Nothing Special   »   [go: up one dir, main page]

WO2020213109A1 - 電子源、及び荷電粒子線装置 - Google Patents

電子源、及び荷電粒子線装置 Download PDF

Info

Publication number
WO2020213109A1
WO2020213109A1 PCT/JP2019/016563 JP2019016563W WO2020213109A1 WO 2020213109 A1 WO2020213109 A1 WO 2020213109A1 JP 2019016563 W JP2019016563 W JP 2019016563W WO 2020213109 A1 WO2020213109 A1 WO 2020213109A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
suppressor
insulator
chip
Prior art date
Application number
PCT/JP2019/016563
Other languages
English (en)
French (fr)
Inventor
圭吾 糟谷
明 池上
本田 和広
真大 福田
土肥 隆
創一 片桐
亜紀 武居
宗一郎 松永
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/016563 priority Critical patent/WO2020213109A1/ja
Priority to KR1020217030924A priority patent/KR102640728B1/ko
Priority to US17/601,421 priority patent/US20220199349A1/en
Priority to JP2021514730A priority patent/JP7137002B2/ja
Priority to CN201980094952.5A priority patent/CN113646864B/zh
Priority to DE112019006988.8T priority patent/DE112019006988T5/de
Priority to TW109106488A priority patent/TWI724803B/zh
Publication of WO2020213109A1 publication Critical patent/WO2020213109A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • H01J2237/0262Shields electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06375Arrangement of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/188Differential pressure

