Nothing Special   »   [go: up one dir, main page]

WO2020207066A1 - 故障指示器装置、系统及配电网系统 - Google Patents

故障指示器装置、系统及配电网系统 Download PDF

Info

Publication number
WO2020207066A1
WO2020207066A1 PCT/CN2019/130187 CN2019130187W WO2020207066A1 WO 2020207066 A1 WO2020207066 A1 WO 2020207066A1 CN 2019130187 W CN2019130187 W CN 2019130187W WO 2020207066 A1 WO2020207066 A1 WO 2020207066A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
traveling wave
indicator device
time
fault indicator
Prior art date
Application number
PCT/CN2019/130187
Other languages
English (en)
French (fr)
Inventor
王子驰
杨灵艺
王承力
贾娜
孙荣智
李金盛
艾涔
雷炳银
苏雨晴
孙炜哲
Original Assignee
平高集团有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平高集团有限公司, 国家电网有限公司 filed Critical 平高集团有限公司
Publication of WO2020207066A1 publication Critical patent/WO2020207066A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Definitions

  • the embodiments of the present application relate to the technical field of fault location, in particular to a fault indicator device, system, and power distribution network system.
  • the fault location of the distribution network has always been a difficult problem.
  • the fault indicator equipment In order to locate the fault section and shorten the interruption time of the fault, the fault indicator equipment has been widely used in the distribution network.
  • the positioning accuracy of the fault indicators on the market can only reach the segment location, that is, only the interval between the last operating fault indicator and the first non-operating fault indicator can be identified, and the staff needs to spend it later.
  • a lot of time to find out the exact location of the fault in this section not only increases the probability of accidents, but also increases the working time and manpower deployment of staff. Therefore, improving the accuracy of location without increasing the amount of equipment is the focus of the fault indicator research.
  • the current fault indicator has poor fault location accuracy and can only determine the fault section and branch, and cannot accurately locate the fault. The specific location.
  • the embodiment of the present application is to provide a fault indicator device, system, and power distribution network system, at least to solve the problem of poor fault location accuracy of the existing fault indicator.
  • the embodiment of the application proposes a fault indicator device, which includes a fault indicator body, and also includes a traveling wave ranging module.
  • the traveling wave ranging module includes a collection unit and a processing unit.
  • the collection unit collects fault data when a line fails, and The fault data is output to the processing unit, and the processing unit extracts the fault traveling wave signal according to the received fault data, and then processes the fault traveling wave signal to obtain the time when the traveling wave head reaches the fault indicator device from the fault point, and obtain the first
  • the processing unit also receives the time from the fault point of the traveling wave head sent by the fault indicator device at the other end of the line to the fault indicator device at the other end of the line to obtain the second time, and the processing unit according to the first
  • the distance between the fault point and the fault indicator device is calculated using the double-terminal traveling wave ranging algorithm at the first time and the second time.
  • the fault indicator device is provided with a traveling wave ranging module, using the principle of double-ended traveling wave ranging and combining the installation position of the device, it can quickly locate the location of the fault point and realize the precise location of the fault point It reduces the scope of troubleshooting, reduces the difficulty of troubleshooting, reduces the work pressure of line inspectors, improves the efficiency of fault detection, and reduces the loss caused by faults.
  • the processing unit uses Karen Bell transform to extract the fault traveling wave signal from the received fault data.
  • the beneficial effect is that the Karen Bell transform can extract the fault traveling wave signal more accurately.
  • the processing unit uses wavelet transform to detect and calibrate the time from the fault point to the corresponding fault indicator device.
  • the beneficial effect is: adopting wavelet transform to make time detection and calibration more accurate.
  • an embodiment of the present application also proposes a fault indicator system, which includes at least two fault indicator devices, and any two adjacent fault indicator devices are respectively arranged at both ends of the corresponding line, for any fault indicator
  • the device includes a fault indicator body and a traveling wave ranging module.
  • the traveling wave ranging module includes a collection unit and a processing unit.
  • the collection unit collects fault data when the line fails, and outputs the fault data to the processing unit.
  • the fault traveling wave signal is extracted from the received fault data, and then the fault traveling wave signal is processed to obtain the time when the traveling wave head reaches the fault indicator device from the fault point, and the first time is obtained.
  • the processing unit also receives and sets it at the other end of the line
  • the second time is obtained from the time of the traveling wave head sent by the fault indicator device from the fault point to the fault indicator device set at the other end of the line, and the processing unit uses the double-ended traveling wave ranging algorithm to calculate according to the first time and the second time Get the distance from the fault point to the fault indicator device.
  • the fault indicator device of the system is equipped with a traveling wave ranging module, using the principle of double-ended traveling wave ranging, and combining the installation position of the device, it can quickly locate the location of the fault point, and realize the fault point Accurate positioning reduces the scope of troubleshooting, reduces the difficulty of troubleshooting, reduces the work pressure of line inspectors, improves the efficiency of fault detection, and reduces losses due to faults.
  • the processing unit uses Karen Bell transform to extract the fault traveling wave signal from the received fault data.
  • the beneficial effect is that the Karen Bell transform can extract the fault traveling wave signal more accurately.
  • the processing unit uses wavelet transform to detect and calibrate the time from the fault point to the corresponding fault indicator device.
  • the beneficial effect is: adopting wavelet transform to make time detection and calibration more accurate.
  • the embodiment of the present application also proposes a distribution network system, including a distribution network topology.
  • the distribution network topology includes at least one line. Both ends of the line are provided with a fault indicator device.
  • a fault indicator device for any fault indicator device , Including the fault indicator body and the traveling wave ranging module.
  • the traveling wave ranging module includes a collection unit and a processing unit. The collection unit collects fault data when the line fails, and outputs the fault data to the processing unit.
