WO2020213562A1 - 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ - Google Patents
超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ Download PDFInfo
- Publication number
- WO2020213562A1 WO2020213562A1 PCT/JP2020/016285 JP2020016285W WO2020213562A1 WO 2020213562 A1 WO2020213562 A1 WO 2020213562A1 JP 2020016285 W JP2020016285 W JP 2020016285W WO 2020213562 A1 WO2020213562 A1 WO 2020213562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- period
- diameter
- frame
- data
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
- A61B8/543—Control of the diagnostic device involving acquisition triggered by a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0891—Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/488—Diagnostic techniques involving Doppler signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5246—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5284—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
Definitions
- the present invention relates to an ultrasonic diagnostic apparatus that acquires B-mode data and Doppler data, a control method of the ultrasonic diagnostic apparatus, and a processor for the ultrasonic diagnostic apparatus.
- an ultrasonic diagnostic apparatus has been known as a device for obtaining an image of the inside of a subject.
- An ultrasonic diagnostic apparatus generally includes an ultrasonic probe provided with an oscillator array in which a plurality of elements are arranged. With this ultrasonic probe in contact with the body surface of the subject, an ultrasonic beam is transmitted from the vibrator array toward the inside of the subject, and the ultrasonic echo from the subject is received by the vibrator array to be an element. Data is retrieved. Further, the ultrasonic diagnostic apparatus electrically processes the obtained element data to generate an ultrasonic image of the site of the subject.
- Patent Document 1 discloses an ultrasonic diagnostic apparatus that detects a blood vessel region in a B-mode (brightness mode) image in which a blood vessel of a subject is captured, based on Doppler data.
- the ultrasonic diagnostic apparatus of Patent Document 1 segments blood vessels in a B-mode image based on the detected blood vessel region, and calculates the diameter of the segmented blood vessels based on the B-mode image.
- the maximum diameter and the minimum diameter of a blood vessel may be measured in order to calculate an elasticity index or the like indicating the elasticity of the blood vessel.
- an elasticity index or the like indicating the elasticity of the blood vessel.
- the present invention has been made to solve such a conventional problem, and easily and at least one of the B-mode data in which the blood vessel diameter is the maximum and the B-mode data in which the blood vessel diameter is the minimum is easily and.
- An object of the present invention is to provide an ultrasonic diagnostic apparatus, a control method of the ultrasonic diagnostic apparatus, and a processor for the ultrasonic diagnostic apparatus that can be accurately specified.
- the ultrasonic diagnostic apparatus is an ultrasonic wave in which B-mode data and Doppler data are continuously acquired over a predetermined period for a region containing a blood vessel of a subject.
- a diagnostic device a time phase search period specifying unit that specifies the time phase search period in each heartbeat period based on Doppler data, and a multi-frame B within the time phase search period specified by the time phase search period specifying unit.
- a frame identification part specifies at least one of the B mode data of the frame in which the blood vessel diameter is the maximum and the B mode data of the frame in which the blood vessel diameter is the minimum in each heartbeat period.
- At least one of the maximum and minimum diameters of the blood vessel is selected based on at least one of the B-mode data of the frame having the maximum diameter of the blood vessel and the B-mode data of the frame having the minimum diameter of the blood vessel specified by the frame identification part. It is preferable to further include a blood vessel diameter calculation unit for calculation. In addition, a cross-sectional area calculation unit that calculates the cross-sectional area of the blood vessel using at least one of the maximum diameter and the minimum diameter of the blood vessel calculated by the blood vessel diameter calculation unit, and a Doppler processing unit that acquires Doppler data in each heartbeat period.
- the blood flow velocity calculation unit that calculates the blood flow velocity based on the Doppler data acquired by the Doppler processing unit, the cross-sectional area calculated by the cross-sectional area calculation unit, and the blood flow velocity calculated by the blood flow velocity calculation unit. It is preferable to further provide a blood flow measuring unit for measuring the blood flow.
- the time phase search period specifying unit specifies the first period including the time when the Doppler data in each heartbeat period has the minimum value as the time phase search period, and the frame specifying unit specifies the B mode data of a plurality of frames within the first period.
- the B-mode data of the frame having the smallest blood vessel diameter is specified based on the above, and the blood vessel diameter calculation unit is based on the B-mode data of the frame having the smallest blood vessel diameter specified by the frame specifying unit.
- the minimum diameter of the blood vessel is calculated, and the cross-sectional area calculation unit can calculate the cross-sectional area of the blood vessel using the minimum diameter of the blood vessel calculated by the blood vessel diameter calculation unit.
- the time phase search period specifying unit specifies the second period including the time when the Doppler data in each heartbeat period has the maximum value as the time phase search period
- the frame specifying unit specifies the B of a plurality of frames within the second period.
- the B mode data of the frame having the maximum blood vessel diameter is specified based on the mode data
- the blood vessel diameter calculation unit is based on the B mode data of the frame having the maximum blood vessel diameter specified by the frame identification unit.
- the maximum diameter of the blood vessel is calculated, and the cross-sectional area calculation unit can also calculate the cross-sectional area of the blood vessel using the maximum diameter of the blood vessel calculated by the blood vessel diameter calculation unit.
- the time phase search period specifying unit has a time phase search having a first period including a time point in which the Doppler data in each heartbeat period has the minimum value and a second period including a time point in which the Doppler data in each heartbeat period has the maximum value.
- the period is specified, and the frame identification unit specifies the B-mode data of the frame in which the diameter of the blood vessel is the smallest based on the B-mode data of the plurality of frames in the first period, and the frame-specific part of the plurality of frames in the second period.
- the B mode data of the frame having the maximum blood vessel diameter is specified based on the B mode data, and the blood vessel diameter calculation unit is based on the B mode data of the frame having the minimum blood vessel diameter specified by the frame identification unit.
- the minimum diameter of the blood vessel is calculated, and the maximum diameter of the blood vessel is calculated based on the B mode data of the frame having the maximum diameter of the blood vessel specified by the frame specifying unit. It is also possible to calculate the cross-sectional area of a blood vessel by using the average diameter of the blood vessel in each heartbeat period calculated from the minimum diameter of the blood vessel and the maximum diameter of the blood vessel calculated by the blood vessel diameter calculation unit.
- the first period is preferably a period from the time when the Doppler data in each heartbeat period has the minimum value to the time when the Doppler data has the maximum value.
- the second period is preferably a period from the period in which the Doppler data in each heartbeat period has the maximum value to the elapse of a predetermined time set to a time shorter than each heartbeat period.
- it is preferable that the first period and the second period each have a time width of 10% or more and 20% or less of each heartbeat period.
- an elasticity index calculation unit for calculating the elasticity index of the blood vessel based on the difference between the maximum diameter of the blood vessel and the minimum diameter of the blood vessel can be further provided.
- a transmission / reception circuit that transmits an ultrasonic beam into a subject via the ultrasonic probe, and receives an ultrasonic echo from the subject to generate received data. It is preferable to further include a B-mode processing unit that generates B-mode data based on the received data.
- the control method of the ultrasonic diagnostic apparatus of the present invention is a control method of the ultrasonic diagnostic apparatus in which B-mode data and Doppler data are continuously acquired for a predetermined period for a region including a blood vessel of a subject. Therefore, by specifying the time phase search period in each heartbeat period based on Doppler data and analyzing the B mode data of multiple frames within the specified time phase search period, the diameter of the blood vessel is maximized in each heartbeat period. It is characterized in that at least one of the B-mode data of the frame and the B-mode data of the frame having the smallest blood vessel diameter is specified.
- the processor for an ultrasonic diagnostic apparatus of the present invention continuously acquires B-mode data and Doppler data over a predetermined period for a region containing a blood vessel of a subject, and in each heartbeat period based on the Doppler data.
- the time phase search period By specifying the time phase search period and analyzing the B mode data of multiple frames within the specified time phase search period, the B mode data of the frame in which the blood vessel diameter is maximized in each heartbeat period and the blood vessel diameter can be obtained. It is characterized in that at least one of the B mode data of the minimum frame is specified.
- a time phase search period specifying unit that specifies the time phase search period in each heartbeat period based on Doppler data, and a plurality of frames B within the time phase search period specified by the time phase search period specifying unit.
- a frame identification part that specifies at least one of the B mode data of the frame in which the blood vessel diameter is the maximum and the B mode data of the frame in which the blood vessel diameter is the minimum in each heartbeat period.
- At least one of the B-mode data in which the blood vessel diameter is the maximum and the B-mode data in which the blood vessel diameter is the minimum can be easily and accurately specified.
- Embodiment 1 of this invention It is a block diagram which shows the structure of the ultrasonic diagnostic apparatus which concerns on Embodiment 1 of this invention. It is a block diagram which shows the internal structure of the receiving circuit in Embodiment 1 of this invention. It is a block diagram which shows the internal structure of the B mode processing part in Embodiment 1 of this invention. It is a block diagram which shows the internal structure of the Doppler processing part in Embodiment 1 of this invention. It is a figure which shows typically the Doppler waveform image in Embodiment 1 of this invention. It is a figure which shows typically the example of the B mode image in which the Doppler gate was set in Embodiment 1 of this invention.
- Embodiment 1 It is a figure which shows typically the B mode image, Doppler waveform image, and the measured value of the blood flow rate displayed on the display device in Embodiment 1 of this invention. It is a block diagram which shows the ultrasonic diagnostic apparatus which concerns on Embodiment 2 of this invention. It is a block diagram which shows the ultrasonic diagnostic apparatus which concerns on Embodiment 3 of this invention.
- “same” and “same” include an error range generally accepted in the technical field. Further, in the present specification, when the term “all”, “all” or “whole surface” is used, it includes not only 100% but also an error range generally accepted in the technical field, for example, 99% or more. It shall include the case where it is 95% or more, or 90% or more.
- FIG. 1 shows the configuration of the ultrasonic diagnostic apparatus 1 according to the first embodiment of the present invention.
- the ultrasonic diagnostic apparatus 1 includes an oscillator array 2, and a transmission circuit 3 and a reception circuit 4 are connected to each other.
- the transmission / reception circuit 5 is configured by the transmission circuit 3 and the reception circuit 4.
- a B mode (Brightness mode) processing unit 6 and a Doppler processing unit 7 are connected to the receiving circuit 4, and a display device 9 is connected to the B mode processing unit 6 and the Doppler processing unit 7 via a display control unit 8. Is connected.
- the gate setting unit 10 is connected to the B mode processing unit 6, and the Doppler processing unit 7 and the display control unit 8 are connected to the gate setting unit 10.
- the image memory 11 is connected to the B mode processing unit 6, and the frame specifying unit 12 is connected to the image memory 11.
- the blood vessel diameter calculation unit 13, the cross-sectional area calculation unit 14, and the blood flow rate measurement unit 15 are sequentially connected to the frame identification unit 12.
- the time phase search period specifying unit 16 and the blood flow velocity calculating unit 17 are connected to the Doppler processing unit 7.
- the frame specifying unit 12 is connected to the time phase search period specifying unit 16, and the blood flow rate measuring unit 15 is connected to the blood flow velocity calculating unit 17.
- the device control unit 18 is connected to the time phase search period specifying unit 16 and the blood flow velocity calculation unit 17, and the input device 19 and the storage unit 20 are connected to the device control unit 18.
- the device control unit 18 and the storage unit 20 are connected so that information can be exchanged in both directions.
- the oscillator array 2 is included in the ultrasonic probe 21, and includes a B mode processing unit 6, a Doppler processing unit 7, a display control unit 8, a gate setting unit 10, a frame identification unit 12, a blood vessel diameter calculation unit 13, and the like.
- the processor 22 for the ultrasonic diagnostic apparatus 1 is composed of the cross-sectional area calculation unit 14, the blood flow measurement unit 15, the time phase search period specifying unit 16, the blood flow velocity calculation unit 17, and the device control unit 18.
- the oscillator array 2 of the ultrasonic probe 21 shown in FIG. 1 has a plurality of oscillators arranged one-dimensionally or two-dimensionally. Each of these oscillators transmits ultrasonic waves according to a drive signal supplied from the transmission circuit 3, receives an ultrasonic echo from a subject, and outputs a signal based on the ultrasonic echo.
- Each transducer includes, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a high molecular weight piezoelectric element represented by PVDF (PolyVinylidene DiFluoride), and PMN-PT (PMN-PT).
- Electrodes at both ends of a piezoelectric material made of a piezoelectric single crystal or the like represented by Lead Magnesium Niobate-Lead Titanate (lead magnesiumidene fluoride-lead titanate solid solution).
- the transmission circuit 3 includes, for example, a plurality of pulse generators, and is transmitted from the plurality of oscillators of the oscillator array 2 based on a transmission delay pattern selected according to a control signal from the device control unit 18.
