged for 1 minute, and the operation of removing the supernatant was repeated twice to wash. After that, the DNA was stained with SYBR Green and washed again with 100 ⁇ L of DPBS three times. Since a part of the DNA amplification positive droplet was deformed by the genome amplification, the circularity of the fluorescent droplet was measured by ImageJ using a fluorescent image (FIGS. 8 and 9).
  • Example 3 Evaluation of amplification bias of single-cell whole genome amplification product
  • the 70 ⁇ m diameter whole genome amplification product-encapsulated droplets prepared in Example 2 were aspirated one by one under a microscope using a micromanipulator (Microdispenser, Drummond Scientific Company, Broomall, PA) and transferred to a PCR tube (hereinafter, this). Work is called a pick).
  • Pick 20 DNA amplification positive and 20 negative droplets each add Buffer D2 and react at 40 ° C for 10 minutes, then add reagents other than alkaline reagents and react at 30 ° C for 2 hours.
  • a second whole-genome amplification using DNA as a template was performed (secondary amplification).
  • qPCR was performed with the composition shown in Table 2.
  • the conditions for qPCR were 50 ° C for 2 minutes, 95 ° C for 2 minutes, and 40 cycles (95 ° C for 3 seconds, 60 ° C for 30 seconds), and a StepOnePlus real-time PCR system (Applied Byosystems, City of Foster City, CA) was used.
  • GM12878 cells were directly picked without being encapsulated in the droplet, and the whole genome was amplified in the PCR tube to evaluate the amplification bias. Furthermore, a non-amplified genome was obtained from the GM12878 cell population by using a genome extraction kit (DNeasy, QIAGEN, Valencia, CA), and qPCR was performed in the same manner as a reference.
  • a genome extraction kit DNeasy, QIAGEN, Valencia, CA
  • Example 4 Gel droplet whole genome amplification of cell nucleus and fractionation by FACS
  • Preparation of cell nuclei from cultured animal cells and encapsulation in gel droplets From the GM12878 cells used in Example 2, cell enucleation treatment was performed. First, the cultured cells were collected and washed 3 times with 1 mL of DPBS. After washing, 500 ⁇ L of a lysing reagent was added to the cell pellet and reacted on ice for 5 minutes to dissolve the cell membrane.
  • the composition of the dissolving reagent is 10 mM Tris-HCl (invitrogen, Carlsbad, CA), 10 mM NaCl (SIGMA-ALDRICH, St.Louis, MO), 3 mM MgCl 2 (SIGMA-ALDRICH, St.Louis, MO), 0.1% Nonidet. TM P40 (Thermo Fisher Scientific, Waltham, MA). Then, 500 ⁇ L of DPBS containing 1% amount of Bovine Serum Albumin (SIGMA-ALDRICH, St.Louis, MO) was added, and only the cell nucleus was recovered by centrifugation at 500 ⁇ g for 5 minutes at 4 ° C.
  • the cells were similarly washed 3 times with DPBS containing 1% BSA, and the cell concentration was measured by an animal cell counter.
  • the cell nucleus concentration was adjusted to 14,000 cells / ⁇ L and mixed with a 3% agarose solution at a ratio of 1: 1 to obtain a concentration of 0.1 cells / drop when a droplet having a particle size of 30 ⁇ m was prepared. From the prepared solution, a 30 ⁇ m gel droplet was prepared and cells were encapsulated.
  • the concentrations of the three types of cells were made uniform and mixed 1: 1: 1 to prepare a cell suspension containing equal amounts of the three types of cells.
  • a 3% agarose solution was prepared, mixed 1: 1 with a mixed cell suspension, and encapsulated in a 70 ⁇ m diameter droplet at 0.1 cell / drop.
  • MDA was performed after aqueous layer replacement and 102 DNA amplification positive droplets were picked after washing and staining.
  • Three types of primers were designed to include the three gene mutations shown in Table 3 (Table 4), and PCR was performed on the single-cell whole genome amplification products with the three types of primers.
  • the enzyme used was PyroMark PCR Master Mix (QIAGEN, Valencia, CA).
  • the PCR conditions are 95 ° C for 15 minutes, 40 cycles (94 ° C for 30 seconds, 62 ° C for 30 seconds, 72 ° C for 30 seconds), and 72 ° C for 10 minutes.
  • the presence or absence of deletion mutations in each single cell genome was detected by performing agarose gel electrophoresis on the PCR products targeting the deletion mutations of ex19.
  • PCR products targeting SNPs of ex20 and 21 were sent to fasmac Co., Ltd., and the nucleotide sequences of the PCR products were obtained by the Sanger sequencing method to detect the presence or absence of SNPs at two locations in the single cell genome. ..
  • Example 5 Evaluation of amplification bias of gel droplet whole genome amplification product
  • qPCR targeting the loci on each chromosome 1 to 22 was performed, and amplification bias was performed. The degree of was evaluated.
  • the difference in Ct value during qPCR of a single-cell genome amplified product was evaluated as the magnitude of amplification bias (Fig. 11).
  • the amplification bias was large, and the difference between the maximum and minimum Ct values was 3 or more at all chromosomal sites. It was 6 or more in 15 places. This means that there was a difference of 10 times or more in the degree of amplification between single-cell genomes at all sites, and a variation of 100 times or more at 15 sites.
  • the difference in Ct value exceeded 3 in only 7 places, and the difference in Ct value exceeded 6 in 0 places. From this, it was confirmed that the variation in genome amplification was 10 times or less at 15 locations.
  • Example 6 Whole-genome amplification and amplification bias evaluation of nuclear-encapsulated gel droplet
  • the MDA reaction time was evaluated from the two viewpoints of amplification bias and the degree of droplet deformation in order to apply it to sorting by FACS. did.
  • the cause was diffusion due to lysis of intracellular components, and examined a method of removing cytoplasmic components in advance and encapsulating them in droplets as cell nuclei to proceed with the subsequent reaction.
  • Example 7 FACS preparative verification of gel droplet whole genome amplification product
  • FACS preparative verification of gel droplet FACS sorting of nuclear-encapsulated gel droplet MDA products
  • Fig. 14 The yields of all the tubes sorted with DNA amplification negative droplets were 1000 ng or less.
  • the sorting efficiency of DNA amplification positive droplets was calculated based on 1000ng, 53 tubes were confirmed to have genome amplification of 1000ng or more, and the sorting efficiency was 91%.
  • PCR targeting the mutation sites ex19, 20, and 21 was performed on each of the 96 single-cell genomes with a yield of 1000 ng or more.
  • a part of the result of agarose gel electrophoresis after PCR is shown in FIG.
  • Previous studies (Kawada et al., 2008) have confirmed that two bands are detected by electrophoresis of the genome containing a heterozygous deletion in EGFR ex19.
  • As a result of agarose gel electrophoresis two bands were detected in 24 amplification products, and one PCR band was detected in 72 amplification products. From this result, it can be seen that the 24 genomes were obtained from cells containing a deletion mutation in EGFR ex19.
  • nucleotide sequences of EGFR ex20 and 21 region amplification products were obtained by the Sanger sequencing method.
  • only one of the three regions (288 locations in total) of the 96 single-cell genome that could be obtained could not be amplified.
  • This result means that the deletion of genetic information due to the amplification bias of the gel droplet MDA product occurred only at a frequency of 0.4% or less, and it proved again that the amplification bias was sufficiently small.
  • SNP mutations were detected from the obtained nucleotide sequence waveforms.
  • the 34 single-cell genomes with mutations in ex20 and 21 were different samples from the 24 single-cell genomes with mutations in ex19 by agarose gel electrophoresis.
  • the proportions of each mutation detected were classified into three types as expected (Table 5). From the fact that there was no genome in which three mutations of Ex19-21 were observed at the same time, it was found that there were no gel droplets containing the genomes of H1650 and H1975 at the same time among the 96. It was. This means that the doublets were present in a sufficiently small proportion (1/20, the H1650 and H1975 doublets were 1/120), as theoretically. From the above experiments, it is possible to perform genome mutation analysis at the single cell level with high efficiency after enclosing a cell population in which multiple cell types exist in a gel droplet and performing simple and highly accurate whole genome amplification. Shown.
  • Example 8 Diagnosis of cancer
  • (1) Collection of tumor sample A tumor tissue sample is collected by biopsy. The tissue is enzymatically treated and the cell nucleus is removed. If necessary, the target cell group is concentrated by flow cytometry or the like. In the case of hematological malignancies, blood is collected, the peripheral blood mononuclear cell fraction is purified, and the target cell group is concentrated by flow cytometry or the like as necessary.
  • Single-cell genomic information is obtained by genetic analysis of amplified polynucleotides. (3) Analysis of information Evaluate the gene region related to drug resistance of molecular-targeted drugs and select an appropriate drug prescription. In this method, since the genomic polymorphism of cells can be determined for each cell, mutant cells with low abundance in tumors can be detected, and how mutant cells are collected depending on the place and time of collection in the tissue. It is also possible to monitor whether the ratio is different and changes. This method makes it possible to adjust the treatment method at any time according to the state of the tumor composition of each patient.
  • the single-cell technology disclosed in this disclosure enables non-invasive monitoring and early detection of cancer. For example, circulating tumor cells can be collected from blood samples, but only 1 to 50 cells can be obtained from one patient. For example, in the case of gastric cancer patients, biopsy itself is life-threatening. Single cell technology can be used as a non-invasive monitoring method. Moreover, since the degree of heterogeneity between cancer cells constituting cancer and non-cancerous cells can be determined, it is also possible to find a correlation with the survival rate.
  • the single cell technology of the present disclosure can analyze a very small amount of cancer cells, it is possible to detect a relationship with metastasis and a rare mutation to chemotherapy.
  • Example 9 Safety and quality assurance in regenerative medicine
  • (1) Collecting a transplanted tissue sample A part is collected from a transplanted tissue sample prepared from ES cells or iPS cells. The tissue is enzymatically treated and the cell nucleus is removed. If necessary, the target cell group is concentrated by flow cytometry or the like.
  • (2) Obtaining Single Cell Genome Information The single cell is encapsulated in a gel capsule according to the procedure described in Examples 1 and 2 of the present specification. Prepare the amplified polynucleotide in a gel capsule. Collect the gel capsule containing the amplified polynucleotide. Single-cell genomic information is obtained by genetic analysis of amplified polynucleotides.
  • SNP and CNV are evaluated as genomic changes related to tumorigenicity.
  • genomic polymorphism of cells can be determined for each cell, mutant cells with low abundance in tissues can be detected, and how the mutant cell ratio can be determined by induction of differentiation from stem cells or purification methods. Unlike, it is possible to monitor how it changes. This method enables the safety and quality assurance of the tissue used for transplantation.
  • Example 10 Detection of chromosomal abnormalities in germline cells, preimplantation genetic diagnosis, prenatal diagnosis
  • Example 11 Analysis using various tissues
  • SNES Singlenucleus exome sequencing. Genome Biology, 16 (1). Disperse in cell units. Using the sample prepared in this procedure, nucleated cells are prepared by the method described in Example 4, gel droplets are prepared, and the cells are encapsulated.
  • This disclosure is available in fields such as biological research, medicine, and healthcare.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present disclosure provides a method for analyzing the composition of variations in a tissue, simply, at low cost, and/or with high precision. The method for analyzing the composition of cells in a tissue according the present disclosure comprises a step for assessing information about the sequence of cells from samples containing amplified nucleic acid derived from single cells in the tissue. This method enables assessment of the cell composition in a tissue simply at low cost when being carried out before whole genome sequencing, and enables improvement in precision since it is possible to conduct comparison of long gene sequences when information regarding the target to be analyzed is narrowed down from digital sequence information after whole genome sequencing is performed.

Description

デジタル体細胞変異解析Digital somatic mutation analysis
 本開示は、細胞集団の分析に関し、生物学的研究、医療、ヘルスケアなどの分野において利用可能である。 This disclosure is available in fields such as biological research, medicine, and healthcare regarding the analysis of cell populations.
 がんや脳組織、神経組織などはそれぞれ異なる系譜と機能を持つ多様な細胞種によって構成されている(非特許文献1=Woodruff, 1983)。特にがん組織は細胞が次々と新たなゲノム変異を獲得しながら増殖していくため、一つのがん組織に数多くの腫瘍サブクローンが含まれている。これらのサブクローンは遺伝情報やエピジェネティックな制御が異なることにより、その形態・増殖性・薬剤耐性などが異なる。例えば上皮成長因子受容体(EGFR)遺伝子の変異は肺がんを引き起こし、さらに遺伝子変異箇所の違いによってEGFR阻害剤であるゲフィチニブへの感受性が変化することが知られている(非特許文献2=Paezetal., 2004)。また、遺伝子変異の他にも、染色体倍数性の変化やコピー数多型など、生まれながらに多様性を持つ遺伝子領域も存在する。これらの遺伝子多様性を正確に検出することは、体組織の詳細な理解に不可欠である。 Cancer, brain tissue, nerve tissue, etc. are composed of various cell types with different genealogy and function (Non-Patent Document 1 = Woodruff, 1983). In particular, cancer tissues proliferate while acquiring new genomic mutations one after another, so one cancer tissue contains many tumor subclones. These subclones differ in their morphology, proliferation, drug resistance, etc. due to differences in genetic information and epigenetic control. For example, it is known that a mutation in the epidermal growth factor receptor (EGFR) gene causes lung cancer, and that the susceptibility to the EGFR inhibitor gefitinib changes depending on the mutation site (Non-Patent Document 2 = Paezetal. , 2004). In addition to gene mutations, there are also gene regions that are naturally diverse, such as changes in chromosomal polyploidy and copy number variation. Accurate detection of these genetic diversities is essential for a detailed understanding of body tissue.
 しかしこれらの遺伝的特徴の中には、細胞集団をまとめて解析するだけでは検出されないものが数多く存在する。この正確な計測には、体組織を1細胞レベルで理解することが不可欠であるため(非特許文献3=Zonget al., 2012)、様々な領域においてシングルセル解析の必要性が謳われている。 However, there are many of these genetic features that cannot be detected by simply analyzing the cell population collectively. Since it is indispensable to understand the body tissue at the single cell level for this accurate measurement (Non-Patent Document 3 = Zonget al., 2012), the necessity of single cell analysis is stated in various areas. ..
 本発明者らは、鋭意発明の結果、組織の細胞の組成を分析する方法であって、当該組織中の1つずつの細胞由来の増幅核酸を含む試料から、細胞の配列情報(例えば、変異)を評価する工程を含む、方法により、全ゲノム配列解読前の実行で、安く簡単に細胞組成の評価が可能で、全ゲノム配列解読後に、デジタル配列情報から、解析対象の情報を絞り込むことで、長い遺伝子配列で比較することなどが可能になり精度が高まることを見出し、本発明を完成させた。 The present inventors are a method of analyzing the composition of cells in a tissue as a result of diligent invention, and the sequence information of cells (for example, mutation) is obtained from a sample containing an amplified nucleic acid derived from each cell in the tissue. ) Can be cheaply and easily evaluated by the method including the step of evaluating the whole genome sequence before decoding the whole genome sequence. After decoding the whole genome sequence, the information to be analyzed can be narrowed down from the digital sequence information. The present invention has been completed by finding that it becomes possible to compare long gene sequences and the accuracy is improved.
 本開示は、多様な細胞を含む細胞集団(例えば、組織)から1細胞ごとに並列調整された増幅ポリヌクレオチドから、各細胞の特徴を同定する遺伝子配列を網羅的に読み取り、サンプル中の細胞を1細胞ずつデジタルカウントし、細胞組成を絶対量としてデジタルカウントした情報を提供することが可能である。 The present disclosure comprehensively reads the gene sequence that identifies the characteristics of each cell from the amplified polynucleotide prepared in parallel for each cell from a cell population (for example, tissue) containing various cells, and selects the cells in the sample. It is possible to digitally count cells one by one and provide information that is digitally counted with the cell composition as an absolute amount.
 本開示の実施形態の例として、以下のものが挙げられる。
(項目1) 組織における変異を解析する方法であって、
 該組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、細胞または細胞様構造物における変異を特定する工程を含む、方法。
(項目A) 組織における変異を解析する方法であって、
 該組織中の1つずつの細胞または細胞様構造物に由来する核酸配列を個別に入手する工程と、
 該個別に入手した核酸配列の集合を用いて、分析する工程とを含む、方法。
(項目2) 前記1つずつの細胞または細胞様構造物に由来する増幅核酸が、
 前記組織を含む試料を用い、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する工程と、
 該液滴をゲル化してゲルカプセルを生成する工程と、
 該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する工程であって、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持される、工程と、
 該ポリヌクレオチドを増幅用試薬に接触させて該ポリヌクレオチドをゲルカプセル内で増幅する工程と
を含む、方法によって生成されている、前記項目のいずれかに記載の方法。
(項目3) 前記細胞または細胞様構造物の懸濁液をマイクロ流路中に流動させ、オイルで前記懸濁液をせん断することにより前記細胞または細胞様構造物を封入した前記液滴が作製されることを特徴とする、前記項目のいずれかに記載の方法。
(項目4) 前記ゲルカプセルがアガロース、アクリルアミド、PEG、ゼラチン、アルギン酸ナトリウム、マトリゲル、コラーゲン又は光硬化性樹脂から形成されることを特徴とする、前記項目のいずれかに記載の方法。
(項目5) 前記溶解用試薬がリゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、TritonX-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween20、Tween 80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、NonidetP-40、およびZwittergent3-12からなる群から少なくとも1種選択されることを特徴とする、前記項目のいずれかに記載の方法。
(項目6) 前記ゲルカプセルがヒドロゲルカプセルであることを特徴とする、前記項目のいずれかに記載の方法。
(項目7) 前記ポリヌクレオチドをゲルカプセル内で増幅する工程が、10~60分間の恒温鎖置換増幅反応によって行われることを特徴とする、前記項目のいずれかに記載の方法。
(項目8) 前記1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択する工程をさらに含む、前記項目のいずれかに記載の方法。
(項目9) 前記1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料において、特定の配列を有する核酸を検出する工程を含む、前記項目のいずれかに記載の方法。
(項目10) 前記特定の配列を有する核酸を検出する工程が、特定の配列を有する核酸を増幅することを含む、前記項目のいずれかに記載の方法。
(項目11) 前記変異が、参照配列と比較した配列の変化を伴う変異を含む、項前記項目のいずれかに記載の方法。
(項目12) 前記変異が、塩基置換、挿入または欠失を含む、前記項目のいずれかに記載の方法。
(項目13) 前記1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、該1つずつの細胞または細胞様構造物のゲノム配列データを得る工程をさらに含む、前記項目のいずれかに記載の方法。
(項目14) 前記1つずつの細胞または細胞様構造物のゲノム配列データから、分析するゲノム配列データを選択する工程をさらに含む、前記項目のいずれかに記載の方法。
(項目15) 前記変異が、参照配列と比較した配列の変化を伴わない変異を含む、項前記項目のいずれかに記載の方法。
(項目16) 前記変異が、コピー数変異(CNV)を含む、前記項目のいずれかに記載の方法。
(項目17) 前記ゲノム配列データを使用して、塩基置換、挿入または欠失を含む変異を特定することを含む、前記項目のいずれかに記載の方法。
(項目18) 前記組織が、腫瘍を含む組織である、前記項目のいずれかに記載の方法。
(項目19) 前記組織が、ヒト組織である、前記項目のいずれかに記載の方法。
(項目20) 組織における変異を解析するシステムであって、
 該組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料を提供する増幅核酸試料提供部と、
細胞または細胞様構造物における変異を特定する変異特定部とを含む、システム。
(項目21) 前記増幅核酸試料提供部が、
 前記組織を含む試料を用い、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する液滴封入部と、
 該液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部と、
 1種以上の溶解用試薬と、
 細胞を溶解するための1種以上の溶解用試薬が格納された、該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する細胞溶解部であって、該細胞溶解部は、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持されるように構成されている、細胞溶解部と、
 該ポリヌクレオチドをゲルカプセル内で増幅するための該ポリヌクレオチド増幅用試薬と
を含む、項目20に記載のシステム。
(項目22) 前記組成評価部は、前記1つずつの細胞由来の増幅核酸を含む試料において特定の配列を有する核酸を検出するための検出試薬または検出装置を含む、項目20または21に記載のシステム。
(項目23) 前記検出試薬または検出装置が、核酸を増幅および配列解読するための核酸増幅配列決定装置を含む、項目22に記載のシステム。
(項目24) 前記組成評価部は、前記微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、該1つずつの細胞のゲノム配列データをゲノム配列データ取得部をさらに含む、項目20~23のいずれか一項に記載のシステム。
Examples of embodiments of the present disclosure include:
(Item 1) A method for analyzing mutations in tissues.
A method comprising identifying mutations in a cell or cell-like structure from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue.
(Item A) A method for analyzing mutations in tissues.
A step of individually obtaining a nucleic acid sequence derived from each cell or cell-like structure in the tissue, and
A method comprising the step of analyzing using the individually obtained set of nucleic acid sequences.
(Item 2) Amplified nucleic acid derived from each cell or cell-like structure
Using a sample containing the tissue, a step of encapsulating cells or cell-like structures in droplets one cell or structure at a time, and
The process of gelling the droplets to form gel capsules,
A step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, wherein the genomic DNA of the cell or a polynucleotide containing a portion thereof is eluted into the gel capsule and the genomic DNA or its portion. The process of holding in the gel capsule with the substance bound to the moiety removed,
The method according to any of the above items, which is produced by a method comprising contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule.
(Item 3) The cells or cell-like structures are encapsulated in the droplets produced by flowing the suspension of the cells or cell-like structures into a microchannel and shearing the suspension with oil. The method according to any one of the above items, characterized in that
(Item 4) The method according to any one of the above items, wherein the gel capsule is formed from agarose, acrylamide, PEG, gelatin, sodium alginate, matrigel, collagen or a photocurable resin.