  • the processing unit receives The fault data is extracted from the fault traveling wave signal, and then the fault traveling wave signal is processed to obtain the time when the traveling wave head reaches the fault indicator device from the fault point, and the first time is obtained.
  • the processing unit also receives the fault set at the other end of the line
  • the second time is obtained from the time when the traveling wave head sent by the indicator device arrives at the fault indicator device at the other end of the line, and the processing unit uses the double-ended traveling wave ranging algorithm to calculate the fault according to the first time and the second time. The distance from the point to the fault indicator device.
  • the beneficial effect is that the fault indicator device of the distribution network is provided with a traveling wave ranging module, using the principle of double-ended traveling wave ranging and combining the installation position of the device, it can quickly locate the location of the fault point and realize the fault
  • the precise location of points reduces the scope of troubleshooting, reduces the difficulty of fault finding, reduces the work pressure of line inspectors, improves the efficiency of fault detection, and reduces the loss caused by faults.
  • the processing unit uses Karen Bell transform to extract the fault traveling wave signal from the received fault data.
  • the beneficial effect is that the Karen Bell transform can extract the fault traveling wave signal more accurately.
  • the processing unit uses wavelet transform to detect and calibrate the time from the fault point to the corresponding fault indicator device.
  • the beneficial effect is: adopting wavelet transform to make time detection and calibration more accurate.
  • the fault indicator device is provided with a traveling wave ranging module, using the principle of double-ended traveling wave ranging and combining its installation position, it can quickly locate the location of the fault point, realize the precise location of the fault point, and reduce The scope of troubleshooting is reduced, the difficulty of troubleshooting is reduced, the work pressure of line inspectors is reduced, the efficiency of fault detection is improved, and the loss caused by faults is reduced.
  • Figure 1 is a schematic structural diagram of a fault indicator system according to an embodiment of the application.
  • Figure 2 is a schematic diagram of the installation of the fault indicator device in the circuit according to the embodiment of the application;
  • FIG. 3 is a flowchart of fault location of the fault indicator system according to the embodiment of the application.
  • the fault indicator system proposed in this embodiment includes at least two fault indicator devices and a master station, any two adjacent fault indicator devices are respectively arranged at both ends of the corresponding line, and each fault indicator The communication connection between the device and the master station.
  • the fault indicator device includes a fault indicator body and a traveling wave ranging module.
  • the traveling wave ranging module includes an acquisition unit and a processing unit.
  • the fault indicator device also includes a communication module.
  • the following describes the method of fault location when a line fault occurs between the fault indicator device M and the fault indicator device N.
  • the collection unit is used to collect the fault data when the line fails, and output the fault data to the processing unit; the processing unit is used to extract the fault traveling wave signal according to the received fault data, and then analyze the fault line
  • the wave signal is processed to obtain the time of the traveling wave head from the fault point to the fault indicator device M, which is the first time t1.
  • the processing unit is also used to receive the traveling wave head from the fault point sent by the fault indicator device N at the other end of the line.
  • the time to reach the fault indicator device N, the second time t2 is obtained (the acquisition process of this time is the same as the acquisition process of the first time t1), and the processing unit uses the double-terminal traveling wave to find the distance according to the first time t1 and the second time t2
  • the algorithm calculates the distance from the fault point to the fault indicator device M.
  • the functions of the collection unit and the processing unit in the fault indicator device N are the same as those of the collection unit and the processing unit in the fault indicator device M.
  • the above-mentioned fault location process and the process of calculating the distance between the fault point and the fault indicator device are implemented by the fault indicator device M.
  • this process can also be implemented by the fault indicator device N.
  • the collection unit collects fault data when the line fails, and outputs the fault data to the processing unit.
  • the processing unit extracts the fault traveling wave signal, and then obtains the time when the traveling wave head reaches the fault indicator device N from the fault point, and the processing unit also Receiving the time when the traveling wave head sent by the fault indicator device M reaches the fault indicator device M from the fault point, the processing unit calculates the distance from the fault point to the fault indicator device N by using a double-terminal traveling wave ranging algorithm based on these two times.
  • the two fault indicator devices M and N can also calculate the distance at the same time, thereby obtaining the location of the fault point more accurately.
  • only one fault indicator device needs to calculate the distance.
  • the fault indicator device is the fault indicator device of the node.
  • the fault indicator device on the left end of the fault indicator device is the fault indicator device of the previous node, and the right end is the fault indicator device of the next node.
  • the fault indicator device M Taking the fault indicator device N as an example, the fault indicator device M is the fault indicator device of the current node, and the fault indicator device N is the fault indicator device of the next node. In this embodiment, only the fault indicator device of the node on the fault line needs to perform the final distance calculation to realize the precise location of the fault.
  • the fault indicator device is normally deployed according to the relevant technical specifications of the distribution network.
  • the traveling wave ranging module in the fault indicator device M and the fault indicator device N performs wide-area time synchronization with a synchronization accuracy of 1 ⁇ s, so that the adjacent node fault indicator devices at both ends of the fault are collected and calculated synchronously; each fault indicator The device performs recording sampling at a frequency of 1MHz (that is, the sampling period is 1 ⁇ s).
  • the traveling wave ranging modules in all fault indicator devices can also be synchronized in a wide area.
