WO2020217385A1 - Rotary compressor - Google Patents
Rotary compressor Download PDFInfo
- Publication number
- WO2020217385A1 WO2020217385A1 PCT/JP2019/017646 JP2019017646W WO2020217385A1 WO 2020217385 A1 WO2020217385 A1 WO 2020217385A1 JP 2019017646 W JP2019017646 W JP 2019017646W WO 2020217385 A1 WO2020217385 A1 WO 2020217385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinders
- suction
- cylinder
- inner diameter
- pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/06—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/806—Pipes for fluids; Fittings therefor
Definitions
- the present invention relates to a rotary compressor.
- Patent Document 1 Conventionally, as a rotary compressor, for example, as shown in Patent Document 1, a housing, a rotary shaft extending in the vertical direction in the housing and rotating by an electric motor, and a rotary compressor having a cylinder supported by the rotary shaft. , An upper bearing that is rotatably supported by a rotating shaft and fixed to the top and bottom of the cylinder, and a lower bearing are known. A suction pipe capable of introducing a refrigerant into the compression chamber of the rotary compression unit is connected to the cylinder. Further, Patent Document 1 also discloses a twin rotary compressor in which cylinders are arranged in two stages vertically. Each cylinder is connected to at least one suction tube that extends separately from the accumulator.
- the thickness of the separator plate interposed between the cylinders in order to reduce the vibration. This is because if the separator plate is made thicker, the two cylinders will be separated from each other, and the influence of vibration due to the eccentric movement of the piston rotor will increase. However, if the thickness of the separator plate is reduced, it becomes difficult to process the suction pipes at the connection portion between the two suction pipe housings. Therefore, in order to widen the space between the suction pipes in order to facilitate processing, it is necessary to make the separator plate thicker or the suction pipes thinner.
- the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a rotary compressor having a plurality of cylinders, which can reduce vibration without lowering the compression efficiency.
- the present invention has adopted the following aspects in order to solve the above problems and achieve the above object.
- the rotary compressor according to one aspect of the present invention includes a rotating shaft extending along an axis, a bearing that rotatably supports the rotating shaft around the axis, a motor for rotating the rotating shaft, and the rotation.
- a rotary compression unit that compresses the refrigerant by rotating the shaft, a housing that houses the rotary shaft, the bearing, the motor, and the rotary compression unit, and a suction pipe that can introduce the refrigerant into the compression chamber of the rotary compression unit.
- the rotary compression unit includes, a plurality of cylinders forming the compression chamber and arranged side by side in the vertical direction, and a separator plate arranged between the plurality of cylinders, and the suction portion is provided.
- the pipes are a main pipe arranged above or below the cylinder and extending through the housing in the radial direction of the rotation shaft, and a plurality of pipes connected to the main pipe and extending in the axial direction of the rotation shaft. It has a connecting pipe arranged between the plurality of cylinders on the radial outside of the compression chamber in the cylinder and communicating with each of the compression chambers.
- the main pipe of the suction pipe is arranged above or below each of the plurality of cylinders, and in each of the compression chambers of the plurality of cylinders via the connecting pipe extending in the axial direction.
- the refrigerant can be inhaled.
- the refrigerant can be sucked into each of the compression chambers by one suction pipe without connecting the compression chambers of the plurality of cylinders to reduce the compression efficiency. If only one suction pipe can be used, it is easy to process the portion connecting the suction pipe to the housing even if the thickness of the separator plate is reduced.
- the inner diameter of the main pipes is not limited by the thickness of the cylinders, and the inner diameter of the main pipes is increased. It becomes possible to do. Further, the inner diameter of the connecting pipe can be increased. Therefore, more refrigerant can be compressed and the compression efficiency can be improved.
- the inner diameter of the suction pipe may be larger than the thickness of the cylinder.
- each of the plurality of cylinders has a suction flow path extending in the radial direction and communicating the compression chamber and the connecting pipe. It may be provided.
- each compression chamber can be supplied to each compression chamber via each suction flow path extending in the radial direction through a connecting pipe extending in the axial direction from the suction pipe. Therefore, the flow can be efficiently divided from one suction pipe into the compression chambers of a plurality of cylinders, and the compression efficiency can be improved.
- the suction flow path is opened on the outer peripheral surface of the cylinder to provide an opening hole in the cylinder, and a sealing plug is provided in the opening hole. It may have been.
- a lateral hole can be machined in each cylinder to form a suction flow path.
- the opening hole is sealed by the sealing plug. Therefore, while easily processing the suction flow path, the refrigerant flowing through the connecting pipe is outside the cylinder from the opening hole. It is possible to avoid leaking to.
- the inner diameter of the suction pipe and the inner diameter of the connecting pipe are the same, and the inner diameter of the main pipe and the inner diameter of the connecting pipe are the suction. It may be larger than the inner diameter of the flow path.
- the inner diameters of the main pipe and the connecting pipe, which form the flow paths of the refrigerant supplied into the suction flow paths of the plurality of cylinders, can be made larger than the inner diameters of the suction flow paths of the cylinders. Refrigerant can be supplied to each compression chamber, and the compression efficiency can be improved.
- the inner diameter of the suction flow path provided in the upper cylinder of the cylinders is the inner diameter of the suction flow path provided in the lower cylinder. It may be less than or equal to the inner diameter of the suction flow path.
- vibration can be reduced by reducing the thickness of the separator plate without lowering the compression efficiency.
- FIG. 1 is a vertical cross-sectional view showing the configuration of a rotary compressor according to the first embodiment of the present invention.
- FIG. 2 is a vertical cross-sectional view showing a configuration of a main part around a rotary compression portion of the rotary compressor shown in FIG.
- the rotary compressor according to the present embodiment (hereinafter, simply referred to as compressor 1) is a vertical closed rotary compressor used in, for example, an air conditioner or a refrigerating device.
- the compressor 1 includes a housing 2, a rotating shaft 3, an upper bearing 4A and a lower bearing 4B, an electric motor 5, a rotary compression unit 6, a scroll compression unit 10, and a suction pipe 7.
- the rotation axis 3 extends along an axis (rotation axis O described later).
- the upper bearing 4A and the lower bearing 4B rotatably support the rotating shaft 3 around the rotating axis O.
- the electric motor 5 rotates the rotating shaft 3.
- the rotary compression unit 6 compresses the refrigerant by the rotation of the rotating shaft 3.
- the suction pipe 7 makes it possible to introduce the refrigerant into the compression chambers 63A and 63B of the rotary compression unit 6.
- the compressor 1 of the present embodiment is a two-stage compressor further including a scroll compression unit 10 above the rotary compression unit 6, but the scroll compression unit 10 does not necessarily have to be provided.
- the central axis of the housing 2 and the rotation axis 3 are arranged on a common axis extending in the vertical direction (vertical direction), and this common axis is hereinafter referred to as a rotation axis O.
- the rotating shaft 3 is arranged so that the extending direction is the vertical direction, and is rotatably housed in the housing 2 around the rotating axis O.
- the housing 2 is a closed type and extends in the vertical direction, and houses a rotating shaft 3, bearings 4A and 4B, an electric motor 5, and a rotary compression unit 6.
- the housing 2 has a cylindrical main body portion 21, and an upper lid portion 22 and a lower lid portion 23 that close the upper and lower openings of the main body portion 21.
- the housing 2 has an opening 24 formed above the cylinders 60 (60A, 60B) at the lower part of the side wall.
- the suction pipe 7 is fixed to the opening 24 in a state of being inserted with the pipe axis direction oriented in the horizontal direction.
- An oil sump is formed at the bottom of the housing 2 by accumulating oil.
- the liquid level of the oil pool at the time of initial filling of oil is located above the rotary compression unit 6.
- the rotary compression unit 6 is driven in the oil pool.
- the upper lid portion 22 is provided with a discharge pipe 13 that penetrates the peripheral wall portion in the thickness direction and communicates with the inside of the housing 2.
- the discharge pipe 13 discharges the compressed refrigerant to the outside of the housing 2.
- the electric motor 5 is housed in a central portion of the housing 2 in the vertical direction.
- the electric motor 5 has a rotor 51 and a stator 52.
- the rotor 51 is fixed to the outer peripheral surface of the rotating shaft 3 and is arranged above the rotary compression unit 6.
- the stator 52 is arranged so as to surround the outer peripheral surface of the rotor 51, and is fixed to the inner surface 21a of the main body 21 of the housing 2.
- a power supply (not shown) is connected to the electric motor 5 via the terminal 9.
- the electric motor 5 rotates the rotating shaft 3 by the electric power from the power source.
- the upper bearing 4A and the lower bearing 4B are arranged so as to sandwich the rotary compression portion 6 from above and below.
- the upper bearing 4A and the lower bearing 4B are each formed of, for example, a metal material, and are fixed to the cylinder 60 constituting the rotary compression portion 6 by, for example, bolting. Further, the upper bearing 4A is fixed to the housing 2.
- the rotary shaft 3 is rotatably supported by the housing 2 around the rotary axis O by the upper bearing 4A and the lower bearing 4B.
- the rotary compression unit 6 is arranged at the bottom of the housing 2 below the electric motor 5 to compress the refrigerant.
- the rotary compression unit 6 has a plurality of (two in this embodiment) disc-shaped cylinders 60 (60A, 60B), an eccentric shaft portion 61, and a piston rotor 62.
- the two cylinders 60A and 60B are vertically arranged in the housing 2 along the rotation axis O direction, respectively.
- the cylinder located on the upper side is referred to as an upper cylinder 60A
- the cylinder located on the lower side is referred to as a lower cylinder 60B.
- Compression chambers 63A and 63B are formed inside the cylinders 60A and 60B, respectively.
- the compression chambers 63A and 63B accommodate the piston rotor 62.
- the separator plate 69 is arranged between the cylinders 60A and 60B so as to be sandwiched vertically by the cylinders 60A and 60B.
- the separator plate 69 separates the compression chambers 63A and 63B from each other.
