Nothing Special   »   [go: up one dir, main page]

WO2020203104A1 - Measurement device, patterning device, and method for producing article - Google Patents

Measurement device, patterning device, and method for producing article Download PDF

Info

Publication number
WO2020203104A1
WO2020203104A1 PCT/JP2020/010427 JP2020010427W WO2020203104A1 WO 2020203104 A1 WO2020203104 A1 WO 2020203104A1 JP 2020010427 W JP2020010427 W JP 2020010427W WO 2020203104 A1 WO2020203104 A1 WO 2020203104A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
pattern forming
light
unit
Prior art date
Application number
PCT/JP2020/010427
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 平井
小林 謙一
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020203104A1 publication Critical patent/WO2020203104A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a measuring device, a pattern forming device, and a method for manufacturing an article.
  • the substrate to be patterned may be deformed due to heat treatment in the film formation process in sputtering, which is a series of device manufacturing processes.
  • the shape of the pattern forming region which is the region where the pattern is formed on the substrate, also changes from the ideal shape.
  • Japanese Unexamined Patent Publication No. 2017-123493 discloses an imprinting apparatus that detects the position of an alignment mark on a substrate via a mold using an alignment scope.
  • the imprinting apparatus of JP-A-2017-123493 includes a sensor that detects an image of an alignment mark formed on a mold and an image of an alignment mark on a substrate, and an optical system that forms an image of the mark on the sensor.
  • the shape of the pattern formation region is measured by the alignment scope.
  • An exemplary object of the present invention is to provide a measuring device capable of detecting foreign matter on a substrate with a simpler configuration.
  • the measuring device of the present invention is a measuring device that detects foreign matter on a substrate in which a pattern is formed in a pattern forming region, and is an irradiation unit that irradiates the substrate with light and light emitted from the irradiation unit.
  • the present invention is characterized by including a detection unit that detects scattered light scattered by the substrate and a control unit that detects foreign matter on the substrate based on the detection result of the detection unit.
  • a measuring device capable of detecting foreign matter on a substrate with a simple configuration can be obtained.
  • FIG. 1 is a diagram showing a configuration of an imprint device 1 as a form of the pattern forming device in the present embodiment.
  • the configuration of the imprint device 1 will be described with reference to FIG.
  • each axis is determined as shown in FIG. 1, with the plane on which the substrate 2 is arranged as the XY plane and the direction orthogonal to the XY plane as the Z direction.
  • the imprint device 1 cures the imprint material 3 in a state where the photocurable imprint material 3 coated on the substrate 2 and the mold 4 are in contact with each other, and the cured imprint material 3 and the mold 4 Is separated to form a pattern of the imprint material 3 on the substrate 2.
  • the imprint device 1 has a base surface plate 6 on which the substrate stage 5 is placed, a bridge surface plate 8 for fixing the holding mechanism 7, and a bridge surface plate 8 extending vertically from the base surface plate 6 to support the bridge surface plate 8. It is provided with a support column 9 for the purpose.
  • the irradiation unit 10 emits ultraviolet rays 11 used for curing in the horizontal direction.
  • the ultraviolet light 11 is reflected vertically downward by an optical element (for example, a dichroic mirror) 12a, and is irradiated onto the substrate via the mold 4.
  • an optical element for example, a dichroic mirror
  • the mold 4 has a rectangular outer circumference, and has a pattern portion 4a in which an uneven pattern is formed at the center thereof. With one imprinting operation, the pattern of the imprint material 3 is formed on the substrate 2 in the pattern forming region having the same size as the pattern portion 4a.
  • the pattern forming region is a region located inside the shot region.
  • the shot region is a unit region of the base layer on which a pattern has already been formed, and the size of one shot region is, for example, about 26 mm ⁇ 33 mm. It is possible to form one or more chip size patterns desired by the user in one shot area.
  • the mold 4 further has a cavity (recess) 4b having a circular outer circumference around the pattern portion 4a.
  • the transmission member 13 is arranged so as to transmit ultraviolet rays 11 and heating light and to make a space 14 surrounded by a part of the opening region and the cavity 4b a closed space.
  • the mold 4 When the imprint material 3 used for imprinting is photocurable, the mold 4 must be a material that can transmit the irradiation light for curing. Further, it must be a material that transmits the heating light emitted from the heating mechanism (heating unit) 15 described later.
  • glasses such as quartz glass, silicic acid-based glass, calcium fluoride, magnesium fluoride, and acrylic glass may be used.
  • the mold material may be a resin such as sapphire, gallium nitride, polycarbonate, polystyrene, acrylic or polypropylene. Alternatively, any of these laminated materials may be used.
  • the holding mechanism 7 has a mold chuck 16 that attracts and holds the mold 4 by a vacuum suction force or an electrostatic force, a drive mechanism 17 that moves the mold 4 together with the mold chuck 16, and a deformation mechanism 18 that deforms the mold 4.
  • the mold chuck 16 and the drive mechanism 17 have an opening region 19 in the central portion so that the ultraviolet rays 11 from the irradiation unit 10 reach the substrate 2.
  • the deformation mechanism 18 deforms the mold 4 into a desired shape by applying an external force to the mold 4 in the horizontal direction. As a result, the difference between the shape of the pattern forming region on the substrate 2 side and the shape of the pattern portion 4a can be reduced, and the overlay accuracy of the formed patterns can be improved.
  • the drive mechanism 17 moves the mold 4 in the Z-axis direction. As a result, the operation of bringing the mold 4 into contact with the imprint material 3 (seal) or the operation of separating the mold 4 and the imprint material 3 (release of the mold) is performed.
  • the actuator adopted in the drive mechanism 17 include a linear motor and an air cylinder.
  • the drive mechanism 17 may be composed of a plurality of drive systems such as a coarse movement drive system and a fine movement drive system. Further, a drive mechanism for moving the mold not only in the Z-axis direction but also in the X-axis direction, the Y-axis direction, and the rotation direction around each axis may be provided. This enables highly accurate positioning of the mold 4.
  • the substrate stage 5 has a chuck 20 which is a substrate holding portion for attracting the substrate 2 to the holding surface 20a and holding the substrate 2, and a drive mechanism 21 for moving the substrate 2 together with the chuck 20.
  • "Attracting and holding” means a state in which a force other than the gravity of the substrate 2 is applied to the chuck 20 in the same direction as the gravity direction of the substrate 2.
  • the substrate 2 may be held by an electrostatic force or a force generated by mechanically pressing the substrate 2.
  • the reference mark 27 is provided on the substrate stage 5 and is used when aligning the mold 4.
  • the pattern forming portion that forms the transfer pattern of the pattern portion 4a with respect to the pattern forming region has means for controlling imprinting, curing of the imprint material 3, mold release, and the like.
  • the pattern forming unit includes a drive mechanism 17 for moving the mold 4, a deformation mechanism 18 for deforming the mold 4, and the mold 4. The pattern is formed while the heating mechanism 15, which will be described later, deforms the pattern forming region based on the illuminance profile created by the control unit 25.
  • the drive mechanism 21 moves the substrate 2 in the XY plane. As a result, the mold 4 and the pattern forming region of the base pattern on the substrate 2 are aligned.
  • Examples of the actuator adopted in the drive mechanism 21 include a linear motor and an air cylinder.
  • the drive mechanism 21 may include a plurality of drive systems such as a coarse movement drive system and a fine movement drive system. Further, a drive mechanism for moving the substrate 2 not only in the X-axis direction and the Y-axis direction but also in the Z-axis direction and the rotation direction around each axis may be provided. This enables highly accurate positioning of the substrate 2.
  • the heating mechanism 15 controls the illuminance of the light to form an illuminance profile in the pattern forming region. Give the corresponding amount of heat. By heating the pattern forming region and deforming it so as to approach a desired shape, the difference between the shape of the pattern forming region and the shape of the pattern portion 4a can be reduced.
  • FIG. 2 is a diagram showing the configuration of the heating mechanism 15.
  • the light source 61 emits heating light.
  • the wavelength of the heating light is preferably a wavelength at which the uncured imprint material 3 is not cured and is absorbed as heat by the substrate 2. For example, it is 400 nm to 2000 nm.
  • the heating light enters the DMD (Digital Micro-millor Device) 64 via the optical fiber 62 and the optical system 63, and only the heating light selectively reflected by the DMD 64 is irradiated on the substrate 2.
  • DMD Digital Micro-millor Device
  • An optical element 12a that reflects ultraviolet rays 11 emitted from the irradiation unit 10 and transmits the heating light is arranged in the optical path of the heating light. Further, in the optical path of the heating light, an optical element (for example, a dichroic mirror) 12b that reflects the light emitted from the light source of the monitor 23 for observing the filling of the imprint material 3 and transmits most of the heating light is arranged. ing.
  • the optical system 63 includes a condensing optical system (not shown) that condenses the light emitted from the light source 61, and a uniform illumination optical system for illuminating the DMD 64 by equalizing the intensity of the light from the condensing optical system (not shown). (Not shown) is included.
  • the uniform illumination optics include, for example, optical elements such as a microlens array (MLA) (not shown).
  • DMD64 includes a plurality of micromirrors (not shown) that reflect heating light.
  • the irradiation control unit 66 can tilt each micromirror in a predetermined angle range with respect to the array surface of the micromirrors.
  • the heated light reflected by the micromirror in the ON state is imaged on the substrate 2 by the projection optical system 65 that optically couples the DMD 64 and the substrate 2.
  • the light reflected by the micromirror in the OFF state is reflected in a direction that does not reach the substrate 2.
  • the pattern forming region can be locally deformed by the heating mechanism 15 generating a distribution of a region to be irradiated with the heating light and a region not to be irradiated in one pattern forming region.
  • the illuminance profile is, for example, a profile that shows the temporal and spatial heat quantity distribution depending on the ON state and the OFF state of each micromirror. It includes information on the time of the ON state and the OFF state, and an illuminance distribution according to the position in the pattern formation region formed by the distribution of the ON state and the OFF state. The larger the number of micromirrors in the ON state and the longer the irradiation time of the heating light, the larger the amount of heat can be given to the pattern forming region on the substrate 2.
  • the coating unit 22 coats the uncured imprint material 3 on the pattern forming region on the substrate 2. At a time, only the amount of imprint material 3 required for one imprinting operation is applied. Therefore, the substrate stage 5 reciprocates the substrate 2 between the imprinting position and the lower position of the coating portion 22 each time the imprinting operation is completed.
  • the monitor 23 uses light to observe how the imprint material 3 is filled in the pattern portion 4a of the mold 4. As a result, it is possible to identify a foreign matter caught in the pattern portion 4a or an unfilled portion of the imprint material 3.
  • the shape of the pattern formation region is deformed by the process of the semiconductor process as if a combination of deformation components such as a magnification component, a parallel four-sided formation component, and a table formation component.
  • the shape of the pattern forming region is measured by using the shape measuring unit (measuring apparatus) 100 as a configuration for measuring the shape of the deformed pattern forming region with higher accuracy.
  • the configuration of the shape measuring unit 100 will be described with reference to FIGS. 3 and 4.
  • the shape measuring unit 100 may be incorporated in the imprinting device 1, or the shape measuring unit 100 may be prepared separately from the imprinting device 1.
  • the alignment detection unit 24 may be provided as another means for measuring the shape of the pattern forming region.
  • the alignment detection unit 24 in FIG. 1 detects at least a plurality of marks 36a provided in the pattern formation region. For example, the mark 36a provided around the pattern forming region and the mark 36b provided on the pattern portion 4a are simultaneously detected.