  • the collection units in the fault indicator device M and the fault indicator device N collect fault data when a short circuit or a ground fault occurs (the fault data here does not only include the data at the time of the fault, but also includes the time of the fault and at least the fault The data of two cycles before and after the occurrence time) are uploaded to the corresponding processing unit.
  • the fault data is the three-phase fault current i A , i B , and i C.
  • the embodiment of the present application does not limit the type of the fault data.
  • the processing unit in each fault indicator device uses Karen Bell transform to extract fault traveling wave signals from the retained fault data.
  • the discrete A, B, and C phase fault current signals are converted into traveling wave signals of ⁇ , ⁇ , and 0 mode components.
  • the ⁇ and ⁇ mode components are linear mode components, and the 0 mode component is zero mode. Component, considering that the wave impedance of the line mode component is smaller than that of the zero mode, the wave speed is larger and close to the speed of light, and it is not easily affected by external factors such as frequency.
  • the line mode component of the traveling wave is used as the fault traveling wave signal;
  • the embodiment of the present application does not limit the specific implementation for extracting the fault traveling wave signal, as long as the fault traveling wave signal can be extracted.
  • each fault indicator device performs wavelet transformation on the selected fault traveling wave signal, performs wavelet analysis, and further uses db3 wavelet for decomposition (Of course, there are many specific implementations of wavelet transformation, and the embodiments of this application do not limit it. ), calibrate the time of the traveling wave head from the fault point to the fault indicator device M and the time of the traveling wave wave head from the fault point to the fault indicator device N by means of modulus maximum, corresponding to t 1 and t 2 respectively .
  • the method for detecting and calibrating the traveling wave signal is wavelet transform.
  • the embodiment of this application does not limit the method for detecting and calibrating the traveling wave signal, as long as the traveling wave head can be obtained from the fault point to the fault indicator device. Time is fine.
  • the processing unit in the fault indicator device M calculates the distance between the fault point and the fault indicator device M and the distance between the fault point and the fault indicator device M according to t 1 and t 2 Among them, L is the distance between the fault indicator device M and the fault indicator device N, and v is the propagation speed of the fault traveling wave.
  • the fault indicator device M uploads the calculated fault point location to the master station through the communication module, so that the master station quickly knows the location of the fault point, and then guides line patrol personnel to quickly troubleshoot the fault.
  • the fault indicator device is equipped with a traveling wave ranging module, using the principle of double-ended traveling wave ranging, combined with the installation position of the device, can quickly locate the location of the fault point, and realize the precise location of the fault point.
  • the fault indicator device proposed in this embodiment includes a fault indicator body, and further includes a traveling wave ranging module.
  • the traveling wave ranging module includes a collection unit and a processing unit.
  • the collection unit collects fault data when a line fails and integrates the fault
  • the data is output to the processing unit, and the processing unit extracts the fault traveling wave signal according to the received fault data, and then processes the fault traveling wave signal to obtain the time when the traveling wave head reaches the fault indicator device from the fault point, and obtain the first time
  • the processing unit also receives the time from the fault point of the traveling wave head sent by the fault indicator device at the other end of the line to the fault indicator device at the other end of the line to obtain the second time, and the processing unit according to the first time In the second time, the distance from the fault point to the fault indicator device is calculated using the double-terminal traveling wave ranging algorithm.
  • the distribution network system proposed in this embodiment includes a distribution network topology.
  • the distribution network topology includes at least one line. Both ends of the line are provided with a fault indicator device.
  • a fault indicator is included.
  • the body and the traveling wave ranging module, the traveling wave ranging module includes an acquisition unit and a processing unit.
  • the acquisition unit collects fault data when the line fails, and outputs the fault data to the processing unit.
  • the processing unit extracts the data based on the received fault data Fault traveling wave signal, and then process the fault traveling wave signal to obtain the time when the traveling wave head reaches the fault indicator device from the fault point, and get the first time.
  • the processing unit also receives the fault indicator device set at the other end of the line.
  • the second time is obtained from the time of the traveling wave head from the fault point to the fault indicator device set at the other end of the line, and the processing unit calculates the fault point to the fault indication based on the first time and the second time using the double-ended traveling wave ranging algorithm The distance of the device.
  • the fault indicator device, system and power distribution network system in the embodiments of the present application bring the following advantages:
  • the first point is that the fault indicator device is equipped with a traveling wave ranging module.
  • a traveling wave ranging module Using the principle of double-ended traveling wave ranging, combined with the installation position of the device, it can quickly locate the location of the fault point and realize the precise location of the fault point.
  • the scope of troubleshooting is reduced, the difficulty of troubleshooting is reduced, the work pressure of line inspectors is reduced, the efficiency of fault detection is improved, and the loss caused by faults is reduced.
  • the second point is that the Karen Bell transform can be used to extract the fault traveling wave signal more accurately.
  • the third point is to use wavelet transform to make time detection and calibration more accurate.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of hardware embodiments, software embodiments, or embodiments combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the fault indicator device is provided with a traveling wave ranging module, using the principle of double-ended traveling wave ranging and combining the installation location of the device, Quickly locate the location of the fault point, realize the precise location of the fault point, reduce the scope of troubleshooting, reduce the difficulty of troubleshooting, reduce the work pressure of line inspectors, improve the efficiency of fault detection, and reduce the loss caused by the fault .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

