Nothing Special   »   [go: up one dir, main page]

WO2020213268A1 - 非水電解液、不揮発性電解質、二次電池 - Google Patents

非水電解液、不揮発性電解質、二次電池 Download PDF

Info

Publication number
WO2020213268A1
WO2020213268A1 PCT/JP2020/008682 JP2020008682W WO2020213268A1 WO 2020213268 A1 WO2020213268 A1 WO 2020213268A1 JP 2020008682 W JP2020008682 W JP 2020008682W WO 2020213268 A1 WO2020213268 A1 WO 2020213268A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
negative electrode
aqueous electrolyte
secondary battery
electrolyte solution
Prior art date
Application number
PCT/JP2020/008682
Other languages
English (en)
French (fr)
Inventor
篤 宇根本
栄二 關
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020213268A1 publication Critical patent/WO2020213268A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution using an ester solvent and a carbonate solvent, a non-volatile electrolyte, and a secondary battery.
  • Lithium-ion secondary batteries are used in various applications such as mobile power sources for mobile phones and portable personal computers, drive power sources for electric vehicles and hybrid vehicles, and stationary power sources for power storage.
  • the use of lithium ion secondary batteries has been expanded to large-scale products and the like, and further high energy density, high capacity, and long life are required.
  • Non-aqueous electrolytes used in lithium-ion secondary batteries, etc. have general characteristics such as stability under electrochemical and temperature conditions during use, flame retardancy, wide potential window, and relative permittivity. -High ionic conductivity and appropriate viscosity are required.
  • carbonates Conventionally, carbonates have been widely used as a solvent for an electrolytic solution of a lithium ion secondary battery, but improvements are being made for non-aqueous electrolytic solutions to improve battery performance.
  • Patent Document 1 discloses the following contents as a technique relating to a non-aqueous electrolyte solution.
  • "It has a solvent-containing electrolyte salt, an ester-based solvent constituting the solvent-containing electrolyte salt and a solvent-harmonious ionic liquid, and a low-viscosity solvent, and the mixing ratio of the ester-based solvent to the solvent-containing electrolyte salt is 0 in terms of molars.
  • Patent Document 1 a carbon-based material or the like is used as the negative electrode active material, an ether-based solvent or a low-viscosity solvent is used as the solvent of the electrolytic solution, and vinylene carbonate, fluoroethylene carbonate or the like is used as the film-forming agent.
  • a film-forming agent such as vinylene carbonate is added to the electrolytic solution and subjected to an electrochemical reaction, an SEI (Solid Electrolyte Interphase) film is formed on the surface of the negative electrode active material, so that the reductive decomposition of the electrolytic solution can be suppressed to some extent. it can.
  • an object of the present invention is to provide a non-aqueous electrolyte solution, a non-volatile electrolyte, and a secondary battery using the non-aqueous electrolyte solution, which improves the discharge capacity of the secondary battery.
  • the present invention has, for example, the following configuration.
  • the number of donors for ester solvents is larger than the number of donors for carbonate solvents,
  • a non-aqueous electrolyte solution in which the molar ratio of the carbonate solvent to the ester solvent is 0 to 0.65.
  • the following description shows a specific example of the contents of the present invention.
  • the present invention is not limited to the following description, and various modifications and modifications by those skilled in the art can be made within the scope of the technical ideas disclosed in the present specification.
  • the present invention includes various modifications different from the embodiments.
  • the embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. It is possible to replace part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.
  • a lithium ion secondary battery means an electrochemical device that creates a potential difference between electrodes by occluding lithium ions into and releasing them from the electrodes, thereby storing or making available electrical energy.
  • the lithium ion secondary battery is also called by another name such as a lithium ion battery, a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, etc., and any battery having any name is the subject of the present invention. is there.
  • the technical idea of the present invention can also be applied to a sodium ion secondary battery, a magnesium ion secondary battery, a calcium ion secondary battery, a zinc secondary battery, an aluminum ion secondary battery and the like.
  • the material When a material is selected from the material group illustrated below and used, the material may be used alone or in combination of a plurality as long as it does not contradict the contents disclosed in the present specification. Further, materials other than the material group exemplified below may be used as long as they do not contradict the contents disclosed in the present specification.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of a secondary battery according to an embodiment of the present invention.
  • FIG. 1 shows a laminated secondary battery as an example of the secondary battery.
  • the secondary battery 1000 includes a positive electrode 100, a negative electrode 200, a separator 300, and an exterior body 500.
  • the exterior body 500 houses the positive electrode 100, the negative electrode 200, and the separator 300.
  • a material that exhibits corrosion resistance to a non-aqueous electrolytic solution such as aluminum, stainless steel, and nickel-plated steel, is used.
  • the positive electrode 100, the separator 300, and the negative electrode 200 are laminated in this order to form the electrode body 400. Inside the exterior body 500, a plurality of positive electrodes 100, separators 300, and negative electrodes 200 are laminated and housed. The positive electrode 100 and the negative electrode 200 are arranged so as to sandwich the separator 300.
  • FIG. 1 shows a laminated type secondary battery
  • the secondary battery 1000 may be a wound type.
  • the shape of the secondary battery 1000 may be any of a cylindrical shape, a square shape, a button shape, and the like.
  • the exterior body 500 may be provided as a bag-shaped laminated container instead of the metal can.
  • the positive electrode 100 has a positive electrode mixture layer 110, a positive electrode current collector 120, and a positive electrode tab 130.
  • the positive electrode mixture layer 110 is formed on both sides of the flat plate-shaped positive electrode current collector 120.
  • a flat plate-shaped positive electrode tab 130 for extracting an electric current is provided at the end of the positive electrode current collector 120. The positive electrode tab 130 is pulled out from each positive electrode 100 to the outside of the exterior body 500.
  • the negative electrode 200 has a negative electrode mixture layer 210, a negative electrode current collector 220, and a negative electrode tab 230.
  • the negative electrode mixture layer 210 is formed on both sides of the flat negative electrode current collector 220.
  • a flat plate-shaped negative electrode tab 230 for extracting an electric current is provided at the end of the negative electrode current collector 220. The negative electrode tab 230 is pulled out from each negative electrode 200 to the outside of the exterior body 500.
  • the positive electrode tab 130 and the negative electrode tab 230 are electrically connected to leads, external terminals, etc. (not shown) on the outside of the exterior body 500.
  • a method of joining the tabs an appropriate method such as spot welding or ultrasonic bonding is used.
  • the electrode body 400 can be connected in parallel by joining the positive electrode tabs 130 to each other and the negative electrode tabs 230 to each other.
  • the electrode body 400 can also form a bipolar type secondary battery that is connected in series.
  • the positive electrode mixture layer 110 is a binder for binding a positive electrode active material capable of storing and releasing lithium ions, a conductive agent for improving the conductivity of the positive electrode mixture layer 110, and the positive electrode active material and the conductive agent. And contains.
  • the positive electrode active material has an electrochemical activity of occluding and releasing lithium ions at a potential nobler than that of the negative electrode 200, lithium ions are desorbed in the charging process, and lithium ions are inserted in the discharging process.
  • the negative electrode mixture layer 210 contains a negative electrode active material capable of storing and releasing lithium ions.
  • the negative electrode active material has an electrochemical activity of occluding and releasing lithium ions at a potential lower than that of the positive electrode 100, the lithium ions are desorbed in the discharging process, and the lithium ions are inserted in the charging process.
  • the negative electrode mixture layer 210 contains a conductive agent for improving the conductivity of the negative electrode mixture layer 210 and a binder for binding the negative electrode active material and the conductive agent, depending on the type of the negative electrode active material. May be good.
  • the positive electrode active material is selected from a group of materials such as LiCo-based composite oxide, LiNi-based composite oxide, LiMn-based composite oxide, LiCoNiMn-based composite oxide, LiFeP-based composite oxide, and LiMnP-based composite oxide. .. Specific examples of the positive electrode active material include LiCoO 2 , Li (Co, Mn) O 2 , Li (Ni, Mn) O 2 , LiMn 2 O 4 , Li 4 Mn 5 O 12 , Li (Co, Ni, Mn).
  • Examples thereof include O 2 , LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , LiMnVO 4 , LiFeBO 3 , LiMnBO 3 , Li 2 FeSiO 4 , Li 2 CoSiO 4 , and Li 2 MnSiO 4 .
  • the positive electrode active material an oxide obtained by substituting these transition metals with different elements or an oxide having a chemical ratio different from that of the chemical ratio can also be used.
  • the dissimilar element include Co, Ni, Mn, Fe, Cr, Zn, Ta, Al, Mg, Cu, Cd, Mo, Nb, W, Ru and the like.
  • the positive electrode active material examples include sulfur, chalcogenides such as TiS 2 , MoS 2 , Mo 6 S 8 and TiSe 2 , vanadium oxides such as V 2 O 5 , halides such as FeF 3 , and Fe (MoO). 4 ) Polyanionic materials such as 3 , Fe 2 (SO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 and organic materials such as quinone organic crystals can also be used.
  • the negative electrode active material is selected from a group of materials such as carbon-based materials, oxide-based materials, and metal-based materials.
  • the carbon-based material include natural graphite, artificial graphite, easily graphitized carbon material, non-graphitizable carbon material, amorphous carbon material, organic crystalline carbon material and the like.
  • the oxide-based material include lithium titanate such as Li 4 Ti 5 O 12 , and oxides containing lithium and tin, silicon, iron, germanium, and the like.
  • Specific examples of the metal-based material include alloys of metallic lithium and lithium with tin, silicon, aluminum and the like.
  • the conductive agent is selected from a group of materials such as Ketjen black, acetylene black, furnace black, thermal black, graphite and carbon fiber.
  • the binder of the positive electrode mixture layer 110 is selected from a group of materials such as polyvinylidene fluoride (PVDF), for example.
  • the binder of the negative electrode mixture layer 210 is selected from a group of materials such as styrene-butadiene rubber, carboxymethyl cellulose, and polyvinylidene fluoride.
  • the positive electrode current collector 120 a metal foil, a perforated foil, an expanded metal, a foamed metal plate, or the like can be used.
  • the positive electrode current collector 120 is selected from a group of materials such as aluminum and aluminum alloy. Further, stainless steel, titanium or the like can also be used depending on the redox potential of the positive electrode 100 and the like.
  • the thickness of the positive electrode current collector 120 is preferably 10 nm to 1 mm, more preferably 1 to 100 ⁇ m, from the viewpoint of achieving both mechanical strength and energy density.
  • the positive electrode tab 130 can be formed of the same material as the positive electrode current collector 120.
  • the negative electrode current collector 220 a metal foil, a perforated foil, an expanded metal, a foamed metal plate, or the like can be used.
  • the negative electrode current collector 220 is selected from a group of materials such as copper and copper alloy. Further, stainless steel, titanium, nickel and the like can also be used depending on the redox potential of the negative electrode 200 and the like.
  • the thickness of the negative electrode current collector 220 is preferably 10 nm to 1 mm, more preferably 1 to 100 ⁇ m, from the viewpoint of achieving both mechanical strength and energy density.
  • the negative electrode tab 230 can be formed of the same material as the negative electrode current collector 220.
  • Electrode mixture layer formation method In the positive electrode mixture layer 110 and the negative electrode mixture layer 210, an active material and a conductive agent or a binder are kneaded in a solvent to prepare an electrode mixture, and the prepared electrode mixture is applied to a current collector and coated. It can be formed by drying the prepared electrode mixture.
  • the electrode mixture layer formed on the current collector is pressure-molded by a roll press or the like so that the active material has a predetermined density.
  • the electrode mixture layer can also be laminated on the current collector by repeating the steps from coating to drying.
  • the electrode on which the electrode mixture layer is formed can be punched, cut, or the like.
  • the electrode mixture can be kneaded with various devices such as a planetary mixer, a disposable mixer, a butterfly mixer, a twin-screw kneader, a ball mill, and a bead mill.