  • the marks 36a and 36b are detected before and after the mold 4 and the imprint material 3 on the substrate 2 are brought into contact with each other.
  • the mark used for alignment may be changed before and after the mold 4 and the imprint material 3 are brought into contact with each other.
  • the mark 36a may be any as long as the shape of the pattern forming region can be grasped by detecting a plurality of marks 36a. It may be formed in the pattern forming region, or may be formed on a scribe line adjacent to the pattern forming region as described above.
  • control unit 25 can obtain the positional deviation (shift component) of the marks 36a and 36b in the X-axis direction, the Y-axis direction, and the ⁇ Z direction. Further, it is possible to detect the amount of shape change of the magnification component in the pattern forming region.
  • the alignment detection unit 24 is not essential, and the shape of the pattern formation region can be measured only by the shape measurement unit 100.
  • the shape measuring unit 100 and the alignment detecting unit 24 can be used properly according to the required accuracy.
  • the measurement accuracy of the shape of the pattern forming region can be improved. For example, when the region where the mark can be formed is small in the vicinity of the pattern forming region, the measurement accuracy of the shape of the pattern forming region in the alignment detection unit 24 may not be sufficient. In such a case, the measurement accuracy can be improved by measuring the shape of the pattern forming region by the shape measuring unit 100 described later.
  • the control unit 25 is connected to the irradiation unit 10, the heating mechanism 15, the monitor 23, the holding mechanism 7, the substrate stage 5, the coating unit 22, the alignment system 24, and the storage unit 26 via a line, and is connected to the above-mentioned control object. Is controlled comprehensively.
  • the imprinting operation is repeated to sequentially form patterns on the plurality of pattern forming regions on the substrate 2.
  • the control unit 25 executes the program stored in the storage unit 26 by controlling the above-mentioned controlled object connected to the control unit 25.
  • the control unit 25 may be installed in a housing common to other components of the imprint device 1, or may be installed outside the housing. Further, the control unit 25 may be an aggregate of control boards different for each control object.
  • the shape measuring unit 100 for measuring the shape of the pattern forming region will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a side view of the shape measuring unit 100
  • FIG. 4 is a top view of the shape measuring unit 100.
  • the shape measuring unit 100 measures the shape of the pattern forming region on the substrate 102 by irradiating the substrate 102 with light and detecting the scattered light scattered on the substrate 102.
  • the stage 101 is a stage that holds the substrate 102 and can move in the XY plane.
  • the illumination optical system 103 as an irradiation unit is an optical system for irradiating light on a substrate, and includes a light source 104, a polygon mirror 105 that reflects light emitted from the light source 104, and an f ⁇ lens 106.
  • the light source 104 is a laser light source that emits a laser such as a semiconductor laser.
  • the wavelength of the laser light emitted from the light source 104 is a wavelength in a region where the imprint material is not exposed to light, and for example, a laser light having a wavelength of 400 nm or more is emitted.
  • the laser beam from the light source 104 is applied to the mirror surface of the polygon mirror 105.
  • the polygon mirror 105 is formed by forming mirrors having four to six surfaces in a polygonal shape.
  • the polygon mirror 105 rotates at a high speed of about tens of thousands of rotations per minute.
  • the constant velocity rotational motion of the polygon mirror 105 is converted into the constant velocity linear motion of the spot light on the substrate 102.
  • A indicates the scanning direction of the spot light
  • B indicates the scanning direction of the stage 101.
  • the scanning direction B of the stage is a direction perpendicular to the scanning direction A of the spot light.
  • the illumination optical system 103 is arranged so that the laser beam is irradiated vertically or diagonally to the substrate 102.
  • the laser light is scattered by the object 108 and scattered light is generated.
  • the shape of the pattern forming region on the substrate 102 can be measured. As described above, the shape of the pattern forming region can be measured over the entire surface of the substrate 102 by scanning the substrate 102 with laser light using the polygon mirror 105 and the f ⁇ lens 106.
  • a photomultiplier tube or a photodiode is used as the light receiving unit 109 in order to detect low-intensity light at high speed.
  • the light receiving unit 109 is arranged at a position where the scattered light scattered backward or laterally by the object 108 can be detected.
  • the positioning control of the stage 101, the control of the laser output timing of the light source 104, the rotation control of the polygon mirror 105, and the like are controlled by the control unit 25 in FIG. Further, the control unit 25 converts the continuous analog electric signal output from the light receiving unit 109 into a digital signal and performs signal processing. As an example of signal processing, there is a process of finding the center of gravity of a detected signal of scattered light represented by a Gaussian distribution and finding the position and size of the object 108. Note that these controls may be executed not by the control unit 25 of the imprint device 1 but by the control unit 110 provided in the shape measurement unit 100.
  • FIG. 5 shows the substrate 102 on which the existing pattern is formed.
  • FIG. 5A there are a plurality of shot regions S on the substrate, and a circuit pattern is formed in the pattern forming region 31 in each shot region S.
  • FIG. 5B is an enlarged view of one shot area.
  • the shape of the pattern forming region is deformed, and the deforming component is a combination of a magnification component, a table forming component, and the like.
  • the solid line 31 shows the ideal shape of the pattern forming region
  • the broken line 31A shows the shape of the deformed pattern forming region.
  • the shape of the pattern forming region 31A is obtained based on the result of irradiating the substrate 102 with light and detecting the light scattered by the pattern on the substrate by the shape measuring unit 100 described above.
  • a specific method for obtaining the shape of the pattern forming region will be described.
  • the light scattered from the position corresponding to the outer edge of the pattern forming region 31A is spotted in the light receiving unit 209. Detected as light.
  • the detected spot light is plotted on the 102 plane of the substrate, the result shown in FIG. 5C is obtained.
  • 31B represents an array of detected spotlights.
  • the size of the spot light shown in FIG. 5C changes according to the scanning speed of the laser light in the shape measuring unit 100 and the spot diameter of the laser light applied to the substrate 102.
  • the scanning speed of the laser beam and the spot diameter of the laser beam can be appropriately changed according to the accuracy required for the shape measurement of the pattern forming region.
  • the shape of the pattern forming region 31A can be accurately measured by the shape measuring unit 100.
  • the pattern of the next process can be formed with high overlay accuracy with respect to the existing pattern.
  • the arrangement information of the shot region S can be obtained from the measurement result of the shape measuring unit 100.
  • each shot region S on the substrate 102 is not located in a straight line, but is generally located offset in the in-plane direction of the substrate 102 due to the process of the semiconductor process or the like. There is.
  • the arrangement information of the shot region S can be obtained as shown in FIG.
  • By forming the pattern based on the arrangement information of the shot region S it is possible to form the pattern of the next process with high overlay accuracy with respect to the existing pattern.
  • the control unit 25 has a function as a foreign matter detection unit.
  • a specific method for detecting foreign matter as shown in FIG. 7, it is conceivable to compare the intensity X of the light scattered by the pattern with the intensity Y of the light scattered by the foreign matter.
  • the intensity of the light scattered by the pattern is stronger than the intensity of the light scattered by the foreign matter. Therefore, a predetermined threshold value is set, and both are determined by the threshold value and the detected intensity of the light intensity. Can be distinguished.
  • the following method can be considered as another method for distinguishing between the two.
  • the intensity peak of the light scattered by the pattern also appears periodically.
  • a light intensity peak appears in addition to the periodic intensity peak, it can be estimated that foreign matter is present at a location on the substrate corresponding to the peak position.
  • control unit 25 of the imprint device 1 has a function as a foreign matter detection unit, but the function as a foreign matter detection unit may be provided outside the imprint device 1.
  • the present invention is not limited to the imprinting apparatus, but also an exposure apparatus for forming a pattern on a substrate using exposure light transmitted through an original plate on which a pattern is formed, or a latent image pattern of a resist on a substrate by irradiation with EUV light. It can also be applied to a lithography apparatus or the like for forming. For example, in an exposure apparatus, by forming a pattern using exposure light shaped according to the shape of a pattern forming region measured by the shape measuring unit 100, the next step can be performed with high overlay accuracy with respect to an existing pattern. Pattern can be formed.
  • a semiconductor device as an article is manufactured by going through a pre-process of forming an integrated circuit on a substrate and a post-process of completing an integrated circuit chip on the substrate produced in the pre-process as a product.
  • the pre-process includes a step of forming a pattern on the imprint material on the substrate using an imprint device.
  • the post-process includes an assembly process (dicing, bonding) and a packaging process (encapsulation). According to the method for manufacturing a semiconductor device of the present embodiment, it is possible to manufacture a semiconductor device as an article of higher quality than before.
  • the pattern of the cured product formed by using the imprint device is used permanently for at least a part of various articles or temporarily when manufacturing various articles.
  • the article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, a mold, or the like.
  • the electric circuit element include volatile or non-volatile semiconductor memories such as DRAM, SRAM, flash memory, and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA.
  • Examples of the mold include a mold for imprinting.
  • the pattern of the cured product is used as it is as a constituent member of at least a part of the above-mentioned article, or is temporarily used as a resist mask.
  • the resist mask is removed after etching or ion implantation in the substrate processing process.
  • a substrate 1z such as a silicon wafer on which a work material 2z such as an insulator is formed on the surface is prepared, and subsequently, an imprint material 3z is prepared on the surface of the work material 2z by an inkjet method or the like. Is given.
  • a state in which a plurality of droplet-shaped imprint materials 3z are applied onto the substrate is shown.
  • the imprint mold 4z is opposed to the imprint material 3z on the substrate with the side on which the uneven pattern is formed facing.
  • the substrate 1 to which the imprint material 3z is applied is brought into contact with the mold 4z, and pressure is applied.
  • the imprint material 3z is filled in the gap between the mold 4z and the work material 2z. In this state, when light is applied as energy for curing through the mold 4z, the imprint material 3z is cured.
  • a pattern of the cured product of the imprint material 3z is formed on the substrate 1z.
  • the pattern of the cured product has a shape in which the concave portion of the mold corresponds to the convex portion of the cured product and the concave portion of the mold corresponds to the convex portion of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will have been done.
  • the portion of the surface of the work material 2z that has no cured product or remains thin is removed to form a groove 5z.
  • FIG. 8F when the pattern of the cured product is removed, an article in which the groove 5z is formed on the surface of the work material 2z can be obtained.
  • the pattern of the cured product is removed here, it may be used as a film for interlayer insulation contained in a semiconductor element or the like, that is, as a constituent member of an article, without being removed even after processing.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Provided is a measurement device for detecting foreign matter on a substrate having a pattern formed in a pattern formation region thereof. The measurement device comprises: an irradiation unit for irradiating the substrate with light; a detection unit for detecting scattered light which is the light emitted from the irradiation unit scattered by the substrate; and a control unit for detecting foreign matter on the substrate on the basis of a result of the detection by the detection unit.