- Each drive signal is supplied to a plurality of oscillators by adjusting the delay amount so that the ultrasonic waves form an ultrasonic beam.
- a pulsed or continuous wave voltage is applied to the electrodes of the vibrator of the vibrator array 2
- the piezoelectric body expands and contracts, and pulsed or continuous wave ultrasonic waves are generated from each vibrator.
- An ultrasonic beam is formed from the combined waves of those ultrasonic waves.
- the transmitted ultrasonic beam is reflected by, for example, a target such as a site of a subject, and propagates toward the vibrator array 2 of the ultrasonic probe 21.
- the ultrasonic waves propagating toward the oscillator array 2 in this way are received by the respective oscillators constituting the oscillator array 2.
- each oscillator constituting the oscillator array 2 expands and contracts by receiving the propagating ultrasonic echo to generate an electric signal, and outputs these electric signals to the receiving circuit 4.
- the receiving circuit 4 processes the signal output from the oscillator array 2 according to the control signal from the device control unit 18 to generate received data, which is so-called RF (Radio Frequency) data.
- RF Radio Frequency
- the receiving circuit 4 has a configuration in which an amplification unit 23, an AD (Analog Digital) conversion unit 24, and a beam former 25 are connected in series.
- the amplification unit 23 amplifies the signal input from each of the vibrators constituting the vibrator array 2, and transmits the amplified signal to the AD conversion unit 24.
- the AD conversion unit 24 converts the signal transmitted from the amplification unit 23 into digital data, and transmits these data to the beam former 25.
- the beam former 25 follows the sound velocity or sound velocity distribution set based on the reception delay pattern selected according to the control signal from the device control unit 18, and has each data converted by the AD conversion unit 24. By giving a delay and adding, so-called reception focus processing is performed. By this reception focus processing, each data converted by the AD conversion unit 24 is phase-aligned and added, and the reception data in which the focus of the ultrasonic echo is narrowed down is acquired.
- the B-mode processing unit 6 has a configuration in which a signal processing unit 26, a DSC (Digital Scan Converter) 27, and an image processing unit 28 are sequentially connected in series.
- the signal processing unit 26 corrects the attenuation due to the distance according to the depth of the reflection position of the ultrasonic wave to the received data generated by the receiving circuit 4, and then performs the envelope detection process in the subject.
- a B-mode image signal which is tomographic image information about the tissue of the above, is generated.
- the DSC 27 converts the B-mode image signal generated by the signal processing unit 26 into an image signal according to a normal television signal scanning method (raster conversion).
- the image processing unit 28 performs various necessary image processing such as gradation processing on the B mode image signal input from the DSC 27, and then outputs the B mode image signal to the display control unit 8.
- the Doppler processing unit 7 acquires Doppler data in the Doppler gate set in the blood vessel region by the gate setting unit 10 described later and generates a Doppler waveform image.
- the Doppler detection unit 29 The high-pass filter 30, the Fast Fourier Transformer 31, and the Doppler waveform image generation unit 32 are sequentially connected in series, and the data memory 33 is connected to the output end of the orthogonal detection unit 29. There is.
- the orthogonal detection unit 29 orthogonally detects the received data and converts it into complex data by mixing the carrier signal of the reference frequency with the received data generated by the receiving circuit 4.
- the high-pass filter 30 functions as a so-called wall filter, and removes frequency components derived from the movement of the body tissue of the subject from the complex data generated by the orthogonal detection unit 29.
- the fast Fourier transform unit 31 performs frequency analysis by Fourier transforming complex data of a plurality of sample points to obtain a blood flow velocity, and generates a spectral signal.
- the Doppler waveform image generation unit 32 generates a Doppler waveform image signal by expressing the magnitude of each frequency component in luminance while aligning the spectral signals generated by the fast Fourier transform unit 31 on the time axis.
- FIG. 5 shows an example of an ideal Doppler waveform image UD based on the Doppler waveform image signal.
- the horizontal axis shows the time axis
- the vertical axis shows the Doppler shift frequency, that is, the blood flow velocity
- the brightness of the waveform represents the power in each frequency component
- the blood flow velocity in the Doppler waveform image UD is shown.
- the value changes periodically according to the heart rate period HC.
- the heartbeat period HC the period from the time point T1 at which the blood flow velocity has the minimum value V1 to the time point T4 having the next minimum value V1 is defined as the heartbeat period HC.
- the data memory 33 stores the complex data converted from the received data by the orthogonal detection unit 29.
- the device control unit 18 controls each part of the ultrasonic diagnostic device 1 based on a program stored in advance in the storage unit 20 or the like and an input operation by the user via the input device 19.
- the display control unit 8 Under the control of the device control unit 18, the display control unit 8 performs predetermined processing on the B mode image signal generated by the B mode processing unit 6, the Doppler waveform image signal generated by the Doppler processing unit 7, and the like.
- a B-mode image, a Doppler waveform image, and the like are displayed on the display device 9.
- the display device 9 of the ultrasonic diagnostic apparatus 1 displays an image generated by the display control unit 8, and is, for example, a display such as an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display). Includes equipment.
- the input device 19 of the ultrasonic diagnostic apparatus 1 is for the user to perform an input operation, and can be configured to include a keyboard, a mouse, a trackball, a touch pad, a touch panel, and the like.
- the gate setting unit 10 sets the Doppler gate DG in the blood vessel region BR on the B mode image UB as shown in FIG. 6 based on the input operation of the user via the input device 19. For example, when the user specifies an appropriate position in the blood vessel region BR on the B-mode image UB via the input device 19 while looking at the B-mode image UB displayed on the display device 9, the gate setting unit 10 determines.
- the Doppler Gate DG is placed at the position specified by the user.
- the Doppler gate DG set in this way is superimposed on the B-mode image UB and displayed on the display device 9.
- the Doppler processing unit 7 acquires the Doppler data in the Doppler gate DG set by the gate setting unit 10.
- the diameter of the blood vessel like the blood flow velocity, changes cyclically between the minimum value D1 and the maximum value D2 according to the heartbeat period HC, but the period including the time point T1 in which the blood flow velocity has the minimum value V1, that is, The diameter of the blood vessel has the minimum value D1 in the first period FP from the time point T1 when the blood flow velocity has the minimum value V1 to the time point T2 when the blood flow velocity has the maximum value V2.
- the period including the time point T2 in which the blood flow velocity has the maximum value V2, that is, from the time point T2 in which the blood flow velocity has the maximum value V2, is set to a time shorter than each heartbeat period HC, for example, 0.25 seconds.
- the blood vessel diameter has a maximum value D2 in the second period SP up to the time T3 when the predetermined time elapses.
- the burden on the ultrasonic diagnostic apparatus 1 can be reduced, and the B-mode image and the blood vessel having the minimum value D1 in the diameter of the blood vessel can be easily obtained in a short time.
- a B-mode image having a maximum diameter of D2 can be identified. Further, when identifying a B-mode image having a minimum blood vessel diameter D1 and a B-mode image having a maximum blood vessel diameter D2, the blood vessels in the B-mode images in the first period FP and the second period SP. It is sufficient to compare the diameters of the images with each other, and it is possible to reduce the risk of erroneously identifying the B-mode image in which the brightness value fluctuates due to the influence of noise or the like.
- the time phase search period specifying unit 16 specifies at least one of the first period FP and the second period SP in each heartbeat period HC as the time phase search period based on the Doppler data generated by the Doppler processing unit 7.
- the time phase search period is a period for specifying at least one of the B-mode image signal having the maximum blood vessel diameter and the B-mode image signal having the minimum blood vessel diameter in each heartbeat period HC.
- the time phase search period specifying unit 16 sets the envelope E of the Doppler waveform WD in each heartbeat period HC, and specifies the time phase search period based on the set envelope E. Shall be.
- the image memory 11 is a memory for storing a plurality of frames of B-mode image signals continuously generated by the B-mode processing unit 6.
- the image memory 11 includes a flash memory, an HDD (Hard Disc Drive), an SSD (Solid State Drive), an FD (Flexible Disc), and an MO disk (Magneto-Optical disc). ), MT (Magnetic Tape: Magnetic Tape), RAM (Random Access Memory: Random Access Memory), CD (Compact Disc: Compact Disc), DVD (Digital Versatile Disc: Digital Versatile Disc), SD Card (Secure Digital card: Secure)
- a recording medium such as a digital card), a USB memory (Universal Serial Bus memory), a server, or the like can be used.
- the frame specifying unit 12 analyzes the B mode image signals of a plurality of frames within the time phase search period specified by the time phase search period specifying unit 16 among the B mode image signals of the plurality of frames stored in the image memory 11. Thereby, at least one of the B-mode image signal of the frame having the maximum blood vessel diameter and the B-mode image signal of the frame having the minimum blood vessel diameter is specified in each heartbeat period HC. At this time, the frame specifying unit 12 calculates the diameter of the blood vessel in the B mode image signal of each frame within the time phase search period, and the diameter of the blood vessel becomes the maximum based on the calculated diameter of the blood vessel. At least one of the frame B-mode image signal and the frame B-mode image signal with the smallest blood vessel diameter can be identified.
- the frame specifying unit 12 sets the B-mode image UB by a user's input operation via the input device 19, for example, as shown in FIG.
- Two points where the brightness of the B-mode image UB on the straight line SL in the vertical direction is higher than a certain value are specified as the position of the blood vessel anterior wall W1 and the position of the blood vessel posterior wall W2, and the specified two points.
- the distance L on the B-mode image UB between them can be calculated.
- a vertical line passing through the center of the B mode image UB may be used.
- the frame specifying unit 12 identifies the B-mode image signal of the frame having the minimum diameter of the blood vessel calculated in this way within the first period FP of the time phase search period. Further, the frame specifying unit 12 identifies the B-mode image signal of the frame having the maximum diameter of the blood vessel calculated in this way in the second period SP of the time phase search period.
- the blood vessel diameter calculation unit 13 is based on at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter specified by the frame identification unit 12. Calculate at least one of the maximum and minimum diameters of the blood vessel. For example, the blood vessel diameter calculation unit 13 sets the distance L on the B-mode image UB calculated by the frame identification unit 12 as the diameter of the blood vessel in the B-mode image signal of the frame that maximizes the diameter of the blood vessel to the actual blood vessel. The maximum diameter of a blood vessel can be calculated by converting it into a diameter or the like.
- the blood vessel diameter calculation unit 13 is based on the distance L on the B mode image UB calculated as the blood vessel diameter by the frame identification unit 12 in the B mode image signal of the frame in which the blood vessel diameter is the minimum. The minimum diameter of a blood vessel can be calculated.
- the cross-sectional area calculation unit 14 calculates the cross-sectional area of the blood vessel based on the diameter of the blood vessel calculated by the blood vessel diameter calculation unit 13, assuming that the blood vessel has a circular cross section. For example, when the minimum diameter of a blood vessel is calculated by the blood vessel diameter calculation unit 13, the cross-sectional area calculation unit 14 calculates the cross-sectional area of the blood vessel using the minimum diameter of the blood vessel. Further, for example, when the maximum diameter of the blood vessel is calculated by the blood vessel diameter calculation unit 13, the cross-sectional area calculation unit 14 calculates the cross-sectional area of the blood vessel using the maximum diameter of the blood vessel.
- the cross-sectional area calculation unit 14 calculates the average diameter of the blood vessel based on the minimum diameter and the maximum diameter of the blood vessel. It can be calculated and the cross-sectional area of the blood vessel can be calculated using the calculated average diameter of the blood vessel.
- the blood flow velocity calculation unit 17 calculates the blood flow velocity by the so-called pulse Doppler method based on the Doppler data acquired by the Doppler processing unit 7.
- the blood flow velocity calculation unit 17 can also calculate the average blood flow velocity in each heartbeat period HC.
- the blood flow measurement unit 15 per unit time of blood flowing in the blood vessel based on the cross-sectional area of the blood vessel calculated by the cross-sectional area calculation unit 14 and the blood flow velocity calculated by the blood flow velocity calculation unit 17. Measure blood flow, which represents volume.
- the storage unit 20 stores the operation program of the ultrasonic diagnostic apparatus 1, and is a recording medium such as a flash memory, HDD, SSD, FD, MO disk, MT, RAM, CD, DVD, SD card, USB memory, etc.
- a server or the like can be used.
- B mode processing unit 6 Doppler processing unit 7, display control unit 8, gate setting unit 10, frame identification unit 12, blood vessel diameter calculation unit 13, cross-sectional area calculation unit 14, blood flow measurement unit 15, time phase search period.
- the processor 22 having the specific unit 16, the blood flow velocity calculation unit 17, and the device control unit 18 is composed of a CPU (Central Processing Unit) and a control program for causing the CPU to perform various processes.