  • various solvents such as 1-methyl-2-pyrrolidone (NMP) and water can be used depending on the electrode.
  • NMP 1-methyl-2-pyrrolidone
  • various methods such as a roll coating method, a doctor blade method, a dipping method, and a spray method can be used.
  • the separator 300 electrically insulates between the positive electrode 100 and the negative electrode 200 to prevent a short circuit between the positive electrode 100 and the negative electrode 200, and acts as a medium for conducting ions between the positive electrode 100 and the negative electrode 200.
  • the separator 300 uses any one or a combination of an insulating microporous membrane having minute pores, a non-volatile electrolyte obtained by supporting a non-aqueous electrolyte solution on particles, and a solid electrolyte. Can be formed.
  • the thickness of the separator 300 is preferably several nm to several mm from the viewpoint of achieving both electron insulation and energy density.
  • the microporous film is a cellulose resin such as cellulose, carboxymethyl cellulose or hydroxypropyl cellulose, a polyolefin resin such as polypropylene or a polyethylene-polypropylene copolymer, or a polyester resin such as polyethylene terephthalate, polyethylene naphthalate or polybutylene terephthalate. , Aramid, Polyethyleneimide, Polyethylene, Glass and the like.
  • a porous sheet, a non-woven fabric, or the like can also be used.
  • Non-volatile electrolyte a semi-solid electrolyte composed of a non-aqueous electrolyte solution in which an electrolyte salt is dissolved and supporting particles (particles) for supporting the non-aqueous electrolyte solution can be used.
  • the non-volatile electrolyte may contain a binder for binding the supported particles.
  • the non-aqueous electrolyte is retained in the pores between the particles of the supported particles to mediate ionic conduction. Since the volatilization and flow of the non-aqueous electrolyte solution are suppressed, the secondary battery 1000 in which the non-aqueous electrolyte solution is less likely to leak or change in composition can be obtained.
  • the supported particles various particles having high insulating properties and insoluble in a non-aqueous electrolytic solution can be used.
  • Specific examples of the supported particles include inorganic particles of metal oxides such as ⁇ -alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), and ceria (CeO 2 ).
  • a particulate solid electrolyte can also be used.
  • the average particle size of the primary particles of the supported particles is preferably 1 nm to 10 ⁇ m, more preferably 1 to 50 nm, and further preferably 1 to 10 nm.
  • the average particle size is 1 nm or more, the supported particles are less likely to aggregate due to the intersurface force, so that the separator 300 can be easily formed. Further, when the average particle size is 10 ⁇ m or less, the surface area of the supported particles becomes large, so that a large amount of electrolytic solution can be retained.
  • the particle size of the supported particles can be measured using, for example, a transmission electron microscope (TEM).
  • Solid electrolyte As the solid electrolyte, the ionic conductivity is high but the conductivity is low, and a solid electrolyte can be used within the operating temperature. Specific examples of the solid electrolyte include oxide-based solid electrolytes such as Li LaZrO based on Li 7 La 3 Zr 2 O 12 , and sulfides such as Li 10 Ge 2 PS 12 and Li 2 SP 2 S 5 . Examples include system solid electrolytes.
  • the separator 300 is preferably formed only of the non-volatile electrolyte or a combination of the non-volatile electrolyte and the microporous membrane.
  • a non-volatile electrolyte layer made of a non-volatile electrolyte containing a non-aqueous electrolyte solution and supported particles is formed between the positive electrode 100 and the negative electrode 200.
  • volatilization and flow of the non-aqueous electrolyte solution are suppressed, so that leakage and composition change of the non-aqueous electrolyte solution are less likely to occur, and a safe and long-life secondary battery can be obtained.
  • the content of the non-aqueous electrolyte solution is preferably 40 to 90 vol%, more preferably 50 to 80 vol%, still more preferably 60 to 80 vol%. ..
  • the content of the non-aqueous electrolyte solution is 40 vol% or more, a sufficiently high ionic conductivity can be obtained.
  • the content of the non-aqueous electrolyte solution is 90 vol% or less, the possibility that the non-aqueous electrolyte solution leaks from the semi-solid electrolyte is reduced.
  • ⁇ Separator forming method> When a non-volatile electrolyte is used for the separator 300, a method of compression-molding the supported particles into pellets, sheets, etc., a method of mixing the supported particles with binder powder, and forming into a highly flexible sheet, etc.
  • the supported particles and the binder can be kneaded in a solvent, formed into a sheet or the like, and dried to remove the solvent.
  • the separator 300 may be integrally formed with the electrode by kneading the supported particles and the binder in a solvent, applying the mixture to the surface of the electrode mixture layer, and drying the separator 300.
  • the separator 300 uses a combination of a non-volatile electrolyte and a microporous membrane, the supporting particles and the binder are kneaded in a solvent, and the obtained mixture is applied to the microporous membrane, and the coated mixture is used. It can be formed by a method of drying to remove the solvent. Alternatively, the separator 300 may be formed individually, or may be integrally formed with the electrode, and the separator 300 may be sandwiched between the electrode and the microporous film to form an electrode body.
  • the non-aqueous electrolytic solution may be filled between the particles of the supported particles after the supported particles are formed into a sheet or the like, or may be mixed with the supported particles before the supported particles are formed. Mixing the non-aqueous electrolyte solution with the supported particles gives a semi-solid non-volatile electrolyte. For example, when the supported particles and the non-aqueous electrolyte solution are mixed by adding an organic solvent such as methanol and the obtained slurry is spread on a petri dish or the like to distill off the organic solvent, a powdery non-volatile electrolyte can be obtained. ..
  • the non-aqueous electrolytic solution may be held not only in the separator 300 but also in the positive electrode mixture layer 110 and the negative electrode mixture layer 210.
  • the non-aqueous electrolytic solution is held between the particles of the active material and the conductive agent in the electrode mixture layer, the ionic conductivity in the electrode is increased and a high discharge capacity can be obtained.
  • a method of holding the non-aqueous electrolyte solution in the electrode mixture layer a method of injecting the non-aqueous electrolyte solution into the exterior body 500 or a method of kneading the non-aqueous electrolyte solution, the active material, the conductive agent or the binder is used to prepare the electrode mixture.
  • the prepared electrode mixture is applied to the current collector to prepare an electrode.
  • the positive electrode mixture layer 110, the negative electrode mixture layer 210, and the separator 300 hold the non-aqueous electrolytic solution, it is not necessary to inject the non-aqueous electrolytic solution into the exterior body 500.
  • binder used for forming the non-volatile electrolyte layer examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer (P (VdF-HFP)), and styrene.
  • PTFE polytetrafluoroethylene
  • PVdF-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • styrene -Cancel rubber, polyalginic acid, polyacrylic acid and the like can be mentioned.
  • a porous sheet made of fluororesin is preferable.
  • the average particle size of the primary particles of the supported particles is preferably 1/100 to 1/2 of the thickness of the microporous membrane.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent containing an electrolyte salt, an ester solvent and a carbonate solvent, and a film forming agent (additive) for forming a film on the surface of the negative electrode.
  • a non-aqueous solvent containing an electrolyte salt, an ester solvent and a carbonate solvent, and a film forming agent (additive) for forming a film on the surface of the negative electrode.
  • a film forming agent additive for forming a film on the surface of the negative electrode.
  • a mixed solvent of an ester solvent having a larger number of donors than the carbonate solvent and a carbonate solvent is used as the solvent of the non-aqueous electrolyte solution.
  • a carbonate solvent is often used as a solvent for a non-aqueous electrolyte solution of a lithium ion secondary battery.
  • Solvents for general non-aqueous electrolyte solutions include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) having a high relative permittivity, and dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) having a low viscosity. It is a mixed solvent with chain carbonate.
  • an ester solvent as a solvent for the non-aqueous electrolyte solution. Since the ester solvent has relatively good redox resistance, deterioration of the non-aqueous electrolytic solution can be avoided to some extent. However, the ester solvent is not always the optimum solvent because it has a large number of donors and tends to increase the viscosity of the non-aqueous electrolyte solution. When only the ester solvent is used, the solvation with lithium ions and the increase in viscosity increase the ion conduction resistance of the non-aqueous electrolyte solution and decrease the discharge capacity of the secondary battery.
  • the interaction between the lithium ion and the ester solvent It is possible to reduce the viscosity of the non-aqueous electrolyte solution. This is because the carbonate solvent has a smaller number of donors than the ester solvent and generally has a lower viscosity than the mixed solution of the ester solvent and the electrolyte salt. When the interaction is relaxed and the viscosity is lowered, the ionic conductivity becomes high, so that a high discharge capacity can be obtained.
  • the number of donors of a solvent is a measure of the electron pair donation of a molecule of a solvent proposed by Gutmann et al.
  • the number of donors is defined as the heat of reaction when the solvent of interest forms a 1: 1 adduct with SbCl 5 in an inert medium (dichloromethane), with hexamethylphosphoric acid triamide as the reference material. It is dimensionally standardized.
  • the number of solvent donors can be determined from the chemical shift of Nuclear Magnetic Resonance (NMR).
  • the non-aqueous electrolyte solution may contain a corrosion inhibitor and other additives in addition to the electrolyte salt, the non-aqueous solvent, and the film forming agent.
  • a corrosion inhibitor and other additives in addition to the electrolyte salt, the non-aqueous solvent, and the film forming agent.
  • the non-aqueous electrolyte solution is used in the pores between the particles of the supported particles, the interface between the separator 300 and the electrode mixture layer, and the pores between the particles of the active material or the conductive agent. Be retained.
  • Electrolyte salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI ), Lithium bis (pentafluoroethanesulfonyl) imide (LiBETI), lithium tetrafluoroborate (LiBF 4 ), lithium bisoxalate borate (LiBOB), lithium trifurate and other materials of various lithium salts.
  • LiFSI, LiTFSI or LiBETI are preferable from the viewpoint of high dissociation degree and high chemical stability.
  • TMP, DN 18
  • TMP, DN 23
  • ⁇ -butyrolactone is preferable because it has excellent redox resistance.
  • the content of the ester solvent is preferably 30 to 80 mol% per non-aqueous solvent in the non-aqueous electrolyte solution from the viewpoint of making the viscosity of the non-aqueous electrolyte solution appropriate.
  • the content of the ester solvent can be quantified by using NMR or the like.
  • carbonate solvent propylene carbonate is preferable from the viewpoint of increasing the ionic conductivity of the non-aqueous electrolyte solution.
  • the content of the carbonate solvent is preferably 0 to 60 mol% per total of the non-aqueous solvent used in the non-aqueous electrolyte solution from the viewpoint of improving the discharge capacity of the secondary battery.
  • the content of the carbonate solvent can be quantified by using NMR or the like.
  • the molar ratio of the carbonate solvent to the ester solvent is preferably 0 to 0.65, more preferably 0.06 to 0.59, and even more preferably 0.12 to 0.52. With such a molar ratio, the discharge capacity of the secondary battery becomes higher than when only the ester solvent is used.
  • the molar ratio of the carbonate solvent to the ester solvent can be determined by using NMR.
  • the discharge capacity of the secondary battery is, for example, in a system of a ternary positive electrode and a graphite negative electrode, when the molar ratio of the carbonate solvent to the ester solvent is in the range of 0 to 0.65, the molar ratio is 357 mAh or more and the molar ratio is 0.06 to 0.06. In the range of 0.59, it can be 380 mAh or more, and in the range of the molar ratio of 0.12 to 0.52, it can be 400 mAh or more.
  • the molar ratio of the electrolyte salt to the ester solvent is preferably 0 to 0.24, more preferably 0 to 0.20, and even more preferably 0 to 0.16. Within such a molar ratio range, the higher the ratio of the electrolyte salt, the higher the concentration of lithium ions and the smaller the ion conduction resistance of the non-aqueous electrolyte solution. Further, with such a molar ratio, since the molar ratio of the electrolyte salt is suppressed, the interaction between the ester solvent having a large number of donors and the lithium ion is weakened.
  • the molar ratio of the electrolyte salt to the ester solvent can be determined using NMR.