(Item 5) The solubilizing reagents are lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform , Guanidin Hydrochloride, Urea, 2-Mercaptoethanol, Dithiotreitol, TCEP-HCl, Sodium Colate, Sodium Deoxycholate, TritonX-100, Triton X-114, NP-40, Brij-35, Brij-58, The item, wherein at least one is selected from the group consisting of Tween 20, Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-hydrochloride, Nonidet P-40, and Zwittergent 3-12. The method described in any of.
(Item 6) The method according to any one of the above items, wherein the gel capsule is a hydrogel capsule.
(Item 7) The method according to any one of the above items, wherein the step of amplifying the polynucleotide in a gel capsule is carried out by a homeothermic chain substitution amplification reaction for 10 to 60 minutes.
(Item 8) The method according to any one of the above items, further comprising a step of selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell or cell-like structure.
(Item 9) The method according to any one of the above items, which comprises a step of detecting a nucleic acid having a specific sequence in a sample containing an amplified nucleic acid derived from each cell or cell-like structure.
(Item 10) The method according to any one of the above items, wherein the step of detecting the nucleic acid having the specific sequence comprises amplifying the nucleic acid having the specific sequence.
(Item 11) The method according to any one of the above items, wherein the mutation comprises a mutation accompanied by a change in the sequence compared to the reference sequence.
(Item 12) The method according to any one of the above items, wherein the mutation comprises a base substitution, insertion or deletion.
(Item 13) The item further comprises a step of obtaining genomic sequence data of each cell or cell-like structure from a sample containing an amplified nucleic acid derived from each cell or cell-like structure. The method described in either.
(Item 14) The method according to any one of the above items, further comprising a step of selecting genomic sequence data to be analyzed from the genomic sequence data of each cell or cell-like structure.
(Item 15) The method according to any one of the above items, wherein the mutation comprises a mutation that does not involve a sequence change compared to a reference sequence.
(Item 16) The method according to any of the above items, wherein the mutation comprises copy number variation (CNV).
(Item 17) The method according to any of the above items, which comprises using the genomic sequence data to identify mutations including base substitutions, insertions or deletions.
(Item 18) The method according to any one of the above items, wherein the tissue is a tissue containing a tumor.
(Item 19) The method according to any one of the above items, wherein the tissue is a human tissue.
(Item 20) A system for analyzing mutations in tissues.
An amplified nucleic acid sample provider that provides a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue.
A system comprising a mutation-identifying part that identifies a mutation in a cell or cell-like structure.
(Item 21) The amplified nucleic acid sample providing unit
Using a sample containing the above-mentioned tissue, a droplet encapsulation portion for encapsulating cells or cell-like structures one cell or a structure unit in a droplet,
A gel capsule generation unit that gels the droplet to generate a gel capsule,
One or more dissolution reagents and
A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, which contains one or more lysis reagents for lysing cells. , The polynucleotide containing the genomic DNA of the cell or a portion thereof is eluted in the gel capsule and retained in the gel capsule with the substance binding to the genomic DNA or the portion removed. There is a cell lysate and
The system according to item 20, which comprises a reagent for amplifying the polynucleotide for amplifying the polynucleotide in a gel capsule.
(Item 22) The item 20 or 21, wherein the composition evaluation unit includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells. system.
(Item 23) The system according to item 22, wherein the detection reagent or detection device includes a nucleic acid amplification sequencing device for amplifying and sequencing a nucleic acid.
(Item 24) The composition evaluation unit further includes a genome sequence data acquisition unit for genome sequence data of each cell from a sample containing an amplified nucleic acid derived from each cell in the microbiota. The system according to any one of 20 to 23.
 本開示において、上記1又は複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態及び利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that the above one or more features may be provided in a further combination in addition to the specified combinations. Further embodiments and advantages of the present disclosure will be appreciated by those skilled in the art upon reading and understanding the following detailed description as necessary.
 本開示により、体組織の全ゲノム情報の簡便な取得と遺伝子変異の効率的な検出が可能になる。 This disclosure enables easy acquisition of whole genome information of body tissues and efficient detection of gene mutations.
 PCRによる遺伝子変異解析の場合には、増幅DNAサンプルの一部を使うことが可能であり、PCRを行った後に配列決定を行い、部分配列を決定することで、特定の遺伝子配列の情報から変異した細胞の個数などの組成を評価し、安く簡単な評価を行うことができる。デジタル配列データに基づく変異解析を行う場合、配列決定を行って得られたデジタル配列データを対象とし、遺伝子変異解析に利用する遺伝子配列を抽出して、組成データを作成することができる。この場合、配列の変化を伴う変異、例えば、塩基の置換や欠失などの変異(single-nucleotide variation(SNV))だけでなく、コピー数変異(CNV)をも評価することができる。 In the case of gene mutation analysis by PCR, it is possible to use a part of the amplified DNA sample, and by performing sequencing after PCR and determining the partial sequence, mutations are made from the information of a specific gene sequence. It is possible to evaluate the composition such as the number of mutated cells and perform a cheap and simple evaluation. When performing mutation analysis based on digital sequence data, it is possible to create composition data by extracting the gene sequence used for gene mutation analysis from the digital sequence data obtained by sequence determination. In this case, not only mutations accompanied by sequence changes, for example, mutations such as nucleotide substitutions and deletions (single-nucleotide variation (SNV)), but also copy number variation (CNV) can be evaluated.
図1は、増幅DNAを調製するためのステップを行う模式図を示す。FIG. 1 shows a schematic diagram in which steps are taken to prepare amplified DNA. 図2は、ウェットの配列スクリーニングの模式図を示す。FIG. 2 shows a schematic diagram of wet sequence screening. 図3は、選抜後の配列決定の模式図である。FIG. 3 is a schematic diagram of the sequence determination after selection. 図4は、ドライの配列スクリーニングステップを示す模式図である。FIG. 4 is a schematic diagram showing a dry sequence screening step. 図5は、本開示における体細胞変異解析の全体的なフローを示す模式図である。FIG. 5 is a schematic diagram showing the overall flow of somatic mutation analysis in the present disclosure. 図6は、マイクロ流体デバイスの設計の例を示す模式図である。デバイスは2つの入口と1つの出口を有する。2つの入口はそれぞれ水溶液用とオイル用である。十字部分で水溶液が油で分割され、多数の液滴を形成する。FIG. 6 is a schematic diagram showing an example of designing a microfluidic device. The device has two inlets and one outlet. The two inlets are for aqueous solution and oil, respectively. At the cross, the aqueous solution is split with oil to form a large number of droplets. 図7は、ゲル液滴への単一細胞の封入を示す図である。左図は、ハイスピードカメラで観察したGM12878細胞の封入であり、右図は、液滴に封入されたGM12878細胞を示している。FIG. 7 is a diagram showing encapsulation of a single cell in a gel droplet. The left figure shows the encapsulation of GM12878 cells observed with a high-speed camera, and the right figure shows the GM12878 cells encapsulated in droplets. 図8は、MDA(Multiple Displacement Amplification)増幅後の液滴の蛍光画像を示す。左図は、球状の形態を示すゲノム増幅陽性の液滴(緑色の蛍光)である。右図は、ゲノム増幅後の液滴の形状の崩壊を示す。FIG. 8 shows a fluorescence image of the droplet after MDA (Multiple Displacement Amplification) amplification. The figure on the left is a genome amplification-positive droplet (green fluorescence) showing a spherical morphology. The figure on the right shows the collapse of the shape of the droplet after genome amplification. 図9は、MDA前後でのゲノム増幅陽性の液滴の円形度を示す。FIG. 9 shows the circularity of the droplets positive for genome amplification before and after MDA. 図10は、ゲノム増幅陽性または陰性液滴からの二次増幅産物のDNA収量の定量を示す。FIG. 10 shows the quantification of DNA yield of secondary amplification products from genomic amplification positive or negative droplets. 図11は、従来の直接単細胞ゲノム増幅とゲル液滴ベースのシングルセルゲノム増幅とのゲノム増幅バイアスの比較を示す。各シングルセルゲノムの増幅のΔCt値は、各試料のCt値とバルク抽出DNA試料との比較によって測定した。FIG. 11 shows a comparison of genomic amplification biases between conventional direct single-cell genome amplification and gel droplet-based single-cell genome amplification. The ΔCt value of the amplification of each single cell genome was measured by comparing the Ct value of each sample with the bulk extracted DNA sample. 図12は、MDAの反応前(0分)、反応時間30分および60分の液滴の円形度を示す。FIG. 12 shows the circularity of the droplets before the reaction of MDA (0 minutes), reaction times of 30 minutes and 60 minutes. 図13は、10分のMDA反応と30分のMDA反応によるゲル液滴ベースの単一核ゲノム増幅間のゲノム増幅バイアスの比較を示す。各単一核ゲノムの増幅のΔCt値は、各サンプルのCt値とバルク抽出DNA試料との比較によって測定した。FIG. 13 shows a comparison of genome amplification bias between gel droplet-based mononuclear genome amplification by 10-minute MDA reaction and 30-minute MDA reaction. The ΔCt value of the amplification of each mononuclear genome was measured by comparing the Ct value of each sample with the bulk extracted DNA sample. 図14は、FACSソーティングによる第二増幅産物のDNA収量の定量化を示す。全ての選別された増幅陰性液滴の収量は1000ng未満であった。53個の選別された増幅陽性液滴の収量は1000ng以上であった。FIG. 14 shows the quantification of the DNA yield of the second amplification product by FACS sorting. The yield of all selected amplification negative droplets was less than 1000 ng. The yield of 53 selected amplification-positive droplets was 1000 ng or more. 図15は、ゲル液滴由来の単一核アンプリコンから得られたEGFR ex19アンプリコンの電気泳動を示す。FIG. 15 shows the electrophoresis of the EGFR ex19 amplicon obtained from a mononuclear amplicon derived from a gel droplet. 図16は、ゲル液滴に由来する単一核アンプリコンから得られたEGFR ex20および21アンプリコンのサンガー配列分析結果を示す。(a)EGFR ex20アンプリコンの配列。(b)EGFR ex21アンプリコンの配列。上段:EGFR ex20および21に野生型の配列を有することが判明している単細胞ゲノムから取得された配列、下段:EGFR ex20および21に変異配列を有することが判明している単細胞ゲノムから取得された配列。FIG. 16 shows the results of Sanger sequence analysis of EGFR ex20 and 21 amplicons obtained from a mononuclear amplicon derived from a gel droplet. (A) EGFR ex20 amplicon array. (B) EGFR ex21 amplicon array. Upper row: Sequences obtained from single-cell genomes known to have wild-type sequences in EGFR ex20 and 21, Lower row: Sequences obtained from single-cell genomes known to have mutant sequences in EGFR ex20 and 21 Array.
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語及び科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present disclosure will be described while showing the best form. Throughout the specification, it should be understood that the singular representation also includes its plural concept, unless otherwise stated. Therefore, it should be understood that singular articles (eg, "a", "an", "the", etc. in English) also include the concept of their plural, unless otherwise noted. It should also be understood that the terms used herein are used in the meaning commonly used in the art unless otherwise noted. Thus, unless otherwise defined, all terminology and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. In case of conflict, this specification (including definitions) takes precedence.
 本開示は、体細胞変異組成を分析する方法であって、体細胞中の1つずつの細胞由来の増幅核酸を含む試料から、体細胞変異を評価する工程を含む、方法に関するものである。 The present disclosure relates to a method for analyzing a somatic mutation composition, which comprises a step of evaluating a somatic mutation from a sample containing an amplified nucleic acid derived from each cell in the somatic cell.
 (定義等)
 以下に本明細書において特に使用される用語の定義及び/又は基本的技術内容を適宜説明する。
(Definition, etc.)
The definitions and / or basic technical contents of terms particularly used in the present specification will be described below as appropriate.
 本明細書において、「細胞」とは、遺伝情報を有する分子を内包する粒子であって、(単独で可能かどうかにかかわらず)複製されることが可能である任意の粒子を指す。本明細書における「細胞」としては、単細胞生物の細胞、細菌、多細胞生物由来の細胞、真菌などが包含される。 As used herein, the term "cell" refers to a particle that contains a molecule that carries the genetic information and is any particle that can be replicated (whether or not it is possible alone). The term "cell" as used herein includes cells of unicellular organisms, bacteria, cells derived from multicellular organisms, fungi and the like.
 本明細書において、「細胞様構造物」とは、遺伝情報を有する分子を内包する任意の粒子を指す。本明細書における「細胞様構造物」としては、細胞内小器官、例えば、ミトコンドリア、細胞核、および葉緑体、ならびにウイルスなどが包含される。 In the present specification, the "cell-like structure" refers to any particle containing a molecule having genetic information. As used herein, "cell-like structures" include organelles such as mitochondria, cell nuclei, and chloroplasts, and viruses.
 本明細書において、「生体分子」とは、任意の生物またはウイルスが有する分子を指す。生体内分子には、核酸、タンパク質、糖鎖または脂質などを含み得る。本明細書において、「生体分子の類似体」とは、生体分子の天然または非天然の変種を指す。生体内分子の類似体には、修飾核酸、修飾アミノ酸、修飾脂質または修飾糖鎖などを含み得る。 In the present specification, the "biomolecule" refers to a molecule possessed by any organism or virus. In vivo molecules can include nucleic acids, proteins, sugar chains, lipids, and the like. As used herein, the term "biomolecular analog" refers to a natural or non-natural variant of a biomolecule. Analogs of in vivo molecules can include modified nucleic acids, modified amino acids, modified lipids or modified sugar chains.
 本明細書において、「ゲル」とは、コロイド溶液(ゾル)において、高分子物質またはコロイド粒子がその相互作用により全体として網目構造をつくり,溶媒あるいは分散媒である液相を多量に含んだまま流動性を失った状態のことをいう。本明細書において、「ゲル化」とは、溶液を「ゲル」の状態に変化させることをいう。 In the present specification, the term "gel" refers to a colloidal solution (sol) in which a polymer substance or colloidal particles interact with each other to form a network structure as a whole and contain a large amount of a liquid phase as a solvent or a dispersion medium. A state in which fluidity is lost. As used herein, "gelling" means changing a solution into a "gel" state.
 本明細書において、「ゲルカプセル」とは、その中に細胞または細胞様構造物を保持することが可能なゲル状の微粒子状構造体を指す。 In the present specification, the "gel capsule" refers to a gel-like fine particle structure capable of holding a cell or a cell-like structure therein.
 本明細書において、「遺伝子分析」とは生体サンプル中の核酸(DNA、RNA等)の状態を調べることをいう。1つの実施形態では、遺伝子分析は、核酸増幅反応を利用するものを挙げることができる。これらを含め、遺伝子分析の例としては、配列決定、遺伝子型判定・多型分析(SNP分析、コピー数多型、制限酵素断片長多型、リピート数多型)、発現解析、蛍光消光プローブ(Quenching Probe:Q-Probe)、SYBR green法、融解曲線分析、リアルタイムPCR、定量RT-PCR、デジタルPCRなどを挙げることができる。 In the present specification, "gene analysis" means examining the state of nucleic acids (DNA, RNA, etc.) in a biological sample. In one embodiment, the gene analysis can include those that utilize a nucleic acid amplification reaction. Examples of gene analysis including these include sequencing, genotyping / polymorphism analysis (SNP analysis, copy number polymorphism, restriction enzyme fragment length polymorphism, repeat number polymorphism), expression analysis, fluorescence quenching probe ( Quenching Probe: Q-Probe), SYBR green method, melting curve analysis, real-time PCR, quantitative RT-PCR, digital PCR and the like can be mentioned.
 本明細書において、「シングルセルレベル」とは、1つの細胞または細胞様構造物に含まれる遺伝情報に対して、他の細胞または細胞様構造物に含まれる遺伝情報と区別した状態で処理を行うことをいう。例えば、「シングルセルレベル」でのポリヌクレオチドを増幅する場合、ある細胞中のポリヌクレオチドと、他の細胞中のポリヌクレオチドが区別可能な状態でそれぞれの増幅が行われる。 As used herein, the term "single cell level" means that the genetic information contained in one cell or cell-like structure is processed in a state of being distinguished from the genetic information contained in another cell or cell-like structure. To do. For example, when amplifying a polynucleotide at the "single cell level", the amplification is performed in a state in which the polynucleotide in one cell and the polynucleotide in another cell can be distinguished from each other.
 本明細書において、「シングルセル解析」とは、1つの細胞または細胞様構造物に含まれる遺伝情報を、他の細胞または細胞様構造物に含まれる遺伝情報と区別した状態で解析することを指す。 As used herein, "single cell analysis" refers to the analysis of genetic information contained in one cell or cell-like structure in a state of being distinguished from the genetic information contained in another cell or cell-like structure. Point to.
 本明細書において、「核酸情報」とは、1つの細胞または細胞様構造物に含まれる核酸の情報を指し、特定の遺伝子配列の有無、特定の遺伝子の収量または全核酸収量を含む。 In the present specification, "nucleic acid information" refers to information on nucleic acids contained in one cell or cell-like structure, and includes the presence or absence of a specific gene sequence, the yield of a specific gene, or the total nucleic acid yield.
 本明細書において、「同一性」とは、2つの核酸分子間の配列類似性を指す。同一性は、比較のためにアライメントしうる各配列中の位置を比較することによって決定することができる。 In the present specification, "identity" refers to sequence similarity between two nucleic acid molecules. Identity can be determined by comparing positions in each sequence that can be aligned for comparison.
 本明細書において、「組織」とは、一定の規則を以って三次元的に配列した細胞または細胞様構造物の集合を指す。複数の組織は、組み合わさって一定の働きを持つ器官を形成するが、本開示において、「組織」は、複数の組織を横断する領域であってもよい。組織には、細胞または細胞様構造物に加えて、細胞外基質などの他の成分が含まれ得る。 In the present specification, "tissue" refers to a set of cells or cell-like structures arranged three-dimensionally according to a certain rule. A plurality of tissues are combined to form an organ having a certain function, but in the present disclosure, a "tissue" may be an area that traverses a plurality of tissues. Tissues can contain cells or cell-like structures as well as other components such as extracellular matrix.
 本明細書において、細胞または細胞様構造物の「型」は、細胞または細胞用構造物の分類を示すパラメータである。ある細胞または細胞様構造物は、複数の分類によって複数の型に分類されることもある。例えば、細胞が、点変異Aを有するかどうかという視点では、点変異Aを有する型と、有しない型がある。加えて他の視点から、挿入変異Bを有するかどうかという視点では、Bを有する型と、有しない型がある。1つの細胞について、それぞれいずれの型であるかを特定することができる。 In the present specification, the "type" of a cell or cell-like structure is a parameter indicating the classification of a cell or a cell-like structure. A cell or cell-like structure may be classified into multiple types by multiple classifications. For example, from the viewpoint of whether or not a cell has a point mutation A, there are a type having a point mutation A and a type not having a point mutation A. In addition, from another viewpoint, from the viewpoint of whether or not the insertion mutation B is present, there are types having B and types not having B. It is possible to specify which type of each cell is.
 本明細書において、「変異」とは、ある細胞または細胞様構造物が、遺伝情報の点で、他の細胞または細胞様構造物と異なっている部分を指す。「変異」としては、必須ではないが、ある生物種の細胞または細胞用構造物の遺伝情報の基準となる配列(リファレンス配列)に対する相違が挙げられる。 As used herein, the term "mutation" refers to a portion of a cell or cell-like structure that differs from another cell or cell-like structure in terms of genetic information. The “mutation” includes, but is not essential, a difference from a sequence (reference sequence) that serves as a reference for genetic information of a cell or a structure for a certain organism.
 本明細書において、「組成」とは、ある組織中のそれぞれの細胞がどのような型であるか(例えば、変異を含んでいるか)、または含まれている各々の型の細胞の量についての情報を指し、組織中に一部の型に該当する細胞が含まれるかについて、またはその量についての情報も包含する。 As used herein, "composition" refers to what type of cell in a tissue is (eg, containing a mutation), or the amount of each type of cell contained. It refers to information and also includes information about whether or not the tissue contains cells of some type.
 (組織分析)
 本開示の1つの局面において、組織における細胞の組成を解析する方法であって、当該組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、細胞または細胞様構造物における配列情報を特定する工程を含む、方法が提供され得る。組織は、不均質な細胞の集合であるところ、1つずつの細胞の型が特定されることで、組織におけるある性質の有無(0か1か)だけではなく、ある型を有する細胞の割合(連続的)などの情報を得ることが可能である。本開示において、組織として、ヒトの組織を対象とし得る。
(Organizational analysis)
In one aspect of the disclosure, a method of analyzing the composition of cells in a tissue, from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue, the cell or cell-like structure. A method may be provided that comprises the step of identifying sequence information in an object. A tissue is a collection of heterogeneous cells, and by identifying the type of each cell, not only the presence or absence of certain properties (0 or 1) in the tissue, but also the proportion of cells having a certain type. It is possible to obtain information such as (continuous). In the present disclosure, the tissue may be a human tissue.
 (変異分析)
 本開示の1つの局面において、組織における変異を解析する方法であって、当該組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、細胞または細胞様構造物における変異を特定する工程を含む、方法が提供され得る。組織は、不均質な細胞の集合であるところ、1つずつの細胞における変異が特定されることで、組織における変異の有無(0か1か)だけではなく、変異を有する細胞の割合(連続的)などの情報を得ることが可能である。本開示において、組織として、ヒトの組織を対象とし得る。
(Mutation analysis)
In one aspect of the disclosure, a method of analyzing mutations in a tissue from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue, in a cell or cell-like structure. Methods may be provided that include the step of identifying the mutation. A tissue is a collection of heterogeneous cells, and by identifying mutations in each cell, not only the presence or absence of mutations in the tissue (0 or 1) but also the proportion of cells having mutations (continuous). It is possible to obtain information such as (target). In the present disclosure, the tissue may be a human tissue.