- FPGA Field Programmable Gate Array: Feed Programmable Gate Array
- DSP Digital Signal Processor: Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- GPU Graphics Processing Unit: Graphics Processing Unit
- Other ICs Integrated Circuits
- the phase search period specifying unit 16, the blood flow velocity calculating unit 17, and the device control unit 18 can be partially or wholly integrated into one CPU or the like.
- step S1 the gate setting unit 10 sets the Doppler gate DG on the B mode image UB based on the user's input operation via the input device 19.
- step S2 the B-mode processing unit 6 and the Doppler processing unit 7 generate a B-mode image signal and a Doppler waveform image signal for a predetermined period longer than the heartbeat period HC.
- the B-mode processing unit 6 sequentially and continuously generates a B-mode image signal in which at least the blood vessel region BR is imaged, and displays a B-mode image UB based on the generated B-mode image signal. To display.
- the Doppler processing unit 7 acquires Doppler data in the Doppler gate DG set in step S1, and based on the acquired Doppler data, sequentially and continuously generates Doppler waveform image signals, and the generated Doppler
- the Doppler waveform image UD based on the waveform image signal is displayed on the display device 9.
- the B mode image UB and the Doppler waveform image UD are displayed on the display device 9.
- the B-mode image signals of the plurality of frames generated in step S2 are stored in the image memory 11.
- the time phase search period specifying unit 16 specifies the time phase search period based on the Doppler waveform image UD generated in step S2.
- the time phase search period specifying unit 16 sets the time phase search period from the time point T1 at which the blood flow velocity in the Doppler waveform image UD has the minimum value V1 to the time point T2 having the maximum value V2.
- the blood vessel diameter has a minimum value D1
- the blood vessel diameter has a maximum value D2.
- step S4 the frame specifying unit 12 analyzes the B-mode image signals of the plurality of frames in the time phase search period specified in step S3 among the B-mode image signals of the plurality of frames generated in step S2. At least one of the B-mode image signal of the frame having the largest blood vessel diameter and the B-mode image signal of the frame having the smallest blood vessel diameter is specified in each heartbeat period HC.
- the frame specifying unit 12 detects and detects the blood vessel wall in the B mode image signals of a plurality of frames in the first period FP.
- the diameter of the blood vessel is calculated based on the blood vessel wall, and the B-mode image signal of the frame in which the calculated blood vessel diameter has the minimum value D1 is specified.
- the frame specifying unit 12 performs a B-mode image by a user's input operation via the input device 19, for example, as shown in FIG.
- the positions of two points where the brightness of the B mode image UB on the vertical straight line SL set in the UB is higher than a certain value are specified as the positions of the blood vessel anterior wall W1 and the blood vessel posterior wall W2, and are specified.
- the distance L on the B-mode image UB between the two points can be calculated.
- the frame specifying unit 12 detects and detects the blood vessel wall in the B mode image signals of a plurality of frames in the second period SP.
- the diameter of the blood vessel is calculated based on the obtained blood vessel wall, and the B-mode image signal of the frame in which the calculated blood vessel diameter has the maximum value D2 is specified.
- the B mode image signal of the frame having the minimum value D1 in the diameter of the blood vessel in the first period FP is specified.
- the B-mode image signal of the frame having the maximum value D2 in the diameter of the blood vessel in the second period SP specify the B-mode image signal of the frame having the maximum value D2 in the diameter of the blood vessel in the second period SP.
- the frame specifying unit 12 receives the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter within the time phase search period specified in step S3. In order to specify at least one, the burden on the ultrasonic diagnostic apparatus 1 is reduced, and at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter is shortened. It can be easily identified in time. In addition, the frame specifying unit 12 can reduce the risk of erroneously identifying the B-mode image signal whose brightness value fluctuates due to the influence of noise or the like.
- the blood vessel diameter calculation unit 13 is based on at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter specified in step S4. At least one of the maximum diameter and the minimum diameter of the blood vessel is calculated. For example, when the first period FP is specified as the time phase search period in step S3 and the B mode image signal of the frame having the smallest blood vessel diameter is specified in step S4, the blood vessel diameter calculation unit 13 determines the blood vessel diameter. In the B-mode image signal of the frame having the minimum diameter, the minimum diameter of the blood vessel is calculated by converting the distance L on the B-mode image UB calculated as the diameter of the blood vessel in step S4 into the actual diameter of the blood vessel. be able to.
- the blood vessel diameter calculation unit 13 determines.
- the maximum diameter of the blood vessel is calculated by converting the distance L on the B-mode image UB calculated as the diameter of the blood vessel in step S4 into the actual diameter of the blood vessel. Can be calculated.
- both the first period FP and the second period SP are specified as the time phase search period, and in step S4, the B mode image signal of the frame in which the blood vessel diameter is minimized and the blood vessel diameter are maximum.
- the blood vessel diameter calculation unit 13 can calculate both the minimum diameter and the maximum diameter of the blood vessel.
- step S6 the cross-sectional area calculation unit 14 calculates the cross-sectional area of the blood vessel by using at least one of the minimum diameter and the maximum diameter of the blood vessel calculated in step S5, assuming that the blood vessel has a circular cross section. For example, when the minimum diameter of the blood vessel is calculated in step S5, the cross-sectional area calculation unit 14 calculates the cross-sectional area of the blood vessel using the minimum diameter of the blood vessel. Further, for example, when the maximum diameter of the blood vessel is calculated in step S5, the cross-sectional area calculation unit 14 calculates the cross-sectional area of the blood vessel using the maximum diameter of the blood vessel.
- the cross-sectional area calculation unit 14 calculates and calculates the average diameter of the blood vessel based on the minimum diameter and the maximum diameter of the blood vessel.
- the cross-sectional area of a blood vessel can be calculated using the average diameter of the blood vessel.
- step S7 the blood flow velocity calculation unit 17 calculates the blood flow velocity based on the Doppler data generated in step S2.
- the blood flow measuring unit 15 determines the blood vessel based on the cross-sectional area of the blood vessel calculated in step S6 based on the minimum diameter, maximum diameter or average diameter of the blood vessel and the blood flow velocity calculated in step S7.
- the blood flow rate representing the volume of blood flowing through the inside per unit time is measured, and as shown in FIG. 12, the measured value MV of the blood flow rate is displayed on the display device 9.
- the measured value MV of the blood flow rate is displayed on the display device 9 together with the B mode image UB and the Doppler waveform image UD.
- the blood flow rate is measured based on the B mode image of the frame selected by the user, for example, because the image is clear from the B mode images of the series of frames.
- the condition that the blood vessel has the minimum diameter or the condition that the blood vessel has the maximum diameter is different each time, and the measured value of the blood flow measured in the past and the value of the newly measured blood flow are measured for the same subject. There is a problem that it becomes difficult to make an accurate comparison when comparing.
- the cross-sectional area of the blood vessel calculated in step S6 and the blood flow velocity calculated in step S7 based on the minimum diameter, maximum diameter, or average diameter of the blood vessel Since the blood flow rate is measured in step S8 based on the above, the blood flow rate is calculated according to a certain standard. Therefore, for example, when comparing the measured value of the blood flow measured in the past with the value of the newly measured blood flow, it is possible to perform an accurate comparison according to a certain condition.
- the burden on the ultrasonic diagnostic apparatus 1 is reduced, and at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter can be easily performed in a short time. Can be identified.
- the ultrasonic diagnostic apparatus 1 when specifying at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal having the largest blood vessel diameter, the FP is within the first period. And the diameters of the blood vessels in at least one B-mode image signal in the second period SP may be compared with each other, and there is a risk of erroneously identifying the B-mode image signal in which the brightness value fluctuates due to the influence of noise or the like. Can be reduced. Therefore, at least one of the minimum diameter and the maximum diameter of the blood vessel is accurately calculated by the blood vessel diameter calculation unit 13, and an accurate value can be measured for the blood flow rate calculated by the blood flow rate measurement unit 15. is there.
- the time phase search period specifying unit 16 sets the second period SP for the first period FP from the time point T1 at which the blood flow velocity in the Doppler waveform image UD has the minimum value V1 to the time point T2 having the maximum value V2. It is specified as a period from the time point T2 when the blood flow velocity has the maximum value V2 to the time point T3 when a time shorter than each heartbeat period HC, for example, a predetermined time set to 0.25 seconds or the like elapses.
- the method for specifying the two-period SP is not limited to this.
- the time phase search period specifying unit 16 starts from the time point T2 when the blood flow velocity has the maximum value V2 so that the sum of the first period FP and the second period SP has a time width of half that of the heartbeat period HC.
- the period up to the time point T3 when the predetermined time elapses can be specified as the second period SP.
- the time phase search period specifying unit 16 is determined from the time point T2 when the blood flow velocity has the maximum value V2 so that the second period SP has a time width of 10% or more and 20% or less of the heartbeat period HC.
- the period up to T3 when the time elapses can be specified as the second period SP.
- the first period FP also has a time width of 10% or more and 20% or less of the heartbeat period HC.
- the period up to the time point T3 can be specified as the second period SP.
- the B-mode processing unit 6 and the Doppler processing unit 7 continuously generate the B-mode image signal and the Doppler waveform image signal for a predetermined period, but the B-mode image signal and the Doppler waveform image signal are generated.
- the ultrasonic diagnostic apparatus 1 is provided with a memory (not shown) in which a B-mode image signal generated over a specified period and a Doppler waveform image signal generated over the same specified period are stored in advance. You may.
- the time phase search period specifying unit 16 specifies the time phase search period based on the Doppler waveform image signal stored in a memory (not shown), and the frame specifying unit 12 specifies a plurality of files stored in a memory (not shown).
- B-mode image signal of the frame with the smallest blood vessel diameter and B-mode image signal of the frame with the largest blood vessel diameter based on the B-mode image signals of multiple frames within the time phase search period among the B-mode image signals of the frame. At least one of is identified.
- the ultrasonic diagnostic apparatus 1 instead of generating the B-mode image signal and the Doppler waveform image signal, the B-mode image signal generated over a predetermined period and the Doppler waveform image signal generated over the same predetermined period are stored in advance. Further, even when a memory (not shown) is provided in the ultrasonic diagnostic apparatus 1, the ultrasonic diagnostic apparatus 1 has a minimum blood vessel diameter as in the case where the B mode image signal and the Doppler waveform image signal are generated.
- the burden of identifying at least one of the B-mode image signal of the frame and the B-mode image signal of the frame that maximizes the diameter of the blood vessel is reduced, and the B-mode image signal of the frame that minimizes the diameter of the blood vessel and the blood vessel At least one of the B-mode image signals of the frame having the maximum diameter can be easily identified in a short time. Further, the ultrasonic diagnostic apparatus 1 can reduce the possibility of erroneously identifying the B-mode image signal in which the brightness value fluctuates due to the influence of noise or the like.
- step S2 in the flowchart of FIG. 10 after the B mode image signal and the Doppler waveform image signal are generated by the B mode processing unit 6 and the Doppler processing unit 7 in a predetermined period, the time phase search period is performed in step S3.
- a process of specifying the time phase search period in real time may be performed based on the Doppler waveform image signal sequentially generated within the period specified in step S2.
- the time phase search period specifying unit 16 is, for example, based on the generated Doppler waveform image signal every time the Doppler processing unit 7 generates a Doppler waveform image signal in a period less than the heartbeat period HC. Performs processing to specify the phase search period.
- the B-mode processing unit 6 and the Doppler processing unit 7 do not need to acquire the B-mode image signal and the Doppler waveform image signal after the first period FP or after the second period SP, so that the time is shorter. And easily, at least one of the B-mode image signal with the smallest blood vessel diameter and the B-mode image signal with the largest blood vessel diameter is identified.
- the frame specifying unit 12 is based on the B mode image signal generated by the B mode processing unit 6, the B mode image signal of the frame having the smallest blood vessel diameter and the B mode of the frame having the largest blood vessel diameter.
- the image signal it is also possible to specify the RF data of the frame having the smallest blood vessel diameter and the RF data of the frame having the largest blood vessel diameter based on the RF data generated by the receiving circuit 4. ..
- the frame specifying unit 12 specifies the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter based on the B-mode image signal.
- the RF data of the frame having the smallest blood vessel diameter and the RF data of the frame having the largest blood vessel diameter can be easily and accurately identified. it can.
- the frame specifying unit 12 specifies both the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter, and the blood vessel diameter calculating unit 13 Therefore, both the minimum diameter and the maximum diameter of the blood vessel in each heartbeat period HC can be calculated.
- the minimum diameter and the maximum diameter of the blood vessel calculated in this way are used to express the elasticity of the blood vessel.
- the elasticity index can be calculated.
- the ultrasonic diagnostic apparatus 1A is the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. 1 instead of the apparatus control unit 18A.
- the elastic index calculation unit 41 is added.