Definitions

  • the present invention relates to an electron source for supplying an electron beam to be irradiated to a sample and a charged particle beam device using the electron source.
  • the charged particle beam device generates an observation image of the sample by irradiating the sample with a charged particle beam such as an electron beam and detecting transmitted electrons, secondary electrons, backscattered electrons, X-rays, etc. emitted from the sample. It is a device to do.
  • the generated image is required to have high spatial resolution and good reproducibility when repeatedly generated. In order to realize these, it is necessary that the brightness of the irradiated electron beam is high and the amount of current is stable.
  • As one of the electron guns that emit such electron beams there is a Schottky electron gun (hereinafter referred to as SE electron gun).
  • SE electron gun Schottky electron gun
  • Patent Document 1 does not describe a problem at the time of releasing such a large current.
  • An object of the present invention is to provide an electron source capable of suppressing minute discharges and stably emitting a large current electron beam, and a charged particle beam device using the electron source.
  • the chip, the suppressor arranged behind the tip of the chip, the bottom surface and the cylinder portion, the extraction electrode including the chip and the suppressor, the suppressor and the extraction electrode Provided is a charged particle beam device having a structure in which an electron gun having a conductive metal is provided between a suppressor and a tubular portion of an extraction electrode, and a voltage lower than that of a chip is applied to the conductive metal. To do.
  • the chip is composed of a chip, a suppressor arranged behind the tip of the chip, a conductive support portion for holding the suppressor, a bottom surface and a tubular portion. It is equipped with an electron gun having a conductive metal provided between a pull-out electrode containing a suppressor, a porcelain holding a support portion and a pull-out electrode, and a tubular portion of the support portion and the lead-out electrode, and a chip on the conductive metal.
  • a charged particle beam apparatus having a configuration in which a lower voltage is applied.
  • the chip, the suppressor arranged behind the tip of the chip, the insulator electrically connected to the chip and the insulator holding the suppressor, and the side surface of the suppressor is provided.
  • an electron source having a configuration including a conductive metal installed in the insulator.
  • an electron source capable of stably emitting a large current electron beam, and a charged particle beam device using the electron source.
  • FIG. It is the schematic of the scanning electron microscope which is an example of the charged particle beam apparatus which concerns on Example 1.
  • FIG. It is the schematic explaining the structure around the conventional SE electron gun. It is the schematic explaining the structure around the SE electron gun of Example 1.
  • FIG. It is a perspective view which shows one configuration example of the electron source of the SE electron gun of Example 1.
  • FIG. It is a figure explaining the current change of an electron beam when a minute discharge occurs in an SE electron gun.
  • FIG. It is the schematic explaining the mechanism which the minute discharge is generated in the SE electron gun.
  • FIG. It is the schematic explaining the mechanism which prevents the minute discharge by the SE electron gun of Example 1.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 2.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 3.
  • FIG. 4 It is the schematic explaining the structure around the SE electron gun of Example 4.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 5.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 6.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 7.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 8.
  • FIG. It is the schematic explaining the structure around the SE electron gun of Example 9.
  • a charged particle beam device there is an electron microscope that generates an observation image of a sample by irradiating the sample with an electron beam and detecting secondary electrons and backscattered electrons emitted from the sample.
  • a scanning electron microscope will be described as an example of the charged particle beam device, but the present invention is not limited to this, and can be applied to other charged particle beam devices.
  • the first embodiment includes a chip, a suppressor arranged behind the tip of the chip, a bottom surface and a tubular portion, an extraction electrode containing the chip and the suppressor, a porcelain holding the suppressor and the extraction electrode, and a suppressor.
  • This is an example of a scanning electron microscope having a structure in which an electron gun having a conductive metal is provided between the lead electrode and a tubular portion and a voltage lower than that of a chip is applied to the conductive metal.
  • the scanning electron microscope irradiates the sample 112 with electron beams 115 and detects secondary electrons, backscattered electrons, and the like emitted from the sample to generate an observation image of the sample.
  • This observation image is generated by scanning the focused electron beam on the sample and associating the position where the electron beam is irradiated with the detected amount of secondary electrons or the like.
  • the scanning electron microscope includes a cylinder body 125 and a sample chamber 113, and the inside of the cylinder body 125 is divided into a first vacuum chamber 119, a second vacuum chamber 126, a third vacuum chamber 127, and a fourth vacuum chamber 128 from the top. .. There is an opening through which the electron beam 115 passes in the center of each vacuum chamber, and the inside of each vacuum chamber is maintained in a vacuum by differential exhaust.
  • each vacuum chamber will be described.
  • the first vacuum chamber 119 is evacuated by an ion pump 120 and a non-evaporable getter (NEG) pump 118, and the pressure is ultra-high vacuum of 10-8 Pa, more preferably 10-9 Pa or less. Make the vacuum extremely high.
  • the NEG pump 118 has a high exhaust speed in an extremely high vacuum and can obtain 10-9 Pa or less.
  • the SE electron gun 101 is placed inside the first vacuum chamber 119.
  • the SE electron gun 101 is held by the insulator 116 and is electrically insulated from the cylinder 125.
  • a control electrode 102 is arranged below the SE electron gun 101.
  • An observation image is obtained by emitting an electron beam 115 from the SE electron gun 101 and finally irradiating the sample 112. Details of the configuration of the SE electron gun 101 will be described later.
  • the second vacuum chamber 126 is exhausted by the ion pump 121.
  • An acceleration electrode 103 is arranged in the second vacuum chamber 126.
  • the third vacuum chamber 127 is exhausted by the ion pump 122.
  • a condenser lens 110 is arranged in the third vacuum chamber 127.
  • the fourth vacuum chamber 128 and the sample chamber 113 are exhausted by the turbo molecular pump 109.
  • a detector 114 is arranged in the fourth vacuum chamber 128.
  • An objective lens 111 and a sample 112 are arranged in the sample chamber 113.
  • a control voltage is applied to the control electrode 102 to form an electrostatic lens between the SE electron gun 101 and the control electrode 102.
  • the electron beam 115 is focused by this electrostatic lens and adjusted to a desired optical magnification.
  • An acceleration voltage of about 0.5 kV to 60 kV is applied to the acceleration electrode 103 to the SE electron gun 101 to accelerate the electron beam 115.
  • the condenser lens 110 focuses the electron beam 115 and adjusts the amount of current and the opening angle.
  • a plurality of condenser lenses may be provided, or may be arranged in another vacuum chamber.
  • the objective lens 111 reduces the electron beam 115 into minute spots and irradiates the sample 112 while scanning. At this time, secondary electrons, backscattered electrons, and X-rays reflecting the surface shape and material are emitted from the sample. By detecting these with the detector 114, an observation image of the sample is obtained.
  • a plurality of detectors may be provided, or may be arranged in another vacuum chamber such as a sample chamber 113.
  • the configuration around the conventional SE electron gun 201 will be described with reference to FIG.
  • the conventional SE electron gun 201 is mainly composed of an SE chip 202, a suppressor 203, and a drawer electrode 204.
  • the SE chip 202 is a single crystal with a tungsten ⁇ 100> orientation, and its tip is sharpened to a radius of curvature of less than 0.5 ⁇ m. Zirconium oxide 205 is applied to the middle of the single crystal.
  • the SE chip 202 is welded to the filament 206. Both ends of the filament 206 are connected to terminals 207, respectively.
  • the two terminals 207 are held by the insulator 208 and are electrically insulated from each other.
  • the two terminals 207 extend coaxially with the SE chip 202 and are connected to a current source via a feedthrough (not shown).
  • the SE chip 202 is heated from 1500K to 1900K by constantly passing an electric current through the terminal 207 and energizing and heating the filament 206.
  • the zirconium oxide 205 diffuses and moves on the surface of the SE chip 202 and covers the (100) crystal plane at the center of the tip of the electron source.
  • the (100) plane is characterized in that the work function is reduced when it is covered with zirconium oxide.
  • thermions are emitted from the heated (100) plane, and an electron beam 115 is obtained.
  • the total amount of emitted electron beams is called the emission current, which is typically about 50 ⁇ A.
  • the suppressor 203 is a cylindrical metal and is arranged so as to cover other than the tip of the SE chip 202.
  • the cylinder of the suppressor 203 extends in parallel with the SE chip 202 in the axial direction and is held by the insulator 208 by fitting.
  • the suppressor 203 and the terminal 207 are electrically insulated by the insulator 208.
  • a suppressor voltage of ⁇ 0.1 kV to ⁇ 0.9 kV is applied to the suppressor 203 with respect to the SE chip 202.
  • the SE chip 202 is also characterized by emitting thermoelectrons from its side surface. However, by applying such a negative voltage to the suppressor 203, the emission of unnecessary thermoelectrons emitted from the side surface is prevented.
  • the tip of the SE chip 202 is typically arranged so as to protrude about 0.25 mm from the suppressor 203.
  • the tip of the SE chip 202 By performing precise positioning of 1 mm or less and projecting only a short distance in this way, only the tip of the SE chip 202 contributes to the emission of electron beams, and the amount of unnecessary electrons emitted from the side surface is reduced as much as possible. To do. Further, if the protrusion length is about 0.25 mm, there is an advantage that a sufficient electric field can be applied to the tip of the electron source depending on the configuration of the extraction voltage described later.
  • the drawer electrode 204 is a cup-shaped metal cylinder in which the bottom surface and the cylinder are integrally formed, and the bottom surface is arranged so as to face the SE chip 202.
  • the drawer electrode 204 is held in contact with the insulator 210 and is electrically insulated from the suppressor 203.
  • An extraction voltage of about + 2 kV is applied to the extraction electrode 204 with respect to the SE chip 202. Since the tip of the SE chip 202 is sharpened, a high electric field is concentrated on the tip. The higher the electric field applied, the lower the effective work function of the surface due to the Schottky effect, and more electron beams can be emitted.
  • the distance between the SE chip 202 and the bottom surface of the extraction electrode 204 is typically about 0.5 mm. By assembling at such a narrow distance, a sufficiently high electric field can be applied to the tip of the electron source even with a low extraction voltage.
  • a diaphragm 209 is provided on the bottom surface of the extraction electrode 204, and the electrons passing through the diaphragm 209 are finally used to generate an image.
  • a thin plate of molybdenum or the like is used for the drawing 209, and the diameter of the opening of the drawing 209 is typically about 0.1 mm to 0.5 mm. By making the aperture smaller, it is possible to prevent unnecessary electrons from passing through the diaphragm and prevent the observed image from being deteriorated.
  • the SE chip 202 is positioned and welded on the central axis of the insulator 208 using a high-precision jig.
  • the outer circumference of the insulator 208 and the inner circumference of the suppressor 203, the outer circumference of the suppressor 203 and the inner circumference of the insulator 210, and the outer circumference of the insulator 210 and the inner circumference of the drawer electrode 204 are each assembled by fitting on the order of 10 ⁇ m. Therefore, the SE chip 202, the suppressor 203, and the extraction electrode 204 have a highly accurate coaxial structure, and precise positioning between the electrodes is possible.
  • the SE chip 202 and the suppressor 203 have a coaxial structure, the potential distribution created by the suppressor 203 in the vicinity of the SE chip 202 becomes uniform. As a result, unnecessary electrons that are about to be emitted from the side surface of the SE chip 202 can be uniformly suppressed in all directions. In addition, the electrons emitted from the SE chip 202 are not bent at a non-uniform potential in space, and electron beams can be emitted on the axis.
  • the diaphragm 209 can also be arranged coaxially. As a result, the displacement of the diaphragm 209 prevents the emitted electrons from passing through, and there is no possibility that the electron beam cannot be obtained. In addition, the electric field distribution given to the tip of the SE chip 202 by the diaphragm 209 becomes uniform, and electron beams can be emitted on the axis.
  • the SE electron gun is used to efficiently emit an electron beam from the tip of the electron source, suppress unnecessary electron emission from the side surface of the electron source, and realize a uniform potential distribution in the electron gun space. It is necessary to assemble with high precision with a small size of 1 mm or less. Therefore, the inside of the SE electron gun has a very narrow space, and has a feature of maintaining a voltage difference on the order of kV in this space.
  • the configuration around the SE electron gun 101 of this embodiment and the configuration of the electron source thereof will be described with reference to FIGS. 3A and 3B.
  • the electron gun of this embodiment includes an electron source including an SE chip 202, a filament 206, an insulator 208, and a suppressor 303 having a shielding electrode 301 newly made of a conductive metal, and further uses an insulator 310 having a step. A gap 311 is provided between the lower surface of the 310 and the inner peripheral surface of the cylinder of the extraction electrode 204.
  • the electron sources of this embodiment are installed on the SE chip 202, the suppressor 303 arranged behind the tip of the chip, the terminal 207 electrically connected to the chip, the insulator 208 holding the suppressor, and the side surface of the suppressor.
  • the electron source is provided with a shielding electrode 301 made of a conductive metal to which a voltage lower than that of the chip is applied.
  • the configuration of the same symbol means the same configuration as described above, and the description thereof will be
  • a step is provided at the bottom of the insulator 310, and the surface arranged below (the traveling direction of the electron beam 115) is referred to as a lower surface 312 and the upper surface is conveniently referred to as an upper surface 313.
  • the lower surface 312 is arranged on the suppressor 301 side, and the upper surface 313 is provided on the extraction electrode 204 side.
  • a gap 311 is provided between the lower surface 312 of the insulator 310 and the inner peripheral surface of the extraction electrode 204.
  • a shielding electrode 301 made of a conductive metal integrally formed is provided on the side surface of the suppressor 303.
  • the cylindrical portion on the side surface of the suppressor 303 extends in the axial direction of the SE chip 202 and is held by fitting with the insulator 310.
  • the shielding electrode 301 is provided on the side surface of the cylindrical portion of the suppressor 303 and projects laterally.