一种故障指示器装置、系统及配电网系统,其中故障指示器装置(M)包括故障指示器本体,还包括行波测距模块,行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到第一时间,处理单元还接收用于设置在线路另一端的故障指示器装置(N)发送的第二时间,根据第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置(M)的距离。

Description

故障指示器装置、系统及配电网系统
相关申请的交叉引用
本申请基于申请号为201910280620.8、申请日为2019年04月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及故障定位技术领域,具体涉及一种故障指示器装置、系统及配电网系统。
背景技术
配电网的故障定位一直是一个难题。为了定位故障区段,缩短故障的中断时间,故障指示器设备已经大量的用于配电网中。然而,市面上的故障指示器的定位精确度只能达到区段定位,即只能够识别出最后一个动作的故障指示器和第一个未动作的故障指示器的区间,之后需要由工作人员花费大量的时间排查出该区段发生故障的精确位置,不仅增大了发生事故的概率,也增加了工作人员的工作时间及人力调配。因此,在不增加设备量的前提下,提高定位的精确度,是故障指示器的研究重点,然而目前的故障指示器故障定位精度差,只能够确定故障区段和分支,无法准确定位到故障的具体位置。
发明内容
本申请实施例在于提供一种故障指示器装置、系统及配电网系统,至少用以解决现有故障指示器故障定位精度差的问题。
本申请实施例提出一种故障指示器装置,包括故障指示器本体,还包括行波测距模块,行波测距模块包括采集单元和处理单元,采集单元采集 线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收用于设置在线路另一端的故障指示器装置发送的行波波头从故障点到达用于设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
有益效果是:该故障指示器装置中设置有行波测距模块,利用双端行波测距的原理,结合该装置的安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位,缩小了故障检修的范围,减轻了故障查找的难度,降低巡线人员的工作压力,提高故障检测的效率,减少因故障带来的损失。
上述方案中,处理单元采用凯伦贝尔变换从接收到的故障数据中提取故障行波信号。
有益效果是:采用凯伦贝尔变换可以更加精确的进行故障行波信号的提取。
上述方案中,处理单元采用小波变换检测和标定行波波头从故障点到达对应故障指示器装置的时间。
有益效果是:采用小波变换使得时间的检测和标定更加准确。
另外,本申请实施例还提出一种故障指示器系统,包括至少两个故障指示器装置,任两个相邻的故障指示器装置用于分别设置在对应线路的两端,对于任意一个故障指示器装置,包括故障指示器本体和行波测距模块,行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收设 置在线路另一端的故障指示器装置发送的行波波头从故障点到达设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
有益效果是:该系统的故障指示器装置中设置有行波测距模块,利用双端行波测距的原理,结合该装置的安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位,缩小了故障检修的范围,减轻了故障查找的难度,降低巡线人员的工作压力,提高故障检测的效率,减少因故障带来的损失。
上述方案中,处理单元采用凯伦贝尔变换从接收到的故障数据中提取故障行波信号。
有益效果是:采用凯伦贝尔变换可以更加精确的进行故障行波信号的提取。
上述方案中,处理单元采用小波变换检测和标定行波波头从故障点到达对应故障指示器装置的时间。
有益效果是:采用小波变换使得时间的检测和标定更加准确。
另外,本申请实施例还提出一种配电网系统,包括配电网拓扑,配电网拓扑包括至少一条线路,线路的两端分别设置有一个故障指示器装置,对于任意一个故障指示器装置,包括故障指示器本体和行波测距模块,行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收设置在线路另一端的故障指示器装置发送的行波波头从故障点到达设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据第一时间 和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