  • the discharge capacity of the secondary battery is, for example, 350 mAh or more and a molar ratio of 0 to 0.21 when the molar ratio of the electrolyte salt to the ester solvent is 0 to 0.24 in the system of the ternary positive electrode and the graphite negative electrode. In the range of, it can be 375 mAh or more, and in the range of the molar ratio of 0 to 0.16, it can be 400 mAh or more.
  • the film-forming agents are vinylene carbonate (VC), fluoroethylene carbonate (FEC), succinic anhydride, vinylethylene carbonate, tris (trimethylsilyl) borate, tris (trimethylsilyl) phosphate, lithium 4,5-dicyano-2- (trifluoro). It is selected from a group of materials such as methyl) imidazolide (LiTDI), lithium bis (2-methyl-2-fluoromalonate) borate (LiBMFMB), lithium difluorooxalate borate (LiDFOB).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • succinic anhydride vinylethylene carbonate
  • vinylethylene carbonate tris (trimethylsilyl) borate, tris (trimethylsilyl) phosphate, lithium 4,5-dicyano-2- (trifluoro). It is selected from a group of materials such as methyl) imidazolide (LiTDI), lithium bis (2-methyl-2-fluor
  • the content of the film-forming agent is preferably 0 to 30 wt%, more preferably 0 to 10 wt% with respect to the total of the electrolyte salt and the solvent from the viewpoint of improving the discharge capacity and cycle characteristics of the secondary battery.
  • the content of the film-forming agent can be quantified by using NMR or the like.
  • ⁇ Corrosion inhibitor> various substances capable of preventing corrosion of a metal such as a current collector at a high potential can be used.
  • a film-forming type or a surface adsorption type is preferable, and a substance having high stability in the presence of moisture is more preferable.
  • solubility in water and hydrolyzability can be mentioned.
  • the corrosion inhibitor is a solid, its solubility in water is preferably less than 1% at room temperature.
  • the hydrolyzability of the corrosion inhibitor can be evaluated by performing a molecular structure analysis after absorbing the corrosion inhibitor or mixing it with water. When a moisture-absorbed corrosion inhibitor or a corrosion inhibitor mixed with water is heated at 100 ° C or higher to remove water, if 95 wt% or more of the residue has the same molecular structure as the original corrosion inhibitor, the corrosion. It can be said that the inhibitor is non-corrosive and stable in the presence of moisture.
  • an organic salt represented by (MR) + An ⁇ is particularly preferable.
  • (MR) + is a cation and An ⁇ is an anion.
  • M is a central atom selected from nitrogen (N), boron (B), phosphorus (P) and sulfur (S), and R is a substituent that is totally substituted with respect to the central atom and is a hydrocarbon. It is the basis. Since such organic cations have high polarity, a highly stable corrosion inhibitor can be obtained.
  • Examples of the anion of the corrosion inhibitor tetrafluoroborate anion (BF 4 -), hexafluorophosphate anion (PF 6 -) and the like are preferable. Since these anions are considered to react with metals to form a passivation film, they are effective in preventing elution of metals constituting current collectors and the like.
  • a hexafluorophosphate anion is particularly preferable because it can further suppress the elution of metal.
  • an ionic liquid that exists as a liquid at room temperature is particularly preferable in that it is highly non-volatile and has good heat resistance, chemical stability, and electrical stability.
  • the corrosion inhibitor include quaternary ammonium salts such as tetrabutylammonium hexafluorophosphate (TBA-PF6) and tetrabutylammonium tetrafluoroborate (TBA-BF4), and 1-ethyl-3-methylimidazolium tetra.
  • TAA-PF6 tetrabutylammonium hexafluorophosphate
  • TSA-BF4 tetrabutylammonium tetrafluoroborate
  • 1-ethyl-3-methylimidazolium tetra 1-ethyl-3-methylimidazolium tetra.
  • EMI-BF4 Fluorobolate
  • EMI-PF6 1-Ethyl-3-methylimidazolium hexafluorophosphate
  • BMI-BF4 1-Butyl-3-methylimidazolium tetrafluoroborate
  • BMI-BF4 1-Butyl-3- Examples thereof include imidazolium salts such as methyl imidazolium hexafluorophosphate (BMI-PF6).
  • the content of the corrosion inhibitor is preferably 0.5 to 20 wt% and more preferably 1 to 10 wt% with respect to the total of the electrolyte salt and the solvent.
  • the content of the corrosion inhibitor is 0.5 wt% or more, a sufficient effect of preventing corrosion of the current collector or the like can be obtained, so that a high discharge capacity and good cycle characteristics can be obtained.
  • the content of the corrosion inhibitor is 20 wt% or less, the conduction of lithium ions is not easily hindered, so that the ionic conductivity of the non-aqueous electrolytic solution can be secured.
  • since the consumption of electrical energy due to self-discharge that dissociates and decomposes the corrosion inhibitor is reduced, there is a high possibility that a high discharge capacity can be obtained.
  • the non-aqueous electrolyte solution is suitable as a mixed solvent of an ester solvent having a larger number of donors than the carbonate solvent and a carbonate solvent. Since the mixture is contained in an appropriate mixing ratio, the discharge capacity of the secondary battery can be improved as compared with the case where the carbonate solvent is not used in combination, even though the ester solvent having a large number of donors is used.
  • the non-aqueous electrolyte leaks or changes in composition. Is unlikely to occur, and a safe and long-life secondary battery can be realized.
  • a secondary battery including a negative electrode containing graphite as a negative electrode active material is particularly preferable.
  • a negative electrode containing graphite is used as the negative electrode active material, a relatively high discharge capacity can be obtained. Since the non-aqueous electrolyte solution contains an ester solvent, the reduction decomposition of the solvent on the surface of the negative electrode active material is suppressed more than before even when the reduction potential is low as in the graphite negative electrode. become. Further, despite the inclusion of the carbonate solvent, the co-insertion of the negative electrode active material between the layers is reduced. Therefore, according to the above secondary battery, high discharge capacity and good cycle characteristics can be obtained.
  • Example 1 ⁇ Preparation of non-aqueous electrolyte solution> Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) as an electrolyte salt, ⁇ -butyrolactone (GBL) as an ester solvent, propylene carbonate (PC) as a carbonate solvent, vinylene carbonate (VC) as an additive, and tetra as a corrosion inhibitor. Butylammonium hexafluorophosphate (TBA-PF6) was weighed and mixed to prepare a non-aqueous electrolyte solution.
  • LiTFSI Lithium bis (trifluoromethanesulfonyl) imide
  • GBL ⁇ -butyrolactone
  • PC propylene carbonate
  • VC vinylene carbonate
  • TSA-PF6 Butylammonium hexafluorophosphate
  • the components contained in the prepared non-aqueous electrolytic solution were quantified by NMR.
  • the molar ratio of PC to GBL was 0.65
  • the molar ratio of LiTFSI to GBL was 0.22.
  • the VC content was 3 wt% with respect to the total of the electrolyte salt and the solvent
  • the content of TBA-PF6 was 2.5 wt% with respect to the total of the electrolyte salt and the solvent.
  • Graphite as the negative electrode active material and styrene-butadiene rubber and carboxylmethyl cellulose as the binder were weighed so that the weight ratio of the solid content was 98: 1: 1, and these were uniformly mixed by a kneader.
  • the obtained mixture was slurried by adding water to adjust the solid content concentration.
  • the slurry whose concentration was adjusted was applied to both sides of the copper foil, which is the negative electrode current collector foil, with a tabletop coater, and passed through a drying furnace at 100 ° C. to obtain a negative electrode.
  • the total amount of the negative electrode mixture applied on both sides was 18.1 mg / cm 2 .
  • the electrode density of the obtained negative electrode was adjusted to 1.55 g / cm 3 by a roll press.
  • the separator was formed by applying a non-volatile electrolyte to the surface of the electrode mixture layer.
  • SiO 2 having an average particle size of 1 ⁇ m as the supporting particles and vinylidene fluoride-hexafluoropropylene copolymer (P (VdF-HFP)) as the binder have a weight ratio of 89.3: 10.7.
  • P (VdF-HFP) vinylidene fluoride-hexafluoropropylene copolymer
  • the slurry having the adjusted concentration was applied to both the positive electrode and the negative electrode with a tabletop coater and passed through a drying oven at 100 ° C. to obtain a positive electrode and a negative electrode having a non-volatile electrolyte layer formed therein.
  • the prepared positive electrode and negative electrode were punched with an air punching machine so that the positive electrode mixture layer had a size of 45 mm ⁇ 70 mm and the negative electrode mixture layer had a size of 47 mm ⁇ 74 mm, and tab portions were formed on the positive electrode and the negative electrode. Then, the positive electrode and the negative electrode were dried at 100 ° C. for 2 hours to remove NMP in the electrodes. The dried positive electrode was sandwiched between microporous films made of resin having a thickness of 30 ⁇ m and a three-layer structure of PP / PE / PP, and three sides other than the side on which the tab portion was formed were heat-welded.
  • a positive electrode covered with a microporous film and a punched negative electrode were laminated in the order of negative electrode / positive electrode / negative electrode, and then a 50 ⁇ m-thick PTFE sheet was placed on the negative electrode.
  • Each tab portion provided on the positive electrode and the negative electrode, an aluminum positive electrode terminal, and a nickel negative electrode terminal were welded by ultrasonic welding, respectively.
  • the obtained electrode body is sandwiched between laminate films, one side for injecting liquid is left, and three sides including the side on which the tab portion is formed are heat-sealed at 200 ° C. by a laminate sealing device for 20 hours at 50 ° C. It was vacuum dried. Then, after injecting the non-aqueous electrolytic solution from one side for liquid injection, one side for liquid injection was vacuum-sealed to obtain a secondary battery.
  • the prepared secondary battery was held at 25 ° C., charged at a constant current with a charging rate of 0.05 C up to an upper limit voltage of 4.2 V, and then charged at a constant voltage at a voltage of 4.2 V until it decreased to 0.005 C. Then, a constant current was discharged at 0.05 C to a lower limit voltage of 2.7 V, and the discharge capacity of the secondary battery was measured.
  • Examples 2 to 7 Comparative Examples 1 to 2> The components contained in the non-aqueous electrolyte solution were quantified and the discharge capacity was measured in the same manner as in Example 1 except that the composition of the non-aqueous electrolyte solution was changed as shown in Table 1.
  • Table 1 shows the types of electrolyte salts (Li salt (1), Li salt (2)) used in Examples 1 to 7 and Comparative Examples 1 and 2, and the types of ester-based solvent and carbonate-based solvent (solvent (1)).
  • Solvent (2) molar ratio of carbonate solvent to ester solvent (solvent (2) / solvent (1)), molar ratio of electrolyte salt to ester solvent (Li salt (1) / solvent (1))
  • the measurement result of the discharge capacity of the secondary battery is shown.
  • FIG. 2 is a diagram showing the relationship between the molar ratio of the carbonate solvent to the ester solvent and the discharge capacity of the secondary battery.
  • the molar ratio of the carbonate solvent to the ester solvent was smaller than about 0.32, the larger the molar ratio, the larger the discharge capacity. This result is considered to be due to the fact that when PC having a low viscosity was added, the viscosity of the non-aqueous electrolyte solution decreased and the ionic conductivity of the non-aqueous electrolyte solution increased.
  • Comparative Example 1 since the concentration of the electrolyte salt was lower than that in Comparative Example 2, the viscosity of the non-aqueous electrolyte solution was reduced to some extent without adding PC, but the ion conduction resistance of the non-aqueous electrolyte solution was large. It is presumed that this is the cause of the reduced discharge capacity.
  • the discharge capacity Z of the secondary battery is represented by the following mathematical formula (1) in the range where the molar ratio X of the carbonate solvent to the ester solvent is in the range of 0 to 0.65.
  • the range of X having a discharge capacity of 380 mAh or more was 0.06 to 0.59.
  • the range of X having a discharge capacity of 400 mAh or more was 0.12 to 0.52.
  • FIG. 3 is a diagram showing the relationship between the molar ratio of the electrolyte salt to the ester solvent and the discharge capacity of the secondary battery.
  • the molar ratio of the electrolyte salt to the ester solvent was smaller than about 0.06
  • the larger the molar ratio the larger the discharge capacity.
  • the smaller the molar ratio the larger the discharge capacity.
  • the concentration of the ester solvent that affects the dissociation of the electrolyte salt is too high with respect to the concentration of the electrolyte salt, the interaction between the electrolyte salt and the ester solvent becomes strong, and the ionic conductivity of the non-aqueous electrolyte solution decreases. Therefore, it is considered that the discharge capacity becomes smaller.
  • the discharge capacity Z of the secondary battery is represented by the following mathematical formula (3) by the molar ratio Y of the electrolyte salt to the ester solvent.
  • the discharge capacity of the secondary battery is 350 mAh or more. It was also found that when Y was in the range of 0 to 0.20, the discharge capacity of the secondary battery was 375 mAh or more. It was also found that when Y was in the range of 0 to 0.16, the discharge capacity of the secondary battery was 400 mAh or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、二次電池の放電容量が向上する非水電解液、不揮発性電解質、これを用いた二次電池を提供するものである。電解質塩、エステル系溶媒およびカーボネート系溶媒を含む非水溶媒と、負極の表面に被膜を形成するための添加剤と、を含有する非水電解液であって、エステル系溶媒のドナー数はカーボネート系溶媒のドナー数より大きく、エステル系溶媒に対するカーボネート系溶媒のモル比が0~0.65である非水電解液。

