Nothing Special   »   [go: up one dir, main page]

WO2020213928A1 - 보툴리눔 독소의 정제방법 - Google Patents

보툴리눔 독소의 정제방법 Download PDF

Info

Publication number
WO2020213928A1
WO2020213928A1 PCT/KR2020/005041 KR2020005041W WO2020213928A1 WO 2020213928 A1 WO2020213928 A1 WO 2020213928A1 KR 2020005041 W KR2020005041 W KR 2020005041W WO 2020213928 A1 WO2020213928 A1 WO 2020213928A1
Authority
WO
WIPO (PCT)
Prior art keywords
botulinum toxin
column
exchange chromatography
present
purifying
Prior art date
Application number
PCT/KR2020/005041
Other languages
English (en)
French (fr)
Inventor
김재영
남정선
김승호
최승관
임관수
최진희
Original Assignee
(주)제테마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제테마 filed Critical (주)제테마
Priority to MX2021012522A priority Critical patent/MX2021012522A/es
Priority to EP20791856.6A priority patent/EP3957647A4/en
Priority to US17/603,326 priority patent/US20220186201A1/en
Priority to BR112021020486A priority patent/BR112021020486A2/pt
Priority to CN202080034507.2A priority patent/CN114341167A/zh
Publication of WO2020213928A1 publication Critical patent/WO2020213928A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24069Bontoxilysin (3.4.24.69), i.e. botulinum neurotoxin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for purifying botulinum toxin, and more particularly, to a purification method capable of obtaining a high purity botulinum toxin by a simple process of anion exchange chromatography and cation exchange chromatography.
  • Botulinum toxin is a neurotoxin protein produced by bacteria such as Clostridium butyricum , Clostridium baratii and Clostridium botulinum .
  • Botulinum toxin blocks neuromuscular transmission and causes neuro-paralytic diseases in humans and animals.
  • botulinum toxin type A is known to be very lethal to humans.
  • seven other types of B, C1, D, E, F, G and H types of botulinum toxins have been identified.
  • Each type of botulinum toxin can be distinguished by each type-specific antibody, and the severity of the paralysis they cause and the animal species they affect are different from each other.
  • the molecular weight of the botulinum toxin protein molecule is about 150 kDa, consisting of a heavy chain of about 100 kDa conjugated to an about 50 kDa light chain.
  • the botulinum toxin released by Clostridium bacteria is released by forming a complex of 150 kDa toxin and one or more non-toxin proteins.
  • botulinum toxin is released as a 900kDa, 500kDa and 300kDa complex.
  • Botulinum toxin can be very lethal to humans, but recently, botulinum toxin has been developed for the purpose of treating a variety of symptoms, including neuromuscular disorders characterized by hyperactivity of skeletal muscle.
  • Botox BOTOX®
  • Allergan, Inc. is a trademark of botulinum toxin A commercially developed by Allergan, Inc., which is used for the treatment of blepharospasm, strabismus, cervical dystonia and glabellar (facial) wrinkles.
  • serotypes are also being studied to develop suitable uses for clinical use.
  • Botulinum toxins for clinical use are generally isolated from cell cultures, and various purification methods are used.
  • botulinum toxin is purified into a complexed form by a series of precipitation and tangential flow filtration steps.
  • these methods are typically about 10% Provided a relatively low yield of less than.
  • Another method is to individually synthesize one of the heavy or light chains of a botulinum toxin by recombinant means rather than a complete and biologically active botulinum toxin protein [see, eg, Zhou L, et al, Biochemistry 1995; 34(46):15175-81 (1995); And Johnson S K, et al, Protein Expr and Purif 2003; 32: 1-9 (2003)].
  • these methods have the disadvantage of requiring an additional step to reform the complete and biologically active botulinum toxin protein.
  • More recent methods include the use of hydrophobic interaction chromatography, mixed mode, and/or ion exchange chromatography to purify botulinum toxin as a complex. See, for example, US Pat. Nos. 7,452,697 and 7,354,740].
  • the present invention provides a method for purifying botulinum toxin comprising the following steps:
  • 1 is a result of analysis of botulinum toxin in an eluent by FPLC and SDS-PAGE after anion exchange chromatography according to an embodiment of the present invention.
  • FIG. 2 is a result of analyzing botulinum toxin in an eluent by FPLC and SDS-PAGE after cation exchange chromatography according to an embodiment of the present invention.
  • 3 is a result of SDS-PAGE analysis of the purification effects of botulinum toxin and commercially purchased botulinum toxin according to the present invention.
  • a botulinum toxin in a uniform form of about 900 kDa having a higher purity than the botulinum toxin produced by the conventional method is separated and purified. It was confirmed that, in particular, when a Q column was used as an anion exchange resin and an SP column was used as a cation exchange resin, it was confirmed that botulinum toxin having a purity of 95% or more can be purified.
  • the present invention relates in one aspect to a method for purifying botulinum toxin comprising the following steps:
  • the anion exchange chromatography is preferably a Q column, and the cation exchange chromatography is preferably an SP column.
  • the Q column means a column filled with a material containing a quaternary ammonium (Q) functional group
  • the SP column means a column filled with a material containing a sulfopropyl functional group.
  • the culture medium containing the botulinum toxin in step (a) of the present invention may be a culture medium of Clostridium botulinum strain obtained using a conventional method known in the art, and a conventional medium that can be used for cultivation is used. It is possible to cultivate using, but in particular, it is preferable to cultivate using a medium from which animal-derived components are excluded, for example, it is preferable to use PYG medium (Potato peptone 3%, Yeast extract 1%, Glucose 1%). .
  • the botulinum toxin-producing strain used in the present invention is Clostridium botulinum or a variant thereof, and most preferably Clostridium botulinum type A, NCTC13319, but is not limited thereto, and botulinum toxin It will be apparent to those skilled in the art that any strain capable of production can be used.
  • the step of pretreating the culture medium in step (a) of the present invention may be a step of acid precipitation or ultrafiltration of the sterilized culture medium (for example, by deep filtration and/or sterilization filtration, etc.) as a specific embodiment. It is not limited.
  • Acid precipitation may be characterized in that sulfuric acid precipitation or hydrochloric acid precipitation, but is not limited thereto. That is, the acid precipitation in the step (a) of the present invention is an acid such that the pH is 3.0 to 4.5, preferably the pH is 3.3 to 4.0, and most preferably the pH is 3.4 to 3.6, after the cultivation is terminated.
  • hydrochloric acid may be added to acid-precipitate a culture solution containing botulinum toxin.
  • the ultrafiltration membrane a cassette type or a hollow fiber may be used, but is not limited thereto. That is, the ultrafiltration in step (a) of the present invention may be to recover the culture solution containing the botulinum toxin by ultrafiltration with a membrane size of 50kDa to 500kDa, preferably 100kDa to 300kDa.
  • DNase, RNase, nuclease and/or benzonase may be used to selectively remove nucleic acids in the pretreatment step, but the present invention is not limited thereto.
  • the present invention may include an additional purification step in order to increase the purification purity of botulinum toxin.
  • the purification step in the present invention is a process of additionally removing impurities after pretreatment, and may be performed by conventional processes such as microfiltration, ultrafiltration, microfiltration, and deep filtration.
  • microfiltration can be performed using a hollow fiber of 0.1 ⁇ 0.4 ⁇ m.
  • the pretreated botulinum toxin is bound to an anion exchange chromatography column, dissolved in a buffer solution of an appropriate concentration and pH, and bound to the column, and then a buffer solution with enhanced salt concentration is used.
  • a buffer solution with enhanced salt concentration is used in the eluting step.
  • the column used for anion exchange chromatography is preferably a column equipped with a resin having a quaternary ammonium (Q) functional group, and more preferably a Q column. .
  • the anion exchange chromatography in step (b) may be characterized by using a Q column, preferably Toyopearl Super Q 650M Column, Q sepharose FF column, Q Sepharose High Performance (Q Sepharose HP), etc. may be used, and more preferably, a Toyopearl Super Q 650M column or a Q sepharose FF column may be used.
  • a Q column preferably Toyopearl Super Q 650M Column, Q sepharose FF column, Q Sepharose High Performance (Q Sepharose HP), etc.
  • Q Sepharose HP Q Sepharose High Performance
  • the Toyopearl Super Q 650M column is a 65 ⁇ m particle size containing quaternary ammonium (Q) functional group, a column equipped with a methacrylic bead type resin, and the ion exchange capacity is 0.25 ⁇ 0.05 meq/mL, and DBC (Dynamic binding capacity) is 149 mg/mL based on BSA.
  • the Q FF column is 90 ⁇ m particle size, strong anion containing quaternary ammonium (Q) functional groups, and the ion exchange capacity is 0.18 ⁇ 0.25 mmol Cl-/mL.