Description

計測装置、パターン形成装置および物品の製造方法Manufacturing method of measuring device, pattern forming device and article
 本発明は、計測装置、パターン形成装置および物品の製造方法に関する。 The present invention relates to a measuring device, a pattern forming device, and a method for manufacturing an article.
 半導体デバイスやMEMSなどの微細化の要求が進み、リソグラフィ分野において、既存パターンに対して高い重ね合わせ精度でパターン形成を行うことが求められている。 The demand for miniaturization of semiconductor devices and MEMS has progressed, and in the field of lithography, it is required to form a pattern with high overlay accuracy with respect to an existing pattern.
 一連のデバイス製造工程であるスパッタリングにおける成膜工程での加熱処理等によって、パターン形成を行う対象である基板が変形している場合がある。これにより、基板上においてパターンが形成される領域であるパターン形成領域の形状も理想的な形状から変化する。 The substrate to be patterned may be deformed due to heat treatment in the film formation process in sputtering, which is a series of device manufacturing processes. As a result, the shape of the pattern forming region, which is the region where the pattern is formed on the substrate, also changes from the ideal shape.
 基板上のパターン形成領域の形状を測定する方法として、例えばインプリント分野においては、型に形成されたアライメントマークの位置と基板上のアライメントマークの位置を、アライメントスコープによって検出するアライメント動作が行われている。特開2017-123493号公報は、アライメントスコープによって、型を介して基板上のアライメントマークの位置を検出するインプリント装置を開示している。 As a method of measuring the shape of the pattern forming region on the substrate, for example, in the field of imprinting, an alignment operation is performed in which the position of the alignment mark formed on the mold and the position of the alignment mark on the substrate are detected by an alignment scope. ing. Japanese Unexamined Patent Publication No. 2017-123493 discloses an imprinting apparatus that detects the position of an alignment mark on a substrate via a mold using an alignment scope.
特開2017-123493号公報Japanese Unexamined Patent Publication No. 2017-123493
 特開2017-123493号公報のインプリント装置では、型に形成されたアライメントマークの像と基板上のアライメントマークの像を検出するセンサと、当該センサ上にマークの像を形成する光学系を備えたアライメントスコープによりパターン形成領域の形状を計測している。 The imprinting apparatus of JP-A-2017-123493 includes a sensor that detects an image of an alignment mark formed on a mold and an image of an alignment mark on a substrate, and an optical system that forms an image of the mark on the sensor. The shape of the pattern formation region is measured by the alignment scope.
 本発明は、より簡易な構成で基板上の異物を検知することが可能な計測装置を提供することを例示的な目的とする。 An exemplary object of the present invention is to provide a measuring device capable of detecting foreign matter on a substrate with a simpler configuration.
 本発明の計測装置は、パターン形成領域にパターンが形成された基板上の異物を検知する計測装置であって、前記基板に対して光を照射する照射部と、前記照射部から照射された光であって、前記基板によって散乱された散乱光を検出する検出部と、前記検出部の検出結果に基づいて前記基板上の異物の検知を行う制御部を含むことを特徴とする。 The measuring device of the present invention is a measuring device that detects foreign matter on a substrate in which a pattern is formed in a pattern forming region, and is an irradiation unit that irradiates the substrate with light and light emitted from the irradiation unit. The present invention is characterized by including a detection unit that detects scattered light scattered by the substrate and a control unit that detects foreign matter on the substrate based on the detection result of the detection unit.
 本発明によれば、簡易な構成で基板上の異物を検知することが可能な計測装置が得られる。 According to the present invention, a measuring device capable of detecting foreign matter on a substrate with a simple configuration can be obtained.
本発明のインプリント装置を示した図である。It is a figure which showed the imprinting apparatus of this invention. 加熱機構の構成を示す図である。It is a figure which shows the structure of the heating mechanism. 形状計測部の側面図である。It is a side view of the shape measuring part. 形状計測部の上面図である。It is a top view of the shape measuring part. 変形したパターン形成領域を示す図である。It is a figure which shows the deformed pattern formation region. ショット領域の配列を示す図である。It is a figure which shows the arrangement of a shot area. パターン及び異物によって散乱された光の強度を示す図である。It is a figure which shows the intensity of the light scattered by a pattern and a foreign substance. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an article. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an article. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an article. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an article. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an article. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of an article.
 以下、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In each figure, the same member is given the same reference number, and duplicate description is omitted.
 図1は本実施形態におけるパターン形成装置の一形態としてのインプリント装置1の構成を示した図である。図1を用いてインプリント装置1の構成について説明する。ここでは、基板2が配置される面をXY面、それに直交する方向をZ方向として、図1に示したように各軸を決める。 FIG. 1 is a diagram showing a configuration of an imprint device 1 as a form of the pattern forming device in the present embodiment. The configuration of the imprint device 1 will be described with reference to FIG. Here, each axis is determined as shown in FIG. 1, with the plane on which the substrate 2 is arranged as the XY plane and the direction orthogonal to the XY plane as the Z direction.
 インプリント装置1は、基板2上に塗布された光硬化性のインプリント材3と、型4とを接触させた状態でインプリント材3を硬化させ、硬化したインプリント材3と型4とを引き離して、基板2上にインプリント材3のパターンを形成する。 The imprint device 1 cures the imprint material 3 in a state where the photocurable imprint material 3 coated on the substrate 2 and the mold 4 are in contact with each other, and the cured imprint material 3 and the mold 4 Is separated to form a pattern of the imprint material 3 on the substrate 2.
 インプリント装置1は、基板ステージ5を載置するベース定盤6と、保持機構7を固定するブリッジ定盤8と、ベース定盤6から鉛直方向に延設され、ブリッジ定盤8を支持するための支柱9とを備えている。照射部10は、硬化に用いられる紫外線11を水平方向に出射する。紫外線11は、光学素子(例えばダイクロイックミラー)12aで鉛直下方に反射され、型4を介して基板上に照射される。 The imprint device 1 has a base surface plate 6 on which the substrate stage 5 is placed, a bridge surface plate 8 for fixing the holding mechanism 7, and a bridge surface plate 8 extending vertically from the base surface plate 6 to support the bridge surface plate 8. It is provided with a support column 9 for the purpose. The irradiation unit 10 emits ultraviolet rays 11 used for curing in the horizontal direction. The ultraviolet light 11 is reflected vertically downward by an optical element (for example, a dichroic mirror) 12a, and is irradiated onto the substrate via the mold 4.
 型4は、外周が矩形形状であり、その中心部には凹凸パターンが形成されたパターン部4aを有している。1回の押印動作で、基板2上には、パターン部4aのサイズと同じ大きさのパターン形成領域にインプリント材3のパターンが形成される。 The mold 4 has a rectangular outer circumference, and has a pattern portion 4a in which an uneven pattern is formed at the center thereof. With one imprinting operation, the pattern of the imprint material 3 is formed on the substrate 2 in the pattern forming region having the same size as the pattern portion 4a.
 本実施形態では、パターン形成領域はショット領域の内側に位置する領域である。ショット領域とは既にパターンが形成された下地層の単位領域であり、1つのショット領域のサイズは、例えば、26mm×33mm程度である。1つのショット領域にはユーザが希望するチップサイズのパターンを1つまたは複数形成することが可能である。 In the present embodiment, the pattern forming region is a region located inside the shot region. The shot region is a unit region of the base layer on which a pattern has already been formed, and the size of one shot region is, for example, about 26 mm × 33 mm. It is possible to form one or more chip size patterns desired by the user in one shot area.
 型4はさらに、パターン部4aの周囲において外周が円形状のキャビティ(凹部)4bを有している。透過部材13は、紫外線11や加熱光を透過し、開口領域の一部とキャビティ4bとで囲まれる空間14を密閉空間とするために配置されている。 The mold 4 further has a cavity (recess) 4b having a circular outer circumference around the pattern portion 4a. The transmission member 13 is arranged so as to transmit ultraviolet rays 11 and heating light and to make a space 14 surrounded by a part of the opening region and the cavity 4b a closed space.
 インプリントに使用するインプリント材3が光硬化性である場合には、型4は硬化させるための照射光が透過可能な材料でなければならない。さらに、後述の加熱機構(加熱部)15から射出される加熱光を透過する材料でなければならない。例えば、石英ガラス、珪酸系ガラス、フッ化カルシウム、フッ化マグネシウム、アクリルガラス等のガラス類を用いてもよい。型の材料は、サファイアや窒化ガリウム、ポリカーボネート、ポリスチレン、アクリル、ポリプロピレンなどの樹脂でもよい。あるいはこれらの任意の積層材でもよい。 When the imprint material 3 used for imprinting is photocurable, the mold 4 must be a material that can transmit the irradiation light for curing. Further, it must be a material that transmits the heating light emitted from the heating mechanism (heating unit) 15 described later. For example, glasses such as quartz glass, silicic acid-based glass, calcium fluoride, magnesium fluoride, and acrylic glass may be used. The mold material may be a resin such as sapphire, gallium nitride, polycarbonate, polystyrene, acrylic or polypropylene. Alternatively, any of these laminated materials may be used.
 保持機構7は、真空吸着力や静電気力により型4を引き付けて保持する型チャック16と、型チャック16と共に型4を移動させる駆動機構17と、型4を変形させる変形機構18とを有する。型チャック16及び駆動機構17は、照射部10からの紫外線11が基板2に到達するように、中心部に開口領域19を有している。 The holding mechanism 7 has a mold chuck 16 that attracts and holds the mold 4 by a vacuum suction force or an electrostatic force, a drive mechanism 17 that moves the mold 4 together with the mold chuck 16, and a deformation mechanism 18 that deforms the mold 4. The mold chuck 16 and the drive mechanism 17 have an opening region 19 in the central portion so that the ultraviolet rays 11 from the irradiation unit 10 reach the substrate 2.
 変形機構18は、型4に対して水平方向に外力を与えることにより、型4を所望の形状に変形させる。これにより、基板2側のパターン形成領域の形状とパターン部4aの形状の差を低減させて、形成されるパターンの重ね合わせ精度を向上させることができる。 The deformation mechanism 18 deforms the mold 4 into a desired shape by applying an external force to the mold 4 in the horizontal direction. As a result, the difference between the shape of the pattern forming region on the substrate 2 side and the shape of the pattern portion 4a can be reduced, and the overlay accuracy of the formed patterns can be improved.
 駆動機構17は、型4をZ軸方向に移動させる。これにより、型4とインプリント材3とを接触させる動作(押印)、または型4とインプリント材3とを引き離す動作(離型)を行う。駆動機構17に採用するアクチュエータとして、例えば、リニアモータ又はエアシリンダがある。駆動機構17は、粗動駆動系や微動駆動系など、複数の駆動系から構成されていてもよい。また、Z軸方向だけでなく、型をX軸方向及びY軸方向、及び各軸周りの回転方向への動かすための駆動機構を備えていてもよい。これにより、型4の高精度な位置決めが可能となる。 The drive mechanism 17 moves the mold 4 in the Z-axis direction. As a result, the operation of bringing the mold 4 into contact with the imprint material 3 (seal) or the operation of separating the mold 4 and the imprint material 3 (release of the mold) is performed. Examples of the actuator adopted in the drive mechanism 17 include a linear motor and an air cylinder. The drive mechanism 17 may be composed of a plurality of drive systems such as a coarse movement drive system and a fine movement drive system. Further, a drive mechanism for moving the mold not only in the Z-axis direction but also in the X-axis direction, the Y-axis direction, and the rotation direction around each axis may be provided. This enables highly accurate positioning of the mold 4.
 基板ステージ5は、基板2を保持面20aに引き付けて基板2を保持する基板保持部であるチャック20と、チャック20と共に基板2を移動させる駆動機構21とを有する。「引き付けて保持する」とはチャック20に対して基板2の重力方向と同じ向きに、基板2の重力以外の力を加えている状態をいう。真空吸着力のほか、静電気力や機械的な基板2の押さえつけにより生じる力で基板2を保持してもよい。基準マーク27は、基板ステージ5上に設けられており、型4をアライメントする際に利用される。 The substrate stage 5 has a chuck 20 which is a substrate holding portion for attracting the substrate 2 to the holding surface 20a and holding the substrate 2, and a drive mechanism 21 for moving the substrate 2 together with the chuck 20. "Attracting and holding" means a state in which a force other than the gravity of the substrate 2 is applied to the chuck 20 in the same direction as the gravity direction of the substrate 2. In addition to the vacuum suction force, the substrate 2 may be held by an electrostatic force or a force generated by mechanically pressing the substrate 2. The reference mark 27 is provided on the substrate stage 5 and is used when aligning the mold 4.