- the upper cylinder 60A and the lower cylinder 60B have suction holes 64, 65 (in a position facing the opening 24 in top view) communicating with the compression chambers 63A, 63B in the cylinders 60A, 60B via the suction pipe 7.
- the suction flow path is formed.
- the suction holes 64 and 65 are opened on the outer peripheral surfaces of the cylinders 60A and 60B, so that the cylinders 60A and 60B are formed with opening holes 60x.
- the eccentric shaft portion 61 is provided at the lower end portion of the rotating shaft 3, and is provided inside the piston rotor 62 in a state of being offset in a direction orthogonal to the central axis of the rotating shaft 3.
- the piston rotor 62 is arranged inside the cylinder 60 in a cylindrical shape having an outer diameter smaller than the inner diameter of the cylinder 60, and the eccentric shaft portion 61 is inserted and fixed to the eccentric shaft portion 61.
- the piston rotor 62 rotates eccentrically with respect to the rotation axis O as the rotation shaft 3 rotates.
- the suction holes 64 and 65 are holes for allowing the refrigerant to flow into the cylinders 60A and 60B.
- the rotary compression unit 6 is provided with a discharge hole (not shown). Through this discharge hole, the refrigerant compressed by the rotary compression unit 6 is discharged into the internal space that is the intermediate pressure of the housing 2, that is, the space above the cylinders 60A and 60B.
- the suction pipe 7 is arranged above the upper cylinder 60A, and includes a main pipe 70 extending in the radial direction of the rotating shaft 3 and penetrating the housing 2, and a connecting pipe 71 extending downward from the inner end 70a in the housing 2 of the main pipe 70. ,have.
- the upper end 71a of the connecting pipe 71 is connected to the inner end 70a of the main pipe 70.
- the connecting pipe 71 is arranged between the upper cylinder 60A and the lower cylinder 60B so as to be parallel to the rotation axis O on the radial outer side of each of the compression chambers 63A and 63B.
- the inner end 70a of the main pipe 70 is inserted into the radial outer end of the upper bearing 4A.
- the connecting pipe 71 extends downward from the inner end 70a of the main pipe 70 through the inside of the upper bearing 4A.
- connection pipe 71 is provided with a through hole 71b that penetrates in the radial direction so as to communicate with each of the suction holes 64 and 65.
- the through hole 71b is arranged on the axis of each of the suction holes 64 and 65.
- a sealing plug 72 for sealing the suction holes 64 and 65 is fitted in the opening hole 60x at the radial outer end of the suction holes 64 and 65.
- the sealing stopper 72 is, for example, a metal screw or the like.
- the inner diameter d1 of the main pipe 70 is set to be larger than the thicknesses t1 and t2 of the cylinders 60A and 60B, respectively. Further, the inner diameter d1 of the main pipe 70 and the inner diameter d2 of the connecting pipe 71 have the same diameter, and the inner diameters d1 and the inner diameter d2 are larger than the inner diameters d3 and d4 of the suction holes 64 and 65, respectively. Further, the inner diameter d3 of the upper suction hole 64 provided in the upper cylinder 60A may be set to be equal to or less than the inner diameter d4 of the lower suction hole 65 provided in the lower cylinder 60B.
- the refrigerant flows from the main pipe 70 of the suction pipe 7 to the compression chambers 63A and 63B which are the internal spaces of the cylinder 60 via the connection pipe 71 and the suction holes 64 and 65 of the cylinders 60A and 60B. Be supplied. Then, due to the eccentric movement of the piston rotor 62, the volumes of the compression chambers 63A and 63B are gradually reduced to compress the refrigerant. Discharge holes (not shown) for discharging the refrigerant are formed at predetermined positions of the cylinders 60A and 60B, and a lead valve (not shown) is provided in the discharge holes.
- the reed valve is pushed open and the refrigerant is discharged to the outside of the cylinders 60A and 60B.
- the discharged refrigerant is further compressed by the scroll compression unit 10 and then discharged from a discharge pipe 13 provided in the upper part of the housing 2 to an external pipe (not shown).
- a main pipe 70 is arranged above each of the cylinders 60A and 60B, and communicates with each other via a connecting pipe 71 and suction holes 64 and 65. Can be connected. That is, the refrigerant can be sucked into each of the compression chambers of the two cylinders 60A and 60B by using one suction pipe 7.
- each of the compression chambers 63A and 63B is not directly connected by the connecting pipe 71. Therefore, the refrigerant can be sucked into the respective compression chambers 63A and 63B by one suction pipe 7 without lowering the compression efficiency.
- the inner diameter d1 of the main pipe 70 becomes the thickness of the cylinders 60A and 60B and the separator plate 69.
- the inner diameter d2 of the connecting pipe 71 is not limited to the thicknesses of the cylinders 60A and 60B and the separator plate 69. As a result, the inner diameters d1 and d2 of the main pipe 70 and the connecting pipe 71 can be increased.
- the inner diameter d1 of the main pipe 70 of the suction pipe 7 and the inner diameter d2 of the connecting pipe 71 are provided to have the same diameter, and are set larger than the inner diameters of the suction holes 64 and 65, respectively. As a result, more refrigerant can be compressed and the compression efficiency can be improved.
- the refrigerant can be efficiently supplied from one suction pipe 7 to the compression chambers 63A and 63B of the pair of cylinders 60A and 60B.
- the flow can be divided and the compression efficiency can be improved.
- a processing tool such as a drill into the outer peripheral surfaces of the cylinders 60A and 60B from the outside in the radial direction
- lateral holes are machined in the cylinders 60A and 60B to form suction holes 64, 65 can be formed.
- the opening hole 60x is sealed by the sealing plug 72 after the processing of the horizontal hole, the refrigerant supplied from the main pipe 70 and flowing through the connecting pipe 71 does not go to the compression chambers 63A and 63B, but the cylinder 60A. , It is possible to prevent the outflow from 60B.
- the upper cylinder 60A is compressed among the refrigerants flowing in the suction pipe 7. A large amount of refrigerant is not supplied to the chamber 63A. Therefore, the refrigerant can be sufficiently supplied to the compression chamber 63B of the lower cylinder 60B, it is possible to prevent the supply amount of the refrigerant from being insufficient to the lower cylinder 60B, and it is possible to avoid a decrease in the compression efficiency.
- the twin rotary type compressor 1 having two cylinders 60A and 60B is targeted, but the compressor 1 is not limited to the twin rotary type and has more cylinders. You may.
- the main pipe 70 of the suction pipe 7 is arranged above the cylinders 60A and 60B and extends in the radial direction of the rotating shaft 3 to communicate with the compression chambers 63A and 63B, but the main pipe 70 is a cylinder. It may be arranged below 60A and 60B.
- the inner diameter d1 of the main pipe 70, the inner diameter d2 of the connecting pipe 71, the inner diameters d3 and d4 of the suction holes 64 and 65 of the cylinders 60A and 60B, and the thicknesses t1 and t2 of the cylinders 60A and 60B are set in each part.
- the inner diameter d1 of the main pipe 70 is not limited to be larger than the thickness of the cylinders 60A and 60B.
- the inner diameter d1 of the main pipe 70 and the inner diameter d2 of the connecting pipe 71 are provided to have the same diameter, and the inner diameters d1 and d2 are not limited to be larger than the inner diameters of the suction holes 64 and 65. Further, the inner diameter d3 of the suction hole 64 provided in the upper cylinder 60A is not limited to be equal to or less than the inner diameter d4 of the suction hole 65 provided in the lower cylinder 60B.
- the suction holes 64 and 65 are provided, and the sealing plug 72 is provided in the opening holes 60x of the suction holes 64 and 65, but the opening holes 60x and the sealing plug 72 are not provided.
- Refrigerant flow paths that connect the connection pipe 71 and the compression chambers 63A and 63B may be formed in the cylinders 60A and 60B.
- the configuration such as, size, etc. can be set to an appropriate configuration.
- vibration can be reduced without lowering the compression efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
According to the present invention, a rotary compression part (6) has a plurality of cylinders (60A, 60B) that form compression chambers (63A, 63B) and are disposed side by side in the vertical direction, and a separator plate (69) disposed between the plurality of cylinders (60A, 60B), wherein the suction pipe (7) has a main pipe (70) that is disposed above or below the cylinders (60A, 60B) and extends penetrating though a housing (2) in a radial direction of a rotary shaft (3), and a connection pipe (71) that is connected to the main pipe (70), extends in the axial direction (O) of the rotary shaft (3), is disposed between the plurality of cylinders (60A, 60B) on a radial outside of the compression chambers (63A, 63B) in the plurality of cylinders (60A, 60B), and communicates with each of the compression chambers (63A, 63B).
Description
本発明は、ロータリ圧縮機に関する。
The present invention relates to a rotary compressor.
従来、ロータリ圧縮機として、例えば特許文献1に示されるような、ハウジングと、ハウジング内で鉛直方向に延びるとともに電動モータによって回転する回転軸と、回転軸に支持されたシリンダを有するロータリ圧縮部と、回転軸に回転可能に支持され、シリンダの上下に固定される上部軸受、及び下部軸受と、を備えたものが知られている。シリンダには、ロータリ圧縮部の圧縮室に冷媒を導入可能な吸入管が接続されている。そして特許文献1には、シリンダを上下に2段に配置したツインロータリ圧縮機も開示されている。各々のシリンダには少なくとも1本ずつアキュムレータから別々に延びる吸入管が接続されている。
Conventionally, as a rotary compressor, for example, as shown in Patent Document 1, a housing, a rotary shaft extending in the vertical direction in the housing and rotating by an electric motor, and a rotary compressor having a cylinder supported by the rotary shaft. , An upper bearing that is rotatably supported by a rotating shaft and fixed to the top and bottom of the cylinder, and a lower bearing are known. A suction pipe capable of introducing a refrigerant into the compression chamber of the rotary compression unit is connected to the cylinder. Further, Patent Document 1 also discloses a twin rotary compressor in which cylinders are arranged in two stages vertically. Each cylinder is connected to at least one suction tube that extends separately from the accumulator.