  • the shielding electrode 301 has a structure extending in the direction perpendicular to the axial direction of the SE chip 202.
  • the shielding electrode 301 is arranged between the suppressor 303 and the cylindrical portion of the extraction electrode 204. The voltage difference between the shielding electrode 301 and the extraction electrode 204 is maintained by the vacuum between them and is electrically insulated.
  • the shielding electrode 301 further has a cylindrical portion 302 extending toward the insulator 310 side.
  • the upper end of the cylindrical portion 302 extends to the gap 311.
  • the cylindrical portion 302 of the shielding electrode 301 has the same axis as the cylinder of the drawing electrode 204 and extends in the parallel direction.
  • the cylinder of the extraction electrode 204 extends in the axial direction of the SE chip 202, so that the cylindrical portion 302 also extends in the axial direction of the SE chip 202.
  • the lower surface 312 of the insulator 310 is covered with the shielding electrode 301 and the cylindrical portion 302, and the drawer electrode 204 is not expected.
  • the shielding electrode 301 including the cylindrical portion 302 does not come into contact with the insulator 310, and prevents unnecessary electric fields from concentrating on the surface of the shielding electrode 301.
  • a differential pressure between the suppressor voltage and the extraction voltage is applied to the outer peripheral side surface of the shielding electrode 301. Therefore, the side surface of the shielding electrode is formed of a curved surface or a flat surface to prevent unnecessary electric field concentration. The action of preventing minute discharge by this configuration will be described later.
  • the insulator 208 and the insulator 310 may be other electrically insulating materials such as glass.
  • the radius of curvature of the tip of the SE chip 202 is set to 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more.
  • the emission current is set to 300 ⁇ A or more, so that high brightness that cannot be obtained with the conventional radius of curvature can be obtained.
  • the extraction voltage is typically used above 3 kV.
  • the tip radius of curvature of 1 ⁇ m the brightness higher than the conventional one can be obtained by setting the emission current to 600 ⁇ A or more.
  • the extraction voltage is typically 5 kV or higher.
  • the electron shock desorption gas When a metal material such as the extraction electrode 204 or the diaphragm 209 is irradiated with electrons, the electron shock desorption gas is released.
  • the amount of electron shock desorbed gas released increases in proportion to the amount of irradiated current and the applied extraction voltage. Therefore, when an emission current of 300 ⁇ A or 500 ⁇ A or more is emitted from the SE chip 202 at a high extraction voltage, an electron shock desorption gas that is an order of magnitude more than the conventional one is generated, and the vacuum chamber 119 shown in FIG. 1 Exacerbate pressure. When the pressure reaches the 10-7 Pa level, the surface of the SE chip 202 is damaged and the shape is deformed, which may impair the stability of the current.
  • the vacuum chamber 119 is exhausted by the NEG pump 118 and the ion pump 120 having a large exhaust speed. Therefore, even if a large current is discharged, the deterioration of the pressure is suppressed, and the pressure in the vacuum chamber 119 can be maintained in the 10-8 Pa range or less. Therefore, the surface of the SE chip 202 is not damaged, and there is an effect that a stable electron beam can be obtained even with a large current.
  • FIG. 4 will be used to explain the change in the current of the electron beam when a minute discharge occurs.
  • the micro discharge occurs instantaneously and, as is clear from the figure, ends in a short time of 1 second or less. At that time, the current amount of the electron beam decreases momentarily and then returns to the original current amount.
  • the pressure in the first vacuum chamber may rise momentarily at the same time as the minute discharge, but this also returns to the original pressure within a few seconds.
  • the discharge that is a problem with electron guns is generally called flashover or breakdown, and once it occurs, it causes melting of the electron source, damage to the high-voltage power supply, dielectric breakdown of the porcelain, etc. It is a large discharge that cannot obtain an electron beam again unless it is replaced.
  • the minute discharge is a relatively mild discharge because the current is temporarily reduced, but then the electron beam is continuously obtained.
  • the conventional discharge occurs, for example, when a high extraction voltage of about +10 kV is applied to the extraction electrode.
  • this minute discharge does not occur even when the same high extraction voltage is applied, but occurs only when a large current electron beam is emitted in addition to the application of the extraction voltage, and the frequency of occurrence increases as the amount of current increases. Become.
  • the micro discharge has a generation mechanism different from that of the conventional discharge, and can be said to be a different phenomenon.
  • a discharge that has been a problem in the past is referred to as a large discharge.
  • FIG. 5 the mechanism by which minute electric discharge is generated in the conventional SE electron gun 201 shown in FIG. 2 will be described. Since the electron gun has an axisymmetric structure, only one side surface is shown. Further, the potential distribution 510 in the space formed by the voltage applied to each of the chip 202, the suppressor 203, and the extraction electrode 204 is schematically shown by a broken line.
  • the tip of the SE chip 202 protrudes from the suppressor 203, and the side beam 501 is emitted from the ⁇ 100 ⁇ equivalent crystal plane existing on the side surface thereof.
  • the side beam 501 emits in an oblique direction and collides with the extraction electrode 204. Further, a part of the electron beam 115 emitted from the (100) plane at the center of the tip of the electron source also collides with the aperture 209.
  • the amount of current that collides with the extraction electrode 204 and the diaphragm 209 is 90% or more of the emission current.
  • the SE electron gun is characterized in that most of the current emitted from the electron source is applied to a narrow space inside the gun.
  • each reflected electron When an electron collides with a metal material such as the extraction electrode 204 or the aperture 209, a part of the electron is emitted to the vacuum side as a reflected electron.
  • the emission angle of the reflected electrons is wide, and generally has a distribution based on the cosine law with the specular reflection component as the peak.
  • the energy of reflected electrons also has a distribution, and has electrons that store energy at the time of incident by elastic scattering and electrons that lose energy by inelastic scattering. Therefore, each reflected electron has a different orbit.
  • the outline of the orbit will be described using the backscattered electron 502.
  • the reflected electrons 502 emitted from the extraction electrode 204 travel in the direction of the suppressor 203, but the energy of the reflected electrons 502 is the same as the extraction voltage at the maximum, and cannot reach the suppressor 203. Therefore, it is pushed back by the repulsive force acting in the vertical direction of the potential distribution and collides with the extraction electrode 502 again.
  • a part of the reflected electrons 502 is emitted as reflected electrons 503 and collides with the inner surface of the cylinder of the extraction electrode 204.
  • a part of the backscattered electrons 503 is re-emitted as backscattered electrons 504, pushed back to the potential distribution of the suppressor 203, and collides with the extraction electrode 204 again.
  • a part of the reflected electrons 504 becomes reflected electrons 505 and finally collides with the insulator 210.
  • the secondary electron emission rate of the insulator 210 is larger than 1, and when one electron collides with the insulator 210, more than one secondary electron is emitted.
  • the energy of the emitted secondary electrons 506 is as small as several volts, and reaches the extraction electrode 204 by the repulsive force of the potential distribution and is absorbed. As a result, the number of electrons on the surface 507 of the insulator 210 with which the reflected electrons 505 collided decreases, and the surface 507 is positively charged.
  • a higher potential difference is formed along the surface between the contact point 511 of the suppressor 203 and the insulator 210 and the positively charged surface 507, and the closer the distance between the two, the higher the electric field is applied to the contact point 511. Will be done.
  • field emission occurs at the contact point 511, and a large amount of electrons are emitted.
  • these electrons While receiving the repulsive force of the potential distribution, these electrons move along the surface of the insulator 210 and in the space, and reach the extraction electrode 204.
  • a minute discharge is generated by the current transfer between the electrodes, and the voltage difference between the electrodes changes, so that the current amount of the electron beam fluctuates.
  • the SE electron gun 101 of this embodiment prevents minute discharge will be described with reference to FIG. Similar to the conventional SE electron gun, in the SE electron gun 101 of the present embodiment, the side beam 501 emitted from the SE chip 202 collides with the extraction electrode 204 and emits reflected electrons 502. The reflected electrons 502 are pushed back by receiving a repulsive force due to the potential distribution created between the suppressor 303 and the extraction electrode 204, and re-collide with the extraction electrode 204. After that, the reflected electron 502 repeatedly emits and collides with the extraction electrode.
  • the shielding electrode 301 on the suppressor 303, the negative potential distribution created by the suppressor voltage spreads, and it becomes difficult for the reflected electrons to reach the insulator 310.
  • the lower surface 312 of the insulator 310 is surrounded by the shielding electrode 301 and its cylindrical portion 302, so that backscattered electrons cannot collide with each other.
  • the reflected electrons finally collide with the upper surface 313 of the insulator 310 after repeating more collisions than before, and positively charge the surface 517 thereof.
  • the insulator 310 is provided with a step at the bottom, and the upper surface 313 and the lower surface 312 are separated from each other.
  • the creepage distance between the contact point 511 between the insulator 310 and the suppressor 303 and the positively charged surface 517 is sufficiently long, and a high electric field is not applied to the contact point 511. As a result, field emission does not occur and the generation of minute discharges is prevented.
  • the cylindrical portion 302 of the shielding electrode 301 has the same axis as the cylinder of the extraction electrode 204 and is extended in parallel by a certain distance, so that the cylindrical portion 302 and the inner peripheral surface of the extraction electrode 204 are aligned.
  • a narrow path 601 may be formed between them.
  • the potential distribution becomes narrow and the flight distance of the reflected electrons becomes short, so that a large number of re-collisions occur.
  • the number of reflected electrons decreases by several percent each time they collide. As the number of re-collisions increases, the absolute number of reflected electrons reaching the insulator 310 decreases, and the amount of charge decreases to prevent minute discharges.
  • the contact point 511 is surrounded by the shielding electrode 301, so that the potential distribution inside the contact point 511 becomes uniform and the electric field becomes small. Even if an electron is emitted from the contact point 511, the force applied to the electron becomes small, the probability that the electron reaches the extraction electrode 204 is small, and a minute discharge is less likely to occur.
  • an SE chip 202 having a tip curvature radius of 0.5 ⁇ m or 1.0 ⁇ m or more is used, and an extraction voltage of 3 kV or 5 kV or more is applied to the extraction electrode 204. Further, when an SE electron source having a larger tip curvature is used, the extraction voltage increases to 10 kV or more. Even in this case, by extending the creepage distance of the insulator 310, the electric field in the creepage direction is reduced, and the risk of large discharge is also reduced.
  • the suppressor 303 and the shielding electrode 301 As another effect, by integrally configuring the suppressor 303 and the shielding electrode 301, it is possible to maintain a simple structure without adding the number of parts. This has the advantage of cost reduction. Further, similarly to the conventional SE electron gun, the insulator 208, the suppressor 303, the insulator 310, and the drawer electrode 204 can be assembled by fitting each of them, and a highly accurate coaxial structure and positioning between the electrodes are possible. .. As a result, also in the electron gun 101 of the present embodiment, efficient emission of electron beams from the electron source, suppression of unnecessary electron emission from the side surface of the electron source, and uniform potential distribution in the electron gun space can be realized. ..
  • ions are generated from the metal irradiated with the electron beam by electron shock desorption.
  • the collision of the ions also causes the insulator 210 to be positively charged, and a minute discharge can occur by the same mechanism.
  • the SE electron gun 101 of this embodiment can also prevent minute discharges caused by these ions.
  • a shielding electrode 301 integrally formed with the suppressor 303 and an insulator 310 provided with a step are used, and the collision position of reflected electrons on the surface of the insulator 310 is separated from the suppressor 303 to prevent minute discharge.
  • the configuration of the SE electron gun in which the suppressor and the shielding electrode have different structures will be described. Since the configuration other than the shielding electrode is the same as that of the first embodiment, the description thereof will be omitted.
  • the SE electron gun of the second embodiment will be described with reference to FIG. 7.
  • the shielding electrode 701 has a structure different from that of the suppressor 203, and is made of a conductive metal.
  • the inner peripheral surface of the shielding electrode 701 and the outer peripheral surface of the suppressor 203 are assembled and held by fitting. Further, the outer peripheral surface of the shielding electrode 701 and the inner peripheral surface of the insulator 310 are assembled by fitting.
  • the chip 202, the suppressor 203, the shielding electrode 701, and the extraction electrode 204 have a coaxial structure, and precise positioning is possible.
  • the shielding electrode 701 and the suppressor 203 come into contact with each other, they have the same potential and the suppressor voltage is applied.
  • the end surface of the cylindrical portion 722 of the shielding electrode 701 reaches the gap 311 provided by the insulator 310 with a step, similarly to the SE electron gun 101 of the first embodiment. Therefore, the action described with reference to FIG. 6 works, and minute discharge can be prevented.
  • the electron gun of this embodiment has more fitting points due to the increase in the number of parts, which may deteriorate the shaft accuracy and increase the cost.
  • the shielding electrode 701 a different structure from the suppressor 203, the suppressor 203 used in the conventional SE electron gun 201 can be diverted.
  • a standardized suppressor structure there are advantages that the manufacturing cost of the suppressor can be reduced and that a commercially available SE electron source with a suppressor can be used as it is.
  • Example 2 a configuration in which the suppressor and the shielding electrode have different structures has been described.
  • Example 3 a configuration in which the fitting position of the insulator 310 to the suppressor is changed and the shielding electrode is miniaturized will be described. Since the configuration other than the shielding electrode is the same as that of the first embodiment, the description thereof will be omitted.
  • the SE electron gun of Example 3 will be described with reference to FIG.