  • DBC is 120 mg/mL based on HAS.
  • the botulinum toxin may be dissolved in a 30 to 70 mM sodium phosphate buffer solution having a pH of 5.0 to 7.0, preferably pH 5.5 to pH 6.5, and injected into the Q column, but is not limited thereto.
  • the botulinum toxin bound to the column in step (b) may be characterized in that it is eluted with a 30-70 mM sodium phosphate buffer solution of pH 5.0 to 7.0, preferably pH 5.5 to pH 6.5, to which 0.4-0.6M sodium chloride is added.
  • a 30-70 mM sodium phosphate buffer solution of pH 5.0 to 7.0, preferably pH 5.5 to pH 6.5, to which 0.4-0.6M sodium chloride is added.
  • a 30-70 mM sodium phosphate buffer solution of pH 5.0 to 7.0, preferably pH 5.5 to pH 6.5, to which 0.4-0.6M sodium chloride is added.
  • a 30-70 mM sodium phosphate buffer solution of pH 5.0 to 7.0, preferably pH 5.5 to pH 6.5, to which 0.4-0.6M sodium chloride is added.
  • it is not limited thereto.
  • the cation exchange chromatography column is preferably a column equipped with a resin having a sulfopropyl (SP) functional group, and more specifically, an SP column.
  • SP sulfopropyl
  • the cation exchange chromatography in step (c) may be characterized in that it is performed using an SP column, preferably an SP sepharose HP column , SP sepharose FF column, Capto S column, and the like may be used.
  • the fraction containing botulinum toxin eluted from the anion exchange chromatography in step (c) is dissolved in a 15-25 mM sodium citrate buffer at a pH of 3.5 to 5.5, preferably pH 4.0 to 5.0, and injected into the SP column. It can be, but is not limited thereto.
  • the SP sepharose HP column contains a sulfopropyl functional group, is in the form of a 6% spherical, cross-linked agarose matrix, and DBC is a column equipped with a resin having a ribonuclease A standard of 55 mg/mL and a particle size of 34 ⁇ m. to be.
  • the SP sepharose FF column contains a sulfopropyl functional group, is in the form of a 6% Highly cross-linked agarose Matrix, and DBC is a column equipped with a resin having a ribonuclease A standard of 70 mg/mL and a particle size of 90 ⁇ m. .
  • the botulinum toxin may be characterized in that it is eluted with a 15-25 mM sodium citrate buffer solution having a pH of 3.5 to 5.5, preferably pH 4.0 to 5.0, to which 0.4 to 0.6M sodium chloride is added, but is not limited thereto. Does not.
  • the botulinum toxin purified by the above method may be characterized by having a purity of 95% or more of botulinum toxin type A, and the botulinum toxin purified as described above may be characterized by having a higher purity than the botulinum toxin purified by the conventional method.
  • the botulinum toxin may be derived from Clostridium botulinum type A, NCTC13319, but is not limited thereto.
  • fraction passes through a substance in which at least one target molecule (eg, botulinum toxin) contained in a biopharmaceutical formulation along with one or more impurities passes through a substance that binds to one or more impurities, and the target
  • a molecule refers to a group in which each passed substance including a target molecule is separated and collected.
  • purification means an operation to increase the purity by removing impurities from a certain substance, and in the present specification, purification is a botulinum produced by overgrowing and then killing the botulinum bacteria from the culture medium of the botulinum bacteria. It is to separate toxins and refers to a process used as a method to improve the purity during the production of botulinum toxins.
  • the botulinum strain used in the present invention is Clostridium botulinum type A, NCTC13319, and the strain is in 500mL PYG medium (Potato peptone 3%, Yeast extract 1%, Glucose 1%) after the first inoculation and then 12 hours to 24 hours in anaerobic conditions ReadytoProcess It was incubated at 34 ⁇ 1 °C with a WAVE 25 incubator. After cultivation, when the growth of the strain was in the log phase stage, 100 mL of 5L PYG medium was inoculated and incubated for 40 to 72 hours in a ReadytoProcess WAVE 25 incubator under anaerobic conditions.
  • the culture medium was sterilized using a sterilization filter, and only the culture medium was recovered.
  • the culture solution was titrated to pH 3.5 using 3N sulfuric acid, and after confirming that it precipitated, it was stored for at least 16 hours in refrigerated conditions.
  • Experimental materials used in the present invention are as follows: Purified water (Ultrapure water or water with equivalent or higher quality), Toyopearl Super Q 650M (Tosoh Bioscience, 43205), SP sepharose HP (GE Healthcare, 171087), Q sepharose FF ( GE Healthcare, 170510), SP sepharose FF (GE Healthcare, 170729), Butyl sepharose FF (GE Healthcare, 170980), Phenyl sepharose HP (GE Healthcare, 171082), Citric acid (Merck, 1.37002.5000), Tri-sodium citrate dehydrate (Merck, 1.37042.5000), Sodium phosphate monobasic (Merck, 1.06349.1000), Sodium phosphate dibasic (Merck, 1.06585), Sodium chloride (Merck, 1.37017.5000)
  • the microfiltration equipment AKTA flux 6 (GE healthcare) was turned on and a 0.2 ⁇ m hollow fiber was connected. 5 L of distilled water was added and the equipment and the hollow fiber were washed twice under TMP 0.3 bar conditions.
  • 1 L of 50 mM sodium phosphate (pH 6.0) was added and circulated for 1 hour to extract.
  • the extract was collected by the Permeate line of the microfiltration equipment, and a 300 kDa cut off hollow fiber was connected to the microfiltration equipment.
  • the extract was added and concentrated to 500 mL under TMP 0.3bar conditions, recovered, and stored at 4°C.
  • Toyopearl Super Q 650M Resin was mounted on AKTA Pure.
  • Equilibration/washing buffer 50 mM sodium phosphate, pH 6.0
  • 200 mL of the sample prepared in Example 2-1 was injected at 8 mL/min.
  • 2 CV, 216 mL of equilibration/washing buffer 50mM sodium phosphate, pH 6.0
  • the equilibration and elution buffer were eluted with a 5 CV, 50% linear gradient (see Table 1). A total of 14 fractions were sequentially obtained, and the fractions were each confirmed by SDS-PAGE.
  • Example 2-2 A Hitrap SP column (GE Healthcare, 17115201) was mounted on AKTA Pure. Equilibration/washing buffer (20 mM sodium citrate pH 4.5) was flowed with 2 CV and 10 mL to equilibrate the column.
  • a sample (140 mL) prepared by collecting fractions 1 to 3 containing botulinum toxin through SDS-PAGE was dialyzed with 20 mM sodium citrate pH 4.5 and injected into the column at 5 mL/min. After injection, 5 CV, 25 mL of equilibration/washing buffer (20 mM sodium citrate pH 4.5) was flowed to wash the column.
  • fractions 14 to 17 and 20 mL containing botulinum toxin were collected, poured into a 30 kDa cut off centricon, and concentrated to 0.5 mL under conditions of 4000 ⁇ g and 4°C. .
  • the botulinum toxin purified by Example 2 and the commercially available botulinum toxin C-BoNT/A1 were each prepared in 50 mM Sodium phosphate Buffer (pH 6.2) to a concentration of 1 mg/ml. Diluted and divided into reducing conditions and non-reducing conditions as shown in Table 3 to prepare a sample for loading.
  • the sample was electrophoresed in Novex Wedge Well 4-20% Tris-Glucine, 10 wells (Invitrogen, NP04200BOX), poured about 30 mL of Instant Blue stain reagen, put it on a shaker, dyed for 60 minutes, and then completely removed the dyeing reagent and purified water. After pouring about 30 mL, the washing process was repeated five or more times by placing it on a shaker for 30 minutes. When the background was sufficiently removed and the band could be confirmed, the gel was analyzed using an image analyzer.
  • the botulinum toxin purified by the purification method of the present invention was found to have a band at the same position as the commercially available botulinum toxin, from which the purification method of the present invention can only purify the correct target protein. It was found that there were many impurity bands in the band of the standard C-BoNT, whereas in the case of the sample (Jetema) purified by the purification method of the present invention, a clearer and more distinct band was confirmed.
  • the present invention can specifically purify only about 900 kDa toxins, and that the modification of toxins that may occur during purification is reduced as much as possible.
  • the botulinum toxin purified by Experimental Example 1 which is the purification method of the present invention, was confirmed to have a high purity of 98.6%, and Experimental Example 2, which is a purification method using different types of resins, had similar results. (Purity 95.2%).
  • the titer of botulinum toxin was found to be at a high level overall except for the toxin purified by the method of Comparative Example 1.
  • a simple process consisting of anion exchange chromatography and cation exchange chromatography can improve the purity after purification of botulinum toxin, and in particular, it can be purified in the form of 900kDa botulinum toxin, so it can be usefully used in the production of botulinum toxin. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 (a) 보툴리눔 독소를 포함하는 배양액을 침전시키는 단계; (b) 황산 침전된 보툴리눔 독소를 미세여과하는 단계; (c) 미세여과된 보툴리눔 독소를 음이온 교환 크로마토그래피를 이용하여 정제하는 단계; 및 (d) 양이온 교환 크로마토그래피를 이용하여 보툴리눔 독소를 정제하는 단계를 포함하는 보툴리눔 독소의 정제방법에 관한 것으로, 본 발명에 따르면 음이온 교환 크로마토그래피 및 양이온 교환 크로마토그래피의 단순 공정으로 순도 및 활성이 뛰어난 보툴리눔 독소를 정제할 수 있어, 보툴리눔 독소 생산에 유용하게 활용될 수 있다.