従来のツインロータリ圧縮機では、振動を低減させるためにはシリンダ同士の間に介在されたセパレータプレートの厚みを薄くすることが好ましい。セパレータプレートを厚くすると二つのシリンダが離れてしまい、ピストンロータの偏心運動による振動の影響が大きくなるためである。しかしながら、セパレータプレートの厚みを薄くすると、2本の吸入管のハウジングとの接続部における吸入管同士の間の加工が難しくなる。そこで加工を容易化するため吸入管同士の間を広げるためには、セパレータプレートを厚くするか、吸入管を細くする必要がある。しかしながら、セパレータプレートを厚くすると上述のように振動が増大し、吸入管を細くすると圧損が増大して圧縮効率が低下してしまう。したがって、吸入管を1本にまとめることによって、吸入管同士の間の加工を無くすことが考えられる。
しかしながら特許文献1のシングルシリンダ構造に適用されているように、1本の吸入管をシリンダの内周面の内側に接続する構成をツインシリンダにそのまま適用し、ツインシリンダを貫通するように1本の吸入管を接続して冷媒を吸入させた場合には、ツインシリンダのうちの一方のシリンダの吸入室と他方のシリンダの圧縮室とが直接繋がってしまうことから、圧縮効率が低下するという問題がある。 In the conventional twin rotary compressor, it is preferable to reduce the thickness of the separator plate interposed between the cylinders in order to reduce the vibration. This is because if the separator plate is made thicker, the two cylinders will be separated from each other, and the influence of vibration due to the eccentric movement of the piston rotor will increase. However, if the thickness of the separator plate is reduced, it becomes difficult to process the suction pipes at the connection portion between the two suction pipe housings. Therefore, in order to widen the space between the suction pipes in order to facilitate processing, it is necessary to make the separator plate thicker or the suction pipes thinner. However, if the separator plate is made thicker, the vibration increases as described above, and if the suction pipe is made thinner, the pressure loss increases and the compression efficiency decreases. Therefore, it is conceivable to eliminate the processing between the suction pipes by combining the suction pipes into one.
However, as applied to the single cylinder structure of Patent Document 1, the configuration in which one suction pipe is connected to the inside of the inner peripheral surface of the cylinder is applied to the twin cylinder as it is, and one is penetrated through the twin cylinder. When the suction pipe of the above is connected to suck the refrigerant, the suction chamber of one of the twin cylinders and the compression chamber of the other cylinder are directly connected, which causes a problem that the compression efficiency is lowered. There is.
しかしながら特許文献1のシングルシリンダ構造に適用されているように、1本の吸入管をシリンダの内周面の内側に接続する構成をツインシリンダにそのまま適用し、ツインシリンダを貫通するように1本の吸入管を接続して冷媒を吸入させた場合には、ツインシリンダのうちの一方のシリンダの吸入室と他方のシリンダの圧縮室とが直接繋がってしまうことから、圧縮効率が低下するという問題がある。 In the conventional twin rotary compressor, it is preferable to reduce the thickness of the separator plate interposed between the cylinders in order to reduce the vibration. This is because if the separator plate is made thicker, the two cylinders will be separated from each other, and the influence of vibration due to the eccentric movement of the piston rotor will increase. However, if the thickness of the separator plate is reduced, it becomes difficult to process the suction pipes at the connection portion between the two suction pipe housings. Therefore, in order to widen the space between the suction pipes in order to facilitate processing, it is necessary to make the separator plate thicker or the suction pipes thinner. However, if the separator plate is made thicker, the vibration increases as described above, and if the suction pipe is made thinner, the pressure loss increases and the compression efficiency decreases. Therefore, it is conceivable to eliminate the processing between the suction pipes by combining the suction pipes into one.
However, as applied to the single cylinder structure of Patent Document 1, the configuration in which one suction pipe is connected to the inside of the inner peripheral surface of the cylinder is applied to the twin cylinder as it is, and one is penetrated through the twin cylinder. When the suction pipe of the above is connected to suck the refrigerant, the suction chamber of one of the twin cylinders and the compression chamber of the other cylinder are directly connected, which causes a problem that the compression efficiency is lowered. There is.
本発明は、上述する問題点に鑑みてなされたもので、複数のシリンダを有するロータリ圧縮機において、圧縮効率を低下させることなく、振動を低減できるロータリ圧縮機を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a rotary compressor having a plurality of cylinders, which can reduce vibration without lowering the compression efficiency.
本発明は、上記課題を解決して係る目的を達成するために、以下の態様を採用した。
(1)本発明の一態様に係るロータリ圧縮機は、軸線に沿って延びる回転軸と、該回転軸を軸線回りに回転可能に支持する軸受と、前記回転軸を回転させるモータと、前記回転軸の回転によって冷媒を圧縮するロータリ圧縮部と、前記回転軸、前記軸受、前記モータ、及び前記ロータリ圧縮部を収容するハウジングと、前記ロータリ圧縮部の圧縮室に冷媒を導入可能な吸入管と、を備え、前記ロータリ圧縮部は、前記圧縮室を形成し上下方向に並んで配置される複数のシリンダと、前記複数のシリンダ同士の間に配置されたセパレータプレートと、を有し、前記吸入管は、前記シリンダの上方、又は下方に配置されて前記ハウジングを前記回転軸の径方向に貫通して延びる主管と、前記主管に接続されて前記回転軸の軸線方向に延びて、前記複数のシリンダにおける前記圧縮室の前記径方向外側で、前記複数のシリンダの間にわたって配置され、各々の前記圧縮室に連通している接続管と、を有する。 The present invention has adopted the following aspects in order to solve the above problems and achieve the above object.
(1) The rotary compressor according to one aspect of the present invention includes a rotating shaft extending along an axis, a bearing that rotatably supports the rotating shaft around the axis, a motor for rotating the rotating shaft, and the rotation. A rotary compression unit that compresses the refrigerant by rotating the shaft, a housing that houses the rotary shaft, the bearing, the motor, and the rotary compression unit, and a suction pipe that can introduce the refrigerant into the compression chamber of the rotary compression unit. The rotary compression unit includes, a plurality of cylinders forming the compression chamber and arranged side by side in the vertical direction, and a separator plate arranged between the plurality of cylinders, and the suction portion is provided. The pipes are a main pipe arranged above or below the cylinder and extending through the housing in the radial direction of the rotation shaft, and a plurality of pipes connected to the main pipe and extending in the axial direction of the rotation shaft. It has a connecting pipe arranged between the plurality of cylinders on the radial outside of the compression chamber in the cylinder and communicating with each of the compression chambers.
(1)本発明の一態様に係るロータリ圧縮機は、軸線に沿って延びる回転軸と、該回転軸を軸線回りに回転可能に支持する軸受と、前記回転軸を回転させるモータと、前記回転軸の回転によって冷媒を圧縮するロータリ圧縮部と、前記回転軸、前記軸受、前記モータ、及び前記ロータリ圧縮部を収容するハウジングと、前記ロータリ圧縮部の圧縮室に冷媒を導入可能な吸入管と、を備え、前記ロータリ圧縮部は、前記圧縮室を形成し上下方向に並んで配置される複数のシリンダと、前記複数のシリンダ同士の間に配置されたセパレータプレートと、を有し、前記吸入管は、前記シリンダの上方、又は下方に配置されて前記ハウジングを前記回転軸の径方向に貫通して延びる主管と、前記主管に接続されて前記回転軸の軸線方向に延びて、前記複数のシリンダにおける前記圧縮室の前記径方向外側で、前記複数のシリンダの間にわたって配置され、各々の前記圧縮室に連通している接続管と、を有する。 The present invention has adopted the following aspects in order to solve the above problems and achieve the above object.
(1) The rotary compressor according to one aspect of the present invention includes a rotating shaft extending along an axis, a bearing that rotatably supports the rotating shaft around the axis, a motor for rotating the rotating shaft, and the rotation. A rotary compression unit that compresses the refrigerant by rotating the shaft, a housing that houses the rotary shaft, the bearing, the motor, and the rotary compression unit, and a suction pipe that can introduce the refrigerant into the compression chamber of the rotary compression unit. The rotary compression unit includes, a plurality of cylinders forming the compression chamber and arranged side by side in the vertical direction, and a separator plate arranged between the plurality of cylinders, and the suction portion is provided. The pipes are a main pipe arranged above or below the cylinder and extending through the housing in the radial direction of the rotation shaft, and a plurality of pipes connected to the main pipe and extending in the axial direction of the rotation shaft. It has a connecting pipe arranged between the plurality of cylinders on the radial outside of the compression chamber in the cylinder and communicating with each of the compression chambers.
上記態様に係るロータリ圧縮機によれば、複数のシリンダのそれぞれに対して上方、又は下方に吸入管の主管を配置し、軸線方向に延びる接続管を介して複数のシリンダの圧縮室の各々に冷媒を吸入させることができる。これにより複数のシリンダの圧縮室の各々が繋がって圧縮効率が低下してしまうことなく、1本の吸入管によって各々の圧縮室に冷媒を吸入できる。吸入管を1本のみにできれば、セパレータプレートの厚みを薄くしても吸入管をハウジングへ接続する部分の加工が容易である。
また上記態様に係るロータリ圧縮機によれば、複数のシリンダの上方、又は下方に吸入管の主管を配置することで主管の内径がシリンダの厚みに制限されることがなく、主管の内径を大きくすることが可能となる。また接続管について内径を大きくすることが可能となる。よってより多くの冷媒を圧縮することができ、圧縮効率を向上させることができる。 According to the rotary compressor according to the above aspect, the main pipe of the suction pipe is arranged above or below each of the plurality of cylinders, and in each of the compression chambers of the plurality of cylinders via the connecting pipe extending in the axial direction. The refrigerant can be inhaled. As a result, the refrigerant can be sucked into each of the compression chambers by one suction pipe without connecting the compression chambers of the plurality of cylinders to reduce the compression efficiency. If only one suction pipe can be used, it is easy to process the portion connecting the suction pipe to the housing even if the thickness of the separator plate is reduced.
