WO2020209181A1 - Vehicular resin member - Google Patents
Vehicular resin member Download PDFInfo
- Publication number
- WO2020209181A1 WO2020209181A1 PCT/JP2020/015222 JP2020015222W WO2020209181A1 WO 2020209181 A1 WO2020209181 A1 WO 2020209181A1 JP 2020015222 W JP2020015222 W JP 2020015222W WO 2020209181 A1 WO2020209181 A1 WO 2020209181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hard coat
- coat layer
- resin member
- resin
- peak area
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
Definitions
- the present invention relates to a resin member for a vehicle.
- Patent Document 1 discloses a method for producing a resin glass, which comprises a step of irradiating the surface of a silicone polymer layer with vacuum ultraviolet rays having a wavelength of 200 nm or less to modify it into a hard thin film containing silicon dioxide as a main component. ..
- the hard film By modifying the surface of the hard coat with ultraviolet rays to form a hard film containing silicon dioxide (SiO 2 ) as a main component, high scratch resistance can be imparted.
- the hard film is less likely to expand and contract due to heat as compared with the hard coat and other resin materials, and cracks may occur in the hard film as the temperature of the component made of the resin material is repeatedly changed.
- When used as a resin member for vehicles not only high scratch resistance but also high heat resistance that can withstand long-term use is required.
- An object of the present invention is to provide a resin member having excellent scratch resistance and heat resistance.
- the resin member for a vehicle of the present invention is used.
- the resin member for the vehicle described in (1) is At least part of the infrared absorption spectrum of the surface of the hard coat layer, the apex of the peaks present in the range of 870 cm -1 or more 960 cm -1 or less is located in a range of 870 cm -1 or more 910 cm -1 or less, and preferably ..
- the resin member for a vehicle according to (1) or (2) is The hard coat layer, silicone showing the infrared absorption spectrum peak area ratio A1336 / A1409 of the peak area A1409 peak around the peak area A1336 and 1409cm -1 peak around 1336cm -1 is 0.5 or more It is preferably formed by curing the polymer.
- FIG. 1 is a cross-sectional view of the resin member 1.
- the resin member 1 is a member that constitutes a window for a vehicle.
- the term "window” as used herein refers to a window provided on the front, side, rear, etc. of a vehicle so that the inside of the vehicle can be visually recognized from the inside of the vehicle or the outside of the vehicle.
- the resin member 1 includes a resin substrate 10 and a hard coat layer 12 formed on the resin substrate 10. The surface of the hard coat layer 12 is surface-modified to form the protective layer 14.
- the resin substrate 10 is made of a polycarbonate resin.
- the polycarbonate resin one having a weight average molecular weight (Mw) of 20,000 or more and 25,000 or less may be adopted in consideration of the hard coat layer 12 described later. If Mw is less than 20,000, cracks may occur due to solvent attack of the hard coat paint, and if Mw exceeds 25,000, molding defects due to insufficient fluidity may occur.
- the Mw is preferably 20,000 or more and 23,000 or less.
- the resin substrate 10 has a curved plate shape (FIG. 1, FIG. 2 described later). Further, the resin substrate 10 is transparent.
- transparent is a term including colorless transparent and colored transparent. Further, “transparent” is a term that does not mean only those that completely transmit light, but also includes those that are translucent to the extent that the object on the opposite side of the object can be visually recognized.
- the hard coat layer 12 is a layer having better scratch resistance than the resin substrate 10, and is made of a silicone-based polymer.
- the silicone-based polymer is a material based on an organopolysiloxane having an organic group attached to a siloxane bond.
- Hard coat layer 12 is silicone showing the infrared absorption spectrum peak area ratio A1336 / A1409 of the peak area A1409 peak around the peak area A1336 and 1409cm -1 peak around 1336cm -1 is 0.5 or more It is preferably formed by curing the polymer.
- the protective layer 14 is a hard layer formed by irradiating a silicone-based polymer with ultraviolet rays having a wavelength of 360 nm or less. Specifically, the polymer bond chain (Si—C bond chain) is cleaved by irradiation with ultraviolet rays, and oxygen atoms and silicon atoms are recombined to form a hard layer containing silicon dioxide as a main component.
- the protective layer 14 is a layer having better scratch resistance than the hard coat layer 12. In the infrared absorption spectrum of the protective layer 14 of the present embodiment obtained by infrared spectroscopy, the absorption peak exists in a range of 600 cm -1 or more 4,000 cm -1 or less.
- the peak area ratio A1270 / A1000 with the peak area A1000 is 0.012 or more and 0.021 or less.
- FIG. 1 the portion modified by irradiation with ultraviolet rays is shown as one region and described as the protective layer 14, but in reality, the ultraviolet rays are attenuated as the distance from the surface of the hard coat layer 12 increases. It is not modified much. That is, the boundary between the protective layer 14 and the hard coat layer 12 is not clearly formed, and the boundary line in FIG. 1 is shown for convenience.
- the manufacturing method includes a step of applying a silicone-based polymer on the resin substrate 10 to form the hard coat layer 12, and a step of irradiating at least a part of the surface of the hard coat layer 12 with ultraviolet rays.
- a silicone-based polymer material is applied onto the resin substrate 10 by a wet method, for example, a dip coating method. Then, after drying at room temperature for a predetermined time, the hard coat layer 12 is formed by curing and drying by heating for a predetermined time.
- the silicone-based polymer material in the infrared absorption spectrum obtained by performing infrared spectroscopy of the hard coat layer 12, the peak area of the peak in the vicinity of the peak area A1336 and 1409cm -1 peak around 1336cm -1 It is preferable to use a material having a peak area ratio of A1336 / A1409 to A1409 of 0.5 or more. Further, the peak area ratio A1336 / A1409 is more preferably 0.9 or less, and particularly preferably 0.7 or less.
- FIG. 2 is a schematic view showing a state of a process of irradiating ultraviolet rays.
- a resin member 1A whose surface modification of the hard coat layer 12 has not been completed is housed in the space 30 covered by the enclosure 20.
- the enclosure 20 is provided with a light source 22 that irradiates ultraviolet rays, a support 24 having a movable arm 25, an inert gas supply path 26, and a gas discharge unit 28.
- the resin member 1A is supported by the movable arm 25 and is movable with respect to the light source 22 and the position for supplying the inert gas.
- the light source 22 is not particularly limited as long as it is a light source that irradiates ultraviolet rays of 360 nm or less, but a light source that irradiates ultraviolet rays of 200 nm or less is preferable because it has a large force for cutting the bond chain of the silicone polymer. ..
- a Xe 2 excimer lamp having a wavelength of 172 nm is used.
- the inert gas is not particularly limited as long as it does not absorb ultraviolet rays, but nitrogen gas is used in the present embodiment.
- the oxygen concentration inside the enclosure 20 is set to 0% by volume or more and 0.5% by volume or less.
- the oxygen concentration (volume%) is the amount of oxygen present per unit volume in an atmosphere irradiated with ultraviolet rays, expressed as a percentage with respect to the unit volume.
- the under atmosphere, the ultraviolet greater 4500mJ / cm 2 less than the accumulated light quantity than 1000 mJ / cm 2 from the light source 22 is irradiated to the hard coat layer 12, thereby surface-modified. As a result, the protective layer 14 is formed and the resin member 1 is manufactured.
- the resin member 1 which does not crack on the surface even when exposed to a high temperature for a long time and has excellent scratch resistance can be obtained. Can be provided.
- the resin member 1 manufactured by the above manufacturing method in the infrared absorption spectrum of the surface (protective layer 14) of the hard coat layer 12 obtained by infrared spectroscopy, 600 cm -1 or more and 4,000 cm -1. Absorption peaks exist in the following range. Although preferably the absorption peak in the range of 870 cm -1 or more 910 cm -1 or less is present, the absorption peak, as shown in Examples described later, the oxygen concentration surface under greater atmosphere 0.5 vol% Not confirmed with modified hard coat. From this, it is presumed that a hard coat layer having a specific surface structure is formed depending on the specific conditions of the manufacturing method of the embodiment.
- the Xe 2 excimer lamp has been described as a light source or a light source unit that irradiates ultraviolet rays, but in addition, an Ar 2 excimer lamp, a Kr 2 excimer lamp, an Ar 2 excimer laser, and an F 2 excimer laser.
- ArF excimer lasers, low pressure mercury lamps, LEDs, semiconductor lasers and the like can be used.
- the term "silicone-based polymer” is not a term that refers only to the silicone-based polymer constituting the formed hard coat layer 12, but the hard coat layer 12 is formed.
- the term also refers to a silicone-based polymer that is applied onto the resin substrate 10, that is, as a precursor of the hard coat layer 12.
- the term "silicone-based polymer” does not mean only a pure polymer, and when used as a precursor of the hard coat layer 12, includes a solution in which the polymer is dispersed and an additive such as a cross-linking agent. It is a term including the aspect.
- a commercially available silicone-based polymer may be used as it is, or a pre-condensed silicone-based polymer may be used.