Description

보툴리눔 독소의 정제방법
본 발명은 보툴리눔 독소의 정제방법에 관한 것으로, 더 상세하게는 음이온 교환 크로마토그래피 및 양이온 교환 크로마토그래피의 단순 공정으로 순도가 높은 보툴리눔 독소를 수득할 수 있는 정제방법에 관한 것이다.
보툴리눔 독소는 클로스트리디움 부티리쿰 (Clostridium butyricum), 클로스트리디움 바라티 (Clostridium baratii) 및 클로스트리디움 보툴리눔(Clostridium botulinum)과 같은 박테리아에 의해서 생산되는 신경독소 단백질이다. 보툴리눔 독소는 신경근육 전달을 차단하고, 인간 및 동물에게 신경-마비성 질환을 일으킨다. 특히, 보툴리눔 독소 A형은 인간에게 매우 치명적인 것으로 알려져 있다. A형 이외에도 7가지 다른 B, C1, D, E, F, G 및 H형의 보툴리눔 독소가 규명되었다. 보툴리눔 독소 각각의 유형은 각 유형 특이적 항체에 의해 구별될 수 있으며, 이들이 유발하는 마비의 중증도 및 이들이 영향을 미치는 동물 종은 서로 상이하다.
보툴리눔 독소 단백질 분자의 분자량은, 약 50kDa 경쇄에 접합된 약 100 kDa의 중쇄로 구성되어, 약 150kDa이다. 그러나, 클로스트리디움 박테리아에 의해 방출되는 보툴리눔 독소는 150kDa 독소와 하나 또는 그 이상의 비-독소 단백질(nontoxin protein)이 복합체를 형성하여 방출된다. 예를 들어, 보툴리눔 독소 는 900kDa, 500kDa 및 300kDa 복합체로 방출된다.
보툴리눔 독소는 인간에게 매우 치명적일 수 있으나, 최근에는 골격근 활동항진을 특징으로 하는 신경근육 장애를 포함하여 다양한 증상을 치료하기 위한 목적으로 보툴리눔 독소가 개발되고 있다. 예를 들어 보톡스(BOTOX®)는 알러간사(Allergan, Inc.)로부터 상업적으로 개발한 보툴리눔 독소 A의 상표로, 이는 안검경련, 사시, 경부 근긴장이상 및 미간(안면) 주름 개선 치료에 활용되고 있고, 다른 혈청형들도 그에 적합한 용도를 개발하여 임상적으로 활용하고자 하는 연구가 계속되고 있다.
임상적 용도의 보툴리눔 독소는 일반적으로 세포 배양물에서 분리되는데, 이 때 다양한 정제 방법이 사용되고 있다.
일 예로 보툴리눔 독소는 일련의 침전 및 접선 유동 여과 단계에 의해서 복합체화된 형태(complexed form)로 정제된다. [참조: 예를 들어, Schantz E J, et al, Properties and use of botulinum toxin and other microbial neurotoxins in medicine, Microbiol Rev 1992 March 56(l):80-99] 그러나, 이러한 방법은 전형적으로는 약 10% 미만의 상대적으로 낮은 수율을 제공하였다. 그 밖의 다른 방법들은 크기 배제, 이온 교환, 및/또는 친화성 크로마토그래피를 사용하였다 [참조: 예를 들어, Schmidt J J, et al, Anal Biochem 1986 July; 156(1):213-219; Kannan K, et al,, Mov Disord 2000; 15(Suppl 2):20 (2000); Wang YC, Dermatol Las Faci Cosm Surg 2002; 58 (2002); 및 미국 특허 제2003/0008367호].
또 다른 방법은 완전하고 생물학적으로 활성인 보툴리눔 독소 단백질보다는 보툴리눔 독소의 중쇄 또는 경쇄 중의 하나를 재조합 수단에 의해서 개별적으로 합성하는 방법이 있다 [참조: 예를 들어, Zhou L, et al, Biochemistry 1995; 34(46):15175-81 (1995); 및 Johnson S K, et al, Protein Expr and Purif 2003; 32: 1-9 (2003)]. 그러나, 이러한 방법들은 완전하고 생물학적으로 활성인 보툴리눔 독소 단백질을 재형성시키기 위한 추가 단계를 필요로 하는 단점이 있다.
보다 최근의 방법으로는, 복합체로서 보툴리눔 독소를 정제하기 위한 소수성 상호작용 크로마토그래피, 혼합 모드, 및/또는 이온 교환 크로마토그래피의 사용을 포함한다[참조: 예를 들어, 미국특허 제7,452,697호 및 제7,354,740호].
그러나 본 기술분야에서는 여전히 안정하고 생물학적으로 활성을 보이는 완전한 보툴리눔 독소를 분리하기 위한 개선된 정제방법이 요구된다. 이에 본 발명자들은 간소화된 방법으로 순도 높은 보툴리눔 독소를 분리하기 위한 정제방법을 개발하기 위하여 예의 노력한 결과, 음이온 교환 크로마토그래피와 양이온 교환 크로마토그래피의 단순화된 공정을 이용하여 순도가 매우 높은 보툴리눔 독소를 생산해 낼 수 있음을 확인하였으며, 특히, 음이온 교환수지로 Q 컬럼을 사용하고, 양이온 교환수지로 SP 칼럼을 사용하였을 때, 95% 이상의 순도를 가지는 보툴리눔 독소를 정제할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.
선행기술문헌
특허문헌
미국공개특허 제2003/0008367호
미국등록특허 제7,452,697호
미국등록특허 제7,354,740호
비특허문헌
Schantz E J, et al, Properties and use of botulinum toxin and other microbial neurotoxins in medicine, Microbiol Rev 1992 March 56(l):80-99
Schmidt J J, et al, Purification of type E botulinum neurotoxin by high-performance ion exchange chromatography, Anal Biochem 1986 July; 156(1):213-219
Kannan K, et al, Methods development for the biochemical assessment of Neurobloc (botulinum toxin type B), Mov Disord 2000; 15(Suppl 2):20
Wang YC, The preparation and quality of botulinum toxin type A for injection (BTXA) and its clinical use, Dermatol Las Faci Cosm Surg 2002; 58
Zhou L, et al, Expression and purification of the light chain of botulinum neurotoxin A: A single mutation abolishes its cleavage of SNAP-25 and neurotoxicity after reconstitution with the heavy chain, Biochemistry 1995; 34(46):15175-81
Johnson S K, et al, Scale-up of the fermentation and purification of the recombination heavy chain fragment C of botulinum neurotoxin serotype F expressed in Pichia pastoris, Protein Expr and Purif 2003; 32: 1-9
발명의 요약