有益效果是:该配电网的故障指示器装置中设置有行波测距模块,利用双端行波测距的原理,结合该装置的安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位,缩小了故障检修的范围,减轻了故障查找的难度,降低巡线人员的工作压力,提高故障检测的效率,减少因故障带来的损失。
上述方案中,处理单元采用凯伦贝尔变换从接收到的故障数据中提取故障行波信号。
有益效果是:采用凯伦贝尔变换可以更加精确的进行故障行波信号的提取。
上述方案中,处理单元采用小波变换检测和标定行波波头从故障点到达对应故障指示器装置的时间。
有益效果是:采用小波变换使得时间的检测和标定更加准确。
本申请实施例中,故障指示器装置设置有行波测距模块,利用双端行波测距的原理,结合其安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位,缩小了故障检修的范围,减轻了故障查找的难度,降低巡线人员的工作压力,提高故障检测的效率,减少因故障带来的损失。
附图说明
图1为本申请实施例故障指示器系统的结构简图;
图2为本申请实施例故障指示器装置在线路中的安装示意图;
图3为本申请实施例故障指示器系统的进行故障定位的流程图。
具体实施方式
故障指示器系统实施例:
本实施例提出的故障指示器系统,如图1所示包括至少两个故障指示器装置和主站,任两个相邻的故障指示器装置分别设置在对应线路的两端,各故障指示器装置与主站之间通信连接。
故障指示器装置包括故障指示器本体和行波测距模块,行波测距模块包括采集单元和处理单元。为了实现故障指示器装置与主站的通信以及各故障指示器装置之间的通信,故障指示器装置还包括通信模块。
以下以两个故障指示器装置为例,对线路故障发生在故障指示器装置M和故障指示器装置N之间,对故障定位的方法进行介绍。
故障指示器装置M中,采集单元用于采集线路发生故障时的故障数据,并将故障数据输出给处理单元;处理单元用于根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到行波波头从故障点到达故障指示器装置M的时间,为第一时间t1,处理单元还用于接收设置在线路另一端的故障指示器装置N发送的行波波头从故障点到达故障指示器装置N的时间,得到第二时间t2(该时间的获取过程与第一时间t1的获取过程相同),处理单元根据第一时间t1和第二时间t2利用双端行波测距算法计算得到故障点到故障指示器装置M的距离。
当然故障指示器装置N中,采集单元和处理单元的作用与故障指示器装置M中的采集单元和处理单元的作用相同。
上述进行故障定位的过程,计算故障点到故障指示器装置的距离的过程是由故障指示器装置M实现的,当然,该过程也可以由故障指示器装置N实现,故障指示器装置N中的采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元进行故障行波信号的提取,之后得到行波波头从故障点到达故障指示器装置N的时间,同时处理单元还接收故障指示器装置M发送的行波波头从故障点到达故障指示器装置M的时间,处理单元根据这两个时间利用双端行波测距算法计算得到故障点到故 障指示器装置N的距离。另外,这两个故障指示器装置M和N还可以同时计算距离,进而更加精确的得到故障点的位置。不过本实施例中,只要有一个故障指示器装置计算得到距离即可。
本实施例中,若干段线路相连接,两个相邻的故障指示器装置设置在一段线路的两端,其中,以图2中的方向,对于某一个故障指示器装置而言,该故障指示器装置为本节点的故障指示器装置,该故障指示器装置的左端的故障指示器装置为上一节点的故障指示器装置,右端为下一节点的故障指示器装置,以故障指示器装置M和故障指示器装置N为例,故障指示器装置M为本节点的故障指示器装置,故障指示器装置N为下一节点的故障指示器装置。本实施例中,只需故障线路上的本节点的故障指示器装置进行最后的距离计算即可实现故障的精确定位。
基于双端测距原理的故障定位方法属于现有技术,以下给出一种具体过程,如图3所示:
根据配网相关技术规范正常部署故障指示器装置。故障指示器装置M和故障指示器装置N中的行波测距模块进行广域时间同步,同步精度为1μs,使得故障两端的相邻节点故障指示器装置为同步采集、计算;各故障指示器装置按1MHz的频率进行录波采样(即采样周期为1μs)。另外,以图2而言,还可以将所有的故障指示器装置中的行波测距模块进行广域时间同步。
故障发生时刻,故障指示器装置M和故障指示器装置N中的采集单元采集发生短路或者接地故障时的故障数据(这里的故障数据不止包括故障发生时刻的数据,是包括故障发生时刻以及至少故障发生时刻前后两个周波的数据)并上传至对应的处理单元,故障数据为三相故障电流i A、i B、i C,当然,本申请实施例对故障数据的类型不做限制。