- the silicone-based polymer can be appropriately modified as long as the hard coat layer 12 can be formed on the resin substrate 10.
- silicon dioxide which is the main component of the protective layer 14
- a substance containing silicon such as tetraethoxysilane, tetramethoxysilane, monosilane, and silazane is injected into the atmosphere, or the surface of the resin member 1A. May be applied to.
- the hard coat layer 12 may be formed on both sides of the resin substrate 10. Further, another layer (for example, a primer layer made of acrylic resin) may be provided between the resin substrate 10 and the hard coat layer 12.
- the resin member 1 has been described as constituting the window, but the resin member 1 is partially mounted for a vehicle while being mounted in combination with other members such as a lamp and a sensor. It can also be a composite module that makes up a window. In this case, the protective layer 14 may be formed at least in the portion of the composite module that constitutes the window.
- the shape of the resin member 1 is not limited to that of the above-described embodiment, but also includes a flat plate shape and a shape having a three-dimensional shape. It is desirable that the windows can ensure visibility, but if it is possible to ensure the safety of the vehicle if the electromagnetic waves of the sensors are transmitted even if the person cannot directly check the surrounding conditions, the visible light region Light does not have to be transmitted.
- polycarbonate resin is mentioned as the material of the resin substrate 10, but acrylic resin, cycloolefin resin, polystyrene resin and the like can also be used.
- the value of the amount of change in the haze value is required to be 2.4% or less as the wear resistance of the member that can be used in the visible range of the automobile.
- Heat resistance test A resin member described later on which a hard coat layer or a protective layer was formed was placed in an environment of 100 ° C. for 1000 hours, and then the presence or absence of cracks was confirmed. In the table shown later, A indicates that no crack has occurred, B indicates that a minute crack that is difficult to recognize with the naked eye has occurred, and C indicates that a crack has occurred.
- the silicone-based polymer used in this example was selected.
- a silicone-based polymer was coated on a polycarbonate resin substrate (150x150x3 mm) to a thickness of 5 ⁇ m by spin coating, dried at 120 ° C. for 1 hour, and cured to form a hard coat layer. Then, the hard coat layer formed was, under a nitrogen atmosphere having an oxygen concentration of 0.5% or less, Hamamatsu Photonics Co.
- Xe 2 wavelengths 172nm using an excimer lamp ultraviolet integrated light quantity of 170 mJ / cm 2 per Irradiation was performed 12 times under the conditions, and the surface of the hard coat layer was modified to form a cured protective layer.
- a resin member was prepared using four kinds of silicone-based polymers. Specifically, one type of silicone polymer was used in each of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 shown in Table 1.
- Some silicone-based polymers peel off when the protective layer is formed by irradiating with ultraviolet rays.
- the protective layer was not peeled off in Example 1 and Example 2, but the protective layer was peeled off in Comparative Example 1 and Comparative Example 2.
- Table 1 shows the peak area ratio A1336 / A1409 of the peak area A1336 of the peak near 1336 cm -1 and the peak area A1409 of the peak near 1409 cm -1 in the obtained infrared absorption spectrum.
- Example 2 and Comparative Example 1 Infrared absorption spectra of Example 2 and Comparative Example 1 are shown in FIG. As shown in FIG. 3, in the infrared absorption spectrum of the silicone-based polymer that does not peel off after UV irradiation, peaks exist near 1409 cm -1 and 1336 cm -1 , whereas the silicone-based polymer that peels off after UV irradiation has peaks. In the infrared absorption spectrum, the peak near 1336 cm -1 is smaller than the peak near 1409 cm -1 . In addition, a taber wear test and a heat resistance test of the resin members of Examples 1 and 2 were performed. The results are shown in Table 1. Capable of preventing the peeling, the peak area in the vicinity of 1336cm -1 as shown in Example 1 and Example 2 of Table 1 uses the silicone polymer is 0.5 or more with respect to the peak area in the vicinity of 1409cm -1 I decided.
- the scratch resistance and scratch resistance are determined by the oxygen concentration at which the hard coat layer formed by using the silicone polymer selected by the above method (silicon polymer of Example 2, AS4700 manufactured by Momentive) is irradiated with ultraviolet rays having a wavelength of 172 nm. It was examined whether the heat resistance would be affected. Under a nitrogen atmosphere with a specific oxygen concentration, the surface of the hard coat layer was exposed to ultraviolet rays with a wavelength of 172 nm 12 times under the condition of an integrated light amount of 170 mJ / cm 2 using a Xe 2 excimer lamp manufactured by Hamamatsu Photonics. A modified and cured protective layer was formed. Then, FT-IR measurement was performed on the surface of the resin member on which the protective layer was formed.
- FIGS. 5 and 6 show the infrared absorption spectrum (high oxygen concentration in FIGS. 5 and 6) and the oxygen concentration of the surface of the resin member prepared by irradiating with ultraviolet rays in a nitrogen atmosphere having an oxygen concentration of 2.0%.
- the infrared absorption spectrum (low oxygen concentration in FIGS. 5 and 6) of the surface of the resin member prepared by irradiating with ultraviolet rays in a 0.15% nitrogen atmosphere is shown.
- Table 3 shows the positions of peaks existing in the range of 870 cm -1 or more and 960 cm -1 or less in the infrared absorption spectrum of the resin member (Example 4, Example 7 and Comparative Example 5 to 7) for each oxygen concentration. Is shown.
- FIG. 7 shows the relationship between the peak position shown in Table 3 and the oxygen concentration.
- the present invention is not limited to the above-described embodiments and examples, and can be freely modified, improved, and the like as appropriate.
- the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
Abstract
This vehicular resin member (1) is provided with a resin-made substrate (10) and a hard coat layer (12) of silicone polymer formed on the resin-made substrate (10), wherein in the infrared absorption spectrum of at least a portion of the surface of the hard coat layer (12), the peak area ratio A1270/A1000 of the peak area A1270 of peaks in the vicinity of 1,270 cm-1 and the peak area A1000 of peaks in the vicinity of 1,000 cm-1 is 0.012 to 0.021 inclusive.
Description
本発明は、車両用の樹脂製部材に関する。
The present invention relates to a resin member for a vehicle.
特許文献1には、シリコーンポリマー層の表面に、波長200nm以下の真空紫外線を照射して二酸化ケイ素を主成分とする硬質薄膜に改質する工程を含む、樹脂ガラスの製造方法が開示されている。
Patent Document 1 discloses a method for producing a resin glass, which comprises a step of irradiating the surface of a silicone polymer layer with vacuum ultraviolet rays having a wavelength of 200 nm or less to modify it into a hard thin film containing silicon dioxide as a main component. ..
ポリカーボネートやアクリルなどの樹脂材料では複雑な形状の部品を作製することが可能であり、これまでのガラスでは成形することが不可能であった形状を実現することができる。しかし、樹脂材料で構成される部品はガラスで構成されるものと比べて、表面に傷がつきやすく、紫外線を浴び続けることで変色する等の問題がある。そのため、部品の表面にシリコーン系ポリマーのハードコートを施してそれを補っている。
It is possible to manufacture parts with complicated shapes using resin materials such as polycarbonate and acrylic, and it is possible to realize shapes that were not possible with conventional glass. However, the surface of a part made of a resin material is more easily scratched than that of a part made of glass, and there are problems such as discoloration due to continuous exposure to ultraviolet rays. Therefore, a hard coat of silicone polymer is applied to the surface of the part to supplement it.
当該ハードコートは、その表面を紫外線で改質して二酸化ケイ素(SiO2)を主成分とする硬質膜とすることで、高い耐擦傷性を付与できる。一方で、硬質膜はハードコートや他の樹脂材料と比較して熱によって伸縮しにくく、樹脂材料で構成される部品の温度変化が繰り返されるうちに、硬質膜にクラックが生じることがある。車両用の樹脂製部材として使用する場合には、高い耐擦傷性のみならず、長期使用に耐えうる高い耐熱性も求められる。
By modifying the surface of the hard coat with ultraviolet rays to form a hard film containing silicon dioxide (SiO 2 ) as a main component, high scratch resistance can be imparted. On the other hand, the hard film is less likely to expand and contract due to heat as compared with the hard coat and other resin materials, and cracks may occur in the hard film as the temperature of the component made of the resin material is repeatedly changed. When used as a resin member for vehicles, not only high scratch resistance but also high heat resistance that can withstand long-term use is required.
本発明は、耐擦傷性および耐熱性に優れる樹脂製部材を提供することを目的とする。
An object of the present invention is to provide a resin member having excellent scratch resistance and heat resistance.
上記目的を達成するために、本発明の車両用の樹脂製部材は、
(1) 樹脂製基体と、
前記樹脂製基体の上に形成されたシリコーン系ポリマーのハードコート層と、
を備える車両用の樹脂製部材であって、
前記ハードコート層の表面の少なくとも一部の赤外吸収スペクトルにおいて、1270cm-1付近のピークのピーク面積A1270と1000cm-1付近のピークのピーク面積A1000とのピーク面積比A1270/A1000が0.012以上0.021以下である。 In order to achieve the above object, the resin member for a vehicle of the present invention is used.