Further, according to the rotary compressor according to the above aspect, by arranging the main pipes of the suction pipes above or below the plurality of cylinders, the inner diameter of the main pipes is not limited by the thickness of the cylinders, and the inner diameter of the main pipes is increased. It becomes possible to do. Further, the inner diameter of the connecting pipe can be increased. Therefore, more refrigerant can be compressed and the compression efficiency can be improved.
また上記態様に係るロータリ圧縮機によれば、複数のシリンダの上方、又は下方に吸入管の主管を配置することで主管の内径がシリンダの厚みに制限されることがなく、主管の内径を大きくすることが可能となる。また接続管について内径を大きくすることが可能となる。よってより多くの冷媒を圧縮することができ、圧縮効率を向上させることができる。 According to the rotary compressor according to the above aspect, the main pipe of the suction pipe is arranged above or below each of the plurality of cylinders, and in each of the compression chambers of the plurality of cylinders via the connecting pipe extending in the axial direction. The refrigerant can be inhaled. As a result, the refrigerant can be sucked into each of the compression chambers by one suction pipe without connecting the compression chambers of the plurality of cylinders to reduce the compression efficiency. If only one suction pipe can be used, it is easy to process the portion connecting the suction pipe to the housing even if the thickness of the separator plate is reduced.
Further, according to the rotary compressor according to the above aspect, by arranging the main pipes of the suction pipes above or below the plurality of cylinders, the inner diameter of the main pipes is not limited by the thickness of the cylinders, and the inner diameter of the main pipes is increased. It becomes possible to do. Further, the inner diameter of the connecting pipe can be increased. Therefore, more refrigerant can be compressed and the compression efficiency can be improved.
(2)上記(1)に記載のロータリ圧縮機において、前記吸入管の内径は、前記シリンダの厚みよりも大きくともよい。
(2) In the rotary compressor according to (1) above, the inner diameter of the suction pipe may be larger than the thickness of the cylinder.
このように、吸入管内径にシリンダの厚みよりも大きい吸入管を採用することで、多くの冷媒を圧縮室に供給することができ、圧縮効率を向上させることができる。
In this way, by adopting a suction pipe whose inner diameter is larger than the thickness of the cylinder, a large amount of refrigerant can be supplied to the compression chamber, and the compression efficiency can be improved.
(3)上記(1)又は(2)に記載のロータリ圧縮機において前記複数のシリンダの各々には、前記径方向に延びるとともに各々の前記圧縮室と前記接続管とを連通する吸入流路が設けられていてもよい。
(3) In the rotary compressor according to (1) or (2) above, each of the plurality of cylinders has a suction flow path extending in the radial direction and communicating the compression chamber and the connecting pipe. It may be provided.
この場合には、吸入管より軸線方向に延びる接続管を通じて径方向に延びる各吸入流路を介して各圧縮室に供給することができる。よって1つの吸入管から複数のシリンダの圧縮室に効率よく分流させることができ、圧縮効率を向上させることができる。
In this case, it can be supplied to each compression chamber via each suction flow path extending in the radial direction through a connecting pipe extending in the axial direction from the suction pipe. Therefore, the flow can be efficiently divided from one suction pipe into the compression chambers of a plurality of cylinders, and the compression efficiency can be improved.
(4)上記(3)に記載のロータリ圧縮機において、前記吸入流路は前記シリンダの外周面に開口することで前記シリンダには開口穴が設けられ、前記開口穴には封止栓が設けられていてもよい。
(4) In the rotary compressor according to (3) above, the suction flow path is opened on the outer peripheral surface of the cylinder to provide an opening hole in the cylinder, and a sealing plug is provided in the opening hole. It may have been.
この場合には、シリンダの外周面から径方向内側に圧縮室に向かって加工具を挿入していくことで、各シリンダに対して横孔を加工して吸入流路を形成することができる。吸入流路としての横孔の加工後には開口穴が封止栓によって封止された状態となるので、吸入流路を容易に加工しつつ、接続管を流通する冷媒が開口穴よりシリンダの外へ流出してしまうことを回避できる。
In this case, by inserting the processing tool radially inward from the outer peripheral surface of the cylinder toward the compression chamber, a lateral hole can be machined in each cylinder to form a suction flow path. After processing the horizontal hole as the suction flow path, the opening hole is sealed by the sealing plug. Therefore, while easily processing the suction flow path, the refrigerant flowing through the connecting pipe is outside the cylinder from the opening hole. It is possible to avoid leaking to.
(5)上記(3)又は(4)に記載のロータリ圧縮機において、前記吸入管の内径と前記接続管の内径とは同径であり、前記主管の内径及び前記接続管の内径は前記吸入流路の内径よりも大きくともよい。
(5) In the rotary compressor according to (3) or (4) above, the inner diameter of the suction pipe and the inner diameter of the connecting pipe are the same, and the inner diameter of the main pipe and the inner diameter of the connecting pipe are the suction. It may be larger than the inner diameter of the flow path.
このような構成によれば、複数のシリンダの吸入流路内に供給される冷媒の流路をなす主管と接続管のそれぞれの内径を、シリンダの吸入流路の内径よりも大きくできるので、多くの冷媒を各圧縮室に供給することができ、圧縮効率を向上させることができる。
According to such a configuration, the inner diameters of the main pipe and the connecting pipe, which form the flow paths of the refrigerant supplied into the suction flow paths of the plurality of cylinders, can be made larger than the inner diameters of the suction flow paths of the cylinders. Refrigerant can be supplied to each compression chamber, and the compression efficiency can be improved.
(6)上記(3)~(5)のいずれかに記載のロータリ圧縮機において、前記シリンダのうち上側の前記シリンダに設けられる前記吸入流路の内径は、下側の前記シリンダに設けられる前記吸入流路の内径以下であってもよい。
(6) In the rotary compressor according to any one of (3) to (5) above, the inner diameter of the suction flow path provided in the upper cylinder of the cylinders is the inner diameter of the suction flow path provided in the lower cylinder. It may be less than or equal to the inner diameter of the suction flow path.
このような構成によれば、吸入管内を流通する冷媒のうち上側のシリンダの圧縮室に大量の冷媒が供給されることがないので、下側のシリンダの圧縮室まで十分に冷媒を供給することができ、冷媒の供給量が不足することを抑えることができ、圧縮効率の低下を抑制できる。
According to such a configuration, a large amount of refrigerant is not supplied to the compression chamber of the upper cylinder among the refrigerants flowing in the suction pipe, so that sufficient refrigerant is supplied to the compression chamber of the lower cylinder. It is possible to suppress a shortage of the supply amount of the refrigerant, and it is possible to suppress a decrease in the compression efficiency.
本発明の各態様に係る、ロータリ圧縮機によれば、複数のシリンダを有するロータリ圧縮機において、圧縮効率を低下させることなく、セパレータプレート厚みを薄くすることで振動を低減できる。
According to the rotary compressor according to each aspect of the present invention, in a rotary compressor having a plurality of cylinders, vibration can be reduced by reducing the thickness of the separator plate without lowering the compression efficiency.
以下、本発明の実施形態によるロータリ圧縮機について、図面に基づいて説明する。かかる実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
Hereinafter, the rotary compressor according to the embodiment of the present invention will be described with reference to the drawings. Such an embodiment shows one aspect of the present invention, does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention.
図1に示すように、本実施形態によるロータリ圧縮機(以下、単に圧縮機1という)は、例えば空気調和機や冷凍装置などに用いられる縦型の密閉型ロータリ圧縮機である。
As shown in FIG. 1, the rotary compressor according to the present embodiment (hereinafter, simply referred to as compressor 1) is a vertical closed rotary compressor used in, for example, an air conditioner or a refrigerating device.
圧縮機1は、ハウジング2と、回転軸3と、上部軸受4A及び下部軸受4Bと、電動モータ5と、ロータリ圧縮部6及びスクロール圧縮部10と、吸入管7と、を備えている。回転軸3は、軸線(後述する回転軸線O)に沿って延びている。上部軸受4A及び下部軸受4Bは、回転軸3を回転軸線O回りに回転可能に支持する。電動モータ5は、回転軸3を回転させる。ロータリ圧縮部6は、回転軸3の回転によって冷媒を圧縮する。吸入管7は、ロータリ圧縮部6の圧縮室63A、63Bに冷媒を導入可能としている。
本実施形態の圧縮機1は、ロータリ圧縮部6の上方にスクロール圧縮部10をさらに備える二段圧縮機であるが、スクロール圧縮部10は必ずしも設けられなくともよい。 The compressor 1 includes ahousing 2, a rotating shaft 3, an upper bearing 4A and a lower bearing 4B, an electric motor 5, a rotary compression unit 6, a scroll compression unit 10, and a suction pipe 7. The rotation axis 3 extends along an axis (rotation axis O described later). The upper bearing 4A and the lower bearing 4B rotatably support the rotating shaft 3 around the rotating axis O. The electric motor 5 rotates the rotating shaft 3. The rotary compression unit 6 compresses the refrigerant by the rotation of the rotating shaft 3. The suction pipe 7 makes it possible to introduce the refrigerant into the compression chambers 63A and 63B of the rotary compression unit 6.
The compressor 1 of the present embodiment is a two-stage compressor further including ascroll compression unit 10 above the rotary compression unit 6, but the scroll compression unit 10 does not necessarily have to be provided.
本実施形態の圧縮機1は、ロータリ圧縮部6の上方にスクロール圧縮部10をさらに備える二段圧縮機であるが、スクロール圧縮部10は必ずしも設けられなくともよい。 The compressor 1 includes a
The compressor 1 of the present embodiment is a two-stage compressor further including a
ここで、ハウジング2の中心軸と回転軸3とは、鉛直方向(上下方向)に延在する共通軸上に配置され、この共通軸を以下、回転軸線Oという。回転軸3は、延在方向が上下方向となるように配置され、ハウジング2内において回転軸線O回りに回転可能に収容されている。
Here, the central axis of the housing 2 and the rotation axis 3 are arranged on a common axis extending in the vertical direction (vertical direction), and this common axis is hereinafter referred to as a rotation axis O. The rotating shaft 3 is arranged so that the extending direction is the vertical direction, and is rotatably housed in the housing 2 around the rotating axis O.