본 발명의 목적은 단순 공정으로 순도가 매우 높은 보툴리눔 독소를 정제하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 다음 단계를 포함하는 보툴리눔 독소의 정제방법을 제공한다:
(a) 보툴리눔 독소를 포함하는 배양액을 전처리하는 단계;
(b) 전처리된 보툴리눔 독소를 음이온 교환 크로마토그래피를 이용하여 정제하는 단계; 및
(c) 양이온 교환 크로마토그래피를 이용하여 보툴리눔 독소를 정제하는 단계.
도 1은 본 발명의 일실시예에 따른 음이온 교환 크로마토그래피 후 용리액에서 보툴리눔 독소를 FPLC 및 SDS-PAGE로 분석한 결과이다.
도 2는 본 발명의 일실시예에 따른 양이온 교환 크로마토그래피 후 용리액에서 보툴리눔 독소를 FPLC 및 SDS-PAGE로 분석한 결과이다.
도 3은 본 발명에 따른 보툴리눔 독소와 상업적으로 구입한 보툴리눔 독소의 정제 효과를 SDS-PAGE로 분석한 결과이다.
도 4는 본 발명에 따라 정제한 보툴리눔 독소의 순도를 확인한 결과이다.
도 5는 한국 출원번호 10-2013-0092024의 정제방법으로 정제된 보툴리눔 독소의 순도를 확인한 결과이다.
도 6은 미국 출원번호 11/932789의 정제방법으로 정제된 보툴리눔 독소의 순도를 확인한 결과이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 보툴리눔 독소 배양액을 음이온 교환 크로마토그래피와 양이온 교환 크로마토그래피의 정제공정으로 정제하는 경우, 기존의 방법으로 생산된 보툴리눔 독소에 비해 순도가 높고 약 900kDa의 균일한 형태의 보툴리눔 독소가 분리 및 정제되는 것을 확인하였으며, 특히, 음이온 교환수지로 Q 컬럼을 사용하고, 양이온 교환수지로 SP 칼럼을 사용하였을 때, 95% 이상의 순도를 가지는 보툴리눔 독소를 정제할 수 있는 것을 확인하였다.
따라서, 본 발명은 일 관점에서 다음 단계를 포함하는 보툴리눔 독소의 정제방법에 관한 것이다:
(a) 보툴리눔 독소를 포함하는 배양액을 전처리하는 단계;
(b) 전처리된 보툴리눔 독소를 음이온 교환 크로마토그래피를 이용하여 정제하는 단계; 및
(c) 양이온 교환 크로마토그래피를 이용하여 보툴리눔 독소를 정제하는 단계.
본 발명에 있어서, 상기 음이온 교환 크로마토그래피는 Q 컬럼인 것이 바람직하고, 상기 양이온 교환 크로마토그래피는 SP 컬럼인 것이 바람직하다.
본 발명에서, 상기 Q 컬럼은 4차 암모니움(Q) 기능기를 포함하는 물질이 충진되어 있는 컬럼을 의미하며, 상기 SP 컬럼은 설포프로필 기능기를 포함하는 물질이 충진되어 있는 컬럼을 의미한다.
본 발명의 (a) 단계에서 보툴리눔 독소를 포함하는 배양액은 당업계에 공지된 통상의 방법을 사용하여 수득된 클로스트리디움 보툴리눔 균주의 배양액을 사용할 수 있으며, 배양을 위해 사용될 수 있는 통상적인 배지를 이용하여 배양이 가능하나, 특히 동물 유래 성분이 배제된 배지를 이용하여 배양하는 것이 바람직하며, 예를 들어, PYG 배지(Potato peptone 3%, Yeast extract 1%, Glucose 1%)를 이용하는 것이 바람직하다.
본 발명에서 사용되는 보툴리눔 독소 생산 균주는 클로스트리디움 보툴리눔(Clostridium botulinum) 또는 이의 변이체이고 가장 바람직하게는 클로스트리디움 보툴리눔(Clostridium botulinum) type A, NCTC13319 일 수 있으나, 이에 한정되는 것은 아니며, 보툴리눔 독소 생산이 가능한 어떠한 균주라도 사용가능함은 통상의 기술자에게는 자명할 것이다.
본 발명의 (a) 단계에서의 배양액을 전처리하는 단계는 구체적 실시 양태로서 제균(예를 들어, 심층여과 및/또는 제균여과 등에 의해)된 배양액을 산 침전 또는 한외여과하는 단계일 수 있으나, 이에 한정되지는 않는다.
산 침전은 황산 침전 또는 염산 침전인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. 즉, 본 발명의 (a) 단계에서 산 침전은 배양을 종료한 뒤 pH가 3.0 내지 4.5, 바람직하게는 pH가 3.3 내지 4.0, 가장 바람직하게는 pH가 3.4 내지 3.6이 되도록 산, 일 양태로서 황산 또는 또 다른 양태로서 염산을 첨가하여 보툴리눔 독소를 포함하는 배양액을 산 침전시키는 것일 수 있다.
한외여과 막으로는 카세트 타입(cassette type) 또는 중공막(hollow fiber)을 사용할 수 있으나, 이에 한정되지는 않는다. 즉, 본 발명의 (a) 단계에서 한외여과는 막크기가 50kDa 내지 500kDa, 바람직하게는 100kDa 내지 300kDa의 막크기로 한외여과하여 보툴리눔 독소를 포함하는 배양액을 회수하는 것일 수 있다.
또한, 선택적으로 전처리 단계에서 핵산을 제거하기 위해 DNase, RNase, nuclease 및/또는 benzonase를 사용할 수 있으나, 이에 한정되지는 않는다.
본 발명은 보툴리눔 독소의 정제 순도를 높이기 위하여, 추가의 정화 단계를 포함할 수 있다. 본 발명에서의 정화 단계는 전처리 후 불순물을 추가로 제거하는 공정으로, 종래의 공지된 미세여과, 한외여과, 정밀여과, 심층여과 등의 공정으로 진행될 수 있다. 본 발명의 일 양태로서, 미세여과는 0.1~0.4㎛의 hollow fiber를 이용하여 수행될 수 있다.
본 발명의 (b) 단계에서 음이온 교환 크로마토그래피는 전처리된 보툴리눔 독소를 음이온 교환 크로마토그래피 컬럼에 결합시키는데 적정한 농도와 pH의 완충액에 용해시켜 상기 컬럼에 결합시키고, 이후 염 농도가 강화된 완충액을 이용하여 용리시키는 단계로, 음이온 교환 크로마토그래피 단계에서 비-복합체 형태(non-complex form)의 보툴리눔 독소가 제거된다.
본 발명에 따른 보툴리눔 독소 정제방법에 있어서, 음이온 교환 크로마토그래피에 사용되는 컬럼은 4차 암모니움(Q) 기능기를 갖는 레진이 장착된 컬럼인 것이 바람직하며, 더욱 바람직하게는 Q 칼럼인 것이 바람직하다.
본 발명에 있어서, 불순물 제거 및 보툴리눔 독소의 높은 활성 유지의 관점에서 상기 (b) 단계에서의 음이온 교환 크로마토그래피는 Q 컬럼을 이용하여 수행하는 것을 특징으로 할 수 있으며, 바람직하게는 Toyopearl Super Q 650M 컬럼 , Q sepharose FF 컬럼, Q Sepharose High Performance (Q Sepharose HP) 등을 사용할 수 있으며, 더욱 바람직하게는 Toyopearl Super Q 650M 컬럼 또는 Q sepharose FF 컬럼을 이용하여 수행하는 것을 특징으로 할 수 있다.
본 발명에서, Toyopearl Super Q 650M 컬럼은 4차 암모니움(Q) 기능기를 포함하는 65 μm Particle size, Methacrylic Bead type의 레진이 장착된 컬럼으로, Ion Exchange Capacity 는 0.25 ± 0.05 meq/mL 이며, DBC (Dynamic binding capacity)는 BSA 기준 149 mg/mL 이다.
본 발명에서, Q FF 컬럼은 4차 암모니움(Q) 기능기를 포함하는 90 μm Particle size, Strong anion 이며, Ion Exchange Capacity 는 0.18 ~ 0.25 mmol Cl-/mL 이다. DBC 는 HAS 기준 120 mg/mL 이다.