Description

非水電解液、不揮発性電解質、二次電池
 本発明は、エステル系溶媒とカーボネート系溶媒を用いた非水電解液、不揮発性電解質、二次電池に関する。
 リチウムイオン二次電池は、携帯電話、携帯用パソコン等の移動体用電源や、電気自動車、ハイブリッド自動車等の駆動電源や、電力貯蔵用の定置電源をはじめ、各種の用途で利用されている。近年、リチウムイオン二次電池は、その用途が大型製品等にも拡大しており、更なる高エネルギ密度化・高容量化や、長寿命化が求められている。
 リチウムイオン二次電池等に用いられる非水電解液は、一般的特性として、使用時の電気化学的条件や温度条件における安定性、難燃性、電位窓の広さ等に加え、比誘電率・イオン伝導率の高さや、適切な粘度等が要求される。従来、リチウムイオン二次電池の電解液の溶媒としては、カーボネート類が多用されてきたが、非水電解液についても、電池性能を向上させるための改良が進められている。
 非水電解液に関する技術として、特許文献1には、以下の内容が開示されている。「溶媒和電解質塩と、溶媒和電解質塩と溶媒和イオン液体を構成するエステル系溶媒と、低粘度溶媒と、を有し、溶媒和電解質塩に対するエステル系溶媒の混合比率がモル換算で0.5以上1.5以下であり、溶媒和電解質塩に対する低粘度溶媒の混合比率がモル換算で4以上16以下である半固体電解液、半固体電解質層、電極、二次電池。」(請求項1参照)
国際公開第2018/179990号
 特許文献1では、負極活物質として炭素系材料等を用い、電解液の溶媒としてエーテル系溶媒や低粘度溶媒を用い、被膜形成剤としてビニレンカーボネートやフルオロエチレンカーボネート等を用いるものとしている。電解液にビニレンカーボネート等の被膜形成剤を添加して電気化学反応させると、負極活物質の表面にSEI(Solid Electrolyte Interphase)膜が形成されるため、電解液の還元分解をある程度抑制することができる。
 しかし、一般的な溶媒として知られるカーボネート系溶媒やエーテル系溶媒を用いた場合、負極活物質の表面で溶媒の還元分解が起こる可能性が依然としてある。また、負極活物質として黒鉛やシリコンを用いた場合、負極活物質の層間にキャリアイオンと溶媒とが共挿入することもある。被膜形成剤の添加による効果は、ある程度の添加量で頭打ちとなり、過剰に添加すると電池性能を低下させるため、より高い放電容量を得ることができる非水電解液が求められている。
 そこで、本発明は、二次電池の放電容量が向上する非水電解液、不揮発性電解質、これを用いた二次電池を提供することを目的とする。
 上記の課題を解決するため、本発明は、例えば以下の構成を有する。
 電解質塩、エステル系溶媒およびカーボネート系溶媒を含む非水溶媒と、負極の表面に被膜を形成するための添加剤と、を含有する非水電解液であって、
 エステル系溶媒のドナー数はカーボネート系溶媒のドナー数より大きく、
 エステル系溶媒に対するカーボネート系溶媒のモル比が0~0.65である非水電解液。
 本発明によれば、二次電池の放電容量が向上する非水電解液、不揮発性電解質、これを用いた二次電池を提供することができる。前記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る二次電池の構成を説明する模式断面図である。 エステル系溶媒に対するカーボネート系溶媒のモル比と二次電池の放電容量との関係を示す図である。 エステル系溶媒に対する電解質塩のモル比と二次電池の放電容量との関係を示す図である。
 以下、図面等を用いて、本発明の一実施形態に係る非水電解液、不揮発性電解質、これを用いた二次電池について説明する。
 以下の説明は、本発明の内容の具体例を示すものである。本発明は、以下の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。本発明には、実施形態とは異なる様々な変形例が含まれる。実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能である。また、ある実施形態の構成に他の実施形態の構成を加えることが可能である。また、実施形態の構成の一部について他の構成の追加・削除・置換をすることが可能である。
 本明細書に記載される「~」は、その前後に記載される数値を下限値および上限値とする意味で使用する。但し、前後に記載される数値が「0」である場合は、「0」を上限値や下限値として含まないものとする。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値や下限値は、段階的に記載されている他の上限値や他の下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値や下限値は、実施例中に示されている数値に置き換えてもよい。
 本明細書では、二次電池としてリチウムイオン二次電池を例にとって説明を行う。リチウムイオン二次電池とは、リチウムイオンの電極への吸蔵と電極からの放出によって電極間に電位差を生じさせ、それによる電気エネルギを貯蔵または利用可能とする電気化学デバイスを意味する。リチウムイオン二次電池は、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池等の別の名称でも呼ばれており、いずれの名称の電池であっても本発明の対象である。本発明の技術的思想は、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池等に対しても適用できる。
 以下で例示している材料群から材料を選択して用いる場合、本明細書に開示されている内容と矛盾しない範囲で、材料を単独で用いてもよく、複数を組み合わせて用いてもよい。また、本明細書に開示されている内容と矛盾しない範囲で、以下で例示している材料群以外の材料を用いてもよい。
 図1は、本発明の一実施形態に係る二次電池の構成を説明する模式断面図である。図1には、二次電池の一例として、積層型の二次電池を示している。図1に示すように、二次電池1000は、正極100と、負極200と、セパレータ300と、外装体500と、を備えている。
 外装体500は、正極100、負極200およびセパレータ300を収容している。外装体500の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等のように、非水電解液に対して耐食性を示す材料が用いられる。
 正極100、セパレータ300および負極200は、この順に積層されて電極体400を構成している。外装体500の内部には、複数の正極100、セパレータ300および負極200が互いに積層されて収容されている。正極100と負極200とは、セパレータ300を挟んで配置されている。
 なお、図1には、積層型の二次電池を示しているが、二次電池1000は、捲回型であってもよい。また、二次電池1000の形状は、円筒形、角形、ボタン形等のいずれの形状であってもよい。外装体500は、金属缶に代えて、袋状のラミネート容器として設けてもよい。
 正極100は、正極合剤層110と、正極集電体120と、正極タブ130と、を有している。図1において、正極合剤層110は、平板状の正極集電体120の両面に形成されている。正極集電体120の端部には、電流を取り出すための平板状の正極タブ130が設けられている。正極タブ130は、各正極100から外装体500の外側に引き出されている。
 負極200は、負極合剤層210と、負極集電体220と、負極タブ230と、を有している。図1において、負極合剤層210は、平板状の負極集電体220の両面に形成されている。負極集電体220の端部には、電流を取り出すための平板状の負極タブ230が設けられている。負極タブ230は、各負極200から外装体500の外側に引き出されている。
 正極タブ130および負極タブ230は、外装体500の外側において、不図示のリード、外部端子等と電気的に接続される。タブを接合する方法としては、スポット溶接、超音波接合等の適宜の方法が用いられる。電極体400は、正極タブ130同士や負極タブ230同士を接合することにより並列接続とすることができる。或いは、電極体400は、直列接続となるバイポーラ型の二次電池を形成することもできる。
 正極合剤層110は、リチウムイオンを吸蔵・放出可能な正極活物質と、正極合剤層110の導電性を向上させるための導電剤と、正極活物質や導電剤を結着させるためのバインダと、を含有する。正極活物質は、負極200よりも貴な電位でリチウムイオンを吸蔵・放出する電気化学的活性を有し、充電過程においてリチウムイオンが脱離し、放電過程においてリチウムイオンが挿入される。
 負極合剤層210は、リチウムイオンを吸蔵・放出可能な負極活物質を含有する。負極活物質は、正極100よりも卑な電位でリチウムイオンを吸蔵・放出する電気化学的活性を有し、放電過程においてリチウムイオンが脱離し、充電過程においてリチウムイオンが挿入される。負極合剤層210は、負極活物質の種類に応じて、負極合剤層210の導電性を向上させるための導電剤や、負極活物質や導電剤を結着させるためのバインダを含有してもよい。
<正極活物質>
 正極活物質は、例えば、LiCo系複合酸化物、LiNi系複合酸化物、LiMn系複合酸化物、LiCoNiMn系複合酸化物、LiFeP系複合酸化物、LiMnP系複合酸化物等の材料群から選択される。正極活物質の具体例としては、LiCoO、Li(Co,Mn)O、Li(Ni,Mn)O、LiMn、LiMn12、Li(Co,Ni,Mn)O、LiFePO、LiCoPO、LiNiPO、LiMnPO、LiMnVO、LiFeBO、LiMnBO、LiFeSiO、LiCoSiO、LiMnSiO等が挙げられる。正極活物質としては、これらの遷移金属を異種元素で置換した酸化物や、化学両論比とは異なる酸化物を用いることもできる。異種元素としては、例えば、Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ru等が挙げられる。