 パターン形成領域に対してパターン部4aの転写パターンを形成するパターン形成部は、押印、インプリント材3の硬化、離型等とを制御する手段を有する。本実施形態においてパターン形成部は、型4を移動させる駆動機構17や型4を変形させる変形機構18、型4を含む。パターンの形成は、後述の加熱機構15が、制御部25の作成した照度プロファイルに基づいてパターン形成領域を変形させている間に行う。 The pattern forming portion that forms the transfer pattern of the pattern portion 4a with respect to the pattern forming region has means for controlling imprinting, curing of the imprint material 3, mold release, and the like. In the present embodiment, the pattern forming unit includes a drive mechanism 17 for moving the mold 4, a deformation mechanism 18 for deforming the mold 4, and the mold 4. The pattern is formed while the heating mechanism 15, which will be described later, deforms the pattern forming region based on the illuminance profile created by the control unit 25.
 駆動機構21は基板2をXY平面内で移動させる。これにより、型4と基板2上の下地パターンのパターン形成領域との位置合わせを行う。駆動機構21に採用するアクチュエータとして、例えば、リニアモータ又はエアシリンダがある。駆動機構21は、粗動駆動系や微動駆動系など、複数の駆動系を備えていてもよい。また、X軸方向及びY軸方向だけでなく、基板2をZ軸方向、及び各軸周りの回転方向への動かすための駆動機構を備えていてもよい。これにより、基板2の高精度な位置決めが可能となる。 The drive mechanism 21 moves the substrate 2 in the XY plane. As a result, the mold 4 and the pattern forming region of the base pattern on the substrate 2 are aligned. Examples of the actuator adopted in the drive mechanism 21 include a linear motor and an air cylinder. The drive mechanism 21 may include a plurality of drive systems such as a coarse movement drive system and a fine movement drive system. Further, a drive mechanism for moving the substrate 2 not only in the X-axis direction and the Y-axis direction but also in the Z-axis direction and the rotation direction around each axis may be provided. This enables highly accurate positioning of the substrate 2.
 半導体プロセスの過程によってパターン形成領域の形状はわずかに変形しているため、変形したパターン形成領域の形状を計測した後に、加熱機構15は、光の照度を制御してパターン形成領域に照度プロファイルに対応する熱量を与える。パターン形成領域を加熱して、所望の形状に近づくように変形させることにより、パターン形成領域の形状とパターン部4aの形状との差を低減することができる。 Since the shape of the pattern forming region is slightly deformed by the process of the semiconductor process, after measuring the shape of the deformed pattern forming region, the heating mechanism 15 controls the illuminance of the light to form an illuminance profile in the pattern forming region. Give the corresponding amount of heat. By heating the pattern forming region and deforming it so as to approach a desired shape, the difference between the shape of the pattern forming region and the shape of the pattern portion 4a can be reduced.
 図2は、加熱機構15の構成を示す図である。光源61は、加熱光を出射する。加熱光の波長は未硬化のインプリント材3が硬化せず、かつ基板2で熱として吸収される波長が好ましい。例えば、400nm~2000nmである。加熱光は光ファイバ62や光学系63を介してDMD(Digital Micro-mirror Device)64に入射し、DMD64で選択的に反射された加熱光だけが基板2上に照射される。 FIG. 2 is a diagram showing the configuration of the heating mechanism 15. The light source 61 emits heating light. The wavelength of the heating light is preferably a wavelength at which the uncured imprint material 3 is not cured and is absorbed as heat by the substrate 2. For example, it is 400 nm to 2000 nm. The heating light enters the DMD (Digital Micro-millor Device) 64 via the optical fiber 62 and the optical system 63, and only the heating light selectively reflected by the DMD 64 is irradiated on the substrate 2.
 加熱光の光路には、照射部10から射出される紫外線11を反射し、加熱光を透過する光学素子12aが配置されている。さらに加熱光の光路には、インプリント材3の充填を観察するためのモニタ23の光源から射出される光を反射し、加熱光のほとんどを透過する光学素子(例えばダイクロイックミラー)12bが配置されている。 An optical element 12a that reflects ultraviolet rays 11 emitted from the irradiation unit 10 and transmits the heating light is arranged in the optical path of the heating light. Further, in the optical path of the heating light, an optical element (for example, a dichroic mirror) 12b that reflects the light emitted from the light source of the monitor 23 for observing the filling of the imprint material 3 and transmits most of the heating light is arranged. ing.
 光源61には、例えば、高出力半導体レーザが用いられる。光学系63には、光源61から射出された光を集光させる集光光学系(不図示)、集光光学系からの光の強度を均一化してDMD64を照明するための均一照明光学系(不図示)を含む。均一照明光学系は、例えばマイクロレンズアレイ(MLA)(不図示)等の光学素子を含む。 For the light source 61, for example, a high-power semiconductor laser is used. The optical system 63 includes a condensing optical system (not shown) that condenses the light emitted from the light source 61, and a uniform illumination optical system for illuminating the DMD 64 by equalizing the intensity of the light from the condensing optical system (not shown). (Not shown) is included. The uniform illumination optics include, for example, optical elements such as a microlens array (MLA) (not shown).
 DMD64は、加熱光を反射する複数のマイクロミラー(不図示)を含む。照射制御部66は、各マイクロミラーを、マイクロミラーの配列面に対して所定の角度範囲で傾けることができる。 DMD64 includes a plurality of micromirrors (not shown) that reflect heating light. The irradiation control unit 66 can tilt each micromirror in a predetermined angle range with respect to the array surface of the micromirrors.
 ON状態のマイクロミラーで反射された加熱光は、DMD64と基板2とを光学的に共役関係にする投影光学系65により基板2上に結像される。OFF状態のマイクロミラーで反射された光は、基板2に到達しない方向に反射される。加熱機構15が、1つのパターン形成領域内で、加熱光を照射する領域と照射しない領域との分布を生じさせることにより、パターン形成領域を局所的に変形させることができる。 The heated light reflected by the micromirror in the ON state is imaged on the substrate 2 by the projection optical system 65 that optically couples the DMD 64 and the substrate 2. The light reflected by the micromirror in the OFF state is reflected in a direction that does not reach the substrate 2. The pattern forming region can be locally deformed by the heating mechanism 15 generating a distribution of a region to be irradiated with the heating light and a region not to be irradiated in one pattern forming region.
 照度プロファイルは、例えば、各マイクロミラーのON状態及びOFF状態の状態によって時間的及び空間的な熱量分布を示すプロファイルである。ON状態及びOFF状態の時間に関する情報と、ON状態及びOFF状態の分布により形成されるパターン形成領域内の位置に応じた照度分布とを含んでいる。ON状態のマイクロミラーが多いほど、また、加熱光の照射時間が長いほど基板2上のパターン形成領域に対して大きな熱量を与えることができる。 The illuminance profile is, for example, a profile that shows the temporal and spatial heat quantity distribution depending on the ON state and the OFF state of each micromirror. It includes information on the time of the ON state and the OFF state, and an illuminance distribution according to the position in the pattern formation region formed by the distribution of the ON state and the OFF state. The larger the number of micromirrors in the ON state and the longer the irradiation time of the heating light, the larger the amount of heat can be given to the pattern forming region on the substrate 2.
 図1を用いたインプリント装置1の構成の説明に戻る。塗布部22は、基板2上のパターン形成領域に未硬化状態のインプリント材3を塗布する。一度に、一回の押印動作で必要となる分のインプリント材3だけを塗布する。そのため、基板ステージ5は、押印動作を終えるごとに、押印位置と塗布部22の下方位置との間で基板2を往復移動させる。 Returning to the description of the configuration of the imprint device 1 using FIG. The coating unit 22 coats the uncured imprint material 3 on the pattern forming region on the substrate 2. At a time, only the amount of imprint material 3 required for one imprinting operation is applied. Therefore, the substrate stage 5 reciprocates the substrate 2 between the imprinting position and the lower position of the coating portion 22 each time the imprinting operation is completed.
 モニタ23は、光を用いて、型4のパターン部4aにインプリント材3が充填される様子を観察する。これにより、パターン部4aへの異物の挟まり、あるいはインプリント材3の未充填箇所を特定することができる。 The monitor 23 uses light to observe how the imprint material 3 is filled in the pattern portion 4a of the mold 4. As a result, it is possible to identify a foreign matter caught in the pattern portion 4a or an unfilled portion of the imprint material 3.
 先に記載した通り、半導体プロセスの過程によってパターン形成領域の形状は、倍率成分、平行四辺形成分、台形成分等の変形成分を組み合わせたように変形している。本実施形態のパターン形成装置では、変形したパターン形成領域の形状をより精度良く計測するための構成としての形状計測部(計測装置)100を用いて、パターン形成領域の形状を計測する。形状計測部100の構成に関しては図3及び4を用いて説明する。なお、インプリント装置1に形状計測部100を組み込んでもよいし、インプリント装置1とは別に形状計測部100を用意してもよい。 As described above, the shape of the pattern formation region is deformed by the process of the semiconductor process as if a combination of deformation components such as a magnification component, a parallel four-sided formation component, and a table formation component. In the pattern forming apparatus of the present embodiment, the shape of the pattern forming region is measured by using the shape measuring unit (measuring apparatus) 100 as a configuration for measuring the shape of the deformed pattern forming region with higher accuracy. The configuration of the shape measuring unit 100 will be described with reference to FIGS. 3 and 4. The shape measuring unit 100 may be incorporated in the imprinting device 1, or the shape measuring unit 100 may be prepared separately from the imprinting device 1.
 また、パターン形成領域の形状を計測する別の手段としてアライメント検出部24を設けても良い。図1におけるアライメント検出部24は、少なくとも、パターン形成領域に設けられた複数のマーク36aを検出する。例えば、パターン形成領域の周辺に設けられたマーク36a、パターン部4aに設けられたマーク36bとを同時に検出する。マーク36a、36bの検出は、型4と基板2上のインプリント材3とを接触させる前後において行う。なお、型4とインプリント材3とを接触させる前と後のそれぞれで、位置合わせに用いるマークを変更してもよい。 Further, the alignment detection unit 24 may be provided as another means for measuring the shape of the pattern forming region. The alignment detection unit 24 in FIG. 1 detects at least a plurality of marks 36a provided in the pattern formation region. For example, the mark 36a provided around the pattern forming region and the mark 36b provided on the pattern portion 4a are simultaneously detected. The marks 36a and 36b are detected before and after the mold 4 and the imprint material 3 on the substrate 2 are brought into contact with each other. The mark used for alignment may be changed before and after the mold 4 and the imprint material 3 are brought into contact with each other.
 マーク36aは、複数のマーク36aが検出されることによりパターン形成領域の形状が把握できるものであればよい。パターン形成領域内に形成されていてもよいし、上述のようにパターン形成領域に隣接するスクライブライン上に形成されていてもよい。 The mark 36a may be any as long as the shape of the pattern forming region can be grasped by detecting a plurality of marks 36a. It may be formed in the pattern forming region, or may be formed on a scribe line adjacent to the pattern forming region as described above.
 アライメント検出部24の検出結果に基づいて、制御部25は、マーク36a、36bのX軸方向、Y軸方向、ωZ方向への位置ずれ(シフト成分)を求めることができる。さらに、パターン形成領域の倍率成分の形状変化量を検出することが可能である。 Based on the detection result of the alignment detection unit 24, the control unit 25 can obtain the positional deviation (shift component) of the marks 36a and 36b in the X-axis direction, the Y-axis direction, and the ωZ direction. Further, it is possible to detect the amount of shape change of the magnification component in the pattern forming region.
 なお、本実施形態においては、アライメント検出部24は必須ではなく、形状計測部100のみによってパターン形成領域の形状を計測することができる。例えば、パターン形成領域の形状の計測に関して、求められる精度に応じて形状計測部100とアライメント検出部24を使い分けることができる。 In the present embodiment, the alignment detection unit 24 is not essential, and the shape of the pattern formation region can be measured only by the shape measurement unit 100. For example, regarding the measurement of the shape of the pattern forming region, the shape measuring unit 100 and the alignment detecting unit 24 can be used properly according to the required accuracy.