 本開示の1つの局面において、組織における変異を解析する方法であって、当該組織中の1つずつの細胞または細胞様構造物に由来する核酸配列を個別に入手する工程と、当該個別に入手した核酸配列の集合を用いて、分析する工程を含む、方法が提供され得る。1細胞あたりの核酸は量が少なく、複数の細胞由来の核酸が混合された状態で分析する場合であったとしても、増幅反応を用いることが一般的であるが、ランダムプライマーを用いるなど、核酸を全体として増幅しようとした場合であっても、GC含量などにより、配列ごとに増幅の程度に偏りが生じることが知られている。増幅に偏りが生じる場合、組織中の特定配列を有する細胞の相対量の測定は困難である。 In one aspect of the present disclosure, a method for analyzing mutations in a tissue, the step of individually obtaining a nucleic acid sequence derived from each cell or cell-like structure in the tissue, and the step of individually obtaining the nucleic acid sequence. A method may be provided that comprises the step of analysis using the set of nucleic acid sequences. The amount of nucleic acid per cell is small, and even when analysis is performed in a state where nucleic acids derived from a plurality of cells are mixed, it is common to use an amplification reaction, but nucleic acids such as using a random primer are used. It is known that the degree of amplification is biased for each sequence depending on the GC content and the like even when an attempt is made to amplify the whole. When amplification is biased, it is difficult to measure the relative amount of cells with a particular sequence in the tissue.
 (シングルセル解析)
 本開示において、1つずつの細胞または細胞様構造物に由来する核酸配列は、任意の方法によって得てよい。シングルセル解析には様々な手法が存在するが、1細胞のゲノムはバクテリアで数フェムトグラム、動物細胞でも数ピコグラムの質量しか持たない(Gregory,T. R., Nicol,J. A., Tamm, H., Kullman, B., Kullman, K., Leitch, I. J., …Bennett, M. D. (2007). Eukaryotic genome size databases. Nucleic AcidsResearch, 35(Database issue), D332-8.https://doi.org/10.1093/nar/gkl828)ところ、次世代シーケンサーによるゲノム解析にはナノグラム単位のゲノムが必要であるため、複数のゲノム変異箇所の検出や全ゲノムシーケンスなどの解析のためには、PCRや全ゲノム増幅を行うことでゲノム量をナノグラム単位まで増幅することが一般的に必要である。全ゲノム増幅手法として、MDA(MultipleDisplacement Amplification)法は広く用いられている(非特許文献4=Zhang et al., 1992)。MDA法はphi29 DNAポリメラーゼとランダムプライマーを用いて連続的にゲノムを増幅する手法であり、優れた全ゲノム増幅の方法であることが知られている。1つずつの細胞または細胞様構造物に由来する核酸配列を得るにあたり、これらの全ゲノム増幅試薬やPCR試薬を個々のシングルセルに作用させ、ゲノムの増幅を行った上で、種々の解析に用いることができる。
(Single cell analysis)
In the present disclosure, nucleic acid sequences derived from individual cells or cell-like structures may be obtained by any method. There are various methods for single-cell analysis, but the genome of one cell has a mass of only a few femtograms for bacteria and a few picograms for animal cells (Gregory, TR, Nicol, JA, Tamm, H., Kullman, B., Kullman, K., Leitch, IJ,… Bennett, MD (2007). Eukaryotic genome size databases. Nucleic Acids Research, 35 (Database issue), D332-8. https://doi.org/10.1093/nar/ gkl828) However, since genome analysis by the next-generation sequencer requires a genome in nanogram units, PCR and whole-genome amplification can be performed to detect multiple genome mutation sites and analyze whole-genome sequences. It is generally necessary to amplify the amount of genome to the nanogram level. The MDA (Multiple Displacement Amplification) method is widely used as a whole-genome amplification method (Non-Patent Document 4 = Zhang et al., 1992). The MDA method is a method for continuously amplifying the genome using phi29 DNA polymerase and a random primer, and is known to be an excellent method for whole-genome amplification. In order to obtain nucleic acid sequences derived from individual cells or cell-like structures, these whole-genome amplification reagents and PCR reagents are allowed to act on individual single cells to amplify the genome, and then perform various analyzes. Can be used.
 ゲノム増幅手法の進化やシーケンスコストの低下により、数十から数百のシングルセルに対し、全ゲノム増幅からの全ゲノムシーケンスやエクソームシーケンス、またはPCRによる特異的な増幅からのシーケンスにより、遺伝子変異やコピー数多型を検出することが可能になりつつある。 Due to the evolution of genome amplification methods and the reduction of sequencing costs, gene mutations have been made to tens to hundreds of single cells by whole-genome sequencing or exome sequencing from whole-genome amplification, or by sequencing from specific amplification by PCR. And it is becoming possible to detect copy number variation.
 シングルセルゲノムにゲノム増幅試薬を加えるプラットフォームとして最も基本的なものは、マイクロマニピュレーターやフローサイトメトリーを用いて1細胞をチューブに分取し、チューブ一つ一つに対して手動で溶解試薬や全ゲノム増幅試薬を添加する方法である(Babbe,H., Roers, A., Waisman, A., Lassmann, H., Goebels, N.,Hohlfeld, R., … Rajewsky,K. (2000). Clonal Expansions of Cd8 + T Cells Dominate the T CellInfiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulationand Single Cell Polymerase Chain Reaction. The Journal of ExperimentalMedicine, 192(3), 393-404. https://doi.org/10.1084/jem.192.3.393)。この際、シングルセルゲノムに対して過剰に大きな反応場で全ゲノム増幅を行う場合は、大きな増幅バイアスが発生することが知られている(Ning,L.,Li, Z., Wang, G., Hu, W., Hou, Q., Tong, Y., … He, J. (2015). Quantitativeassessment of single-cell whole genome amplification methods for detecting copynumber variation using hippocampal neurons. Scientific Reports, 5,11415.Retrieved from https://doi.org/10.1038/srep11415)。全ゲノム増幅反応初期段階における複製の状況が増幅バイアスに大きな影響を与えることが明らかにされており、シングルセルゲノムのチューブへの吸着や、プライマーダイマーの存在が要因であると言われている。増幅バイアスが発生した結果、ゲノム解析に不十分なクオリティのサンプルが量産されるため、結果的に解析に使用出来るサンプル数が減り、高価な試薬の無駄な使用も増える。そのため、増幅バイアスを低減させたシングルセル解析手法を採用することが好ましい場合がある。適用できるサンプルが限られるが、含有ゲノム量の多い細胞分裂M期の細胞のみを分取し全ゲノム増幅を行うことも可能である。 The most basic platform for adding genomic amplification reagents to a single-cell genome is to use a micromanipulator or flow cytometry to dispense one cell into tubes and manually lyse reagents or whole tubes. A method of adding a genome amplification reagent (Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R.,… Rajewsky, K. (2000). Clonal. Expansions of Cd8 + T Cells Dominate the T CellInfiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction. The Journal of ExperimentalMedicine, 192 (3), 393-404. Https://doi.org/10.1084/jem .192.3.393). At this time, it is known that a large amplification bias occurs when whole genome amplification is performed in an excessively large reaction field for a single cell genome (Ning, L., Li, Z., Wang, G. , Hu, W., Hou, Q., Tong, Y.,… He, J. (2015). Quantitative assessment of single-cell whole genome amplification methods for detecting copynumber variation using hippocampal neurons. Scientific Reports, 5,11415.Retrieved from https://doi.org/10.1038/srep11415). It has been clarified that the state of replication in the initial stage of the whole genome amplification reaction has a great influence on the amplification bias, and it is said that the adsorption of the single-cell genome to the tube and the presence of the primer dimer are factors. As a result of the amplification bias, samples of insufficient quality for genome analysis are mass-produced, resulting in a decrease in the number of samples that can be used for analysis and an increase in wasteful use of expensive reagents. Therefore, it may be preferable to adopt a single cell analysis method in which the amplification bias is reduced. Although the applicable samples are limited, it is also possible to perform whole-genome amplification by sorting only cells in the M stage of cell division, which contain a large amount of genome.
 細胞の溶解や全ゲノム増幅を、多数のシングルセルに対して小さな反応場で効率的に行うことができる手法を用いることが好ましい場合がある。シングルセル解析において、マイクロフルイディクスを利用することが可能である。マイクロフルイディクスは、微小流路や微小容器を要するマイクロ流体デバイス内において、マイクロ・ナノリットル単位の溶液を自在に操作する技術である。一例として、ドロップレットマイクロフルイディクスが挙げられる。ドロップレットマイクロフルイディクスは従来のチューブでの操作と比較して、精密な操作と自動化が可能であることが利点である。マイクロ流体デバイス内に設けられたμmサイズの流路において、液層が油層によってせん断され、pLサイズのドロップレットが1秒間に1000個単位で連続的に生成される。ドロップレットはそれぞれが独立の反応場として働くため、細胞を含む溶液をマイクロ流体デバイス内でドロップレットにすることで、細胞が一つずつドロップレット内に封入され、個々の細胞に対して独立に反応を行うことができる。さらに、ドロップレットの操作技術の発達により、ゲノム封入ドロップレットとPCRなどの反応試薬封入ドロップレットの融合を始め、ドロップレットの分割・ソーティングなどの複雑な反応を個別に行うことが可能である(Brouzes,E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M.,Hutchison, J. B., …Samuels,M. L. (2009). Droplet microfluidic technology for single-cell high-throughputscreening. Proceedings of the National Academy of Sciences of the United Statesof America, 106(34), 14195-200. https://doi.org/10.1073/pnas.0903542106)。ドロップレットマイクロフルイディクスは、ドロップレットを作成して細胞を封入することによって、細胞に対して様々な操作を高スループットで行うことができ、本開示において好ましい場合がある。 It may be preferable to use a method that can efficiently perform cell lysis and whole genome amplification in a small reaction field for a large number of single cells. It is possible to use microfluidics in single cell analysis. Microfluidics is a technology for freely manipulating solutions in micro / nanoliter units in microfluidic devices that require microchannels and microvessels. One example is Droplet Microfluidics. Droplet microfluidics have the advantage of being capable of precise operation and automation compared to conventional tube operations. In the μm size flow path provided in the microfluidic device, the liquid layer is sheared by the oil layer, and pL size droplets are continuously generated in units of 1000 per second. Since each droplet acts as an independent reaction field, by making a solution containing cells into a droplet in a microfluidic device, each cell is encapsulated in the droplet one by one and becomes independent for each cell. The reaction can be carried out. Furthermore, with the development of droplet manipulation technology, it is possible to individually perform complex reactions such as segmentation and sorting of droplets, including fusion of genome-encapsulated droplets and reaction reagent-encapsulated droplets such as PCR. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B.,… Samuels, M. L. (2009). Droplet microfluidic technology for single-cell high-throughputscreening. Proceedings of the National Academy of Sciences of the United States of America, 106 (34), 14195-200. Https://doi.org/10.1073/pnas.0903542106). Droplet microfluidics can perform various operations on cells with high throughput by creating droplets and encapsulating the cells, which may be preferable in the present disclosure.
 本開示の一部の実施形態において、ドロップレットマイクロフルイディクスを用いたシングルセル解析技術を用いることが可能であり、例えば、電荷をかけることなくドロップレットどうしを融合させ、超並列的にシングルセル全ゲノム増幅産物を取得する技術を利用可能である。これらの手法は、多様なサンプルに対して高精度なシングルセル解析を高速で行うことを可能にするものであり、細胞集団全体のシングルセルゲノム取得と網羅的なゲノム変異解析に非常に有用であると言える。 In some embodiments of the present disclosure, it is possible to use a single cell analysis technique using droplet microfluidics, for example, in which droplets are fused without charging and single cells are massively parallel. Techniques for obtaining whole genome amplification products are available. These methods enable high-precision single-cell analysis for a wide variety of samples at high speed, and are extremely useful for single-cell genome acquisition and comprehensive genome mutation analysis of the entire cell population. It can be said that there is.
 さらに、本開示においては、スループット性と簡便性を同時に確保したシングルセル解析技術を用いることが好ましい場合がある。例えば、バーコードや増幅試薬を添加するために電気的な負荷をかける装置は非常に微細であり、かつそれぞれの研究室が異なる機構を用いているため、限られた研究室しか利用することができない。電荷をかけない融合機構も、技術の習得に時間がかかる。加えて、ドロップレットはオイルにせん断されることで作製され、オイルに浮いた状態で回収されるため、フローサイトメトリーなどによる自動的な分取に応用することができない。また、これらの手法では一度加えた試薬をチューブから除去することができない。溶解試薬の中には全ゲノム増幅を阻害する効果を持つものも知られており、またプライマーダイマーが増幅バイアスを増長させるため、反応ごとに試薬を除去し、次の試薬を加えるというステップが高精度な全ゲノム増幅を行う際に好ましい場合がある。 Further, in the present disclosure, it may be preferable to use a single cell analysis technique that ensures both throughput and convenience at the same time. For example, the device that applies an electrical load to add barcodes and amplification reagents is very fine, and each laboratory uses a different mechanism, so only a limited number of laboratories can be used. Can not. It takes time to learn the technology of the fusion mechanism that does not apply electric charge. In addition, the droplets are produced by shearing with oil and are collected while floating in the oil, so that they cannot be applied to automatic sorting by flow cytometry or the like. In addition, these methods cannot remove the reagent once added from the tube. Some lytic reagents are known to have the effect of inhibiting whole-genome amplification, and because the primer dimer increases the amplification bias, the step of removing the reagent for each reaction and adding the next reagent is high. It may be preferable when performing accurate whole genome amplification.
 多くの研究室でのシングルセル解析を可能にすることを目的とした、市販のシングルセル解析装置を使用してもよい。これらの解析装置は、一箇所のみのゲノム変異を解析する場合、全ゲノム増幅を行わずPCRにより目的箇所を増幅することで可能である。しかしながら、一つの細胞から多くの変異情報やゲノム全長の情報を取得するためには、全ゲノム増幅を行うことができる手法を採用することが好ましい場合がある。 A commercially available single cell analyzer may be used for the purpose of enabling single cell analysis in many laboratories. When analyzing a genome mutation at only one site, these analyzers can amplify the target site by PCR without performing whole genome amplification. However, in order to obtain a large amount of mutation information and information on the entire genome from one cell, it may be preferable to adopt a method capable of performing whole genome amplification.
 本開示の1つの好ましい実施形態において、多数の細胞から簡便に1つずつの細胞由来の核酸ごとの情報を得るためには、組織を含む試料を用い、細胞を1細胞ずつ液滴中に封入する工程と、当該液滴をゲル化してゲルカプセルを生成する工程と、当該ゲルカプセルを1種以上の溶解用試薬に浸漬して細胞を溶解する工程であって、当該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが当該ゲルカプセル内に溶出し当該ゲノムDNAまたはその部分に結合する物質が除去された状態で当該ゲルカプセル内に保持される、工程と、当該ポリヌクレオチドを増幅用試薬に接触させて当該ポリヌクレオチドをゲルカプセル内で増幅する工程とを含む、方法によって1つずつの細胞由来の核酸を得ることができる。 In one preferred embodiment of the present disclosure, in order to easily obtain information for each cell-derived nucleic acid from a large number of cells, a sample containing tissue is used, and the cells are encapsulated in droplets one by one. A step of gelling the droplet to generate a gel capsule, and a step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, and the genomic DNA of the cell or the step thereof. The step of eluting the moiety-containing polynucleotide into the gel capsule and retaining it in the gel capsule with the genomic DNA or the substance binding to the moiety removed, and contacting the polynucleotide with an amplification reagent. A single cell-derived nucleic acid can be obtained by a method comprising the step of amplifying the polynucleotide in a gel capsule.
 本開示の一実施形態において、当該ポリヌクレオチドを増幅用試薬に接触させて当該ポリヌクレオチドをゲルカプセル内で増幅する工程は、当該ポリヌクレオチドをゲルカプセル内でゲル状態を保ちながら増幅することもできる。 In one embodiment of the present disclosure, the step of contacting the polynucleotide with an amplification reagent to amplify the polynucleotide in a gel capsule can also amplify the polynucleotide while maintaining a gel state in the gel capsule. ..
 1つの実施形態において、液滴は、1つの細胞をマイクロ流路中に流動させ、オイルで懸濁液をせん断することにより1つの細胞を封入することで作製され得る。一部の実施形態において、ゲルカプセルはヒドロゲルカプセルであってもよい。 In one embodiment, droplets can be made by encapsulating one cell by flowing one cell into a microchannel and shearing the suspension with oil. In some embodiments, the gel capsule may be a hydrogel capsule.
 ゲルカプセルの材料は、アガロース、アクリルアミド、光硬化性樹脂(例えば、PEG-DA)、PEG、ゼラチン、アルギン酸ナトリウム、マトリゲル、コラーゲンなどを含み得る。液滴のゲル化は、液滴にゲルカプセルの材料が含まれるように構成し、作製した液滴を冷却することによって行うことができる。あるいは、液滴に対して光等の刺激を与えることによってゲル化を行うこともできる。液滴にゲルカプセルの材料が含まれるようにするには、例えば、細胞または細胞様構造物の懸濁液にゲルカプセルの材料を含めておくことによって行うことができる。 The material of the gel capsule may include agarose, acrylamide, a photocurable resin (for example, PEG-DA), PEG, gelatin, sodium alginate, matrigel, collagen and the like. Gelation of the droplets can be performed by configuring the droplets to contain the material of the gel capsule and cooling the prepared droplets. Alternatively, gelation can be performed by giving a stimulus such as light to the droplet. The inclusion of the gel capsule material in the droplets can be done, for example, by including the gel capsule material in a suspension of cells or cell-like structures.
 ゲルカプセルは、ヒドロゲルカプセルであってよい。本明細書において、「ヒドロゲル」とは、高分子物質またはコロイド粒子の網目構造によって保持されている溶媒あるいは分散媒が水であるものを指す。 The gel capsule may be a hydrogel capsule. As used herein, the term "hydrogel" refers to one in which the solvent or dispersion medium held by the network structure of the polymer substance or colloidal particles is water.
 溶解用試薬は、リゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、Triton X-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween20、Tween80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、Nonidet P-40、およびZwittergent3-12からなる群から少なくとも1種選択され得る。 Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride. , Urea, 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween20, Tween80 , Octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-maltoside, Nonidet P-40, and Zwittergent 3-12 can be selected from at least one species.
 本開示の変異分析で対象としうる細胞または細胞様構造物は、2つ以上の任意の数字であり、例えば、10個以上、50個以上、100個以上、500個以上、1000個以上、5000個以上、1万個以上、5万個以上、10万個以上、50万個以上、100万個以上、500万個以上、1000万個以上であり得る。本開示の変異分析は、従来のシングルセル反応系、例えば、0.2mL、1.5mLマイクロチューブ反応系を用いるよりも多数の細胞からの、1つずつの細胞由来の核酸の情報を用い得る。 The cells or cell-like structures that can be targeted in the mutation analysis of the present disclosure are two or more arbitrary numbers, for example, 10 or more, 50 or more, 100 or more, 500 or more, 1000 or more, 5000 or more. It can be 10,000 or more, 50,000 or more, 100,000 or more, 500,000 or more, 1 million or more, 5 million or more, 10 million or more. The mutation analysis of the present disclosure may use information on nucleic acids derived from one cell at a time rather than using a conventional single cell reaction system, eg, a 0.2 mL, 1.5 mL microtube reaction system.
 本開示の1つの実施形態では、アガロース溶液を用いてドロップレットを作製するゲルドロップレット技術を採用することができる。これにより、スループット性や精度を落とさないまま、多くの研究室で解析を行うことができる。アガロースを用いたドロップレットを作製し、内部にシングルセルを包埋することで、ドロップレット内でシングルセルの単離培養やPCRなどを行うことができる。本開示において、ゲルドロップレットを、1細胞もしくは1細胞核を包埋した網目構造の反応場と捉え、網目構造をくぐらせるように溶解試薬や全ゲノム増幅試薬を作用させることで、容易にドロップレット内で全ゲノム増幅と試薬の除去を行うことが可能である。労力がかかるシングルセルゲノム包埋ドロップレットの分取を、市販のフローサイトメトリーで自動化して行ってもよい。 In one embodiment of the present disclosure, a gel droplet technique for producing a droplet using an agarose solution can be adopted. This makes it possible to perform analysis in many laboratories without degrading throughput and accuracy. By preparing a droplet using agarose and embedding a single cell inside, the single cell can be isolated and cultured in the droplet, or PCR can be performed. In the present disclosure, a gel droplet is regarded as a reaction field having a network structure in which one cell or one cell nucleus is embedded, and a lysis reagent or a whole genome amplification reagent is allowed to act so as to pass through the network structure to easily make the droplet. It is possible to perform whole genome amplification and reagent removal within. The labor-intensive single-cell genome-embedded droplet fraction may be automated by commercially available flow cytometry.
 (ゲノム配列解読前の分析)
 本開示において、個々の細胞または細胞様構造物の配列情報の総体に対する解析(例えば、ゲノム配列解読)を行う前に、多様な細胞または細胞様構造物から並列調製された核酸またはその他の生体分子の構造や配列から、その構造や配列を参照して個別の細胞特異的に検出し、選抜することを行ってよい。すなわち、方法は、1つずつの細胞または細胞様構造物由来の増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択する工程を含み得る。
(Analysis before genome sequencing)
In the present disclosure, nucleic acids or other biomolecules prepared in parallel from various cells or cell-like structures prior to analysis of the total sequence information of individual cells or cell-like structures (eg, genomic sequencing). From the structure or sequence of the above, the structure or sequence may be referred to for individual cell-specific detection and selection. That is, the method may include selecting a sample containing the amplified nucleic acid to be analyzed from a sample containing the amplified nucleic acid derived from each cell or cell-like structure.
 1つの実施形態において、選択は、特定の遺伝子配列の有無、特定の遺伝子の収量または全核酸収量に基づいて行い得る。一部の実施形態において、特定の遺伝子配列がある場合に選択してもよく、特定の遺伝子配列が無い場合に選択してもよい。一部の実施形態において、特定の遺伝子の収量が基準となる収量より多い場合選択してもよく、低い場合に選択してもよい。一部の実施形態において、全核酸収量が、基準となる収量より多い場合に選択してもよく、低い場合に選択してもよい。 In one embodiment, selection can be made based on the presence or absence of a particular gene sequence, the yield of a particular gene or the total nucleic acid yield. In some embodiments, it may be selected when there is a specific gene sequence, or it may be selected when there is no specific gene sequence. In some embodiments, it may be selected if the yield of the particular gene is greater than or equal to the baseline yield. In some embodiments, it may be selected if the total nucleic acid yield is greater than or equal to the reference yield.