 また、正極活物質としては、硫黄、TiS、MoS、Mo、TiSe等のカルコゲナイドや、V等のバナジウム系酸化物や、FeF等のハライドや、Fe(MoO、Fe(SO、LiFe(PO等のポリアニオン系材料や、キノン系有機結晶等の有機系材料を用いることもできる。
<負極活物質>
 負極活物質は、例えば、炭素系材料、酸化物系材料、金属系材料等の材料群から選択される。炭素系材料の具体例としては、天然黒鉛、人造黒鉛、易黒鉛化系炭素材料、難黒鉛化系炭素材料、非晶質系炭素材料、有機結晶系炭素材料等が挙げられる。酸化物系材料の具体例としては、LiTi12等のチタン酸リチウムや、リチウムとスズ、ケイ素、鉄、ゲルマニウム等とを含む酸化物等が挙げられる。金属系材料の具体例としては、金属リチウム、リチウムとスズ、ケイ素、アルミニウム等との合金等が挙げられる。
<導電剤>
 導電剤は、例えば、ケッチェンブラック、アセチレンブラック、ファーネスブラック、サーマルブラック、黒鉛、炭素繊維等の材料群から選択される。
<バインダ>
 正極合剤層110のバインダは、例えば、ポリフッ化ビニリデン(PVDF)等の材料群から選択される。負極合剤層210のバインダは、例えば、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン等の材料群から選択される。
<正極集電体、正極タブ>
 正極集電体120としては、金属箔、穿孔箔、エキスパンドメタル、発泡金属板等を用いることができる。正極集電体120は、アルミニウム、アルミニウム合金等の材料群から選択される。また、正極100の酸化還元電位等に応じて、ステンレス鋼、チタン等を用いることもできる。正極集電体120の厚さは、機械的強度とエネルギ密度とを両立する観点からは、10nm~1mmが好ましく、1~100μmがより好ましい。正極タブ130は、正極集電体120と同様の材料で形成することができる。
<負極集電体、負極タブ>
 負極集電体220としては、金属箔、穿孔箔、エキスパンドメタル、発泡金属板等を用いることができる。負極集電体220は、銅、銅合金等の材料群から選択される。また、負極200の酸化還元電位等に応じて、ステンレス鋼、チタン、ニッケル等を用いることもできる。負極集電体220の厚さは、機械的強度とエネルギ密度とを両立する観点からは、10nm~1mmが好ましく、1~100μmがより好ましい。負極タブ230は、負極集電体220と同様の材料で形成することができる。
<電極合剤層形成法>
 正極合剤層110や負極合剤層210は、活物質と導電剤やバインダを溶媒中で混練して電極合剤を調製し、調製した電極合剤を集電体に塗工し、塗工した電極合剤を乾燥させることによって形成することができる。集電体上に形成した電極合剤層は、活物質が所定の密度となるように、ロールプレス等で加圧成形する。電極合剤層は、塗工から乾燥までの工程を繰り返して、集電体上に積層することもできる。電極合剤層を形成した電極には、打ち抜き加工、切断加工等を施すことができる。
 電極合剤の混練は、プラネタリーミキサ、ディスパーミキサ、バタフライミキサ、二軸混練機、ボールミル、ビーズミル等の各種の装置で行うことができる。活物質等を分散させる溶媒としては、電極に応じて、1-メチル-2-ピロリドン(NMP)、水等の各種の溶媒を用いることができる。電極合剤を塗工する方法としては、ロールコート法、ドクターブレード法、ディッピング法、スプレー法等の各種の方法を用いることができる。
<セパレータ>
 セパレータ300は、正極100と負極200との間を電気的に絶縁し、正極100と負極200の短絡を防止する一方で、正極100と負極200との間でイオンを伝導させる媒体として働く。セパレータ300は、微小な空孔を有する絶縁性の微多孔膜、非水電解液を粒子に担持させて得られる不揮発性電解質、および、固体電解質のうち、いずれか一種または複数種の組み合わせを用いて形成できる。セパレータ300の厚さは、電子の絶縁性とエネルギ密度とを両立する観点から、好ましくは数nm~数mmとする。
<微多孔膜>
 微多孔膜は、セルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース等のセルロース系樹脂や、ポリプロピレン、ポリエチレン-ポリプロピレン共重合体等のポリオレフィン系樹脂や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂や、アラミド、ポリアミドイミド、ポリイミド、ガラス等の材料群から選択される。微多孔膜としては、樹脂等を成膜して得られる多孔質膜の他、多孔質シート、不織布等を用いることもできる。
<不揮発性電解質>
 不揮発性電解質としては、電解質塩を溶解した非水電解液と、その非水電解液を担持させるための担持粒子(粒子)とによって構成される半固体の電解質を用いることができる。不揮発性電解質は、担持粒子を結着させるためのバインダを含有してもよい。不揮発性電解質によると、非水電解液が担持粒子の粒子間の細孔中に保持されてイオン伝導を媒介する。非水電解液の揮発や流動が抑制されるため、非水電解液の液漏れや組成変化が発生し難い二次電池1000が得られる。
<担持粒子>
 担持粒子は、絶縁性が高く非水電解液に不溶な各種の粒子を用いることができる。担持粒子の具体例としては、γ-アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)、セリア(CeO)等の金属酸化物の無機粒子が挙げられる。担持粒子としては、粒子状の固体電解質を用いることもできる。
 担持粒子の一次粒子の平均粒径は、好ましくは1nm~10μm、より好ましくは1~50nm、更に好ましくは1~10nmである。平均粒径が1nm以上であると、担持粒子同士が表面間力で凝集し難いため、セパレータ300の形成が容易になる。また、平均粒径が10μm以下であると、担持粒子の表面積が大きくなるため、多量の電解液を保持させることができる。担持粒子の粒子径は、例えば、透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて測定することができる。
<固体電解質>
 固体電解質は、イオン伝導率が高いが導電率が低く、作動温度内で固体状の電解質を用いることができる。固体電解質の具体例としては、LiLaZr12をはじめとするLiLaZrO系等の酸化物系固体電解質や、Li10GePS12、LiS-P等の硫化物系固体電解質等が挙げられる。
 セパレータ300は、不揮発性電解質のみ、または、不揮発性電解質と微多孔膜との組み合わせによって形成することが好ましい。このようなセパレータ300を形成すると、正極100および負極200の間に、非水電解液と担持粒子とを含有する不揮発性電解質からなる不揮発性電解質層が形成される。不揮発性電解質層では、非水電解液の揮発や流動が抑制されるため、非水電解液の液漏れや組成変化が発生し難くなり、安全で長寿命な二次電池が得られる。
 セパレータ300は、不揮発性電解質を用いる場合、非水電解液の含有量が40~90vol%であることが好ましく、50~80vol%であることがより好ましく、60~80vol%であることが更に好ましい。非水電解液の含有量が40vol%以上であると、十分に高いイオン伝導率が得られる。また、非水電解液の含有量が90vol%以下であると、非水電解液が半固体電解質から漏れ出る可能性が低くなる。
<セパレータ形成法>
 セパレータ300は、不揮発性電解質を用いる場合、担持粒子をペレット状、シート状等に圧縮成形する方法や、担持粒子にバインダの粉末を混合して柔軟性の高いシート状等に成形する方法や、担持粒子とバインダとを溶媒中で混練してシート状等に成形し、乾燥させて溶媒を除去する方法等で形成できる。セパレータ300は、担持粒子とバインダとを溶媒中で混練し、電極合剤層の表面に塗工して乾燥させることにより、電極と一体的に形成してもよい。
 また、セパレータ300は、不揮発性電解質と微多孔膜との組み合わせを用いる場合、担持粒子とバインダとを溶媒中で混練し、得られた混合物を微多孔膜に塗工し、塗工した混合物を乾燥させて溶媒を除去する方法によって形成することができる。或いは、セパレータ300を個別に形成するか、または、電極と一体的に形成し、そのセパレータ300を電極と微多孔膜とで挟んで電極体を形成してもよい。
 非水電解液は、担持粒子をシート状等に成形した後に担持粒子の粒子間に充填してもよいし、担持粒子を成形する前に担持粒子と混合しておいてもよい。非水電解液と担持粒子とを混合すると、半固体の不揮発性電解質が得られる。例えば、担持粒子と非水電解液とを、メタノール等の有機溶媒を添加して混合し、得られたスラリーをシャーレ等に広げて有機溶媒を留去すると、粉末状の不揮発性電解質が得られる。
 また、非水電解液は、セパレータ300だけでなく、正極合剤層110や負極合剤層210に保持させてもよい。電極合剤層中の活物質や導電剤の粒子間に非水電解液を保持させると、電極内のイオン伝導率が高くなり、高い放電容量が得られる。電極合剤層に非水電解液を保持させる方法としては、外装体500に非水電解液を注入する方法や、非水電解液と活物質と導電剤やバインダとを混練して電極合剤を調製し、調製した電極合剤を集電体に塗工して電極を作製する方法等を用いることができる。正極合剤層110、負極合剤層210およびセパレータ300に非水電解液を保持させている場合、外装体500に対する非水電解液の注入は不要になる。
 不揮発性電解質層の形成に用いるバインダとしては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体(P(VdF-HFP))、スチレン-ブタジエンゴム、ポリアルギン酸、ポリアクリル酸等が挙げられる。不揮発性電解質層の形成に用いる微多孔膜としては、フッ素樹脂製の多孔質シートが好ましい。担持粒子の一次粒子の平均粒径は、微多孔膜の厚さの1/100~1/2とすることが好ましい。
<非水電解液>
 非水電解液は、電解質塩、エステル系溶媒およびカーボネート系溶媒を含む非水溶媒と、負極の表面に被膜を形成するための被膜形成剤(添加剤)と、を含有する。非水電解液の溶媒としては、カーボネート系溶媒よりもドナー数が大きいエステル系溶媒と、カーボネート系溶媒との混合溶媒が用いられる。