 アライメント検出部24に関しては、検出するマークの数を増やすことができれば、パターン形成領域の形状の計測精度を上げることができる。例えば、パターン形成領域の近傍においてマークを形成可能な領域が小さい場合等には、アライメント検出部24におけるパターン形成領域の形状の計測精度が十分でないおそれがある。このような場合には、後述する形状計測部100によってパターン形成領域の形状を計測することで計測精度を向上させることができる。 Regarding the alignment detection unit 24, if the number of marks to be detected can be increased, the measurement accuracy of the shape of the pattern forming region can be improved. For example, when the region where the mark can be formed is small in the vicinity of the pattern forming region, the measurement accuracy of the shape of the pattern forming region in the alignment detection unit 24 may not be sufficient. In such a case, the measurement accuracy can be improved by measuring the shape of the pattern forming region by the shape measuring unit 100 described later.
 制御部25は、照射部10、加熱機構15、モニタ23、保持機構7、基板ステージ5、塗布部22、アライメント系24、記憶部26と回線を介して接続されており、前述の制御対象物を統括的に制御する。基板2上の複数のパターン形成領域に対して、押印動作を繰り返して順次パターンを形成する。 The control unit 25 is connected to the irradiation unit 10, the heating mechanism 15, the monitor 23, the holding mechanism 7, the substrate stage 5, the coating unit 22, the alignment system 24, and the storage unit 26 via a line, and is connected to the above-mentioned control object. Is controlled comprehensively. The imprinting operation is repeated to sequentially form patterns on the plurality of pattern forming regions on the substrate 2.
 制御部25は、記憶部26に格納されているプログラムを、制御部25と接続されている前述の制御対象物を制御することで実行する。制御部25は、インプリント装置1の他の構成要素と共通の筐体内に設置されてもよいし、筐体外に設置されてもよい。また、制御部25は、制御対象物毎に異なる制御基板の集合体であってもよい。 The control unit 25 executes the program stored in the storage unit 26 by controlling the above-mentioned controlled object connected to the control unit 25. The control unit 25 may be installed in a housing common to other components of the imprint device 1, or may be installed outside the housing. Further, the control unit 25 may be an aggregate of control boards different for each control object.
 パターン形成領域の形状を計測する形状計測部100に関して図3及び4を用いて説明する。図3は形状計測部100の側面図であり、図4は形状計測部100の上面図である。形状計測部100は、基板102上に光を照射し、基板102上で散乱された散乱光を検出することにより、基板102上のパターン形成領域の形状を計測する。 The shape measuring unit 100 for measuring the shape of the pattern forming region will be described with reference to FIGS. 3 and 4. FIG. 3 is a side view of the shape measuring unit 100, and FIG. 4 is a top view of the shape measuring unit 100. The shape measuring unit 100 measures the shape of the pattern forming region on the substrate 102 by irradiating the substrate 102 with light and detecting the scattered light scattered on the substrate 102.
 形状計測部100の具体的な構成を順に説明する。ステージ101は、基板102を保持するとともに、XY面内を移動可能なステージである。照射部としての照明光学系103は、基板上に光を照射するための光学系であり、光源104、光源104から出射した光を反射するポリゴンミラー105、fθレンズ106を含む。 The specific configuration of the shape measuring unit 100 will be described in order. The stage 101 is a stage that holds the substrate 102 and can move in the XY plane. The illumination optical system 103 as an irradiation unit is an optical system for irradiating light on a substrate, and includes a light source 104, a polygon mirror 105 that reflects light emitted from the light source 104, and an fθ lens 106.
 光源104は、半導体レーザ等のレーザを出射するレーザ光源である。光源104から出射されるレーザ光の波長は、インプリント材を感光しない領域の波長であり、例えば、400nm以上の波長のレーザ光が出射される。 The light source 104 is a laser light source that emits a laser such as a semiconductor laser. The wavelength of the laser light emitted from the light source 104 is a wavelength in a region where the imprint material is not exposed to light, and for example, a laser light having a wavelength of 400 nm or more is emitted.
 光源104からのレーザ光は、ポリゴンミラー105のミラー面に照射される。ポリゴンミラー105は、4面から6面程度のミラーを多角形状に構成したものである。ポリゴンミラー105は、1分間に数万回転程度のスピードで高速回転する。 The laser beam from the light source 104 is applied to the mirror surface of the polygon mirror 105. The polygon mirror 105 is formed by forming mirrors having four to six surfaces in a polygonal shape. The polygon mirror 105 rotates at a high speed of about tens of thousands of rotations per minute.
 ポリゴンミラー105によって反射されたレーザー光を、fθレンズ106に導くことで、ポリゴンミラー105の等速回転運動を、基板102上におけるスポット光の等速直線運動に変換する。 By guiding the laser beam reflected by the polygon mirror 105 to the fθ lens 106, the constant velocity rotational motion of the polygon mirror 105 is converted into the constant velocity linear motion of the spot light on the substrate 102.
 図4において、Aはスポット光の走査方向を示し、Bはステージ101の走査方向を示している。ステージの走査方向Bは、スポット光の走査方向Aの対して垂直な方向となる。照明光学系103は、レーザ光が基板102に対して、垂直、または斜めに照射されるように配置される。 In FIG. 4, A indicates the scanning direction of the spot light, and B indicates the scanning direction of the stage 101. The scanning direction B of the stage is a direction perpendicular to the scanning direction A of the spot light. The illumination optical system 103 is arranged so that the laser beam is irradiated vertically or diagonally to the substrate 102.
 基板102上にパターンや異物等の物体108が存在すると、当該物体108によりレーザ光が散乱され、散乱光が生じる。この散乱光を検出部としての受光部109により検出することで、基板102上のパターン形成領域の形状を計測することができる。上述したように、ポリゴンミラー105とfθレンズ106を用いて、基板102上をレーザ光により走査することで、基板102の全面にわたってパターン形成領域の形状を計測することができる。 When an object 108 such as a pattern or a foreign substance is present on the substrate 102, the laser light is scattered by the object 108 and scattered light is generated. By detecting this scattered light by the light receiving unit 109 as a detection unit, the shape of the pattern forming region on the substrate 102 can be measured. As described above, the shape of the pattern forming region can be measured over the entire surface of the substrate 102 by scanning the substrate 102 with laser light using the polygon mirror 105 and the fθ lens 106.
 なお、強度の弱い光を高速に検出するために、受光部109として光電子増倍管やフォトダイオードが用いられる。受光部109は、物体108によって後方散乱または側方散乱された散乱光を検出可能な位置に配置される。 A photomultiplier tube or a photodiode is used as the light receiving unit 109 in order to detect low-intensity light at high speed. The light receiving unit 109 is arranged at a position where the scattered light scattered backward or laterally by the object 108 can be detected.
 ステージ101の位置決め制御や、光源104のレーザ出力タイミング等の制御、ポリゴンミラー105の回転制御等は、図1における制御部25によって制御される。また、制御部25は、受光部109から出力された連続的なアナログ電気信号をデジタル信号に変換して信号処理を行う。信号処理の一例として、ガウス分布で表される散乱光の検出信号の重心を求めて、物体108の位置や大きさを求める処理が挙げられる。なお、これらの制御をインプリント装置1の制御部25ではなく、形状測定部100に設けられた制御部110によって実行しても良い。 The positioning control of the stage 101, the control of the laser output timing of the light source 104, the rotation control of the polygon mirror 105, and the like are controlled by the control unit 25 in FIG. Further, the control unit 25 converts the continuous analog electric signal output from the light receiving unit 109 into a digital signal and performs signal processing. As an example of signal processing, there is a process of finding the center of gravity of a detected signal of scattered light represented by a Gaussian distribution and finding the position and size of the object 108. Note that these controls may be executed not by the control unit 25 of the imprint device 1 but by the control unit 110 provided in the shape measurement unit 100.
 図5は、既存パターンが形成された基板102を示している。回路の集積化に伴い、半導体デバイス等の製造においては回路パターンを積層することが一般的となっている。そのため、図5で示したように、既存パターンが形成された基板上に、既存パターンの形状と重ね合わせて別のパターンを形成することが求められる。 FIG. 5 shows the substrate 102 on which the existing pattern is formed. With the integration of circuits, it has become common to stack circuit patterns in the manufacture of semiconductor devices and the like. Therefore, as shown in FIG. 5, it is required to superimpose the shape of the existing pattern on the substrate on which the existing pattern is formed to form another pattern.
 図5(A)に示したように、基板上には複数のショット領域Sがあり、各ショット領域S内のパターン形成領域31に回路パターンが形成されている。図5(B)は、1つのショット領域を拡大したものである。半導体製造プロセスの過程において、パターン形成領域の形状は変形し、その変形成分は、倍率成分、台形成分等を組み合わせたものである。図5(B)において、実線31はパターン形成領域の理想的な形状を示しており、破線31Aは変形したパターン形成領域の形状を示している。変形したパターン形成領域31Aの形状の計測精度を高めることで、既存パターンに対して高い重ね合わせ精度で次工程のパターンを形成することができる。 As shown in FIG. 5A, there are a plurality of shot regions S on the substrate, and a circuit pattern is formed in the pattern forming region 31 in each shot region S. FIG. 5B is an enlarged view of one shot area. In the process of the semiconductor manufacturing process, the shape of the pattern forming region is deformed, and the deforming component is a combination of a magnification component, a table forming component, and the like. In FIG. 5B, the solid line 31 shows the ideal shape of the pattern forming region, and the broken line 31A shows the shape of the deformed pattern forming region. By increasing the measurement accuracy of the shape of the deformed pattern forming region 31A, it is possible to form the pattern of the next process with high overlay accuracy with respect to the existing pattern.
 本実施形態においては、基板102上に光を照射し、基板上のパターンで散乱された光を上述した形状計測部100によって検出した結果に基づいて、パターン形成領域31Aの形状を求めている。以下、パターン形成領域の形状の具体的な求め方について説明する。 In the present embodiment, the shape of the pattern forming region 31A is obtained based on the result of irradiating the substrate 102 with light and detecting the light scattered by the pattern on the substrate by the shape measuring unit 100 described above. Hereinafter, a specific method for obtaining the shape of the pattern forming region will be described.
 パターン形成領域31Aの外縁には段差があるため、上述した形状計測部100によって基板102を走査することで、パターン形成領域31Aの外縁に対応する位置から散乱された光が、受光部209においてスポット光として検出される。検出されたスポット光を基板102面内にプロットすると、図5(C)のような結果が得られる。図5(C)において、31Bは検出されたスポット光の配列を表している。 Since there is a step on the outer edge of the pattern forming region 31A, by scanning the substrate 102 with the shape measuring unit 100 described above, the light scattered from the position corresponding to the outer edge of the pattern forming region 31A is spotted in the light receiving unit 209. Detected as light. When the detected spot light is plotted on the 102 plane of the substrate, the result shown in FIG. 5C is obtained. In FIG. 5C, 31B represents an array of detected spotlights.
 形状計測部100におけるレーザ光の走査速度や基板102に照射されるレーザ光のスポット径に応じて、図5(C)に示したスポット光の大きさは変化する。パターン形成領域の形状計測に求められる精度に応じて、レーザ光の走査速度やレーザ光のスポット径は適宜変更することができる。 The size of the spot light shown in FIG. 5C changes according to the scanning speed of the laser light in the shape measuring unit 100 and the spot diameter of the laser light applied to the substrate 102. The scanning speed of the laser beam and the spot diameter of the laser beam can be appropriately changed according to the accuracy required for the shape measurement of the pattern forming region.
 このように、形状計測部100によってパターン形成領域31Aの形状を精度良く計測することができる。これにより、パターン形成領域の変形に対応して、加熱機構15によるパターン形成領域の変形量、及び変形機構18による型のパターン領域の変形量を適切に設定した上でパターン形成を行うことが可能となる。結果として、既存パターンに対して高い重ね合わせ精度で次工程のパターンを形成することができる。 In this way, the shape of the pattern forming region 31A can be accurately measured by the shape measuring unit 100. As a result, it is possible to perform pattern formation after appropriately setting the amount of deformation of the pattern forming region by the heating mechanism 15 and the amount of deformation of the pattern region of the mold by the deformation mechanism 18 in response to the deformation of the pattern forming region. It becomes. As a result, the pattern of the next process can be formed with high overlay accuracy with respect to the existing pattern.