ハウジング2は、密閉型で上下方向に延在し、回転軸3、軸受4A、4B、電動モータ5、及びロータリ圧縮部6を収容する。ハウジング2は、円筒状をなす本体部21と、本体部21の上下の開口を閉塞する上部蓋部22及び下部蓋部23と、を有する。ハウジング2は、側壁下部におけるシリンダ60(60A,60B)の上方に開口部24が形成されている。この開口部24には、吸入管7が管軸方向を水平方向に向けて挿通された状態で固定されている。
The housing 2 is a closed type and extends in the vertical direction, and houses a rotating shaft 3, bearings 4A and 4B, an electric motor 5, and a rotary compression unit 6. The housing 2 has a cylindrical main body portion 21, and an upper lid portion 22 and a lower lid portion 23 that close the upper and lower openings of the main body portion 21. The housing 2 has an opening 24 formed above the cylinders 60 (60A, 60B) at the lower part of the side wall. The suction pipe 7 is fixed to the opening 24 in a state of being inserted with the pipe axis direction oriented in the horizontal direction.
ハウジング2の底部には、油が溜められることで、油溜まりが形成されている。油の初期封入時における油溜まりの液面は、ロータリ圧縮部6の上方に位置している。これにより、ロータリ圧縮部6は、油溜まりの中で駆動される。
An oil sump is formed at the bottom of the housing 2 by accumulating oil. The liquid level of the oil pool at the time of initial filling of oil is located above the rotary compression unit 6. As a result, the rotary compression unit 6 is driven in the oil pool.
上部蓋部22には、周壁部を厚さ方向に貫通してハウジング2内に連通する吐出管13が設けられている。吐出管13は圧縮された冷媒をハウジング2の外部へ吐出する。
The upper lid portion 22 is provided with a discharge pipe 13 that penetrates the peripheral wall portion in the thickness direction and communicates with the inside of the housing 2. The discharge pipe 13 discharges the compressed refrigerant to the outside of the housing 2.
電動モータ5は、ハウジング2内の上下方向の中央部に収容されている。電動モータ5は、ロータ51と、ステータ52と、を有する。ロータ51は、回転軸3の外周面に固定され、ロータリ圧縮部6の上方に配置されている。ステータ52は、ロータ51の外周面を囲むように配置され、ハウジング2の本体部21の内面21aに固定されている。
電動モータ5には、端子9を介して不図示の電源が接続されている。電動モータ5は、この電源からの電力によって回転軸3を回転させる。 Theelectric motor 5 is housed in a central portion of the housing 2 in the vertical direction. The electric motor 5 has a rotor 51 and a stator 52. The rotor 51 is fixed to the outer peripheral surface of the rotating shaft 3 and is arranged above the rotary compression unit 6. The stator 52 is arranged so as to surround the outer peripheral surface of the rotor 51, and is fixed to the inner surface 21a of the main body 21 of the housing 2.
A power supply (not shown) is connected to theelectric motor 5 via the terminal 9. The electric motor 5 rotates the rotating shaft 3 by the electric power from the power source.
電動モータ5には、端子9を介して不図示の電源が接続されている。電動モータ5は、この電源からの電力によって回転軸3を回転させる。 The
A power supply (not shown) is connected to the
上部軸受4Aと下部軸受4Bは、上下からロータリ圧縮部6を挟むように配置されている。上部軸受4Aと下部軸受4Bは、それぞれ例えば金属材料から形成され、ロータリ圧縮部6を構成するシリンダ60に例えばボルト締結により固定されている。
また上部軸受4Aは、ハウジング2に固定されている。回転軸3は、上部軸受4Aと下部軸受4Bによって回転軸線O回りに回転自在にハウジング2に支持されている。 Theupper bearing 4A and the lower bearing 4B are arranged so as to sandwich the rotary compression portion 6 from above and below. The upper bearing 4A and the lower bearing 4B are each formed of, for example, a metal material, and are fixed to the cylinder 60 constituting the rotary compression portion 6 by, for example, bolting.
Further, theupper bearing 4A is fixed to the housing 2. The rotary shaft 3 is rotatably supported by the housing 2 around the rotary axis O by the upper bearing 4A and the lower bearing 4B.
また上部軸受4Aは、ハウジング2に固定されている。回転軸3は、上部軸受4Aと下部軸受4Bによって回転軸線O回りに回転自在にハウジング2に支持されている。 The
Further, the
ロータリ圧縮部6は、図2に示すように、電動モータ5の下方でハウジング2内の底部に配置され、冷媒を圧縮する。ロータリ圧縮部6は、複数(本実施形態では2つ)のディスク状のシリンダ60(60A、60B)と、偏心軸部61と、ピストンロータ62と、を有している。
As shown in FIG. 2, the rotary compression unit 6 is arranged at the bottom of the housing 2 below the electric motor 5 to compress the refrigerant. The rotary compression unit 6 has a plurality of (two in this embodiment) disc-shaped cylinders 60 (60A, 60B), an eccentric shaft portion 61, and a piston rotor 62.
2つのシリンダ60A、60Bは、それぞれハウジング2内において回転軸線O方向に沿って上下に配列されている。ここで、上側に位置するシリンダを上シリンダ60Aといい、下側に位置するシリンダを下シリンダ60Bという。
各シリンダ60A、60Bの内部には、それぞれ圧縮室63A、63Bが形成されている。圧縮室63A、63Bは、ピストンロータ62を収容している。
また、各シリンダ60A、60Bによって上下に挟まれるようにして、シリンダ60A、60B同士の間にセパレータプレート69が配置されている。セパレータプレート69は圧縮室63A、63B同士を仕切っている。 The two cylinders 60A and 60B are vertically arranged in the housing 2 along the rotation axis O direction, respectively. Here, the cylinder located on the upper side is referred to as an upper cylinder 60A, and the cylinder located on the lower side is referred to as a lower cylinder 60B.
Compression chambers 63A and 63B are formed inside the cylinders 60A and 60B, respectively. The compression chambers 63A and 63B accommodate the piston rotor 62.
Further, theseparator plate 69 is arranged between the cylinders 60A and 60B so as to be sandwiched vertically by the cylinders 60A and 60B. The separator plate 69 separates the compression chambers 63A and 63B from each other.
各シリンダ60A、60Bの内部には、それぞれ圧縮室63A、63Bが形成されている。圧縮室63A、63Bは、ピストンロータ62を収容している。
また、各シリンダ60A、60Bによって上下に挟まれるようにして、シリンダ60A、60B同士の間にセパレータプレート69が配置されている。セパレータプレート69は圧縮室63A、63B同士を仕切っている。 The two
Further, the
上シリンダ60A及び下シリンダ60Bには、それぞれ上面視で開口部24に対向した位置において、各シリンダ60A、60B内の圧縮室63A、63Bまで吸入管7を介して連通する吸入孔64、65(吸入流路)が形成されている。吸入孔64、65はシリンダ60A、60Bの外周面に開口することで、シリンダ60A、60Bには開口穴60xが形成されている。
The upper cylinder 60A and the lower cylinder 60B have suction holes 64, 65 (in a position facing the opening 24 in top view) communicating with the compression chambers 63A, 63B in the cylinders 60A, 60B via the suction pipe 7. The suction flow path) is formed. The suction holes 64 and 65 are opened on the outer peripheral surfaces of the cylinders 60A and 60B, so that the cylinders 60A and 60B are formed with opening holes 60x.
偏心軸部61は、回転軸3の下端部に設けられ、ピストンロータ62の内側において回転軸3の中心軸から直交する方向にオフセットした状態で設けられている。ピストンロータ62は、シリンダ60の内径よりも小さい外径の円筒状をなしてシリンダ60の内側に配置され、偏心軸部61が挿入されて偏心軸部61に固定されている。ピストンロータ62は、回転軸3の回転に伴って回転軸線Oに対して偏心して回転する。
The eccentric shaft portion 61 is provided at the lower end portion of the rotating shaft 3, and is provided inside the piston rotor 62 in a state of being offset in a direction orthogonal to the central axis of the rotating shaft 3. The piston rotor 62 is arranged inside the cylinder 60 in a cylindrical shape having an outer diameter smaller than the inner diameter of the cylinder 60, and the eccentric shaft portion 61 is inserted and fixed to the eccentric shaft portion 61. The piston rotor 62 rotates eccentrically with respect to the rotation axis O as the rotation shaft 3 rotates.
吸入孔64、65は、冷媒を各シリンダ60A、60Bの内部に流入可能とするための孔である。
なお、ロータリ圧縮部6には、図示しない吐出孔が設けられている。この吐出孔を通じて、ハウジング2の中間圧とされた内部空間、即ちシリンダ60A、60Bの上方の空間にロータリ圧縮部6で圧縮された冷媒が吐出される。 The suction holes 64 and 65 are holes for allowing the refrigerant to flow into the cylinders 60A and 60B.
Therotary compression unit 6 is provided with a discharge hole (not shown). Through this discharge hole, the refrigerant compressed by the rotary compression unit 6 is discharged into the internal space that is the intermediate pressure of the housing 2, that is, the space above the cylinders 60A and 60B.