  • the suppressor 702 of the present embodiment has a shielding electrode 703 at the upper end of the side surface thereof, and the suppressor 702 and the shielding electrode 703 are integrally formed as in the first embodiment.
  • the outer peripheral surface of the cylindrical portion having the lower surface 312 of the insulator 310 and the inner peripheral surface of the suppressor 702 are held and assembled by fitting. As a result, each electrode has a coaxial structure and is precisely positioned.
  • the position of the contact point 511 between the suppressor 702 and the insulator 310 which is the starting point of field emission, changes.
  • the end face of the cylindrical portion 723 of the shielding electrode 703 reaches the gap 311 provided by the insulator 310 having a step.
  • the contact point 511 is covered with the potential of the shielding electrode 703, and the action described with reference to FIG. 6 prevents minute discharge.
  • the shielding electrode 703 can be miniaturized. As a result, there is an advantage that the diameter of the extraction electrode 204 can be reduced and the SE electron gun can be miniaturized. In addition, since the shape of the shielding electrode 703 can be relatively simplified, there is an advantage that the suppressor 702 having an integrated configuration can be easily manufactured and the cost can be reduced.
  • the configuration in which the fitting position of the insulator 310 is changed and the shielding electrode is miniaturized has been described.
  • an example of an electron source in which the structure of the shielding electrode is changed so that the electron source can be mounted on the conventional SE electron gun 201 of FIG. 2 and the suppressor 704 and the shielding electrode 705 are integrated is described. To do. Since the configurations other than the shielding electrode 705 are the same as those in the first embodiment, the description thereof will be omitted.
  • the SE electron gun of this embodiment will be described with reference to FIG.
  • the suppressor 704 of this embodiment has a shielding electrode 705 integrally formed with the suppressor 704 on its side surface.
  • the shielding electrode 705 has a feature that it does not have a cylindrical portion.
  • the shielding electrode 705 projects in the outer peripheral direction and covers only the downward direction of the contact point 511 between the suppressor 704 and the insulator 210. Therefore, the positively charged portion on the surface of the insulator 210 is separated from the contact point 511 by the amount of the shielding electrode 705 protruding. As a result, the frequency of minute discharges can be reduced as compared with the conventional SE electron gun 201.
  • the SE electron gun of this embodiment does not have the insulator 310 with the step described in the first embodiment, the creepage distance cannot be sufficiently extended. Further, since the structure is not such that the cylindrical portion 302 of the shielding electrode covers the contact point 511, the structure is such that an electric field is easily applied to the contact point 511. Therefore, as compared with Example 1, the effect of preventing minute discharge is limited, and the frequency is reduced. However, by changing only the suppressor 705 of this embodiment, it can be mounted on the conventional SE electron gun 201, and there is an advantage that the frequency of minute discharge can be reduced while suppressing the development cost.
  • Example 4 the structure of the shielding electrode was changed so that it could be mounted on a conventional SE electron gun.
  • the extraction electrode is provided with an opening to reduce the absolute number of reflected electrons reaching the insulator to enhance the effect of preventing minute discharge.
  • the openings of the diaphragm 209 including the openings of the diaphragm 209, at least two or more openings are provided in the extraction electrode. Since the configuration other than the extraction electrode is the same as that of the first embodiment, the description thereof will be omitted.
  • the SE electron gun of Example 5 will be described with reference to FIG.
  • the extraction electrode 801 of this embodiment has an opening 802 on the bottom surface thereof, which is different from the opening of the aperture 209. Further, the opening 803 is provided on the cylindrical surface of the extraction electrode 801 at a position facing the cylindrical portion 302 of the shielding electrode 301.
  • the side beam 501 emitted from the chip 202 irradiates the extraction electrode 801 to emit backscattered electrons. Among these reflected electrons, some of the reflected electrons 804 having low energy pass through the opening 802 on the bottom surface and pass out of the SE electron gun. As a result, the absolute number of reflected electrons that finally reach the insulator 310 is reduced.
  • Example 5 an opening was provided in the extraction electrode to reduce the absolute number of reflected electrons reaching the insulator to enhance the effect of preventing minute discharges.
  • Example 6 the extraction electrode protrudes inward. A configuration will be described in which a portion is provided to reduce the absolute number of reflected electrons reaching the insulator to enhance the effect of preventing minute discharges. Since the configuration other than the extraction electrode is the same as that of the first embodiment, the description thereof will be omitted.
  • the extraction electrode 809 of this embodiment has a protrusion 813 on the bottom surface. Further, it has a protruding portion 814 on the cylindrical surface.
  • the protrusion 813 on the bottom surface is integrally formed with the extraction electrode 809, and the diaphragm 209 is arranged below the extraction electrode 809. Further, the protruding portion 813 has a taper, and the diameter of the opening thereof is larger on the throttle 209 side than on the SE chip 202 side. A withdrawal voltage is applied to the protrusion 813.
  • the upper surface of the protrusion 813 facing the suppressor 303 is made flat in order to prevent unnecessary electric field concentration.
  • the protrusion 814 on the cylindrical surface is integrally formed with the extraction electrode 809, and an extraction voltage is applied.
  • the end face of the protrusion 814 on the suppressor 303 side has a taper, and the diameter of the opening is larger on the lower surface than on the upper surface.
  • the surface of the end surface of the protrusion 814 facing the suppressor 303 side is made flat to prevent unnecessary electric field concentration.
  • the side beam 812 having a large emission angle emits reflected electrons 816 after colliding with the diaphragm 209. Since the reflected electrons 816 are emitted with a peak in the mirror surface direction, most of them collide with the lower surface of the taper of the protrusion 813. From here, the emitted reflected electrons 817 collide with the diaphragm 209.
  • the side beam 812 having a large emission angle repeatedly re-collides a large number of reflected electrons in the bag portion generated between the taper of the protrusion 813 and the diaphragm 209, and the side beam 812 repeatedly collides with the bag portion. Reduce the number. As a result, the insulator 310 cannot be reached.
  • the side beam 812 with a small emission angle emitted from the SE chip 202 emits reflected electrons 811 after colliding with the diaphragm 209.
  • the reflected electrons 811 pass through the opening of the protrusion 813, collide with the extraction electrode 809, and emit the reflected electrons 818.
  • the reflected electrons 818 collide with the lower surface of the protrusion 814 and emit the reflected electrons 819.
  • a narrow path 815 is formed between the protrusion 814 and the suppressor 303.
  • the solid angle through which the reflected electrons can pass is small, which makes it difficult for the reflected electrons to pass through.
  • the potential distribution becomes narrow, forcing the reflected electrons to collide with the protrusion 814 in large numbers. As a result, the number of reflected electrons reaching the insulator 310 is effectively reduced.
  • Example 6 a configuration was described in which a protrusion was provided inside the extraction electrode to reduce the absolute number of reflected electrons reaching the insulator, thereby enhancing the effect of preventing minute discharge.
  • the inner diameter of the contact portion between the extraction electrode and the insulator is made smaller than the inner diameter of the tubular portion of the extraction electrode.
  • the extraction electrode is provided with a neck portion, and the neck portion and the insulator are held by fitting.
  • the configuration in which the effect of preventing minute discharge is enhanced by reducing the absolute number of reflected electrons will be described. Since the configuration other than the extraction electrode is the same as that of the first embodiment, the description thereof will be omitted.
  • the SE electron gun of Example 7 will be described with reference to FIG.
  • the extraction electrode of this embodiment is divided into an extraction electrode bottom portion 821 and an extraction electrode cylindrical portion 824 for assembly. Further, a neck portion 822 is provided above the drawer electrode cylindrical portion 824. The neck portion 822 and the insulator 820 are held by fitting. Further, the insulator 820 and the suppressor 303 are held by fitting. Further, the length of the cylindrical portion 302 of the suppressor 303 is extended to bring it closer to the vicinity of the neck portion 822.
  • the distance of the narrow path 601 formed between the cylindrical portion 302 of the shielding electrode 301 and the drawer electrode cylindrical portion 824 is extended. Further, a narrow path 823 is added between the neck portion 822 and the cylindrical portion 302. By extending the distance of these narrow paths, the number of times the reflected electrons collide with the extraction electrode bottom 821 increases, and the number of reflected electrons reaching the insulator 820 decreases. As a result, the amount of charge of the insulator 820 is reduced, and minute discharge is prevented.
  • Example 7 a configuration was described in which a neck portion was provided on the extraction electrode and the absolute number of reflected electrons was reduced to enhance the effect of preventing minute discharges.
  • the insulator is made of a semi-conductive material, or a semi-conductive or conductive thin film is provided on the surface of the insulator to prevent electrification and enhance the effect of preventing minute discharges. To do. Since the configuration other than the insulator is the same as that of the first embodiment, the description thereof will be omitted.
  • the SE electron gun of the eighth embodiment will be described with reference to FIG.
  • the semi-conductive insulator 830 is used instead of the insulator 310 of the first embodiment.
  • the semi-conductive insulator 830 is an insulator having an electric conductivity intermediate between that of a metal and an insulator, and has a volume resistivity of about 10 10 ⁇ cm to 10 12 ⁇ cm.
  • this semi-conductive insulator 830 it is possible to maintain the voltage difference between the extraction electrode 204 and the suppressor 303, although the dark current increases.
  • the reflected electrons collide with the semi-conductive insulator 830 the electrons are immediately supplied from the nearby semi-conductive insulator 830 even if the surface is charged, and the charging is relaxed. As a result, no field emission occurs from the contact point 511, and minute discharge can be prevented.
  • a similar effect can be achieved by providing a semi-conductive coating 831 on the surface of the insulating insulator.
  • the semi-conductive coating 831 is a thin film having a volume resistivity of about 10 10 ⁇ cm to 10 12 ⁇ cm, and has a thickness of about several ⁇ m. Even if reflected electrons collide with the semi-conductive coating 831, the charge is immediately relaxed and minute discharge can be prevented.
  • the semi-conductive coating 831 is effective not only on the entire surface of the insulating insulator but also on a part of the surface. When provided on a part of the surface, the conductivity of the semi-conductive coating 831 may be increased, and the volume resistivity may be 10 10 ⁇ cm or less. If the area to be covered is limited to a very small part of the surface, a conductive metal thin film may be formed, or a metallize may be used to form a film. Further, by putting a semi-conductive or metal covering in the vicinity of the contact point 511, the effect of relaxing the electric field concentration at the contact point 511 is added.
  • Example 8 a configuration was described in which the insulator is made into a semi-conductive insulator, or the insulator is coated with a semi-conductive coating to prevent charging and enhance the effect of preventing minute discharge.
  • the suppressor is held by the conductive support portion and the absolute number of reflected electrons is reduced to enhance the effect of preventing minute discharges. That is, it consists of a chip, a suppressor arranged behind the tip of the chip, a conductive support portion that holds the suppressor, a bottom surface and a tubular portion, and an extraction electrode that includes the chip and the suppressor, and a support portion and a drawer.
  • a charged particle beam device that includes a conductor that holds an electrode and an electron gun that has a conductive metal provided between the support and the cylinder of the extraction electrode, and applies a voltage lower than that of the chip to the conductive metal. Is an example of.
  • the SE electron gun of the ninth embodiment will be described with reference to FIG. Since the configuration other than the support portion is the same as that of the first embodiment, the description thereof will be omitted.
  • the suppressor 303 of this embodiment is held by the support portion 840.
  • the support portion 840 is a conductive metal cylinder and has a coaxial structure with the suppressor 303. When the support portion 840 comes into contact with the suppressor 303, the potential becomes the same as that of the suppressor 303.
  • the support portion 840 is held by fitting with the insulator 310.
  • the insulator 310 and the cylinder of the drawer electrode 204 are held by fitting. As a result, precise positioning and coaxial structure between the SE chip 202 and the extraction electrode 204 are maintained.
  • a feedthrough 841 is connected to the pin 207 to supply power to the filament 206.
  • a shielding electrode 301 is provided on the side surface of the support portion 840 so as to cover the lower surface 312 of the insulator 310 together with the cylindrical portion 3
  • the trajectory of the reflected electrons is controlled by the shielding electrode 310 which is an integral structure with the support portion 840 of the suppressor 303, and the position where the reflected electrons collide with the insulator 310 is separated from the contact point 511.
  • the increase in the electric field at the contact point 511 due to charging can be suppressed, and minute discharge can be prevented.
  • the support portion 840 of the suppressor 303 the distance between the SE chip 202 and the insulator 310 is increased. As a result, the number of collisions until the reflected electrons reach the insulator 310 increases, and the absolute number of electrons decreases, so that minute discharge can be effectively prevented.
  • the shielding electrode 310 may be attached to other than the suppressor itself. Further, even when other conductive parts are added to the suppressor 303 or the support portion 840 and brought into contact with each other, the same effect can be realized by providing the shielding electrode 310 in the additional parts.
  • the SE chip 202 of the present invention may be a cold cathode field emission electron source, a thermionic source, or a photoexcited electron source.
  • the material of the SE chip 202 is not limited to tungsten, and other materials such as LaB6, CeB6, and carbon-based materials may be used.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • extraction electrode 205 ... zirconium oxide, 206 ... filament, 207 ... terminal, 208 ... ⁇ ⁇ , 209 ... aperture, 210 ... ⁇ ⁇ , 301 ... shielding Electrode, 302 ... Cylindrical part, 303 ... Suppressor, 310 ... ⁇ , 311 ... Void, 312 ... Bottom surface, 313 ... Top surface, 501 ... Side beam, 502 ... Reflected electron, 503 ... Reflected electron, 504 ... Reflected electron, 505 ... Reflection Electron, 506 ... Secondary electron, 507 ... Surface, 510 ... Potential distribution, 511 ... Contact point, 517 ... Surface, 601 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