(1) With a resin substrate
A hard coat layer of a silicone-based polymer formed on the resin substrate and
It is a resin member for vehicles equipped with
Wherein at least part of the infrared absorption spectrum of the surface of the hard coat layer, 1270 cm -1 peak area ratio of the peak area A1270 and 1000 cm -1 peak area in the vicinity of the peak A1000 peak around A1270 / A1000 0.012 It is 0.021 or less.
(1) 樹脂製基体と、
前記樹脂製基体の上に形成されたシリコーン系ポリマーのハードコート層と、
を備える車両用の樹脂製部材であって、
前記ハードコート層の表面の少なくとも一部の赤外吸収スペクトルにおいて、1270cm-1付近のピークのピーク面積A1270と1000cm-1付近のピークのピーク面積A1000とのピーク面積比A1270/A1000が0.012以上0.021以下である。 In order to achieve the above object, the resin member for a vehicle of the present invention is used.
(1) With a resin substrate
A hard coat layer of a silicone-based polymer formed on the resin substrate and
It is a resin member for vehicles equipped with
Wherein at least part of the infrared absorption spectrum of the surface of the hard coat layer, 1270 cm -1 peak area ratio of the peak area A1270 and 1000 cm -1 peak area in the vicinity of the peak A1000 peak around A1270 / A1000 0.012 It is 0.021 or less.
(2)また、(1)に記載の車両用の樹脂製部材は、
前記ハードコート層の表面の少なくとも一部の赤外吸収スペクトルにおいて、870cm-1以上960cm-1以下の範囲に存在するピークの頂点が870cm-1以上910cm-1以下の範囲に位置する、と好ましい。 (2) Further, the resin member for the vehicle described in (1) is
At least part of the infrared absorption spectrum of the surface of the hard coat layer, the apex of the peaks present in the range of 870 cm -1 or more 960 cm -1 or less is located in a range of 870 cm -1 or more 910 cm -1 or less, and preferably ..
前記ハードコート層の表面の少なくとも一部の赤外吸収スペクトルにおいて、870cm-1以上960cm-1以下の範囲に存在するピークの頂点が870cm-1以上910cm-1以下の範囲に位置する、と好ましい。 (2) Further, the resin member for the vehicle described in (1) is
At least part of the infrared absorption spectrum of the surface of the hard coat layer, the apex of the peaks present in the range of 870 cm -1 or more 960 cm -1 or less is located in a range of 870 cm -1 or more 910 cm -1 or less, and preferably ..
(3)また、(1)または(2)に記載の車両用の樹脂製部材は、
前記ハードコート層が、1336cm-1付近のピークのピーク面積A1336と1409cm-1付近のピークのピーク面積A1409とのピーク面積比A1336/A1409が0.5以上である赤外吸収スペクトルを示すシリコーン系ポリマーを硬化して形成されたものである、と好ましい。 (3) Further, the resin member for a vehicle according to (1) or (2) is
The hard coat layer, silicone showing the infrared absorption spectrum peak area ratio A1336 / A1409 of the peak area A1409 peak around the peak area A1336 and 1409cm -1 peak around 1336cm -1 is 0.5 or more It is preferably formed by curing the polymer.
前記ハードコート層が、1336cm-1付近のピークのピーク面積A1336と1409cm-1付近のピークのピーク面積A1409とのピーク面積比A1336/A1409が0.5以上である赤外吸収スペクトルを示すシリコーン系ポリマーを硬化して形成されたものである、と好ましい。 (3) Further, the resin member for a vehicle according to (1) or (2) is
The hard coat layer, silicone showing the infrared absorption spectrum peak area ratio A1336 / A1409 of the peak area A1409 peak around the peak area A1336 and 1409cm -1 peak around 1336cm -1 is 0.5 or more It is preferably formed by curing the polymer.
本発明によれば、耐擦傷性および耐熱性に優れる樹脂製部材を提供することができる。
According to the present invention, it is possible to provide a resin member having excellent scratch resistance and heat resistance.
以下、図面を参照しつつ本発明の実施形態について詳細に説明する。尚、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
まず、本実施形態の車両用の樹脂製部材1について説明する。図1は、樹脂製部材1の断面図である。樹脂製部材1は、車両用の窓を構成する部材である。本明細書における窓とは、車両のフロント、サイド、リア等に設けられて、車内から車外または車外から車内を視認可能とするものを指す。図1に示すように、樹脂製部材1は、樹脂製基体10と、樹脂製基体10の上に形成されたハードコート層12と、を備えている。ハードコート層12の表面は、表面改質されて保護層14を構成している。
First, the resin member 1 for the vehicle of the present embodiment will be described. FIG. 1 is a cross-sectional view of the resin member 1. The resin member 1 is a member that constitutes a window for a vehicle. The term "window" as used herein refers to a window provided on the front, side, rear, etc. of a vehicle so that the inside of the vehicle can be visually recognized from the inside of the vehicle or the outside of the vehicle. As shown in FIG. 1, the resin member 1 includes a resin substrate 10 and a hard coat layer 12 formed on the resin substrate 10. The surface of the hard coat layer 12 is surface-modified to form the protective layer 14.
樹脂製基体10は、ポリカーボネート樹脂により構成されている。ポリカーボネート樹脂は、後述するハードコート層12を考慮して、重量平均分子量(Mw)が20,000以上25,000以下のものを採用してもよい。Mwが20,000を下回るとハードコート塗料の溶剤アタックによる割れが生じるおそれがあり、Mwが25,000を上回ると流動性不足による成形不良の問題が生じるおそれがある。Mwは、20,500以上23,000以下であると好ましい。樹脂製基体10は、湾曲した板形状を有している(図1、後述する図2)。また、樹脂製基体10は透明である。ここで、本明細書において、「透明」とは、無色透明および有色透明を含む用語である。また、「透明」とは、完全に光を透過するもののみを指す用語ではなく、対象の反対側のものを視認できる程度に半透明であるものも含む用語である。
The resin substrate 10 is made of a polycarbonate resin. As the polycarbonate resin, one having a weight average molecular weight (Mw) of 20,000 or more and 25,000 or less may be adopted in consideration of the hard coat layer 12 described later. If Mw is less than 20,000, cracks may occur due to solvent attack of the hard coat paint, and if Mw exceeds 25,000, molding defects due to insufficient fluidity may occur. The Mw is preferably 20,000 or more and 23,000 or less. The resin substrate 10 has a curved plate shape (FIG. 1, FIG. 2 described later). Further, the resin substrate 10 is transparent. Here, in the present specification, "transparent" is a term including colorless transparent and colored transparent. Further, "transparent" is a term that does not mean only those that completely transmit light, but also includes those that are translucent to the extent that the object on the opposite side of the object can be visually recognized.
ハードコート層12は、樹脂製基体10より耐擦傷性に優れる層であり、シリコーン系ポリマーで構成されている。ここでシリコーン系ポリマーとは、シロキサン結合に有機基が付いたオルガノポリシロキサンをベースとした材料である。ハードコート層12は、1336cm-1付近のピークのピーク面積A1336と1409cm-1付近のピークのピーク面積A1409とのピーク面積比A1336/A1409が0.5以上である赤外吸収スペクトルを示すシリコーン系ポリマーを硬化して形成されたものであると好ましい。
The hard coat layer 12 is a layer having better scratch resistance than the resin substrate 10, and is made of a silicone-based polymer. Here, the silicone-based polymer is a material based on an organopolysiloxane having an organic group attached to a siloxane bond. Hard coat layer 12 is silicone showing the infrared absorption spectrum peak area ratio A1336 / A1409 of the peak area A1409 peak around the peak area A1336 and 1409cm -1 peak around 1336cm -1 is 0.5 or more It is preferably formed by curing the polymer.
保護層14は、シリコーン系ポリマーに波長360nm以下の紫外線が照射されて形成された硬質層である。具体的には、紫外線の照射により高分子の結合鎖(Si-C結合鎖)が切断され、酸素原子とケイ素原子とが再結合し、二酸化ケイ素を主成分とする硬質層が形成される。保護層14は、ハードコート層12よりも耐擦傷性に優れる層である。赤外分光法により得られる本実施形態の保護層14の赤外吸収スペクトルにおいて、600cm-1以上4,000cm-1以下の範囲に吸収ピークが存在する。
The protective layer 14 is a hard layer formed by irradiating a silicone-based polymer with ultraviolet rays having a wavelength of 360 nm or less. Specifically, the polymer bond chain (Si—C bond chain) is cleaved by irradiation with ultraviolet rays, and oxygen atoms and silicon atoms are recombined to form a hard layer containing silicon dioxide as a main component. The protective layer 14 is a layer having better scratch resistance than the hard coat layer 12. In the infrared absorption spectrum of the protective layer 14 of the present embodiment obtained by infrared spectroscopy, the absorption peak exists in a range of 600 cm -1 or more 4,000 cm -1 or less.