 一般に、リチウムイオン二次電池の非水電解液の溶媒としては、カーボネート系溶媒が多用されている。一般的な非水電解液の溶媒は、比誘電率が高いエチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネートと、粘度が低いジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートとの混合溶媒である。
 しかし、負極活物質として黒鉛やシリコンを用いた二次電池では、溶媒としてカーボネート系溶媒を用いた場合に、負極活物質の表面で溶媒が還元分解したり、負極活物質の層間にキャリアイオンと溶媒とが共挿入したりするため、放電容量が理論容量よりも低くなり、サイクル特性も悪化するという問題がある。
 このような問題に対し、非水電解液に被膜形成剤を添加すると、初期の充放電によって負極活物質の表面にSEI膜が形成されるため、溶媒の還元分解や共挿入を起こり難くすることができる。但し、被膜形成剤の添加量が多すぎると、過剰なSEI膜が形成される等してイオン伝導抵抗が高くなり、却って電池性能が低下するため、被膜形成剤の添加による効果には限界がある。
 電池性能を向上させるその他の方法としては、非水電解液の溶媒としてエステル系溶媒を用いる方法がある。エステル系溶媒は、酸化還元耐性が比較的良好であるため、非水電解液の劣化をある程度避けることができる。しかし、エステル系溶媒は、ドナー数が大きく、また、非水電解液の粘度を上昇させる傾向があるため、必ずしも最適な溶媒であるとはいえない。エステル系溶媒だけを用いると、リチウムイオンへの溶媒和や高粘度化によって、非水電解液のイオン伝導抵抗が高くなり、二次電池の放電容量が低くなる。
 これに対し、本実施形態のように、カーボネート系溶媒よりもドナー数が大きいエステル系溶媒とカーボネート系溶媒との混合溶媒を適切な混合比で用いると、リチウムイオンとエステル系溶媒との相互作用を緩和すると共に、非水電解液の粘度を低下させることができる。カーボネート系溶媒は、エステル系溶媒よりもドナー数が小さく、一般に、エステル系溶媒と電解質塩との混合溶液よりも粘度が低いためである。相互作用を緩和し、粘度を低下させると、イオン伝導率が高くなるため、高い放電容量が得られる。
 溶媒のドナー数(donor number:DN)は、Gutmannらにより提唱された溶媒の分子が有する電子対供与性の尺度である。ドナー数は、目的の溶媒が、不活性媒体(ジクロロメタン)中、SbClとの1:1の付加物を形成するときの反応熱として定義されており、ヘキサメチルリン酸トリアミドを基準物質として無次元規格化されている。溶媒のドナー数は、核磁気共鳴(Nuclear Magnetic Resonance:NMR)のケミカルシフトから求めることができる。
 非水電解液は、電解質塩や非水溶媒や被膜形成剤に加え、腐食防止剤や、その他の添加剤が添加されていてもよい。非水電解液は、セパレータ300に不揮発性電解質を用いる場合、担持粒子の粒子間の細孔や、セパレータ300と電極合剤層との界面や、活物質や導電剤の粒子間の細孔に保持される。
<電解質塩>
 電解質塩は、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF)、リチウムビスオキサレートボレート(LiBOB)、リチウムトリフラート等の各種のリチウム塩の材料群から選択される。電解質塩としては、解離度の高さや化学的安定性の高さの観点から、LiFSI、LiTFSIまたはLiBETIが好ましい。
<エステル系溶媒>
 エステル系溶媒としては、γ-ブチロラクトン(GBL、DN=18)、リン酸トリメチル(TMP、DN=23)、リン酸トリエチル(TEP、DN=26)等を用いることができる。エステル系溶媒として、酸化還元耐性に優れる点から、γ-ブチロラクトンが好ましい。
 エステル系溶媒の含有量は、非水電解液の粘度等を適切にする観点からは、非水電解液中の非水溶媒当たり、30~80モル%が好ましい。エステル系溶媒の含有量は、NMR等を用いて定量することができる。
<カーボネート系溶媒>
 カーボネート系溶媒としては、エチレンカーボネート(EC、DN=16.4)、プロピレンカーボネート(PC、DN=15.1)等を用いることができる。カーボネート系溶媒としては、非水電解液のイオン伝導率を高くする観点からは、プロピレンカーボネートが好ましい。
 カーボネート系溶媒の含有量は、二次電池の放電容量を向上させる観点からは、非水電解液に用いる非水溶媒の全体当たり、0~60モル%が好ましい。カーボネート系溶媒の含有量は、NMR等を用いて定量することができる。
 エステル系溶媒に対するカーボネート系溶媒のモル比は、0~0.65が好ましく、0.06~0.59がより好ましく、0.12~0.52が更に好ましい。このようなモル比であると、エステル系溶媒のみを用いる場合と比較して、二次電池の放電容量が高くなる。エステル系溶媒に対するカーボネート系溶媒のモル比は、NMRを用いて求めることができる。
 二次電池の放電容量は、例えば、三元系正極と黒鉛負極の系において、エステル系溶媒に対するカーボネート系溶媒のモル比が0~0.65の範囲では357mAh以上、モル比が0.06~0.59の範囲では380mAh以上、モル比が0.12~0.52の範囲では400mAh以上にすることができる。
 エステル系溶媒に対する電解質塩のモル比は、0~0.24が好ましく、0~0.20がより好ましく、0~0.16が更に好ましい。このようなモル比の範囲であれば、電解質塩の比率が高いほど、リチウムイオンの濃度が高くなり、非水電解液のイオン伝導抵抗が小さくなる。また、このようなモル比であると、電解質塩のモル比が抑制されているため、ドナー数が大きいエステル系溶媒とリチウムイオンとの相互作用が弱められる。その結果、リチウムイオンが動き易くなり、非水電解液のイオン伝導率が高くなるため、より高い放電容量を得ることができる。エステル系溶媒に対する電解質塩のモル比は、NMRを用いて求めることができる。
 二次電池の放電容量は、例えば、三元系正極と黒鉛負極の系において、エステル系溶媒に対する電解質塩のモル比が0~0.24の範囲では350mAh以上、モル比が0~0.21の範囲では375mAh以上、モル比が0~0.16の範囲では400mAh以上にすることができる。
<被膜形成剤>
 被膜形成剤は、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、無水コハク酸、ビニルエチレンカーボネート、トリス(トリメチルシリル)ボレート、トリス(トリメチルシリル)ホスファート、リチウム4,5-ジシアノ-2-(トリフルオロメチル)イミダゾリド(LiTDI)、リチウムビス(2-メチル-2-フルオロマロネート)ボレート(LiBMFMB)、リチウムジフルオロオキサレートボレート(LiDFOB)等の材料群から選択される。
 被膜形成剤の含有量は、二次電池の放電容量やサイクル特性を向上させる観点からは、電解質塩と溶媒との合計に対して、0~30wt%が好ましく、0~10wt%がより好ましい。被膜形成剤の含有量は、NMR等を用いて定量することができる。
<腐食防止剤>
 腐食防止剤としては、集電体等の金属の高電位における腐食を防止可能な各種の物質を用いることができる。腐食防止剤としては、皮膜形成型または表面吸着型が好ましく、水分の存在下における安定性が高い物質がより好ましい。
 水分の存在下における安定性の指標としては、水に対する溶解度や加水分解性が挙げられる。腐食防止剤が固体である場合、水に対する溶解度は、室温で1%未満であることが好ましい。腐食防止剤の加水分解性は、腐食防止剤を吸湿させた後または水と混合した後に、分子構造解析を行うことによって評価できる。吸湿させた腐食防止剤または水と混合した腐食防止剤を100℃以上で加熱して水分を除去したとき、残留物の95wt%以上が当初の腐食防止剤と同じ分子構造であれば、その腐食防止剤は、加水分解性が無く、水分の存在下において安定であるといえる。
 腐食防止剤としては、(M-R)Anで表される有機塩が特に好ましい。但し、式中、(M-R)はカチオン、Anはアニオンである。Mは、窒素(N)、ホウ素(B)、リン(P)および硫黄(S)から選択される中心原子であり、Rは、中心原子に対して全置換される置換基であり、炭化水素基である。このような有機カチオンは、極性が高いため、安定性が高い腐食防止剤が得られる。
 腐食防止剤のアニオンとしては、テトラフルオロホウ酸アニオン(BF )、ヘキサフルオロリン酸アニオン(PF )等が好ましい。これらのアニオンは、金属と反応して不動態皮膜を形成すると考えられるため、集電体等を構成する金属の溶出を防ぐのに有効である。アニオンとしては、金属の溶出をより抑制できる点で、ヘキサフルオロリン酸アニオンが特に好ましい。有機塩としては、不揮発性が高く、耐熱性、化学的安定性および電気的安定性が良好である点で、室温において液体で存在するイオン液体が特に好ましい。
 腐食防止剤の具体例としては、テトラブチルアンモニウムヘキサフルオロホスフェート(TBA-PF6)、テトラブチルアンモニウムテトラフルオロボレート(TBA-BF4)等の4級アンモニウム塩や、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI-BF4)、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(EMI-PF6)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート(BMI-BF4)、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(BMI-PF6)等のイミダゾリウム塩が挙げられる。