상기 (b) 단계에서 보툴리눔 독소는 pH 5.0 내지 7.0, 바람직하게는 pH 5.5 내지 pH 6.5의 30~70mM 인산나트륨 완충액에 용해시켜 Q 컬럼에 주입되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
상기 (b) 단계에서 상기 컬럼에 결합된 보툴리눔 독소는 0.4~0.6M 염화나트륨이 첨가된 pH 5.0 내지 7.0, 바람직하게는 pH 5.5 내지 pH 6.5의 30~70mM 인산나트륨 완충액으로 용리되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 따른 보툴리눔 독소 정제방법에 있어서, 양이온 교환 크로마토그래피 컬럼은 설포프로필(SP) 기능기를 갖는 레진이 장착된 컬럼인 것이 바람직하며, 더욱 자세하게는 SP 컬럼인 것이 바람직하다.
본 발명에 있어서, 불순물 제거 및 보툴리눔 독소의 높은 활성 유지의 관점에서 상기 (c) 단계에서의 양이온 교환 크로마토그래피는 SP 컬럼을 이용하여 수행하는 것을 특징으로 할 수 있으며, 바람직하게는 SP sepharose HP 컬럼, SP sepharose FF 컬럼, Capto S 컬럼 등을 이용하여 수행되는 것을 특징으로 할 수 있다.
상기 (c) 단계에서 음이온 교환 크로마토그래피로부터 용리된 보툴리눔 독소를 포함하는 분획은 pH 3.5 내지 5.5, 바람직하게는 pH 4.0 내지 5.0의 15~25mM 구연산 나트륨 완충액에 용해시켜 SP 컬럼에 주입되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에서, SP sepharose HP 컬럼은 설포프로필 기능기를 포함하고, 6% spherical, cross-linked agarose Matrix 형태이며, DBC는 ribonuclease A 기준으로 55 mg/mL, Particle size 는 34 μm인 레진이 장착된 컬럼이다.
본 발명에서, SP sepharose FF 칼럼은 설포프로필 기능기를 포함하고, 6% Highly cross-linked agarose Matrix 형태이며, DBC는 ribonuclease A 기준으로 70 mg/mL, Particle size 는 90 μm인 레진이 장착된 컬럼이다.
상기 (c) 단계에서 보툴리눔 독소는 0.4~0.6M 염화나트륨이 첨가된 pH 3.5 내지 5.5, 바람직하게는 pH 4.0 내지 5.0의 15~25mM 구연산나트륨 완충액으로 용리되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
상기 방법으로 정제된 보툴리눔 독소는 순도 95% 이상의 보툴리눔 독소 A형인 것을 특징으로 할 수 있으며, 이와 같이 정제된 보툴리눔 독소는 기존 방법으로 정제된 보툴리눔 독소에 비해 높은 순도를 갖는 것을 특징으로 할 수 있다.
상기 보툴리눔 독소는 클로스트리디움 보툴리눔(Clostridium botulinum) type A, NCTC13319 유래일 수 있으나, 이에 한정되지는 않는다.
본 발명에서 사용되는 용어 "분획(fraction)"은 하나 이상의 불순물과 함께 생물약학적 제제에 함유되는 적어도 하나의 표적 분자(예컨대 보툴리눔 독소)가 하나 이상의 불순물과 결합하는 물질을 통하여 통과하며, 상기 표적 분자는 보통 결합하지 않는(즉, 플로우 쓰루 하는) 또는 결합 후 용리되는 분리 방법에서, 표적 분자를 포함하여 통과된 물질이 각각 분리되어 수집되어 있는 그룹을 의미한다.
본 발명에서 사용되는 용어 "정제"는 어떤 물질로부터 혼재해 있는 불순물을 제거하여 순도를 높이는 조작을 의미하며, 본 명세서에 있어서 정제는 보툴리눔균의 배양액으로부터 보툴리눔균이 과성장한 후 사멸되면서 생산한 보툴리눔 독소를 분리해내는 것이며, 보툴리눔 독소 생산 과정 중의 순도를 향상시키기 위한 방법으로 사용되는 공정을 의미한다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 시료 및 실험 재료 준비
1-1. 시료 준비
본 발명에서 사용한 보툴리눔 균주는 Clostridium botulinum type A, NCTC13319으로, 상기 균주는 500mL PYG 배지(Potato peptone 3%, Yeast extract 1%, Glucose 1%)에 1차 접종 후 혐기성 조건에서 12시간~24시간 ReadytoProcess WAVE 25 배양기로 34 ±1 ℃에서 배양하였다. 배양 후 균주의 성장이 대수증식기(log phase) 단계일 때 5L PYG 배지에 100mL 접종하고, 혐기성 조건에서 ReadytoProcess WAVE 25 배양기로 40~72시간 배양하였다. 배양액은 제균필터를 사용하여 제균하고 배양액만 회수하였다. 배양액에 3N 황산을 이용하여 pH 3.5로 적정하고, 침전 되는 것을 확인한 후 냉장조건에서 16시간 이상 보관하였다.
1-2. 실험 재료 준비
본 발명에서 사용된 실험 재료는 다음과 같다: 정제수 (Ultrapure water 또는 동등 이상의 품질을 가진 물), Toyopearl Super Q 650M (Tosoh Bioscience, 43205), SP sepharose HP (GE Healthcare, 171087) , Q sepharose FF(GE Healthcare, 170510), SP sepharose FF(GE Healthcare, 170729), Butyl sepharose FF (GE Healthcare, 170980), Phenyl sepharose HP (GE Healthcare, 171082), Citric acid (Merck, 1.37002.5000), Tri - sodium citrate dehydrate (Merck, 1.37042.5000), Sodium phosphate monobasic (Merck, 1.06349.1000), Sodium phosphate dibasic (Merck, 1.06585), Sodium chloride (Merck, 1.37017.5000)
실시예 2. 보툴리눔 독소의 정제
2-1. 미세여과(Microfiltration)
미세여과 장비 AKTA flux 6(GE healthcare)를 켜고 0.2㎛ hollow fiber를 연결하였다. 증류수 5 L를 넣고 TMP 0.3bar 조건으로 장비 및 hollow fiber를 2회 세척하였다. 실시예 1-1에서 준비된 보툴리눔 독소 배양액 황산침전물 5 L를 미세여과 장비에 넣고 TMP 0.3 조건으로 1 L까지 농축한 후, 농축액에 2 L의 DW를 넣고 3 L에서 1 L까지 추가 농축하는 과정을 5회 반복하였다. 50 mM sodium phosphate(pH 6.0)를 1 L 넣고 1시간 동안 순환하여 추출(extraction)하였다. 추출액은 미세여과장비의 Permeate line으로 회수하고 미세여과 장비에 300 kDa cut off hollow fiber를 연결하였다. 상기 추출물을 넣고 TMP 0.3bar 조건으로 500mL까지 농축하여 회수한 후, 4℃에 보관하였다.
2-2. 음이온 교환 크로마토그래피