本実施形態の樹脂製部材1は、保護層14の赤外分光(FT-IR)測定によって得られる赤外吸収スペクトルにおいて、1270cm-1付近のピークのピーク面積A1270と1000cm-1付近のピークのピーク面積A1000とのピーク面積比A1270/A1000が0.012以上0.021以下である。この構成を備えることにより、樹脂製部材1は、高温下に長時間さらされても表面にクラックが生じず、耐擦傷性にも優れる。本実施形態における赤外分光測定は、赤外分光器を用いて行われる。また、樹脂製部材1は、保護層14の赤外吸収スペクトルにおいて、870cm-1以上960cm-1以下の範囲に存在するピークの頂点が870cm-1以上910cm-1以下の範囲に位置する、と好ましい。
The resin member 1 of this embodiment, the protective layer 14 in an infrared absorption spectrum obtained by infrared spectroscopy (FT-IR) measurement, 1270 cm -1 vicinity of the peak around the peak area A1270 and 1000 cm -1 peak The peak area ratio A1270 / A1000 with the peak area A1000 is 0.012 or more and 0.021 or less. By providing this configuration, the resin member 1 does not crack on the surface even when exposed to a high temperature for a long time, and has excellent scratch resistance. The infrared spectroscopic measurement in this embodiment is performed using an infrared spectroscope. Further, the resin member 1, in the infrared absorption spectrum of the protective layer 14, the apex of the peaks present in the range of 870 cm -1 or more 960 cm -1 or less is located in a range of 870 cm -1 or more 910 cm -1 or less, and preferable.
なお、図1では紫外線が照射されて改質された部分を一つの領域として図示し、保護層14として説明しているが、実際にはハードコート層12の表面から遠ざかるほど、紫外線が減衰して改質があまりされなくなる。すなわち、保護層14とハードコート層12との境界が明確に形成されるものではなく、図1における前記境界の線は便宜上図示しているものである。
In FIG. 1, the portion modified by irradiation with ultraviolet rays is shown as one region and described as the protective layer 14, but in reality, the ultraviolet rays are attenuated as the distance from the surface of the hard coat layer 12 increases. It is not modified much. That is, the boundary between the protective layer 14 and the hard coat layer 12 is not clearly formed, and the boundary line in FIG. 1 is shown for convenience.
続いて、樹脂製部材1の製造方法について説明する。当該製造方法は、樹脂製基体10の上にシリコーン系ポリマーを塗布してハードコート層12を形成する工程と、ハードコート層12の表面の少なくとも一部に紫外線を照射する工程と、を有する。
Next, a method for manufacturing the resin member 1 will be described. The manufacturing method includes a step of applying a silicone-based polymer on the resin substrate 10 to form the hard coat layer 12, and a step of irradiating at least a part of the surface of the hard coat layer 12 with ultraviolet rays.
樹脂製基体10の上にハードコート層12を形成する工程では、湿式法、例えばディップコート法によりシリコーン系ポリマー材料を樹脂製基体10の上に塗布する。そして、所定時間、室温にて乾燥させた後、所定時間、加熱により硬化乾燥させてハードコート層12を形成する。ここでシリコーン系ポリマー材料としては、ハードコート層12の赤外分光測定を行うことで得られる赤外吸収スペクトルにおいて、1336cm-1付近のピークのピーク面積A1336と1409cm-1付近のピークのピーク面積A1409とのピーク面積比A1336/A1409が0.5以上である材料を用いると好ましい。また、ピーク面積比A1336/A1409が0.9以下であるとさらに好ましく、0.7以下であると特に好ましい。
In the step of forming the hard coat layer 12 on the resin substrate 10, a silicone-based polymer material is applied onto the resin substrate 10 by a wet method, for example, a dip coating method. Then, after drying at room temperature for a predetermined time, the hard coat layer 12 is formed by curing and drying by heating for a predetermined time. Examples of the silicone-based polymer material, in the infrared absorption spectrum obtained by performing infrared spectroscopy of the hard coat layer 12, the peak area of the peak in the vicinity of the peak area A1336 and 1409cm -1 peak around 1336cm -1 It is preferable to use a material having a peak area ratio of A1336 / A1409 to A1409 of 0.5 or more. Further, the peak area ratio A1336 / A1409 is more preferably 0.9 or less, and particularly preferably 0.7 or less.
続いて、ハードコート層12の表面の全部、またはワイパーの当たる部分等の特に高い耐擦傷性が求められる一部に紫外線を照射する。図2は、紫外線を照射する工程の様子を示す模式図である。図2において、囲い20で覆われた空間30に、ハードコート層12の表面改質が完了していない樹脂製部材1Aが収容されている。囲い20には、紫外線を照射する光源22、可動アーム25を有する支持体24、不活性ガス供給路26、およびガス排出部28が設けられている。樹脂製部材1Aは、可動アーム25により支持され、光源22や不活性ガスを供給する位置に対して移動可能とされている。光源22としては、360nm以下の紫外線を照射する光源であれば特に限定されるものではないが、200nm以下の紫外線を照射する光源であるとシリコーン系ポリマーの結合鎖を切断する力が大きいため好ましい。本実施形態では172nmの波長を持つXe2エキシマランプが用いられる。不活性ガスとしては、紫外線を吸収しないものであれば特に限定されるものではないが、本実施形態では窒素ガスが用いられる。
Subsequently, ultraviolet rays are irradiated to the entire surface of the hard coat layer 12 or a part where particularly high scratch resistance is required, such as a portion where the wiper hits. FIG. 2 is a schematic view showing a state of a process of irradiating ultraviolet rays. In FIG. 2, a resin member 1A whose surface modification of the hard coat layer 12 has not been completed is housed in the space 30 covered by the enclosure 20. The enclosure 20 is provided with a light source 22 that irradiates ultraviolet rays, a support 24 having a movable arm 25, an inert gas supply path 26, and a gas discharge unit 28. The resin member 1A is supported by the movable arm 25 and is movable with respect to the light source 22 and the position for supplying the inert gas. The light source 22 is not particularly limited as long as it is a light source that irradiates ultraviolet rays of 360 nm or less, but a light source that irradiates ultraviolet rays of 200 nm or less is preferable because it has a large force for cutting the bond chain of the silicone polymer. .. In this embodiment, a Xe 2 excimer lamp having a wavelength of 172 nm is used. The inert gas is not particularly limited as long as it does not absorb ultraviolet rays, but nitrogen gas is used in the present embodiment.
紫外線を照射する工程では、囲い20の内部の酸素濃度を0体積%以上0.5体積%以下とする。ここで、酸素濃度(体積%)は、紫外線照射を行う雰囲気における単位体積当たりに存在する酸素の量を、単位体積に対する百分率で表したものである。この雰囲気下で、光源22から1000mJ/cm2より大きく4500mJ/cm2より小さい積算光量の紫外線をハードコート層12に照射して、表面改質させる。これにより保護層14が形成され樹脂製部材1が製造される。
In the step of irradiating ultraviolet rays, the oxygen concentration inside the enclosure 20 is set to 0% by volume or more and 0.5% by volume or less. Here, the oxygen concentration (volume%) is the amount of oxygen present per unit volume in an atmosphere irradiated with ultraviolet rays, expressed as a percentage with respect to the unit volume. The under atmosphere, the ultraviolet greater 4500mJ / cm 2 less than the accumulated light quantity than 1000 mJ / cm 2 from the light source 22 is irradiated to the hard coat layer 12, thereby surface-modified. As a result, the protective layer 14 is formed and the resin member 1 is manufactured.
上記の製造方法では、低い酸素濃度と特定の積算光量の紫外線とを採用することにより、高温下に長時間さらされても表面にクラックが生じず、耐擦傷性にも優れる樹脂製部材1を提供することができる。
In the above manufacturing method, by adopting a low oxygen concentration and a specific integrated amount of ultraviolet rays, the resin member 1 which does not crack on the surface even when exposed to a high temperature for a long time and has excellent scratch resistance can be obtained. Can be provided.
また、上記の製造方法によって製造される樹脂製部材1では、赤外分光法により得られるハードコート層12の表面(保護層14)の赤外吸収スペクトルにおいて、600cm-1以上4,000cm-1以下の範囲に吸収ピークが存在する。なお、870cm-1以上910cm-1以下の範囲に吸収ピークが存在すると好ましいが、この吸収ピークは、後述の実施例で示されるように、酸素濃度が0.5体積%より大きい雰囲気下で表面改質されたハードコートでは確認されない。このことから、実施形態の製造方法の特定の条件によって、特定の表面の構造を備えるハードコート層が形成されると推察される。
Further, in the resin member 1 manufactured by the above manufacturing method, in the infrared absorption spectrum of the surface (protective layer 14) of the hard coat layer 12 obtained by infrared spectroscopy, 600 cm -1 or more and 4,000 cm -1. Absorption peaks exist in the following range. Although preferably the absorption peak in the range of 870 cm -1 or more 910 cm -1 or less is present, the absorption peak, as shown in Examples described later, the oxygen concentration surface under greater atmosphere 0.5 vol% Not confirmed with modified hard coat. From this, it is presumed that a hard coat layer having a specific surface structure is formed depending on the specific conditions of the manufacturing method of the embodiment.