なお、ロータリ圧縮部6には、図示しない吐出孔が設けられている。この吐出孔を通じて、ハウジング2の中間圧とされた内部空間、即ちシリンダ60A、60Bの上方の空間にロータリ圧縮部6で圧縮された冷媒が吐出される。 The suction holes 64 and 65 are holes for allowing the refrigerant to flow into the
The
吸入管7は、上シリンダ60Aの上方に配置され、回転軸3の径方向に延びてハウジング2を貫通する主管70と、主管70におけるハウジング2内の内端70aから下方に延びる接続管71と、を有している。接続管71の上端71aは主管70の内端70aに接続されている。接続管71は、各圧縮室63A、63Bの径方向外側で回転軸線Oと平行となるように上シリンダ60Aと下シリンダ60Bとの間にわたって配置されている。
主管70の内端70aは、上部軸受4Aの径方向外側の端部に差し込まれている。接続管71は、主管70の内端70aから上部軸受4Aの内部を貫通して下方に延びている。 Thesuction pipe 7 is arranged above the upper cylinder 60A, and includes a main pipe 70 extending in the radial direction of the rotating shaft 3 and penetrating the housing 2, and a connecting pipe 71 extending downward from the inner end 70a in the housing 2 of the main pipe 70. ,have. The upper end 71a of the connecting pipe 71 is connected to the inner end 70a of the main pipe 70. The connecting pipe 71 is arranged between the upper cylinder 60A and the lower cylinder 60B so as to be parallel to the rotation axis O on the radial outer side of each of the compression chambers 63A and 63B.
Theinner end 70a of the main pipe 70 is inserted into the radial outer end of the upper bearing 4A. The connecting pipe 71 extends downward from the inner end 70a of the main pipe 70 through the inside of the upper bearing 4A.
主管70の内端70aは、上部軸受4Aの径方向外側の端部に差し込まれている。接続管71は、主管70の内端70aから上部軸受4Aの内部を貫通して下方に延びている。 The
The
接続管71には、吸入孔64、65のそれぞれに連通するように径方向に貫通する貫通孔71bが設けられている。貫通孔71bは、吸入孔64、65のそれぞれの軸線上に配置されている。吸入孔64、65の径方向外側の端部の開口穴60xには、吸入孔64、65を封止する封止栓72が嵌め込まれている。封止栓72は例えば金属のネジ等である。これにより、圧縮室63A、63Bと接続管71とは、吸入孔64、65及び貫通孔71bを介して連通している。
The connection pipe 71 is provided with a through hole 71b that penetrates in the radial direction so as to communicate with each of the suction holes 64 and 65. The through hole 71b is arranged on the axis of each of the suction holes 64 and 65. A sealing plug 72 for sealing the suction holes 64 and 65 is fitted in the opening hole 60x at the radial outer end of the suction holes 64 and 65. The sealing stopper 72 is, for example, a metal screw or the like. As a result, the compression chambers 63A and 63B and the connecting pipe 71 communicate with each other through the suction holes 64 and 65 and the through holes 71b.
主管70の内径d1は、各シリンダ60A、60Bの厚みt1、t2よりも大きく設定されている。また、主管70の内径d1と接続管71の内径d2とは、同径であり、内径d1及び内径d2は、それぞれ吸入孔64、65の内径d3、d4よりも大きい。
さらに、上シリンダ60Aに設けられる上吸入孔64の内径d3は、下シリンダ60Bに設けられる下吸入孔65の内径d4以下に設定されていてもよい。 The inner diameter d1 of themain pipe 70 is set to be larger than the thicknesses t1 and t2 of the cylinders 60A and 60B, respectively. Further, the inner diameter d1 of the main pipe 70 and the inner diameter d2 of the connecting pipe 71 have the same diameter, and the inner diameters d1 and the inner diameter d2 are larger than the inner diameters d3 and d4 of the suction holes 64 and 65, respectively.
Further, the inner diameter d3 of theupper suction hole 64 provided in the upper cylinder 60A may be set to be equal to or less than the inner diameter d4 of the lower suction hole 65 provided in the lower cylinder 60B.
さらに、上シリンダ60Aに設けられる上吸入孔64の内径d3は、下シリンダ60Bに設けられる下吸入孔65の内径d4以下に設定されていてもよい。 The inner diameter d1 of the
Further, the inner diameter d3 of the
上記構成の圧縮機1においては、冷媒が吸入管7の主管70から接続管71及び各シリンダ60A、60Bの吸入孔64、65を介して、シリンダ60の内部空間である圧縮室63A、63Bに供給される。
そして、ピストンロータ62の偏心運動により、圧縮室63A、63Bの容積が徐々に減少して冷媒が圧縮される。各シリンダ60A、60Bの所定の位置には、冷媒を吐出する吐出穴(図示省略)が形成されており、この吐出穴にはリード弁(図示省略)が備えられている。これにより、圧縮された冷媒の圧力が高まると、リード弁を押し開き、冷媒をシリンダ60A、60Bの外部に吐出する。吐出された冷媒は、スクロール圧縮部10でさらに圧縮された後にハウジング2の上部に設けられた吐出管13から外部の図示しない配管に吐出されるようになっている。 In the compressor 1 having the above configuration, the refrigerant flows from themain pipe 70 of the suction pipe 7 to the compression chambers 63A and 63B which are the internal spaces of the cylinder 60 via the connection pipe 71 and the suction holes 64 and 65 of the cylinders 60A and 60B. Be supplied.
Then, due to the eccentric movement of thepiston rotor 62, the volumes of the compression chambers 63A and 63B are gradually reduced to compress the refrigerant. Discharge holes (not shown) for discharging the refrigerant are formed at predetermined positions of the cylinders 60A and 60B, and a lead valve (not shown) is provided in the discharge holes. As a result, when the pressure of the compressed refrigerant increases, the reed valve is pushed open and the refrigerant is discharged to the outside of the cylinders 60A and 60B. The discharged refrigerant is further compressed by the scroll compression unit 10 and then discharged from a discharge pipe 13 provided in the upper part of the housing 2 to an external pipe (not shown).
そして、ピストンロータ62の偏心運動により、圧縮室63A、63Bの容積が徐々に減少して冷媒が圧縮される。各シリンダ60A、60Bの所定の位置には、冷媒を吐出する吐出穴(図示省略)が形成されており、この吐出穴にはリード弁(図示省略)が備えられている。これにより、圧縮された冷媒の圧力が高まると、リード弁を押し開き、冷媒をシリンダ60A、60Bの外部に吐出する。吐出された冷媒は、スクロール圧縮部10でさらに圧縮された後にハウジング2の上部に設けられた吐出管13から外部の図示しない配管に吐出されるようになっている。 In the compressor 1 having the above configuration, the refrigerant flows from the
Then, due to the eccentric movement of the
次に、上述したロータリ圧縮機の作用効果について説明する。
本実施形態による圧縮機1では、図1及び図2に示すように、シリンダ60A、60Bのそれぞれに対して、上方に主管70を配置し、接続管71及び吸入孔64、65を介して連通させて接続することができる。即ち1本の吸入管7を用いて、二つのシリンダ60A、60Bの圧縮室の各々に冷媒を吸入させることができる。 Next, the operation and effect of the rotary compressor described above will be described.
In the compressor 1 according to the present embodiment, as shown in FIGS. 1 and 2, amain pipe 70 is arranged above each of the cylinders 60A and 60B, and communicates with each other via a connecting pipe 71 and suction holes 64 and 65. Can be connected. That is, the refrigerant can be sucked into each of the compression chambers of the two cylinders 60A and 60B by using one suction pipe 7.
本実施形態による圧縮機1では、図1及び図2に示すように、シリンダ60A、60Bのそれぞれに対して、上方に主管70を配置し、接続管71及び吸入孔64、65を介して連通させて接続することができる。即ち1本の吸入管7を用いて、二つのシリンダ60A、60Bの圧縮室の各々に冷媒を吸入させることができる。 Next, the operation and effect of the rotary compressor described above will be described.
In the compressor 1 according to the present embodiment, as shown in FIGS. 1 and 2, a
接続管71は圧縮室63A、63Bの径方向外側に配置されているため、圧縮室63A、63Bの各々が接続管71によって直接繋がってしまうことがない。このため圧縮効率が低下してしまうことなく、1本の吸入管7によって各々の圧縮室63A、63Bに冷媒を吸入できる。
Since the connecting pipe 71 is arranged outside the compression chambers 63A and 63B in the radial direction, each of the compression chambers 63A and 63B is not directly connected by the connecting pipe 71. Therefore, the refrigerant can be sucked into the respective compression chambers 63A and 63B by one suction pipe 7 without lowering the compression efficiency.
ここで仮に吸入管7を各々のシリンダ60A、60Bに1本ずつ設ける場合には、吸入管7がハウジング2を貫通する位置で、吸入管7をハウジング2へ接続する際の加工が難しくなる。即ち2本の吸入管7同士の間での加工作業が難しくなる。この結果、セパレータプレート69の厚みを増し、2本の吸入管7を上下方向に離れた位置に配置し、吸入管7同士の距離を離す必要がある。若しくは2本の吸入管7同士の間隔をあけるため、各吸入管7を細くする必要がある。
しかし本実施形態では、吸入管7を1本のみにできるため、セパレータプレート69の厚みを薄くすることが可能である。この結果、2つのシリンダ60A、60B同士の距離を近づけることが可能となり、ピストンロータ62の偏心運動による振動を低減可能である。 Here, if onesuction pipe 7 is provided for each of the cylinders 60A and 60B, it becomes difficult to process the suction pipe 7 at the position where the suction pipe 7 penetrates the housing 2. That is, the processing work between the two suction pipes 7 becomes difficult. As a result, it is necessary to increase the thickness of the separator plate 69, arrange the two suction pipes 7 at positions separated in the vertical direction, and separate the suction pipes 7 from each other. Alternatively, it is necessary to make each suction pipe 7 thin in order to leave a space between the two suction pipes 7.
However, in the present embodiment, since only onesuction pipe 7 can be used, the thickness of the separator plate 69 can be reduced. As a result, the distance between the two cylinders 60A and 60B can be brought close to each other, and the vibration due to the eccentric movement of the piston rotor 62 can be reduced.