 腐食防止剤の含有量は、電解質塩と溶媒との合計に対して、0.5~20wt%が好ましく、1~10wt%がより好ましい。腐食防止剤の含有量が0.5wt%以上であると、集電体等の腐食を防止する十分な効果が得られるため、高い放電容量や良好なサイクル特性が得られる。また、腐食防止剤の含有量が20wt%以下であると、リチウムイオンの伝導が妨げられ難いため、非水電解液のイオン伝導率を確保できる。また、腐食防止剤を解離・分解させるような自己放電による電気エネルギの消費が低減するため、高い放電容量が得られる可能性が高くなる。
 以上の非水電解液、不揮発性電解質、これを用いた二次電池によると、非水電解液が、カーボネート系溶媒よりもドナー数が大きいエステル系溶媒と、カーボネート系溶媒との混合溶媒を適切な混合比で含有するため、ドナー数が大きいエステル系溶媒を用いるにもかかわらず、カーボネート系溶媒を併用しない場合と比較して、二次電池の放電容量を向上させることができる。また、非水電解液を粒子に担持させた不揮発性電解質や、正極および負極の間に形成されるセパレータに不揮発性電解質を用いた二次電池によると、非水電解液の液漏れや組成変化が発生し難く、安全で長寿命な二次電池を実現できる。
 二次電池としては、負極活物質として黒鉛を含有する負極を備える二次電池が特に好ましい。負極活物質として黒鉛を含有する負極を用いると、比較的高い放電容量が得られる。非水電解液がエステル系溶媒を含有しているため、黒鉛系負極のように還元電位が低くなる場合であっても、負極活物質の表面における溶媒の還元分解が従来よりも抑制されることになる。また、カーボネート系溶媒を含有するにもかかわらず、負極活物質の層間への共挿入が低減することになる。よって、以上の二次電池によると、高い放電容量や良好なサイクル特性が得られる。
 以下、実施例を挙げて本発明について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
<非水電解液の作製>
 電解質塩としてリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、エステル系溶媒としてγ-ブチロラクトン(GBL)、カーボネート系溶媒としてプロピレンカーボネート(PC)、添加剤としてビニレンカーボネート(VC)、腐食防止剤としてテトラブチルアンモニウムヘキサフルオロホスフェート(TBA-PF6)を、それぞれ秤量し、これらを混合して非水電解液を作製した。
 作製した非水電解液に含まれる成分をNMRで定量した。その結果、GBLに対するPCのモル比は0.65、GBLに対するLiTFSIのモル比は0.22であった。また、VCの含有量は電解質塩と溶媒の合計に対して3wt%、TBA-PF6の含有量は電解質塩と溶媒の合計に対して2.5wt%であった。
<二次電池の作製>
<正極の作製>
 正極活物質としてLiNi1/3Co1/3Mn1/3系酸化物、導電剤としてアセチレンブラック、バインダとしてN-メチルピロリドンに溶解させたPVDFを、固形分の重量比が94:4:2の比率となるようにそれぞれ秤量し、これらを混錬機で均一に混合した。得られた混合物は、NMPを加えてスラリー化し、所定の固形分濃度に調整した。そして、濃度が調整されたスラリーを正極集電箔であるアルミ箔の両面に卓上コーターで塗布し、120℃の乾燥炉に通して正極を得た。正極合剤の塗工量は、両面の合計を30.1mg/cmとした。得られた正極は、ロールプレスで電極密度を3.15g/cmに調整した。
<負極の作製>
 負極活物質として黒鉛、バインダとしてスチレン-ブタジエンゴムとカルボキシルメチルセルロースを、固形分の重量比が98:1:1の比率となるようにそれぞれ秤量し、これらを混錬機で均一に混合した。得られた混合物は、水を加えてスラリー化し、所定の固形分濃度に調整した。そして、濃度が調整されたスラリーを負極集電箔である銅箔の両面に卓上コーターで塗布し、100℃の乾燥炉に通して負極を得た。負極合剤の塗工量は、両面の合計を18.1mg/cmとした。得られた負極は、ロールプレスで電極密度を1.55g/cmに調整した。
<セパレータの形成>
 セパレータを、不揮発性電解質を電極合剤層の表面に塗工して形成した。はじめに、担持粒子として平均粒径が1μmであるSiOと、バインダとしてビニリデンフルオライド-ヘキサフルオロプロピレン共重合体(P(VdF-HFP))を、重量比が89.3:10.7の比率となるようにそれぞれ秤量し、これらを混錬機で均一に混合した。得られた混合物は、NMPを加えてスラリー化し、所定の固形分濃度に調整した。そして、濃度が調整されたスラリーを正極と負極の両面に卓上コーターで塗布し、100℃の乾燥炉に通して、不揮発性電解質層を形成した正極と負極を得た。
<組み立て>
 作製した正極と負極を、エアー式打ち抜き機で、正極合剤層が45mm×70mm、負極合剤層が47mm×74mmとなるよう打ち抜き、正極および負極にタブ部を形成した。そして、正極と負極を100℃で2時間乾燥して電極中のNMPを除去した。乾燥させた正極を、厚みが30μmでPP/PE/PPの3層構造である樹脂製の微多孔膜に挟み込み、タブ部が形成されている辺以外の3辺を熱溶着した。
 微多孔膜で覆った正極と、打ち抜いた負極を、負極/正極/負極の順に積層した後、負極上に厚さ50μmのPTFE製のシートを配置した。正極と負極に設けた各タブ部とアルミニウム製の正極端子、ニッケル製の負極端子とを、それぞれ、超音波溶接によって溶接した。得られた電極体をラミネートフィルムに挟み込み、注液用の1辺を残し、タブ部が形成された辺を含む3辺をラミネート封止装置によって200℃で熱封止し、50℃で20時間真空乾燥させた。そして、注液用の1辺から非水電解液を注入した後、注液用の1辺を真空封止して二次電池を得た。
<放電容量の測定>
 作製した二次電池を25℃で保持し、上限電圧4.2Vまで充電レート0.05Cで定電流充電した後、電圧4.2Vで0.005Cに減少するまで定電圧充電した。その後、下限電圧2.7Vまで0.05Cで定電流放電させて二次電池の放電容量を計測した。
<実施例2~7、比較例1~2>
 非水電解液の組成を表1のように変更した以外は実施例1と同様にして、非水電解液に含まれる成分の定量と放電容量の計測を行った。
 表1に、実施例1~7、比較例1~2で用いた電解質塩の種類(Li塩(1)、Li塩(2))、エステル系溶媒およびカーボネート系溶媒の種類(溶媒(1)、溶媒(2))、エステル系溶媒に対するカーボネート系溶媒のモル比(溶媒(2)/溶媒(1))、エステル系溶媒に対する電解質塩のモル比(Li塩(1)/溶媒(1))および二次電池の放電容量の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
<結果と考察>
 図2は、エステル系溶媒に対するカーボネート系溶媒のモル比と二次電池の放電容量との関係を示す図である。図2に示すように、エステル系溶媒に対するカーボネート系溶媒のモル比が約0.32よりも小さい組成では、モル比が大きいほど、放電容量が大きくなった。この結果は、粘度が低いPCを添加すると、非水電解液の粘度が低下し、非水電解液のイオン伝導率が高くなったことによると考えられる。比較例1では、比較例2と比較して電解質塩の濃度が低いため、PCを添加しなくとも、非水電解液の粘度がある程度低くなったが、非水電解液のイオン伝導抵抗が大きいことが、放電容量が小さくなった原因であると推察される。
 一方、エステル系溶媒に対するカーボネート系溶媒のモル比が約0.32よりも大きい組成では、モル比が小さいほど、放電容量が大きくなった。この理由としては、PCが過剰に添加された結果、負極活物質の層間への共挿入や、負極活物質の表面におけるPCの還元分解が増えたことが考えられる。非水電解液のイオン伝導抵抗と負極における溶媒の安定性とをバランスし、二次電池の放電容量を高めることができる最適混合比が、エステル系溶媒(GBL)とカーボネート系溶媒(PC)に存在することが示された。
 二次電池の放電容量Zは、エステル系溶媒に対するカーボネート系溶媒のモル比Xが0~0.65の範囲において、次の数式(1)で表されることが確認された。
 Z=-660.34X+427.01X+357・・・式(1)
 また、二次電池の放電容量Zは、モル比Xが0.65を超える範囲において、Xが大きくなると共に単調に減少し、次の数式(2)で表されることが確認された。
 Z=-97.787X+418.11・・・式(2)
 式(1)によると、二次電池の放電容量がX=0の場合と同様に357mAhよりも大きくなるXの範囲は、0~0.65であった。また、放電容量が380mAh以上となるXの範囲は、0.06~0.59であった。また、放電容量が400mAh以上となるXの範囲は、0.12~0.52であった。
 図3は、エステル系溶媒に対する電解質塩のモル比と二次電池の放電容量との関係を示す図である。図3に示すように、エステル系溶媒に対する電解質塩のモル比が約0.06よりも小さい組成では、モル比が大きいほど、放電容量が大きくなった。一方、エステル系溶媒に対する電解質塩のモル比が約0.06よりも大きい組成では、モル比が小さいほど、放電容量が大きくなった。電解質塩の解離に影響を及ぼすエステル系溶媒の濃度が電解質塩の濃度に対して高すぎると、電解質塩とエステル系溶媒との相互作用が強くなり、非水電解液のイオン伝導率が低下して、放電容量が小さくなると考えられる。
 二次電池の放電容量Zは、エステル系溶媒に対する電解質塩のモル比Yによって、次の数式(3)で表されることが確認された。
 Z=-2388.8Y+298.23Y+412.71・・・式(3)
 式(3)によると、Yが0~0.24の範囲であれば、二次電池の放電容量が350mAh以上となることが分かった。また、Yが0~0.20の範囲であれば、二次電池の放電容量が375mAh以上となることが分かった。また、Yが0~0.16の範囲であれば、二次電池の放電容量が400mAh以上となることが分かった。
100  正極
110  正極合剤層
120  正極集電体
130  正極タブ
200  負極
210  負極合剤層
220  負極集電体
230  負極タブ
300  セパレータ
400  電極体
500  外装体
1000 二次電池