- the elasticity index calculation unit 41 is connected to the blood vessel diameter calculation unit 13, and the display control unit 8 and the device control unit 18A are connected to the elasticity index calculation unit 41.
- B mode processing unit 6 Doppler processing unit 7, display control unit 8, gate setting unit 10, frame identification unit 12, blood vessel diameter calculation unit 13, cross-sectional area calculation unit 14, blood flow measurement unit 15, time phase search period.
- the processor 22A for the ultrasonic diagnostic apparatus 1A is configured by the specific unit 16, the blood flow velocity calculation unit 17, the device control unit 18A, and the elasticity index calculation unit 41.
- the elasticity index calculation unit 41 calculates the elasticity index of the blood vessel based on the difference between the maximum diameter and the minimum diameter of the blood vessel calculated by the blood vessel diameter calculation unit 13.
- the elasticity index of a blood vessel is an index showing the elasticity of a blood vessel. It can be judged that the larger the difference between the maximum diameter and the minimum diameter of the blood vessel is, the larger the change in the diameter of the blood vessel is and the lower the elastic coefficient of the blood vessel is. It can be judged that the change is small and the elasticity of the blood vessel is high. Therefore, the elasticity index calculation unit 41 can calculate, for example, the difference between the maximum diameter and the minimum diameter of the blood vessel as the elasticity index of the blood vessel. Further, the elasticity index calculation unit 41 can also calculate, for example, a standardized elasticity index by dividing the difference between the maximum diameter and the minimum diameter of the blood vessel by the minimum diameter of the blood vessel.
- the elasticity index is calculated by measuring the blood pressure P1 of the subject at the time when the blood vessel diameter becomes the minimum and the blood pressure P2 of the subject at the time when the blood vessel diameter becomes the maximum using a sphygmomanometer (not shown).
- Log (P2 / P1) ⁇ / ⁇ (D2 / D1) -1 ⁇ can also be calculated as an elastic index.
- the B-mode image signal of the frame having the smallest blood vessel diameter is obtained, similarly to the ultrasonic diagnostic apparatus 1 according to the first embodiment.
- the burden on the ultrasonic diagnostic apparatus 1A is reduced, and the B-mode image signal of the frame that minimizes the blood vessel diameter and B that maximizes the blood vessel diameter. Since the mode image signal can be easily identified in a short time and the risk of erroneously identifying the B mode image signal whose brightness value fluctuates due to the influence of noise or the like can be reduced, the elasticity index can be reduced. Can also be calculated easily and accurately in a short time.
- the ultrasonic diagnostic apparatus 1 of the first embodiment has a configuration in which the display device 9, the input device 19, and the ultrasonic probe 21 are directly connected to the processor 22, but for example, the display device 9, the input device, and the like. 19.
- the ultrasonic probe 21 and the processor 22 can also be indirectly connected via a network.
- the display device 9, the input device 19, and the ultrasonic probe 21 are connected to the ultrasonic diagnostic apparatus main body 51 via the network NW. ..
- the ultrasonic diagnostic apparatus main body 51 is the ultrasonic diagnostic apparatus 1 of the first embodiment shown in FIG. 1, excluding the display device 9, the input device 19, and the ultrasonic probe 21, the transmission / reception circuit 5, and the storage unit 20. And a processor 22.
- the blood vessel is within the time phase search period specified by the time phase search period specifying unit 16 as in the ultrasonic diagnostic apparatus 1 of the first embodiment. All generated with the Doppler waveform image signal within a defined time period because at least one of the B-mode image signal of the frame with the smallest diameter and the B-mode image signal of the frame with the largest blood vessel diameter is identified. It is possible to specify at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter with a smaller calculation amount than the case of using the B-mode image signal of. ..
- the burden on the ultrasonic diagnostic apparatus 1 is reduced, and at least one of the B-mode image signal of the frame having the smallest blood vessel diameter and the B-mode image signal of the frame having the largest blood vessel diameter can be easily performed in a short time. Can be identified.
- a B-mode image signal of a frame having a minimum blood vessel diameter and a B-mode image signal having a maximum blood vessel diameter are used.
- the diameters of the blood vessels in at least one B-mode image signal in the first period FP and the second period SP may be compared with each other, and the brightness value may be determined due to the influence of noise or the like. It is possible to reduce the risk of erroneously identifying the B-mode image signal in which the fluctuation has occurred.
- the ultrasonic diagnostic device main body 51 can be used as a so-called remote server. ..
- the user can diagnose the subject by preparing the display device 9, the input device 19, and the ultrasonic probe 21 at the user's hand, which is convenient for ultrasonic diagnosis. Can be improved.
- a portable thin computer called a so-called tablet is used as the display device 9 and the input device 19, the user can more easily perform the ultrasonic diagnosis of the subject, and the ultrasonic diagnosis can be performed. The convenience of the computer can be further improved.
- the display device 9, the input device 19, and the ultrasonic probe 21 are connected to the ultrasonic diagnostic device main body 51 via the network NW. At this time, the display device 9, the input device 19, and the ultrasonic probe 21 are connected. , It may be wiredly connected to the network NW, or it may be wirelessly connected. Further, although it is explained that the aspect of the third embodiment is applied to the first embodiment, the same can be applied to the second embodiment.
- 1,1A, 1B ultrasonic diagnostic equipment 2 oscillator array, 3 transmission circuit, 4 reception circuit, 5 transmission / reception circuit, 6B mode processing unit, 7 Doppler processing unit, 8 display control unit, 9 display device, 10 gate setting Unit, 11 image memory, 12 frame identification unit, 13 blood vessel diameter calculation unit, 14 cross-sectional area calculation unit, 15 blood flow measurement unit, 16 time phase search period specification unit, 17 blood flow velocity calculation unit, 18, 18A device control unit , 19 input device, 20 storage unit, 21 ultrasonic probe, 22, 22A processor, 23 amplification unit, 24 AD conversion unit, 25 beam former, 26 signal processing unit, 27 DSC, 28 image processing unit, 29 orthogonal detection unit, 30 high-pass filter, 31 high-speed Fourier converter, 32 Doppler waveform image generator, 33 data memory, 41 elastic index calculation unit, 51 ultrasonic diagnostic equipment main body, 52 transmission / reception circuit, BR blood vessel region, D1, V1 minimum value, D2, V2 maximum value, DG Dopplerate, E waveform line, FP 1st
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
超音波診断装置(1)は、ドプラデータに基づいて各心拍期間における時相サーチ期間を特定する時相サーチ期間特定部(16)と、時相サーチ期間特定部(16)により特定された時相サーチ期間内における複数フレームのBモードデータを解析することにより、各心拍期間において血管の直径が最大となるフレームのBモードデータおよび血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定するフレーム特定部(12)とを備える。
Description