 特定の実施形態において、特定の遺伝子配列の有無を、特定の遺伝子配列を特異的に検出する試薬、アガロースゲル電気泳動、マイクロチップ電気泳動、PCR、qPCR、遺伝子配列決定(サンガーシーケンシング、NGS)からなる群から選択される手段により検出する。一部の実施形態において、特定の遺伝子配列を特異的に検出する試薬として、抗体、プローブ、DNA結合性蛍光色素、蛍光色素結合ヌクレオチドが挙げられる。 In certain embodiments, reagents that specifically detect the presence or absence of a particular gene sequence, agarose gel electrophoresis, microchip electrophoresis, PCR, qPCR, gene sequencing (Sanger sequencing, NGS). Detected by means selected from the group consisting of. In some embodiments, reagents that specifically detect a particular gene sequence include antibodies, probes, DNA-binding fluorescent dyes, fluorescent dye-binding nucleotides.
 特定の実施形態において、特定の遺伝子の収量または全核酸収量を吸光度測定、蛍光光度測定、アガロースゲル電気泳動、マイクロチップ電気泳動により測定することができる。方法は、1つずつの細胞由来の増幅核酸を含む試料において、特定の配列を有する核酸を検出する工程を含み得る。特定の配列を有する核酸を検出する工程は、特定の配列を有する核酸を増幅および配列解読することを含み得る。 In a specific embodiment, the yield of a specific gene or the total nucleic acid yield can be measured by absorbance measurement, fluorescence measurement, agarose gel electrophoresis, or microchip electrophoresis. The method may include detecting nucleic acid having a particular sequence in a sample containing amplified nucleic acid derived from each cell. The step of detecting a nucleic acid having a specific sequence may include amplifying and sequencing the nucleic acid having a specific sequence.
 変異の組成の評価は、組織中の各種細胞の絶対数を特定することを含み得る。1つずつの細胞由来の増幅核酸のそれぞれについて、変異の型を特定することによって、各種の変異を有する細胞の絶対数が特定され得る。細胞の型の特定は、例えば、特定の遺伝子配列の有無を特定することによって行うことができる。 Evaluation of the composition of the mutation may include identifying the absolute number of various cells in the tissue. By specifying the type of mutation for each of the amplified nucleic acids derived from each cell, the absolute number of cells having various mutations can be specified. The cell type can be specified, for example, by specifying the presence or absence of a specific gene sequence.
 (ゲノム配列解読を伴う分析)
 本開示の方法は、組織中の1つずつの細胞または細胞様構造物由来の増幅核酸を含む試料から、当該1つずつの細胞または細胞様構造物のゲノム配列データを得る工程を含み得る。ゲノム配列データを得ることによって、組織中の個々の細胞について、単に配列としての情報だけではなく、配列が果たす機能または特性という観点からの情報を得ることも可能である。
(Analysis with genome sequencing)
The method of the present disclosure may include obtaining genomic sequence data for each cell or cell-like structure from a sample containing amplified nucleic acid from each cell or cell-like structure in a tissue. By obtaining genomic sequence data, it is possible to obtain not only information as a sequence but also information from the viewpoint of the function or characteristic of the sequence for each cell in the tissue.
 1つずつの細胞のゲノム配列データから、分析するゲノム配列データを選択することが可能である。ゲノム配列データは情報量が多く、処理する量を限定することは、労力や時間の削減につながる。 It is possible to select the genome sequence data to be analyzed from the genome sequence data of each cell. Genome sequence data has a large amount of information, and limiting the amount to be processed leads to a reduction in labor and time.
 選択は、特定の遺伝子配列の有無および/または特定の遺伝子配列との同一性を評価することを含み得る。一部の実施形態において、特定の遺伝子配列との同一性は、BLAST等を用いることで評価することができる。特定の実施形態において、選択は、特定の遺伝子配列の有無に基づき、核酸情報を細胞ごとに選別してもよい。他の実施形態において、選択は、特定の遺伝子配列と、2つ以上の細胞に由来する核酸情報との同一性に基づき、核酸情報を細胞ごとに選別してもよい。一部の実施形態において、一定以上の同一性を有する場合に選択してもよく、一定以下の同一性の場合に選択してもよい。特定の実施形態において、同一性は、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、100%であってもよい。他の実施形態において、同一性は、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下、または0%であってもよい。 Selection may include assessing the presence or absence of a particular gene sequence and / or identity with a particular gene sequence. In some embodiments, identity with a particular gene sequence can be assessed by using BLAST or the like. In certain embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the presence or absence of a particular gene sequence. In other embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the identity of a particular gene sequence with nucleic acid information derived from two or more cells. In some embodiments, it may be selected when it has a certain level of identity or more, or it may be selected when it has a certain level of identity or less. In certain embodiments, the identity is 50% or higher, 55% or higher, 60% or higher, 65% or higher, 70% or higher, 75% or higher, 80% or higher, 85% or higher, 90% or higher, 91% or higher, It may be 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 100%. In other embodiments, the identity is 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 9% or less, It may be 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, or 0%.
 ゲノム配列データを得ている場合、変異の組成の評価は、各細胞における長い遺伝子配列を比較することによって行ってよい。長い配列は、例えば、de novoアセンブリデータより抽出した遺伝子配列であってよい。このような長い遺伝子配列の比較は、評価の制度を高めるだけでなく、組織における機能の評価も可能とし得る。例えば、配列情報のみでは、複数の型の細胞が存在することがわかってもそれぞれの役割や状態については個別の情報が無ければ、組織全体の状態を理解することができない場合があるが、遺伝子の情報に基づけば、組織内で、特定の活性(例えば、酵素活性、薬剤感受性、腫瘍原性)を有する細胞の量などについての情報を得ることができる。 When genomic sequence data is obtained, the composition of mutations may be evaluated by comparing long gene sequences in each cell. The long sequence may be, for example, a gene sequence extracted from de novo assembly data. Comparison of such long gene sequences can not only enhance the evaluation system but also enable evaluation of function in tissues. For example, even if it is known that multiple types of cells exist from sequence information alone, it may not be possible to understand the state of the entire tissue without individual information on the role and state of each cell. Based on this information, it is possible to obtain information about the amount of cells having a specific activity (for example, enzyme activity, drug sensitivity, tumorigenicity) in a tissue.
 (変異)
 本開示において、組織における、細胞または細胞様構造物のそれぞれが有する変異を特定することが可能である。変異としては、配列の変化を伴う変異と、配列の変化を伴わない変異が挙げられる。配列の変化を伴う変異としては、置換、挿入、欠失、逆位、または転座などが挙げられる。配列の変化を伴わない変異としては、コピー数多型などが挙げられる。変異の特定は、当技術分野で公知の方法に基づいて、配列同士を比較することによって行うことができる。
(Mutation)
In the present disclosure, it is possible to identify mutations that each cell or cell-like structure has in a tissue. Mutations include mutations that involve sequence changes and mutations that do not involve sequence changes. Mutations with sequence changes include substitutions, insertions, deletions, inversions, or translocations. Examples of mutations that do not involve sequence changes include copy number variation. The mutation can be identified by comparing the sequences with each other based on a method known in the art.
 シングルセル解析において、部分配列に基づく解析では、予め決めた部分の配列の変異の情報については得ることができるが、どの部分に変異が生じるかが未知である場合、配列情報の総体(ゲノム)に対する情報を得ることによって、未知の変異を特定することが可能であると考えられる。 In single-cell analysis, in analysis based on partial sequences, information on mutations in the sequences of predetermined parts can be obtained, but when it is unknown in which part the mutations occur, the total sequence information (genome) It is considered possible to identify unknown mutations by obtaining information on.
 加えて、配列の変化を伴う変異については、配列情報に基づいて特定することが可能であるが、配列の変化を伴わない変異を特定する場合、同一の配列の存在量の比較が必要になる場合があり、細胞または細胞様構造物毎に核酸の均等な増幅が行われることが好ましい場合がある。このような増幅のため、本明細書における(シングルセル解析)の欄に記載される特徴を適宜採用することが可能である。 In addition, mutations that involve sequence changes can be identified based on sequence information, but when identifying mutations that do not involve sequence changes, it is necessary to compare the abundance of the same sequence. In some cases, it may be preferable that the nucleic acid be evenly amplified for each cell or cell-like structure. For such amplification, the features described in the (single cell analysis) column of the present specification can be appropriately adopted.
 本開示で解析の対象とし得る組織としては、腫瘍組織、神経組織、血液、骨髄液、精液、腹腔洗浄液などが挙げられる。組織は、形態的には一定の細胞から構成されている場合であっても、遺伝的には多様な細胞から構成されている場合があり、細胞集団から平均化したデータでは捉え切れない細胞個々の特徴や機能に基づく、組織ごとの性質の理解において、本開示の方法は有用である。 Tissues that can be analyzed in this disclosure include tumor tissue, nervous tissue, blood, bone marrow fluid, semen, peritoneal lavage fluid, and the like. Even if the tissue is morphologically composed of certain cells, it may be genetically composed of various cells, and individual cells cannot be captured by the data averaged from the cell population. The methods of the present disclosure are useful in understanding the properties of each organization based on its characteristics and functions.
 本開示で解析の対象とし得る組織としては、任意の生物に由来するものであってよく、例えば、動物としては、ヒトもしくは非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジー)、鳥類、爬虫類、両生類、魚類等の脊椎動物、無脊椎動物、例えば、昆虫、線形動物などを挙げることができる。植物としては、イネ、コムギ、トウモロコシ、ジャガイモ、オオムギ、サツマイモ、ソバ、シロイヌナズナ、ミヤコグサ、トマト、キュウリ、キャベツ、白菜、ナス、サトウキビ、ソルガム、リンゴ、ミカン、バナナ、桃、ポプラ、松、杉、被子植物、裸子植物、シダ、コケ、藻類などを挙げることができる。1つの実施形態では、ヒト組織が対象とされ得る。 The tissues that can be analyzed in the present disclosure may be derived from any organism, and the animals include, for example, human or non-human mammals (eg, mice, rats, rabbits, sheep, pigs, cows). , Horses, cats, dogs, monkeys, chimpanzees), vertebrates such as birds, reptiles, amphibians, fish, and invertebrates, such as insects and linear animals. Plants include rice, wheat, corn, potato, barley, sweet potato, buckwheat, white indigo, sorghum, tomato, cucumber, cabbage, white vegetable, eggplant, sugar cane, sorghum, apple, orange, banana, peach, poplar, pine, cedar, Examples include angiosperms, grasses, ferns, moss, and algae. In one embodiment, human tissue can be targeted.
 腫瘍組織において、腫瘍マーカー、腫瘍の悪性度の指標、腫瘍の薬剤感受性の指標、神経組織において、精神神経疾患の指標、末梢神経障害の指標、生殖細胞において、遺伝性疾患の指標、血液細胞において、急性骨髄性白血病の悪性度および薬剤感受性の指標、再生医療での安全性評価などとして利用できる変異を有する細胞の量を特定することが可能である。組織における変異の有無(0か1か)だけではなく、変異を有する細胞の割合(連続的)などの情報を得ることが可能である。 In tumor tissue, tumor marker, tumor malignancy index, tumor drug susceptibility index, nerve tissue, neuropsychiatric disease index, peripheral neuropathy index, germ cell, hereditary disease index, blood cell It is possible to identify the amount of cells with mutations that can be used as an index of malignancy and drug susceptibility of acute myeloid leukemia, safety evaluation in regenerative medicine, and the like. It is possible to obtain information such as not only the presence or absence of mutation (0 or 1) in a tissue but also the proportion of cells having a mutation (continuous).
 得られた単一細胞ごとの変異情報は、腫瘍組織や血液悪性腫瘍であれば、遺伝的不均一性の解明による新規治療法・薬剤の開発研究などに利用できる他、がん患者の階層化、治療法の選択、病態のモニタリングの改善につながる。治療前後に合わせて、変異細胞の型を判定し、組成比を知ることができれば、薬剤を適切な適用条件で患者に与えることができる。例えば、本技術を応用して現行のがんパネルDNA解析を1細胞単位で行うことで、より精密な治療法選択が可能になる。 The obtained mutation information for each single cell can be used for development research of new treatment methods and drugs by elucidating genetic heterogeneity in the case of tumor tissues and hematological malignancies, as well as stratification of cancer patients. , Leading to improved treatment selection and pathological monitoring. If the type of mutant cells can be determined and the composition ratio can be known before and after treatment, the drug can be given to the patient under appropriate application conditions. For example, by applying this technology to perform the current cancer panel DNA analysis on a cell-by-cell basis, more precise treatment method selection becomes possible.
 脳神経細胞におけるゲノムは、体細胞分裂時に生じる変異の影響のほか、染色体数性やレトロトランスポゾン転移などの脳特異的なゲノム多型を持つ。また、これらのゲノム多型が精神疾患と関連することが示唆されている。 The genome in brain nerve cells has brain-specific genome polymorphisms such as chromosome number and retrotransposon transfer, in addition to the effects of mutations that occur during mitosis. It has also been suggested that these genomic polymorphisms are associated with psychiatric disorders.
 従来は、組織から抽出したDNA全体の中での遺伝子多型が調べて来られたが、本開示で得られる単一細胞ごとに得られるゲノム情報を元にすれば、細胞としての神経中の変異細胞比や、細胞ごとの変異多型の判定が可能になる。この様な詳細情報は、神経細胞特有のゲノム多型発生のメカニズム解明や精神疾患の病態の理解・制御につながる。 Conventionally, gene polymorphisms in the entire DNA extracted from tissues have been investigated, but based on the genomic information obtained for each single cell obtained in the present disclosure, the genes in the nerve as cells It is possible to determine the mutant cell ratio and the mutation polymorphism for each cell. Such detailed information leads to elucidation of the mechanism of genomic polymorphism peculiar to nerve cells and understanding and control of the pathophysiology of psychiatric disorders.
 再生医療用でES細胞やiPS細胞などを用いた移植用組織の安全性・品質評価を行う際に、従来は、組織から抽出したDNA全体の中での遺伝子多型が調べて来られたが、本開示で得られる単一細胞ごとに得られるゲノム情報を元にすれば、細胞としての移植用組織中の変異細胞比や、細胞ごとの変異多型の判定が可能になる。この様な詳細情報は、移植用組織中のゲノム多型発生のメカニズム解明や安全性を保つため制御法開発、品質評価につながる。 When evaluating the safety and quality of transplanted tissues using ES cells and iPS cells for regenerative medicine, genetic polymorphisms in the entire DNA extracted from the tissues have been investigated in the past. Based on the genomic information obtained for each single cell obtained in the present disclosure, it is possible to determine the ratio of mutant cells in the tissue for transplantation as cells and the mutation polymorphism for each cell. Such detailed information will lead to elucidation of the mechanism of genome polymorphism development in transplant tissues, development of control methods for maintaining safety, and quality evaluation.
 (システム)
 本開示の別の局面において、組織における変異を分析するシステムが提供され得る。システムは、本明細書における他の項目において記載される任意の特徴を備える方法またはその工程を実装するための手段を備え得る。
(system)
In another aspect of the disclosure, a system for analyzing mutations in tissues may be provided. The system may be provided with a method or means for implementing a process thereof that comprises any of the features described in the other items herein.
 システムは、細胞中のポリヌクレオチドを増幅するための装置を含み得る。装置は、とりわけ、シングルセルレベルで細胞中のポリヌクレオチドを増幅することができるものであり得る。装置は、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する液滴作製部;液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部;ゲルカプセルを溶解用試薬に浸漬する溶解用試薬浸漬部;ゲルカプセルから夾雑物質を除去する除去部;および/またはゲルカプセルを増幅用試薬に浸漬する増幅用試薬浸漬部を備え得る。システムまたは装置は、ゲルカプセルを選別し、ゲルカプセルを収容容器に収容する選別部をさらに備え得る。 The system may include a device for amplifying polynucleotides in cells. The device can be, among other things, capable of amplifying polynucleotides in cells at the single cell level. The device is a droplet preparation unit that encapsulates cells or cell-like structures in droplets one cell or structure at a time; a gel capsule generation unit that gels droplets to generate gel capsules; a reagent for dissolving gel capsules. It may be provided with a dissolving reagent dipping part to be immersed in; a removing part for removing contaminants from the gel capsule; and / or an amplification reagent dipping part for immersing the gel capsule in the amplification reagent. The system or device may further comprise a sorting unit that sorts the gel capsules and houses the gel capsules in a storage container.
 システムまたは装置は、必要に応じて、細胞または細胞様構造物を封入する媒体、ゲルカプセルの材料、溶解用試薬、増幅用試薬、核酸の配列決定に用いられる試薬(例えば、ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)など)などの試薬を備え得る。試薬としては、本明細書の他の箇所に記載されるものに加えて、当技術分野で公知のものを使用してもよい。 The system or device may optionally include media for encapsulating cells or cell-like structures, gel capsule materials, lysis reagents, amplification reagents, reagents used for sequencing nucleic acids (eg, polymerases, primer sets (eg, polymerases, primer sets). Barcode sequences may be included), etc.) and other reagents. As the reagent, in addition to those described elsewhere in the present specification, reagents known in the art may be used.
 装置またはシステムは、増幅用試薬浸漬部において増幅されたポリヌクレオチド中の核酸配列の配列決定を行う配列決定部をさらに備え得る。配列決定部は上記装置と一体として提供されてもよく、システム中の別の装置として提供されてもよい。配列決定部は、サンガー法、マクサム・ギルバード法、単一分子リアルタイムシーケンシング(例えば、Pacific Biosciences、Menlo Park、California)、イオン半導体シーケンシング(例えば、Ion Torrent、South San Francisco、California)、シーケンシングバイシンセシス、パイロシーケンシング(例えば、454、Branford、Connecticut)、ライゲーションによるシーケンシング(例えば、Life Technologies、Carlsbad、CaliforniaのSOLiDシーケンシング)、合成および可逆性ターミネーターによるシーケンシング(例えば、Illumina、San Diego、California)、透過型電子顕微鏡法などの核酸イメージング技術、ナノポアシーケンシングなどを実行するための機器であってよい。 The device or system may further include a sequencing section for sequencing the nucleic acid sequence in the amplified polynucleotide in the amplification reagent immersion section. The sequencing unit may be provided integrally with the above device or as another device in the system. The sequencing unit includes the Sanger method, the Maxam-Gilbird method, single molecule real-time sequencing (for example, Pacific Biosciences, Menlo Park, California), and ion semiconductor sequencing (for example, Ion Torrent, South San Francisco, California). Bisynthesis, pyrosequencing (eg, 454, Brandored, Connecticut), ligation sequencing (eg, Life Technologies, Carlsbad, California SOLiD sequencing), synthetic and reversible terminator sequencing (eg, Illumina) , California), nucleic acid imaging techniques such as transmission electron microscopy, nanopore sequencing, and the like.
 システムまたは装置は、増幅した遺伝子を検出・計測する手段を備え得る。例えば、ゲルルカプセルの形状を扱うのに好適である、フローサイトメトリー機器が、上記装置と一体として提供されてもよく、システム中の別の装置として提供されてもよい。増幅した遺伝子を検出・計測する手段としては、検出反応を行う手段(例えば、サーマルサイクラーおよび適当な試薬)、および/またはシグナルを検出する手段(光センサ、カメラ、および適当な分析用の手段)が含まれ得る。 The system or device may be equipped with means for detecting and measuring the amplified gene. For example, a flow cytometry device suitable for handling the shape of a gelul capsule may be provided integrally with the above device or as another device in the system. Means for detecting and measuring the amplified gene include means for performing a detection reaction (eg, thermal cycler and suitable reagents) and / or means for detecting signals (optical sensors, cameras, and suitable means for analysis). Can be included.
 システムまたは装置は、本明細書の他の箇所に記載される任意の情報処理を行うように構成され得る、計算部を備え得る。計算部は、上記装置と一体として提供されてもよく、システム中の別の装置(コンピュータ)として提供されてもよい。本開示の別の局面では、計算部において、本明細書の他の箇所に記載される情報処理を行い、本開示の方法を実装させるためのプログラムおよびそれを記録した記憶媒体も提供され得る。計算部は、必要に応じて、かかるプログラムおよび/またはそれを記録した記憶媒体を備え得る。 The system or device may include a calculator that may be configured to perform any information processing described elsewhere herein. The calculation unit may be provided integrally with the above-mentioned device, or may be provided as another device (computer) in the system. In another aspect of the present disclosure, a calculation unit may also provide a program for performing information processing described elsewhere in the specification to implement the method of the present disclosure and a storage medium on which it is recorded. The calculator may optionally include such a program and / or a storage medium on which it is recorded.
 (キット)
 本開示の1つの局面は、本開示の方法において用いられ得るキットを提供する。本開示において、組織における変異を分析するためのキットが提供され得る。キットは、ゲルカプセルの材料を含み得、ゲルカプセルを用いることは、本明細書の他の箇所に記載されるとおり、細胞または細胞様構造物中の核酸をシングルセルレベルで増幅することについて有利であり、組織における変異の解析に関して本明細書に記載されるとおり用いられ得る。キットは、例えば、ゲルカプセルの材料と、必要に応じて、1以上の試薬を含み得る。試薬としては、本明細書の他の箇所に記載されるものに加えて、当技術分野で公知のものを使用してもよい。
(kit)
One aspect of the disclosure provides a kit that can be used in the methods of the disclosure. In the present disclosure, kits for analyzing mutations in tissues may be provided. The kit may include the material of the gel capsule, and the use of the gel capsule is advantageous for amplifying nucleic acids in cells or cell-like structures at the single cell level, as described elsewhere herein. And can be used as described herein for the analysis of mutations in tissues. The kit may include, for example, the material of the gel capsule and, optionally, one or more reagents. As the reagent, in addition to those described elsewhere in the present specification, reagents known in the art may be used.