しかし本実施形態では、吸入管7を1本のみにできるため、セパレータプレート69の厚みを薄くすることが可能である。この結果、2つのシリンダ60A、60B同士の距離を近づけることが可能となり、ピストンロータ62の偏心運動による振動を低減可能である。 Here, if one
However, in the present embodiment, since only one
また上記態様に係る圧縮機1によれば、複数のシリンダ60A、60Bの上方に吸入管7の主管70を配置することで、主管70の内径d1がシリンダ60A、60Bやセパレータプレート69の厚みに制限されることがない。同様に接続管71の内径d2もシリンダ60A、60Bやセパレータプレート69の厚みに制限されることがない。この結果、主管70、及び接続管71の内径d1、d2を大きくすることが可能となる。そして本実施形態では、吸入管7の主管70の内径d1と接続管71の内径d2とは同径で設けられ、それぞれ吸入孔64、65の内径よりも大きく設定されている。この結果、より多くの冷媒を圧縮することができ、圧縮効率を向上させることができる。
Further, according to the compressor 1 according to the above aspect, by arranging the main pipe 70 of the suction pipe 7 above the plurality of cylinders 60A and 60B, the inner diameter d1 of the main pipe 70 becomes the thickness of the cylinders 60A and 60B and the separator plate 69. There are no restrictions. Similarly, the inner diameter d2 of the connecting pipe 71 is not limited to the thicknesses of the cylinders 60A and 60B and the separator plate 69. As a result, the inner diameters d1 and d2 of the main pipe 70 and the connecting pipe 71 can be increased. In the present embodiment, the inner diameter d1 of the main pipe 70 of the suction pipe 7 and the inner diameter d2 of the connecting pipe 71 are provided to have the same diameter, and are set larger than the inner diameters of the suction holes 64 and 65, respectively. As a result, more refrigerant can be compressed and the compression efficiency can be improved.
さらに、本実施形態では、接続管71に連通する吸入孔64、65をシリンダ60A、60Bに設けることで1つの吸入管7から一対のシリンダ60A,60Bの圧縮室63A、63Bに効率よく冷媒を分流させることができ、圧縮効率を向上させることができる。
Further, in the present embodiment, by providing the suction holes 64 and 65 communicating with the connecting pipe 71 in the cylinders 60A and 60B, the refrigerant can be efficiently supplied from one suction pipe 7 to the compression chambers 63A and 63B of the pair of cylinders 60A and 60B. The flow can be divided and the compression efficiency can be improved.
また、本実施形態では、シリンダ60A、60Bの外周面に径方向外側からドリル等の加工具を挿入していくことで、各シリンダ60A、60Bに対して横孔を加工して吸入孔64,65を形成することができる。また横孔の加工後には開口穴60xが封止栓72によって封止された状態となるので、主管70から供給されて接続管71を流通する冷媒が圧縮室63A、63Bに向かわずにシリンダ60A、60Bより流出してしまうことを回避できる。
Further, in the present embodiment, by inserting a processing tool such as a drill into the outer peripheral surfaces of the cylinders 60A and 60B from the outside in the radial direction, lateral holes are machined in the cylinders 60A and 60B to form suction holes 64, 65 can be formed. Further, since the opening hole 60x is sealed by the sealing plug 72 after the processing of the horizontal hole, the refrigerant supplied from the main pipe 70 and flowing through the connecting pipe 71 does not go to the compression chambers 63A and 63B, but the cylinder 60A. , It is possible to prevent the outflow from 60B.
また、上シリンダ60Aに設けられる上吸入孔64の内径d3が下シリンダ60Bに設けられる下吸入孔65の内径d4以下であれば、吸入管7内を流通する冷媒のうち、上シリンダ60Aの圧縮室63Aに多くの冷媒が供給されてしまうことがない。このため下シリンダ60Bの圧縮室63Bへも十分に冷媒を供給することができ、下シリンダ60Bへの冷媒の供給量が不足することを抑えることができ、圧縮効率の低下を回避できる。
If the inner diameter d3 of the upper suction hole 64 provided in the upper cylinder 60A is equal to or less than the inner diameter d4 of the lower suction hole 65 provided in the lower cylinder 60B, the upper cylinder 60A is compressed among the refrigerants flowing in the suction pipe 7. A large amount of refrigerant is not supplied to the chamber 63A. Therefore, the refrigerant can be sufficiently supplied to the compression chamber 63B of the lower cylinder 60B, it is possible to prevent the supply amount of the refrigerant from being insufficient to the lower cylinder 60B, and it is possible to avoid a decrease in the compression efficiency.
以上、本発明によるロータリ圧縮機の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
Although the embodiment of the rotary compressor according to the present invention has been described above, the present invention is not limited to the above-described embodiment and can be appropriately modified without departing from the spirit of the present invention.
例えば、本実施形態では、2つのシリンダ60A、60Bを有するツインロータリタイプの圧縮機1を対象としているが、圧縮機1は、ツインロータリタイプに限定されることはなく、さらに多くのシリンダを有してもよい。
For example, in the present embodiment, the twin rotary type compressor 1 having two cylinders 60A and 60B is targeted, but the compressor 1 is not limited to the twin rotary type and has more cylinders. You may.
また、本実施形態では、吸入管7の主管70がシリンダ60A、60Bの上方に配置されて回転軸3の径方向に延びて圧縮室63A、63Bに連通する構成としているが、主管70がシリンダ60A、60Bの下方に配置されていてもよい。
Further, in the present embodiment, the main pipe 70 of the suction pipe 7 is arranged above the cylinders 60A and 60B and extends in the radial direction of the rotating shaft 3 to communicate with the compression chambers 63A and 63B, but the main pipe 70 is a cylinder. It may be arranged below 60A and 60B.
また、上述した実施形態では、主管70の内径d1、接続管71の内径d2、各シリンダ60A、60Bの吸入孔64、65の内径d3、d4、各シリンダ60A、60Bの厚みt1、t2を各部に対して設定しているが、これに限定されることはない。
すなわち、主管70の内径d1がシリンダ60A、60Bの厚みよりも大きいことに限定されない。また、主管70の内径d1と接続管71の内径d2とが同径で設けられ、内径d1、d2が吸入孔64、65の内径よりも大きいことに限定されない。また上シリンダ60Aに設けられる吸入孔64の内径d3が、下シリンダ60Bに設けられる吸入孔65の内径d4以下であることに限定されることはない。 Further, in the above-described embodiment, the inner diameter d1 of themain pipe 70, the inner diameter d2 of the connecting pipe 71, the inner diameters d3 and d4 of the suction holes 64 and 65 of the cylinders 60A and 60B, and the thicknesses t1 and t2 of the cylinders 60A and 60B are set in each part. However, it is not limited to this.
That is, the inner diameter d1 of themain pipe 70 is not limited to be larger than the thickness of the cylinders 60A and 60B. Further, the inner diameter d1 of the main pipe 70 and the inner diameter d2 of the connecting pipe 71 are provided to have the same diameter, and the inner diameters d1 and d2 are not limited to be larger than the inner diameters of the suction holes 64 and 65. Further, the inner diameter d3 of the suction hole 64 provided in the upper cylinder 60A is not limited to be equal to or less than the inner diameter d4 of the suction hole 65 provided in the lower cylinder 60B.
すなわち、主管70の内径d1がシリンダ60A、60Bの厚みよりも大きいことに限定されない。また、主管70の内径d1と接続管71の内径d2とが同径で設けられ、内径d1、d2が吸入孔64、65の内径よりも大きいことに限定されない。また上シリンダ60Aに設けられる吸入孔64の内径d3が、下シリンダ60Bに設けられる吸入孔65の内径d4以下であることに限定されることはない。 Further, in the above-described embodiment, the inner diameter d1 of the
That is, the inner diameter d1 of the
また、本実施形態では、吸入孔64、65を設け、吸入孔64、65の開口穴60xに封止栓72が設けられた構成としているが、開口穴60xや封止栓72を設けず、接続管71と圧縮室63A、63Bとを接続するような冷媒流路をシリンダ60A、60Bに形成してもよい。
Further, in the present embodiment, the suction holes 64 and 65 are provided, and the sealing plug 72 is provided in the opening holes 60x of the suction holes 64 and 65, but the opening holes 60x and the sealing plug 72 are not provided. Refrigerant flow paths that connect the connection pipe 71 and the compression chambers 63A and 63B may be formed in the cylinders 60A and 60B.
さらに、ハウジング2、回転軸3、上部軸受4A、下部軸受4B、電動モータ5、ロータリ圧縮部6(シリンダ60、偏心軸部61、ピストンロータ62)、スクロール圧縮部10、及び吸入管7の形状、大きさ等の構成は、適宜な構成に設定することが可能である。
Further, the shapes of the housing 2, the rotary shaft 3, the upper bearing 4A, the lower bearing 4B, the electric motor 5, the rotary compression portion 6 (cylinder 60, the eccentric shaft portion 61, the piston rotor 62), the scroll compression portion 10, and the suction pipe 7. The configuration such as, size, etc. can be set to an appropriate configuration.
その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。
In addition, it is possible to replace the components in the above-described embodiments with well-known components as appropriate without departing from the spirit of the present invention, and the above-described embodiments may be combined as appropriate.
本発明の複数のシリンダを有するロータリ圧縮機によれば、圧縮効率を低下させることなく、振動を低減できる。
According to the rotary compressor having a plurality of cylinders of the present invention, vibration can be reduced without lowering the compression efficiency.