荷電粒子線装置の電子銃から大電流の電子線を安定に放出させる。SEチップ(202)と、SEチップの先端よりも後方に配置されたサプレッサ(303)と、底面と筒部から成るカップ形状の引出電極(204)とを持ち、SEチップとサプレッサが引出電極に内包され、サプレッサと引出電極との間に、これらを保持する碍子(208)をもつ電子銃を備え、サプレッサと引出電極の円筒部との間に、円筒部(302)を有する導電性金属の遮蔽電極(301)を設け、この遮蔽電極にSEチップよりも低い電圧を印加する。

Description

電子源、及び荷電粒子線装置
 本発明は試料に照射される電子線を供給する電子源と、それを用いた荷電粒子線装置に関する。
 荷電粒子線装置は、電子線のような荷電粒子線を試料に照射し、試料から放出される透過電子や二次電子、反射電子、X線などを検出することで、試料の観察画像を生成する装置である。生成される画像は、空間分解能が高く、繰り返し生成した場合の再現性が良いことが求められる。これらを実現するためには、照射する電子線の輝度が高く、電流量が安定している必要がある。このような電子線を放出する電子銃の一つとして、ショットキー電子銃(Schottky Emission Electron Gun:以下、SE電子銃)がある。特許文献1にはSE電子銃の構造の一例が記載されている。
 近年、半導体デバイスや先端材料の高度化が進み、これらの検査や計測を行う荷電粒子線装置には、多数の試料や、同一試料上の多数の点を短時間で観察し、スループットを高くすることが求められている。この短時間の観察は、電子銃から大電流を放出させ、画像の生成に要する時間を短縮することで実現できる。
特開平8-171879号公報
 発明者らの研究の結果、特許文献1に記載のSE電子銃で大電流を放出させると、ごく微小な放電(以下:微小放電)が不規則に多数回発生し、電子線の電流量が変動することがわかった。このような電流変動時に生成した画像は、空間分解能が劣化し、再現性が得られない画像となる。検査や計測装置での高空間分解能観察では0.1nm精度の再現性が要求されるため、微小放電による空間分解能の変化は許容できず、装置性能の低下に直結する。また、微小放電の発生タイミングや放電による電流変動の大きさはランダムであるため、システム上で微小放電の発生予測や空間分解能劣化の補正は困難である。このような大電流放出時の課題については特許文献1には記載されていない。
 本発明の目的は、微小放電を抑制し、大電流の電子線を安定に放出させることが可能な電子源と、それを用いた荷電粒子線装置を提供することにある。
 上記の目的を達成するため、本発明においては、チップと、チップの先端よりも後方に配置されたサプレッサと、底面と筒部から成り、チップとサプレッサを内包する引出電極と、サプレッサと引出電極を保持する碍子と、サプレッサと引出電極の筒部との間に設けられた導電性金属を持つ電子銃を備え、導電性金属にチップよりも低い電圧を印加する構成の荷電粒子線装置を提供する。
 また、上記の目的を達成するため、本発明においては、チップと、チップの先端よりも後方に配置されたサプレッサと、サプレッサを保持する導電性の支持部と、底面と筒部から成り、チップとサプレッサを内包する引出電極と、支持部と引出電極を保持する碍子と、支持部と引出電極の筒部との間に設けられた導電性金属を持つ電子銃を備え、導電性金属にチップよりも低い電圧を印加する構成の荷電粒子線装置を提供する。
 更に、上記の目的を達成するため、本発明においては、チップと、チップの先端より後方に配置されたサプレッサと、チップに電気的に接続された端子とサプレッサを保持する碍子と、サプレッサの側面に設置された導電性金属とを備える構成の電子源を提供する。
 本発明によれば、大電流の電子線を安定に放出させることができる電子源、並びにそれを利用した荷電粒子線装置を提供できる。
実施例1に係る荷電粒子線装置の一例である走査電子顕微鏡の概略図である。 従来のSE電子銃の周辺の構成を説明する概略図である。 実施例1のSE電子銃の周辺の構成を説明する概略図である。 実施例1のSE電子銃の電子源の一構成例を示す斜視図である。 SE電子銃で微小放電が発生した際の電子線の電流変化を説明する図である。 SE電子銃で微小放電が発生するメカニズムを説明する概略図である。 実施例1のSE電子銃で微小放電を防止するメカニズムを説明する概略図である。 実施例2のSE電子銃の周辺の構成を説明する概略図である。 実施例3のSE電子銃の周辺の構成を説明する概略図である。 実施例4のSE電子銃の周辺の構成を説明する概略図である。 実施例5のSE電子銃の周辺の構成を説明する概略図である。 実施例6のSE電子銃の周辺の構成を説明する概略図である。 実施例7のSE電子銃の周辺の構成を説明する概略図である。 実施例8のSE電子銃の周辺の構成を説明する概略図である。 実施例9のSE電子銃の周辺の構成を説明する概略図である。
 以下、本発明の電子源、及び荷電粒子線装置の種々の実施例を、図面を用いて順次説明する。荷電粒子線装置として、電子線を試料に照射し、試料から放出される二次電子や反射電子を検出することで、試料の観察画像を生成する電子顕微鏡がある。以下、荷電粒子線装置の一例として、走査電子顕微鏡について説明するが、本発明はそれに限定されず、他の荷電粒子線装置にも適用できる。
 実施例1は、チップと、チップの先端よりも後方に配置されたサプレッサと、底面と筒部から成り、チップとサプレッサを内包する引出電極と、サプレッサと引出電極を保持する碍子と、サプレッサと引出電極の筒部との間に設けられた導電性金属を持つ電子銃を備え、導電性金属にチップよりも低い電圧を印加する構成の走査電子顕微鏡の実施例である。
 図1を用いて本実施例に係る走査電子顕微鏡の全体構成について説明する。走査電子顕微鏡は、電子線115を試料112に照射し、試料から放出される二次電子や反射電子等を検出で試料の観察画像を生成する。この観察画像は、集束した電子線を試料上に走査し、電子線が照射された位置と二次電子等の検出量を関連付けて生成する。
 走査電子顕微鏡は、筒体125と試料室113を備え、筒体125の内部は、上から第一真空室119と第二真空室126、第三真空室127、第四真空室128に分けられる。それぞれの真空室の中央には電子線115が通過する開口があり、各真空室の内部は差動排気で真空に維持される。以下、各真空室について説明する。
 第一真空室119は、イオンポンプ120と非蒸発ゲッター(Non-Evaporable Getter: NEG)ポンプ118で排気し、圧力を10-8Pa台の超高真空、より好的には10-9Pa以下の極高真空にする。特にNEGポンプ118は極高真空において高い排気速度をもち、10-9Pa以下を得ることが可能となる。
 第一真空室119の内部にSE電子銃101を配置する。SE電子銃101は碍子116で保持され、筒体125と電気的に絶縁される。SE電子銃101の下方には、制御電極102を配置する。SE電子銃101から電子線115を放出し、最終的に試料112に照射することで観察画像を得る。SE電子銃101の構成の詳細は後述する。
 第二真空室126はイオンポンプ121で排気する。第二真空室126には加速電極103を配置する。第三真空室127はイオンポンプ122で排気する。第三真空室127にはコンデンサレンズ110を配置する。
 第四真空室128と試料室113はターボ分子ポンプ109で排気する。第四真空室128には検出器114を配置する。試料室113には対物レンズ111と試料112を配置する。
 以下で、各構成の作用と、SE電子銃101から放出した電子線115が、観察画像を生成するまでの工程を説明する。
 制御電極102には制御電圧を印加し、SE電子銃101と制御電極102との間に静電レンズを作る。この静電レンズで電子線115を集束し、所望の光学倍率に調整する。
 加速電極103には、SE電子銃101に対して0.5kVから60kV程度の加速電圧を印加し、電子線115を加速する。加速電圧が低いほど試料へ与えるダメージが減る一方、加速電圧が高いほど空間分解能が向上する。コンデンサレンズ110は、電子線115を集束し、電流量や開き角を調整する。なお、コンデンサレンズは複数設けても良く、その他の真空室に配置しても良い。
 最後に、対物レンズ111で電子線115を微小スポットに縮小し、試料112上に走査しながら照射する。このとき、試料からは、表面形状や材質を反映した二次電子や反射電子、X線が放出する。これらを検出器114で検出することで、試料の観察画像を得る。検出器は複数設けても良く、試料室113等、その他の真空室に配置しても良い。
 図2を用いて、従来のSE電子銃201の周辺の構成を説明する。従来のSE電子銃201は主に、SEチップ202と、サプレッサ203、引出電極204で構成される。
 SEチップ202は、タングステン<100>方位の単結晶であり、その先端は曲率半径0.5μm未満に先鋭化する。単結晶の中腹には酸化ジルコニウム205を塗布する。SEチップ202は、フィラメント206に溶接する。フィラメント206の両端は、それぞれ端子207に接続する。二つの端子207は、碍子208に保持され、それぞれ電気的に絶縁される。二つの端子207はSEチップ202と同軸方向に伸び、図示していないフィードスルーを経由して電流源に接続される。端子207には定常的に電流を流し、フィラメント206を通電加熱することで、SEチップ202を1500Kから1900Kに加熱する。この温度では酸化ジルコニウム205がSEチップ202の表面を拡散移動し、電子源先端の先端中央にある(100)結晶面まで被覆する。(100)面は、酸化ジルコニウムで覆われると仕事関数が低減する特徴がある。この結果、加熱された(100)面から熱電子が放出し、電子線115が得られる。放出する電子線の総量をエミッション電流と呼び、典型的には50μA程度である。
 サプレッサ203は円筒金属であり、SEチップ202の先端以外を覆うように配置する。サプレッサ203の円筒はSEチップ202と軸方向に平行に伸び、碍子208に嵌合で保持される。サプレッサ203と端子207とは、碍子208によって電気的に絶縁される。サプレッサ203には、SEチップ202に対して―0.1kVから―0.9kVのサプレッサ電圧を印加する。SEチップ202は、その側面からも熱電子を放出する特徴がある。しかし、サプレッサ203にこのような負の電圧を印加することで、側面から出る不要な熱電子の放出を防ぐ。
 SEチップ202の先端は、典型的にはサプレッサ203から0.25mm程度突き出して配置する。このように1mm以下の精密な位置決めを行い、わずかな距離のみを突き出させることで、SEチップ202の先端のみを電子線の放出に寄与させるとともに、側面からの不要な電子の放出量を極力低減する。また、突出し長さが0.25mm程度であれば、後述する引出電圧の構成によって、電子源先端に十分な電界を印加できる利点がある。
 引出電極204は底面と円筒とが一体で構成されたカップ形状の金属円筒であり、その底面をSEチップ202に対向させて配置する。引出電極204は碍子210と嵌合で保持され、サプレッサ203と電気的に絶縁される。引出電極204には、SEチップ202に対して+2kV程度の引出電圧を印加する。SEチップ202の先端は先鋭化されているため、先端には高い電界が集中する。印加される電界が高いほど、ショットキー効果で表面の実効的な仕事関数が低下し、より多くの電子線を放出できる。
 SEチップ202と引出電極204の底面との距離は典型的には0.5mm程度にする。このように狭い距離で組み立てることで、低い引出電圧でも電子源先端に十分高い電界を印加することができる。引出電極204の底面には絞り209を設け、ここを通過した電子が最終的に画像の生成に利用される。絞り209にはモリブデンの薄板などを用い、絞り209の開口の直径は典型的には0.1mmから0.5mm程度である。開口を小さくすることで、不要な電子が絞りを通過するのを防ぎ、観察画像が劣化するのを防止する。
 SEチップ202は、高精度ジグを用いて碍子208の中心軸上に位置決めして溶接する。碍子208の外周とサプレッサ203の内周、サプレッサ203の外周と碍子210の内周、碍子210の外周と引出電極204の内周、とはそれぞれ10μmオーダの嵌合で組み立てられる。従って、SEチップ202とサプレッサ203と引出電極204とは高精度な同軸構造となり、また電極間の精密な位置決めが可能となる。
 SEチップ202とサプレッサ203が同軸構造であることで、サプレッサ203がSEチップ202の近傍に作る電位分布が均一になる。この結果、SEチップ202の側面から放出しようとする不要な電子を全方向にわたって均一に抑制できる。その他に、SEチップ202から放出された電子が、空間中の不均一な電位で曲げられることがなくなり、軸上に電子線を放出できる。
 SEチップ202と引出電極204が同軸構造になることで、絞り209も同軸上に配置できる。この結果、絞り209の位置ずれすることで放出した電子の通過が妨げられ、電子線が得られなくなる恐れがなくなる。その他に、絞り209がSEチップ202の先端に与える電界分布が均一になり、軸上に電子線を放出できる。
 このように、SE電子銃は、電子源先端からの効率的な電子線の放出と、電子源側面からの不要な電子放出の抑制、電子銃空間内の均一な電位分布を実現するために、1mm以下の小さな寸法で高精度に組み立てる必要がある。このため、SE電子銃の内部は非常に狭い空間をもち、このなかでkVオーダの電圧差を維持する特徴がある。
 図3A、図3Bを用いて、本実施例のSE電子銃101の周辺の構成と、その電子源の構成を説明する。本実施例の電子銃は、SEチップ202、フィラメント206、碍子208、新たに導電性金属からなる遮蔽電極301をもつサプレッサ303を備える電子源を含み、さらに、段差をもつ碍子310を用い、碍子310の下面と引出電極204の円筒の内周面との間に空隙311を設けることを特徴とする。本実施例の電子源は、SEチップ202と、チップの先端より後方に配置されたサプレッサ303と、チップに電気的に接続された端子207とサプレッサを保持する碍子208と、サプレッサの側面に設置され、チップよりも低い電圧が印加される導電性金属からなる遮蔽電極301を備える構成の電子源である。なお、同一記号の構成は前述と同じ構成を意味し、説明は省略する。
 図3Aに示したように、碍子310の底辺には段差を設け、下方(電子線115の進行方向)に配置された面を下面312、上方の面を上面313と便宜的に呼称する。下面312はサプレッサ301側に配置し、上面313は引出電極204側に設ける。これにより、碍子310の下面312と引出電極204の内周面との間に空隙311を設ける。