本発明は、Bモードデータとドプラデータを取得する超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサに関する。
従来から、被検体の内部の画像を得るものとして、超音波診断装置が知られている。超音波診断装置は、一般的に、複数の素子が配列された振動子アレイが備えられた超音波プローブを備えている。この超音波プローブを被検体の体表に接触させた状態において、振動子アレイから被検体内に向けて超音波ビームが送信され、被検体からの超音波エコーを振動子アレイにおいて受信して素子データが取得される。さらに、超音波診断装置は、得られた素子データを電気的に処理して、被検体の当該部位に対する超音波画像を生成する。
例えば、特許文献1には、ドプラデータに基づいて、被検体の血管が写るBモード(Brightness mode:輝度モード)画像における血管領域を検出する超音波診断装置が開示されている。特許文献1の超音波診断装置は、検出された血管領域に基づいてBモード画像における血管をセグメント化し、セグメント化された血管の直径をBモード画像に基づいて算出する。
ここで、一般的に、血管の弾性を表す弾性指標等を算出するために、血管の最大径および最小径が測定されることがある。特許文献1に記載されているような従来の超音波診断装置を用いて、血管の最小径および最大径を測定する場合には、連続的に取得された複数フレームのそれぞれのBモード画像から算出された血管の直径を比較して、その最小値および最大値を求める必要があるため、超音波診断装置における負担が大きく、血管の最小径および最大径を算出するために多大な時間を要するという問題があった。また、Bモード画像のみに基づいて血管の最小径および最大径を測定しようとすると、ノイズの影響等に起因して輝度値に変動が生じた場合に、誤った最小値および最大値を測定してしまうおそれがあった。
本発明は、このような従来の問題点を解決するためになされたものであり、血管の直径が最大となるBモードデータおよび血管の直径が最小となるBモードデータの少なくとも一方を容易に且つ正確に特定することができる超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサを提供することを目的とする。
上記目的を達成するために、本発明に係る超音波診断装置は、被検体の血管が含まれる領域に対して定められた期間にわたってBモードデータとドプラデータとが連続的に取得される超音波診断装置であって、ドプラデータに基づいて各心拍期間における時相サーチ期間を特定する時相サーチ期間特定部と、時相サーチ期間特定部により特定された時相サーチ期間内における複数フレームのBモードデータを解析することにより、各心拍期間において血管の直径が最大となるフレームのBモードデータおよび血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定するフレーム特定部とを備えることを目的とする。
フレーム特定部により特定された、血管の直径が最大となるフレームのBモードデータおよび血管の直径が最小となるフレームのBモードデータの少なくとも一方に基づいて血管の最大径および最小径の少なくとも一方を算出する血管径算出部をさらに備えることが好ましい。
また、血管径算出部により算出された血管の最大径および最小径の少なくとも一方を用いて血管の断面積を算出する断面積算出部と、各心拍期間におけるドプラデータを取得するドプラ処理部と、ドプラ処理部により取得されたドプラデータに基づいて血流速度を算出する血流速度算出部と、断面積算出部により算出された断面積と血流速度算出部により算出された血流速度に基づいて血流量を計測する血流量計測部とをさらに備えることが好ましい。
また、血管径算出部により算出された血管の最大径および最小径の少なくとも一方を用いて血管の断面積を算出する断面積算出部と、各心拍期間におけるドプラデータを取得するドプラ処理部と、ドプラ処理部により取得されたドプラデータに基づいて血流速度を算出する血流速度算出部と、断面積算出部により算出された断面積と血流速度算出部により算出された血流速度に基づいて血流量を計測する血流量計測部とをさらに備えることが好ましい。
時相サーチ期間特定部は、各心拍期間におけるドプラデータが最小値を有する時点を含む第1期間を時相サーチ期間として特定し、フレーム特定部は、第1期間内における複数フレームのBモードデータに基づいて血管の直径が最小となるフレームのBモードデータを特定し、血管径算出部は、フレーム特定部により特定された、血管の直径が最小となるフレームのBモードデータに基づいて、血管の最小径を算出し、断面積算出部は、血管径算出部により算出された血管の最小径を用いて血管の断面積を算出することができる。
もしくは、時相サーチ期間特定部は、各心拍期間におけるドプラデータが最大値を有する時点を含む第2期間を時相サーチ期間として特定し、フレーム特定部は、第2期間内における複数フレームのBモードデータに基づいて血管の直径が最大となるフレームのBモードデータを特定し、血管径算出部は、フレーム特定部により特定された、血管の直径が最大となるフレームのBモードデータに基づいて、血管の最大径を算出し、断面積算出部は、血管径算出部により算出された血管の最大径を用いて血管の断面積を算出することもできる。
もしくは、時相サーチ期間特定部は、各心拍期間におけるドプラデータが最小値を有する時点を含む第1期間および各心拍期間におけるドプラデータが最大値を有する時点を含む第2期間を有する時相サーチ期間を特定し、フレーム特定部は、第1期間内における複数フレームのBモードデータに基づいて血管の直径が最小となるフレームのBモードデータを特定し、且つ、第2期間内における複数フレームのBモードデータに基づいて血管の直径が最大となるフレームのBモードデータを特定し、血管径算出部は、フレーム特定部により特定された、血管の直径が最小となるフレームのBモードデータに基づいて、血管の最小径を算出し、且つ、フレーム特定部により特定された、血管の直径が最大となるフレームのBモードデータに基づいて、血管の最大径を算出し、断面積算出部は、血管径算出部により算出された血管の最小径および血管の最大径とから算出された各心拍期間における血管の平均径を用いて血管の断面積を算出することもできる。
第1期間は、各心拍期間におけるドプラデータが最小値を有する時点から最大値を有する時点までの期間であることが好ましい。
また、第2期間は、各心拍期間におけるドプラデータが最大値を有する期間から各心拍期間よりも短い時間に設定された定められた時間が経過するまでの期間であることが好ましい。
さらに、第1期間および第2期間は、それぞれ、各心拍期間の10%以上20%以下の時間幅を有することが好ましい。
また、血管の最大径と血管の最小径との差に基づいて血管の弾性指標を算出する弾性指標算出部をさらに備えることができる。
また、第2期間は、各心拍期間におけるドプラデータが最大値を有する期間から各心拍期間よりも短い時間に設定された定められた時間が経過するまでの期間であることが好ましい。
さらに、第1期間および第2期間は、それぞれ、各心拍期間の10%以上20%以下の時間幅を有することが好ましい。
また、血管の最大径と血管の最小径との差に基づいて血管の弾性指標を算出する弾性指標算出部をさらに備えることができる。
また、超音波プローブと、超音波プローブを介して被検体内に超音波ビームを送信し且つ被検体内から超音波エコーを受信して受信データを生成する送受信回路と、送受信回路により生成された受信データに基づいてBモードデータを生成するBモード処理部とをさらに備えることが好ましい。
本発明の超音波診断装置の制御方法は、被検体の血管が含まれる領域に対して定められた期間にわたってBモードデータとドプラデータとが連続的に取得される超音波診断装置の制御方法であって、ドプラデータに基づいて各心拍期間における時相サーチ期間を特定し、特定された時相サーチ期間内における複数フレームのBモードデータを解析することにより、各心拍期間において血管の直径が最大となるフレームのBモードデータおよび血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定することを特徴とする。
本発明の超音波診断装置用プロセッサは、被検体の血管が含まれる領域に対して定められた期間にわたってBモードデータとドプラデータとを連続的に取得し、ドプラデータに基づいて各心拍期間における時相サーチ期間を特定し、特定された時相サーチ期間内における複数フレームのBモードデータを解析することにより、各心拍期間において血管の直径が最大となるフレームのBモードデータおよび血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定することを特徴とする。
本発明によれば、ドプラデータに基づいて各心拍期間における時相サーチ期間を特定する時相サーチ期間特定部と、時相サーチ期間特定部により特定された時相サーチ期間内における複数フレームのBモードデータを解析することにより、各心拍期間において血管の直径が最大となるフレームのBモードデータおよび血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定するフレーム特定部とを備えるため、血管の直径が最大となるBモードデータと血管の直径が最小となるBモードデータの少なくとも一方を容易に且つ正確に特定することができる。
以下、この発明の実施の形態を添付図面に基づいて説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、「垂直」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「垂直」および「平行」とは、厳密な垂直あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な垂直あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、「垂直」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「垂直」および「平行」とは、厳密な垂直あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な垂直あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
実施の形態1
図1に、本発明の実施の形態1に係る超音波診断装置1の構成を示す。図1に示すように、超音波診断装置1は、振動子アレイ2を備えており、送信回路3および受信回路4がそれぞれ接続されている。ここで、送信回路3と受信回路4により、送受信回路5が構成されている。受信回路4には、Bモード(Brightness mode:輝度モード)処理部6およびドプラ処理部7が接続され、これらのBモード処理部6およびドプラ処理部7に表示制御部8を介して表示装置9が接続されている。
図1に、本発明の実施の形態1に係る超音波診断装置1の構成を示す。図1に示すように、超音波診断装置1は、振動子アレイ2を備えており、送信回路3および受信回路4がそれぞれ接続されている。ここで、送信回路3と受信回路4により、送受信回路5が構成されている。受信回路4には、Bモード(Brightness mode:輝度モード)処理部6およびドプラ処理部7が接続され、これらのBモード処理部6およびドプラ処理部7に表示制御部8を介して表示装置9が接続されている。
また、Bモード処理部6にゲート設定部10が接続され、ゲート設定部10に、ドプラ処理部7および表示制御部8が接続されている。また、Bモード処理部6に、画像メモリ11が接続され、画像メモリ11に、フレーム特定部12が接続されている。また、フレーム特定部12に、血管径算出部13、断面積算出部14、血流量計測部15が順次接続されている。また、ドプラ処理部7に、時相サーチ期間特定部16と血流速度算出部17が接続されている。時相サーチ期間特定部16に、フレーム特定部12が接続され、血流速度算出部17に、血流量計測部15が接続されている。
また、送受信回路5、Bモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17に、装置制御部18が接続されており、装置制御部18に、入力装置19および格納部20が接続されている。装置制御部18と格納部20は、互いに双方向の情報の受け渡しが可能に接続されている。
また、振動子アレイ2は、超音波プローブ21に含まれており、Bモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17および装置制御部18により、超音波診断装置1用のプロセッサ22が構成されている。
また、振動子アレイ2は、超音波プローブ21に含まれており、Bモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17および装置制御部18により、超音波診断装置1用のプロセッサ22が構成されている。
図1に示す超音波プローブ21の振動子アレイ2は、1次元または2次元に配列された複数の振動子を有している。これらの振動子は、それぞれ送信回路3から供給される駆動信号に従って超音波を送信すると共に、被検体からの超音波エコーを受信して、超音波エコーに基づく信号を出力する。各振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。
送信回路3は、例えば、複数のパルス発生器を含んでおり、装置制御部18からの制御信号に応じて選択された送信遅延パターンに基づいて、振動子アレイ2の複数の振動子から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号を、遅延量を調節して複数の振動子に供給する。このように、振動子アレイ2の振動子の電極にパルス状または連続波状の電圧が印加されると、圧電体が伸縮し、それぞれの振動子からパルス状または連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。
送信された超音波ビームは、例えば、被検体の部位等の対象において反射され、超音波プローブ21の振動子アレイ2に向かって伝搬する。このように振動子アレイ2に向かって伝搬する超音波は、振動子アレイ2を構成するそれぞれの振動子により受信される。この際に、振動子アレイ2を構成するそれぞれの振動子は、伝搬する超音波エコーを受信することにより伸縮して電気信号を発生させ、これらの電気信号を受信回路4に出力する。
受信回路4は、装置制御部18からの制御信号に従い、振動子アレイ2から出力される信号の処理を行って、いわゆるRF(Radio Frequency:高周波)データである、受信データを生成する。図2に示すように、受信回路4は、増幅部23、AD(Analog Digital:アナログデジタル)変換部24およびビームフォーマ25が直列に接続された構成を有している。
増幅部23は、振動子アレイ2を構成するそれぞれの振動子から入力された信号を増幅し、増幅した信号をAD変換部24に送信する。AD変換部24は、増幅部23から送信された信号をデジタルデータに変換し、これらのデータをビームフォーマ25に送信する。ビームフォーマ25は、装置制御部18からの制御信号に応じて選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、AD変換部24により変換された各データに対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部24により変換された各データが整相加算され且つ超音波エコーの焦点が絞り込まれた受信データが取得される。
Bモード処理部6は、図3に示されるように、信号処理部26、DSC(Digital Scan Converter:デジタルスキャンコンバータ)27および画像処理部28が順次直列に接続された構成を有している。
信号処理部26は、受信回路4により生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。
DSC27は、信号処理部26で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
画像処理部28は、DSC27から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部8に出力する。
信号処理部26は、受信回路4により生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。
DSC27は、信号処理部26で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
画像処理部28は、DSC27から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部8に出力する。
ドプラ処理部7は、後述するゲート設定部10により血管領域に設定されるドプラゲート内のドプラデータを取得し、ドプラ波形画像を生成するものであり、図4に示されるように、直交検波部29とハイパスフィルタ30と高速フーリエ変換部(Fast Fourier Transformer)31とドプラ波形画像生成部32が順次直列に接続されると共に直交検波部29の出力端にデータメモリ33が接続された構成を有している。
直交検波部29は、受信回路4で生成された受信データに参照周波数のキャリア信号を混合することで、受信データを直交検波して複素データに変換する。