1 圧縮機(ロータリ圧縮機)
2 ハウジング
3 回転軸
4A 上部軸受
4B 下部軸受
5 電動モータ
6 ロータリ圧縮部(圧縮部)
7 吸入管
9 端子
10 スクロール圧縮部
21 本体部
60 シリンダ
60x 開口穴
60A 上シリンダ
60B 下シリンダ
61 偏心軸部
62 ピストンロータ
63A、63B 圧縮室
64、65 吸入孔
69 セパレータプレート
70 主管
71 接続管
71a 上端
71b 貫通孔
72 封止栓
O 回転軸線(軸線) 1 Compressor (rotary compressor)
2Housing 3 Rotating shaft 4A Upper bearing 4B Lower bearing 5 Electric motor 6 Rotary compression part (compression part)
7Suction pipe 9 terminals 10 Scroll compression unit 21 Main body 60 Cylinder 60x Opening hole 60A Upper cylinder 60B Lower cylinder 61 Eccentric shaft 62 Piston rotor 63A, 63B Compression chamber 64, 65 Suction hole 69 Separator plate 70 Main pipe 71 Connection pipe 71a Upper end 71b Through hole 72 Sealing plug O Rotating axis (axis)
2 ハウジング
3 回転軸
4A 上部軸受
4B 下部軸受
5 電動モータ
6 ロータリ圧縮部(圧縮部)
7 吸入管
9 端子
10 スクロール圧縮部
21 本体部
60 シリンダ
60x 開口穴
60A 上シリンダ
60B 下シリンダ
61 偏心軸部
62 ピストンロータ
63A、63B 圧縮室
64、65 吸入孔
69 セパレータプレート
70 主管
71 接続管
71a 上端
71b 貫通孔
72 封止栓
O 回転軸線(軸線) 1 Compressor (rotary compressor)
2
7
Claims (6)
- 軸線に沿って延びる回転軸と、
該回転軸を軸線回りに回転可能に支持する軸受と、
前記回転軸を回転させるモータと、
前記回転軸の回転によって冷媒を圧縮するロータリ圧縮部と、
前記回転軸、前記軸受、前記モータ、及び前記ロータリ圧縮部を収容するハウジングと、
前記ロータリ圧縮部の圧縮室に冷媒を導入可能な吸入管と、
を備え、
前記ロータリ圧縮部は、
前記圧縮室を形成し上下方向に並んで配置される複数のシリンダと、
前記複数のシリンダ同士の間に配置されたセパレータプレートと、
を有し、
前記吸入管は、
前記シリンダの上方、又は下方に配置されて前記ハウジングを前記回転軸の径方向に貫通して延びる主管と、
前記主管に接続されて前記回転軸の軸線方向に延びて、前記複数のシリンダにおける前記圧縮室の前記径方向外側で、前記複数のシリンダの間にわたって配置され、各々の前記圧縮室に連通している接続管と、
を有するロータリ圧縮機。 A rotation axis that extends along the axis and
Bearings that rotatably support the rotating shaft around the axis,
A motor that rotates the rotating shaft and
A rotary compression unit that compresses the refrigerant by rotating the rotating shaft,
A housing that houses the rotating shaft, the bearing, the motor, and the rotary compression unit.
A suction pipe capable of introducing a refrigerant into the compression chamber of the rotary compression unit,
With
The rotary compression unit is
A plurality of cylinders forming the compression chamber and arranged side by side in the vertical direction,
A separator plate arranged between the plurality of cylinders and
Have,
The suction tube
A main pipe that is arranged above or below the cylinder and extends through the housing in the radial direction of the rotating shaft.
It is connected to the main pipe and extends in the axial direction of the rotation axis, is arranged between the plurality of cylinders on the radial outside of the compression chamber in the plurality of cylinders, and communicates with each of the compression chambers. With the connecting pipe
Rotary compressor with. - 前記吸入管の内径は、前記シリンダの厚みよりも大きい請求項1に記載のロータリ圧縮機。 The rotary compressor according to claim 1, wherein the inner diameter of the suction pipe is larger than the thickness of the cylinder.
- 前記複数のシリンダの各々には、前記径方向に延びるとともに各々の前記圧縮室と前記接続管とを連通する吸入流路が設けられている請求項1又は2に記載のロータリ圧縮機。 The rotary compressor according to claim 1 or 2, wherein each of the plurality of cylinders is provided with a suction flow path extending in the radial direction and communicating the compression chamber and the connection pipe.
- 前記吸入流路は前記シリンダの外周面に開口することで前記シリンダには開口穴が設けられ、
前記開口穴には封止栓が設けられている請求項3に記載のロータリ圧縮機。 By opening the suction flow path on the outer peripheral surface of the cylinder, the cylinder is provided with an opening hole.
The rotary compressor according to claim 3, wherein a sealing plug is provided in the opening hole. - 前記主管の内径と前記接続管の内径とは同径であり、前記主管の内径及び前記接続管の内径は前記吸入流路の内径よりも大きい請求項3又は4に記載のロータリ圧縮機。 The rotary compressor according to claim 3 or 4, wherein the inner diameter of the main pipe and the inner diameter of the connecting pipe are the same, and the inner diameter of the main pipe and the inner diameter of the connecting pipe are larger than the inner diameter of the suction flow path.
- 前記シリンダのうち上側の前記シリンダに設けられる前記吸入流路の内径は、下側の前記シリンダに設けられる前記吸入流路の内径以下である請求項3から5のいずれか1項に記載のロータリ圧縮機。 The rotary according to any one of claims 3 to 5, wherein the inner diameter of the suction flow path provided in the upper cylinder of the cylinder is equal to or smaller than the inner diameter of the suction flow path provided in the lower cylinder. Compressor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/017646 WO2020217385A1 (en) | 2019-04-25 | 2019-04-25 | Rotary compressor |
JP2021515410A JP7539372B2 (en) | 2019-04-25 | 2019-04-25 | Rotary Compressor |
EP19925955.7A EP3951181A4 (en) | 2019-04-25 | 2019-04-25 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/017646 WO2020217385A1 (en) | 2019-04-25 | 2019-04-25 | Rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020217385A1 true WO2020217385A1 (en) | 2020-10-29 |
Family
ID=72941146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017646 WO2020217385A1 (en) | 2019-04-25 | 2019-04-25 | Rotary compressor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3951181A4 (en) |
JP (1) | JP7539372B2 (en) |
WO (1) | WO2020217385A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4080056A3 (en) * | 2021-04-22 | 2022-11-09 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Compressor |
WO2024111342A1 (en) * | 2022-11-25 | 2024-05-30 | 三菱重工サーマルシステムズ株式会社 | Compressor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939794U (en) * | 1982-09-06 | 1984-03-14 | 三菱重工業株式会社 | Vane type rotary fluid machine |
JPS619584U (en) * | 1984-06-20 | 1986-01-21 | 三洋電機株式会社 | Multi-cylinder rotary compressor |
JPH08270580A (en) * | 1995-03-31 | 1996-10-15 | Sanyo Electric Co Ltd | Hermetically sealed rotary compressor |
JP2003120529A (en) * | 2001-10-17 | 2003-04-23 | Toyota Industries Corp | Gas feeder in vacuum pump |
JP2010150949A (en) * | 2008-12-24 | 2010-07-08 | Daikin Ind Ltd | Rotary compressor |
CN102644597A (en) * | 2011-02-16 | 2012-08-22 | 广东美芝制冷设备有限公司 | Double-cylinder rotary compressor |
JP2013227957A (en) | 2012-04-27 | 2013-11-07 | Mitsubishi Heavy Ind Ltd | Rotary compressor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001132673A (en) * | 1999-11-04 | 2001-05-18 | Matsushita Electric Ind Co Ltd | Hermetic rotary compressor |
ES2953629T3 (en) * | 2017-03-17 | 2023-11-14 | Daikin Ind Ltd | rotary compressor |
-
2019
- 2019-04-25 EP EP19925955.7A patent/EP3951181A4/en active Pending
- 2019-04-25 JP JP2021515410A patent/JP7539372B2/en active Active
- 2019-04-25 WO PCT/JP2019/017646 patent/WO2020217385A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939794U (en) * | 1982-09-06 | 1984-03-14 | 三菱重工業株式会社 | Vane type rotary fluid machine |
JPS619584U (en) * | 1984-06-20 | 1986-01-21 | 三洋電機株式会社 | Multi-cylinder rotary compressor |
JPH08270580A (en) * | 1995-03-31 | 1996-10-15 | Sanyo Electric Co Ltd | Hermetically sealed rotary compressor |
JP2003120529A (en) * | 2001-10-17 | 2003-04-23 | Toyota Industries Corp | Gas feeder in vacuum pump |
JP2010150949A (en) * | 2008-12-24 | 2010-07-08 | Daikin Ind Ltd | Rotary compressor |
CN102644597A (en) * | 2011-02-16 | 2012-08-22 | 广东美芝制冷设备有限公司 | Double-cylinder rotary compressor |
JP2013227957A (en) | 2012-04-27 | 2013-11-07 | Mitsubishi Heavy Ind Ltd | Rotary compressor |
Non-Patent Citations (1)
Title |
---|
See also references of EP3951181A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4080056A3 (en) * | 2021-04-22 | 2022-11-09 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Compressor |
WO2024111342A1 (en) * | 2022-11-25 | 2024-05-30 | 三菱重工サーマルシステムズ株式会社 | Compressor |
Also Published As
Publication number | Publication date |
---|---|
EP3951181A1 (en) | 2022-02-09 |
JPWO2020217385A1 (en) | 2020-10-29 |
JP7539372B2 (en) | 2024-08-23 |
EP3951181A4 (en) | 2022-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780971B2 (en) | Rotary compressor | |
US10436199B2 (en) | Rotary compressor | |
JP6112104B2 (en) | Rotary compressor | |
WO2020217385A1 (en) | Rotary compressor | |
JP2015135090A (en) | Rotary compressor | |
KR20060051788A (en) | Compressor | |
WO2003054391A1 (en) | Suction mechanism of rotary compressor | |
WO2018168345A1 (en) | Rotary compressor | |
EP2253849B1 (en) | Hermetic compressor | |
JP5217876B2 (en) | Two-stage compressor | |
JP5180698B2 (en) | Scroll type fluid machinery | |
JP6582244B2 (en) | Scroll compressor | |
WO2024111342A1 (en) | Compressor | |
JP2009115067A (en) | Two-stage compression rotary compressor | |
JP6064726B2 (en) | Rotary compressor | |
JP4661713B2 (en) | Electric compressor | |
JP4545030B2 (en) | Hermetic compressor and manufacturing method | |
CN101639073A (en) | Horizontal rotary compressor | |
KR101391227B1 (en) | Scroll Compressor | |
JP2007170408A (en) | Rotary compressor | |
JP2014181686A (en) | Compressor | |
KR101282226B1 (en) | Hermetic compressor | |
JP2014185529A (en) | Rotary compressor | |
JP2019011748A (en) | Rotary compressor | |
JP2020133428A (en) | Compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19925955 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021515410 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019925955 Country of ref document: EP Effective date: 20211025 |