なお、上述の実施形態では、紫外線を照射する光源または光源ユニットとして、Xe2エキシマランプを説明したが、その他に、Ar2エキシマランプ、Kr2エキシマランプ、Ar2エキシマレーザ、F2エキシマレーザ、ArFエキシマレーザ、低圧水銀ランプ、LED、半導体レーザ等を用いることができる。
In the above-described embodiment, the Xe 2 excimer lamp has been described as a light source or a light source unit that irradiates ultraviolet rays, but in addition, an Ar 2 excimer lamp, a Kr 2 excimer lamp, an Ar 2 excimer laser, and an F 2 excimer laser. ArF excimer lasers, low pressure mercury lamps, LEDs, semiconductor lasers and the like can be used.
また、上述の実施形態から理解されるように、用語「シリコーン系ポリマー」とは、形成されたハードコート層12を構成するシリコーン系ポリマーのみを表す用語ではなく、ハードコート層12が形成される際に樹脂製基体10の上に塗布される、即ちハードコート層12の前駆体としてのシリコーン系ポリマーも表す用語である。また、用語「シリコーン系ポリマー」は、純粋なポリマーのみを指すわけではなく、ハードコート層12の前駆体として用いられる場合は、ポリマーを分散させた溶液や、さらに架橋剤等の添加剤を含む態様のものも含む用語である。ハードコート層12の形成の際には、市販されるシリコーン系ポリマーをそのまま使用してもよいし、あらかじめ予備縮合されたシリコーン系ポリマーを使用してもよい。ハードコート層12を樹脂製基体10の上に形成することが可能な態様である限り、適宜シリコーン系ポリマーは変更可能である。
Further, as understood from the above-described embodiment, the term "silicone-based polymer" is not a term that refers only to the silicone-based polymer constituting the formed hard coat layer 12, but the hard coat layer 12 is formed. The term also refers to a silicone-based polymer that is applied onto the resin substrate 10, that is, as a precursor of the hard coat layer 12. Further, the term "silicone-based polymer" does not mean only a pure polymer, and when used as a precursor of the hard coat layer 12, includes a solution in which the polymer is dispersed and an additive such as a cross-linking agent. It is a term including the aspect. When forming the hard coat layer 12, a commercially available silicone-based polymer may be used as it is, or a pre-condensed silicone-based polymer may be used. The silicone-based polymer can be appropriately modified as long as the hard coat layer 12 can be formed on the resin substrate 10.
上述の実施形態では、紫外線を吸収しない不活性ガスとして窒素ガスを用いる例を説明したが、その他にアルゴン、ヘリウム、二酸化炭素の少なくとも一つを含むガスを使用してもよい。また、作業領域全体を紫外線が吸収されにくい雰囲気とするために、酸素などのガスの圧力を下げて減圧または真空で処理する方法や、樹脂製部材1Aを紫外線が透過する石英等で作製された容器に入れて紫外線を照射する方法も適用できる。さらに、保護層14の主成分である二酸化ケイ素の生成を促進するために、テトラエトキシシラン、テトラメトキシシラン、モノシラン、シラザン等のケイ素を含む物質を雰囲気中に注入、または樹脂製部材1Aの表面に塗布してもよい。
In the above-described embodiment, an example in which nitrogen gas is used as an inert gas that does not absorb ultraviolet rays has been described, but a gas containing at least one of argon, helium, and carbon dioxide may also be used. Further, in order to make the entire work area an atmosphere in which ultraviolet rays are not easily absorbed, a method of reducing the pressure of a gas such as oxygen to reduce the pressure or vacuum, or the resin member 1A is made of quartz or the like through which ultraviolet rays are transmitted. A method of putting it in a container and irradiating it with ultraviolet rays can also be applied. Further, in order to promote the production of silicon dioxide, which is the main component of the protective layer 14, a substance containing silicon such as tetraethoxysilane, tetramethoxysilane, monosilane, and silazane is injected into the atmosphere, or the surface of the resin member 1A. May be applied to.
上述の実施形態では、樹脂製基体10の片面にハードコート層12が形成される例を説明したが、樹脂製基体10の両面にハードコート層12が形成されていてもよい。また、樹脂製基体10とハードコート層12の間に別の層(例えばアクリル樹脂で構成されたプライマー層等)を設けてもよい。
In the above-described embodiment, the example in which the hard coat layer 12 is formed on one side of the resin substrate 10 has been described, but the hard coat layer 12 may be formed on both sides of the resin substrate 10. Further, another layer (for example, a primer layer made of acrylic resin) may be provided between the resin substrate 10 and the hard coat layer 12.
上述の実施形態では、窓を構成するものとして、樹脂製部材1を説明したが、樹脂製部材1は、灯具、センサ等の別の部材が組み合わせられて搭載されつつ、一部で車両用の窓を構成する複合モジュールでもあり得る。この場合、複合モジュールのうちの少なくとも窓を構成する部分において保護層14が形成されていればよい。また、樹脂製部材1の形状としては、上述の実施形態のものに限られず、平板状のものや三次元形状を有するものも含まれる。窓は視認性を確保できることが望ましいが、人が直接周囲の状況を確認できなくてもセンサ類の電磁波が透過すれば、車両の安全性を確保することが可能である場合は、可視光領域の光は透過しなくても良い。
In the above-described embodiment, the resin member 1 has been described as constituting the window, but the resin member 1 is partially mounted for a vehicle while being mounted in combination with other members such as a lamp and a sensor. It can also be a composite module that makes up a window. In this case, the protective layer 14 may be formed at least in the portion of the composite module that constitutes the window. Further, the shape of the resin member 1 is not limited to that of the above-described embodiment, but also includes a flat plate shape and a shape having a three-dimensional shape. It is desirable that the windows can ensure visibility, but if it is possible to ensure the safety of the vehicle if the electromagnetic waves of the sensors are transmitted even if the person cannot directly check the surrounding conditions, the visible light region Light does not have to be transmitted.
上述の実施形態では、樹脂製基体10の材料として、ポリカーボネート樹脂を挙げたが、アクリル樹脂、シクロオレフィン樹脂、ポリスチレン樹脂等も採用し得る。
In the above-described embodiment, polycarbonate resin is mentioned as the material of the resin substrate 10, but acrylic resin, cycloolefin resin, polystyrene resin and the like can also be used.
続いて本発明を実施例により具体的に説明する。なお、本実施例は単なる例示であって、本発明を限定するものではない。まず、実施例において実施した試験の方法について説明する。
Subsequently, the present invention will be specifically described with reference to Examples. It should be noted that the present embodiment is merely an example and does not limit the present invention. First, the test method performed in the examples will be described.
[赤外分光(FT-IR)測定]
赤外分光器(パーキンエルマー製 FrontierT)を用いて、Geプリズム(45°入射)を用いた全反射法により、後述する樹脂製部材のハードコート層または保護層の赤外分光スペクトルを測定した。
[テーバー摩耗試験]
後述する樹脂製部材のハードコート層または保護層を摩耗輪に接触させて1000回転させることにより、テーバー摩耗試験(JIS K7204)を実施した。そして、摩耗前後のヘイズ値(%)(JIS K7136)の変化量を測定した。なお、自動車の視認域に使用可能となる部材の耐摩耗性として、このヘイズ値の変化量の値は2.4%以下であることが要求される。
[耐熱性試験]
ハードコート層又は保護層が形成された後述する樹脂製部材を1000時間、100℃の環境下に置き、その後にクラックの発生の有無を確認した。後に示す表中のAはクラックが発生しなかったことを示し、Bは肉眼で認知が難しい微小クラックが発生したことを示し、Cはクラックが発生したことを示す。 [Infrared spectroscopy (FT-IR) measurement]
Using an infrared spectroscope (PerkinElmer FrontierT), the infrared spectroscopic spectrum of the hard coat layer or the protective layer of the resin member described later was measured by the total reflection method using a Ge prism (45 ° incident).
[Taber wear test]
The Taber wear test (JIS K7204) was carried out by bringing the hard coat layer or the protective layer of the resin member, which will be described later, into contact with the wear wheel and rotating the wear wheel for 1000 rotations. Then, the amount of change in the haze value (%) (JIS K7136) before and after wear was measured. It should be noted that the value of the amount of change in the haze value is required to be 2.4% or less as the wear resistance of the member that can be used in the visible range of the automobile.
[Heat resistance test]
A resin member described later on which a hard coat layer or a protective layer was formed was placed in an environment of 100 ° C. for 1000 hours, and then the presence or absence of cracks was confirmed. In the table shown later, A indicates that no crack has occurred, B indicates that a minute crack that is difficult to recognize with the naked eye has occurred, and C indicates that a crack has occurred.