ハイパスフィルタ30は、いわゆるウォールフィルタ(Wall Filter)として機能するもので、直交検波部29で生成された複素データから被検体の体内組織の運動に由来する周波数成分を除去する。
直交検波部29は、受信回路4で生成された受信データに参照周波数のキャリア信号を混合することで、受信データを直交検波して複素データに変換する。
ハイパスフィルタ30は、いわゆるウォールフィルタ(Wall Filter)として機能するもので、直交検波部29で生成された複素データから被検体の体内組織の運動に由来する周波数成分を除去する。
高速フーリエ変換部31は、複数のサンプル点の複素データをフーリエ変換することにより周波数解析して血流速度を求め、スペクトル信号を生成する。
ドプラ波形画像生成部32は、高速フーリエ変換部31で生成されたスペクトル信号を時間軸上に揃えつつ各周波数成分の大きさを輝度で表すことによりドプラ波形画像信号を生成する。ここで、図5に、ドプラ波形画像信号に基づく理想的なドプラ波形画像UDの例を示す。ドプラ波形画像UDは、横軸に時間軸を示し、縦軸にドプラシフト周波数すなわち血流速度を示し、波形の輝度が各周波数成分におけるパワーを表すものであり、ドプラ波形画像UDにおける血流速度の値は、心拍期間HCに従って周期的に変化する。心拍期間HCについては、血流速度が最小値V1を有する時点T1から次に最小値V1を有する時点T4までの期間を心拍期間HCと定義することとする。
また、データメモリ33は、直交検波部29で受信データから変換された複素データを保存する。
ドプラ波形画像生成部32は、高速フーリエ変換部31で生成されたスペクトル信号を時間軸上に揃えつつ各周波数成分の大きさを輝度で表すことによりドプラ波形画像信号を生成する。ここで、図5に、ドプラ波形画像信号に基づく理想的なドプラ波形画像UDの例を示す。ドプラ波形画像UDは、横軸に時間軸を示し、縦軸にドプラシフト周波数すなわち血流速度を示し、波形の輝度が各周波数成分におけるパワーを表すものであり、ドプラ波形画像UDにおける血流速度の値は、心拍期間HCに従って周期的に変化する。心拍期間HCについては、血流速度が最小値V1を有する時点T1から次に最小値V1を有する時点T4までの期間を心拍期間HCと定義することとする。
また、データメモリ33は、直交検波部29で受信データから変換された複素データを保存する。
装置制御部18は、格納部20等に予め記憶されているプログラムおよび入力装置19を介したユーザによる入力操作に基づいて、超音波診断装置1の各部の制御を行う。
表示制御部8は、装置制御部18の制御の下、Bモード処理部6により生成されたBモード画像信号、ドプラ処理部7により生成されたドプラ波形画像信号等に所定の処理を施して、Bモード画像、ドプラ波形画像等を表示装置9に表示する。
表示制御部8は、装置制御部18の制御の下、Bモード処理部6により生成されたBモード画像信号、ドプラ処理部7により生成されたドプラ波形画像信号等に所定の処理を施して、Bモード画像、ドプラ波形画像等を表示装置9に表示する。
超音波診断装置1の表示装置9は、表示制御部8により生成された画像を表示するものであり、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)、有機ELディスプレイ(Organic Electroluminescence Display)等のディスプレイ装置を含む。
超音波診断装置1の入力装置19は、ユーザが入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等を備えて構成することができる。
超音波診断装置1の入力装置19は、ユーザが入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等を備えて構成することができる。
ゲート設定部10は、入力装置19を介したユーザの入力操作に基づいて、図6に示すように、Bモード画像UB上の血管領域BR内にドプラゲートDGを設定する。例えば、ユーザが、表示装置9に表示されたBモード画像UBを見ながら、入力装置19を介してBモード画像UB上の血管領域BR内における適切な位置を指定すると、ゲート設定部10は、ユーザにより指定された位置にドプラゲートDGを配置する。このようにして設定されたドプラゲートDGは、Bモード画像UBに重畳して表示装置9に表示される。
ドプラ処理部7は、ゲート設定部10により設定されたドプラゲートDG内のドプラデータを取得する。
ドプラ処理部7は、ゲート設定部10により設定されたドプラゲートDG内のドプラデータを取得する。
ところで、一般的に、超音波診断装置を用いて被検体内の血管の最小径および最大径を算出する場合には、各心拍期間HCにわたって連続的に生成された複数フレームのBモード画像のすべてに対して、算出された血管の直径を比較する必要があった。そのため、血管の最小径および最大径を算出する際に、超音波診断装置における負担が大きく、多大な時間を要するという問題があった。
そこで、本発明者らは、ドプラ波形画像UDにおける血流速度の時間変化と血管の直径の時間変化に着目して、図7に示すような関係を見出した。血管の直径は、血流速度と同様に、心拍期間HCに従って最小値D1と最大値D2の間を周期的に変化するが、血流速度が最小値V1を有する時点T1を含む期間、すなわち、血流速度が最小値V1を有する時点T1から最大値V2を有する時点T2までの第1期間FPにおいて血管の直径が最小値D1を有する。また、血流速度が最大値V2を有する時点T2を含む期間、すなわち、血流速度が最大値V2を有する時点T2から、各心拍期間HCよりも短い時間、例えば0.25秒等に設定された定められた時間が経過する時点T3までの第2期間SPにおいて血管の直径が最大値D2を有する。
そのため、第1期間FPおよび第2期間SPを特定することにより、超音波診断装置1の負担を軽減して、短時間に且つ容易に、血管の直径が最小値D1を有するBモード画像および血管の直径が最大値D2を有するBモード画像を特定することができる。さらに、血管の直径が最小値D1を有するBモード画像と血管の直径が最大値D2を有するBモード画像を特定する際に、第1期間FP内および第2期間SP内のBモード画像における血管の直径を互いに比較すればよく、ノイズの影響等に起因して輝度値に変動が生じたBモード画像を誤って特定するおそれを低減することができる。
時相サーチ期間特定部16は、ドプラ処理部7により生成されたドプラデータに基づいて、各心拍期間HCにおける第1期間FPと第2期間SPの少なくとも一方を時相サーチ期間として特定する。ここで、時相サーチ期間とは、各心拍期間HCにおいて血管の直径が最大となるBモード画像信号と血管の直径が最小となるBモード画像信号の少なくとも一方を特定するための期間である。
なお、時相サーチ期間特定部16は、図8に示すように、各心拍期間HCにおいてドプラ波形WDの包絡線Eを設定し、設定された包絡線Eに基づいて時相サーチ期間を特定するものとする。
なお、時相サーチ期間特定部16は、図8に示すように、各心拍期間HCにおいてドプラ波形WDの包絡線Eを設定し、設定された包絡線Eに基づいて時相サーチ期間を特定するものとする。
画像メモリ11は、Bモード処理部6により連続的に生成された複数フレームのBモード画像信号を保存するメモリである。画像メモリ11としては、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、またはサーバ等を用いることができる。
フレーム特定部12は、画像メモリ11に保存された複数フレームのBモード画像信号のうち、時相サーチ期間特定部16により特定された時相サーチ期間内における複数フレームのBモード画像信号を解析することにより、各心拍期間HCにおいて血管の直径が最大となるフレームのBモード画像信号および血管の直径が最小となるフレームのBモード画像信号の少なくとも一方を特定する。この際に、フレーム特定部12は、例えば、時相サーチ期間内の各フレームのBモード画像信号において血管の直径を算出し、算出された血管の直径に基づいて、血管の直径が最大となるフレームのBモード画像信号および血管の直径が最小となるフレームのBモード画像信号の少なくとも一方を特定することができる。
フレーム特定部12は、各フレームのBモード画像信号において血管の直径を算出する際に、例えば、図9に示すように、入力装置19を介したユーザの入力操作等によりBモード画像UBに設定された縦方向の直線SL上におけるBモード画像UBの輝度が、一定の値よりも高い2点の位置を血管前壁W1の位置および血管後壁W2の位置として特定し、特定された2点間のBモード画像UB上の距離Lを算出することができる。なお、例えば、直線SLとして、Bモード画像UBの中心を通る垂直線を使用してもよい。
フレーム特定部12は、時相サーチ期間の第1期間FP内において、このようにして算出された血管の直径が最小となるフレームのBモード画像信号を特定する。また、フレーム特定部12は、時相サーチ期間の第2期間SPにおいて、このようにして算出された血管の直径が最大となるフレームのBモード画像信号を特定する。
フレーム特定部12は、時相サーチ期間の第1期間FP内において、このようにして算出された血管の直径が最小となるフレームのBモード画像信号を特定する。また、フレーム特定部12は、時相サーチ期間の第2期間SPにおいて、このようにして算出された血管の直径が最大となるフレームのBモード画像信号を特定する。
血管径算出部13は、フレーム特定部12により特定された、血管の直径が最小となるフレームのBモード画像信号および血管の直径が最大となるフレームのBモード画像信号の少なくとも一方に基づいて、血管の最大径および最小径の少なくとも一方を算出する。例えば、血管径算出部13は、血管の直径が最大となるフレームのBモード画像信号において、フレーム特定部12により血管の直径として算出されたBモード画像UB上の距離Lを、血管の実際の直径に換算する等により、血管の最大径を算出することができる。また、例えば、血管径算出部13は、血管の直径が最小となるフレームのBモード画像信号において、フレーム特定部12により血管の直径として算出されたBモード画像UB上の距離Lに基づいて、血管の最小径を算出することができる。
断面積算出部14は、血管が円形の断面を有するものとして、血管径算出部13により算出された血管の直径に基づいて、血管の断面積を算出する。例えば、血管径算出部13により、血管の最小径が算出された場合に、断面積算出部14は、血管の最小径を用いて血管の断面積を算出する。また、例えば、血管径算出部13により、血管の最大径が算出された場合に、断面積算出部14は、血管の最大径を用いて血管の断面積を算出する。また、例えば、血管径算出部13により、血管の最小径および最大径の双方が算出された場合には、断面積算出部14は、血管の最小径と最大径に基づいて血管の平均径を算出し、算出された血管の平均径を用いて血管の断面積を算出することができる。
血流速度算出部17は、ドプラ処理部7により取得されたドプラデータに基づいて、いわゆるパルスドプラ法により、血流速度を算出する。なお、血流速度算出部17は、各心拍期間HCにおける平均血流速度を算出することもできる。
血流量計測部15は、断面積算出部14により算出された血管の断面積と、血流速度算出部17により算出された血流速度とに基づいて、血管内を流れる血液の単位時間当たりの体積を表す血流量を計測する。
血流量計測部15は、断面積算出部14により算出された血管の断面積と、血流速度算出部17により算出された血流速度とに基づいて、血管内を流れる血液の単位時間当たりの体積を表す血流量を計測する。
格納部20は、超音波診断装置1の動作プログラム等を格納するもので、フラッシュメモリ、HDD、SSD、FD、MOディスク、MT、RAM、CD、DVD、SDカード、USBメモリ等の記録メディア、またはサーバ等を用いることができる。
なお、Bモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17および装置制御部18を有するプロセッサ22は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよく、もしくはそれらを組み合わせて構成されてもよい。
また、プロセッサ22のBモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17および装置制御部18は、部分的にあるいは全体的に1つのCPU等に統合させて構成することもできる。
次に、図10に示すフローチャートを用いて、実施の形態1における超音波診断装置1の動作を詳細に説明する。
まず、ステップS1において、図6に示すように、入力装置19を介したユーザの入力操作に基づいて、ゲート設定部10により、Bモード画像UB上にドプラゲートDGが設定される。
まず、ステップS1において、図6に示すように、入力装置19を介したユーザの入力操作に基づいて、ゲート設定部10により、Bモード画像UB上にドプラゲートDGが設定される。
次に、ステップS2において、Bモード処理部6とドプラ処理部7により、心拍期間HCよりも長い定められた期間にわたって、Bモード画像信号とドプラ波形画像信号が生成される。この際に、Bモード処理部6は、少なくとも血管領域BRが撮像されているBモード画像信号を順次、連続的に生成し、生成されたBモード画像信号に基づくBモード画像UBを表示装置9に表示させる。また、ドプラ処理部7は、ステップS1で設定されたドプラゲートDG内のドプラデータを取得し、取得されたドプラデータに基づいて、ドプラ波形画像信号を順次、連続的に生成し、生成されたドプラ波形画像信号に基づくドプラ波形画像UDを表示装置9に表示させる。これにより、例えば図11に示すように、Bモード画像UBとドプラ波形画像UDが表示装置9に表示される。また、ステップS2で生成された複数フレームのBモード画像信号は、画像メモリ11に保存される。
続くステップS3において、時相サーチ期間特定部16は、ステップS2で生成されたドプラ波形画像UDに基づいて時相サーチ期間を特定する。この際に、時相サーチ期間特定部16は、図7に示すように、時相サーチ期間として、ドプラ波形画像UDにおける血流速度が最小値V1を有する時点T1から最大値V2を有する時点T2までの第1期間FPと、血流速度が最大値V2を有する時点T2から各心拍期間HCよりも短い時間、例えば0.25秒等に設定された定められた時間が経過する時点T3までの第2期間SPの少なくとも一方を特定する。図7に示すように、第1期間FPにおいて、血管の直径が最小値D1を有し、第2期間SPにおいて、血管の直径が最大値D2を有する。
ステップS4において、フレーム特定部12は、ステップS2で生成された複数フレームのBモード画像信号のうち、ステップS3で特定された時相サーチ期間における複数フレームのBモード画像信号を解析することにより、各心拍期間HCにおいて血管の直径が最大となるフレームのBモード画像信号および血管の直径が最小となるフレームのBモード画像信号の少なくとも一方を特定する。
例えば、ステップS3で時相サーチ期間として第1期間FPが特定された場合に、フレーム特定部12は、第1期間FP内の複数フレームのBモード画像信号において血管壁を検出し、検出された血管壁に基づいて、血管の直径を算出し、算出された血管の直径が最小値D1を有するフレームのBモード画像信号を特定する。
ここで、フレーム特定部12は、各フレームのBモード画像信号において血管の直径を算出する際に、例えば、図9に示すように、入力装置19を介したユーザの入力操作等によりBモード画像UBに設定された、縦方向の直線SL上におけるBモード画像UBの輝度が一定の値よりも高い2点の位置を、血管前壁W1の位置および血管後壁W2の位置として特定し、特定された2点間のBモード画像UB上の距離Lを算出することができる。
ここで、フレーム特定部12は、各フレームのBモード画像信号において血管の直径を算出する際に、例えば、図9に示すように、入力装置19を介したユーザの入力操作等によりBモード画像UBに設定された、縦方向の直線SL上におけるBモード画像UBの輝度が一定の値よりも高い2点の位置を、血管前壁W1の位置および血管後壁W2の位置として特定し、特定された2点間のBモード画像UB上の距離Lを算出することができる。
また、例えば、ステップS3で時相サーチ期間として第2期間SPが特定された場合に、フレーム特定部12は、第2期間SP内の複数フレームのBモード画像信号において血管壁を検出し、検出された血管壁に基づいて、血管の直径を算出し、算出された血管の直径が最大値D2を有するフレームのBモード画像信号を特定する。
なお、ステップS3で時相サーチ期間として第1期間FPと第2期間SPの双方が特定された場合には、第1期間FP内において血管の直径が最小値D1を有するフレームのBモード画像信号を特定し、且つ、第2期間SP内において血管の直径が最大値D2を有するフレームのBモード画像信号を特定する。
なお、ステップS3で時相サーチ期間として第1期間FPと第2期間SPの双方が特定された場合には、第1期間FP内において血管の直径が最小値D1を有するフレームのBモード画像信号を特定し、且つ、第2期間SP内において血管の直径が最大値D2を有するフレームのBモード画像信号を特定する。
このように、フレーム特定部12は、ステップS3で特定された時相サーチ期間内において血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を特定するため、超音波診断装置1における負担を軽減し、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を短時間に且つ容易に特定することができる。また、フレーム特定部12は、ノイズの影響等に起因して輝度値に変動が生じたBモード画像信号を誤って特定するおそれを低減することができる。