 組織における変異を分析するためのキットは、溶解用試薬を含み得る。溶解用試薬は、リゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、Triton X-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween 20、Tween 80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、Nonidet P-40、Zwittergent 3-12からなる群から選択される少なくとも1つを含み得る。溶解用試薬は、シングルセルレベルでの増幅ポリヌクレオチド、特に、ゲノム全域にわたる増幅産物を得るのに有用である。 Kits for analyzing mutations in tissues may include reagents for lysis. Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride. , Urea, 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, It may include at least one selected from the group consisting of Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-maltoside, Nonidet P-40, Zwittergent 3-12. Dissolving reagents are useful for obtaining amplified polynucleotides at the single cell level, especially genomic-wide amplification products.
 キットは、核酸の増幅用試薬を含み得る。増幅用試薬としては、例えば、ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)、塩基ミックス、好適なバッファーなどが挙げられる。キットは、核酸の配列決定に用いられる試薬(例えば、ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)など)などの試薬を備え得る。例えば、サンガーシーケンスやNGSにて特定の遺伝子を増幅・解読するための試薬(ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)ほか)が含まれ得る。また、キットは、特定の配列の検出・計測に用いられ得る試薬、例えば、核酸結合色素、蛍光標識プローブなどを含み得る。これらの試薬を用いて、増幅した遺伝子を検出・計測する機器(フローサイトメトリーなど)によって特定の配列の有無を測定することができる。 The kit may include reagents for amplifying nucleic acids. Amplification reagents include, for example, polymerases, primer sets (which may include barcode sequences), base mixes, suitable buffers and the like. The kit may include reagents such as reagents used for sequencing nucleic acids (eg, polymerases, primer sets (which may include barcode sequences), etc.). For example, reagents (polymerase, primer set (which may include a barcode sequence), etc.) for amplifying / decoding a specific gene by a Sanger sequence or NGS may be included. The kit may also include reagents that can be used to detect and measure specific sequences, such as nucleic acid binding dyes, fluorescently labeled probes, and the like. Using these reagents, the presence or absence of a specific sequence can be measured by an instrument that detects and measures the amplified gene (flow cytometry, etc.).
 (好ましい実施形態)
 本開示では、アガロースを用いて作製されたゲルドロップレットに着目し、透過性の高い微小反応場とすることで簡便・高精度かつ超並列的な全ゲノム増幅手法の開発を行った。ゲルドロップレット内に動物細胞を封入し、反応試薬を添加することで、ゲルドロップレット内でシングルセルの全ゲノム増幅を行った。これにより、増幅バイアスの少ない高精度な全ゲノム増幅産物を高速で取得することができた。また、実際に増幅産物を用い、複数箇所のゲノム変異の検出をシングルセルレベルで高精度に行うことができた。本手法により、数万個単位のシングルセル全ゲノム増幅産物取得し、ゲノム変異を検出することで、細胞集団内のゲノム変異の検出と目的変異を持つ細胞の選択が高速・低コストで行えることとなった。本手法は、体組織が持つゲノム変異の包括的な理解と目的変異を持つ細胞の詳細な理解、それに伴う細胞系譜・疾患の獲得機序の発明や臨床診断に役立つことが期待される。
(Preferable embodiment)
In this disclosure, we focused on gel droplets prepared using agarose, and developed a simple, highly accurate, and massively parallel whole-genome amplification method by using a highly permeable microreaction field. By encapsulating animal cells in the gel droplet and adding a reaction reagent, whole genome amplification of a single cell was performed in the gel droplet. As a result, a highly accurate whole-genome amplification product with little amplification bias could be obtained at high speed. In addition, we were able to detect genomic mutations at multiple locations with high accuracy at the single cell level by actually using amplification products. By acquiring tens of thousands of single-cell whole genome amplification products and detecting genome mutations by this method, it is possible to detect genome mutations in a cell population and select cells with target mutations at high speed and at low cost. It became. This method is expected to be useful for comprehensive understanding of genomic mutations in body tissues, detailed understanding of cells with target mutations, invention of cell lineage / disease acquisition mechanism, and clinical diagnosis.
 (システム)
 組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料を提供する増幅核酸試料提供部と、細胞または細胞様構造物における変異を特定する変異特定部とを含む、組織における変異を解析するシステムによって、ゲルドロップレット内でシングルセルの全ゲノム増幅を行うことができる。この場合、増幅核酸試料提供部が、前記組織を含む試料を用い、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する液滴封入部と、該液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部と、1種以上の溶解用試薬と、細胞を溶解するための1種以上の溶解用試薬が格納された、該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する細胞溶解部であって、該細胞溶解部は、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持されるように構成されている、細胞溶解部と、該ポリヌクレオチドをゲルカプセル内で増幅するための該ポリヌクレオチド増幅用試薬とを含むことが好ましい。また組成評価部が、前記1つずつの細胞由来の増幅核酸を含む試料において特定の配列を有する核酸を検出するための検出試薬または検出装置を含み、検出試薬または検出装置が、核酸を増幅および配列解読するための核酸増幅配列決定装置を含むことで、増幅バイアスの少ない高精度な全ゲノム増幅産物を高速で取得することができた。またこのシステムにより、複数箇所のゲノム変異の検出をシングルセルレベルで高精度に行うことができる。
(system)
A tissue comprising an amplified nucleic acid sample donor that provides a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue and a mutation-identifying portion that identifies a mutation in the cell or cell-like structure. A system that analyzes mutations in is capable of single-cell whole-genome amplification within gel droplets. In this case, the amplified nucleic acid sample provider uses the sample containing the tissue to encapsulate the cells or cell-like structures in the droplets one cell or each structure, and gels the droplets. A gel capsule generator that produces a gel capsule, one or more lysis reagents, and one or more lysis reagents for lysing cells are stored in the gel capsule. A cell lysate that lyses the cell by immersing in the cell, in which the genomic DNA of the cell or a polynucleotide containing a portion thereof elutes into the gel capsule and binds to the genomic DNA or portion thereof. Includes a cell lysate, which is configured to be retained in the gel capsule with the substance to be removed, and the polynucleotide amplification reagent for amplifying the polynucleotide in the gel capsule. Is preferable. Further, the composition evaluation unit includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells, and the detection reagent or the detection device amplifies the nucleic acid and By including a nucleic acid amplification sequencing device for sequencing, a highly accurate whole-genome amplification product with little amplification bias could be obtained at high speed. In addition, this system enables highly accurate detection of genomic mutations at multiple locations at the single cell level.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety to the same extent as they are specifically described.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したものではない。したがって、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. The present disclosure will be described below based on examples, but the above description and the following examples are provided for purposes of illustration only and not for the purpose of limiting the present disclosure. Therefore, the scope of the present disclosure is not limited to the embodiments or examples specifically described in the present specification, and is limited only by the scope of claims.
 以下、本開示の実施例を記載する。
 試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、和光純薬、ナカライ、R&D Systems、USCN Life Science INC等)の同等品でも代用可能である。
Hereinafter, examples of the present disclosure will be described.
Specifically, the reagents described in the examples were used, but equivalent products of other manufacturers (Sigma-Aldrich, Wako Pure Chemical Industries, Nacalai, R & D Systems, USCN Life Science INC, etc.) can be substituted.
 (実施例1:アガロースゲルドロップレットの作製)
 (マイクロ流体デバイスの作製)
 製図ソフトのAUTOCADを用い、流路内の十字構造において、水溶液がオイルによってせん断されドロップレットを作製するマイクロ流体デバイスを設計した(図6)。デバイス内部の流路幅は、100μm、十字構造部ではキャリアオイル側17μm、水溶液側8.5または17μmと設計した。フォトマスクを用いてネガ型のレジスト(SU-8 3050, MicroChem Corp., Newton, MA)をコーティングしたガラス基板に流路を転写し、デバイス作製用のモールドを作製した。ガラス基板へのレジストのコーティングにはスピンコーター(MS-B150, Mikasa, Japan)を用いた。十字構造水溶液側流路幅が17μmのデバイスの流路の高さを50μm、8.5μmのデバイスの流路の高さを30μmとした。マイクロ流体デバイスの作製にはポリジメチルシロキサン(PDMS;Sylgard 184:Dow Corning Corp., Midland, MI)を用いた。作製したポリジメチルシロキサン製のマイクロ流路をドロップレットの作製に用いた。
(Example 1: Preparation of agarose gel droplet)
(Manufacturing of microfluidic device)
Using the drafting software AUTOCAD, we designed a microfluidic device in which the aqueous solution is sheared by oil to produce droplets in a cross structure in the flow path (Fig. 6). The width of the flow path inside the device was designed to be 100 μm, the carrier oil side of the cross structure was 17 μm, and the aqueous solution side was 8.5 or 17 μm. A mold for device fabrication was produced by transferring the flow path to a glass substrate coated with a negative resist (SU-8 3050, MicroChem Corp., Newton, MA) using a photomask. A spin coater (MS-B150, Mikasa, Japan) was used to coat the resist on the glass substrate. The height of the flow path of the device having a cross-structured aqueous solution side flow path width of 17 μm was 50 μm, and the height of the flow path of the device having 8.5 μm was 30 μm. Polydimethylsiloxane (PDMS; Sylgard 184: Dow Corning Corp., Midland, MI) was used to fabricate the microfluidic device. The prepared microchannel made of polydimethylsiloxane was used to prepare the droplet.
 (マイクロ流体デバイスを用いたアガロースゲルドロップレットの作製)
 アガロース(SIGMA-ALDRICH, St.Louis, MO)を用い、1.5%のアガロース溶液を調製した。ドロップレット作製用のオイルにはPico-Surf1(2% in Novec7500)(以下、「オイル」という)を用いた。オイルを圧力制御型ポンプ(Mitos P-pump, Dolomite, Royston, UK)に設置し、マイクロ流路のインレットに接続した。オイルとアガロース溶液をポンプで流動させてデバイスの流路内に導入した。アガロース溶液が十字路においてオイルによってせん断され、ドロップレットが作製される様子をハイスピードカメラ(FHS-33, Flovel, Tokyo, Japan)を用いて観察した(図7 左図)。作製されたドロップレットを、1.5mLチューブに回収した。回収したドロップレットの一部を顕微鏡(BZ-X710, KEYENCE, Osaka, Japan)を用いて観察した(図7 右図)。回収したゲルドロップレットを氷上で15分静置し、ゲルドロップレットのゲル化を行った。
(Preparation of agarose gel droplet using microfluidic device)
A 1.5% agarose solution was prepared using agarose (SIGMA-ALDRICH, St. Louis, MO). Pico-Surf1 (2% in Novec 7500) (hereinafter referred to as "oil") was used as the oil for producing the droplets. The oil was installed in a pressure controlled pump (Mitos P-pump, Dolomite, Royston, UK) and connected to the inlet of the microchannel. The oil and agarose solution were pumped and introduced into the flow path of the device. A high-speed camera (FHS-33, Flovel, Tokyo, Japan) was used to observe how the agarose solution was sheared by oil at the crossroads to form droplets (Fig. 7, left figure). The prepared droplets were collected in 1.5 mL tubes. A part of the collected droplets was observed using a microscope (BZ-X710, KEYENCE, Osaka, Japan) (Fig. 7, right figure). The collected gel droplets were allowed to stand on ice for 15 minutes to gel the gel droplets.
 (ゲルドロップレットの水層置換と形状観察)
 作製したゲルドロップレットはオイルに浮いている状態であり、溶解試薬や全ゲノム増幅試薬を加える上で、オイル層から水層に置換する必要がある。まずドロップレットを水層に置換するために、チューブ内のオイルを可能な限り除去した。続いて1H,1H,2H,2H-Perfluoro-1-octanol(SIGMA-ALDRICH, St.Louis, MO)とNovec7500の1:9混合溶液を200μL加え、タッピングによりドロップレットと混合させ、ドロップレットに吸着していたオイルを除去した。卓上遠心機(プチチェンジ, WAKENBTECH CO., Kyoto, Japan)で1秒遠心し、上清を除去した後に、同様に1H,1H,2H,2H-Perfluoro-1-octanolとNovec7500の1:9混合溶液を混合し、卓上遠心機で1秒遠心し、上清を除去した。続いてアセトン(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan)を500μL加え、ボルテックスミキサー(Nissinrika Co., Tokyo, Japan)により混合したのち卓上遠心機で30秒遠心し、上清を除去した。その後2-プロパノール(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan)を加え、同様に混合・除去操作を行い、最後に500μLのDPBSに懸濁した。ドロップレット懸濁液を混合し、遠心により除去するという過程を3回行うことでゲルドロップレットの水層への置換を行った。
(Aqueous layer replacement and shape observation of gel droplet)
The prepared gel droplet is in a state of floating in oil, and it is necessary to replace the oil layer with an aqueous layer in order to add a dissolving reagent or a whole genome amplification reagent. First, the oil in the tube was removed as much as possible to replace the droplets with an aqueous layer. Subsequently, 200 μL of a 1: 9 mixed solution of 1H, 1H, 2H, 2H-Perfluoro-1-octanol (SIGMA-ALDRICH, St. Louis, MO) and Novec 7500 was added, mixed with the droplet by tapping, and adsorbed on the droplet. The oil that had been used was removed. Centrifuge in a tabletop centrifuge (Petit Change, WAKENBTECH CO., Kyoto, Japan) for 1 second to remove the supernatant, and then mix 1H, 1H, 2H, 2H-Perfluoro-1-octanol and Novec 7500 1: 9 in the same manner. The solution was mixed and centrifuged in a tabletop centrifuge for 1 second to remove the supernatant. Subsequently, 500 μL of acetone (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) was added, mixed by a vortex mixer (Nissinrika Co., Tokyo, Japan), and then centrifuged in a tabletop centrifuge for 30 seconds to remove the supernatant. After that, 2-propanol (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) was added, and the mixing and removal operations were carried out in the same manner, and finally suspended in 500 μL of DPBS. The gel droplets were replaced with an aqueous layer by mixing the droplet suspension and removing it by centrifugation three times.
 (実施例2:ゲルドロップレット内での全ゲノム増幅と増幅バイアス評価)
 (モデル動物細胞のゲルドロップレットへの封入)
 ヒトリンパ芽球細胞であるGM12878をモデル細胞として用いた。Advanced RPMI 1640 (Thermo Fisher Scientific, Waltham, MA)にFBS(Thermo Fisher Scientific, Waltham, MA)とPenicillin-Streptomycin Solution(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan)の混合物を添加し、フラスコ(NIPPON Genetics Co., Ltd, Tokyo, Japan)内で液体培養した。培養後48時間後、90%コンフルエントの動物細胞を250×g、3分、4℃で遠心することにより回収し、DPBSに懸濁し、細胞濃度を測定した。続いてSYBR Green(invitrogen, Carlsbad, CA)を用いて細胞を染色した。測定結果に従い、細胞懸濁液の濃度を3,000 cells/μLに調製した後、予め調製した3%のアガロース溶液と1:1で混合し、混合後の溶液のアガロース濃度は1.5%、細胞濃度は1,500cells/μL、粒径50μmのドロップレットを作製した場合の封入比率を1cell/dropとした。調製した溶液を用い、マイクロ流体デバイスを用いてドロップレットを作製した。回収したゲルドロップレットを氷上で15分静置し、ゲルドロップレットのゲル化を行った。
(Example 2: Whole genome amplification and amplification bias evaluation in gel droplet)
(Encapsulation of model animal cells in gel droplet)
GM12878, a human lymphoblastic cell, was used as a model cell. A mixture of FBS (Thermo Fisher Scientific, Waltham, MA) and Penicillin-Streptomycin Solution (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) was added to Advanced RPMI 1640 (Thermo Fisher Scientific, Waltham, MA) and a flask (NIPPON Genetics Co) ., Ltd, Tokyo, Japan) liquid culture. After 48 hours after culturing, 90% confluent animal cells were collected by centrifugation at 250 × g for 3 minutes at 4 ° C., suspended in DPBS, and the cell concentration was measured. Cells were then stained with SYBR Green (invitrogen, Carlsbad, CA). According to the measurement results, the concentration of the cell suspension was adjusted to 3,000 cells / μL, and then mixed with a 3% agarose solution prepared in advance at a ratio of 1: 1. The agarose concentration of the mixed solution was 1.5%, and the cell concentration was When a droplet having a particle size of 1,500 cells / μL and a particle size of 50 μm was prepared, the encapsulation ratio was 1 cell / drop. Droplets were made using a microfluidic device using the prepared solution. The collected gel droplets were allowed to stand on ice for 15 minutes to gel the gel droplets.
 (MDA法によるゲルドロップレット内での全ゲノム増幅)
 上述の手法でGM12878を封入し、50μmと70μmの2種類の粒径のドロップレットを作製した。条件はアガロース濃度1.5%・封入比率0.1cell/dropである。作製後、上述の方法で水層置換した。その後ドロップレット懸濁液に、Repli-g Single Cell Kit(QIAGEN, Valencia, CA)に含まれるBuffer D2(1M DTTとBuffer DLB)を調製し、40度で10分間反応させることでDNAの1本鎖化を行った。反応後のチューブに対して同様にキットに含まれている試薬を混合し、30度で3時間反応させることで全ゲノム増幅を行った。全ゲノム増幅後のドロップレットに100μLのDPBS加え1分遠心し、上清を除く作業を2回繰り返すことで洗浄を行った。その後SYBR Greenを用いてDNAを染色し、再度100μLのDPBSで3回洗浄作業を行った。ゲノム増幅によってDNA増幅陽性ドロップレットの一部が変形していたため、蛍光画像を用いて蛍光ありドロップレットの円形度をImageJで測定した(図8および図9)。
(Whole genome amplification in gel droplet by MDA method)
GM12878 was encapsulated by the above method to prepare droplets having two types of particle sizes, 50 μm and 70 μm. The conditions are an agarose concentration of 1.5% and an encapsulation ratio of 0.1 cell / drop. After preparation, the aqueous layer was replaced by the method described above. After that, Buffer D2 (1M DTT and Buffer DLB) contained in Repli-g Single Cell Kit (QIAGEN, Valencia, CA) is prepared in a droplet suspension and reacted at 40 ° C for 10 minutes to produce one piece of DNA. Chaining was performed. The reagent included in the kit was similarly mixed with the tube after the reaction, and the whole genome was amplified by reacting at 30 ° C. for 3 hours. After whole-genome amplification, 100 μL of DPBS was added to the droplet and centrifuged for 1 minute, and the operation of removing the supernatant was repeated twice to wash. After that, the DNA was stained with SYBR Green and washed again with 100 μL of DPBS three times. Since a part of the DNA amplification positive droplet was deformed by the genome amplification, the circularity of the fluorescent droplet was measured by ImageJ using a fluorescent image (FIGS. 8 and 9).
 (実施例3:シングルセル全ゲノム増幅産物の増幅バイアス評価)
 実施例2で作製した直径70μmの全ゲノム増幅産物封入ドロップレットをマイクロマニピュレーター(Microdispenser, Drummond Scientific Company, Broomall, PA)を用いて顕微鏡下で一つずつ吸引し、PCRチューブに移した(以後この作業をピックと呼ぶ)。DNA増幅陽性・陰性のドロップレットをそれぞれ20個ずつピックし、Buffer D2を加え、40度10分で反応させた後、アルカリ試薬以外の試薬を加え30度で2時間反応させ、ドロップレット内のDNAをテンプレートとした2回目の全ゲノム増幅を行った(二次増幅)。二次増幅後に65度3分の反応により増幅反応を停止させた後、Qubit フルオロメーター(Thermo Fisher Scientific, Waltham, MA)を用いて増幅ゲノムの定量を行った(図10)。次に、先行研究(Leung et al., 2015)(Hosono et al., 2003)を参考に、1番から22番の染色体上の遺伝子座をターゲットとしたプライマー(表1)を設計した。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
(Example 3: Evaluation of amplification bias of single-cell whole genome amplification product)
The 70 μm diameter whole genome amplification product-encapsulated droplets prepared in Example 2 were aspirated one by one under a microscope using a micromanipulator (Microdispenser, Drummond Scientific Company, Broomall, PA) and transferred to a PCR tube (hereinafter, this). Work is called a pick). Pick 20 DNA amplification positive and 20 negative droplets each, add Buffer D2 and react at 40 ° C for 10 minutes, then add reagents other than alkaline reagents and react at 30 ° C for 2 hours. A second whole-genome amplification using DNA as a template was performed (secondary amplification). After the amplification reaction was stopped by a reaction of 65 degrees 3 minutes after the secondary amplification, the amplified genome was quantified using a Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA) (Fig. 10). Next, with reference to previous studies (Leung et al., 2015) (Hosono et al., 2003), primers (Table 1) targeting loci on chromosomes 1 to 22 were designed.
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 定量後のシングルセルゲノム9個を用い、10ngのゲノムをテンプレートとし、酵素にPower Up SYBR Green Master Mix(Thermo Fisher Scientific, Waltham, MA)を用い、表2に示す組成でqPCRを行った。qPCRの条件は50℃ 2分, 95℃ 2分, 40 cycle (95℃ 3秒, 60℃ 30秒)であり、StepOnePlus リアルタイムPCRシステム(Applied Byosystems, City of Foster City, CA)を用いた。
Figure JPOXMLDOC01-appb-T000003
Using 9 single-cell genomes after quantification, using a 10 ng genome as a template, and using Power Up SYBR Green Master Mix (Thermo Fisher Scientific, Waltham, MA) as an enzyme, qPCR was performed with the composition shown in Table 2. The conditions for qPCR were 50 ° C for 2 minutes, 95 ° C for 2 minutes, and 40 cycles (95 ° C for 3 seconds, 60 ° C for 30 seconds), and a StepOnePlus real-time PCR system (Applied Byosystems, City of Foster City, CA) was used.