故障指示器装置M和故障指示器装置N中处理单元分别对接收到的相 应的故障数据进行处理,保留故障时刻前后各两个周波的故障数据。由于正弦交流电的频率f=50Hz,根据采样周期,可截取故障时刻开始前后各4×10 4个采样点的故障数据,用于下一步的计算。
各故障指示器装置中的处理单元采用凯伦贝尔变换从保留的故障数据中提取故障行波信号。
本步骤的具体过程为:
a.在三相电流是相互耦合的基础上,通过[i]=[Q][i m]的计算对三相故障电流进行解耦,其中[i]为解耦后的电流矩阵,[Q]为凯伦贝尔变换矩阵,[i m]为采集的A、B、C相故障电流组成的矩阵;
b.通过凯伦贝尔变换,将离散的A、B、C相故障电流信号转化为α、β、0模分量的行波信号,α、β模分量为线模分量,0模分量为零模分量,考虑线模分量的波阻抗较零模的小,波速较大接近光速,且不易受频率等外界因素影响,采用行波的线模分量为故障行波信号;
c.选取行波的线模分量在故障时刻前后各4×10 4个点的故障行波信号,进行下一步分析。
当然,本申请实施例对提取故障行波信号的具体实施方式并不做限制,只要可以提取故障行波信号即可。
5)各故障指示器装置中的处理单元对选取的故障行波信号进行小波变换,进行小波分析,进一步的采用db3小波进行分解(当然小波变换的具体实施方式很多,本申请实施例不做限制),通过模极大值的方式标定出行波波头从故障点到达故障指示器装置M的时间和行波波头从故障点到达故障指示器装置N的时间,分别对应为t 1和t 2
本步骤中,对行波信号检测和标定的方法为小波变换,当然,本申请实施例对行波信号检测和标定的方法不做限制,只要可以得到行波波头从故障点到达故障指示器装置的时间即可。
6)故障指示器装置M中的处理单元根据t 1和t 2计算出故障点距离故障指示器装置M的距离,故障点距离故障指示器装置M的距离
Figure PCTCN2019130187-appb-000001
其中,L为故障指示器装置M和故障指示器装置N之间的距离,v为故障行波的传播速度。
7)故障指示器装置M将计算出的故障点位置通过通信模块上传至主站,使得主站迅速得知故障点的位置,进而指导巡线人员快速排查故障。
故障指示器装置中设置有行波测距模块,利用双端行波测距的原理,结合该装置的安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位。
故障指示器装置实施例:
本实施例提出的故障指示器装置,包括故障指示器本体,还包括行波测距模块,行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收用于设置在线路另一端的故障指示器装置发送的行波波头从故障点到达用于设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
故障指示器装置的结构组成以及故障定位的具体过程在上述故障指示器系统实施例中已经介绍,这里不做赘述。
配电网系统实施例:
本实施例提出的配电网系统,包括配电网拓扑,配电网拓扑包括至少一条线路,线路的两端分别设置有一个故障指示器装置,对于任意一个故障指示器装置,包括故障指示器本体和行波测距模块,行波测距模块包括 采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,处理单元根据接收到的故障数据提取出故障行波信号,然后对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收设置在线路另一端的故障指示器装置发送的行波波头从故障点到达设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
故障指示器装置的结构组成以及故障定位的具体过程在上述故障指示器系统实施例中已经介绍,这里不做赘述。
本申请实施例中的故障指示器装置、系统及配电网系统带来以下优势:
第一点,故障指示器装置中设置有行波测距模块,利用双端行波测距的原理,结合该装置的安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位,缩小了故障检修的范围,减轻了故障查找的难度,降低巡线人员的工作压力,提高故障检测的效率,减少因故障带来的损失。
第二点,采用凯伦贝尔变换可以更加精确的进行故障行波信号的提取。
第三点,采用小波变换使得时间的检测和标定更加准确。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例提供的故障指示器装置、系统及配电网系统中,故障指示器装置中设置有行波测距模块,利用双端行波测距的原理,结合该装置的安装位置,能够迅速定位故障点的位置,实现了故障点的精确定位,缩小了故障检修的范围,减轻了故障查找的难度,降低巡线人员的工作压力,提高故障检测的效率,减少因故障带来的损失。