 図3A,図3Bに示すように、サプレッサ303の側面には、一体で構成した導電性金属からなる遮蔽電極301を設ける。サプレッサ303の側面の円筒部はSEチップ202の軸方向に伸び、碍子310と嵌合で保持される。遮蔽電極301は、このサプレッサ303の円筒部の側面に設けられ、側方に突出する。別の言い方では、遮蔽電極301は、SEチップ202の軸方向と垂直方向に伸びる構造をもつ。その他の言い方では、遮蔽電極301は、サプレッサ303と引出電極204の円筒部との間に配置される。遮蔽電極301と引出電極204との電圧差は両者の間の真空によって保たれ、電気的に絶縁される。
 遮蔽電極301は、さらに碍子310側に延びる円筒部302をもつ。この円筒部302の上端は、空隙311まで伸びる。遮蔽電極301の円筒部302は、引出電極204の円筒と同じ軸をもち、平行方向に伸ばす。典型的には引出電極204の円筒は、SEチップ202の軸方向に伸びることから、円筒部302も、SEチップ202の軸方向に伸びる。この結果、碍子310の下面312は、遮蔽電極301と円筒部302で覆われ、引出電極204を見込むことがない構成となる。なお、円筒部302を含む遮蔽電極301は、碍子310とは接触せず、遮蔽電極301の表面に不要な電界が集中するのを防ぐ。遮蔽電極301の外周側面には、サプレッサ電圧と引出電圧の差圧が印加される。そこで、遮蔽電極の側面は、曲面や平面で構成し、不要な電界集中を防ぐ。本構成によって微小放電が防止される作用は後述する。なお、碍子208や碍子310は、ガラスなどのその他の電気的絶縁材料でも良い。 本実施例のSE電子銃101では、SEチップ202の先端曲率半径を0.5μm以上、より好適には1.0μm以上にする。大電流を放出する場合、電子間のクーロン相互作用が働き、従来の曲率半径で大電流を放出すると電子線の輝度が低下する。SE電子源の先端曲率を大きくすることで、電子線の放出面積が増加し、表面の電流密度が低下する。この結果、クーロン相互作用の効果が弱まり、大電流時の輝度低下が防止される。
 先端曲率半径0.5μmを用いる場合、エミッション電流は300μA以上とすることで、従来の曲率半径では得られない高輝度を得ることができる。このエミッション電流を得るために、引出電圧は典型的には3kV以上で使用する。先端曲率半径1μmを用いる場合、エミッション電流を600μA以上にすることで従来以上の輝度が得られる。このエミッション電流を得るために、引出電圧は典型的には5kV以上にする。
 引出電極204や絞り209などの金属材料に電子が照射されると、電子衝撃脱離ガスが放出する。電子衝撃脱離ガスの放出量は照射した電流量、及び、印加する引出電圧に比例して増加する。このため、SEチップ202からエミッション電流を300μAや500μA以上の大電流を高い引出電圧で放出すると、従来よりも1桁以上多い電子衝撃脱離ガスが発生し、図1で示した真空室119の圧力を悪化させる。圧力が10-7Pa台になると、SEチップ202の表面にダメージが加わることで形状が崩れ、電流の安定性を損なう場合がある。しかし、本実施例の電子顕微鏡は、真空室119を排気速度の大きいNEGポンプ118とイオンポンプ120で排気する。このため、大電流を放出しても圧力の悪化は抑制され、真空室119の圧力を10-8Pa台以下に維持できる。このため、SEチップ202の表面にダメージが加わることはなく、大電流でも安定な電子線を得ることができる効果をもつ。
 以下、図4から図6を用いて、本実施例のSE電子銃101が微小放電を防止する作用を説明する。
 図4を用いて、微小放電が発生した際の電子線の電流変化を説明する。微小放電は瞬間的に生じ、同図に明らかなように、1秒以下の短時間で終わる。その際、電子線の電流量は瞬間的に減少し、その後元の電流量に戻る。微小放電と同時に第一真空室の圧力が瞬間的に上昇する場合があるが、これも数秒以内に元の圧力に戻る。
 電子銃で問題とされる放電は、一般的にフラッシュオーバーやブレークダウンと呼ばれる種類のもので、一度発生すると電子源の溶損や、高電圧電源の破損、碍子の絶縁破壊等を生じ、これらを交換しない限り再び電子線を得ることはできない大きな放電である。一方、微小放電は一時的に電流が減少するものの、その後、継続して電子線が得られる特徴があり、比較的軽度の放電である。また、従来の放電は、例えば引出電極に+10kV程度の高い引出電圧を印加した場合に生じる。一方、この微小放電は同様の高い引出電圧印加しても発生せず、引出電圧の印加に加えて、大電流の電子線放出を行った場合に初めて生じ、電流量が大きくなるほど発生頻度が多くなる。また、電流量が大きくなるほど微小放電が発生させる引出電圧の閾値が低くなる。微小放電は、従来の放電とは異なる発生メカニズムをもち、異なる現象といえる。以下、微小放電と区別するために、従来、問題とされた放電を大放電と呼ぶ。
 図5を用いて、図2に示した従来のSE電子銃201で微小放電が発生するメカニズムを説明する。なお、電子銃は軸対称の構造をもつことから片側側面のみを図示した。また、チップ202とサプレッサ203、引出電極204のそれぞれに印加された電圧で形成される空間中の電位分布510を模式的に破線で示した。
 SEチップ202の先端は、サプレッサ203から突出し、その側面に存在する{100}等価結晶面からサイドビーム501が放出する。サイドビーム501は斜め方向に放出し、引出電極204に衝突する。また、電子源の先端中央にある(100)面から放出する電子線115の一部も絞り209に衝突する。これら引出電極204や絞り209に衝突する電流量は、エミッション電流の90%以上である。SE電子銃は電子源から放出する電流のほとんどが、銃内の狭小空間に照射される特徴がある。
 引出電極204や絞り209などの金属材料に電子が衝突すると、その一部が反射電子として真空側に放出する。反射電子の放出角は広がりをもち、一般的に鏡面反射成分をピークとした余弦則に基づく分布をもつ。また、反射電子のエネルギーも分布をもち、弾性散乱で入射時のエネルギーを保存した電子と、非弾性散乱でエネルギーを失った電子をもつ。このため、反射電子の一つ一つは異なる軌道をもつ。ここでは、代表的な例として、反射電子502を用いて、軌道の概略を説明する。
 引出電極204から放出した反射電子502は、サプレッサ203の方向に進むが、反射電子502のエネルギーは最大でも引出電圧と同じであり、サプレッサ203に到達することはできない。このため、電位分布の垂直方向に働く斥力によって押し戻され、引出電極502に再び衝突する。反射電子502の一部は、反射電子503として放出し、引出電極204の円筒内面に衝突する。反射電子503の一部は、反射電子504として再放出し、サプレッサ203の電位分布に押し戻されて、再び引出電極204に衝突する。反射電子504の一部は、反射電子505となり、最終的に、碍子210に衝突する。
 碍子210の二次電子放出率は1よりも大きく、碍子210に一個の電子が衝突すると、1個よりも多い数の二次電子が放出する。放出した二次電子506のエネルギーは数Vと小さく、電位分布の斥力によって引出電極204に到達し、吸収される。この結果、反射電子505が衝突した碍子210の表面507の電子数が減り、表面507は正に帯電する。
 サプレッサ203と碍子210の接触点511と、正に帯電した表面507との間の沿面には、帯電前と比べて高い電位差が形成され、両者の距離が近いほど接触点511に高い電界が印加される。この結果、接触点511で電界放出が生じ、大量の電子が放出する。この電子が電位分布の斥力を受けながら、碍子210の沿面や空間中を移動し、引出電極204まで到達する。この電極間の電流移動によって微小放電が発生し、電極間の電圧差が変化することで電子線の電流量が変動する。
 以上まとめると、SE電子銃で大電流を放出すると、銃内の狭小空間内に多量の電子が供給される。これらの電子は、サプレッサ203と引出電極204との間に形成される電位分布によって引出電極に押し戻され、反射電子が繰り返し発生する。この反射電子は最終的に碍子210に到達し、その表面を局所的に正に帯電させる。正に帯電した表面507とサプレッサ203との間の電圧差が増すことで電界集中が起こり、微小放電が起きる。
 図6を用いて、本実施例のSE電子銃101が微小放電を防止するメカニズムを説明する。従来のSE電子銃と同様に、本実施例のSE電子銃101においても、SEチップ202から放出したサイドビーム501は引出電極204に衝突し、反射電子502を放出させる。反射電子502は、サプレッサ303と引出電極204との間に作られる電位分布によって斥力を受けて押し戻され、引出電極204に再衝突する。その後も、反射電子502は引出電極からの放出と衝突を繰り返す。
 ここで、本実施例のSE電子銃101ではサプレッサ303に遮蔽電極301を設けたことで、サプレッサ電圧が作る負の電位分布が広がり、反射電子が碍子310に到達しにくくなる。特に、碍子310の下面312は、遮蔽電極301とその円筒部302で囲まれることで反射電子が衝突できなくなる。反射電子は最終的に、従来よりも多くの衝突を繰り返した後、碍子310の上面313に衝突し、その表面517を正に帯電させる。碍子310は底辺に段差を設けており、上面313と下面312とは距離が離れる。従って、碍子310とサプレッサ303との接触点511と、正に帯電した表面517との沿面距離は十分長く、接触点511に高い電界が印加されることはない。この結果、電界放出が起きず、微小放電の発生が防止される。
 本実施例のその他の効果として、遮蔽電極301の円筒部302を引出電極204の円筒と同じ軸をもたせ、平行に一定距離伸ばしたことで、円筒部302と引出電極204の内周面との間に、狭い経路601が形成されることがある。この狭い経路601では電位分布が狭くなり、反射電子の飛行距離が短くなることで多数の再衝突が行われる。反射電子は衝突を行うたびに、その電子数が数割に減少する。再衝突の回数が増えることで碍子310に到達する反射電子の絶対数が減少し、帯電量が減ることで微小放電を防止する。
 その他の効果として、接触点511のまわりが遮蔽電極301で囲まれることで、その内部の電位分布は均一となり、電界が小さくなる。例え、接触点511から電子が放出しても、この電子に加わる力は小さくなり、電子が引出電極204に到達する確率が小さく、微小放電が発生しにくくなる。
 その他の効果として、碍子310の底辺の沿面距離が伸びたことでも、電子が沿面を移動して引出電極204に到達する確率が小さくなり微小放電が低減する。また、沿面距離の延長に付随して大放電も起きにくくなる。本実施例のSE電子銃では、先端曲率半径が0.5μmや1.0μm以上のSEチップ202を用い、引出電極204には3kV、または5kV以上の引出電圧を印加する。また、より大きな先端曲率のSE電子源を用いた場合、引出電圧が増え、10kV以上にもなる。この場合であっても、碍子310の沿面距離を伸ばしたことで、沿面方向の電界が低減し、大放電が起きる危険性も低減する。
 その他の効果として、サプレッサ303と遮蔽電極301とを一体で構成したことで、部品点数を追加せず、単純な構造を維持できることがある。これは、コスト低減の利点がある。また、従来のSE電子銃と同様に、碍子208とサプレッサ303、碍子310、引出電極204とは、それぞれを嵌合で組み立てることができ、高精度な同軸構造と電極間の位置決めが可能となる。この結果、本実施例の電子銃101においても、電子源からの効率的な電子線の放出と、電子源側面からの不要な電子放出の抑制、電子銃空間内の均一な電位分布が実現できる。
 なお、電子線が照射された金属からは電子衝撃脱離によってイオンが発生する。このイオンの衝突によっても、碍子210が正に帯電し、同様のメカニズムで微小放電が起こりうる。しかし、本実施例のSE電子銃101によって、このイオンに起因した微小放電も防止できる。
 実施例1では、サプレッサ303と一体で構成した遮蔽電極301と、段差を設けた碍子310を用い、碍子310表面上の反射電子の衝突位置をサプレッサ303から離すことで、微小放電を防止する構成を説明した。実施例2ではサプレッサと遮蔽電極を別構造にしたSE電子銃の構成について説明する。なお遮蔽電極以外の構成は実施例1と同じであるので説明を省略する。
 図7を用いて、実施例2のSE電子銃について説明する。遮蔽電極701はサプレッサ203と別構造とし、導電性金属で作製する。遮蔽電極701の内周面とサプレッサ203の外周面とを嵌合で組み立て、保持する。また、遮蔽電極701の外周面と碍子310の内周面とを嵌合で組み立てる。この結果、チップ202とサプレッサ203、遮蔽電極701、引出電極204とは同軸構造となり、精密な位置決めが可能となる。遮蔽電極701とサプレッサ203とが接触することで、両者は同電位となり、サプレッサ電圧が印加される。
 本実施例のSE電子銃は、実施例1のSE電子銃101と同様に、段差のある碍子310で設けた空隙311まで、遮蔽電極701の円筒部722の端面が到達する。このため、図6を用いて説明した作用が働き、微小放電を防止できる。
 本実施例の電子銃は部品点数が増えるために嵌合箇所が増え、軸精度の悪化やコストの増加の可能性がある。しかし、遮蔽電極701をサプレッサ203と別構造にすることで、従来のSE電子銃201で用いたサプレッサ203を流用できる。規格化されたサプレッサ構造を使用することで、サプレッサの製作コストの低減や、市販のサプレッサつきSE電子源をそのまま使用できる利点がある。
 実施例2では、サプレッサと遮蔽電極を別構造にした構成について説明した。実施例3では、サプレッサへの碍子310の嵌合位置を変え、遮蔽電極を小型化した構成について説明する。なお、遮蔽電極以外の構成は実施例1と同じであるので説明を省略する。
 図8を用いて、実施例3のSE電子銃について説明する。本実施例のサプレッサ702は、その側面の上端に遮蔽電極703をもち、サプレッサ702と遮蔽電極703は実施例1同様、一体で構成する。碍子310の下面312を有する円筒部の外周面と、サプレッサ702の内周面とを嵌合で保持し、組み立てる。この結果、各電極は同軸構造となり、精密な位置決めをする。
 本実施例のSE電子銃は、電界放出の起点となるサプレッサ702と碍子310との接触点511の位置が変わる。しかし、実施例1のSE電子銃101と同様に、段差のある碍子310で設けた空隙311まで、遮蔽電極703の円筒部723の端面が到達する。この結果、接触点511は遮蔽電極703の電位で覆われ、図6を用いて説明した作用で微小放電を防止する。