Figure JPOXMLDOC01-appb-T000003
 また、ドロップレット内で全ゲノム増幅を行ったサンプルに対するコントロールとして、9個のGM12878細胞をドロップレットに封入せず直接ピックし、PCRチューブ内で全ゲノム増幅し、増幅バイアスの評価を行った。さらに、ゲノム抽出キット(DNeasy, QIAGEN, Valencia, CA)を用いることでGM12878細胞集団より非増幅ゲノムを取得し、同様にqPCRを行うことで、リファレンスとした。得られた各シングルセルゲノムのCt値と抽出ゲノムとのCt値の差の絶対値を計算し、ボックスプロットを作成することで、ゲルドロップレット内でのMDAによって得られたシングルセルゲノムと、ドロップレットに封入せずMDAを行ったゲノムの増幅バイアスを比較した(図11)。 In addition, as a control for the sample in which the whole genome was amplified in the droplet, 9 GM12878 cells were directly picked without being encapsulated in the droplet, and the whole genome was amplified in the PCR tube to evaluate the amplification bias. Furthermore, a non-amplified genome was obtained from the GM12878 cell population by using a genome extraction kit (DNeasy, QIAGEN, Valencia, CA), and qPCR was performed in the same manner as a reference. By calculating the absolute value of the difference between the Ct value of each obtained single-cell genome and the Ct value of the extracted genome and creating a box plot, the single-cell genome obtained by MDA in the gel droplet and the single-cell genome, The amplification bias of the genomes subjected to MDA without encapsulation in the droplet was compared (Fig. 11).
 (実施例4:細胞核のゲルドロップレット全ゲノム増幅とFACSによる分取)
 (培養動物細胞からの細胞核の調製とゲルドロップレットへの封入)
 実施例2で用いたGM12878細胞から、細胞の核化処理を行った。まず培養細胞を回収し、1mLのDPBSを用いて3回洗浄作業を行った。洗浄後、細胞ペレットに対して溶解試薬を500μL加え、氷上で5分間反応させることで、細胞膜を溶解した。溶解試薬の組成は、10mM Tris-HCl(invitrogen, Carlsbad, CA)、10mM NaCl(SIGMA-ALDRICH, St.Louis, MO)、3mM MgCl2(SIGMA-ALDRICH, St.Louis, MO)、0.1% NonidetTM P40(Thermo Fisher Scientific, Waltham, MA)である。その後、1%量のBovine Serum Albumin (SIGMA-ALDRICH, St.Louis, MO)入りのDPBSを500μL加え、500×g、5分、4℃で遠心することにより細胞核のみを回収した。1%BSA入りのDPBSで同様に3回洗浄し、動物細胞カウンターにより細胞濃度を測定した。14,000cell/μLとなるように細胞核濃度を調製し、3%アガロース溶液と1:1で混合することで、粒径30μmのドロップレットを作製した際に0.1cell/dropとなる濃度とした。調製した溶液から、30μmのゲルドロップレットの作製と細胞の封入を行った。
(Example 4: Gel droplet whole genome amplification of cell nucleus and fractionation by FACS)
(Preparation of cell nuclei from cultured animal cells and encapsulation in gel droplets)
From the GM12878 cells used in Example 2, cell enucleation treatment was performed. First, the cultured cells were collected and washed 3 times with 1 mL of DPBS. After washing, 500 μL of a lysing reagent was added to the cell pellet and reacted on ice for 5 minutes to dissolve the cell membrane. The composition of the dissolving reagent is 10 mM Tris-HCl (invitrogen, Carlsbad, CA), 10 mM NaCl (SIGMA-ALDRICH, St.Louis, MO), 3 mM MgCl 2 (SIGMA-ALDRICH, St.Louis, MO), 0.1% Nonidet. TM P40 (Thermo Fisher Scientific, Waltham, MA). Then, 500 μL of DPBS containing 1% amount of Bovine Serum Albumin (SIGMA-ALDRICH, St.Louis, MO) was added, and only the cell nucleus was recovered by centrifugation at 500 × g for 5 minutes at 4 ° C. The cells were similarly washed 3 times with DPBS containing 1% BSA, and the cell concentration was measured by an animal cell counter. The cell nucleus concentration was adjusted to 14,000 cells / μL and mixed with a 3% agarose solution at a ratio of 1: 1 to obtain a concentration of 0.1 cells / drop when a droplet having a particle size of 30 μm was prepared. From the prepared solution, a 30 μm gel droplet was prepared and cells were encapsulated.
 (細胞核包埋ドロップレットの全ゲノム増幅時間検討)
 ゲルドロップレット内でのMDAにおけるドロップレットの変形が細胞溶解度合いによって変化するかを確認するため、作製した核包埋ドロップレットに対し、全ゲノム増幅を行った。まず、可能な限り核内の成分を除去するため、0.1mg/mL Proteinase K(Promega, Madison, WI)と0.05% Sodium Dodecyl Sulfate(Thermo Fisher Scientific, Waltham, MA)を加え、40度で10分反応させた後、500μLのDPBSで5回洗浄してからMDAを行った。10分と30分反応させたサンプルのDNA増幅陽性ドロップレットを4個ずつピックし、二次増幅の後に実施例3と同様にqPCRにより増幅バイアスを測定した(図13)。
(Examination of whole genome amplification time of cell nucleus embedding droplets)
In order to confirm whether the deformation of the droplet in MDA in the gel droplet changes depending on the degree of cell lysis, whole genome amplification was performed on the prepared nuclear-embedded droplet. First, add 0.1 mg / mL Proteinase K (Promega, Madison, WI) and 0.05% Sodium Dodecyl Sulfate (Thermo Fisher Scientific, Waltham, MA) to remove as much nuclear components as possible, and add at 40 ° C for 10 minutes. After the reaction, MDA was performed after washing 5 times with 500 μL of DPBS. Four DNA amplification positive droplets of the samples reacted for 10 minutes and 30 minutes were picked, and after the secondary amplification, the amplification bias was measured by qPCR in the same manner as in Example 3 (FIG. 13).
 (動物細胞全ゲノム増幅産物包埋ゲルドロップレットのFACSによる分取)
 上述の方法で作製しMDA反応を30分間行ったゲルドロップレットをFACS Melodyに導入した。そして一つのチューブに一つのドロップレットが分取されるように、DNA増幅陽性ドロップレットを58個、DNA増幅陰性ドロップレットを14個分取した。分取後に二次増幅を行い、Qubitを用いてゲノムの定量を行った。
(Animal cell whole genome amplification product embedding gel droplets sorted by FACS)
Gel droplets prepared by the method described above and subjected to the MDA reaction for 30 minutes were introduced into FACS Melody. Then, 58 DNA amplification positive droplets and 14 DNA amplification negative droplets were collected so that one droplet was collected in one tube. After sorting, secondary amplification was performed, and the genome was quantified using Qubit.
 (ヒト肺がん細胞のゲルドロップレット全ゲノム増幅とゲノム変異検出)
 EGFR遺伝子のex19~21領域に遺伝子変異を持つ3種類のヒト肺がん細胞NCI-H358、H1975、H1650をモデル細胞として用いた(表3)。実施例2と同様に培養し、培養後48時間後、90%コンフルエントの動物細胞に対し、培地を除去した後にGibcoTM TrypLE Express Enzyme(Thermo Fisher Scientific, Waltham, MA)を500μL加え、37度で5分間インキュベートすることでフラスコに接着している細胞を剥がした。洗浄操作とセルカウントの後、3種類の細胞の濃度を均一にし、1:1:1で混合することで3種類の細胞が等量で含まれている細胞懸濁液を調製した。3%アガロース溶液を調製し、混合細胞懸濁液と1:1で混合し、直径70μmのドロップレット内に0.1cell/dropとなるように封入した。水層置換の後にMDAを行い、洗浄と染色の後に102個のDNA増幅陽性ドロップレットをピックした。表3に示した3か所の遺伝子変異を含むように3種類のプライマーを設計し(表4)、シングルセル全ゲノム増幅産物に対し、3種類のプライマーでPCRを行った。使用した酵素はPyroMark PCR Master Mix(QIAGEN, Valencia, CA)である。PCRの条件は95℃ 15分, 40cycle(94℃ 30秒、62℃ 30秒、72℃ 30秒)、72℃ 10分である。ex19の欠失変異を対象としたPCR産物に対しアガロース電気泳動を行うことで、各シングルセルゲノムの欠失変異の有無を検出した。また、ex20と21のSNPを対象としたPCR産物を株式会社fasmacに送付し、サンガーシーケンス法によりPCR産物の塩基配列を取得することで、シングルセルゲノムの2か所のSNPsの有無を検出した。
(Gel droplet whole genome amplification and genome mutation detection of human lung cancer cells)
Three types of human lung cancer cells NCI-H358, H1975, and H1650 having gene mutations in the ex19-21 region of the EGFR gene were used as model cells (Table 3). After culturing in the same manner as in Example 2, 48 hours after culturing, 500 μL of Gibco TM TrypLE Express Enzyme (Thermo Fisher Scientific, Waltham, MA) was added to 90% confluent animal cells after removing the medium, and at 37 ° C. The cells adhering to the flask were peeled off by incubating for 5 minutes. After the washing operation and cell counting, the concentrations of the three types of cells were made uniform and mixed 1: 1: 1 to prepare a cell suspension containing equal amounts of the three types of cells. A 3% agarose solution was prepared, mixed 1: 1 with a mixed cell suspension, and encapsulated in a 70 μm diameter droplet at 0.1 cell / drop. MDA was performed after aqueous layer replacement and 102 DNA amplification positive droplets were picked after washing and staining. Three types of primers were designed to include the three gene mutations shown in Table 3 (Table 4), and PCR was performed on the single-cell whole genome amplification products with the three types of primers. The enzyme used was PyroMark PCR Master Mix (QIAGEN, Valencia, CA). The PCR conditions are 95 ° C for 15 minutes, 40 cycles (94 ° C for 30 seconds, 62 ° C for 30 seconds, 72 ° C for 30 seconds), and 72 ° C for 10 minutes. The presence or absence of deletion mutations in each single cell genome was detected by performing agarose gel electrophoresis on the PCR products targeting the deletion mutations of ex19. In addition, PCR products targeting SNPs of ex20 and 21 were sent to fasmac Co., Ltd., and the nucleotide sequences of the PCR products were obtained by the Sanger sequencing method to detect the presence or absence of SNPs at two locations in the single cell genome. ..
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (ゲルドロップレット内での動物細胞全ゲノム増幅)
 ゲルドロップレットに封入したGM12878細胞にアルカリ試薬とMDA試薬を順次反応させ、シングルセルの溶解と全ゲノム増幅反応をゲルドロップレット内で行うことを検証した。結果、DNA増幅陽性ゲルドロップレット(緑色蛍光)が封入比率と同じ割合(10%)で観測された(図8 左図)。DNA増幅陽性ゲルドロップレットは明瞭な輝度を提示しており、遠心やvortexによる洗浄の操作を繰り返しても、増幅DNAがドロップレット内部に保持されていることが示唆された。しかし、DNA増幅陽性ゲルドロップレットの一部では、ドロップレットの輪郭が崩れ、内部のDNAあるいは細胞成分が漏出しているように観察された(図8 右図)。そこで、2種類の粒径(50μmと70μm)において、DNA増幅反応を行い、DNA増幅反応後の円形度を測定した(図9)。ドロップレットサイズが大きい場合(70μm)、円形度の変動は少なく、形状が比較的安定しているが、元のサイズが小さい(50μm)と大きく形状が崩れることが示された。このドロップレット輪郭が崩れる減少は、ゲノム増幅反応後に初めて観察されるため、増幅したDNA成分等の影響が考えられた。前述の通り、増幅有無は蛍光観察により容易に見分けられるため、ドロップレット形状が崩れていても、顕微鏡下で手作業で増幅陽性ドロップレットを選別することは可能である。しかし、FACSでの分取を試みる場合はドロップレットサイズの不均一化がソートに影響を及ぼすことが予想されるため、ドロップレット形状の崩壊は可能な限り低減させる必要がある。
(Animal cell whole genome amplification in gel droplet)
The alkaline reagent and the MDA reagent were sequentially reacted with the GM12878 cells encapsulated in the gel droplet, and it was verified that the single cell lysis and the whole genome amplification reaction were performed in the gel droplet. As a result, DNA amplification positive gel droplets (green fluorescence) were observed at the same ratio (10%) as the encapsulation ratio (Fig. 8, left figure). The DNA amplification-positive gel droplets showed clear brightness, suggesting that the amplified DNA was retained inside the droplets even after repeated centrifugation and washing with vortex. However, in some of the DNA amplification-positive gel droplets, the contour of the droplet was distorted, and it was observed that the internal DNA or cellular components were leaking (Fig. 8, right figure). Therefore, a DNA amplification reaction was carried out at two types of particle sizes (50 μm and 70 μm), and the circularity after the DNA amplification reaction was measured (FIG. 9). It was shown that when the droplet size was large (70 μm), the circularity fluctuated little and the shape was relatively stable, but when the original size was small (50 μm), the shape collapsed significantly. Since this decrease in droplet contour collapse was observed for the first time after the genome amplification reaction, the influence of the amplified DNA component and the like was considered. As described above, since the presence or absence of amplification can be easily distinguished by fluorescence observation, it is possible to manually select amplification-positive droplets under a microscope even if the droplet shape is deformed. However, when attempting FACS sorting, it is expected that uneven droplet size will affect sorting, so it is necessary to reduce the collapse of the droplet shape as much as possible.
 次に、ゲルドロップレットの形状崩壊による増幅DNAのクロスコンタミネーションを評価するため、DNA増幅陽性・陰性ドロップレットをそれぞれ20個ずつ手作業でピックし、二次増幅を行い、増幅DNA量を定量した(図10)。この結果、DNA増幅陽性ドロップレットからは、5945±1623ngの最終DNA増幅産物が得られた。一方、DNA増幅陰性ドロップレットからは、11.85ng±10.7ngの最終DNA増幅産物が得られた。最終的なDNA収量の差は明確であり、増幅DNAのクロスコンタミネーションは無視できる量であると考えられた。また、蛍光を指標としてDNA増幅陽性ドロップレットを回収することで、シングルセルゲノム増幅物を確実に回収できることが示された。 Next, in order to evaluate the cross-contamination of amplified DNA due to the shape collapse of the gel droplets, 20 DNA amplification positive and 20 negative droplets were manually picked, secondary amplification was performed, and the amount of amplified DNA was quantified. (Fig. 10). As a result, 5945 ± 1623 ng of final DNA amplification product was obtained from the DNA amplification positive droplet. On the other hand, the final DNA amplification product of 11.85 ng ± 10.7 ng was obtained from the DNA amplification negative droplet. The difference in final DNA yield was clear and the cross-contamination of amplified DNA was considered to be negligible. In addition, it was shown that the single-cell genome amplification product can be reliably recovered by recovering the DNA amplification-positive droplet using fluorescence as an index.
 (実施例5:ゲルドロップレット全ゲノム増幅産物の増幅バイアス評価)
 ゲルドロップレットから得られたシングルセルゲノムが遺伝子解析サンプルとして充分なクオリティを有しているかを確認するため、1番~22番の各染色体上の遺伝子座をターゲットとしたqPCRを行い、増幅バイアスの程度を評価した。比較対象として細胞集団から抽出した非増幅ゲノムを用い、シングルセルゲノム増幅物のqPCR時のCt値の差を増幅バイアスの大きさとして評価した(図11)。従来法のように、ゲルドロップレットに封入せずに1細胞から直接1チューブでMDA反応を行ったサンプルでは、増幅バイアスが大きく、全ての染色体部位においてCt値の最大と最小の差が3以上であり、15か所では6以上であった。これは全ての部位においてシングルセルゲノム間の増幅度合いに10倍以上の差が生じており、15箇所では100倍以上のばらつきが生じていたことを意味する。一方、ゲルドロップレットを用いて調製したシングルセルゲノム増幅物サンプルではCt値の差が3を超えていた箇所は7か所のみであり、6を超えていた箇所は0か所であった。これより、15か所ではゲノム増幅のばらつきが10倍以下であったことが確認できた。この結果から、シングルセルをゲルドロップレット環境に一時的に封入し、微小環境内で一時的に増幅反応を行うことが、最終的な増幅産物上のバイアスを大幅に抑制することが示唆された。既存の研究から、全ゲノム増幅反応では、反応初期のプライミングや複製の状況がその後のバイアス規模に大きな影響を与えることが知られている。特に、従来のPCRチューブ反応では、大容量の反応液中で1細胞を扱うことから、チューブへの吸着やプライマーダイマーの影響が大きくなる。一方、ゲルドロップレットではDNAがゲル内に保持され拡散が制限されている、またプライマーダイマーに由来する成分はゲル外に主に存在し、これらは洗浄除去された。これらの影響により、従来の反応で課題となっていたバイアス要因を排除出来ていると考えられた。よって、初期のゲノム増幅反応がゲル内で完遂して一定容量に達してから分取し二次増幅を行っていることで、バイアス抑制の効果が得られた。
(Example 5: Evaluation of amplification bias of gel droplet whole genome amplification product)
In order to confirm whether the single-cell genome obtained from the gel droplet has sufficient quality as a gene analysis sample, qPCR targeting the loci on each chromosome 1 to 22 was performed, and amplification bias was performed. The degree of was evaluated. Using a non-amplified genome extracted from a cell population as a comparison target, the difference in Ct value during qPCR of a single-cell genome amplified product was evaluated as the magnitude of amplification bias (Fig. 11). In the sample in which the MDA reaction was performed directly from one cell in one tube without encapsulation in a gel droplet as in the conventional method, the amplification bias was large, and the difference between the maximum and minimum Ct values was 3 or more at all chromosomal sites. It was 6 or more in 15 places. This means that there was a difference of 10 times or more in the degree of amplification between single-cell genomes at all sites, and a variation of 100 times or more at 15 sites. On the other hand, in the single-cell genome amplification product sample prepared using the gel droplet, the difference in Ct value exceeded 3 in only 7 places, and the difference in Ct value exceeded 6 in 0 places. From this, it was confirmed that the variation in genome amplification was 10 times or less at 15 locations. This result suggests that temporary encapsulation of a single cell in a gel droplet environment and temporary amplification reaction in a microenvironment significantly suppresses bias on the final amplification product. .. From existing studies, it is known that in the whole genome amplification reaction, the priming and replication conditions at the initial stage of the reaction have a great influence on the subsequent bias scale. In particular, in the conventional PCR tube reaction, since one cell is treated in a large volume of reaction solution, the influence of adsorption on the tube and the primer dimer becomes large. On the other hand, in the gel droplet, DNA was retained in the gel and diffusion was restricted, and components derived from the primer dimer were mainly present outside the gel, and these were washed and removed. It is considered that these influences have eliminated the bias factor that has been a problem in the conventional reaction. Therefore, the effect of suppressing bias was obtained by performing the secondary amplification after the initial genome amplification reaction was completed in the gel and reached a certain volume.
 (実施例6:核封入ゲルドロップレットの全ゲノム増幅と増幅バイアス評価)
 実施例4でゲルドロップレットの一部がMDA反応により歪むように変形する現象が確認されたため、FACSによるソーティングに適用するために、MDA反応時間を増幅バイアスとドロップレット変形度合いの2つの観点から評価した。初めに、細胞内成分の溶解による拡散が原因であると考え、予め細胞質成分を取り除き、細胞核としてドロップレットに封入して以後の反応を進める方法を検証した。
(Example 6: Whole-genome amplification and amplification bias evaluation of nuclear-encapsulated gel droplet)
Since it was confirmed in Example 4 that a part of the gel droplet was deformed so as to be distorted by the MDA reaction, the MDA reaction time was evaluated from the two viewpoints of amplification bias and the degree of droplet deformation in order to apply it to sorting by FACS. did. First, we considered that the cause was diffusion due to lysis of intracellular components, and examined a method of removing cytoplasmic components in advance and encapsulating them in droplets as cell nuclei to proceed with the subsequent reaction.
 核封入後、ゲノムDNA以外の成分を可能な限り除去するために、アルカリ処理の前にProteinase KとSDSによる細胞溶解を行い、10分、30分、60分のMDA反応を行った。反応前、反応時間30分、60分のドロップレットの円形度を測定した結果、反応時間を延ばすにつれ変形が進行することを確認した(図12)。続いて、MDA反応を10分と30分行ったDNA増幅陽性ドロップレットを4個ずつピックし、qPCRによるバイアスチェックを行った(図13)。MDA反応時間が10分であったドロップレットでは大きな増幅バイアスが確認されたが、MDA反応時間を30分にしたドロップレットでは実施例5で測定したゲルドロップレットMDA産物と同程度の増幅バイアスであり、均質に増幅できていることを確認した。以上より、増幅バイアス抑制効果があり、かつゲルドロップレットの変形度合いが小さくなる条件として、以後の核封入ゲルドロップレットMDAは、30分の反応時間で行うこととした。 After encapsulation, in order to remove components other than genomic DNA as much as possible, cell lysis with Proteinase K and SDS was performed before alkaline treatment, and MDA reactions were performed for 10 minutes, 30 minutes, and 60 minutes. As a result of measuring the circularity of the droplets having a reaction time of 30 minutes and 60 minutes before the reaction, it was confirmed that the deformation progressed as the reaction time was extended (Fig. 12). Subsequently, four DNA amplification-positive droplets that had undergone the MDA reaction for 10 minutes and 30 minutes were picked and bias checked by qPCR (FIG. 13). A large amplification bias was confirmed in the droplets with an MDA reaction time of 10 minutes, but in the droplets with an MDA reaction time of 30 minutes, the amplification bias was similar to that of the gel droplet MDA product measured in Example 5. Yes, it was confirmed that the amplification was homogeneous. Based on the above, it was decided that the subsequent nuclear-encapsulated gel droplet MDA should be carried out in a reaction time of 30 minutes under the condition that the amplification bias is suppressed and the degree of deformation of the gel droplet is reduced.