Toyopearl Super Q 650M 수지(Resin)를 AKTA Pure에 장착하였다. 평형/세척 완충액 (50 mM sodium phosphate, pH 6.0)을 1 CV, 108 mL 흘려 컬럼을 평형화하였다. 실시예 2-1에서 준비된 시료 200 mL을 8mL/분으로 주입하였다. 주입이 끝나면 2 CV, 216 mL의 평형/세척 완충액 (50mM sodium phosphate, pH 6.0)을 흘려 컬럼을 세척하였다. 세척 후 평형 및 용출 완충액을 5 CV, 50% 구배(Linear gradient)로 용출하였다(표 1 참조). 순차적으로 총 14개의 분획(fraction)이 수득되었고, 상기 분획은 각각 SDS-PAGE로 확인하였다.
Figure PCTKR2020005041-appb-T000001
그 결과는 도 1과 같으며, 총 14개의 분획 중 1 내지 3번째 분획에서 HA33(SDS-PAGE 상의 빨간색 화살표)이 확인되는바, 900 kDa 복합체 형태의 보툴리눔 독소가 해당 분획에서 정제되었음을 확인할 수 있었다.
2-3. 양이온 교환 크로마토그래피
Hitrap SP 컬럼 (GE Healthcare, 17115201)을 AKTA Pure에 장착을 하였다. 평형/세척 완충액 (20 mM sodium citrate pH 4.5)을 2 CV, 10 mL 흘려 컬럼을 평형화하였다. 실시예 2-2에서 SDS-PAGE를 통해 보툴리눔 독소를 포함하는 분획 1 내지 3을 모아 준비한 시료(140mL)는 20mM sodium citrate pH 4.5로 투석하고 컬럼에 5mL/분으로 주입하였다. 주입이 끝나면 5 CV, 25mL 의 평형/세척 완충액 (20 mM sodium citrate pH 4.5)을 흘려 컬럼을 세척하였다. 세척 후 평형 및 용출 완충액을 20 CV, 60% 구배(Linear gradient) 단계로 용출하였다(표 2 참조). 5 mL씩 순차적으로 총 21 개의 분획(fraction)을 수득하고, 상기 분획은 각각 SDS-PAGE로 확인하였다.
Figure PCTKR2020005041-appb-T000002
그 결과는 도 2와 같으며, 총 21개의 분획 중 14 내지 17번째 분획에서 불순물이 포함되지 않은 900 kDa 복합체 형태의 보툴리눔 독소가 확인되었다.
2-4. 농축
실시예 2-3의 양이온 교환 크로마토그래피로 용리된 분획 중 보툴리눔 독소를 포함하는 분획 14 ~ 17, 20 mL을 모아, 30 kDa cut off centricon에 붓고 4000×g, 4℃ 조건으로 0.5mL까지 농축하였다.
실시예 3. 표준품과 정제산물 비교
실시예 2에 의해 정제된 보툴리눔 독소와 상업적으로 구입 가능한 보툴리눔 독소인 C-BoNT/A1 (Cat. No. #3102, miprolab)를 각각 1mg/ml의 농도가 되도록 50mM Sodium phosphate Buffer(pH 6.2)로 희석하고, 표 3과 같은 환원조건과 비환원조건으로 구분하여 로딩용 시료를 만들었다. 시료를 Novex Wedge Well 4-20% Tris-Glucine, 10 well (Invitrogen, NP04200BOX)에 전기영동하고, Instant Blue stain reagen를 약 30 mL 붓고 Shaker에 올려 60분간 염색한 후, 염색시약을 완전히 제거하고 정제수를 약 30 mL 부은 후 Shaker에 30분 동안 올려 세척하는 과정을 5회 이상 반복하였다. 배경이 충분히 제거되고 밴드 확인이 가능할 때, Image Analyzer를 이용하여 gel을 분석하였다.
Figure PCTKR2020005041-appb-T000003
그 결과, 도 3에서와 같이, 본 발명의 정제방법으로 정제된 보툴리눔 독소는 상업적으로 구입 가능한 보툴리눔 독소와 동일한 위치에서 밴드가 확인되었으며, 이로부터 본 발명의 정제방법이 정확한 목적 단백질만 정제할 수 있음을 알 수 있었으며, 표준품인 C-BoNT의 밴드에 불순물 밴드가 많이 나타난 반면, 본 발명의 정제방법으로 정제된 샘플(Jetema)의 경우, 보다 깨끗하고 뚜렷한 밴드를 확인할 수 있었다.
실시예 4. 타사의 2단계 정제 공정과의 순도 비교
보툴리눔 독소의 대표적인 제조사 중 하나인 알러간(Allergan) 사가 한국에 출원한 특허출원번호 10-2013-0092024에 기재된 정제방법으로 정제된 보툴리눔 독소의 순도를 분석해 보았다.
정제된 보툴리눔 독소의 순도 분석은 표 4의 조건을 이용하여 HPLC로 분석하였다.
Figure PCTKR2020005041-appb-T000004
그 결과, 도 5에서와 같이 주요 피크 외에 더 작은 크기의 불순물(retention time, 10.3min)이 확인되었으며, 900kDa 단백질이 150kDa, 300kDa 또는 500kDa의 단백질과 효과적으로 분리되지 못하는 것으로 나타났다.
또한, 알러간(Allergan) 사의 미국 출원번호 11/932789의 정제방법으로 정제된 보툴리눔 독소의 순도를 분석해 보았다. 그 결과, 도 6에서와 같이 주요 피크 외에 더 큰 크기의 불순물(retention time, 6.7min)이 확인되었다. 이는 원하지 않는 침전물이 생성된 것으로, 정제 과정이 단백질 구조에 영향을 미쳤음을 예상할 수 있다.
이와 대비하여 본 발명은 약 900kDa 독소만을 특이적으로 정제할 수 있으며, 정제 중 생길 수 있는 독소의 변형도 최대한 감소시킨 공정임을 도 4의 결과로부터 확인할 수 있다.
실시예 5. 2단계 크로마토그래피 공정과 본 발명의 정제 공정 비교
알러간(Allergan) 사의 미국 등록특허 제7,452,697호와 미국 공개특허 제2019-0201505호에 기재된 보툴리눔 독소 정제에 사용된 레진과 본 발명의 정제방법에 사용된 레진의 다른 타입을 적용한 정제방법을 사용하여, 정제된 보툴리눔 독소의 순도 및 역가를 비교하였다(표 5).
순도는 표 4의 방법으로 HPLC로 확인하였으며, 역가는 Mouse assay 분석법으로 단백질 농도가 1 mg/mL 인 상태에서, 마우스의 3일간 사망 개체수 결과를 바탕으로 CombiStats에 적용하여 Probit법으로 통계처리하여 역가를 계산하였다.
Figure PCTKR2020005041-appb-T000005
각 실험예와 비교예에서 사용한 컬럼의 종류와 정제 조건은 표 6~9에 나타내었다.
Figure PCTKR2020005041-appb-T000006
Figure PCTKR2020005041-appb-T000007
Figure PCTKR2020005041-appb-T000008
Figure PCTKR2020005041-appb-T000009
그 결과, 표 10에 나타난 바와 같이, 본 발명의 정제 방법인 실험예 1로 정제된 보툴리눔 독소는 높은 순도 98.6 %를 확인하였으며, 타입이 다른 레진을 사용한 정제 방법인 실험예 2도 비슷한 수준의 결과(순도 95.2%)를 나타내었다. 알러간사의 특허에 기재된 정제방법인 비교예 1 및 비교예 1의 방법에 의해 정제된 보톨리눔 독소는 실험예 1 및 실험예 2에 의해 정제된 독소에 비하여 순도가 낮은 것으로 나타났다. 보툴리눔 독소의 역가는 비교예 1의 방법으로 정제한 독소를 제외하고 전체적으로 높은 수준의 결과를 확인하였다.
Figure PCTKR2020005041-appb-T000010
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따르면, 음이온 교환 크로마토그래피와 양이온 교환 크로마토그래피로 구성된 단순 공정으로도 보툴리눔 독소의 정제 후 순도를 개선하고 특히 900kDa의 보툴리눔 독소 형태로 정제할 수 있어, 보툴리눔 독소 생산에 유용하게 활용될 수 있다.