赤外分光器(パーキンエルマー製 FrontierT)を用いて、Geプリズム(45°入射)を用いた全反射法により、後述する樹脂製部材のハードコート層または保護層の赤外分光スペクトルを測定した。
[テーバー摩耗試験]
後述する樹脂製部材のハードコート層または保護層を摩耗輪に接触させて1000回転させることにより、テーバー摩耗試験(JIS K7204)を実施した。そして、摩耗前後のヘイズ値(%)(JIS K7136)の変化量を測定した。なお、自動車の視認域に使用可能となる部材の耐摩耗性として、このヘイズ値の変化量の値は2.4%以下であることが要求される。
[耐熱性試験]
ハードコート層又は保護層が形成された後述する樹脂製部材を1000時間、100℃の環境下に置き、その後にクラックの発生の有無を確認した。後に示す表中のAはクラックが発生しなかったことを示し、Bは肉眼で認知が難しい微小クラックが発生したことを示し、Cはクラックが発生したことを示す。 [Infrared spectroscopy (FT-IR) measurement]
Using an infrared spectroscope (PerkinElmer FrontierT), the infrared spectroscopic spectrum of the hard coat layer or the protective layer of the resin member described later was measured by the total reflection method using a Ge prism (45 ° incident).
[Taber wear test]
The Taber wear test (JIS K7204) was carried out by bringing the hard coat layer or the protective layer of the resin member, which will be described later, into contact with the wear wheel and rotating the wear wheel for 1000 rotations. Then, the amount of change in the haze value (%) (JIS K7136) before and after wear was measured. It should be noted that the value of the amount of change in the haze value is required to be 2.4% or less as the wear resistance of the member that can be used in the visible range of the automobile.
[Heat resistance test]
A resin member described later on which a hard coat layer or a protective layer was formed was placed in an environment of 100 ° C. for 1000 hours, and then the presence or absence of cracks was confirmed. In the table shown later, A indicates that no crack has occurred, B indicates that a minute crack that is difficult to recognize with the naked eye has occurred, and C indicates that a crack has occurred.
(シリコーン系ポリマーの選定)
本実施例にて使用するシリコーン系ポリマーの選定を行った。ポリカーボネート樹脂製の基板(150x150x3mm)上に、シリコーン系ポリマーをスピンコートにより5μmの厚みにコーティングした後、120℃で1時間、乾燥し、硬化させてハードコート層を形成した。続いて、形成したハードコート層に、酸素濃度0.5%以下の窒素雰囲気下で、浜松フォトニクス社製Xe2エキシマランプを用いて波長172nmの紫外線を1回あたり170mJ/cm2の積算光量の条件で12回照射し、ハードコート層の表面を改質して硬化した保護層を形成した。この手順に従って、4種類のシリコーン系ポリマーを使用して樹脂製部材を作製した。具体的には、表1に示す実施例1、実施例2、比較例1および比較例2において、それぞれ1種類のシリコーン系ポリマーを使用した。 (Selection of silicone polymer)
The silicone-based polymer used in this example was selected. A silicone-based polymer was coated on a polycarbonate resin substrate (150x150x3 mm) to a thickness of 5 μm by spin coating, dried at 120 ° C. for 1 hour, and cured to form a hard coat layer. Then, the hard coat layer formed was, under a nitrogen atmosphere having an oxygen concentration of 0.5% or less, Hamamatsu Photonics Co. Xe 2 wavelengths 172nm using an excimer lamp ultraviolet integrated light quantity of 170 mJ / cm 2 per Irradiation was performed 12 times under the conditions, and the surface of the hard coat layer was modified to form a cured protective layer. According to this procedure, a resin member was prepared using four kinds of silicone-based polymers. Specifically, one type of silicone polymer was used in each of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 shown in Table 1.
本実施例にて使用するシリコーン系ポリマーの選定を行った。ポリカーボネート樹脂製の基板(150x150x3mm)上に、シリコーン系ポリマーをスピンコートにより5μmの厚みにコーティングした後、120℃で1時間、乾燥し、硬化させてハードコート層を形成した。続いて、形成したハードコート層に、酸素濃度0.5%以下の窒素雰囲気下で、浜松フォトニクス社製Xe2エキシマランプを用いて波長172nmの紫外線を1回あたり170mJ/cm2の積算光量の条件で12回照射し、ハードコート層の表面を改質して硬化した保護層を形成した。この手順に従って、4種類のシリコーン系ポリマーを使用して樹脂製部材を作製した。具体的には、表1に示す実施例1、実施例2、比較例1および比較例2において、それぞれ1種類のシリコーン系ポリマーを使用した。 (Selection of silicone polymer)
The silicone-based polymer used in this example was selected. A silicone-based polymer was coated on a polycarbonate resin substrate (150x150x3 mm) to a thickness of 5 μm by spin coating, dried at 120 ° C. for 1 hour, and cured to form a hard coat layer. Then, the hard coat layer formed was, under a nitrogen atmosphere having an oxygen concentration of 0.5% or less, Hamamatsu Photonics Co. Xe 2 wavelengths 172nm using an excimer lamp ultraviolet integrated light quantity of 170 mJ / cm 2 per Irradiation was performed 12 times under the conditions, and the surface of the hard coat layer was modified to form a cured protective layer. According to this procedure, a resin member was prepared using four kinds of silicone-based polymers. Specifically, one type of silicone polymer was used in each of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 shown in Table 1.
シリコーン系ポリマーには紫外線を照射して保護層を形成した時に、保護層が剥離するものがある。表1に示すように、実施例1および実施例2では保護層が剥離しなかったが、比較例1および比較例2では保護層が剥離した。剥離性を検討するために、実施例1、実施例2、比較例1および比較例2における、ハードコート層の紫外線照射前の樹脂製部材の表面のFT-IR測定を行った。得られた赤外吸収スペクトルにおける1336cm-1付近のピークのピーク面積A1336と1409cm-1付近のピークのピーク面積A1409とのピーク面積比A1336/A1409を表1に示す。また、実施例2および比較例1の赤外吸収スペクトルを図3に示す。図3に示されるように、紫外線照射後に剥離しないシリコーン系ポリマーの赤外吸収スペクトルでは1409cm-1付近と1336cm-1付近とにピークが存在するのに対し、紫外線照射後に剥離するシリコーン系ポリマーの赤外吸収スペクトルでは1336cm-1付近のピークが1409cm-1付近のピークに比べて小さい。また、実施例1および実施例2の樹脂製部材のテーバー摩耗試験および耐熱性試験を行った。結果を表1に示す。剥離を防ぐことのできる、表1の実施例1および実施例2に示すように1336cm-1付近のピーク面積が1409cm-1付近のピーク面積に対し0.5以上であるシリコーン系ポリマーを使用することとした。
Some silicone-based polymers peel off when the protective layer is formed by irradiating with ultraviolet rays. As shown in Table 1, the protective layer was not peeled off in Example 1 and Example 2, but the protective layer was peeled off in Comparative Example 1 and Comparative Example 2. In order to examine the peelability, FT-IR measurement of the surface of the resin member of the hard coat layer before ultraviolet irradiation in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 was performed. Table 1 shows the peak area ratio A1336 / A1409 of the peak area A1336 of the peak near 1336 cm -1 and the peak area A1409 of the peak near 1409 cm -1 in the obtained infrared absorption spectrum. Infrared absorption spectra of Example 2 and Comparative Example 1 are shown in FIG. As shown in FIG. 3, in the infrared absorption spectrum of the silicone-based polymer that does not peel off after UV irradiation, peaks exist near 1409 cm -1 and 1336 cm -1 , whereas the silicone-based polymer that peels off after UV irradiation has peaks. In the infrared absorption spectrum, the peak near 1336 cm -1 is smaller than the peak near 1409 cm -1 . In addition, a taber wear test and a heat resistance test of the resin members of Examples 1 and 2 were performed. The results are shown in Table 1. Capable of preventing the peeling, the peak area in the vicinity of 1336cm -1 as shown in Example 1 and Example 2 of Table 1 uses the silicone polymer is 0.5 or more with respect to the peak area in the vicinity of 1409cm -1 I decided.
(紫外線照射条件の検討)
前記方法により選定したシリコーン系ポリマー(実施例2のシリコーン系ポリマー、モメンティブ社製 AS4700)を用いて形成したハードコート層に、波長172nmの紫外線をどの程度照射するかで、耐擦傷性および耐熱性に影響が出るか検討した。酸素濃度0.5%以下の窒素雰囲気下で、浜松フォトニクス社製Xe2エキシマランプを用いて波長172nmの紫外線を1回あたり170mJ/cm2の積算光量の条件で照射回数を変えて照射し、ハードコート層の表面を改質して硬化した保護層を形成した。そして、保護層が形成された樹脂製部材の表面のFT-IR測定を行った。得られた赤外吸収スペクトルにおける1270cm-1のピーク面積A1270と1000cm-1のピーク面積A1000とのピーク面積比A1270/A1000と、紫外線の照射回数との相関を図4に示す。図4に示すように、照射回数が増加するにつれてピーク面積比A1270/A1000は減少する。 (Examination of UV irradiation conditions)
Scratch resistance and heat resistance depend on how much ultraviolet rays having a wavelength of 172 nm are applied to the hard coat layer formed by using the silicone polymer selected by the above method (silicon polymer of Example 2, AS4700 manufactured by Momentive). Was examined to see if it would affect. Under a nitrogen atmosphere with an oxygen concentration of 0.5% or less, ultraviolet rays having a wavelength of 172 nm were irradiated using an Xe 2 excimer lamp manufactured by Hamamatsu Photonics Co., Ltd. under the condition of an integrated light amount of 170 mJ / cm 2 each time. The surface of the hard coat layer was modified to form a hardened protective layer. Then, FT-IR measurement was performed on the surface of the resin member on which the protective layer was formed. Between the obtained peak area ratio A1270 / A1000 of the peak area A1000 infrared absorption peak area A1270 of 1270 cm -1 in the spectrum and 1000 cm -1, shown in FIG. 4 the correlation between number of times of irradiation with ultraviolet rays. As shown in FIG. 4, the peak area ratio A1270 / A1000 decreases as the number of irradiations increases.