 (実施例7:ゲルドロップレット全ゲノム増幅産物のFACS分取検証)
 (ゲルドロップレットのFACS分取検証)
 (核封入ゲルドロップレットMDA産物のFACS分取)
 MDA反応を30分行った30μmの核封入ゲルドロップレットをFACSに導入し、DNA増幅陽性ドロップレットとDNA増幅陰性ドロップレットをチューブに一つずつ分取し、二次増幅の後に定量を行った(図14)。DNA増幅陰性ドロップレットをソートしたチューブの収量は全て1000ng以下であった。1000ngを基準とし、DNA増幅陽性ドロップレットのソート効率を計算すると、1000ng以上のゲノム増幅が確認されたチューブは53個であり、ソート効率は91%となった。以上の実験により、細胞核ゲルドロップレットMDA産物のFACSによるソーティングが90%以上の効率で可能であると示された。
(Example 7: FACS preparative verification of gel droplet whole genome amplification product)
(FACS preparative verification of gel droplet)
(FACS sorting of nuclear-encapsulated gel droplet MDA products)
A 30 μm nuclear-encapsulated gel droplet that had undergone the MDA reaction for 30 minutes was introduced into FACS, and DNA amplification positive droplets and DNA amplification negative droplets were separated into tubes one by one, and quantification was performed after secondary amplification. (Fig. 14). The yields of all the tubes sorted with DNA amplification negative droplets were 1000 ng or less. When the sorting efficiency of DNA amplification positive droplets was calculated based on 1000ng, 53 tubes were confirmed to have genome amplification of 1000ng or more, and the sorting efficiency was 91%. These experiments have shown that FACS sorting of cell nucleus gel droplet MDA products is possible with an efficiency of 90% or higher.
 (モデル細胞を用いた体細胞ゲノム変異の1細胞レベルでの検出)
 ゲルドロップレットMDAを用い、複数種類のゲノム変異を100個程度のシングルセルゲノムで検出することを試みた。H358、H1975、H1650の3種類の肺がん細胞を1:1:1の比率でゲルドロップレットに封入し、MDA反応を行い、DNA増幅陽性ゲルドロップレットのピックの後に、二次増幅とゲノムの定量を行った。102個のシングルセルゲノムの定量を行った結果、96個において1000ng以上のゲノムが確認された。6個のチューブではピック時の手技の問題により、DNA増幅陽性ドロップレットがピックされず、充分な増幅がかからなかったと考えられる。1000ng以上の収量が得られた96個のシングルセルゲノムそれぞれに対し、ex19、20、21の変異箇所をターゲットとしたPCRを行った。PCR後のアガロースゲル電気泳動の結果の一部を図15に示す。先行研究(Kawada et al., 2008)により、EGFR ex19にヘテロな欠失が入っているゲノムの電気泳動では、バンドが2本検出されることが確認されている。アガロースゲル電気泳動の結果、24個の増幅産物で2本のバンドが検出され、72個の増幅産物で1本のPCRバンドが検出された。この結果より、24個のゲノムはEGFR ex19に欠失変異が入っている細胞から取得されたものとわかる。
(Detection of somatic genome mutations at the single cell level using model cells)
Using gel droplet MDA, we attempted to detect multiple types of genome mutations in about 100 single-cell genomes. Three types of lung cancer cells, H358, H1975, and H1650, were encapsulated in a gel droplet at a ratio of 1: 1: 1, and an MDA reaction was performed. Was done. As a result of quantification of 102 single-cell genomes, more than 1000 ng of genomes were confirmed in 96 of them. It is probable that the DNA amplification positive droplets were not picked in the 6 tubes due to the problem of the picking procedure, and sufficient amplification was not applied. PCR targeting the mutation sites ex19, 20, and 21 was performed on each of the 96 single-cell genomes with a yield of 1000 ng or more. A part of the result of agarose gel electrophoresis after PCR is shown in FIG. Previous studies (Kawada et al., 2008) have confirmed that two bands are detected by electrophoresis of the genome containing a heterozygous deletion in EGFR ex19. As a result of agarose gel electrophoresis, two bands were detected in 24 amplification products, and one PCR band was detected in 72 amplification products. From this result, it can be seen that the 24 genomes were obtained from cells containing a deletion mutation in EGFR ex19.
 続いて、サンガーシーケンス法によりEGFR ex20と21領域増幅産物の塩基配列を取得した。実験の結果、まず192か所の領域のうち191か所の塩基配列が取得できた。Ex19領域の増幅結果と合わせ、取得できた96シングルセルゲノムの3領域(計288か所)のうち、増幅できなかった箇所は1か所のみであった。この結果は、ゲルドロップレットMDA産物の増幅バイアスによる遺伝子情報の欠損が0.4%以下の頻度でしか起こらなかったことを意味し、増幅バイアスが充分に少なかったことを再度証明する結果となった。続いて得られた塩基配列波形より、SNP変異の検出を行った。Ex20のT790M変異では一箇所のグアニンがアデニンに、ex21のL858R変異では一箇所のアデニンがシトシンに置換されていた。サンガーシーケンス法によりヘテロなSNPを解析する場合、先行研究より野生型の塩基と変異型の塩基の2つの波形が重なった図が得られることが確認されている(Pao et al., 2005)。得られた塩基配列を確認すると、34個のシングルセルゲノムからT790MとL858Rの変異が同時に観測され、61個のシングルセルゲノムから野生型のゲノムが観測された。塩基配列の一部を図16に示す。ex20と21に変異が観測された34個のシングルセルゲノムは、アガロースゲル電気泳動によりex19に変異が観測された24個のシングルセルゲノムとは異なるサンプルであった。以上まとめると、検出された各変異の割合は想定通り3つのタイプに分類された(表5)。Ex19~21の3か所の変異が同時に観測されたゲノムが存在しなかったことより、H1650とH1975のゲノムを同時に含んでいるゲルドロップレットは96個の中には存在しなかったことがわかった。これは、ダブレットが理論値通りに充分に少ない割合(20分の1、H1650とH1975のダブレットは120分の1)でしか存在しなかったことを意味している。以上の実験より、複数の細胞種が存在する細胞集団をゲルドロップレットに封入し、簡便かつ高精度な全ゲノム増幅を行った後に、1細胞レベルでのゲノム変異解析を高効率で実行できることが示された。 Subsequently, the nucleotide sequences of EGFR ex20 and 21 region amplification products were obtained by the Sanger sequencing method. As a result of the experiment, we were able to obtain 191 base sequences out of 192 regions. Combined with the amplification results of the Ex19 region, only one of the three regions (288 locations in total) of the 96 single-cell genome that could be obtained could not be amplified. This result means that the deletion of genetic information due to the amplification bias of the gel droplet MDA product occurred only at a frequency of 0.4% or less, and it proved again that the amplification bias was sufficiently small. Subsequently, SNP mutations were detected from the obtained nucleotide sequence waveforms. In the T790M mutation of Ex20, one guanine was replaced with adenine, and in the L858R mutation of ex21, one adenine was replaced with cytosine. When analyzing heterogeneous SNPs by the Sanger sequencing method, it has been confirmed from previous studies that a diagram in which two waveforms of a wild-type base and a mutant-type base overlap can be obtained (Pao et al., 2005). When the obtained nucleotide sequence was confirmed, mutations of T790M and L858R were observed simultaneously from 34 single-cell genomes, and a wild-type genome was observed from 61 single-cell genomes. A part of the base sequence is shown in FIG. The 34 single-cell genomes with mutations in ex20 and 21 were different samples from the 24 single-cell genomes with mutations in ex19 by agarose gel electrophoresis. In summary, the proportions of each mutation detected were classified into three types as expected (Table 5). From the fact that there was no genome in which three mutations of Ex19-21 were observed at the same time, it was found that there were no gel droplets containing the genomes of H1650 and H1975 at the same time among the 96. It was. This means that the doublets were present in a sufficiently small proportion (1/20, the H1650 and H1975 doublets were 1/120), as theoretically. From the above experiments, it is possible to perform genome mutation analysis at the single cell level with high efficiency after enclosing a cell population in which multiple cell types exist in a gel droplet and performing simple and highly accurate whole genome amplification. Shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
参考文献
Babbe, H.,Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., …Rajewsky, K.(2000). Clonal Expansions of Cd8 + T Cells Dominate theT Cell Infiltratein Active Multiple Sclerosis Lesions as Shown byMicromanipulation and Single Cell Polymerase Chain Reaction. The Journal ofExperimental Medicine, 192(3),393-404.https://doi.org/10.1084/jem.192.3.393
Bos, H. VanDen, Bakker, B., Spierings, D. C. J., Lansdorp, P. M., & Foijer,F. (2018).International Journal of Biochemistry and Cell Biology Single-cellsequencingto quantify genomic integrity in cancer. International Journal ofBiochemistry and Cell Biology, 94(September 2017), 146-150. https://doi.org/10.1016/j.biocel.2017.09.016
Brouzes, E.,Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison,J. B., …Samuels, M. L. (2009). Droplet microfluidic technology for single-cellhigh-throughput screening. Proceedings of the National Academy of Sciences ofthe United States of America, 106(34), 14195-200.https://doi.org/10.1073/pnas.0903542106
Chenghang Zong, Sijia Lu1, Alec R. Chapman, X. S. X. (n.d.). Genome-WideDetection of Single-Nucleotide and Copy-Number Variations of a Single HumanCell.
Gao, Y., Ni, X., Guo, H., Su, Z., Ba, Y., Tong, Z., … Zhang, N. (2017).Single-cell sequencing deciphersa convergent evolution of copy numberalterations from primary to circulating tumor cells. Genome Research, 27(8),1312-1322.https://doi.org/10.1101/gr.216788.116
Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., Leitch,I. J.,… Bennett, M. D. (2007). Eukaryotic genome size databases. Nucleic AcidsResearch, 35(Database issue),D332-8. https://doi.org/10.1093/nar/gkl828
Hosokawa, M.,Nishikawa, Y., Kogawa, M., & Takeyama, H. (2017). Massivelyparallel whole genome amplification for single-cell sequencing using dropletmicrofluidics. Scientific Reports, 7(1), 3-4.https://doi.org/10.1038/s41598-017-05436-4
Hosono, S., Faruqi, A. F., Dean, F. B., Du, Y., Sun, Z., Wu, X., … Lasken, R.S. (2003). Unbiased whole-genome amplification directly from clinical samples.Genome Research, 13(5),954-964. https://doi.org/10.1101/gr.816903
Hou, Y., Wu,K., Shi, X., Li, F., Song, L., Wu, H., … Wang, J. (2015). Comparisonofvariations detection between whole-genome amplification methods usedinsingle-cell resequencing. GigaScience, 4(1), 1-16.https://doi.org/10.1186/s13742-015-0068-3
Kawada, I., Soejima, K., Watanabe, H., Nakachi, I., Yasuda, H., Naoki,K., …Ishizaka, A. (2008). An alternative method for screening EGFR mutation usingRFLP in non-small cell lung cancer patients. Journal of Thoracic Oncology,3(10), 1096-1103.https://doi.org/10.1097/JTO.0b013e318186fadd
Kintses, B.,van Vliet, L. D., Devenish, S. R., & Hollfelder, F. (2010).Microfluidicdroplets: new integrated workflows for biological experiments.Current Opinion in Chemical Biology, 14(5),548-555.https://doi.org/10.1016/j.cbpa.2010.08.013Lan, F., Demaree, B., Ahmed,N., & Abate, A. R. (2017). Single-cell genome sequencing atultra-high-throughput with microfluidic droplet barcoding. NatureBiotechnology, 35(7), 640-646.https://doi.org/10.1038/nbt.3880
Leung, M. L.,Wang, Y., Waters, J., & Navin, N. E. (2015). SNES: Singlenucleus exome sequencing. Genome Biology, 16(1).https://doi.org/10.1186/s13059-015-0616-2Mazutis, L., Gilbert, J., Ung, W. L.,Weitz, D. A., Griffiths, A. D., & Heyman, J. A. (2013). Single-cellanalysis and sorting using droplet-based microfluidics. Nature Protocols,8,870. Retrieved from https://doi.org/10.1038/nprot.2013.046
Ning, L., Li,Z., Wang, G., Hu, W., Hou, Q., Tong, Y., … He, J. (2015).Quantitativeassessment of single-cell whole genome amplification methods fordetecting copynumber variation using hippocampal neurons. Scientific Reports,5,11415. Retrieved from https://doi.org/10.1038/srep11415
Paez, J. G.,Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., …Meyerson, M.(2004). <em>EGFR</em> Mutations in LungCancer: Correlation with Clinical Response to Gefitinib Therapy. Science,304(5676),1497 LP-1500. Retrievedfromhttp://science.sciencemag.org/content/304/5676/1497.abstract
Pao, W.,Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M.F.,
…Varmus, H. (2005). Acquired resistance of lung adenocarcinomas to gefitiniborerlotinib is associated with a second mutation in the EGFR kinase domain.PLoSMedicine, 2(3), 0225-0235.https://doi.org/10.1371/journal.pmed.0020073
Shahi, P., Kim,S. C., Haliburton, J. R., Gartner, Z. J., & Abate, A. R. (2017).Abseq: Ultrahigh-throughput single cell protein profiling with dropletmicrofluidic barcoding. Nature Publishing Group, (November 2016), 1-12.https://doi.org/10.1038/srep44447
Sommer, L., Ma,Q., & Anderson, D. J. (1996). neurogenins, a Novel Family ofatonal-RelatedbHLH Transcription Factors, Are Putative Mammalian Neuronal Determination GenesThat Reveal Progenitor Cell Heterogeneity in the Developing CNS and PNS.Molecularand Cellular Neuroscience, 8(4),221-241.https://doi.org/10.1006/mcne.1996.0060
Woodruff, M.F.(1983). Cellular heterogeneity in tumours. British Journal of Cancer,47(5),589-94.https://doi.org/10.1038/bjc.1983.96
Wu, H., Zhang, X.-Y., Hu, Z., Hou, Q., Zhang, H., Li, Y., … Wu, S. (2016).Evolution and heterogeneity of non-hereditary colorectal cancer revealed bysingle-cell exome sequencing. Oncogene,36, 2857. Retrieved fromhttps://doi.org/10.1038/onc.2016.438
Zhang, L., Cui,X., Schmitt, K., Hubert, R., Navidi, W., & Arnheim, N.(1992). Whole genome amplification from a single cell: implications for geneticanalysis. Proceedings of the National Academy of Sciences, 89(13), 5847-5851.https://doi.org/10.1073/pnas.89.13.5847
References
Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R.,… Rajewsky, K. (2000). Clonal Expansions of Cd8 + T Cells Dominate the T Cell Infiltratein Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction. The Journal of Experimental Medicine, 192 (3), 393-404. Https://doi.org/10.1084/jem.192.3.393
Bos, H. VanDen, Bakker, B., Spierings, DCJ, Lansdorp, PM, & Foijer, F. (2018). International Journal of Biochemistry and Cell Biology Single-cellsequencingto quantify genomic integrity in cancer. International Journal of Biochemistry and Cell Biology , 94 (September 2017), 146-150. Https://doi.org/10.1016/j.biocel.2017.09.016
Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, JB,… Samuels, ML (2009). Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences of the United States of America, 106 (34), 14195-200.https://doi.org/10.1073/pnas.0903542106
Chenghang Zong, Sijia Lu1, Alec R. Chapman, X. S. X. (nd). Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell.
Gao, Y., Ni, X., Guo, H., Su, Z., Ba, Y., Tong, Z.,… Zhang, N. (2017). Single-cell sequencing deciphersa convergent evolution of copy number alterations from primary to circulating tumor cells. Genome Research, 27 (8), 1312-1322.https://doi.org/10.1101/gr.216788.116
Gregory, TR, Nicol, JA, Tamm, H., Kullman, B., Kullman, K., Leitch, IJ,… Bennett, MD (2007). Eukaryotic genome size databases. Nucleic Acids Research, 35 (Database issue), D332 -8. https://doi.org/10.1093/nar/gkl828
Hosokawa, M., Nishikawa, Y., Kogawa, M., & Takeyama, H. (2017). Massively parallel whole genome amplification for single-cell sequencing using dropletmicrofluidics. Scientific Reports, 7 (1), 3-4. https: //doi.org/10.1038/s41598-017-05436-4
Hosono, S., Faruqi, AF, Dean, FB, Du, Y., Sun, Z., Wu, X.,… Lasken, RS (2003). Unbiased whole-genome amplification directly from clinical samples.Genome Research, 13 (5), 954-964. https://doi.org/10.1101/gr.816903
Hou, Y., Wu, K., Shi, X., Li, F., Song, L., Wu, H.,… Wang, J. (2015). Comparisonofvariations detection between whole-genome amplification methods used insingle-cell resequencing. GigaScience, 4 (1), 1-16. https://doi.org/10.1186/s13742-015-0068-3
Kawada, I., Soejima, K., Watanabe, H., Nakachi, I., Yasuda, H., Naoki, K.,… Ishizaka, A. (2008). An alternative method for screening EGFR mutation using RFLP in non- small cell lung cancer patients. Journal of Thoracic Oncology, 3 (10), 1096-1103.https://doi.org/10.1097/JTO.0b013e318186fadd
Kintses, B., van Vliet, LD, Devenish, SR, & Hollfelder, F. (2010). Microfluidicdroplets: new integrated workflows for biological experiments. Current Opinion in Chemical Biology, 14 (5), 548-555. https: / /doi.org/10.1016/j.cbpa.2010.08.013Lan, F., Demaree, B., Ahmed, N., & Abate, AR (2017). Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding .NatureBiotechnology, 35 (7), 640-646. https://doi.org/10.1038/nbt.3880
Leung, ML, Wang, Y., Waters, J., & Navin, NE (2015). SNES: Singlenucleus exome sequencing. Genome Biology, 16 (1). Https://doi.org/10.1186/s13059-015- 0616-2 Mazutis, L., Gilbert, J., Ung, WL, Weitz, DA, Griffiths, AD, & Heyman, JA (2013). Single-cell analysis and sorting using droplet-based microfluidics. Nature Protocols, 8,870. Retrieved from https://doi.org/10.1038/nprot.2013.046
Ning, L., Li, Z., Wang, G., Hu, W., Hou, Q., Tong, Y.,… He, J. (2015). Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Scientific Reports, 5,11415. Retrieved from https://doi.org/10.1038/srep11415
Paez, JG, Janne, PA, Lee, JC, Tracy, S., Greulich, H., Gabriel, S.,… Meyerson, M. (2004). ≪ em > EGFR < / em > Mutations in LungCancer: Correlation with Clinical Response to Gefitinib Therapy. Science, 304 (5676), 1497 LP-1500. Retrieved from http://science.sciencemag.org/content/304/5676/1497.abstract
Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, MF,
… Varmus, H. (2005). Acquired resistance of lung adenocarcinomas to gefitiniborerlotinib is associated with a second mutation in the EGFR kinase domain.PLoSMedicine, 2 (3), 0225-0235. https://doi.org/10.1371/journal .pmed.0020073
Shahi, P., Kim, SC, Haliburton, JR, Gartner, ZJ, & Abate, AR (2017). Abseq: Ultra high-throughput single cell protein profiling with dropletmicrofluidic barcoding. Nature Publishing Group, (November 2016), 1-12 .https://doi.org/10.1038/srep44447
Sommer, L., Ma, Q., & Anderson, DJ (1996). Neurogenins, a Novel Family ofatonal-RelatedbHLH Transcription Factors, Are Putative Mammalian Neuronal Determination GenesThat Reveal Progenitor Cell Heterogeneity in the Developing CNS and PNS.Molecular and Cellular Neuroscience, 8 (4), 221-241. https://doi.org/10.1006/mcne.1996.0060
Woodruff, MF (1983). Cellular heterogeneity in tumours. British Journal of Cancer, 47 (5), 589-94. https://doi.org/10.1038/bjc.1983.96
Wu, H., Zhang, X.-Y., Hu, Z., Hou, Q., Zhang, H., Li, Y.,… Wu, S. (2016). Evolution and heterogeneity of non-hereditary colorectal cancer revealed by single-cell exome sequencing. Oncogene, 36, 2857. Retrieved from https://doi.org/10.1038/onc.2016.438
Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W., & Arnheim, N. (1992). Whole genome amplification from a single cell: implications for genetic analysis. Proceedings of the National Academy of Sciences, 89 (13), 5847-5851.https://doi.org/10.1073/pnas.89.13.5847
 (実施例8:がんの診断)
(1)腫瘍サンプルの採取
 腫瘍組織サンプルをバイオプシーにより採取する。組織を酵素処理し、細胞核を取り出す。必要に応じて、目的の細胞群をフローサイトメトリー等で濃縮する。血液悪性腫瘍の場合は、採血を行い、末梢血単核球画分を精製し、必要に応じて目的の細胞群をフローサイトメトリー等で濃縮する。
(2)シングルセルゲノム情報の入手
 本明細書の実施例1~2に記載される手順に従い、シングルセルをゲルカプセルへ封入する。ゲルカプセルで増幅ポリヌクレオチドを調製する。増幅ポリヌクレオチドを含むゲルカプセルを回収する。増幅ポリヌクレオチドの遺伝子分析によりシングルセルゲノム情報を入手する。
(3)情報の分析
 分子標的薬の薬剤抵抗性等に関わる遺伝子領域を評価し、適切な薬剤処方を選択する。本法では、細胞のゲノム多型を1細胞毎に判定できるため、腫瘍中での存在度の低い変異細胞などを検出でき、組織中の採取した場所や採取の時期によって、どのように変異細胞比が異なり、変遷していくのかをモニタリングすることもできる。この方法により、治療方法を患者別の腫瘍構成の状態に合わせて、随時調整することが可能になる。
(Example 8: Diagnosis of cancer)
(1) Collection of tumor sample A tumor tissue sample is collected by biopsy. The tissue is enzymatically treated and the cell nucleus is removed. If necessary, the target cell group is concentrated by flow cytometry or the like. In the case of hematological malignancies, blood is collected, the peripheral blood mononuclear cell fraction is purified, and the target cell group is concentrated by flow cytometry or the like as necessary.
(2) Obtaining Single Cell Genome Information The single cell is encapsulated in a gel capsule according to the procedure described in Examples 1 and 2 of the present specification. Prepare the amplified polynucleotide in a gel capsule. Collect the gel capsule containing the amplified polynucleotide. Single-cell genomic information is obtained by genetic analysis of amplified polynucleotides.
(3) Analysis of information Evaluate the gene region related to drug resistance of molecular-targeted drugs and select an appropriate drug prescription. In this method, since the genomic polymorphism of cells can be determined for each cell, mutant cells with low abundance in tumors can be detected, and how mutant cells are collected depending on the place and time of collection in the tissue. It is also possible to monitor whether the ratio is different and changes. This method makes it possible to adjust the treatment method at any time according to the state of the tumor composition of each patient.