 なお、必ずしも加熱機構15によるパターン形成領域の変形と、変形機構18により型のパターン領域の変形の両方を実施する必要はない。加熱機構15によるパターン形成領域の変形と、変形機構18により型のパターン領域の変形との少なくとも一方を実施することで上述した重ね合わせ精度向上の効果が得られる。 It is not always necessary to perform both the deformation of the pattern forming region by the heating mechanism 15 and the deformation of the pattern region of the mold by the deformation mechanism 18. By carrying out at least one of the deformation of the pattern forming region by the heating mechanism 15 and the deformation of the pattern region of the mold by the deformation mechanism 18, the above-mentioned effect of improving the overlay accuracy can be obtained.
 また、形状計測部100の計測結果からショット領域S(パターン形成領域)の配列情報を求めることができる。図6に示したように、基板102上の各ショット領域Sは一直線上に位置しているわけではなく、半導体プロセスの過程等により、一般的に基板102の面内方向にずれて位置している。形状計測部100によってスポット光の配列を計測することにより、図6に示したように、ショット領域Sの配列情報を得ることができる。このショット領域Sの配列情報に基づいてパターン形成を行うことで、既存パターンに対して高い重ね合わせ精度で次工程のパターンを形成することができる。 Further, the arrangement information of the shot region S (pattern formation region) can be obtained from the measurement result of the shape measuring unit 100. As shown in FIG. 6, each shot region S on the substrate 102 is not located in a straight line, but is generally located offset in the in-plane direction of the substrate 102 due to the process of the semiconductor process or the like. There is. By measuring the arrangement of the spot lights with the shape measuring unit 100, the arrangement information of the shot region S can be obtained as shown in FIG. By forming the pattern based on the arrangement information of the shot region S, it is possible to form the pattern of the next process with high overlay accuracy with respect to the existing pattern.
 なお、形状計測部100の計測結果に基づいて、基板102上に異物が存在するか否かの検査(異物検知)を行うことも可能である。図3、4における物体108が異物である場合にも、当該異物によって散乱光が発生し、この散乱光が受光部109において検出される。例えば、受光部109において検出されるスポット光の強度に基づいて、基板102上にパターンが存在するのか、または異物が存在するのかを区別することができる。 It is also possible to inspect whether or not foreign matter is present on the substrate 102 (foreign matter detection) based on the measurement result of the shape measuring unit 100. Even when the object 108 in FIGS. 3 and 4 is a foreign substance, scattered light is generated by the foreign substance, and the scattered light is detected by the light receiving unit 109. For example, it is possible to distinguish whether a pattern is present or a foreign substance is present on the substrate 102 based on the intensity of the spot light detected by the light receiving unit 109.
 本実施形態では、制御部25が異物検知部としての機能を有する。異物検知の具体的な方法としては、図7で示したように、パターンによって散乱された光の強度Xと異物によって散乱された光の強度Yを比較することが考えられる。一般的に、パターンによって散乱された光の強度の方が、異物によって散乱された光の強度よりも強くなるため、所定の閾値を設けて、当該閾値と検出された光強度の強弱によって両者を区別することができる。 In the present embodiment, the control unit 25 has a function as a foreign matter detection unit. As a specific method for detecting foreign matter, as shown in FIG. 7, it is conceivable to compare the intensity X of the light scattered by the pattern with the intensity Y of the light scattered by the foreign matter. In general, the intensity of the light scattered by the pattern is stronger than the intensity of the light scattered by the foreign matter. Therefore, a predetermined threshold value is set, and both are determined by the threshold value and the detected intensity of the light intensity. Can be distinguished.
 なお両者を区別するための別の方法として、以下の方法が考えられる。例えば、基板上に形成されるパターンの配置が既知であることを利用した方法がある。基板上のパターンの配置情報から、図7において、パターンによって散乱された光の強度のピーク位置を予測することができる。予測された位置以外にピークが現れた場合に、当該ピーク位置に対応する基板上の箇所に異物が存在すると推定することができる。 The following method can be considered as another method for distinguishing between the two. For example, there is a method utilizing the fact that the arrangement of patterns formed on the substrate is known. From the arrangement information of the pattern on the substrate, the peak position of the intensity of the light scattered by the pattern can be predicted in FIG. 7. When a peak appears at a position other than the predicted position, it can be estimated that a foreign substance exists at a position on the substrate corresponding to the peak position.
 また、一般的に、基板上のショット領域は周期的に配列されているため、パターンによって散乱された光の強度ピークも周期的に表れる。周期的な強度ピーク以外に光の強度ピークが現れた場合に、当該ピーク位置に対応する基板上の箇所に異物が存在すると推定することができる。 In addition, since the shot regions on the substrate are generally arranged periodically, the intensity peak of the light scattered by the pattern also appears periodically. When a light intensity peak appears in addition to the periodic intensity peak, it can be estimated that foreign matter is present at a location on the substrate corresponding to the peak position.
 本実施形態では、インプリント装置1の制御部25が異物検知部としての機能を有する例と示したが、異物検知部としての機能をインプリント装置1の外部に設けても良い。 In the present embodiment, the control unit 25 of the imprint device 1 has a function as a foreign matter detection unit, but the function as a foreign matter detection unit may be provided outside the imprint device 1.
 (変形例)
 これまでは、ポリゴンミラー105を用いて、基板上をレーザ光によって走査する実施例について説明したが、ポリゴンミラー105を用いる代わりに、基板ステージを基板の面内方向に動かしても良い。これにより、基板の全面にわたってレーザ光により走査を行うことができる。また、基板ステージの移動と、基板の回転駆動を組み合わせても良い。
(Modification example)
So far, an example in which the polygon mirror 105 is used to scan the substrate with a laser beam has been described, but instead of using the polygon mirror 105, the substrate stage may be moved in the in-plane direction of the substrate. As a result, scanning can be performed by laser light over the entire surface of the substrate. Further, the movement of the substrate stage and the rotational drive of the substrate may be combined.
 また、本発明は、インプリント装置に限られず、パターンが形成された原版を透過した露光光を用いて基板上にパターンを形成する露光装置やEUV光の照射により基板上にレジストの潜像パターンを形成するリソグラフィ装置等にも適用可能である。例えば、露光装置においては、形状計測部100によって計測されたパターン形成領域の形状に応じて整形された露光光を用いてパターン形成を行うことで、既存パターンに対して高い重ね合わせ精度で次工程のパターンを形成することができる。 Further, the present invention is not limited to the imprinting apparatus, but also an exposure apparatus for forming a pattern on a substrate using exposure light transmitted through an original plate on which a pattern is formed, or a latent image pattern of a resist on a substrate by irradiation with EUV light. It can also be applied to a lithography apparatus or the like for forming. For example, in an exposure apparatus, by forming a pattern using exposure light shaped according to the shape of a pattern forming region measured by the shape measuring unit 100, the next step can be performed with high overlay accuracy with respect to an existing pattern. Pattern can be formed.
 (物品の製造方法)
 つぎに、上述の形状計測部を備えたインプリント装置を用いた物品の製造方法について説明する。例えば、物品としての半導体デバイスは、基板に集積回路を作る前工程と、前工程で作られた基板上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、インプリント装置を使用して基板上のインプリント材にパターンを形成する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。本実施形態の半導体デバイスの製造方法によれば、従来よりも高品位の物品としての半導体デバイスを製造することができる。
(Manufacturing method of goods)
Next, a method of manufacturing an article using the imprint device provided with the above-mentioned shape measuring unit will be described. For example, a semiconductor device as an article is manufactured by going through a pre-process of forming an integrated circuit on a substrate and a post-process of completing an integrated circuit chip on the substrate produced in the pre-process as a product. The pre-process includes a step of forming a pattern on the imprint material on the substrate using an imprint device. The post-process includes an assembly process (dicing, bonding) and a packaging process (encapsulation). According to the method for manufacturing a semiconductor device of the present embodiment, it is possible to manufacture a semiconductor device as an article of higher quality than before.
 インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用の型等が挙げられる。 The pattern of the cured product formed by using the imprint device is used permanently for at least a part of various articles or temporarily when manufacturing various articles. The article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, a mold, or the like. Examples of the electric circuit element include volatile or non-volatile semiconductor memories such as DRAM, SRAM, flash memory, and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA. Examples of the mold include a mold for imprinting.
 硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。 The pattern of the cured product is used as it is as a constituent member of at least a part of the above-mentioned article, or is temporarily used as a resist mask. The resist mask is removed after etching or ion implantation in the substrate processing process.
 次に、物品の具体的な製造方法について説明する。図8Aに示すように、絶縁体等の被加工材2zが表面に形成されたシリコンウエハ等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。 Next, a specific manufacturing method of the article will be described. As shown in FIG. 8A, a substrate 1z such as a silicon wafer on which a work material 2z such as an insulator is formed on the surface is prepared, and subsequently, an imprint material 3z is prepared on the surface of the work material 2z by an inkjet method or the like. Is given. Here, a state in which a plurality of droplet-shaped imprint materials 3z are applied onto the substrate is shown.
 図8Bに示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図8Cに示すように、インプリント材3zが付与された基板1と型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で型4zを透して硬化用のエネルギーとしての光を照射すると、インプリント材3zは硬化する。 As shown in FIG. 8B, the imprint mold 4z is opposed to the imprint material 3z on the substrate with the side on which the uneven pattern is formed facing. As shown in FIG. 8C, the substrate 1 to which the imprint material 3z is applied is brought into contact with the mold 4z, and pressure is applied. The imprint material 3z is filled in the gap between the mold 4z and the work material 2z. In this state, when light is applied as energy for curing through the mold 4z, the imprint material 3z is cured.
 図8Dに示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凹部が硬化物の凸部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。 As shown in FIG. 8D, when the mold 4z and the substrate 1z are separated from each other after the imprint material 3z is cured, a pattern of the cured product of the imprint material 3z is formed on the substrate 1z. The pattern of the cured product has a shape in which the concave portion of the mold corresponds to the convex portion of the cured product and the concave portion of the mold corresponds to the convex portion of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will have been done.
 図8Eに示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。図8Fに示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。 As shown in FIG. 8E, when etching is performed using the pattern of the cured product as an etching resistant mask, the portion of the surface of the work material 2z that has no cured product or remains thin is removed to form a groove 5z. As shown in FIG. 8F, when the pattern of the cured product is removed, an article in which the groove 5z is formed on the surface of the work material 2z can be obtained. Although the pattern of the cured product is removed here, it may be used as a film for interlayer insulation contained in a semiconductor element or the like, that is, as a constituent member of an article, without being removed even after processing.
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached to make the scope of the present invention public.
 本願は、2019年3月29日提出の日本国特許出願特願2019-068862を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2019-068862 submitted on March 29, 2019, and all the contents thereof are incorporated herein by reference.