Claims (9)

  1.  電解質塩、エステル系溶媒およびカーボネート系溶媒を含む非水溶媒と、負極の表面に被膜を形成するための添加剤と、を含有する非水電解液であって、
     前記エステル系溶媒のドナー数は前記カーボネート系溶媒のドナー数より大きく、
     前記エステル系溶媒に対する前記カーボネート系溶媒のモル比が0~0.65である非水電解液。
  2.  請求項1の非水電解液であって、
     前記エステル系溶媒に対する前記カーボネート系溶媒のモル比が0.06~0.59である非水電解液。
  3.  請求項1の非水電解液であって、
     前記エステル系溶媒に対する前記電解質塩のモル比が0~0.24である非水電解液。
  4.  請求項1の非水電解液であって、
     前記エステル系溶媒に対する前記電解質塩のモル比が0~0.20である非水電解液。
  5.  請求項1の非水電解液であって、
     前記エステル系溶媒はγ-ブチロラクトンである非水電解液。
  6.  請求項1の非水電解液であって、
     前記カーボネート系溶媒はプロピレンカーボネートである非水電解液。
  7.  請求項1の非水電解液と、
     前記非水電解液を担持する粒子と、を含有する不揮発性電解質。
  8.  請求項7の不揮発性電解質であって、
     前記粒子はシリカである不揮発性電解質。
  9.  正極と、
     負極と、
     前記正極および前記負極の間に形成されたセパレータと、を備え、
     前記セパレータは、非水電解液と、前記非水電解液を担持する粒子と、を含有し、
     前記非水電解液は、電解質塩、エステル系溶媒およびカーボネート系溶媒を含む非水溶媒と、負極の表面に被膜を形成するための添加剤と、を含有する非水電解液であって、
     前記エステル系溶媒のドナー数は前記カーボネート系溶媒のドナー数より大きく、
     前記エステル系溶媒に対する前記カーボネート系溶媒のモル比が0~0.65である二次電池。
PCT/JP2020/008682 2019-04-17 2020-03-02 非水電解液、不揮発性電解質、二次電池 WO2020213268A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078358A JP7267823B2 (ja) 2019-04-17 2019-04-17 不揮発性電解質、二次電池
JP2019-078358 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213268A1 true WO2020213268A1 (ja) 2020-10-22

Family

ID=72838252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008682 WO2020213268A1 (ja) 2019-04-17 2020-03-02 非水電解液、不揮発性電解質、二次電池

Country Status (2)

Country Link
JP (1) JP7267823B2 (ja)
WO (1) WO2020213268A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7556371B2 (ja) 2022-03-18 2024-09-26 トヨタ自動車株式会社 リチウムイオン伝導材料及びリチウムイオン二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257481A (ja) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd 非水系二次電池
JP2013152824A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014063753A (ja) * 2013-12-03 2014-04-10 Toshiba Corp 非水電解質電池
JP2015213016A (ja) * 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム
JP2017208215A (ja) * 2016-05-18 2017-11-24 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257481A (ja) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd 非水系二次電池
JP2013152824A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014063753A (ja) * 2013-12-03 2014-04-10 Toshiba Corp 非水電解質電池
JP2015213016A (ja) * 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム
JP2017208215A (ja) * 2016-05-18 2017-11-24 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法

Also Published As

Publication number Publication date
JP2020177779A (ja) 2020-10-29
JP7267823B2 (ja) 2023-05-02

Similar Documents

Publication Publication Date Title
US9401529B2 (en) Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound
KR20160110380A (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
JP6218413B2 (ja) プレドープ剤、これを用いた蓄電デバイス及びその製造方法
JP6848330B2 (ja) 非水電解質蓄電素子
JP6484995B2 (ja) リチウムイオン二次電池
JP2014049294A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
CN111316494A (zh) 非水电解质蓄电元件和非水电解质蓄电元件的制造方法
JP2016085836A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP6911655B2 (ja) 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP5614431B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5708597B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
WO2020213268A1 (ja) 非水電解液、不揮発性電解質、二次電池
JP5708598B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP7135333B2 (ja) 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP5614433B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5573875B2 (ja) 非水電解質溶液およびリチウムイオン二次電池
KR102473691B1 (ko) 리튬 이차전지용 전해질
JP6031965B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2023524703A (ja) 二次電池用電解液添加剤、それを含むリチウム二次電池用非水電解液およびリチウム二次電池
JP5846031B2 (ja) リチウムイオン二次電池及び非水電解液
JP2018156724A (ja) リチウムイオン二次電池
JP7484884B2 (ja) 非水電解質蓄電素子及び蓄電装置
WO2024127668A1 (ja) 非水電解質電池及び電池パック
JP2013178936A (ja) リチウムイオン二次電池及びそれを用いた組電池並びに蓄電装置
WO2023120688A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791706

Country of ref document: EP

Kind code of ref document: A1