 本開示のシングルセル技術により、癌の非侵襲的なモニタリングと早期発見も可能となる。例えば循環腫瘍細胞は血液サンプルから採取できるものの、一人の患者からは1~50個の細胞を得ることしかできないところ、例えば胃癌患者の場合、バイオプシーそのものが生命への危険にかかわるため、本開示のシングルセル技術が非侵襲的なモニタリング手法として利用できる。また癌を構成する癌細胞と非癌性細胞との不均一性の度合いを判定できるため、生存率との相関を見出すことも可能である。 The single-cell technology disclosed in this disclosure enables non-invasive monitoring and early detection of cancer. For example, circulating tumor cells can be collected from blood samples, but only 1 to 50 cells can be obtained from one patient. For example, in the case of gastric cancer patients, biopsy itself is life-threatening. Single cell technology can be used as a non-invasive monitoring method. Moreover, since the degree of heterogeneity between cancer cells constituting cancer and non-cancerous cells can be determined, it is also possible to find a correlation with the survival rate.
 さらに、本開示のシングルセル技術では、極微量の癌細胞も解析できるため、転移との関連や化学療法に対する稀な変異も検出することができる。 Furthermore, since the single cell technology of the present disclosure can analyze a very small amount of cancer cells, it is possible to detect a relationship with metastasis and a rare mutation to chemotherapy.
 (実施例9:再生医療での安全性・品質保証)
(1)移植組織サンプルを採取
 ES細胞やiPS細胞などから作成した移植組織サンプルから一部を採取する。組織を酵素処理し、細胞核を取り出す。必要に応じて、目的の細胞群をフローサイトメトリー等で濃縮する。
(2)シングルセルゲノム情報の入手
 本明細書の実施例1~2に記載される手順に従い、シングルセルをゲルカプセルへ封入する。ゲルカプセルで増幅ポリヌクレオチドを調製する。増幅ポリヌクレオチドを含むゲルカプセルを回収する。増幅ポリヌクレオチドの遺伝子分析によりシングルセルゲノム情報を入手する。
(3)情報の分析
 造腫瘍性に関わるゲノム変化としてSNPやCNVを評価する。本法では、細胞のゲノム多型を1細胞毎に判定できるため、組織中での存在度の低い変異細胞などを検出でき、幹細胞からの分化誘導や純化法によって、どのように変異細胞比が異なり、変遷していくのかをモニタリングすることができる。この方法により、移植に用いる組織の安全性や品質保証が可能になる。
(Example 9: Safety and quality assurance in regenerative medicine)
(1) Collecting a transplanted tissue sample A part is collected from a transplanted tissue sample prepared from ES cells or iPS cells. The tissue is enzymatically treated and the cell nucleus is removed. If necessary, the target cell group is concentrated by flow cytometry or the like.
(2) Obtaining Single Cell Genome Information The single cell is encapsulated in a gel capsule according to the procedure described in Examples 1 and 2 of the present specification. Prepare the amplified polynucleotide in a gel capsule. Collect the gel capsule containing the amplified polynucleotide. Single-cell genomic information is obtained by genetic analysis of amplified polynucleotides.
(3) Analysis of information SNP and CNV are evaluated as genomic changes related to tumorigenicity. In this method, since the genomic polymorphism of cells can be determined for each cell, mutant cells with low abundance in tissues can be detected, and how the mutant cell ratio can be determined by induction of differentiation from stem cells or purification methods. Unlike, it is possible to monitor how it changes. This method enables the safety and quality assurance of the tissue used for transplantation.
(実施例10:生殖系列細胞における染色体異常の検出、着床前診断、出生前診断)
(1)胚組織サンプルを採取
 初期胚 胚盤胞の一部を採集する。胎児有核赤血球を対象とする場合には、母体血液より、胎児有核赤血球を採集する。
(2)シングルセルゲノム情報の入手
 本明細書の実施例1~2に記載される手順に従い、シングルセルをゲルカプセルへ封入する。ゲルカプセルで増幅ポリヌクレオチドを調製する。増幅ポリヌクレオチドを含むゲルカプセルを回収する。増幅ポリヌクレオチドの遺伝子分析によりシングルセルゲノム情報を入手する。
(3)情報の分析
 着床前遺伝子診断などに利用して、重篤な変異のない細胞を選抜することに利用する。重篤な遺伝病に関わるゲノム変化としてSNPやCNVを評価する。本法では、細胞のゲノム多型を1細胞毎に判定できるため、存在度の低い変異細胞などを検出できる。この方法により、胚の着床前ゲノムスクリーニングや出生前診断が可能になる。
(Example 10: Detection of chromosomal abnormalities in germline cells, preimplantation genetic diagnosis, prenatal diagnosis)
(1) Collect embryo tissue sample A part of the early embryo blastocyst is collected. When targeting fetal nucleated red blood cells, fetal nucleated red blood cells are collected from maternal blood.
(2) Obtaining Single Cell Genome Information The single cell is encapsulated in a gel capsule according to the procedure described in Examples 1 and 2 of the present specification. Prepare the amplified polynucleotide in a gel capsule. Collect the gel capsule containing the amplified polynucleotide. Single-cell genomic information is obtained by genetic analysis of amplified polynucleotides.
(3) Analysis of information It is used for pre-implantation genetic diagnosis, etc., and is used to select cells without serious mutations. Evaluate SNPs and CNVs as genomic changes associated with serious genetic diseases. In this method, since the genomic polymorphism of cells can be determined for each cell, mutant cells having a low abundance can be detected. This method enables preimplantation genome screening and prenatal diagnosis of embryos.
(実施例11:種々の組織を用いた解析)
 Leung, M. L.,Wang, Y., Waters, J., & Navin, N. E. (2015). SNES: Singlenucleus exome sequencing. Genome Biology, 16(1).などに記載の手法により、種々の組織を1つずつの細胞単位に分散させる。この手順で調製された試料を用いて、実施例4に記載した手法により、核化した細胞を調製し、ゲルドロップレットの作製と細胞の封入をおこなう。
(Example 11: Analysis using various tissues)
Leung, ML, Wang, Y., Waters, J., & Navin, NE (2015). SNES: Singlenucleus exome sequencing. Genome Biology, 16 (1). Disperse in cell units. Using the sample prepared in this procedure, nucleated cells are prepared by the method described in Example 4, gel droplets are prepared, and the cells are encapsulated.
 ゲルドロップレットに封入した種々の組織由来の細胞を用いて、実施例4と同様に、全ゲノム増幅とゲノム変異検出とを行うことができる。 Using cells derived from various tissues enclosed in gel droplets, whole genome amplification and genome mutation detection can be performed in the same manner as in Example 4.
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、この実施形態に限定して解釈されるべきものではない。本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本開示の具体的な好ましい実施形態の記載から、本開示の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は、日本国特許庁に2019年4月26日に出願された特許出願2019-85837に対して優先権主張をするものであり、同出願の内容自体は具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
(Note)
As described above, the present disclosure has been illustrated using the preferred embodiments of the present disclosure, but the present disclosure should not be construed as being limited to this embodiment. It is understood that the present disclosure should be construed only by the claims. It will be understood from those skilled in the art that the description of the specific preferred embodiments of the present disclosure will enable equivalent scope to be implemented based on the description of the present disclosure and common general technical knowledge. The patents, patent applications and documents cited herein are to be incorporated by reference in their content as they are specifically described herein. Understood. This application claims priority to patent application 2019-85837 filed with the Japan Patent Office on April 26, 2019, and the content of the application itself is specifically described in the present specification. It is understood that the content should be incorporated as a reference to this specification as well as.
 本開示は、生物学的研究、医療、ヘルスケアなどの分野において利用可能である。 This disclosure is available in fields such as biological research, medicine, and healthcare.
配列番号1~44:表1に記載されたプライマー
配列番号45~50:表4に記載されたプライマー
SEQ ID NOs: 1-44: Primers listed in Table 1 SEQ ID NOs: 45-50: Primers listed in Table 4.

Claims (24)

  1.  組織における変異を解析する方法であって、
     該組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、細胞または細胞様構造物における変異を特定する工程を含む、方法。
    A method for analyzing mutations in tissues
    A method comprising identifying mutations in a cell or cell-like structure from a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue.
  2.  前記1つずつの細胞または細胞様構造物に由来する増幅核酸が、
     前記組織を含む試料を用い、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する工程と、
     該液滴をゲル化してゲルカプセルを生成する工程と、
     該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する工程であって、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持される、工程と、
     該ポリヌクレオチドを増幅用試薬に接触させて該ポリヌクレオチドをゲルカプセル内で増幅する工程と
    を含む、方法によって生成されている、請求項1に記載の方法。
    Amplified nucleic acids derived from each of the cells or cell-like structures
    Using a sample containing the tissue, a step of encapsulating cells or cell-like structures in droplets one cell or structure at a time, and
    The process of gelling the droplets to form gel capsules,
    A step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, wherein the genomic DNA of the cell or a polynucleotide containing a portion thereof is eluted into the gel capsule and the genomic DNA or its portion. The process of holding in the gel capsule with the substance bound to the moiety removed,
    The method of claim 1, wherein the method is produced by a method comprising contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule.
  3.  前記細胞または細胞様構造物の懸濁液をマイクロ流路中に流動させ、オイルで前記懸濁液をせん断することにより前記細胞または細胞様構造物を封入した前記液滴が作製されることを特徴とする、請求項2に記載の方法。 A suspension of the cell or cell-like structure is allowed to flow into a microchannel and sheared with oil to produce the droplet encapsulating the cell or cell-like structure. The method according to claim 2, which is characterized.
  4.  前記ゲルカプセルがアガロース、アクリルアミド、PEG、ゼラチン、アルギン酸ナトリウム、マトリゲル、コラーゲン又は光硬化性樹脂から形成されることを特徴とする、請求項2~3のいずれか1項に記載の方法。 The method according to any one of claims 2 to 3, wherein the gel capsule is formed from agarose, acrylamide, PEG, gelatin, sodium alginate, matrigel, collagen or a photocurable resin.
  5.  前記溶解用試薬がリゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、TritonX-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween20、Tween 80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、NonidetP-40、およびZwittergent3-12からなる群から少なくとも1種選択されることを特徴とする、請求項2~4のいずれか1項に記載の方法。 The solubilizing reagents are lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride , Urea, 2-mercaptoethanol, dithioreagent, TCEP-HCl, sodium cholate, sodium deoxycholate, TritonX-100, TritonX-114, NP-40, Brij-35, Brij-58, Tween20, Tween80 , Octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-maltoside, Nonidet P-40, and Zwittergent 3-12, characterized in that at least one is selected from the group. The method according to any one item.
  6.  前記ゲルカプセルがヒドロゲルカプセルであることを特徴とする、請求項2~5のいずれか1項に記載の方法。 The method according to any one of claims 2 to 5, wherein the gel capsule is a hydrogel capsule.
  7.  前記ポリヌクレオチドをゲルカプセル内で増幅する工程が、10~60分間の恒温鎖置換増幅反応によって行われることを特徴とする、請求項2~6のいずれか1項に記載の方法。 The method according to any one of claims 2 to 6, wherein the step of amplifying the polynucleotide in a gel capsule is carried out by a homeothermic chain substitution amplification reaction for 10 to 60 minutes.
  8.  前記1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択する工程をさらに含む、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, further comprising a step of selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell or cell-like structure. ..
  9.  前記1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料において、特定の配列を有する核酸を検出する工程を含む、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, which comprises a step of detecting a nucleic acid having a specific sequence in a sample containing an amplified nucleic acid derived from each of the cells or cell-like structures.
  10.  前記特定の配列を有する核酸を検出する工程が、特定の配列を有する核酸を増幅することを含む、請求項9に記載の方法。 The method according to claim 9, wherein the step of detecting the nucleic acid having the specific sequence comprises amplifying the nucleic acid having the specific sequence.
  11.  前記変異が、参照配列と比較した配列の変化を伴う変異を含む、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the mutation includes a mutation accompanied by a change in the sequence compared with the reference sequence.
  12.  前記変異が、塩基置換、挿入または欠失を含む、請求項11に記載の方法。 The method of claim 11, wherein the mutation comprises base substitution, insertion or deletion.
  13.  前記1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料から、該1つずつの細胞または細胞様構造物のゲノム配列データを得る工程をさらに含む、請求項1~12のいずれか1項に記載の方法。 Any of claims 1 to 12, further comprising the step of obtaining genomic sequence data of each cell or cell-like structure from a sample containing an amplified nucleic acid derived from each cell or cell-like structure. The method according to item 1.
  14.  前記1つずつの細胞または細胞様構造物のゲノム配列データから、分析するゲノム配列データを選択する工程をさらに含む、請求項13に記載の方法。 The method according to claim 13, further comprising a step of selecting genomic sequence data to be analyzed from the genomic sequence data of each cell or cell-like structure.
  15.  前記変異が、参照配列と比較した配列の変化を伴わない変異を含む、請求項13または14に記載の方法。 The method of claim 13 or 14, wherein the mutation comprises a mutation that does not involve a sequence change compared to a reference sequence.
  16.  前記変異が、コピー数変異(CNV)を含む、請求項15に記載の方法。 The method of claim 15, wherein the mutation comprises copy number variation (CNV).
  17.  前記ゲノム配列データを使用して、塩基置換、挿入または欠失を含む変異を特定することを含む、請求項13~16のいずれか1項に記載の方法。 The method according to any one of claims 13 to 16, which comprises identifying a mutation including a base substitution, insertion or deletion using the genomic sequence data.
  18.  前記組織が、腫瘍を含む組織である、請求項1~17のいずれか1項に記載の方法。 The method according to any one of claims 1 to 17, wherein the tissue is a tissue containing a tumor.
  19.  前記組織が、ヒト組織である、請求項1~18のいずれか1項に記載の方法。 The method according to any one of claims 1 to 18, wherein the tissue is a human tissue.
  20.  組織における変異を解析するシステムであって、
     該組織中の1つずつの細胞または細胞様構造物に由来する増幅核酸を含む試料を提供する増幅核酸試料提供部と、
    細胞または細胞様構造物における変異を特定する変異特定部とを含む、システム。
    A system for analyzing mutations in tissues
    An amplified nucleic acid sample provider that provides a sample containing an amplified nucleic acid derived from each cell or cell-like structure in the tissue.
    A system comprising a mutation-identifying part that identifies a mutation in a cell or cell-like structure.
  21.  前記増幅核酸試料提供部が、
     前記組織を含む試料を用い、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する液滴封入部と、
     該液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部と、
     1種以上の溶解用試薬と、
     細胞を溶解するための1種以上の溶解用試薬が格納された、該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する細胞溶解部であって、該細胞溶解部は、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持されるように構成されている、細胞溶解部と、
     該ポリヌクレオチドをゲルカプセル内で増幅するための該ポリヌクレオチド増幅用試薬と
    を含む、請求項20に記載のシステム。
    The amplified nucleic acid sample providing unit
    Using a sample containing the above-mentioned tissue, a droplet encapsulation portion for encapsulating cells or cell-like structures one cell or a structure unit in a droplet,
    A gel capsule generation unit that gels the droplet to generate a gel capsule,
    One or more dissolution reagents and
    A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, which contains one or more lysis reagents for lysing cells. , The polynucleotide containing the genomic DNA of the cell or a portion thereof is eluted in the gel capsule and retained in the gel capsule with the substance binding to the genomic DNA or the portion removed. There is a cell lysate and
    The system of claim 20, comprising the polynucleotide amplification reagent for amplifying the polynucleotide in a gel capsule.
  22.  前記組成評価部は、前記1つずつの細胞由来の増幅核酸を含む試料において特定の配列を有する核酸を検出するための検出試薬または検出装置を含む、請求項20または21に記載のシステム。 The system according to claim 20 or 21, wherein the composition evaluation unit includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells.
  23.  前記検出試薬または検出装置が、核酸を増幅および配列解読するための核酸増幅配列決定装置を含む、請求項22に記載のシステム。 22. The system of claim 22, wherein the detection reagent or device comprises a nucleic acid amplification sequencing device for amplifying and sequencing nucleic acids.
  24.  前記組成評価部は、前記微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、該1つずつの細胞のゲノム配列データをゲノム配列データ取得部をさらに含む、請求項20~23のいずれか一項に記載のシステム。 The composition evaluation unit further includes a genome sequence data acquisition unit for collecting genome sequence data of each cell from a sample containing an amplified nucleic acid derived from each cell in the microbiota, claims 20 to 23. The system according to any one of the above.
PCT/JP2020/017793 2019-04-26 2020-04-24 Digital somatic cell variation analysis WO2020218554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516286A JP7584801B2 (en) 2019-04-26 2020-04-24 Digital somatic mutation analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085837 2019-04-26
JP2019085837 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218554A1 true WO2020218554A1 (en) 2020-10-29

Family

ID=72942780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017793 WO2020218554A1 (en) 2019-04-26 2020-04-24 Digital somatic cell variation analysis

Country Status (1)

Country Link
WO (1) WO2020218554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189765A (en) * 2023-02-23 2023-05-30 上海捷易生物科技有限公司 iPS cytogenetic risk assessment system and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068899A1 (en) * 2013-03-14 2016-03-10 The Broad Institute Inc. Methods for quantitating dna using digital multiple displacment amplification
US20180371525A1 (en) * 2017-06-20 2018-12-27 Bio-Rad Laboratories, Inc. Mda using bead oligonucleotide
WO2019216271A1 (en) * 2018-05-07 2019-11-14 bitBiome株式会社 Method for performing single-cell analysis and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068899A1 (en) * 2013-03-14 2016-03-10 The Broad Institute Inc. Methods for quantitating dna using digital multiple displacment amplification
US20180371525A1 (en) * 2017-06-20 2018-12-27 Bio-Rad Laboratories, Inc. Mda using bead oligonucleotide
WO2019216271A1 (en) * 2018-05-07 2019-11-14 bitBiome株式会社 Method for performing single-cell analysis and device therefor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GENG, T. ET AL.: "Single- Cell Forensic Short Tandem Repeat Typing within Microfluidic Droplets", ANALYTICAL CHEMISTRY, vol. 86, 22 November 2013 (2013-11-22), pages 703 - 712, XP055711588, DOI: 10.1021/ac403137h *
HOSOKAWA, M. ET AL.: "Massively parallel whole genome amplification for single- cell sequencing using droplet microfluidics", SCIENTIFIC REPORTS, vol. 7, 2017, pages 5199, XP055672497, DOI: 10.1038/s41598-017-05436-4 *
MASATO KOGAWA, HOSOKAWA MASAHITO, NISHIKAWA YOHEI, MORI KAZUKI, TAKEYAMA HARUKO: "Obtaining high-quality draft genomes from uncultured microbes by cleaning and co-assembly of single-cell amplified genomes", SCIENTIFIC REPORTS, vol. 8, no. 1, 1 December 2018 (2018-12-01), XP055759180, DOI: 10.1038/s41598-018-20384-3 *
NOVAK, R. ET AL.: "Single- Cell Multiplex Gene Detection and Sequencing with Microfluidically Generated Agarose Emulsions", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 50, 2011, pages 390 - 395, XP002629259, DOI: 10.1002/ANIE.201006089 *
RIEKA CHIJIIWA, HOSOKAWA MASAHITO, KOGAWA MASATO, NISHIKAWA YOHEI, IDE KEIGO, SAKANASHI CHIKAKO, TAKAHASHI KAI, TAKEYAMA HARUKO: "Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota", MICROBIOME, vol. 8, no. 1, 1 December 2020 (2020-12-01), XP055759172, DOI: 10.1186/s40168-019-0779-2 *
ZHANG, H. ET AL.: "Massively Parallel Single- Molecule and Single- Cell Emulsion Reverse Transcription Polymerase Chain Reaction Using Agarose Droplet Microfluidics", ANALYTICAL CHEMISTRY, vol. 84, 27 March 2012 (2012-03-27), pages 3599 - 3606, XP002745401, DOI: 10.1021/ac2033084 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189765A (en) * 2023-02-23 2023-05-30 上海捷易生物科技有限公司 iPS cytogenetic risk assessment system and application
CN116189765B (en) * 2023-02-23 2023-08-15 上海捷易生物科技有限公司 iPS cytogenetic risk assessment system and application

Also Published As

Publication number Publication date
JPWO2020218554A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
AU2021229232B2 (en) Transposition into native chromatin for personal epigenomics
JP6882453B2 (en) Whole genome digital amplification method
Wang et al. Single cell sequencing: a distinct new field
Bentzen et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes
US9617598B2 (en) Methods of amplifying whole genome of a single cell
US20220195493A1 (en) Multiplex Preparation of Barcoded Gene Specific DNA Fragments
US20160228841A2 (en) Methods and compositions for tagging and analyzing samples
US20210301329A1 (en) Single Cell Genetic Analysis
CN112041459A (en) Nucleic acid amplification method
US20190112655A1 (en) Method, Systems and Apparatus for High-Throughput Single-Cell DNA Sequencing With Droplet Microfluidics
Radfar et al. Single-cell analysis of circulating tumour cells: enabling technologies and clinical applications
CN114466935A (en) Analysis of Gene mutations
KR20220118295A (en) High Throughput Single Cell Libraries, and Methods of Making and Using the Same
US20230235400A1 (en) Methods of detecting mitochondrial diseases
Shirai et al. Emerging applications of single-cell diagnostics
WO2020218554A1 (en) Digital somatic cell variation analysis
JP7584801B2 (en) Digital somatic mutation analysis
WO2023004058A1 (en) Spatial nucleic acid analysis
Prieto-Vila et al. Single-Cell Transcriptomics
CN116445596B (en) Product and method for human genotyping and application thereof
Xu et al. Sequencing a single circulating tumor cell for genomic assessment
JP2009531037A (en) Characterization of mixed samples
US20220145285A1 (en) Compartment-Free Single Cell Genetic Analysis
Prado-López Single-Cell Sequencing in Cancer Research: Challenges and Opportunities
Zhao Gene Expression Analysis on Microfluidic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795255

Country of ref document: EP

Kind code of ref document: A1