 本実施例のようにサプレッサ702と碍子310との嵌合位置を変えることで、遮蔽電極703を小型化できる。この結果、引出電極204の直径を小さくし、SE電子銃を小型化できる利点がある。その他に、遮蔽電極703の形状が比較的簡略化できることから、一体構成であるサプレッサ702の製作が容易になり、コスト低減できる利点がある。
 実施例3では、碍子310の嵌合位置を変え、遮蔽電極を小型化した構成について説明した。実施例4では、遮蔽電極の構造を変え、図2の従来のSE電子銃201にも搭載可能とした電子源であって、サプレッサ704と遮蔽電極705が一体構造の電子源の実施例について説明する。なお、遮蔽電極705以外の構成は実施例1と同じであるので説明を省略する。
 図9を用いて、本実施例のSE電子銃について説明する。本実施例のサプレッサ704は、その側面にサプレッサ704と一体構成の遮蔽電極705をもつ。遮蔽電極705は実施例1の遮蔽電極301と異なり、円筒部をもたない特徴がある。遮蔽電極705は、外周方向に突出し、サプレッサ704と碍子210との接触点511の下方向のみを覆う。従って、遮蔽電極705が突き出した分だけ、碍子210表面の正帯電する箇所が、接触点511から離れる。この結果、従来のSE電子銃201よりも微小放電の頻度を低減できる。
 本実施例のSE電子銃は、実施例1で説明した段差を備えた碍子310をもたないため、沿面距離を十分に伸ばすことはできない。また、遮蔽電極の円筒部302で接触点511を覆う構造ではないため、接触点511に電界が印加されやすい構造となる。このため、実施例1と比べて、微小放電を防止する効果は限定的となり、頻度の低減に止まる。しかし、本実施例のサプレッサ705のみを変更するだけで、従来のSE電子銃201にも搭載でき、開発費用を抑えながら微小放電の頻度を低減できる利点がある。
 実施例4では、遮蔽電極の構造を変え、従来のSE電子銃にも搭載可能とした構成について説明した。実施例5では、引出電極に開口を設け、碍子に到達する反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明する。本実施例においては、絞り209の開口を含めると、引出電極に少なくとも二つ以上の開口を設けることになる。なお、引出電極以外の構成は実施例1と同じであるので説明を省略する。
 図10を用いて、実施例5のSE電子銃について説明する。本実施例の引出電極801は、その底面に絞り209の開口とは別の開口802をもつ。また、引出電極801の円筒面で、遮蔽電極301の円筒部302に対向した位置に開口803をもつ。チップ202から放出したサイドビーム501が引出電極801に照射されることで反射電子が放出する。この反射電子のうち、エネルギーが低い一部の反射電子804は底面の開口802を通過し、SE電子銃の外へ通過する。この結果、最終的に碍子310に到達する反射電子の絶対数が低減する。
 一方、底面の開口802を飛び越えたエネルギーの高い反射電子805に関しても、再衝突を繰り返した後、その多くが円筒面の開口803を介してSE電子銃の外へ通過する。引出電極801と円筒部302との間の狭い経路601では、電位分布が狭くなり、多数の反射電子の再衝突が起こる。この位置に開口803を配置することで、多くの反射電子がSE電子銃の外に移動することになり、最終的に碍子310に到達する反射電子の絶対数を効果的に低減できる。以上の引出電極801の開口802と開口803によって、碍子310の帯電量が低減し、微小放電をさらに防止できる。
 なお、絞り209の直径を大きくし、絞り209にサイドビーム501が照射されるようにし、この絞り209のサイドビーム501の照射位置に開口を設けることでも上記と同様の作用で微小放電を防止できる。
 実施例5では、引出電極に開口を設け、碍子に到達する反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明した、実施例6では引出電極の内側に突出部を設け、碍子に到達する反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明する。なお、引出電極以外の構成は実施例1と同じであるので説明を省略する。
 図11を用いて、実施例6のSE電子銃について説明する。本実施例の引出電極809は、底面に突出部813をもつ。また、円筒面に突出部814をもつ。底面の突出部813は、引出電極809と一体で構成し、その下方に絞り209を配置する。また、突出部813はテーパ―をもち、その開口の直径はSEチップ202側よりも絞り209側を大きくする。突出部813には引出電圧が印加される。突出部813のサプレッサ303と対向した上面は、不要な電界集中を防ぐために、平面とする。
 円筒面の突出部814は、引出電極809と一体で構成し、引出電圧が印加される。突出部814のサプレッサ303側の端面はテーパ―をもち、その開口の直径は上面よりも下面を大きくする。突出部814の端面のサプレッサ303側に向かい合う面は、平面とし、不要な電界集中を防ぐ。
 SEチップ202から放出するサイドビームのうち、放出角の大きいサイドビーム812は、絞り209に衝突した後、反射電子816を放出する。この反射電子816は鏡面方向にピークをもって放出することから、そのほとんどが突出部813のテーパ―の下面に衝突する。ここから、放出する反射電子817は絞り209に衝突する。このように、突出部813を設けたことで、放出角の大きいサイドビーム812は、突出部813のテーパと絞り209との間に生じる袋部分で、多数の反射電子の再衝突を繰り返し、その数を低減する。この結果、碍子310に到達することができなくなる。
 SEチップ202から放出する放出角の小さいサイドビーム812は、絞り209に衝突した後、反射電子811を放出する。この反射電子811は、突出部813の開口を通過して引出電極809に衝突し、反射電子818を放出する。この反射電子818は突出部814の下面に衝突し、反射電子819を放出する。このように、突出部814を設けたことで、放出角の小さいサイドビーム810は、突出部814の下面と引出電極809との間に生じる袋部分で、多数の反射電子の再衝突を繰り返し、その数を低減する。この結果、碍子310に到達することができなくなる。
 以上の引出電極809の突出部813と突出部814によって、碍子310の到達する反射電子の絶対数が減り、碍子310の帯電量が低減する。この結果、微小放電をさらに防止できる。
 その他の効果として、突出部814とサプレッサ303との間には、狭い経路815が形成される。この狭い経路815は、反射電子が通過できる立体角が小さく、通過しづらくなるのに加えて、電位分布が狭くなることで反射電子に突出部814への多数の衝突を強いる。この結果、碍子310に到達する反射電子の数が効果的に低減される。
 実施例6では、引出電極の内側に突出部を設け、碍子に到達する反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明した。実施例7では、引出電極と碍子の接触箇所の内径が、引出電極の筒部の内径よりも小さくする、言いかえるなら、引出電極にネック部を設け、ネック部と碍子を嵌合で保持し、反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明する。なお、引出電極以外の構成は実施例1と同じであるので説明を省略する。
 図12を用いて、実施例7のSE電子銃について説明する。本実施例の引出電極は、組立のために引出電極底部821と引出電極円筒部824にわかれる。さらに、引出電極円筒部824の上部にネック部822を備える。ネック部822と碍子820とは嵌合で保持される。また、碍子820とサプレッサ303とが嵌合で保持される。さらに、サプレッサ303の円筒部302の長さを伸ばし、ネック部822の近傍まで近づける。
 円筒部302を延長したことで、遮蔽電極301の円筒部302と引出電極円筒部824との間にできる狭い経路601の距離が延びる。また、ネック部822と円筒部302との間に狭い経路823が追加される。これらの狭い経路の距離が延びることで、反射電子が引出電極底部821に衝突する回数が増え、碍子820に到達する反射電子の数が減少する。この結果、碍子820の帯電量が低減し、微小放電が防止される。
 実施例7では、引出電極にネック部を設け、反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明した。実施例8では、碍子を半導電性の材料で構成する、又は碍子の表面に半導電性、ないしは導電性の薄膜を設けることで帯電を防止し、微小放電の防止効果を高めた構成について説明する。なお、碍子以外の構成は実施例1と同じであるので説明を省略する。
 図13を用いて、実施例8のSE電子銃について説明する。本実施例では、実施例1の碍子310に代わって、半導電性碍子830を用いる。半導電性碍子830は、電気伝導性が金属と絶縁体との中間の値をもつ碍子であり、体積抵抗率は1010Ωcmから1012Ωcm程度である。この半導電性碍子830を用いることで、暗電流が増えるものの、引出電極204とサプレッサ303との間の電圧差を維持することができる。一方、半導電性碍子830に反射電子が衝突した場合、表面が帯電してもすぐに近傍の半導電性碍子830から電子が供給され、帯電が緩和される。この結果、接触点511から電界放出はおきず、微小放電を防止できる。
 同様の効果は、絶縁碍子表面に半導電性被覆831を設けても実現できる。半導電性被覆831は、体積抵抗率は1010Ωcmから1012Ωcm程度の薄膜であり、その厚み数μm程度である。この半導電性被覆831に反射電子が衝突しても、帯電はすぐに緩和され、微小放電を防止できる。
 なお、半導電性被覆831は絶縁碍子の表面全面に設けるだけに限らず、表面の一部に設ける場合でも効果がある。表面の一部に設ける場合は、半導電性被覆831の導電性を高めてもよく、体積抵抗率を1010Ωcm以下にしても良い。被服箇所を表面の極一部に限るなら、導電性の金属薄膜を成膜しても良く、メタライズを用いて成膜しても良い。また、接触点511の近傍に半導電、または金属被服をすることで、接触点511での電界集中を緩和する効果が追加される。
 実施例8では、碍子を半導電性碍子にする、または、碍子に半導電性被覆を施すことで帯電を防止し、微小放電の防止効果を高めた構成について説明した。実施例9では、サプレッサを導電性の支持部で保持し、反射電子の絶対数を低減することで、微小放電の防止効果を高めた構成について説明する。すなわち、チップと、チップの先端よりも後方に配置されたサプレッサと、サプレッサを保持する導電性の支持部と、底面と筒部から成り、チップとサプレッサを内包する引出電極と、支持部と引出電極を保持する碍子と、支持部と引出電極の筒部との間に設けられた導電性金属を持つ電子銃を備え、導電性金属にチップよりも低い電圧を印加する構成の荷電粒子線装置の実施例である。
 図14を用いて、実施例9のSE電子銃について説明する。なお、支持部以外の構成は実施例1と同じであるので説明を省略する。同図に示すように、本実施例のサプレッサ303は支持部840に保持される。支持部840は導電性の金属円筒であり、サプレッサ303と同軸構造である。支持部840はサプレッサ303と接触することで、サプレッサ303と同電位となる。支持部840は碍子310と嵌合で保持される。碍子310と引出電極204の円筒とが嵌合で保持される。この結果、SEチップ202と引出電極204との間の精密な位置決めと同軸構造が保たれる。ピン207にはフィードスルー841を接続し、フィラメント206に給電する。支持部840の側面には遮蔽電極301を設け、円筒部302とともに碍子310の下面312を覆う構造とする。
 本実施例においても、サプレッサ303の支持部840と一体構造である遮蔽電極310によって反射電子の軌道が制御され、反射電子が碍子310に衝突する位置が、接触点511から離れる。この結果、帯電による接触点511の電界増加が抑えられ、微小放電を防止できる。さらに、サプレッサ303の支持部840を設けたことで、SEチップ202と碍子310との距離が離れる。この結果、反射電子が碍子310に到達するまでの衝突回数が増え、電子の絶対数が低減することで微小放電を効果的に防止できる。なお、本実施例に示したように、遮蔽電極310はサプレッサ自身以外に取り付けても良い。また、その他の導電性部品をサプレッサ303や支持部840に追加し、接触させる場合であっても、この追加部品に遮蔽電極310を設けることで同様の効果を実現できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本発明のSEチップ202は冷陰極電界放出電子源や、熱電子源、光励起電子源でも良い。またSEチップ202の材料はタングステンに限らず、LaB6,CeB6、カーボン系材料など、その他の材料でも良い。また上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101…SE電子銃、102…制御電極、103…加速電極、109…ターボ分子ポンプ、110…コンデンサレンズ、111…対物レンズ、112…試料、113…試料室、114…検出器、115…電子線、116…碍子、118…非蒸発ゲッターポンプ、119…第一真空室、120…イオンポンプ、121…イオンポンプ、122…イオンポンプ、125…筒体、126…第二真空室、127…第三真空室、128…第四真空室、
201…従来のSE電子銃、202…SEチップ、203…サプレッサ、204…引出電極、205…酸化ジルコニウム、206…フィラメント、207…端子、208…碍子、209…絞り、210…碍子、301…遮蔽電極、302…円筒部、303…サプレッサ、310…碍子、311…空隙、312…下面、313…上面、501…サイドビーム、502…反射電子、503…反射電子、504…反射電子、505…反射電子、506…二次電子、507…表面、510…電位分布、511…接触点、517…表面、601…狭い経路、701…遮蔽電極、702…サプレッサ、703…遮蔽電極、704…サプレッサ、705…遮蔽電極、722…円筒部、723…円筒部、801…引出電極、802…開口、803…開口、804…反射電子、805…反射電子、810…サイドビーム、811…反射電子、812…サイドビーム、813…突出部、814…突出部、815…狭い経路、816…反射電子、817…反射電子、818…反射電子、819…反射電子、820…碍子、821…引出電極底部、822…ネック部、823…狭い経路、824…引出電極円筒部、830…半導電性碍子、831…半導電性被覆、840…支持部、841…フィードスルー。