前記方法により選定したシリコーン系ポリマー(実施例2のシリコーン系ポリマー、モメンティブ社製 AS4700)を用いて形成したハードコート層に、波長172nmの紫外線をどの程度照射するかで、耐擦傷性および耐熱性に影響が出るか検討した。酸素濃度0.5%以下の窒素雰囲気下で、浜松フォトニクス社製Xe2エキシマランプを用いて波長172nmの紫外線を1回あたり170mJ/cm2の積算光量の条件で照射回数を変えて照射し、ハードコート層の表面を改質して硬化した保護層を形成した。そして、保護層が形成された樹脂製部材の表面のFT-IR測定を行った。得られた赤外吸収スペクトルにおける1270cm-1のピーク面積A1270と1000cm-1のピーク面積A1000とのピーク面積比A1270/A1000と、紫外線の照射回数との相関を図4に示す。図4に示すように、照射回数が増加するにつれてピーク面積比A1270/A1000は減少する。 (Examination of UV irradiation conditions)
Scratch resistance and heat resistance depend on how much ultraviolet rays having a wavelength of 172 nm are applied to the hard coat layer formed by using the silicone polymer selected by the above method (silicon polymer of Example 2, AS4700 manufactured by Momentive). Was examined to see if it would affect. Under a nitrogen atmosphere with an oxygen concentration of 0.5% or less, ultraviolet rays having a wavelength of 172 nm were irradiated using an Xe 2 excimer lamp manufactured by Hamamatsu Photonics Co., Ltd. under the condition of an integrated light amount of 170 mJ / cm 2 each time. The surface of the hard coat layer was modified to form a hardened protective layer. Then, FT-IR measurement was performed on the surface of the resin member on which the protective layer was formed. Between the obtained peak area ratio A1270 / A1000 of the peak area A1000 infrared absorption peak area A1270 of 1270 cm -1 in the spectrum and 1000 cm -1, shown in FIG. 4 the correlation between number of times of irradiation with ultraviolet rays. As shown in FIG. 4, the peak area ratio A1270 / A1000 decreases as the number of irradiations increases.
表2に示す実施例3~実施例5、比較例3および比較例4の樹脂製部材においてテーバー摩耗試験および耐熱性試験を行った。結果を表2に示す。表2の結果から、ピーク面積比A1270/A1000の値が0.012以上0.021以下の樹脂製部材において良好な耐擦傷性および耐熱性を両立できていることがわかる。
The taber wear test and heat resistance test were performed on the resin members of Examples 3 to 5, Comparative Example 3 and Comparative Example 4 shown in Table 2. The results are shown in Table 2. From the results in Table 2, it can be seen that good scratch resistance and heat resistance can be achieved at the same time in the resin member having a peak area ratio A1270 / A1000 of 0.012 or more and 0.021 or less.
(酸素濃度の検討)
前記方法により選定したシリコーン系ポリマー(実施例2のシリコーン系ポリマー、モメンティブ社製 AS4700)を用いて形成したハードコート層に、波長172nmの紫外線をどの酸素濃度で照射するかで、耐擦傷性および耐熱性に影響が出るか検討した。特定の酸素濃度の窒素雰囲気下で、浜松フォトニクス社製Xe2エキシマランプを用いて波長172nmの紫外線を1回あたり170mJ/cm2の積算光量の条件で12回照射し、ハードコート層の表面を改質して硬化した保護層を形成した。そして、保護層が形成された樹脂製部材の表面のFT-IR測定を行った。 (Examination of oxygen concentration)
The scratch resistance and scratch resistance are determined by the oxygen concentration at which the hard coat layer formed by using the silicone polymer selected by the above method (silicon polymer of Example 2, AS4700 manufactured by Momentive) is irradiated with ultraviolet rays having a wavelength of 172 nm. It was examined whether the heat resistance would be affected. Under a nitrogen atmosphere with a specific oxygen concentration, the surface of the hard coat layer was exposed to ultraviolet rays with a wavelength of 172nm 12 times under the condition of an integrated light amount of 170 mJ / cm 2 using a Xe 2 excimer lamp manufactured by Hamamatsu Photonics. A modified and cured protective layer was formed. Then, FT-IR measurement was performed on the surface of the resin member on which the protective layer was formed.
前記方法により選定したシリコーン系ポリマー(実施例2のシリコーン系ポリマー、モメンティブ社製 AS4700)を用いて形成したハードコート層に、波長172nmの紫外線をどの酸素濃度で照射するかで、耐擦傷性および耐熱性に影響が出るか検討した。特定の酸素濃度の窒素雰囲気下で、浜松フォトニクス社製Xe2エキシマランプを用いて波長172nmの紫外線を1回あたり170mJ/cm2の積算光量の条件で12回照射し、ハードコート層の表面を改質して硬化した保護層を形成した。そして、保護層が形成された樹脂製部材の表面のFT-IR測定を行った。 (Examination of oxygen concentration)
The scratch resistance and scratch resistance are determined by the oxygen concentration at which the hard coat layer formed by using the silicone polymer selected by the above method (silicon polymer of Example 2, AS4700 manufactured by Momentive) is irradiated with ultraviolet rays having a wavelength of 172 nm. It was examined whether the heat resistance would be affected. Under a nitrogen atmosphere with a specific oxygen concentration, the surface of the hard coat layer was exposed to ultraviolet rays with a wavelength of 172
図5および図6に、酸素濃度が2.0%の窒素雰囲気で紫外線照射をして作成した樹脂製部材の表面の赤外吸収スペクトル(図5および図6における酸素濃度高)および酸素濃度が0.15%の窒素雰囲気で紫外線照射をして作成した樹脂製部材の表面の赤外吸収スペクトル(図5および図6における酸素濃度低)を示す。また、表3に、酸素濃度毎の樹脂製部材(実施例4、実施例7および比較例5~7)の赤外吸収スペクトルにおける870cm-1以上960cm-1以下の範囲に存在するピークの位置を示す。また、表3に示したピーク位置と酸素濃度との関係を図7に示す。
5 and 6 show the infrared absorption spectrum (high oxygen concentration in FIGS. 5 and 6) and the oxygen concentration of the surface of the resin member prepared by irradiating with ultraviolet rays in a nitrogen atmosphere having an oxygen concentration of 2.0%. The infrared absorption spectrum (low oxygen concentration in FIGS. 5 and 6) of the surface of the resin member prepared by irradiating with ultraviolet rays in a 0.15% nitrogen atmosphere is shown. Further, Table 3 shows the positions of peaks existing in the range of 870 cm -1 or more and 960 cm -1 or less in the infrared absorption spectrum of the resin member (Example 4, Example 7 and Comparative Example 5 to 7) for each oxygen concentration. Is shown. Further, FIG. 7 shows the relationship between the peak position shown in Table 3 and the oxygen concentration.
紫外線の照射時における酸素濃度が高い場合には、925cm-1付近にピークが出現するのに対し、酸素濃度が十分に低い場合は925cm-1付近に出現するピークが小さく、代わりに910cm-1以下(895cm-1付近)にピークが出現している(図6および図7)。このことから、酸素濃度が十分に低い状態で紫外線を照射した場合には、特定の表面(保護層)の構造を備えるハードコート層が形成されたと推察される。
If the oxygen concentration at the time of irradiation of ultraviolet rays is high, 925 cm whereas peak appears in the vicinity of -1, when the oxygen concentration is sufficiently low small peak appeared in the vicinity of 925 cm -1, 910 cm instead -1 A peak appears below (near 895 cm -1 ) (FIGS. 6 and 7). From this, it is inferred that a hard coat layer having a specific surface (protective layer) structure was formed when ultraviolet rays were irradiated in a state where the oxygen concentration was sufficiently low.