Claims (10)

  1. 다음 단계를 포함하는 보툴리눔 독소의 정제방법:
    (a) 보툴리눔 독소를 포함하는 배양액을 전처리하는 단계;
    (b) 전처리된 보툴리눔 독소를 음이온 교환 크로마토그래피를 이용하여 정제하는 단계; 및
    (c) 양이온 교환 크로마토그래피를 이용하여 보툴리눔 독소를 정제하는 단계.
  2. 제1항에 있어서, 상기 (b) 단계에서의 음이온 교환 크로마토그래피는 Q 컬럼을 이용하여 수행하는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  3. 제2항에 있어서, 상기 Q 컬럼은 Toyopearl Super Q 650M 컬럼 , Q sepharose FF 컬럼 및 Q Sepharose HP 컬럼으로 구성된 군에서 선택되는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  4. 제1항에 있어서, 상기 (c) 단계에서의 양이온 교환 크로마토그래피는 SP 컬럼을 이용하여 수행하는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  5. 제4항에 있어서, 상기 SP 컬럼은 SP sepharose HP, SP sepharose FF 컬럼 및 Capto S 컬럼으로 구성된 군에서 선택되는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  6. 제2항에 있어서, 상기 (b) 단계에서 보툴리눔 독소는 pH 5.5~6.5의 30~70mM 인산나트륨 완충액에 용해시켜 Q 컬럼에 주입되는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  7. 제2항에 있어서, 상기 (b) 단계에서 보툴리눔 독소는 0.4~0.6M 염화나트륨이 첨가된 pH 5.5~6.5의 30~70mM 인산나트륨 완충액으로 용리되는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  8. 제3항에 있어서, 상기 (c) 단계에서 보툴리눔 독소는 pH 4.0~5.0의 15~25mM 구연산나트륨 완충액에 용해시켜 SP 컬럼에 주입되는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  9. 제3항에 있어서, 상기 (c) 단계에서 보툴리눔 독소는 0.4~0.6M 염화나트륨이 첨가된 pH 4.0~5.0의 15~25mM 구연산나트륨 완충액으로 용리되는 것을 특징으로 하는 보툴리눔 독소의 정제방법.
  10. 제1항에 있어서, 정제된 보툴리눔 독소는 순도 95% 이상의 보툴리눔 독소 A형인 것을 특징으로 하는 보툴리눔 독소의 정제방법.
PCT/KR2020/005041 2019-04-15 2020-04-14 보툴리눔 독소의 정제방법 WO2020213928A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2021012522A MX2021012522A (es) 2019-04-15 2020-04-14 Metodo de purificacion de la toxina botulinica.
EP20791856.6A EP3957647A4 (en) 2019-04-15 2020-04-14 BOTULINUM TOXIN PURIFICATION METHOD
US17/603,326 US20220186201A1 (en) 2019-04-15 2020-04-14 Method of purifying botulinum toxin
BR112021020486A BR112021020486A2 (pt) 2019-04-15 2020-04-14 Método para purificar toxina botulínica
CN202080034507.2A CN114341167A (zh) 2019-04-15 2020-04-14 纯化肉毒杆菌毒素的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190043868 2019-04-15
KR10-2019-0043868 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213928A1 true WO2020213928A1 (ko) 2020-10-22

Family

ID=72837488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005041 WO2020213928A1 (ko) 2019-04-15 2020-04-14 보툴리눔 독소의 정제방법

Country Status (8)