Claims (15)

  1. チップと、前記チップの先端よりも後方に配置されたサプレッサと、底面と筒部から成り、前記チップと前記サプレッサを内包する引出電極と、前記サプレッサと前記引出電極を保持する碍子と、前記サプレッサと前記引出電極の筒部との間に設けられた導電性金属を持つ電子銃を備え、
    前記導電性金属に前記チップよりも低い電圧を印加する、
    ことを特徴とする荷電粒子線装置。
  2. 請求項1に記載の荷電粒子線装置であって、
    前記碍子の端面に段差をもたせ、前記碍子と前記引出電極の筒部との間に空隙を設けた、
    ことを特徴とする荷電粒子線装置。
  3. 請求項2に記載の荷電粒子線装置であって、
    前記導電性金属の一部を、前記空隙まで伸ばす、
    ことを特徴とする荷電粒子線装置。
  4. 請求項3に記載の荷電粒子線装置であって、
    前記導電性金属と前記サプレッサとを一体で構成する、
    ことを特徴とする荷電粒子線装置。
  5. 請求項4に記載の荷電粒子線装置であって、
    前記導電性金属は筒構造をもち、前記筒構造は前記引出電極の筒部と同軸方向に伸びている、
    ことを特徴とする荷電粒子線装置。
  6. 請求項4に記載の荷電粒子線装置であって、
    前記引出電極に少なくとも二つ以上の開口を設ける、
    ことを特徴とする荷電粒子線装置。
  7. 請求項4に記載の荷電粒子線装置であって、
    前記引出電極の内側に少なくとも一つの突出部を設ける、
    ことを特徴とする荷電粒子線装置。
  8. 請求項4に記載の荷電粒子線装置であって、
    前記引出電極と前記碍子の接触箇所の内径は、前記引出電極の筒部の内径よりも小さい、
    ことを特徴とする荷電粒子線装置。
  9. 請求項4に記載の荷電粒子線装置であって、
    前記碍子を半導電性の材料で構成する、又は前記碍子の表面に半導電性、ないしは導電性の薄膜を設ける、
    ことを特徴とする荷電粒子線装置。
  10. 請求項4に記載の荷電粒子線装置であって、
    前記チップの先端の曲率半径を0.5μmよりも大きくする、
    ことを特徴とする荷電粒子線装置。
  11. 請求項4に記載の荷電粒子線装置であって、
    前記チップが配置された真空室を、非蒸発ゲッターポンプで排気する、
    ことを特徴とする荷電粒子線装置。
  12. チップと、前記チップの先端よりも後方に配置されたサプレッサと、前記サプレッサを保持する導電性の支持部と、底面と筒部から成り、前記チップと前記サプレッサを内包する引出電極と、前記支持部と前記引出電極を保持する碍子と、前記支持部と前記引出電極の筒部との間に設けられた導電性金属を持つ電子銃を備え、
    前記導電性金属に前記チップよりも低い電圧を印加する、
    ことを特徴とする荷電粒子線装置。
  13. 請求項12に記載の荷電粒子線装置であって、
    前記碍子の端面に段差をもたせ、前記碍子と前記引出電極の筒部との間に空隙を設けた、
    ことを特徴とする荷電粒子線装置。
  14. 請求項13に記載の荷電粒子線装置であって、
    前記導電性金属の一部を、前記空隙まで伸ばす、
    ことを特徴とする荷電粒子線装置。
  15. チップと、
    前記チップの先端より後方に配置されたサプレッサと、
    前記チップに電気的に接続された端子と前記サプレッサを保持する碍子と、
    前記サプレッサの側面に設置された導電性金属と、を備える、
    ことを特徴とする電子源。
PCT/JP2019/016563 2019-04-18 2019-04-18 電子源、及び荷電粒子線装置 WO2020213109A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2019/016563 WO2020213109A1 (ja) 2019-04-18 2019-04-18 電子源、及び荷電粒子線装置
KR1020217030924A KR102640728B1 (ko) 2019-04-18 2019-04-18 전자원 및 하전 입자선 장치
US17/601,421 US20220199349A1 (en) 2019-04-18 2019-04-18 Electron source and charged particle beam device
JP2021514730A JP7137002B2 (ja) 2019-04-18 2019-04-18 電子源、及び荷電粒子線装置
CN201980094952.5A CN113646864B (zh) 2019-04-18 2019-04-18 电子源以及带电粒子线装置
DE112019006988.8T DE112019006988T5 (de) 2019-04-18 2019-04-18 Elektronenquelle und mit einem Strahl geladener Teilchen arbeitende Vorrichtung
TW109106488A TWI724803B (zh) 2019-04-18 2020-02-27 電子源及荷電粒子束裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016563 WO2020213109A1 (ja) 2019-04-18 2019-04-18 電子源、及び荷電粒子線装置

Publications (1)

Publication Number Publication Date
WO2020213109A1 true WO2020213109A1 (ja) 2020-10-22

Family

ID=72837210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016563 WO2020213109A1 (ja) 2019-04-18 2019-04-18 電子源、及び荷電粒子線装置

Country Status (7)

Country Link
US (1) US20220199349A1 (ja)
JP (1) JP7137002B2 (ja)
KR (1) KR102640728B1 (ja)
CN (1) CN113646864B (ja)
DE (1) DE112019006988T5 (ja)
TW (1) TWI724803B (ja)
WO (1) WO2020213109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203755A1 (ja) * 2022-04-22 2023-10-26 株式会社日立ハイテク 荷電粒子線装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677084A (en) * 1979-11-30 1981-06-25 Jeol Ltd Electron gun
JPS5796450A (en) * 1980-12-09 1982-06-15 Toshiba Corp Electron gun
JPH01260742A (ja) * 1988-04-11 1989-10-18 Mitsubishi Electric Corp 荷電ビーム銃
JP2000294182A (ja) * 1999-04-05 2000-10-20 Jeol Ltd 電界放射電子銃

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439974Y2 (ja) * 1973-08-22 1979-11-26
JP3264988B2 (ja) * 1992-06-29 2002-03-11 東京エレクトロン株式会社 イオン注入装置
JPH08171879A (ja) 1994-12-16 1996-07-02 Hitachi Ltd ショットキーエミッション電子源の動作温度設定方法
US5834781A (en) * 1996-02-14 1998-11-10 Hitachi, Ltd. Electron source and electron beam-emitting apparatus equipped with same
JP2000306535A (ja) 1999-04-20 2000-11-02 Nippon Telegr & Teleph Corp <Ntt> 荷電粒子発生装置
JP2002313269A (ja) 2001-04-10 2002-10-25 Jeol Ltd 電界放射型電子銃
JP2006216396A (ja) * 2005-02-04 2006-08-17 Hitachi High-Technologies Corp 荷電粒子線装置
US7759661B2 (en) * 2006-02-14 2010-07-20 Advanced Electron Beams, Inc. Electron beam emitter for sterilizing containers
DE112007000045T5 (de) * 2007-02-20 2010-04-22 Advantest Corporation Elektronenkanone, Elektronenstrahl-Bestrahlungsgerät und Bestrahlungsverfahren
JP2010015818A (ja) * 2008-07-03 2010-01-21 Hitachi High-Technologies Corp 電子源装置及びイオン装置
JP5063715B2 (ja) * 2010-02-04 2012-10-31 株式会社日立ハイテクノロジーズ 電子源,電子銃、それを用いた電子顕微鏡装置及び電子線描画装置
JP2012033297A (ja) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp 電子銃
US9070527B2 (en) * 2011-02-25 2015-06-30 Param Corporation Electron gun and electron beam device
EP2779204A1 (en) * 2013-03-15 2014-09-17 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Electron gun arrangement
EP3090438B1 (en) * 2013-12-30 2020-03-25 ASML Netherlands B.V. Cathode arrangement, electron gun, and lithography system comprising such electron gun
WO2016063325A1 (ja) * 2014-10-20 2016-04-28 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP6809809B2 (ja) 2016-05-09 2021-01-06 松定プレシジョン株式会社 絶縁構造、荷電粒子銃及び荷電粒子線応用装置
WO2019008738A1 (ja) * 2017-07-07 2019-01-10 株式会社日立ハイテクノロジーズ 電界放出型電子源および荷電粒子線装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677084A (en) * 1979-11-30 1981-06-25 Jeol Ltd Electron gun
JPS5796450A (en) * 1980-12-09 1982-06-15 Toshiba Corp Electron gun
JPH01260742A (ja) * 1988-04-11 1989-10-18 Mitsubishi Electric Corp 荷電ビーム銃
JP2000294182A (ja) * 1999-04-05 2000-10-20 Jeol Ltd 電界放射電子銃

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203755A1 (ja) * 2022-04-22 2023-10-26 株式会社日立ハイテク 荷電粒子線装置

Also Published As

Publication number Publication date
KR102640728B1 (ko) 2024-02-27
KR20210129191A (ko) 2021-10-27
JP7137002B2 (ja) 2022-09-13
CN113646864B (zh) 2024-05-28
CN113646864A (zh) 2021-11-12
TWI724803B (zh) 2021-04-11
TW202040591A (zh) 2020-11-01
JPWO2020213109A1 (ja) 2020-10-22
US20220199349A1 (en) 2022-06-23
DE112019006988T5 (de) 2021-11-18

Similar Documents

Publication Publication Date Title
JP4644679B2 (ja) カーボンナノチューブ電子イオン化装置
KR101988538B1 (ko) X선 발생 장치
JP5822767B2 (ja) イオン源装置及びイオンビーム生成方法
US6777882B2 (en) Ion beam generator
KR20160104712A (ko) 캐소드 어레인지먼트, 전자총, 및 그런 전자총을 포함하는 리소그래피 시스템
US10903037B2 (en) Charged particle beam device
WO2020213109A1 (ja) 電子源、及び荷電粒子線装置
JP2017204342A (ja) 絶縁構造、荷電粒子銃及び荷電粒子線応用装置
CN101501811B (zh) X射线管以及x射线管的离子偏转和收集装置的电压供应方法
WO2010001953A1 (ja) 電子源装置、イオン源装置、及び荷電粒子源装置
US20090295269A1 (en) Electron beam generator
US10217600B1 (en) Indirectly heated cathode ion source assembly
TWI808441B (zh) 電子源,電子槍,及帶電粒子線裝置
US10971322B2 (en) Electron gun, X-ray generation apparatus, and X-ray imaging apparatus
JPH0917365A (ja) 電界放射型電子銃
JPH1012176A (ja) 形状観察装置
JP7502359B2 (ja) 荷電粒子線源および荷電粒子線装置
KR102601456B1 (ko) 통합 빔 스플리터를 갖는 쇼트키 열 필드 방출기
US10381189B2 (en) X-ray tube
CN114551192A (zh) 冷阴极x射线管及x射线发生装置
CN118414683A (zh) 电子显微镜、用于电子显微镜的电子源、和操作电子显微镜的方法
CN118712037A (zh) 一种带电粒子束流引出装置和方法
JP2006092879A (ja) X線管
KR20180046950A (ko) 전자빔제어수단을 포함하는 엑스선 발생장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217030924

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2021514730

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19924888

Country of ref document: EP

Kind code of ref document: A1