実施例6、実施例7および比較例5~比較例7の樹脂製部材においてテーバー摩耗試験および耐熱性試験を行った。結果を表3に示す。表3の結果から、ピーク面積比A1270/A1000の値が0.012以上0.021以下であり、870cm-1以上960cm-1以下の範囲に存在するピークの頂点が870cm-1以上910cm-1以下の範囲に位置する樹脂製部材において、良好な耐擦傷性および耐熱性を両立できていることがわかる。
A taber wear test and a heat resistance test were performed on the resin members of Example 6, Example 7, and Comparative Examples 5 to 7. The results are shown in Table 3. The results in Table 3, the value of the peak area ratio A1270 / A1000 is 0.012 or more 0.021 or less, the apex of the peaks present in the range of 870 cm -1 or more 960 cm -1 or less is 870 cm -1 or more 910 cm -1 It can be seen that the resin members located in the following ranges have both good scratch resistance and heat resistance.
なお、本発明は上述した実施形態および実施例に限定されず、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は、本発明を達成できるものであれば任意であり、限定されない。
The present invention is not limited to the above-described embodiments and examples, and can be freely modified, improved, and the like as appropriate. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
本願は、2019年4月10日付で出願された日本国特許出願(特願2019-074913)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
This application is based on a Japanese patent application (Japanese Patent Application No. 2019-0749113) filed on April 10, 2019, and the entire application is incorporated by citation. Also, all references cited here are taken in as a whole.
1:樹脂製部材、10:樹脂製基体、12:ハードコート層
1: Resin member, 10: Resin substrate, 12: Hard coat layer
Claims (3)
- 樹脂製基体と、
前記樹脂製基体の上に形成されたシリコーン系ポリマーのハードコート層と、
を備える車両用の樹脂製部材であって、
前記ハードコート層の表面の少なくとも一部の赤外吸収スペクトルにおいて、1270cm-1付近のピークのピーク面積A1270と1000cm-1付近のピークのピーク面積A1000とのピーク面積比A1270/A1000が0.012以上0.021以下である、車両用の樹脂製部材。 With a resin substrate
A hard coat layer of a silicone-based polymer formed on the resin substrate and
It is a resin member for vehicles equipped with
Wherein at least part of the infrared absorption spectrum of the surface of the hard coat layer, 1270 cm -1 peak area ratio of the peak area A1270 and 1000 cm -1 peak area in the vicinity of the peak A1000 peak around A1270 / A1000 0.012 A resin member for a vehicle, which is 0.021 or less. - 前記ハードコート層の表面の少なくとも一部の赤外吸収スペクトルにおいて、870cm-1以上960cm-1以下の範囲に存在するピークの頂点が870cm-1以上910cm-1以下の範囲に位置する、請求項1に記載の車両用の樹脂製部材。 Wherein at least part of the infrared absorption spectrum of the surface of the hard coat layer, the apex of the peaks present in the range of 870 cm -1 or more 960 cm -1 or less is located in a range of 870 cm -1 or more 910 cm -1 or less, claims The resin member for a vehicle according to 1.
- 前記ハードコート層が、1336cm-1付近のピークのピーク面積A1336と1409cm-1付近のピークのピーク面積A1409とのピーク面積比A1336/A1409が0.5以上である赤外吸収スペクトルを示すシリコーン系ポリマーを硬化して形成されたものである、請求項1または請求項2に記載の車両用の樹脂製部材。 The hard coat layer, silicone showing the infrared absorption spectrum peak area ratio A1336 / A1409 of the peak area A1409 peak around the peak area A1336 and 1409cm -1 peak around 1336cm -1 is 0.5 or more The resin member for a vehicle according to claim 1 or 2, which is formed by curing a polymer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080018611.2A CN113518714B (en) | 2019-04-10 | 2020-04-02 | Resin component for vehicle |
JP2021513607A JPWO2020209181A1 (en) | 2019-04-10 | 2020-04-02 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019074913 | 2019-04-10 | ||
JP2019-074913 | 2019-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020209181A1 true WO2020209181A1 (en) | 2020-10-15 |
Family
ID=72751541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015222 WO2020209181A1 (en) | 2019-04-10 | 2020-04-02 | Vehicular resin member |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2020209181A1 (en) |
CN (1) | CN113518714B (en) |
WO (1) | WO2020209181A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021112116A1 (en) * | 2019-12-05 | 2021-06-10 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009110152A1 (en) * | 2008-03-04 | 2009-09-11 | 株式会社レニアス | Transparent resin plate and method for producing the same |
WO2011090172A1 (en) * | 2010-01-22 | 2011-07-28 | 旭硝子株式会社 | Method for producing resin substrate having hard coat layer, and resin substrate having hard coat layer |
JP2016030392A (en) * | 2014-07-29 | 2016-03-07 | 旭硝子株式会社 | Resin substrate with hard coat layer and method for producing the same |
JP2018083417A (en) * | 2016-11-11 | 2018-05-31 | 住友化学株式会社 | Gas barrier film and device including the same |
JP2019123211A (en) * | 2018-01-19 | 2019-07-25 | 凸版印刷株式会社 | Substrate with resin hardened layer and manufacturing method therefor |
JP2019209671A (en) * | 2018-06-08 | 2019-12-12 | 凸版印刷株式会社 | Substrate with resin curing layer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010110389A1 (en) * | 2009-03-27 | 2010-09-30 | 旭硝子株式会社 | Hard coating composite, and resin substrate having a hard coat layer |
JP7061833B2 (en) * | 2016-03-31 | 2022-05-02 | 日本製紙株式会社 | Hardcourt film |
US20200298273A1 (en) * | 2016-05-13 | 2020-09-24 | Kabushiki Kaisha Reniasu | Resin glass sheet and method for manufacturing same |
JP6904634B2 (en) * | 2017-08-10 | 2021-07-21 | 日本製紙株式会社 | Hard coat film |
JP6882965B2 (en) * | 2017-09-21 | 2021-06-02 | 株式会社小糸製作所 | Resin composite module for vehicles and its manufacturing method |
-
2020
- 2020-04-02 WO PCT/JP2020/015222 patent/WO2020209181A1/en active Application Filing
- 2020-04-02 CN CN202080018611.2A patent/CN113518714B/en active Active
- 2020-04-02 JP JP2021513607A patent/JPWO2020209181A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009110152A1 (en) * | 2008-03-04 | 2009-09-11 | 株式会社レニアス | Transparent resin plate and method for producing the same |
WO2011090172A1 (en) * | 2010-01-22 | 2011-07-28 | 旭硝子株式会社 | Method for producing resin substrate having hard coat layer, and resin substrate having hard coat layer |
JP2016030392A (en) * | 2014-07-29 | 2016-03-07 | 旭硝子株式会社 | Resin substrate with hard coat layer and method for producing the same |
JP2018083417A (en) * | 2016-11-11 | 2018-05-31 | 住友化学株式会社 | Gas barrier film and device including the same |
JP2019123211A (en) * | 2018-01-19 | 2019-07-25 | 凸版印刷株式会社 | Substrate with resin hardened layer and manufacturing method therefor |
JP2019209671A (en) * | 2018-06-08 | 2019-12-12 | 凸版印刷株式会社 | Substrate with resin curing layer |
Also Published As
Publication number | Publication date |
---|---|
CN113518714B (en) | 2023-09-19 |
CN113518714A (en) | 2021-10-19 |
JPWO2020209181A1 (en) | 2020-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7474694B2 (en) | Optical member and manufacturing method thereof | |
JP4536824B2 (en) | Transparent resin plate and manufacturing method thereof | |
KR20170105438A (en) | Anti-reflective film | |
WO2020209181A1 (en) | Vehicular resin member | |
EP3444111B1 (en) | Resin glass sheet and method for manufacturing same | |
JP2016022612A (en) | Translucent resin member | |
US20050202263A1 (en) | Barrier layer to prevent the loss of additives in an underlying layer | |
US9481010B2 (en) | Method for producing gas barrier film | |
CN109530189B (en) | Resin composite component for vehicle and method for manufacturing the same | |
EP3424992A1 (en) | Method for photo-hardening silicone rubber surface, and molded silicone rubber | |
JP2009276511A (en) | Antireflection resin and production method of the same | |
WO2021095649A1 (en) | Resin molded article, resin molded article for vehicle window, and method for producing resin molded article | |
JP2020104462A (en) | Method for producing transparent laminate | |
JP2019123211A (en) | Substrate with resin hardened layer and manufacturing method therefor | |
JP4757709B2 (en) | Laminate for resin glass and method for producing the same | |
TWI739962B (en) | Gas barrier film and flexible electronic device | |
JP2017068059A (en) | Method for manufacturing light-transmitting hard coat laminate | |
CN101353429B (en) | Method for stabilizing silicone material, stabilized silicone material, and devices incorporating that material | |
JP2019209671A (en) | Substrate with resin curing layer | |
EP4390504A1 (en) | Substrate for preventing a fluid from misting an article | |
Sonobe et al. | F [sub] 2 [/sub] laser formation of SiO [sub] 2 [/sub] protective layer onto polycarbonate for lightweight vehicle window | |
KR100653525B1 (en) | Production method of windows for ship and aircraft | |
JP2005238849A (en) | Manufacturing process of article with patterned defogging effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20787757 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513607 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20787757 Country of ref document: EP Kind code of ref document: A1 |