ステップS5において、血管径算出部13は、ステップS4で特定された、血管の直径が最小となるフレームのBモード画像信号および血管の直径が最大となるフレームのBモード画像信号の少なくとも一方に基づいて、血管の最大径および最小径の少なくとも一方を算出する。例えば、ステップS3で時相サーチ期間として第1期間FPが特定され且つステップS4で血管の直径が最小となるフレームのBモード画像信号が特定された場合に、血管径算出部13は、血管の直径が最小となるフレームのBモード画像信号において、ステップS4で血管の直径として算出されたBモード画像UB上の距離Lを血管の実際の直径に換算する等により、血管の最小径を算出することができる。
また、例えば、ステップS3で時相サーチ期間として第2期間SPが特定され且つステップS4で血管の直径が最大となるフレームのBモード画像信号が特定された場合に、血管径算出部13は、血管の直径が最大となるフレームのBモード画像信号において、ステップS4で血管の直径として算出されたBモード画像UB上の距離Lを血管の実際の直径に換算する等により、血管の最大径を算出することができる。
また、例えば、ステップS3で時相サーチ期間として第1期間FPと第2期間SPの双方が特定され且つステップS4で血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の双方が特定された場合に、血管径算出部13は、血管の最小径と最大径の双方を算出することができる。
ステップS6において、断面積算出部14は、血管が円形の断面を有するものとして、ステップS5で算出された血管の最小径と最大径の少なくとも一方を用いて、血管の断面積を算出する。例えば、ステップS5で血管の最小径が算出された場合に、断面積算出部14は、血管の最小径を用いて血管の断面積を算出する。また、例えば、ステップS5で血管の最大径が算出された場合に、断面積算出部14は、血管の最大径を用いて血管の断面積を算出する。また、例えば、ステップS5で血管の最小径と最大径の双方が算出された場合には、断面積算出部14は、血管の最小径と最大径に基づいて血管の平均径を算出し、算出された血管の平均径を用いて血管の断面積を算出することができる。
ステップS7において、血流速度算出部17は、ステップS2で生成されたドプラデータに基づいて、血流速度を算出する。
ステップS8において、血流量計測部15は、血管の最小径、最大径または平均径に基づいてステップS6で算出された血管の断面積とステップS7で算出された血流速度とに基づいて、血管内を流れる血液の単位時間当たりの体積を表す血流量を計測し、図12に示すように、血流量の計測値MVを表示装置9に表示する。図9に示す例では、Bモード画像UBおよびドプラ波形画像UDと共に、血流量の計測値MVが表示装置9に表示されている。
このようにして、ステップS8で血流量が計測されると、超音波診断装置1の動作が終了する。
ステップS8において、血流量計測部15は、血管の最小径、最大径または平均径に基づいてステップS6で算出された血管の断面積とステップS7で算出された血流速度とに基づいて、血管内を流れる血液の単位時間当たりの体積を表す血流量を計測し、図12に示すように、血流量の計測値MVを表示装置9に表示する。図9に示す例では、Bモード画像UBおよびドプラ波形画像UDと共に、血流量の計測値MVが表示装置9に表示されている。
このようにして、ステップS8で血流量が計測されると、超音波診断装置1の動作が終了する。
ここで、一連のフレームのBモード画像の中から、例えば、画像が鮮明であるという理由でユーザにより選択されたフレームのBモード画像に基づいて血流量の計測が行われると、血流量を計測する毎に、血管が最小径を有する条件または最大径を有する条件が異なってしまい、同一の被検体に対して、過去に計測された血流量の計測値と新たに計測された血流量の値を比較する際に、正確な比較が困難となってしまうという問題があった。
本発明の実施の形態1に係る超音波診断装置1では、血管の最小径、最大径または平均径に基づいてステップS6で算出された血管の断面積とステップS7で算出された血流速度とに基づいて、ステップS8で血流量が計測されるため、一定の基準に従って、血流量が算出される。そのため、例えば、過去に計測された血流量の計測値と新たに計測された血流量の値を比較する際に、一定の条件に従う正確な比較を行うことが可能である。
また、以上から、本発明の実施の形態1に係る超音波診断装置1によれば、時相サーチ期間特定部16により特定された時相サーチ期間内において血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方が特定されるため、定められた期間内にドプラ波形画像信号と共に生成されたすべてのBモード画像信号を用いる場合よりも小さい計算量で血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を特定することができる。そのため、超音波診断装置1における負担を軽減し、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を短時間に且つ容易に特定することができる。
さらに、超音波診断装置1によれば、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるBモード画像信号の少なくとも一方を特定する際に、第1期間FP内と第2期間SP内の少なくとも一方のBモード画像信号における血管の直径を互いに比較すればよく、ノイズの影響等に起因して輝度値に変動が生じたBモード画像信号を誤って特定するおそれを低減することができる。そのため、血管径算出部13により、血管の最小径および最大径の少なくとも一方が正確に算出され、血流量計測部15により算出される血流量についても、正確な値が計測されることが可能である。
なお、時相サーチ期間特定部16は、ドプラ波形画像UDにおける血流速度が最小値V1を有する時点T1から最大値V2を有する時点T2までの第1期間FPに対して、第2期間SPを、血流速度が最大値V2を有する時点T2から各心拍期間HCよりも短い時間、例えば0.25秒等に設定された定められた時間が経過する時点T3までの期間として特定するが、第2期間SPの特定方法は、これに限定されない。
例えば、時相サーチ期間特定部16は、第1期間FPと第2期間SPとの和が、心拍期間HCの半分の時間幅を有するように、血流速度が最大値V2を有する時点T2から定められた時間が経過する時点T3までの期間を第2期間SPとして特定することができる。
例えば、時相サーチ期間特定部16は、第1期間FPと第2期間SPとの和が、心拍期間HCの半分の時間幅を有するように、血流速度が最大値V2を有する時点T2から定められた時間が経過する時点T3までの期間を第2期間SPとして特定することができる。
また、例えば、時相サーチ期間特定部16は、第2期間SPが心拍期間HCの10%以上20%以下の時間幅を有するように、血流速度が最大値V2を有する時点T2から定められた時間が経過する時点T3までの期間を第2期間SPとして特定することもできる。この際に、第1期間FPについても、心拍期間HCの10%以上20%以下の時間幅を有することが好ましい。
また、例えば、時相サーチ期間特定部16は、第2期間SPが第1期間FPと同一の時間幅を有するように、血流速度が最大値V2を有する時点T2から定められた時間が経過する時点T3までの期間を第2期間SPとして特定することもできる。
また、例えば、時相サーチ期間特定部16は、第2期間SPが第1期間FPと同一の時間幅を有するように、血流速度が最大値V2を有する時点T2から定められた時間が経過する時点T3までの期間を第2期間SPとして特定することもできる。
また、Bモード処理部6とドプラ処理部7により、定められた期間にわたってBモード画像信号とドプラ波形画像信号が連続的に生成されているが、Bモード画像信号とドプラ波形画像信号が生成される代わりに、定められた期間にわたって生成されたBモード画像信号と、同一の定められた期間にわたって生成されたドプラ波形画像信号が予め保存された図示しないメモリが超音波診断装置1に備えられていてもよい。この場合には、時相サーチ期間特定部16により、図示しないメモリに保存されたドプラ波形画像信号に基づいて時相サーチ期間が特定され、フレーム特定部12により、図示しないメモリに保存された複数フレームのBモード画像信号のうち時相サーチ期間内の複数フレームのBモード画像信号に基づいて、血管径が最小となるフレームのBモード画像信号と血管径が最大となるフレームのBモード画像信号の少なくとも一方が特定される。
そのため、Bモード画像信号とドプラ波形画像信号が生成される代わりに、定められた期間にわたって生成されたBモード画像信号と、同一の定められた期間にわたって生成されたドプラ波形画像信号が予め保存された、図示しないメモリが超音波診断装置1に備えられている場合でも、超音波診断装置1は、Bモード画像信号とドプラ波形画像信号が生成される場合と同様に、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を特定する際の負担を軽減し、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を短時間に且つ容易に特定することができる。さらに、超音波診断装置1は、ノイズの影響等に起因して輝度値に変動が生じたBモード画像信号を誤って特定するおそれを低減することができる。
また、図10のフローチャートにおけるステップS2で、Bモード処理部6とドプラ処理部7により、定められた期間においてBモード画像信号とドプラ波形画像信号が生成された後、ステップS3において時相サーチ期間が特定されるが、ステップS2の定められた期間内で順次生成されるドプラ波形画像信号に基づいて、リアルタイムに時相サーチ期間を特定する処理が行われてもよい。この場合に、時相サーチ期間特定部16は、例えば、心拍期間HCに満たない期間においてドプラ処理部7がドプラ波形画像信号を生成する毎に、生成されたドプラ波形画像信号に基づいて、時相サーチ期間を特定する処理を行う。この場合には、Bモード処理部6とドプラ処理部7により、第1期間FP以降または第2期間SP以降においてBモード画像信号とドプラ波形画像信号が取得される必要がなくなるため、より短時間に且つ容易に、血管の直径が最小となるBモード画像信号および血管の直径が最大となるBモード画像信号の少なくとも一方が特定される。
また、フレーム特定部12は、Bモード処理部6により生成されたBモード画像信号に基づいて、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号を特定する代わりに、受信回路4により生成されたRFデータに基づいて、血管の直径が最小となるフレームのRFデータと血管の直径が最大となるフレームのRFデータを特定することもできる。この場合でも、フレーム特定部12により、Bモード画像信号に基づいて、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号が特定される場合と同様に、超音波診断装置1における負担を軽減して、血管の直径が最小となるフレームのRFデータと血管の直径が最大となるフレームのRFデータが容易に且つ正確に特定されることができる。
実施の形態2
実施の形態1では、フレーム特定部12により、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の双方が特定され、血管径算出部13により、各心拍期間HCにおける血管の最小径と最大径の双方が算出されることができるが、例えば、このようにして算出された血管の最小径と最大径を用いて、血管の弾性を表す弾性指標を算出することができる。
実施の形態1では、フレーム特定部12により、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の双方が特定され、血管径算出部13により、各心拍期間HCにおける血管の最小径と最大径の双方が算出されることができるが、例えば、このようにして算出された血管の最小径と最大径を用いて、血管の弾性を表す弾性指標を算出することができる。
図13に示すように、本発明の実施の形態2に係る超音波診断装置1Aは、図1に示す実施の形態1の超音波診断装置1において、装置制御部18の代わりに装置制御部18Aを備え、弾性指標算出部41が追加されたものである。
超音波診断装置1Aにおいて、血管径算出部13に弾性指標算出部41が接続され、弾性指標算出部41に表示制御部8および装置制御部18Aが接続されている。また、Bモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17、装置制御部18Aおよび弾性指標算出部41により、超音波診断装置1A用のプロセッサ22Aが構成されている。
超音波診断装置1Aにおいて、血管径算出部13に弾性指標算出部41が接続され、弾性指標算出部41に表示制御部8および装置制御部18Aが接続されている。また、Bモード処理部6、ドプラ処理部7、表示制御部8、ゲート設定部10、フレーム特定部12、血管径算出部13、断面積算出部14、血流量計測部15、時相サーチ期間特定部16、血流速度算出部17、装置制御部18Aおよび弾性指標算出部41により、超音波診断装置1A用のプロセッサ22Aが構成されている。
弾性指標算出部41は、血管径算出部13により算出された血管の最大径と最小径との差に基づいて、血管の弾性指標を算出する。血管の弾性指標とは、血管の弾性を表す指標である。血管の最大径と最小径との差が大きいほど、血管の直径の変化が大きく、血管の弾性率が低いと判断でき、血管の最大径と最小径との差が小さいほど、血管の直径の変化が小さく、血管の弾性率が高いと判断できる。そのため、弾性指標算出部41は、例えば、血管の最大径と最小径との差を、血管の弾性指標として算出することができる。また、弾性指標算出部41は、例えば、血管の最大径と最小径との差を血管の最小径で除すことにより規格化したものを弾性指標として算出することもできる。
また、図示しない血圧計を用いて、血管の直径が最小となる時点における被検体の血圧P1と、血管の直径が最大となる時点における被検体の血圧P2とを計測することにより、弾性指標算出部41は、血圧P1、P2、心拍期間HCにおける血管の直径の最小値D1、心拍期間HCにおける血管の直径の最大値D2を用いて、特許第5384919号公報に記載されるスティフネスパラメータB={Log(P2/P1)}/{(D2/D1)-1}を弾性指標として算出することもできる。
以上から、本発明の実施の形態2に係る超音波診断装置1Aによれば、実施の形態1に係る超音波診断装置1と同様に、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるBモード画像信号を特定する際に、超音波診断装置1Aにおける負担を軽減し、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるBモード画像信号を短時間に且つ容易に特定し、さらに、ノイズの影響等に起因して輝度値に変動が生じたBモード画像信号を誤って特定するおそれを低減することができるため、弾性指標についても、短時間に且つ容易に且つ正確に算出されることができる。
実施の形態3
実施の形態1の超音波診断装置1は、表示装置9、入力装置19、超音波プローブ21がプロセッサ22に直接的に接続される構成を有しているが、例えば、表示装置9、入力装置19、超音波プローブ21、プロセッサ22がネットワークを介して間接的に接続されることもできる。
実施の形態1の超音波診断装置1は、表示装置9、入力装置19、超音波プローブ21がプロセッサ22に直接的に接続される構成を有しているが、例えば、表示装置9、入力装置19、超音波プローブ21、プロセッサ22がネットワークを介して間接的に接続されることもできる。
図14に示すように、実施の形態3における超音波診断装置1Bは、表示装置9、入力装置19、超音波プローブ21がネットワークNWを介して超音波診断装置本体51に接続されたものである。超音波診断装置本体51は、図1に示す実施の形態1の超音波診断装置1において、表示装置9、入力装置19、超音波プローブ21を除いたものであり、送受信回路5、格納部20およびプロセッサ22により構成されている。
超音波診断装置1Bがこのような構成を有している場合でも、実施の形態1の超音波診断装置1と同様に、時相サーチ期間特定部16により特定された時相サーチ期間内において血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方が特定されるため、定められた期間内にドプラ波形画像信号と共に生成されたすべてのBモード画像信号を用いる場合よりも小さい計算量で血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を特定することができる。そのため、超音波診断装置1における負担を軽減し、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるフレームのBモード画像信号の少なくとも一方を短時間に且つ容易に特定することができる。
さらに、超音波診断装置1Bによれば、実施の形態1の超音波診断装置1と同様に、血管の直径が最小となるフレームのBモード画像信号と血管の直径が最大となるBモード画像信号の少なくとも一方を特定する際に、第1期間FP内と第2期間SP内の少なくとも一方のBモード画像信号における血管の直径を互いに比較すればよく、ノイズの影響等に起因して輝度値に変動が生じたBモード画像信号を誤って特定するおそれを低減することができる。