Country Link
US (1) US20220186201A1 (ko)
EP (1) EP3957647A4 (ko)
KR (2) KR102516204B1 (ko)
CN (1) CN114341167A (ko)
BR (1) BR112021020486A2 (ko)
MX (1) MX2021012522A (ko)
TW (1) TWI797442B (ko)
WO (1) WO2020213928A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512757B1 (ko) 2021-07-22 2023-03-22 (주)이니바이오 정제 수율이 향상된 보툴리눔 독소 복합체 정제방법
KR20240066551A (ko) * 2022-11-08 2024-05-16 (주)제테마 보툴리눔 독소의 정제방법
CN118126144A (zh) * 2024-03-14 2024-06-04 河北平朴生物科技合伙企业(有限合伙) 一种a型重组肉毒素的纯化方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008367A1 (en) 2001-07-03 2003-01-09 Keiji Oguma Isolation and purification of clostridium botulinum toxins
KR20070116710A (ko) * 2005-03-03 2007-12-11 알러간, 인코포레이티드 보툴리눔 독소를 정제하기 위한 동물 산물이 없는 시스템및 프로세스
US7452697B2 (en) 2003-09-25 2008-11-18 Allergan, Inc. Chromatographic method and system for purifying a botulinum toxin
KR20120099431A (ko) * 2009-10-21 2012-09-10 레반스 테라퓨틱스, 아이엔씨. 비-복합체화된 보툴리눔 신경독소를 정제하기 위한 방법 및 시스템
KR20120105417A (ko) * 2009-07-13 2012-09-25 알러간, 인코포레이티드 보툴리눔 신경독소를 수득하기 위한 공정 및 시스템
KR20130092024A (ko) 2012-02-09 2013-08-20 권지성 멜로디 유아용 소변기
KR20170062694A (ko) * 2015-11-30 2017-06-08 주식회사 대웅 보툴리눔 독소의 제조방법
KR20180037420A (ko) * 2016-10-04 2018-04-12 (주)메디톡스 보툴리눔 독소 함유 용액으로부터 보툴리눔 독소를 분리하는 방법
US20190201505A1 (en) 2014-04-29 2019-07-04 Ipsen Bioinnovation Limited Manufacture of recombinant clostridial botulinum neurotoxins

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241195B (en) 2000-04-10 2005-10-11 Shionogi & Co Preventive agent for bile acidic diarrhea
WO2006042542A2 (en) * 2004-10-19 2006-04-27 Statens Serum Institut Production of tetanus, diphtheria, and pertussis toxins and toxoids using fermentation media containing no components of animal or soy origin
KR20090120222A (ko) * 2008-05-19 2009-11-24 (주)메디톡스 식물 유래 성분 함유 배지 및 가요성 폐쇄 용기를 이용하여클로스트리디움 보툴리눔 독소를 생산하는 방법
US8440204B2 (en) * 2009-04-30 2013-05-14 Wisconsin Alumni Research Foundation Subtype of Closteridium botulinum neurotoxin type A and uses thereof
JP2011074025A (ja) * 2009-09-30 2011-04-14 Chemo-Sero-Therapeutic Research Inst ボツリヌス毒素の精製方法
KR101339349B1 (ko) * 2013-08-02 2013-12-09 주식회사 대웅 보툴리눔 독소의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008367A1 (en) 2001-07-03 2003-01-09 Keiji Oguma Isolation and purification of clostridium botulinum toxins
US7354740B2 (en) 2003-09-25 2008-04-08 Allergan, Inc. Animal product free system and process for purifying a botulinum toxin
US7452697B2 (en) 2003-09-25 2008-11-18 Allergan, Inc. Chromatographic method and system for purifying a botulinum toxin
KR20070116710A (ko) * 2005-03-03 2007-12-11 알러간, 인코포레이티드 보툴리눔 독소를 정제하기 위한 동물 산물이 없는 시스템및 프로세스
KR20120105417A (ko) * 2009-07-13 2012-09-25 알러간, 인코포레이티드 보툴리눔 신경독소를 수득하기 위한 공정 및 시스템
KR20120099431A (ko) * 2009-10-21 2012-09-10 레반스 테라퓨틱스, 아이엔씨. 비-복합체화된 보툴리눔 신경독소를 정제하기 위한 방법 및 시스템
KR20130092024A (ko) 2012-02-09 2013-08-20 권지성 멜로디 유아용 소변기
US20190201505A1 (en) 2014-04-29 2019-07-04 Ipsen Bioinnovation Limited Manufacture of recombinant clostridial botulinum neurotoxins
KR20170062694A (ko) * 2015-11-30 2017-06-08 주식회사 대웅 보툴리눔 독소의 제조방법
KR20180037420A (ko) * 2016-10-04 2018-04-12 (주)메디톡스 보툴리눔 독소 함유 용액으로부터 보툴리눔 독소를 분리하는 방법

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
JOHNSON S. K. ET AL., PROTEIN EXPR. AND PURIF., vol. 32, 2003, pages 1 - 9
JOHNSON S. K. ET AL.: "Scale-up of the fermentation and purification of the recombination heavy-chain fragment C of botulinum neurotoxin serotype F expressed", PICHIA PASTORIS, PROTEIN EXPR. AND PURIF., vol. 32, 2003, pages 1 - 9, XP004469378, DOI: 10.1016/j.pep.2003.07.003
KANNAN K. ET AL.: "Methods development for the biochemical assessment of NeuroBloc (botulinum toxin type B", MOV. DISORD., vol. 15, 2000, pages 20
SCHANTZ E J ET AL.: "Properties and use of botulinum toxin and other microbial neurotoxins in medicine", MICROBIOL. REV, vol. 6, no. 1, 5 March 1992 (1992-03-05), pages 80 - 99
SCHANTZ E. J. ET AL., MICROBIOL. REV., vol. 6, no. 1, 5 March 1992 (1992-03-05), pages 80 - 99
SCHMIDT J. J. ET AL.: "Purification of type E botulinum neurotoxin by high-performance ion exchange chromatography", ANAL. BIOCHEM, vol. 156, no. 1, July 1986 (1986-07-01), pages 213 - 219, XP024817250, DOI: 10.1016/0003-2697(86)90175-2
See also references of EP3957647A4
WANG Y. C., DERMATOL. LAS. FACI. COSM. SURG., vol. 58, no. 2002, 2002
WANG Y. C.: "The preparation and quality of botulinum toxin type A for injection (BTXA) and its clinical use, Dermatol", LAS. FACI. COSM. SURG, vol. 2002, pages 58
ZHOU L. ET AL.: "xpression and purification of the light chain of botulinum neurotoxin A: A single mutation abolishes its cleavage of SNAP-25 and neurotoxicity after reconstitution with the heavy chain", BIOCHEMISTRY, vol. 34, no. 46, 1995, pages 15175 - 81

Also Published As

Publication number Publication date
BR112021020486A2 (pt) 2021-12-14
EP3957647A4 (en) 2023-01-18
KR20200121247A (ko) 2020-10-23
TWI797442B (zh) 2023-04-01
TW202104243A (zh) 2021-02-01
EP3957647A1 (en) 2022-02-23
KR102485146B1 (ko) 2023-01-06
KR102516204B1 (ko) 2023-03-30
KR20200121245A (ko) 2020-10-23
CN114341167A (zh) 2022-04-12
MX2021012522A (es) 2022-01-24
US20220186201A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020213929A1 (ko) 보툴리눔 독소의 정제방법
WO2020213928A1 (ko) 보툴리눔 독소의 정제방법
US11466262B2 (en) Methods and systems for purifying non-complexed botulinum neurotoxin
WO2018065972A1 (en) Method of isolating botulinum toxin from botulinum toxin-containing solution
WO2017095062A1 (en) Method for producing botulinum toxin
JP7454507B2 (ja) ボツリヌス毒素の製造方法
WO2021029740A2 (ko) 보툴리눔 독소의 제조방법
WO2023282653A1 (ko) 비-독소 단백질이 제거된 클로스트리디움 보툴리눔 신경독소 단백질의 정제방법
RU2805226C2 (ru) Способ очистки ботулинического токсина
WO2023282573A1 (ko) 클로스트리디움 보툴리눔 독소 복합체 단백질의 정제방법
WO2024101624A1 (ko) 보툴리눔 독소의 정제방법
WO2023003443A1 (ko) 정제 수율이 향상된 보툴리눔 독소 복합체 정제방법
RU2795197C1 (ru) Способ очистки ботулинического токсина

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020486

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020791856

Country of ref document: EP

Effective date: 20211115

ENP Entry into the national phase

Ref document number: 112021020486

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211013