Claims (9)

  1. 一种故障指示器装置,包括故障指示器本体,还包括行波测距模块,所述行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,所述处理单元根据接收到的故障数据提取出故障行波信号,对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收用于设置在线路另一端的故障指示器装置发送的行波波头从故障点到达所述用于设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据所述第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
  2. 根据权利要求1所述的故障指示器装置,其中,所述处理单元采用凯伦贝尔变换从接收到的故障数据中提取故障行波信号。
  3. 根据权利要求1或2所述的故障指示器装置,其中,所述处理单元采用小波变换检测和标定行波波头从故障点到达对应故障指示器装置的时间。
  4. 一种故障指示器系统,包括至少两个故障指示器装置,任两个相邻的故障指示器装置用于分别设置在对应线路的两端,对于任意一个故障指示器装置,包括故障指示器本体和行波测距模块,所述行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,所述处理单元根据接收到的故障数据提取出故障行波信号,对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收设置在线路另一端的故障指示器装置发送的行波波头从故障点到达所述设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据所述第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
  5. 根据权利要求4所述的故障指示器系统,其中,所述处理单元采用凯伦贝尔变换从接收到的故障数据中提取故障行波信号。
  6. 根据权利要求4或5所述的故障指示器系统,其中,所述处理单元采用小波变换检测和标定行波波头从故障点到达对应故障指示器装置的时间。
  7. 一种配电网系统,包括配电网拓扑,所述配电网拓扑包括至少一条线路,线路的两端分别设置有一个故障指示器装置,对于任意一个故障指示器装置,包括故障指示器本体和行波测距模块,所述行波测距模块包括采集单元和处理单元,采集单元采集线路发生故障时的故障数据,并将故障数据输出给处理单元,所述处理单元根据接收到的故障数据提取出故障行波信号,对故障行波信号进行处理,得到行波波头从故障点到达本故障指示器装置的时间,得到第一时间,处理单元还接收设置在线路另一端的故障指示器装置发送的行波波头从故障点到达所述设置在线路另一端的故障指示器装置的时间,得到第二时间,处理单元根据所述第一时间和第二时间利用双端行波测距算法计算得到故障点到本故障指示器装置的距离。
  8. 根据权利要求7所述的配电网系统,其中,所述处理单元采用凯伦贝尔变换从接收到的故障数据中提取故障行波信号。
  9. 根据权利要求7或8所述的配电网系统,其中,所述处理单元采用小波变换检测和标定行波波头从故障点到达对应故障指示器装置的时间。
PCT/CN2019/130187 2019-04-09 2019-12-30 故障指示器装置、系统及配电网系统 WO2020207066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910280620.8A CN110045228B (zh) 2019-04-09 2019-04-09 故障指示器装置、系统及配电网系统
CN201910280620.8 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020207066A1 true WO2020207066A1 (zh) 2020-10-15

Family

ID=67276627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130187 WO2020207066A1 (zh) 2019-04-09 2019-12-30 故障指示器装置、系统及配电网系统

Country Status (2)