また、表示装置9、入力装置19、超音波プローブ21がネットワークNWを介して超音波診断装置本体51と接続されているため、超音波診断装置本体51を、いわゆる遠隔サーバとして使用することができる。これにより、例えば、ユーザは、表示装置9、入力装置19、超音波プローブ21をユーザの手元に用意することにより、被検体の診断を行うことができるため、超音波診断の際の利便性を向上させることができる。
また、例えば、いわゆるタブレットと呼ばれる携帯型の薄型コンピュータが表示装置9および入力装置19として使用される場合には、ユーザは、より容易に被検体の超音波診断を行うことができ、超音波診断の利便性をさらに向上させることができる。
また、例えば、いわゆるタブレットと呼ばれる携帯型の薄型コンピュータが表示装置9および入力装置19として使用される場合には、ユーザは、より容易に被検体の超音波診断を行うことができ、超音波診断の利便性をさらに向上させることができる。
なお、表示装置9、入力装置19、超音波プローブ21がネットワークNWを介して超音波診断装置本体51に接続されているが、この際に、表示装置9、入力装置19、超音波プローブ21は、ネットワークNWに有線接続されていてもよく、無線接続されていてもよい。
また、実施の形態3の態様は、実施の形態1に適用されることが説明されているが、実施の形態2についても、同様に適用されることができる。
また、実施の形態3の態様は、実施の形態1に適用されることが説明されているが、実施の形態2についても、同様に適用されることができる。
1,1A,1B 超音波診断装置、2 振動子アレイ、3 送信回路、4 受信回路、5 送受信回路、6 Bモード処理部、7 ドプラ処理部、8 表示制御部、9 表示装置、10 ゲート設定部、11 画像メモリ、12 フレーム特定部、13 血管径算出部、14 断面積算出部、15 血流量計測部、16 時相サーチ期間特定部、17 血流速度算出部、18,18A 装置制御部、19 入力装置、20 格納部、21 超音波プローブ、22,22A プロセッサ、23 増幅部、24 AD変換部、25 ビームフォーマ、26 信号処理部、27 DSC、28 画像処理部、29 直交検波部、30 ハイパスフィルタ、31 高速フーリエ変換部、32 ドプラ波形画像生成部、33 データメモリ、41 弾性指標算出部、51 超音波診断装置本体、52 送受信回路、BR 血管領域、D1,V1 最小値、D2,V2 最大値、DG ドプラゲート、E 包絡線、FP 第1期間、HC 心拍期間、L 距離、MV 計測値、SL 直線、SP 第2期間、T1,T2,T3,T4 時点、UB Bモード画像、UD ドプラ波形画像、W1 血管前壁、W2 血管後壁、WD ドプラ波形。
Claims (13)
- 被検体の血管が含まれる領域に対して定められた期間にわたってBモードデータとドプラデータとが連続的に取得される超音波診断装置であって、
前記ドプラデータに基づいて各心拍期間における時相サーチ期間を特定する時相サーチ期間特定部と、
前記時相サーチ期間特定部により特定された前記時相サーチ期間内における複数フレームの前記Bモードデータを解析することにより、各心拍期間において前記血管の直径が最大となるフレームのBモードデータおよび前記血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定するフレーム特定部と
を備える超音波診断装置。 - 前記フレーム特定部により特定された、前記血管の直径が最大となるフレームのBモードデータおよび前記血管の直径が最小となるフレームのBモードデータの少なくとも一方に基づいて前記血管の最大径および最小径の少なくとも一方を算出する血管径算出部をさらに備える請求項1に記載の超音波診断装置。
- 前記血管径算出部により算出された前記血管の最大径および最小径の少なくとも一方を用いて前記血管の断面積を算出する断面積算出部と、
各心拍期間における前記ドプラデータを取得するドプラ処理部と、
前記ドプラ処理部により取得された前記ドプラデータに基づいて血流速度を算出する血流速度算出部と、
前記断面積算出部により算出された前記断面積と前記血流速度算出部により算出された前記血流速度に基づいて血流量を計測する血流量計測部と
をさらに備える請求項2に記載の超音波診断装置。 - 前記時相サーチ期間特定部は、各心拍期間におけるドプラデータが最小値を有する時点を含む第1期間を前記時相サーチ期間として特定し、
前記フレーム特定部は、前記第1期間内における複数フレームの前記Bモードデータに基づいて前記血管の直径が最小となるフレームのBモードデータを特定し、
前記血管径算出部は、前記フレーム特定部により特定された、前記血管の直径が最小となるフレームのBモードデータに基づいて、前記血管の最小径を算出し、
前記断面積算出部は、前記血管径算出部により算出された前記血管の最小径を用いて前記血管の断面積を算出する請求項3に記載の超音波診断装置。 - 前記時相サーチ期間特定部は、各心拍期間におけるドプラデータが最大値を有する時点を含む第2期間を前記時相サーチ期間として特定し、
前記フレーム特定部は、前記第2期間内における複数フレームの前記Bモードデータに基づいて前記血管の直径が最大となるフレームのBモードデータを特定し、
前記血管径算出部は、前記フレーム特定部により特定された、前記血管の直径が最大となるフレームのBモードデータに基づいて、前記血管の最大径を算出し、
前記断面積算出部は、前記血管径算出部により算出された前記血管の最大径を用いて前記血管の断面積を算出する請求項3に記載の超音波診断装置。 - 前記時相サーチ期間特定部は、各心拍期間におけるドプラデータが最小値を有する時点を含む第1期間および各心拍期間におけるドプラデータが最大値を有する時点を含む第2期間を有する前記時相サーチ期間を特定し、
前記フレーム特定部は、前記第1期間内における複数フレームの前記Bモードデータに基づいて前記血管の直径が最小となるフレームのBモードデータを特定し、且つ、前記第2期間内における複数フレームの前記Bモードデータに基づいて前記血管の直径が最大となるフレームのBモードデータを特定し、
前記血管径算出部は、前記フレーム特定部により特定された、前記血管の直径が最小となるフレームのBモードデータに基づいて、前記血管の最小径を算出し、且つ、前記フレーム特定部により特定された、前記血管の直径が最大となるフレームのBモードデータに基づいて、前記血管の最大径を算出し、
前記断面積算出部は、前記血管径算出部により算出された前記血管の最小径および前記血管の最大径とから算出された各心拍期間における前記血管の平均径を用いて前記血管の断面積を算出する請求項3に記載の超音波診断装置。 - 前記第1期間は、各心拍期間におけるドプラデータが最小値を有する時点から最大値を有する時点までの期間である請求項4または6に記載の超音波診断装置。
- 前記第2期間は、各心拍期間におけるドプラデータが最大値を有する期間から各心拍期間よりも短い時間に設定された定められた時間が経過するまでの期間である請求項5または6に記載の超音波診断装置。
- 前記第1期間および前記第2期間は、それぞれ、各心拍期間の10%以上20%以下の時間幅を有する請求項4~6のいずれか一項に記載の超音波診断装置。
- 前記血管の最大径と前記血管の最小径との差に基づいて前記血管の弾性指標を算出する弾性指標算出部をさらに備える請求項6に記載の超音波診断装置。
- 超音波プローブと、
前記超音波プローブを介して前記被検体内に超音波ビームを送信し且つ前記被検体内から超音波エコーを受信して受信データを生成する送受信回路と、
前記送受信回路により生成された前記受信データに基づいて前記Bモードデータを生成するBモード処理部と
をさらに備える請求項1~10のいずれか一項に記載の超音波診断装置。 - 被検体の血管が含まれる領域に対して定められた期間にわたってBモードデータとドプラデータとが連続的に取得される超音波診断装置の制御方法であって、
前記ドプラデータに基づいて各心拍期間における時相サーチ期間を特定し、
特定された前記時相サーチ期間内における複数フレームの前記Bモードデータを解析することにより、各心拍期間において前記血管の直径が最大となるフレームのBモードデータおよび前記血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定する
超音波診断装置の制御方法。 - 被検体の血管が含まれる領域に対して定められた期間にわたってBモードデータとドプラデータとを連続的に取得し、前記ドプラデータに基づいて各心拍期間における時相サーチ期間を特定し、特定された前記時相サーチ期間内における複数フレームの前記Bモードデータを解析することにより、各心拍期間において前記血管の直径が最大となるフレームのBモードデータおよび前記血管の直径が最小となるフレームのBモードデータの少なくとも一方を特定する超音波診断装置用プロセッサ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021514934A JP7095177B2 (ja) | 2019-04-17 | 2020-04-13 | 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ |
US17/498,877 US20220022849A1 (en) | 2019-04-17 | 2021-10-12 | Ultrasound diagnostic apparatus, control method of ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-078241 | 2019-04-17 | ||
JP2019078241 | 2019-04-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/498,877 Continuation US20220022849A1 (en) | 2019-04-17 | 2021-10-12 | Ultrasound diagnostic apparatus, control method of ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020213562A1 true WO2020213562A1 (ja) | 2020-10-22 |
Family
ID=72837458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016285 WO2020213562A1 (ja) | 2019-04-17 | 2020-04-13 | 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220022849A1 (ja) |
JP (1) | JP7095177B2 (ja) |
WO (1) | WO2020213562A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001218768A (ja) * | 2000-02-10 | 2001-08-14 | Aloka Co Ltd | 超音波診断装置 |
WO2006011504A1 (ja) * | 2004-07-28 | 2006-02-02 | Matsushita Electric Industrial Co., Ltd. | 超音波診断装置および超音波診断装置の制御方法 |
US20190099153A1 (en) * | 2016-03-22 | 2019-04-04 | Imperial Innovations Limited | Fluid flow analysis |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4744994B2 (ja) * | 2004-09-07 | 2011-08-10 | 株式会社東芝 | 超音波ドプラ診断装置及び診断パラメータ計測方法 |
JP2016027835A (ja) * | 2012-12-11 | 2016-02-25 | 日立アロカメディカル株式会社 | 超音波撮像装置及び方法 |
CN105120761B (zh) * | 2013-03-13 | 2020-02-07 | B-K医疗公司 | 具有曲线描迹的超声矢量流成像(vfi) |
JP6266160B2 (ja) * | 2015-04-03 | 2018-01-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 血管を識別する超音波システム及び方法 |
-
2020
- 2020-04-13 JP JP2021514934A patent/JP7095177B2/ja active Active
- 2020-04-13 WO PCT/JP2020/016285 patent/WO2020213562A1/ja active Application Filing
-
2021
- 2021-10-12 US US17/498,877 patent/US20220022849A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001218768A (ja) * | 2000-02-10 | 2001-08-14 | Aloka Co Ltd | 超音波診断装置 |
WO2006011504A1 (ja) * | 2004-07-28 | 2006-02-02 | Matsushita Electric Industrial Co., Ltd. | 超音波診断装置および超音波診断装置の制御方法 |
US20190099153A1 (en) * | 2016-03-22 | 2019-04-04 | Imperial Innovations Limited | Fluid flow analysis |
Also Published As
Publication number | Publication date |
---|---|
JP7095177B2 (ja) | 2022-07-04 |
US20220022849A1 (en) | 2022-01-27 |
JPWO2020213562A1 (ja) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008168016A (ja) | 超音波診断装置、imt計測方法及びimt計測プログラム | |
JP5400015B2 (ja) | 超音波診断装置およびその作動方法 | |
JPWO2017038162A1 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP6484389B2 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP7476376B2 (ja) | 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ | |
JP2023155494A (ja) | 超音波診断装置 | |
JP5588924B2 (ja) | 超音波診断装置 | |
JP5663552B2 (ja) | 超音波検査装置、超音波検査装置の信号処理方法およびプログラム | |
JP5281107B2 (ja) | 超音波診断装置および超音波画像生成方法 | |
WO2021014926A1 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP5844175B2 (ja) | 超音波診断装置および超音波画像生成方法 | |
CN111770730B (zh) | 超声波诊断装置及超声波诊断装置的控制方法 | |
JP5869411B2 (ja) | 超音波診断装置および超音波画像生成方法 | |
JP7095177B2 (ja) | 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ | |
JP5851345B2 (ja) | 超音波診断装置およびデータ処理方法 | |
WO2019187647A1 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
WO2017122411A1 (ja) | 超音波診断装置および音速定量化方法 | |
JP5450488B2 (ja) | 超音波診断装置および超音波画像生成方法 | |
WO2020148937A1 (ja) | 穿刺針、超音波診断装置および超音波診断装置の制御方法 | |
WO2017126209A1 (ja) | 超音波診断装置および音速定量化方法 | |
WO2017122414A1 (ja) | 超音波診断装置および音速定量化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20790804 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021514934 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20790804 Country of ref document: EP Kind code of ref document: A1 |