Claims (17)

  1.  パターン形成領域にパターンが形成された基板上の異物を検知する計測装置であって、
     前記基板に対して光を照射する照射部と、
     前記照射部から照射された光であって、前記基板によって散乱された散乱光を検出する検出部と、
     前記検出部の検出結果に基づいて前記基板上の異物の検知を行う制御部を含む計測装置。
    A measuring device that detects foreign matter on a substrate on which a pattern is formed in the pattern formation region.
    An irradiation unit that irradiates the substrate with light,
    A detection unit that detects the light emitted from the irradiation unit and scattered by the substrate, and a detection unit.
    A measuring device including a control unit that detects foreign matter on the substrate based on the detection result of the detection unit.
  2.  前記制御部は、前記パターンによって散乱された散乱光の光強度と、前記基板上に位置する異物によって散乱された散乱光の光強度との比較により前記異物の検知を行う請求項1に記載の計測装置。 The first aspect of claim 1, wherein the control unit detects the foreign matter by comparing the light intensity of the scattered light scattered by the pattern with the light intensity of the scattered light scattered by the foreign matter located on the substrate. Measuring device.
  3.  前記制御部は、所定の閾値と、前記検出部によって検出された光の強度とを比較することで前記異物の検知を行う請求項1に記載の計測装置。 The measuring device according to claim 1, wherein the control unit detects the foreign matter by comparing a predetermined threshold value with the intensity of light detected by the detection unit.
  4.  前記制御部は、前記検出部の検出結果に基づいて前記パターン形成領域の形状を求める請求項1に記載の計測装置。 The measuring device according to claim 1, wherein the control unit obtains the shape of the pattern forming region based on the detection result of the detection unit.
  5.  前記検出部は、前記照射部から照射された光であって、複数のパターン形成領域にパターンが形成された基板によって散乱された散乱光を検出し、
     前記制御部は、前記検出部の検出結果に基づいて前記複数のパターン形成領域の配列を求める請求項1に記載の計測装置。
    The detection unit detects the light emitted from the irradiation unit and scattered light scattered by the substrate on which patterns are formed in a plurality of pattern forming regions.
    The measuring device according to claim 1, wherein the control unit obtains an array of the plurality of pattern forming regions based on the detection result of the detection unit.
  6.  前記照射部から照射された光を前記基板に対して走査させるためのポリゴンミラーをさらに含む請求項1に記載の計測装置。 The measuring device according to claim 1, further comprising a polygon mirror for scanning the light emitted from the irradiation unit with respect to the substrate.
  7.  前記基板を保持する基板ステージをさらに有し、
     前記照射部から照射された光を前記基板に対して走査させるために、前記基板ステージは、前記基板の面内方向に移動する請求項1に記載の計測装置。
    Further having a substrate stage for holding the substrate
    The measuring device according to claim 1, wherein the substrate stage moves in the in-plane direction of the substrate in order to scan the substrate with the light emitted from the irradiation unit.
  8.  パターンが形成された基板上のパターン形成領域にパターンを重ねて形成するパターン形成装置であって、
     前記基板に対して光を照射する照射部と、
     前記照射部から照射された光であって、前記基板によって散乱された散乱光を検出する検出部と、
     前記検出部の検出結果に基づいて前記基板上の異物の検知を行う異物検知部と、
     前記基板上に形成されたパターンの上にパターンを形成するパターン形成部と、を含むパターン形成装置。
    A pattern forming apparatus that superimposes a pattern on a pattern forming region on a substrate on which a pattern is formed.
    An irradiation unit that irradiates the substrate with light,
    A detection unit that detects the light emitted from the irradiation unit and scattered by the substrate, and a detection unit.
    A foreign matter detection unit that detects foreign matter on the substrate based on the detection result of the detection unit, and
    A pattern forming apparatus including a pattern forming portion for forming a pattern on a pattern formed on the substrate.
  9.  前記異物検知部は、前記パターンによって散乱された散乱光の光強度と、前記基板上に位置する異物によって散乱された散乱光の光強度との比較により前記異物の検知を行う請求項8に記載のパターン形成装置。 The foreign matter detection unit according to claim 8 detects the foreign matter by comparing the light intensity of the scattered light scattered by the pattern with the light intensity of the scattered light scattered by the foreign matter located on the substrate. Pattern forming device.
  10.  前記異物検知部は、所定の閾値と、前記検出部によって検出された光の強度とを比較することで前記異物の検知を行う請求項8に記載のパターン形成装置。 The pattern forming apparatus according to claim 8, wherein the foreign matter detecting unit detects the foreign matter by comparing a predetermined threshold value with the intensity of light detected by the detecting unit.
  11.  前記パターン形成部は、前記検出部の検出結果に基づいて求められた前記パターン形成領域の形状に対応するように、前記基板上に形成されたパターンの上に前記パターンを形成する請求項8に記載のパターン形成装置。 The eighth aspect of the present invention, wherein the pattern forming unit forms the pattern on the pattern formed on the substrate so as to correspond to the shape of the pattern forming region obtained based on the detection result of the detecting unit. The pattern forming apparatus described.
  12.  前記検出部は、前記照射部から照射された光であって、複数のパターン形成領域にパターンが形成された基板によって散乱された散乱光を検出し、
     前記パターン形成部は、前記検出部の検出結果に基づいて求められた前記複数のパターン形成領域の配列に対応するように、前記基板上に形成されたパターンの上に前記パターンを形成する請求項8に記載のパターン形成装置。
    The detection unit detects the light emitted from the irradiation unit and scattered light scattered by the substrate on which patterns are formed in a plurality of pattern forming regions.
    The claim that the pattern forming unit forms the pattern on the pattern formed on the substrate so as to correspond to the arrangement of the plurality of pattern forming regions obtained based on the detection result of the detecting unit. 8. The pattern forming apparatus according to 8.
  13.  前記照射部から照射された光を前記基板に対して走査させるためのポリゴンミラーをさらに含む請求項8に記載のパターン形成装置。 The pattern forming apparatus according to claim 8, further comprising a polygon mirror for scanning the light emitted from the irradiation unit with respect to the substrate.
  14.  前記基板を保持する基板ステージをさらに有し、
     前記照射部から照射された光を前記基板に対して走査させるために、前記基板ステージは、前記基板の面内方向に移動する請求項8に記載のパターン形成装置。
    Further having a substrate stage for holding the substrate
    The pattern forming apparatus according to claim 8, wherein the substrate stage moves in the in-plane direction of the substrate in order to scan the substrate with the light emitted from the irradiation unit.
  15.  前記パターン形成装置は、パターンが形成されたパターン部を含む型を用いて基板上のパターン形成領域にインプリント材のパターンを形成するインプリント装置であり、
     前記パターン形成部は、前記検出部の検出結果から得られた前記パターン形成領域の形状に対応するように、前記型または前記パターン形成領域の少なくとも一方を変形させた状態で、前記型とインプリント材を接触させることによりパターン形成を行う請求項8に記載のパターン形成装置。
    The pattern forming apparatus is an imprinting apparatus for forming a pattern of an imprint material in a pattern forming region on a substrate by using a mold including a pattern portion on which a pattern is formed.
    The pattern forming portion is imprinted with the mold in a state where at least one of the mold or the pattern forming region is deformed so as to correspond to the shape of the pattern forming region obtained from the detection result of the detection unit. The pattern forming apparatus according to claim 8, wherein the pattern is formed by bringing the materials into contact with each other.
  16.  前記パターン形成装置は、露光光を用いて原版のパターンを基板に転写する露光装置であり、
     前記パターン形成部は、前記検出部の検出結果から得られた前記パターン形成領域の形状に対応するように整形された露光光を用いて、前記原版のパターンを前記基板に転写する請求項8に記載のパターン形成装置。
    The pattern forming apparatus is an exposure apparatus that transfers an original pattern to a substrate using exposure light.
    The eighth aspect of the present invention, wherein the pattern forming unit transfers the pattern of the original plate to the substrate by using the exposure light shaped so as to correspond to the shape of the pattern forming region obtained from the detection result of the detecting unit. The pattern forming apparatus described.
  17.  パターンが形成された基板上のパターン形成領域にパターンを重ねて形成するパターン形成装置を用いて前記基板にパターンを形成する工程と、
     前記パターンが形成された基板を加工する工程と、
     加工された前記基板から物品を製造する工程と、を含み
     前記パターン形成装置は、
     前記基板に対して光を照射する照射部と、
     前記照射部から照射された光であって、前記基板によって散乱された散乱光を検出する検出部と、
     前記検出部の検出結果に基づいて前記基板上の異物の検知を行う異物検知部と、
     前記基板上に形成されたパターンの上にパターンを形成するパターン形成部と、を含む物品の製造方法。
    A step of forming a pattern on the substrate by using a pattern forming apparatus for superimposing a pattern on a pattern forming region on the substrate on which the pattern is formed.
    The process of processing the substrate on which the pattern is formed and
    The pattern forming apparatus includes a step of manufacturing an article from the processed substrate.
    An irradiation unit that irradiates the substrate with light,
    A detection unit that detects the light emitted from the irradiation unit and scattered by the substrate, and a detection unit.
    A foreign matter detection unit that detects foreign matter on the substrate based on the detection result of the detection unit, and
    A method for manufacturing an article, comprising a pattern forming portion for forming a pattern on the pattern formed on the substrate.
PCT/JP2020/010427 2019-03-29 2020-03-11 Measurement device, patterning device, and method for producing article WO2020203104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068862A JP2020165910A (en) 2019-03-29 2019-03-29 Shape measuring device, pattern forming device, and article manufacturing method
JP2019-068862 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203104A1 true WO2020203104A1 (en) 2020-10-08