Country Link
CN (1) CN110045228B (zh)
WO (1) WO2020207066A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156264A (zh) * 2021-03-25 2021-07-23 贵州电网有限责任公司 一种便携式配电网故障指示器检测装置
CN114089117A (zh) * 2021-11-23 2022-02-25 云南电网有限责任公司昆明供电局 一种基于双端行波法的配电网故障测距方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045228B (zh) * 2019-04-09 2020-10-13 平高集团有限公司 故障指示器装置、系统及配电网系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053174A1 (en) * 2012-10-03 2014-04-10 Abb Technology Ltd Method for sensing a fault in a power system based on travelling wave currents
CN104166073A (zh) * 2013-07-24 2014-11-26 国家电网公司 一种基于改进双端行波法的配电网故障定位系统及方法
CN104730422A (zh) * 2015-03-31 2015-06-24 河南行知专利服务有限公司 一种配电网单相接地故障定位装置及方法
CN204422697U (zh) * 2014-12-24 2015-06-24 国网浙江省电力公司文成县供电公司 配电网故障定位装置
CN105301446A (zh) * 2015-11-04 2016-02-03 国网山东省电力公司济宁供电公司 一种电网故障实时自动检测与定位系统及方法
CN105807182A (zh) * 2016-03-11 2016-07-27 国网山西省电力公司运城供电公司 一种输电线路的双端行波故障定位方法
CN109470994A (zh) * 2018-11-09 2019-03-15 南京大贺电力科技有限公司 用于配电网的故障线路判别系统及方法
CN110045228A (zh) * 2019-04-09 2019-07-23 平高集团有限公司 故障指示器装置、系统及配电网系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130015878A1 (en) * 2011-06-20 2013-01-17 Erlphase Power Technologies Limited Power system fault zone detection
CN102866327B (zh) * 2012-09-13 2015-07-22 山西省电力公司大同供电分公司 一种小电流接地系统故障暂态行波检测装置及方法
US9588168B2 (en) * 2013-09-16 2017-03-07 Schweitzer Engineering Laboratories, Inc. Fault location using traveling waves
CN105353275B (zh) * 2015-12-02 2018-08-24 杭州务实科技有限公司 一种经济型66kV带多分支线路故障定位方法及系统
CN109001664B (zh) * 2018-06-15 2020-06-30 国网湖北省电力有限公司电力科学研究院 一种暂态录波型故障指示器波形比对测试方法
CN108627741B (zh) * 2018-06-29 2020-06-16 广东电网有限责任公司清远英德供电局 一种基于故障指示器的行波—阻抗法双端带支路配电网故障定位方法
CN109387744B (zh) * 2018-12-17 2021-03-16 国网山东省电力公司电力科学研究院 基于奇异值分解的配网线路故障点定位方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053174A1 (en) * 2012-10-03 2014-04-10 Abb Technology Ltd Method for sensing a fault in a power system based on travelling wave currents
CN104166073A (zh) * 2013-07-24 2014-11-26 国家电网公司 一种基于改进双端行波法的配电网故障定位系统及方法
CN204422697U (zh) * 2014-12-24 2015-06-24 国网浙江省电力公司文成县供电公司 配电网故障定位装置
CN104730422A (zh) * 2015-03-31 2015-06-24 河南行知专利服务有限公司 一种配电网单相接地故障定位装置及方法
CN105301446A (zh) * 2015-11-04 2016-02-03 国网山东省电力公司济宁供电公司 一种电网故障实时自动检测与定位系统及方法
CN105807182A (zh) * 2016-03-11 2016-07-27 国网山西省电力公司运城供电公司 一种输电线路的双端行波故障定位方法
CN109470994A (zh) * 2018-11-09 2019-03-15 南京大贺电力科技有限公司 用于配电网的故障线路判别系统及方法
CN110045228A (zh) * 2019-04-09 2019-07-23 平高集团有限公司 故障指示器装置、系统及配电网系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, TINGWEI ET AL.: "An Improved Double Terminal Traveling Wave Fault Locating System for Transmission Line", POWER SYSTEM TECHNOLOGY, vol. 32, no. special edition 1, 30 June 2008 (2008-06-30), DOI: 20200317182114X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156264A (zh) * 2021-03-25 2021-07-23 贵州电网有限责任公司 一种便携式配电网故障指示器检测装置
CN114089117A (zh) * 2021-11-23 2022-02-25 云南电网有限责任公司昆明供电局 一种基于双端行波法的配电网故障测距方法及装置

Also Published As

Publication number Publication date
CN110045228B (zh) 2020-10-13
CN110045228A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2020207066A1 (zh) 故障指示器装置、系统及配电网系统
CN108627741B (zh) 一种基于故障指示器的行波—阻抗法双端带支路配电网故障定位方法
CN106950445B (zh) 一种基于故障录波数据的站间时差分析方法
CN104330708B (zh) 一般电网下广域行波信号的故障定位方法
CN106771861B (zh) 基于广域行波能量和时间差的复杂电网故障定位方法
CN107209220A (zh) 使用行波的故障定位
CN104931855B (zh) 基于输电线路故障行波波头识别及提取的装置和方法
CN103983901A (zh) 环网柜电缆线路在线故障定位方法
CN102353718A (zh) 用于复合材料板结构损伤监测的Lamb波损伤概率成像方法
CN112379213B (zh) 一种故障检测方法及系统
CN116559591B (zh) 一种智能输配电分布式故障诊断及类型识别系统
EP3710842B1 (en) Traveling wave based fault location using unsynchronized measurements for transmission lines
CN111381130A (zh) 一种计及行波波速的t接线路故障定位方法及系统
CN105158637A (zh) 一种配电网多分支线路的故障行波定位方法
CN107632238B (zh) 一种基于wams系统的多端传输线路故障测距方法
CN117192292B (zh) 一种雷击接地极线路故障测距方法及系统
CN105223467B (zh) 基于分维计算和mallat分解的配电网故障选线方法
CN111610408A (zh) 一种行波故障定位方法、装置、设备及存储介质
CN107229004A (zh) 一种多分支输电线路故障的定位方法
CN109388512A (zh) 针对大规模计算机集群异常程度的评估与分析系统
CN117640463B (zh) 一种卫星宽带短报文通信与生命体征健康监测方法及系统
Andanapalli et al. Travelling wave based fault location for teed circuits using unsynchronised measurements
CN204065323U (zh) 用于gis现场耐压试验击穿故障定位的振动监测装置
CN205067668U (zh) 电缆局部放电信号定位装置
CN111650469B (zh) 一种基于d-pmu装置的配电网故障精确定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923939

Country of ref document: EP

Kind code of ref document: A1