Family

ID=72667977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010427 WO2020203104A1 (en) 2019-03-29 2020-03-11 Measurement device, patterning device, and method for producing article

Country Status (3)

Country Link
JP (1) JP2020165910A (en)
TW (1) TW202040645A (en)
WO (1) WO2020203104A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164058B1 (en) 2022-01-27 2022-11-01 信越半導体株式会社 End face measuring device and end face measuring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222343A (en) * 1990-01-26 1991-10-01 Canon Inc Inspection of pattern and apparatus therefor
JPH0682381A (en) * 1992-09-04 1994-03-22 Hitachi Ltd Foreign matter inspection device
JP2012169593A (en) * 2011-01-26 2012-09-06 Canon Inc Imprint apparatus, detection method, method of manufacturing article, and foreign matter detection apparatus
WO2013035696A1 (en) * 2011-09-05 2013-03-14 株式会社ニコン Substrate transfer apparatus and substrate processing apparatus
JP2013247258A (en) * 2012-05-28 2013-12-09 Nikon Corp Alignment method, exposure method, system of manufacturing device, and method of manufacturing device
JP2014130077A (en) * 2012-12-28 2014-07-10 Hitachi High-Technologies Corp Pattern shape evaluation method, semiconductor device manufacturing method, and pattern shape evaluation device
JP2015130384A (en) * 2014-01-06 2015-07-16 キヤノン株式会社 Imprint device, imprint method, and method of manufacturing article
US20180322237A1 (en) * 2015-10-19 2018-11-08 Asml Netherlands B.V. Method and apparatus to correct for patterning process error

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222343A (en) * 1990-01-26 1991-10-01 Canon Inc Inspection of pattern and apparatus therefor
JPH0682381A (en) * 1992-09-04 1994-03-22 Hitachi Ltd Foreign matter inspection device
JP2012169593A (en) * 2011-01-26 2012-09-06 Canon Inc Imprint apparatus, detection method, method of manufacturing article, and foreign matter detection apparatus
WO2013035696A1 (en) * 2011-09-05 2013-03-14 株式会社ニコン Substrate transfer apparatus and substrate processing apparatus
JP2013247258A (en) * 2012-05-28 2013-12-09 Nikon Corp Alignment method, exposure method, system of manufacturing device, and method of manufacturing device
JP2014130077A (en) * 2012-12-28 2014-07-10 Hitachi High-Technologies Corp Pattern shape evaluation method, semiconductor device manufacturing method, and pattern shape evaluation device
JP2015130384A (en) * 2014-01-06 2015-07-16 キヤノン株式会社 Imprint device, imprint method, and method of manufacturing article
US20180322237A1 (en) * 2015-10-19 2018-11-08 Asml Netherlands B.V. Method and apparatus to correct for patterning process error

Also Published As

Publication number Publication date
JP2020165910A (en) 2020-10-08
TW202040645A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
KR102172083B1 (en) Measurement device, imprint apparatus, method for manufacturing product, light amount determination method, and light amount adjustment method
JP7027099B2 (en) Manufacturing method of imprint device and goods
TWI426353B (en) Imprint lithography system and method of imprinting
TWI643019B (en) Mold, imprinting method, imprint apparatus, and method for manufacturing a semiconductor article
US11204548B2 (en) Imprint apparatus, imprinting method, and method for manufacturing article
JP6799397B2 (en) Imprinting equipment and manufacturing method of articles
TWI720301B (en) Imprint apparatus and method of manufacturing article
KR20170010001A (en) Imprint apparatus and method of manufacturing article
JP7038562B2 (en) Manufacturing methods for detectors, lithography equipment, and articles
WO2020203104A1 (en) Measurement device, patterning device, and method for producing article
KR102259008B1 (en) Imprint apparatus, method of generating control data, and article manufacturing method
US11187977B2 (en) Imprint apparatus, imprint method, and method of manufacturing article
US10386737B2 (en) Imprint apparatus and method for producing article
JP6758967B2 (en) Imprinting equipment, imprinting method, and manufacturing method of goods
US10642171B2 (en) Imprint apparatus, imprint method, and method for producing article
JP2019062164A (en) Imprint device, imprint method, determination method of arrangement pattern of imprint material, and manufacturing method of article
WO2021111918A1 (en) Foreign matter inspection device, foreign matter inspection method, processing device, and article manufacturing method
JP7437928B2 (en) Imprint equipment, imprint method, and article manufacturing method
US20210061649A1 (en) Imprinting method, pre-processing apparatus, substrate for imprinting, and method for manufacturing substrate
JP2018018988A (en) Alignment device, alignment method, position detection device, lithography device, and method for manufacturing object
JP2024030557A (en) Detector, lithography device, and article manufacturing method
JP2022128225A (en) Measuring device, lithography device, and method for manufacturing article
JP2023170174A (en) Detector, lithography apparatus, article manufacturing method and detection system
JP2020038164A (en) Position detection device, position detection method, mold, imprint device, and method for manufacturing article
JP2023056347A (en) Measuring device, measuring method, lithography device, and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782919

Country of ref document: EP

Kind code of ref document: A1